(完整版)数学八年级下《一元二次方程》复习测试题(附答案)
浙教版下学期八年级数学(下册)第二章一元二次方程测试题及答案
浙教版下学期八年级数学(下册)第2章一元二次方程测试题(时间:100分钟 满分:120分)1、下列方程是一元二次方程的是( )A .ax 2+bx +c =0 B .2x 2=0 C .xx 3=1 D .x 2+y =02、方程3x (x -4)=5(1-2x )的二次项系数、一次项系数、常数项分别为( ) A .3,-2,5 B .3,-2,-5 C .-3,-2,5 D .3, 2,53、关于x 的一元二次方程x 2-3px +p 2-2p +8=0的一个根为2,则实数p 的值是( ). A .2 B .6 C .2或6 D .-2或-64、若整式x 2-2x -15能分解成 (x -5)与 (x +3),则一元二次方程x 2-2x -15=0的根为( ).A .x 1=5,x 2=-3B .x 1=-5,x 2=-3C .x 1=5,x 2=3D .x 1=-5,x 2=3 5、已知方程3x (2x +5)= (2x +5),则其根为( ) A .31 B .0 C . 25- D .31,25- 6、如果一元二次方程ax 2+bx +c =0(a ≠0) 有两个相等的实数根,且满足a +b +c =0,则下列结论正确的是( )A .a =bB .c =bC .c =aD .a +b =c7、关于x 的一元二次方程x 2-(2m -3)x +m 2-6=0有两个不相等的实数根,那么m 的最大值是( ). A .-1 B .0 C .1 D .28、使用一面9m 墙为一边,再用17m 长的铁丝网围成三边,使其成一个面积为35m 2的长方形,求这个长方形的边长,设墙的对边长为x m ,可得方程为( )A 、x (17-x )=35B 、x ·217x-=35 C 、x (17-21x )=35 D 、x ·2217x -=35 9、有一个两位数它的十位上数与个位数之和是7,如把十位上数字和个位上数字调换所得两位数乘以原来的两位数就的1462求原来的两位数?( )A .34B .43C .34或43D .5210、若2b-为方程2x 2+ax +b =0的根(b ≠0),则下列代数式的值恒为常数的是( ) A .a b B .ba C .2(a +b ) D .b -a二、填空题(共10小题 每题3分 共30分)11、若关于x 的一元二次方程(k -3)x 2-6x -2=0 有实数根,则k 的取值范围是 . 12、方程(m -2)mmx -2+(m -3)x -2=0是一个一元二次方程,则m 的值是 .13、已知方程x 2-5kx -25=k 2的一个根是2,则k 的值是 ,方程的另一个根是 . 14、已知m ,n 是方程x 2+x -2019=0的两个根,则m 3-3mn +2020n 的值为 . 15、若方程x 2+(2k -1)x +k 2+2=0无实数根,则方程x 2-(3k +1)x +49k 2-3=0的根的情况为 . 16、如果两个不同的方程x 2+ax +b =0与x 2+bx +a =0只有一个公共根,那么a ,b 满足的关系式为 . 17、某校去年投资2万元购买实验器材,预计今明2年的投资总额为8万元.若该校这两年购买的实验器材的投资年平均增长率为xm ,n19、设a ,b 是一个直角三角形的两条直角边的长,且(a 2+b 2)(a 2+b 2-2)=63,则这个三角形的斜边长为 .20、若m 为实数,方程x 2-2x +m =0的一个根的相反数是方程x 2+2x -2=0的一个根,则x 2-2x +m =0的根是 .三、解答题(共6题 共60分) 21、(满分9分)解方程 (1)(2x +3)2=4(3x -4)2;(2) (3x -1)(x -2)=8;(4)2x 2-3x -1=0;22、(满分10分)已知关于x 的一元二次方程x 2+bx +a =0有两个相等的实数根,求4)2(4222-+-b a ab 的值.23、(满分10分)先阅读理解下面的材料,再按要求解答问题:解方程x 4-13x 2+36=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-13y+36=0 ①,解得y1=4,y2=9.当y=4时,x2=4,∴x=±2;当y=9时,x2=9,∴x=±3;∴原方程有四个根:x1=2,x2=-2,x3=3,x4=-3.(1)在由原方程得到方程①的过程中,利用______法达到______的目的,体现了数学的转化思想.(2)解方程(x2-2x)2-6(x2-2x) -16=0.24、(满分10分)关于x的一元二次方程为(m-2)x2-2mx+m+2=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?25、(满分9分)将进货单价为50元的商品按60元售出时,就能卖出600个.已知这种商品每个涨价1元,其销售量就减少15个.为了赚得9000元的利润,每个商品售价应定为多少元?这时应进货多少个?26、(满分12分)已知关于x的一元二次方程2x2-3(k+1)x+k2+3k=0.(1)求证:无论k取何值,方程总有实数根.(2)若等腰三角形ABC的一边长a=2,另两边长b,c恰好是这个方程的两个根,求△ABC的周长.参考答案一、选择题(共10小题 每3分 共30分)11、k ≥23-且 k ≠3 12、-1 13、-3,-7;-17,-37 14、2018 15、有两个不相等的实数根 16、a +b +1=0 17、2(1+x )+2(1+x )2=8 18、x 2-x -30=0 19、3 三、解答题(共6题 共60分)21、(1)(2x +3)2=4(3x -4)2;解:将原方程化为(2x +3)2-4(3x -4)2=0分解因式,得 [][])43(2)32()43(2)32(--+-++x x x x =0则(8x -5)( -4x +11)=0 则8x -5=0,或-4x +11=0解得x (2) (3x -1)(x -2)=8;解:将原方程化为3x 2-7x -6=0 分解因式,得(3x +2)(x -3)=0 则3x +2=0,或x -3=0 解得x x 2=3解:将原方程化为x 2-2x =3方程两边同加1,得x 2-2x +1=3+1,即(x -1)2=4. 则x -1=2,或x -1=-2, 解得x 1=3,x 2=-1 (4)2x 2-3x -1=0;解:∵a =2,b =-3,c =-1, ∴△=b 2-4ac =(-3)2-4×2×(-1)=17 ∴x解得x 22、解:∵x 2+bx +a =0有两个相等的实数根,∴△=b 2-4a =0, b 2=4a ,∵4)2(3222-+-b a ab =4443222-++-b a a ab =44441222-++-a a a a =121222=aa . 23、解:(1)换元,降次(2)设x 2-2x =y ,原方程可化为y 2-6y -16=0, 解得y 1=8,y 2=-2.由x 2-2x =8,得x 1=-2,x 2=4. 由x 2-2x =-2,得方程x 2-2x +2=0, b 2-4ac =4-4×2=-4<0,此时方程无实根. 所以原方程的解为x 1=-2,x 2=4. 24、解:(1)根据题意得m ≠2, △=(-2m )2-4(m -2)(m +2)=16, ∴x 1=)2(242-+m m =22-+m m ,x 2=)2(242--m m =1.(2)由(1)知x 1=22-+m m =1+22-m , ∵方程的两个根都是正整数, ∴22-m 是正整数, ∴m -2是整数, ∴m -2=1或2, ∴m =3或4.25、解:设涨价x 元能赚得9000元的利润, 即售价定为每个(x +60)元,应进货(600-10x )个, 依题意得:(60-50+x ) (600-10x )=9000,解得x 1=10 ,x 2=20,当x =10时,x +60=70,600-10x =500; 当x =20时,x +60=80,600-10x =400答:售价定为每个60元时应进货500个,或售价定为每个80元时应进货400个.26、【解】 (1)∵△=b 2-4ac =9(k +1)2-8(k 2+3k)=(k -3)2≥0, ∴无论k 取何值,方程总有实数根. (2)分两种情况: ①若b =c ,则方程2x 2-3(k +1)x +k 2+3k =0有两个相等的实数根, ∴△=b 2-4ac =(k -3)2=0, 解得k =3,此时方程为x 2-6x +9=0,解得x 1=x 2=3. ∴△ABC 的周长为8.②若b ≠c ,则b =a =2或c =a =2,即方程有一个根为2, 把x =2代入方程2x 2-3(k +1)x +k 2+3k =0,得 8-6(k +1)+k 2+3k =0, 解得k 1=1,k 2=2,当k =1时,方程为x 2-3x +2=0,解得x 1=1,x 2=2. ∴方程的另一个根为1. ∴△ABC 的周长为5.当k =2时,方程为2x 2-9x +10=0,解得x 1=2,x 2=25. ∴方程的另一个根为25. ∴△ABC 的周长为213. 综上所述,所求△ABC 的周长为8或5或213.。
初中数学一元二次方程练习题(附答案)
初中数学一元二次方程练习题一、单选题1.为了改善居民住房条件,某市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为210m 提高到212.1m 若每年的年增长率相同,则年增长率为( )A.9%B.10%C.11%D.12.1%2.设一元二次方程2230x x --=的两个实数根为12x x ,,则1122x x x x ++等于( ).A.1B.-1C.0D.33.若方程240x x m +=-有两个相等的实数根,则m 的值是( ).A.4B.-4C.14D.14- 4.方程22x x =的解是( ).A.2x =B.1x =,20x =C.120,2x x ==D.0x =5.下列方程中,是关于x 的一元二次方程的是( ).A.20ax bx c ++=B.()20x x -=C.2110x x ++=D.21x x =-6.某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x ,则下面所列方程正确的是( )A.250(1)182x +=B.25050(1)182x ++=C.5050(1)50(12)182x x ++++=D.25050(1)50(1)182x x ++++= 7.用配方法解方程2250x x --=时,原方程应变形为( )A. 2(1)6x +=B. 2(2)9x +=C. 2(1)6x -=D. 2(2)9x -=8.已知关于x 的一元二次方程280x mx +-=的一个实数根为2,则另一实数根及m 的值分别为( )A.4,2-B.4,2--C.4,2D.4,2-9.若关于x 的一元二次方程()21220k x x -+-=有不相等实数根,则k 的取值范围是( ) A. 12k > B. 12k ≥ C. 12k >且1k ≠ D. 12k ≥且1k ≠ 10.方程24x x =的解是( )A.4x =B.120,4x x ==C.0x =D.122,2x x ==-11.一元二次方程240x -=的根为( )A.2x =B.2x =-C.122,2x x ==-D.4x =12.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x .根据题意列方程,则下列方程正确的是( )A .22500(1)9100x =+B .22500(1%)9100x +=C .22500(1)2500(1)9100x x =+++D .225002500(1)2500(1)9100x x ++++=13.国家统计局统计数据 显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由500亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x .则可列方程为( )A.()500127500x +=B.()500217500x ⨯+=C.()2500017500x +=D.()()2 50005001500017500x x ++++= 14.关于x 的一元二次方程220x kx +-=(k 为实数)根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定15.用配方法解方程26110x x ++=,下面配方正确的是( )A .232x +=()B .232x +=-()C .232x =(﹣)D .232x =-(﹣)16.下列方程是一元二次方程的是( )A. 2230x y +-=B. 230x -=C. 22(3)9x +=D. 2214x x += 17.下列方程中,关于x 的一元二次方程是( )A. 20ax bx c +=+B. 222x x =+C.22 21x x x =++D. 220x +=18.用配方法方程2650x x +-=时,变形正确的方程为( )A .()2314x +=B .()2314x -=C .()264x +=D .()264x -= 19.把二次函数2134y x x =--+用配方法化成2()y a x h k =-+的形式( ) A.21224()y x =--+ B .2)14(24y x =-+ C.21244()y x =-++ D.211322y x ⎛⎫=-+ ⎪⎝⎭ 20.今年某市的房价不断上涨,6月份平均每平方米约10362元,到8月份,平均每平方米就涨到约11438,设每个月房价的平均增长率为x ,则下列方程正确的是( )A .21036211438x =B .()103621211438x +=C .()210362111438x +=D .()()210362110362111438x x +++=21.已知关于x 的一元二次方程23450x x +-=,下列说法正确的是( )A .方程有两个相等的实数根B .方程有两个不相等的实数根C .没有实数根D .无法确定22.下列方程是一元二次方程的是( )A .20ax bx c ++=B .22323()2x x x -=-C .3240x x --=D .()2110x -+= 二、解答题23.解方程(1)2120x x -=+(2)2320x x -+=24.某商场将进货单价为40元的商品按50元售出时能卖出500个,经过市场调查发现,这种商品最多只能卖500个.若每个售价提高1元,其销售量就会减少10个,商场为了保证经营该商品赚得8 000元的利润而又尽量兼顾顾客的利益,售价应定为多少?这时应进货多少个?25.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完.礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?26.国美商场销售某种冰箱,每台进货价为2500元.调查发现,当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.(1)如果设每台冰箱降价x 元,平均每天销售冰箱的数量为y ,请直接表示出y 与x 的函数关系式;(2)如果商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?27.某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过30%.(1)根据物价局规定,此商品每件售价最高可定为多少元?(2)若每件商品售价定为x 元,则每天可卖出(1705)x -件,商店预期每天要盈利280元,那么每件商品的售价应定为多少元?28.诸暨某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元.那么平均可多售出2件.(1)设每件童装降价x 元时,每天可销售 件,每件盈利 元;(用x 的代数式表示)(2)每件童装降价多少元时,平均每天赢利1 200元;(3)要想平均每天赢利2000元.可能吗?请说明理由.29.某商场将原来每件进价80元的某种商品按每件100元出售,一天可出售100件,后来经过市场调查.发现这种商品单价每降低2元,其销量可增加20件.(1)商场经营该商品原来一天可获利 元;(2)若商场经营该商品一天要获得利润2160元,则每件商品应降价多少元?三、计算题30.用适当的方法解下列方程(1)26160x x --= (2)23222x x (﹣)=(﹣). 31.用适当的方法解下列方程(1)()25410x x x -=-(2)22510x x ++=(3)25736x x x ++=+四、填空题32.方程2x x =的解是________.33.关于x 的一元二次方程220x x m ++=有两个相等的实数根,则m 的值是___________.参考答案1.答案:B解析:2.答案:B解析:3.答案:A解析:4.答案:C解析:5.答案:B解析:6.答案:D解析:7.答案:C解析:方程常数项移到右边,两边加上1变形即可得到结果.方程移项得: 225x x -=,配方得: 2216x x -+=,即()216x -=.8.答案:D解析:把2x =代入280x mx +-=,得4280m +-=,解得2m =,2280x x ∴+-=解2280x x +-=得124,2x x =-=,故选D.9.答案:C解析:因为关于x 的一元二次方程()21220k x x -+-=有两个不相等的实数根,所以0∆>,所以()22810k +->,解得12k >,而作为一元二次方程还要考虑到二次项的系数不能等于0,所以10k -≠,所以1k ≠.故选C.10.答案:B解析:移项得:240x x -=,()40x x -=,0x =,40x -=,10x =,24x =.故选B .11.答案:C解析:移项,得24x =,开放,得2x =±,即122,2x x ==-.12.答案:D解析:设该公司5、6两月的营业额的月平均增长率为x .根据题意列方程得:225002500(1)2500(1)9100x x ++++=.故选:D .13.答案:C解析:14.答案:A解析:由根的判别式得,22480b ac k ∆=+-=>故有两个不相等的实数根故选:A .15.答案:B解析: 26110x x ++=,2611x x +=-,269119x x ++=-+,232x +=-(),故选B.16.答案:B解析:A 含x y 、两个未知数,B 是,C 整理后x 的最高次项是4次,D 不是整式方程.故答案为:B17.答案:D解析:A 、20ax bx c +=+ ,当0a =时,不是一元二次方程,A 错误;B 、222x x =+是分式方程,B 错误; C 、22 21x x x =++,化简得210x -=, 是一元一次方程,C 错误;D 、220x +=即220x +=,D 正确.18.答案:A解析:方程移项得:265x x +=,配方得:26914x x ++=,即()2314x +=19.答案:C解析:20.答案:C解析:21.答案:B解析:22.答案:D解析: 23.答案:(1)124,3x x =-=(2)122,1x x ==解析:24.答案:解1:设提高x 元,则售价应定为(50)x +元,销售量为)500(10x -个,依题意可得: 504050010800()0)(x x +--=即:2403000x x -+=解得:1210,30x x ==兼顾顾客的利益 30x ∴=不合舍去。
初中数学方程与不等式之一元二次方程经典测试题附答案
初中数学方程与不等式之一元二次方程经典测试题附答案一、选择题1.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( ) A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=【答案】D【解析】【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可.【详解】x 1、x 2是一元二次方程x 2-2x=0的两个实数根,这里a=1,b=-2,c=0,b 2-4ac=(-2)2-4×1×0=4>0,所以方程有两个不相等的实数根,即12x x ≠,故A 选项正确,不符合题意; 21120x x -=,故B 选项正确,不符合题意;12221b x x a -+=-=-=,故C 选项正确,不符合题意; 120c x x a⋅==,故D 选项错误,符合题意, 故选D.【点睛】 本题考查了一元二次方程的根的判别式,根的意义,根与系数的关系等,熟练掌握相关知识是解题的关键.2.国庆期间电影《我和我的祖国》第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把增长率记作x ,则方程可以列为( ) A .3(1)10x +=B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=【答案】D【解析】【分析】用含x 的代数式表示出第二天和第三天的票房收入,三天的票房收入再相加即得答案.【详解】解:设平均每天票房收入的增长率记作x ,则233(1)3(1)10x x ++++=. 故选:D.【点睛】本题考查的是一元二次方程的应用之增长降低率问题,一般的,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为:()21a x b ±=.3.如果等腰三角形的两边长分别是方程x 2-10x +21=0的两根,那么它的周长为 ( ) A .17B .15C .13D .13或17【答案】A【解析】试题分析:根据题意可得方程的两根为x=3和x=7,3、3、7不能构成三角形,则三角形的三边为3、7、7,则周长为17.考点:一元二次方程、等腰三角形.4.对于一元二次方程ax 2+bx +c =0(a ≠0),下列说法:①若b =ax 2+bx +c =0一定有两个相等的实数根;②若方程ax 2+bx +c =0有两个不等的实数根,则方程x 2﹣bx +ac =0也一定有两个不等的实数根;③若c 是方程ax 2+bx +c =0的一个根,则一定有ac +b +1=0成立;④若x 0是一元二次方程ax 2+bx +c =0的根,则b 2﹣4ac =(2ax 0+b )2,其中正确的( )A .只有①②③B .只有①②④C .①②③④D .只有③④【答案】B【解析】【分析】判断上述方程的根的情况,只要看根的判别式△=-24b ac 的值的符号就可以了.④难度较大,用到了求根公式表示0x .【详解】解:①若b =,方程两边平方得b 2=4ac ,即b 2﹣4ac =0,所以方程ax 2+bx +c =0一定有两个相等的实数根;②若方程ax 2+bx +c =0有两个不等的实数根,则b 2﹣4ac >0方程x 2﹣bx +ac =0中根的判别式也是b 2﹣4ac >0,所以也一定有两个不等的实数根; ③若c 是方程ax 2+bx +c =0的一个根,则一定有ac 2+bc +c =0成立,当c ≠0时ac +b +1=0成立;当c =0时ac +b +1=0不成立;④若x 0是一元二次方程ax 2+bx +c =0的根,可得0x , 把x 0的值代入(2ax 0+b )2,可得b 2﹣4ac =(2ax 0+b )2,综上所述其中正确的①②④.故选:B .【点睛】此题主要考查了根的判别式及其应用.尤其是④难度较大,用到了求根公式表示0x ,整体代入求2204(2)b ac ax b -=+.总结:一元二次方程根的情况与判别式△的关系:(1)△0>⇔方程有两个不相等的实数根;(2)△0=⇔方程有两个相等的实数根;(3)△0<⇔方程没有实数根.5.用配方法解一元二次方程时,原方程可变形为( ) A .2(2)1x +=B .2(2)7x +=C .2(2)13+=xD .2(2)19+=x 【答案】B【解析】试题分析:243x x +=,24434x x ++=+,2(2)7x +=.故选B .考点:解一元二次方程-配方法.6.用配方法解方程2640x x ++=时,原方程变形为( )A .2(3)9x +=B .2(3)13x +=C .2(3)5x +=D .2(3)4x +=【答案】C【解析】【分析】方程整理后,配方得到结果,即可做出判断.【详解】解:方程配方得:x 2+6x+5+4-5=0,即(x+3)2=5.故选:C .【点睛】此题考查解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.7.下列方程中,属于一元二次方程的是( )A .21130x x +-=B .ax 2+bx +c =0C .x 2+5x =x 2﹣3D .x 2﹣3x +2=0 【答案】D【解析】【分析】根据一元二次方程必须满足两个条件:未知数的最高次数是2;二次项系数不为0,可得答案.【详解】解:A 、是分式方程,故A 错误;B 、a =0时是一元一次方程,故B 错误;C 、是一元一次方程,故C 错误;D 、是一元二次方程,故D 正确.故选:D .【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx +c =0(且a ≠0).特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.8.方程22310x x +-=的两根之和为( )A .32-B .23-C .3-D .12【答案】A【解析】【分析】据一元二次方程的根与系数的关系即可判断.【详解】 根据一元二次方程的根与系数的关系可得:两个根的和是:32-. 故选:A .【点睛】此题考查根与系数的关系,解题关键在于掌握若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-12b c x x a a =,. .9.下列各式的变形中,正确的是( )A .2810x x --=配方变为2(4)1x -=B .21()1x x x x÷+=+ C .221090x x ++=配方变为2(25)16x += D .22()()x y x y x y ---+=-【答案】D【解析】【分析】A 、C 选项,利用配方法的步骤进行计算即可,B 、D 选项为根据整式的除法和乘法即可判断.【详解】A 选项,x 2-8x-1=0利用配方法得,x 2-8x+16-16=1整理得(x-4)2=17,选项错误B 选项,整式的除法,()221(1)1x x x x x x x x x x ÷+===+++,选项错误 C 选项,2x 2+10x+9=0 将x 2系数化为1得,29502x x ++=,利用配方法得225259 5442x x++-=-,整理得,25724x⎛⎫-=⎪⎝⎭,故该选项错误;D选项,易观察到两多项式中存在相同项及互为相反数项,满足平方差公式,其中相同项为-x,y与-y互为相反数,即有(-x-y)(-x+y)=x2-y2,正确故选:D.【点睛】此题主要考查一元二次方程中配方法的运算及整式除法,平方差公式,掌握整式混合运算的法则及配方法的步骤是解题的关键.此题为基础题型,比较简单.10.李师傅去年开了一家商店,将每个月的盈亏情况都作了记录.今年1月份开始盈利,2月份盈利2000元,4月份盈利恰好2880元,若每月盈利的平均增长率都相同,这个平均增长率是()A.20% B.22% C.25% D.44%【答案】A【解析】【分析】设这个平均增长率为x,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.【详解】设这个平均增长率为x,根据题意得:2000(1+x)2=2880,解得:x1=20%,x2=-2.2(舍去).答:这个平均增长率为20%.故选A.【点睛】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x)2=后来的量,其中增长用+,减少用-,难度一般.11.某商品原售价225元,经过连续两次降价后售价为196元,设平均每次降价的百分率为x,则下面所列方程中正确的是()A.22251196x(﹣)=B.21961225x(﹣)=C.22251196x(﹣)=D.21961225x(﹣)=【答案】A【解析】【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=225,把相应数值代入即可求解.【详解】第一次降价后的价格为225×(1﹣x),第二次降价后的价格为225×(1﹣x)×(1﹣x),则225(1﹣x )2=196.故选A .【点睛】本题考查了一元二次方程的应用-增长率问题.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .12.用配方法解方程:x 2﹣2x ﹣3=0时,原方程变形为( )A .(x+1)2=4B .(x ﹣1)2=4C .(x+2)2=2D .(x ﹣2)2=3【答案】B【解析】试题分析:将原方程的常数项﹣3变号后移项到方程右边,然后方程两边都加上1,方程左边利用完全平方公式变形后,即可得到结果.解:x 2﹣2x ﹣3=0,移项得:x 2﹣2x=3,两边加上1得:x 2﹣2x+1=4,变形得:(x ﹣1)2=4,则原方程利用配方法变形为(x ﹣1)2=4.故选B .13.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定【答案】A【解析】【分析】利用一次函数性质得出k >0,b≤0,再判断出△=k 2-4b >0,即可求解.【详解】解:Q 一次函数y kx b =+的图象不经过第二象限, 0k ∴>,0b ≤,240k b ∴∆=->,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查的是一元二次方程的根的判别式,熟练掌握一次函数的图像和一元二次方程根的判别式是解题的关键.14.某种植基地2016年蔬菜产量为100吨,2017年比2016年产量增长8.1%,2018年比2017年产量的增长率为x ,2018年底产量达到144吨,则x 满足( )A .100(1+x )2=144B .100(1+8.1%)(1﹣x )=144C .100(1+8.1%)+x =144D .100(1+8.1%)(1+x )=144【答案】D【解析】【分析】 由题意知,2017年蔬菜产量为:100(1+8.1%),2018年蔬菜产量为:100(1+8.1%)(1+x ),然后根据2018年底产量达到144吨列方程即可.【详解】解:∵某种植基地2016年蔬菜产量为100吨,2017年比2016年产量增长8.1%, ∴2017年蔬菜产量为:100(1+8.1%),∵2018年比2017年产量的增长率为x ,2018年底产量达到144吨,∴2018年蔬菜产量为:100(1+8.1%)(1+x )=144,故选D .【点睛】本题主要考查了由实际问题抽象出一元一次方程的应用,熟练掌握这些知识是解题的关键.15.目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( )A .438(1+x )2=389B .389(1+x )2=438C .389(1+2x )=438D .438(1+2x )=389【答案】B【解析】【分析】【详解】解:因为每半年发放的资助金额的平均增长率为x ,去年上半年发放给每个经济困难学生389元,去年下半年发放给每个经济困难学生389 (1+x) 元,则今年上半年发放给每个经济困难学生389 (1+x) (1+x) =389(1+x)2元.据此,由题设今年上半年发放了438元,列出方程:389(1+x )2=438.故选B .16.已知关于x 的一元二次方程mx 2﹣(m+2)x+4m =0有两个不相等的实数根x 1,x 2.若11x +21x =4m ,则m 的值是( ) A .2B .﹣1C .2或﹣1D .不存在【答案】A【解析】先由二次项系数非零及根的判别式△>0,得出关于m 的不等式组,解之得出m 的取值范围,再根据根与系数的关系可得出x 1+x 2=2m m +,x 1x 2=14,结合1211+x x =4m ,即可求出m 的值.【详解】∵关于x 的一元二次方程mx 2﹣(m+2)x+4m =0有两个不相等的实数根x 1、x 2, ∴()202404m m m m ≠⎧⎪⎨∆=+-⋅>⎪⎩, 解得:m >﹣1且m≠0,∵x 1、x 2是方程mx 2﹣(m+2)x+4m =0的两个实数根, ∴x 1+x 2=2m m +,x 1x 2=14, ∵1211+x x =4m , ∴214m m +=4m , ∴m=2或﹣1,∵m >﹣1,∴m=2,故选A .【点睛】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:根据二次项系数非零及根的判别式△>0,找出关于m 的不等式组;牢记两根之和等于﹣b a 、两根之积等于c a. 17.已知24b ac -是一元二次方程()200++=≠ax bx c a 的一个实数根,则ab 的取值范围为( )A .18ab ≥ B .18ab ≤ C .14ab ≥ D .14ab ≤ 【答案】B【解析】设u 的两个一元二次方程,并且这两个方程都有实根,所以由判别式大于或等于0即可得到ab≤18. 【详解】因为方程有实数解,故b 2-4ac≥0.由题意有:242b b ac a -+=-或242b b ac a-=-,设 则有2au 2-u+b=0或2au 2+u+b=0,(a≠0),因为以上关于u 的两个一元二次方程有实数解,所以两个方程的判别式都大于或等于0,即得到1-8ab≥0,所以ab≤18. 故选B .【点睛】 本题考查了一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的求根公式:x=2b a-±(b 2-4ac≥0).18.对于两个不相等的实数a ,b ,我们规定符号max {a ,b }表示a 、b 中的较大的数,如:max {2,4}=4,按照这个规定,方程max {x ,﹣x }=x 2﹣x ﹣1的解为( )A .或1B .1或﹣1C .1或1D .或﹣1【答案】D【解析】【分析】根据题意应分为x>0和x<0两种情况讨论,并列出关于x 的分式方程求解,结合x 的取值范围确定方程max {x ,﹣x }=x 2﹣x ﹣1的解即可.【详解】解:①当x ≥﹣x ,即x ≥0时,∵max {x ,﹣x }=x 2﹣x ﹣1,∴x =x 2﹣x ﹣1,解得:x =(1<0,不符合舍去);②当﹣x >x ,即x <0时,﹣x =x 2﹣x ﹣1,解得:x =﹣1(1>0,不符合舍去),即方程max {x ,﹣x }=x 2﹣x ﹣1的解为或﹣1,故选:D .【点睛】本题考查了解分式方程,有关实数、实数运算的新定义,掌握分式方程的解法是解题的关键.19.若关于x 的一元二次方程ax 2+bx+6=0的一个根为x=﹣2,则代数式6a ﹣3b+6的值为( )A .9B .3C .0D .﹣3【答案】D【解析】分析:根据关于x 的一元二次方程260ax bx ++=的一个根为2x =-,可以求得2a b -的值,从而可以求得636a b -+的值.详解:∵关于x 的一元二次方程260ax bx ++=的一个根为x =−2,∴()()22260a b ,⨯-+⨯-+= 化简,得2a −b +3=0,∴2a −b =−3,∴6a −3b =−9,∴6a −3b +6=−9+6=−3,故选D.点睛:考查一元二次方程的解,解题的关键是明确题意,建立所求式子与已知方程之间的关系.20.已知,,m n 是一元二次方程2320x x -+=的两个实数根,则2246m mn m --的值为( )A .8B .10C .8-D .12- 【答案】D【解析】【分析】先根据一元二次方程的解的定义得到m 2-3m=-2,则2m 2-4mn-6m=2(m 2-3m )-4mn=-4-4mn ,再根据根与系数的关系得到mn=2,然后利用整体代入的方法计算.【详解】∵m 是一元二次方程x 2-3x+2=0的实数根,∴m 2-3m+2=0,∴m 2-3m=-2,∴2m 2-4mn-6m=2(m 2-3m )-4mn=-4-4mn ,∵m ,n 是一元二次方程x 2-3x+2=0的两个实数根,∴mn=2,∴2m 2-4mn-6m=-4-4×2=-12.故选:D .【点睛】此题考查根与系数的关系,解题关键在于掌握若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-12b c x x a a,.。
初中数学一元二次方程综合练习题(附答案)
初中数学一元二次方程综合练习题一、单选题1.一元二次方程293x x -=-的解是( )A.3x =B.4x =-C.123,4x x ==-D.123,4x x ==2.直角三角形两条直角边长的和是7,面积是6,则斜边长是()B.5D.73.一元二次方程220x x -=的两根分别为1x 和2x ,则12x x 为( )A.2-B.1C.2D.0A.2m =±B.2m =C.2m =-D.2m ≠±5.若a ,β为方程22510x x --=的两个实数根,则2235a a ββ++的值为( )A.13-B.12C.14D.15A.2B. 1-C.2或1-D.不存在7.已知关于x 的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根,下列判断正确的是( )A.1一定不是关于x 的方程20x bx a ++=的根B.0一定不是关于x 的方程20x bx a ++=的根C.1和1-都是关于x 的方程20x bx a ++=的根D.1和1-不都是关于x 的方程20x bx a ++=的根8.关于x 的一元二次方程2(1)320a x x -+-=有实数根,则a 的取值范围是( )A.18a >-B.18a ≥-C. 18a >-且1a ≠D. 18a ≥-且1a ≠9.一个正方体的表面展开图如图所示,已知正方体相对两个面上的数值相同,且不相对两个面上的数值不相同,则“★”面上的数为( )A.1B.1或2C.2D.2或310.定义一种新运算:()a b a a b =-♣.例如,434(43)4=⨯-=♣.若23x =♣,则x 的值是( )A.3x =B.1x =-C.123,1x x ==D.123,1x x ==-二、解答题11.已知关于x 的一元二次方程2(1)210m x mx m --++=.(1)求方程的根;(2)当m 为何整数时,此方程的两个根都为正整数?12.阅读材料:把形如2ax bx c ++ (,,a b c 为常数)的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=±.例如:222213(1)3,(2)2,(2)24x x x x x -+-+-+是224x x -+的三种不同形式的配方,即“余项”分别是常数项、一次项、二次项.请根据阅读材料解决下列问题:(1)仿照上面的例子,写出242x x -+的三种不同形式的配方;(2)已知2223240a b c ab b c ++---+=,求a b c ++的值.14.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ≠),则方15.若关于x 的一元二次方程220mx x m ++=的两根之积为-1,则m 的值为 .16.小明设计了一个魔术盒,当任意实数对(,)a b 进入其中时,会得到一个新的实数223a b -+.若17.已知关于x 的方程260x x k -+=的两根分别是12,x x ,且满足12113x x +=,则k = .参考答案1.答案:C解析:方程293x x -=-变形为(3)(3)(3)0x x x +-+-=,将方程左边因式分解得(3)(4)0x x -+=,所以123,4x x ==-.2.答案:B解析:设其中一条直角边的长为x ,则另一条直角边的长为7x -,由题意,得1(7)62x x -=,解得1234x x ==,5=.故选B3.答案:D解析:∵一元二次方程220x x -=的两根分别为1x 和2x ,∴120x x =.故选:D .4.答案:B方程,故2m =5.答案:B解析:a β,为方程22510x x --=的两个实数根,故251251022a a ββββ+==---=,,,从而2521ββ=- 222225123523212()1211222a a a a a a ββββββ⎛⎫⎛⎫∴++=++-=+--=---= ⎪ ⎪⎝⎭⎝⎭. 6.答案:A解析:由题意得0m ≠,2(2)44404m m m m ⎡⎤∆=-+-=+>⎣⎦,解得1m >-且0m ≠. 121212211414m x x m m x x x x +++=== 解得1221m m ==-,(舍去),所以m 的值为2.7.答案:D解析:关于x 的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根,2210(2)4(1)0a b a +≠⎧∴⎨∆=-+=⎩ 1b a ∴=+或(1)b a =-+.当1b a =+时,有10a b -+=,此时1-是方程20x bx a ++=的根;当(1)b a =-+时,有10a b ++=,此时1是方程20x bx a ++=的根.10a +≠,1(1)a a ∴+≠-+1∴和1-不都是关于x 的方程20x bx a ++=的根.当0a =时,0是关于x 的方程20x bx a ++=的根.综上,D 正确.8.答案:D解析:根据一元二次方程的定义和根的判别式的意义得到1a ≠且234(1)(2)0a ∆=--⋅-≥,然后求出两个不等式解集的公共部分即可. 9.答案:C解析:正方体的平面展开图共有六个面,其中面“2x ”与面“32x -”相对,面“★”与面“1x +”相对.因为相对两个面上的数值相同,所以232x x =-,解得1x =或2x =.又因为不相对两个面上的数值不相同,当2x =时,2324x x +=-=,所以x 只能为1,即12x =+=★.10.答案:D解析:23,(2)3x x x =∴-=♣整理,得2230x x --=,因式分解,得(3)(1)0x x -+=,30x ∴-=或10x +=,123,1x x ∴==-.故选D.11.答案:(1)解:根据题意,得1m ≠1,2,1a m b m c m =-=-=+224(2)4(1)(1)4b ac m m m ∴∆=-=---+=(2)12(1)1m m x m m --±∴==--则121,11m x x m +==- (2)由(1),知112111m x m m +==+--. 方程的两个根都为正整数,21m ∴-是正整数, 11m ∴-=或12m -=,解得2m =或3.即m 为2或3时,此方程的两个根都为正整数。
人教版初中数学八年级《一元二次方程》专项训练题(附答案)
. 人教版初中数学八年级《一元二次方程》专项训练题(附答案) 学校: 班级: 姓名: 一、选择题1、关于 x 的一元二次方程(a+1)x 2+x +a 2﹣1=0 的一个根是 0,则 a 的值为() A .1 B .﹣1 C .1 或﹣1 D .2、已知 y=kx+k 的图象与 y=x 的图象平行,则 y=kx-k 的大致图象为()3、若 k >1,关于 x 的方程 2x 2-(4k +1)x +2k 2﹣1=0 的根的情况是( )A .有一正根和一负根B .有两个正根C .有两个负根D .没有实数根4、用一张长为 80cm 、宽为 60cm 的薄钢片,在 4 个角上截去 4 个相同的边长为 xcm 的小正方形,然后做成底面积为 1500c m 2 的没有盖的长方体盒子,为求出 x ,根据题意列方程并整理后得 ( )A . x 2–70x+ 825=0B . x 2+70x –825 = 0C . x 2–70 x –825 = 0D . x 2 + 70x + 825 = 05、如图 1,已知动点 A ,B 分别在 x 轴,y 轴正半轴上,动点 P 在反比例函数 y=x6(x >0)图象上,PA ⊥ x 轴,△PAB 是以 PA 为底边的等腰三角形.当点 A 的横坐标逐渐增大时,△PAB 的面积将会( )A .越来越小B .越来越大C .不变D .先变大后变小6、如图2,在平面直角坐标系中,直线y=﹣x+4与x 轴、y 轴分别交于A 、B 两点,点C 在第二象限,若BC=OC=OA ,则点C 的坐标为( )A .(﹣,2)B .(﹣3,)C .(﹣2,2)D .(﹣3,2)7.如图3,已知AD 为△ABC 的角平分线,DE ∥AB 交AC 于E ,如果23AE EC ,那么AB AC =( ) A. 13 B. 23 C. 25D. 35 8.如图4,在△ABC 中,AB =6 cm ,AC =12 cm ,动点D 从A 点出发到B 点止,动点E 从C 点出发到A 点止.点D 运动的速度为1 cm/s ,点E 运动的速度为2 cm/s.如果两点同时运动,那么当以点A 、D 、E 为顶点的三角形与△ABC 相似时,运动的时间是( )A.3 s 或4.8 sB.3 sC.4.5 sD.4.5 s 或4.8 sA B C D. 、二、填空题(每题 4 分,共 24 分)9、函数121+=x y 中自变量 x 的取值范围是 . 10、若函数xm y 2-= 的图象在其所在的每一象限内,函数值 y 随自变量 x 的增大而减小,则 m的取值范围是 .11、如图 5,在△ABC 中,∠ ABC=90° ,BC=5.若 DE 是△ABC 的中位线,延长 DE 交△ABC 的外角∠ ACM 的平分线于点 F ,且 DF=9,则 CE 的长为 .12、如图 6,有一块直角三角形纸片,两直角边 AC=6cm ,BC=8cm ,现将直角边 AC 沿直线 AD折叠,使它落在斜边 AB 上,且与 AE 重合,则tan ∠CAD= .13、设 m 、n 是一元二次方程 x 2+3x ﹣7=0 的两个根,则=++n m m362 . 14.若关于x 的一元二次方程022)5(2=++-x x m 有实数根,则m 的最大整数值是 .15、如图7,在△ABC 中,AB =BC =4,AO =BO ,P 是射线CO 上的一个动点,∠AOC =60°,则当△PAB 为直角三角形时,则∠PAB 的正弦值为 .三、解答题 16、用适当的方法解下列一元二次方程:(1)22)12()2(+=-x x ; (2)01232=--x x17、已知关于 x 的一元二次方程 4x 2+(4b ﹣4)x+b 2=0 有两个不相等的实数根 x 1 和 x 2,且 x 1x 2≠ 0.(1)求 b 的取值范围;(2)否存在实数 b ,使得11121=+x x ?若存在,求出 b 的值;若不存在,请说明理由.E A B C D 图1 图2 图5 图6 图718、如图,小明同学用自制的直角三角形纸板 DEF 测量树的高度 AB ,他调整自己的位置,设法使斜边 DF 保持水平,并且边 DE 与点 B 在同一直线上.已知纸板的两条边DF=50cm ,EF=30cm ,测得边 DF 离地面的高度 AC=1.5m ,CD=20m ,求树高 AB.19.已知关于 x 的一元二次方程 )1()2)(3(-=--p p x x (1)求证:无论p 取何值,次方程总有两个实数根,(2)若原方程的两根为1x ,2x ,满足21x +22x -13221+=px x ,求p 的值20.如图,在平面直角坐标系xOy 中,直线y=﹣x+m 分别交x 轴,y 轴于A ,B 两点,已知点C (2,0).(1)当直线AB 经过点C 时,求点O 到直线AB 的距离;(2)设点P 为线段OB 的中点,连结PA ,PC ,若∠CPA=∠ABO ,求m 的值.21.如图1,在锐角△ABC中,D、E分别是AB、BC的中点,点F在AC上,且满足∠AFE=∠A,DM∥EF交AC 于点M.(1)证明:DM=DA;(2)点G在BE上,且∠BDG=∠C,如图2,求证:△DEG∽△ECF;(3)在图2中,取CE上一点H,使得∠CFH=∠B,若BG=5,求EH的长.参考答案。
八年级下册数学 一元二次方程根与系数的关系复习专题(附答案)
八年级下册数学 一元二次方程根与系数的关系复习专题(附答案)一、单选题1.已知关于x 的一元二次方程ax 2+bx+c=0的根为2和3,则关于x 的一元二次方程ax 2-bx-c=0的根为( ). A. -2,-3 B. -6,1 C. 2,-3 D. -1,62.一元二次方程ax 2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是( )A. 有两个正根B. 有两个负根C. 有一正根一负根且正根绝对值大D. 有一正根一负根且负根绝对值大3.已知一元二次方程a(x-x 1)(x-x 2)=0(a≠0,x 1≠x 2)与一元一次方程dx+e=0有一个公共解x=x 1 , 若一元二次方程a(x-x 1)(x-x 2)+(dx+e)=0有两个相等的实数根,则( )A. a(x 1-x 2)=dB. a(x 2-x 1)=dC. a(x 1-x 2)²=dD. a(x 2-x 1)=d4.已知方程x 2-2x-5=0,有下列判断:①x 1+x 2=-2;②x 1•x 2=-5;③方程有实数根;④方程没有实数根;则下列选项正确的是( )A. ①②B. ①②③C. ②③D. ①②④ 5.若x 1 , x 2是一元二次方程x 2﹣2x ﹣3=0的两个根,则x 1x 2的值是( )A. -2B. -3C. 2D. 36.已知A ,B 是两个锐角,且满足 sin 2A +cos 2B =54t , cos 2A +sin 2B =34t 2 ,则实数t 所有可能值的和为( ) A. - 83 B. - 53 C. 1 D. 113 7.下列各式计算正确的是( )A. a 3⋅a 2=a 6B. a 5+a 5=a 10C. (−2a 3)3=−8a 9D. (a −1)2=a 2−1 8.若多项式2x 2+3y+3的值为8,则多项式6x 2+9y+8的值为( )A. 1B. 11C. 15D. 239.已知实数a ,b 分别满足a 2−6a +4=0,b 2−6b +4=0 , 且a≠b ,则b a +a b 的值是( )A. 7B. -7C. 11D. -1110.已知实数 m 、n 满足 x 2−7x +2=0 ,则 n m +m n 的值是( )A. 452B. 152C. 152 或2D. 452 或2 二、填空题11.已知关于x 的方程x²-mx+2m-1=0的两个实数根的平方和为7,那么m 的值是________12.设m 、n 是方程x 2+x-1001=0的两个实数根,则m 2+2m+n 的值为________。
2019年秋浙教版初中数学八年级下册《一元二次方程》单元测试(含答案) (148)
八年级数学下册《一元二次方程》测试卷学校:__________ 题号一 二 三 总分 得分评卷人得分 一、选择题1.(2分)已知2y 2+y-2的值为3,则4y 2+2y+1的值为( )A .10B .11C .10或11D .3或112.(2分)若12+x 与12-x 互为倒数,则实数x 为( )A .±21 B .±1 C .±22 D .±2 3.(2分)已知方程20x bx a ++=有一个根是()0a a -≠,则下列代数式的值恒为常数的是( )A .abB .a bC .a b +D .a b -4.(2分)三角形的两边长分别为3和6,第三边的长是方程x 2-6x +8=0的一个根,则这个三角形的周长是( )A .9B .11C .13D .11或135.(2分)用配方法解方程2410x x ++=,经过配方,得到( )A .()225x +=B .()225x -=C .()223x -=D .()223x += 6.(2分)哈尔滨市政府为了申办2010年冬奥会,决定改善城市容貌,绿化环境,计划经过两年时间,绿地面积增加44%,那么这两年平均每年绿地面积的增长率是( )A .19%B .20%C .21%D .22%7.(2分)下列方程一定是一元二次方程的是( )A .0ax bx c ++=B .22321x x mx -+=C .11x x +=D .22(1)230a x x +--=8.(2分) 如果代数式2934k k -+的值为 2,那么k 的值是( )A .32-B .3C .32± D .3-9.(2分)若代数式237x -的值为 5,则x 为( )A . 1x = 或2x =B .2x =-C .1x =±D .2x =±10.(2分)用直接开平方法解方程2(3)8x -=,得方程的根为( )A .3x =+B .3x =-C .13x =+,23x =-D .13x =+23x =-11.(2分)下列关于x 的方程,一定是一元二次方程的是( )A . 2(2)210m x x +-+=B . 2230m x m +-=C . 21320x x +-=D 21203x --=二、填空题12.(3分)请写出两根分别为-2,3的一个一元二次方程 .13.(3分)方程2220x x --=的二次项系数是 ,一次项系数是 ,常数项是 .14.(3分)关于x 的一元二次方程()423=-x x 的一般形式是_____ _____.15.(3分)若一个等腰三角形三边长均满足方程x 2-6x +8=0,则此三角形的周长为 .16.(3分)有一间长为20 m ,宽为15 m 的会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的一半,若四周未铺地毯的每边宽度相等,则每边的宽度是 .解答题17.(3分) 方程20x mx n ++=和方程20nx m χ++=仅有一个相同的根,则这个根是 .18.(3分)关于x 的一元二次方程2210x kx ++=有两个相等的实根,则k = ;方程的解为 .19.(3分)一元二次方程2980y -=的根是 .20.(3分) 方程2530x x -+=的根是 .21.(3分) 已知代数式251x x --的值为 5,则代数式23155x x -+的值为 .22.(3分)判断题(对的打“√”,错的打“×”)(1)一元二次方程的一次项系数、常数项可以是任意实数,但二次项系数不能是零. ( )(2) 2234x x ++是一元二次方程. ( )(3)方程(1)(3)1x x x --=-的解只有3x =. ( )三、解答题23.(6分)若规定两数a ,b 通过“※”运算,得到4ab ,即a ※b =4ab ,例如 2※6=4×2×6 =48.(1)求3※5 的值;(2)求x ※x +2※x -2※4=0中x 的值.24.(6分) 阅读材料:为解方程222(1)5(1)40x x ---+=,我们可以将21x -视为一个整体,然后设21x y -=,则222(1)x y -=,原方程化为2540y y -+=.①解得11y =,24y =.当1y =时,211x -=,∴22x =,∴x =当4y =时,214x -=,∴25x =,∴x =∴原方程的解为1x =2x =3x 4x =.解答问题:(1)填空:在由原方程得到方程①的过程中,利用 法达到了降次的目的,体现了 的数学思想;(2)解方程:4260x x --=.25.(6分)某商场将某种商品的售价从原来的每件40元经两次调价后调至每件32.4元.(1)若该商店两次两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,即可多销售10件.若该商品原来每月可销售500件,那么两次调价后,每月可销售该商品多少件?26.(6分)如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:(1)设铺设地面所用瓷砖的总块数为y,请写出y与n(表示第n个图形)的关系式;(2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;(3)黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需要花多少钱购买瓷砖?(4)否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.27.(6分)已知方程260+-=的一个根是2,求它的另一个根及k的值.x kx28.(6分)在一块边长为1m的正方形铁板上截出一个面积为800cm2的矩形铁板,使长比宽多20cm,问矩形铁板的长和宽各为多长?29.(6分)设a,b是一个直角三角形两条直角边的长,且2222+++=,求这个a b a b()(4)21直角三角形的斜边长.330.(6分) 不解方程,判别下列方程的根的情况:(1)2+-=;2340x x(2)216924y y +=;(3220+=;(4)2320t -=;(5)25(1)70x x +-=;【参考答案】***试卷处理标记,请不要删除一、选择题1.B2.C3.D4.C5.D6.B7.D8.C9.D10.D11.D二、填空题12.如(2)(3)0x x +-=等13.2,-1,-214.04632=--x x15.1016.2.5m17.118.±,19.y=20.x=21.2322.(1)√(2)×(3)×三、解答题23.(1) 60 (2)12x=,24x=-24.(1)换元,转化 (2)x=25.(1)10%;(2)880件26.(1)256y n n=++;(2)20n=;(3)1604(元);(4)不存在黑、白瓷砖块数相等的情形.27.1k=,3x=-28.长 40 cm,宽 20 cm2930.( 1)有两个不相等的实数根;(2)有两个相等的实数根;(3)无实数根;(4)有两个不相等的实数根;(5)无实数根。
八年级数学下册《一元二次方程》单元检测卷(附答案)
八年级数学下册《一元二次方程》单元检测卷(附答案)一、选择题:(本题包括12小题,每小题3分,共36分) 是一元二次方程,则m 的值为( ) 1.已知关于x 的方程A .1B .﹣1C .±1D .不能确定 2.有下列关于x 的方程:①ax 2+bx+c=0,②3x (x ﹣4)=0,③x 2+y ﹣3=0,④ +x=2,⑤x 3﹣3x+8=0,⑥ x 2﹣5x+7=0,⑦(x ﹣2)(x+5)=x 2﹣1.其中是一元二次方程的有( )个.A .2B .3C .4D .5 3.一元二次方程2660x x --=配方后化为( )A .2(3)15x -= B .2(3)3x -= C. 2(3)15x += D .2(3)3x +=4.一元二次方程(x+1)2﹣2(x ﹣1)2=7的根的情况是( ) A .无实数根 B .有一正根一负根C .有两个正根D .有两个负根5.设1x ,2x 是一元二次方程0322=--x x 的两根,则2221x x +=( )A .6B .8C .10D .126.若关于x 的方程0632=+-m x x 有两个不相等的实数根,则m 的取值范围在数轴上表示正确的是().7.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( ) A .9人 B .10人 C .11人 D .12人8.若x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两个根,则x 12﹣x 1+x 2的值为( ) A .﹣1 B .0 C .2 D .3 9.等腰三角形三边长分别为2a b 、、,且a b 、是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为( )A .9B .10C .9或10D .8或1010.若关于x 的一元二次方程0122=++-kb x x 有两个不相等的实数根,则一次函数b kx y +=的大致图象可能是 ( )A B C D 11.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是( ) A .(3+x )(4﹣0.5x )=15 B .(x+3)(4+0.5x )=15 C .(x+4)(3﹣0.5x )=15 D .(x+1)(4﹣0.5x )=1512.某种植基地2022年蔬菜产量为80吨,预计2023年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为( )()032112=++-+x x m mA .80(1+x )2=100B .100(1﹣x )2=80C .80(1+2x )=100 D .80(1+x 2)=100二.填空题(本大题共6个小题,每小题3分,共18分)13.关于x 的一元二次方程22(21)(1)0x k x k +-+-=无实数根,则k 的取值范围为 .14.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m= .15.一个三角形的两边长分别为3和6,第三边长是方程x 2﹣10x+21=0的根,则三角形的周长为 . 16.若m ,n 是方程210x x +-=的两个实数根,则22m m n ++的值为 .17.关于x 的一元二次方程01222=+-+m x x 的两实数根之积为负,则实数m 的取值范围是 .18.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 个图形有94个小圆.(用含n 的代数式表示)三、解答题:(共66分)19.解下列方程(每小题4分,满分16分):(1)3x 2-7x =0 ; (2)0432=-+x x(3))5(2)5(2-=-x x (4)22(3)5x x -+=20.(6分)关于x 的方程0832=-+mx x 有一个根是32,求另一个根及m 的值.21.(8分)已知一元二次方程0222=-+-m mx mx . (1)若方程有两实数根,求m 的范围。
一元二次方程综合复习训练浙教版八年级数学下册
2021-2022学年浙教版八年级数学下册《第2章一元二次方程》期中综合复习训练(附答案)一.选择题1.下列方程中,是一元二次方程的是()A.+x﹣1=0B.3x+1=5x+42C.ax2+bx+c=0D.m2﹣2m+1=0 2.若关于x的一元二次方程(m+1)x2﹣x+m2﹣m﹣2=0有一根为0,则m的的值为()A.2B.﹣1C.2或﹣1D.1或﹣23.一元二次方程x2﹣6x+1=0配方后可化为()A.(x+3)2=2B.(x﹣3)2=8C.(x﹣3)2=2D.(x﹣6)2=35 4.已知方程x2+2x﹣8=0的解是x1=2,x2=﹣4,那么方程(x+1)2+2(x+1)﹣8=0的解是()A.x1=1,x2=5B.x1=1,x2=﹣5C.x1=﹣1,x2=5D.x1=﹣1,x2=﹣55.若关于x的一元二次方程(k+1)x2﹣2x+3=0有实数根,则k的取值范围是()A.B.C.k<﹣且k≠﹣1D.k≤﹣且k≠﹣16.电影《长津湖》于2021年9月30日在中国大陆上映,某地第一天票房约2亿元,以后每天票房按相同的增长率增长,三天后票房收入累计达7亿元,若把增长率记作x,则方程可以列为()A.2(1+x)=7B.2(1+x)2=7C.2+2(1+x)2=7D.2+2(1+x)+2(1+x)2=77.m是方程x2+x﹣2=0的根,则代数式2m2+2m﹣2022的值是()A.﹣2018B.2018C.﹣2026D.20268.某网店销售一批运动装,平均每天可销售20套,每套盈利45元;为扩大销售量,增加盈利,采取降价措施,一套运动服每降价1元,平均每天可多卖4套.若网店要获利2100元,设每套运动装降价x元,则列方程正确的是()A.(45﹣x)(20+4x)=2100B.(45+x)(20+4x)=2100C.(45﹣x)(20﹣4x)=2100D.(45+x)(20﹣4x)=2100二.填空题9.设a、b是方程x2+x﹣2022=0的两个实数根,则(a+1)2+b的值为.10.已知(x2+y2)2+6(x2+y2)﹣7=0,则x2+y2的值为.11.已知实数m、n满足m2﹣4=2m,n2=4+2n,则|m﹣n|=.12.等腰△ABC的底和腰分别是一元二次方程x2﹣5x+4=0的两根,则这个等腰三角形的周长为.13.若a2+1=3a,b2+1=3b,则代数式的值为.14.关于x的一元二次方程(m+1)x2+(2m+1)x+m﹣1=0有两个不相等的实数根,则m 的取值范围是.15.如图,在矩形ABCD中,AB=10cm,AD=8cm,点P从点A出发沿AB以2cm/s的速度向点B运动,同时点Q从点B出发沿BC以1cm/s的速度向点C运动,点P到达终点后,P、Q两点同时停止运动,则秒时,△BPQ的面积是6cm2.16.关于x的一元二次方程ax2+bx+c=0(a≠0),现给出以下结论:①若a﹣b+c=0,则方程必有一根为﹣1;②若a﹣b+c=0,则方程一定有两个不相等的实数根;③若a、c异号,则方程一定有两个不相等的实数根;④若m是方程的根,则等式(2am+b)2=b2﹣4ac一定成立.其中正确的结论是.(写出所有正确结论的序号)三.解答题17.解下列方程.(1)2x2+5x=18﹣11x;(2)(3x﹣1)2=(x+1)2.18.已知关于x的一元二次方程x2﹣kx+k﹣1=0.(1)求证:无论k取何值,该方程总有实数根;(2)已知等腰三角形的一边a为2,另两边恰好是这个方程的两个根,求k的值.19.已知关于x的一元二次方程x2﹣(m﹣3)x﹣m=0.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为x1、x2,且x12+x22﹣x1x2=13,求m的值.20.阅读以下材料:利用我们学过的完全平方公式及不等式知识能解决代数式一些问题,如a2+2a﹣4=a2+2a+12﹣12﹣4=(a+1)2﹣5∵(a+1)2≥0,∴a2+2a﹣4=(a+1)2﹣5≥﹣5,因此,代数式a2+2a﹣4有最小值﹣5.根据以上材料,解决下列问题:(1)代数式a2﹣2a+2的最小值为;(2)试比较a2+b2+11与6a﹣2b的大小关系,并说明理由;(3)已知:a﹣b=2,ab+c2﹣4c+5=0,求代数式a+b+c的值.21.如图,利用一面墙(墙EF最长可利用28m),围成一个矩形花园ABCD,与墙平行的一边BC上要预留2m宽的入口(如图中MN所示,不用砌墙),现有砌60m长的墙的材料.(1)当矩形的长BC为多少米时,矩形花园的面积为300m2;(2)能否围成面积为480m2的矩形花园,为什么?22.某商场以每千克20元的价格购进某种榴莲,计划以每千克40元的价格销售.为了让顾客得到更大的实惠,现决定降价销售,已知这种榴莲的销售量y(kg)与每千克降价x(元)(0<x<10)之间满足一次函数关系,其图象如图所示.(1)求y关于x的函数解析式.(2)该商场在销售这种榴莲中要想获利1105元,则这种榴莲每千克应降价多少元?参考答案一.选择题1.解:A.是分式方程,不是一元二次方程,故本选项不符合题意;B.是一元一次方程,不是一元二次方程,故本选项不符合题意;C.当a=0时,不是一元二次方程,故本选项不符合题意;D.是一元二次方程,故本选项符合题意;故选:D.2.解:把x=0代入方程,得(m+1)×02﹣x+m2﹣m﹣2=0,整理,得(m﹣2)(m+1)=0.解得m1=2,m2=﹣1.又∵方程(m+1)x2﹣x+m2﹣m﹣2=0是关于x的一元二次方程,∴m+1≠0,∴m≠﹣1,即m=2.故选:A.3.解:∵x2﹣6x+1=0,∴x2﹣6x=﹣1,则x2﹣6x+9=﹣1+9,即(x﹣3)2=8.故选:B.4.解:把方程(x+1)2+2(x+1)﹣8=0看作关于(x+1)的一元二次方程,∵方程x2+2x﹣8=0的解是x1=2,x2=﹣4,∴x+1=2或x+1=﹣4,解得x=1或x=﹣5,∴方程(x+1)2+2(x+1)﹣8=0的解为x1=1,x2=﹣5.故选:B.5.解:依题意得:,解得:k≤﹣且k≠﹣1.故选:D.6.解:若把增长率记作x,则第二天票房约为2(1+x)亿元,第三天票房约为2(1+x)2亿元,依题意得:2+2(1+x)+2(1+x)2=7.故选:D.7.解:∵实数m是关于x的方程x2+x﹣2=0的一个根,∴m2+m﹣2=0,∴m2+m=2,∴2m2+2m﹣2022=2(m2+m)﹣2022=﹣2018.故选:A.8.解:设每套书运动服降价x元时,则每天可出售(20+4x)套;由题意得:(45﹣x)(20+4x)=1200;故选:A.二.填空题9.解:∵a、b是方程x2+x﹣2022=0的两个实数根,∴a+b=﹣1,a2+a﹣2022=0,即a2+a=2022,则原式=a2+2a+1+b=(a2+a)+(a+b)+1=2022﹣1+1=2022.故答案为:2022.10.解:设x2+y2=z,则原方程换元为z2+6z﹣7=0,∴(z﹣1)(z+7)=0,解得:z1=1,z2=﹣7,∵x2+y2≥0,∴x2+y2=1故答案为:1.11.解:∵实数m、n满足m2﹣4=2m,n2=4+2n,∴m=n或m,n为一元二次方程x2﹣2x﹣4=0的两个不相等的实数根.当m=n时,|m﹣n|=0;当m,n为一元二次方程x2﹣2x﹣4=0的两个不相等的实数根时,m+n=2,mn=﹣4,∴|m﹣n|====2.故答案为:0或2.12.解:x2﹣5x+4=0,(x﹣4)(x﹣1)=0,x﹣4=0或x﹣1=0,所以x1=4,x2=1,因为1+1=2<4,不符合三角形三边的关系,所以等腰三角形的底边为1,腰为4,所以三角形的周长为4+4+1=9.故答案为:9.13.解:∵a2+1=3a,b2+1=3b,当a=b时,代数式的值为2,当a≠b时,根据题意a,b是方程x2﹣3x+1=0的两个根,故a+b=3,ab=1.则====7.故代数式的值为7或2,故答案为:7或2.14.解:根据题意得m+1≠0且Δ=(2m+1)2﹣4(m+1)(m﹣1)>0,解得m>﹣且m≠﹣1,即m的取值范围为m>﹣且m≠﹣1,故答案为:m>﹣且m≠﹣1,15.解:设运动时间为t秒,则PB=(10﹣2t)cm,BQ=tcm,依题意得:(10﹣2t)t=6,整理得:t2﹣5t+6=0,解得:t1=2,t2=3.∴2或3秒时,△BPQ的面积是6cm2.故答案为:2或3.16.解:①∵a﹣b+c=0,∴当x=﹣1时,ax2+bx+c=a﹣b+c=0,∴x=﹣1为方程ax2+bx+c=0的一根,故结论①正确;②∵a﹣b+c=0,∴b=a+c,∴Δ=b2﹣4ac=(a+c)2﹣4ac=(a﹣c)2≥0,∴方程有两个实数根,故结论②错误;③∵a、c异号,a≠0,∴Δ=b2﹣4ac=b2+4a2>0,∴方程一定有两个不相等的实数根,故结论③正确;④∵x=m方程的一个根,∴am2+bm+c=0,∴(2am+b)2﹣(b2﹣4ac)=4a2m2+4abm+b2﹣b2+4ac=4a(am2+bm+c)=0,∴(2am+b)2=b2﹣4ac,故结论④正确;故答案为:①③④.三.解答题17.解:(1)方程整理为x2﹣8x﹣9=0,(x﹣9)(x+1)=0,x﹣9=0或x+1=0,所以x1=9,x2=﹣1;(2)(3x﹣1)2﹣(x+1)2=0,(3x﹣1+x+1)(3x﹣1﹣x﹣1)=0,3x﹣1+x+1=0或3x﹣1﹣x﹣1=0,所以x1=0,x2=1.18.(1)证明:∵Δ=(﹣k)2﹣4(k﹣1)=k2﹣4k+4=(k﹣2)2≥0,∴无论k取何值,该方程总有实数根;(2)解:解方程x2﹣kx+k﹣1=0得x1=k﹣1,x2=1,当k﹣1=1时,k=2,因为1+1=2,不符合三角形三边的关系,舍去;当k﹣1=2时,即k=3,三角形的三边为2、2、1,综上所述,k的值为3.19.(1)证明:关于x的一元二次方程x2﹣(m﹣3)x﹣m=0,∵(m﹣1)2≥0,∴Δ=(m﹣3)2﹣4×(﹣m)=m2﹣6m+9+4m=m2﹣2m+1+8=(m﹣1)2+8≥8>0,则方程有两个不相等的实数根;(2)由根与系数的关系可得:x1+x2=m﹣3,x1x2=﹣m,∵x12+x22﹣x1x2=13,∴(x1+x2)2﹣3x1x2=13,即(m﹣3)2+3m=13,整理得:m2﹣3m﹣4=0,即(m﹣4)(m+1)=0,所以m﹣4=0或m+1=0,解得:m=4或m=﹣1.20.解:(1)a2﹣2a+2=(a2﹣2a+1)+1=(a﹣1)2+1,∵(a﹣1)2≥0,∴(a﹣1)2+1≥1,即代数式a2﹣2a+2的最小值为1;故答案为:1;(2)a2+b2+11>6a﹣2b,理由如下:a2+b2+11﹣(6a﹣2b)=a2+b2+11﹣6a+2b=(a2﹣6a+9)+(b2+2b+1)+1=(a﹣3)2+(b+1)2+1,∵(a﹣3)2≥0,(b+1)2≥0,∴a2+b2+11>6a﹣2b;(3)∵a﹣b=2,∴a=b+2,∵ab+c2﹣4c+5=0,∴b(b+2)+c2﹣4c+5=0,∴(b+1)2+(c﹣2)2=0,∴b+1=0,c﹣2=0,∴b=﹣1,c=2,∴a=﹣1+2=1,∴a+b+c=1﹣1+2=2.21.解:(1)设BC=xm,则AB=m,依题意得:x•=300,整理得:x2﹣62x+600=0,解得:x1=12,x2=50.又∵墙EF最长可利用28m,∴x=12.答:当矩形的长BC为12m时,矩形花园的面积为300m2.(2)不能围成面积为480m2的矩形花园,理由如下:设BC=ym,则AB=m,依题意得:y•=480,整理得:y2﹣62y+960=0,解得:y1=30,y2=32.又∵墙EF最长可利用28m,∴y1=30,y2=32均不符合题意,舍去,∴不能围成面积为480m2的矩形花园.22.解:(1)设y关于x的函数解析式为y=kx+b(k≠0),将(2,60),(4,70)代入y=kx+b得:,解得:,∴y关于x的函数解析式为y=5x+50(0<x<10).(2)依题意得:(40﹣x﹣20)(5x+50)=1105,整理得:x2﹣10x+21=0,解得x1=3,x2=7.又∵要让顾客得到更大的实惠,∴x=7.答:这种榴莲每千克应降价7元.11。
八年级数学下册《第二章 一元二次方程》练习题-附答案(浙教版)
八年级数学下册《第二章一元二次方程》练习题-附答案(浙教版)一、选择题1.下列关于x的方程中,一定是一元二次方程的为( )A.ax2+bx+c=0B.x2﹣2=(x+3)2C.x2+3x﹣5=0D.x﹣1=02.一元二次方程4x2﹣3x﹣5=0的一次项系数是( )A.﹣5B.4C.﹣3D.33.若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是( )A.5B.5mC.1D.﹣14.根据下表判断方程x2+x﹣3=0的一个根的近似值(精确到0.1)是( )x 1.2 1.3 1.4 1.5x2+x﹣3 ﹣0.36 ﹣0.01 0.36 0.75A.1.3B.1.2C.1.5D.1.45.下列方程中,不能用直接开平方法的是( )A.x2﹣3=0B.(x﹣1)2﹣4=0C.x2+2x=0D.(x﹣1)2=(2x+1)26.用配方法解方程x2﹣6x﹣8=0时,配方正确的是( )A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=17.三角形两边的长是2和5,第三边的长是方程x2﹣12x+35=0的根,则第三边的长为( )A.2B.5C.7D.5或78.关于x的一元二次方程x2+2(m﹣1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是( )A.m≤12B.m≤12且m≠0 C.m<1 D.m<1且m≠09.在一幅长80厘米,宽50厘米的矩形风景画的四周镶一条金色的纸边,制成一幅矩形挂图,如图,如果要使整个挂图的面积是5400平方厘米,设金色纸边的宽为x厘米,那么满足的方程是( )A.x2+130x﹣1400=0B.x2+65x﹣350=0C.x2﹣130x﹣1400=0D.x2﹣65x﹣350=010.定义新运算“※”:对于实数m,n,p,q,有[m,p]⊙[q,n]=mn+pq,其中等式右边是通常的加法和乘法运算,如:[2,3]⊙[4,5]=2×5+3×4=22.若关于x的方程[x2+1,x]⊙[5﹣2k,k]=0有两个实数根,则k的取值范围是( )A.k<54且k≠0 B.k≤54C.k≤54且k≠0 D.k≥54二、填空题11.一元二次方程3x2+2x﹣5=0的一次项系数是______.12.若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为________.13.用配方法将方程x2+10x﹣11=0化成(x+m)2=n的形式(m、n为常数),则m+n= .14.关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则实数a的取值范围是 .15.篮球联赛实行单循环赛制,即每两个球队之间进行一场比赛,计划一共打36场比赛,设一共有x个球队参赛,根据题意,所列方程为 .16.对于实数 m,n 定义运算“※”:m※n=mn(m+n),例如:4※2=4×2(4+2)=48,若x1、x 2是关于 x 的一元二次方程x2﹣5x+3=0的两个实数根,则x1※x2=.三、解答题17.解方程:x2﹣6x+4=0(用配方法)18.解方程:﹣3x=1﹣x2(公式法)19.先化简,再求值:(x -1)÷(112-+x ),其中x 为方程x 2+3x +2=0的根.20.已知关于x 的方程x 2+ax +a ﹣2=0(1)求证:不论a 取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a 的值及该方程的另一个根.21.已知关于x 的一元二次方程x 2﹣(2m ﹣2)x +(m 2﹣2m)=0.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实数根为x 1,x 2,且x 12+x 22=10,求m 的值.22.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分枝,主干,支干和小分枝的总数是73,每个支干长出多少分枝?23.如图,在Rt△ABC中,AC=24 cm,BC=7 cm,P点在BC上,从B点到C点运动(不包括C 点),点P运动的速度为2 cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5 cm/s.若点P,Q分别从B,C同时运动,且运动时间记为t秒,请解答下面的问题,并写出探索的主要过程.(1)当t为何值时,P,Q两点的距离为5 2 cm?(2)当t为何值时,△PCQ的面积为15 cm2?24.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果的利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲.乙两种苹果的进价分别是每千克多少元;(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价均提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.参考答案1.C.2.C3.A4.A5.C6.A7.B8.B.9.B.10.C11.答案为:2.12.答案为:1213.答案为:41.14.答案为a ≥1且a ≠5.15.答案为:12x(x ﹣1)=36. 16.答案为:15.17.解:由原方程移项,得x 2﹣6x =﹣4等式的两边同时加上一次项系数的一半的平方,得x 2﹣6x +9=﹣4+9即(x ﹣3)2=5∴x =±5+3∴x 1=5+3,x 2=﹣5+3.18.解:﹣3x =1﹣x 2x 2﹣3x =1(x﹣)2=x﹣=±解得x1=,x2=;19.解:原式=(x-1)÷2-x-1 x+1=(x-1)÷1-x x+1=(x-1)·x+11-x=-x-1.解x2+3x+2=0,得x1=-1,x2=-2.∵1-x≠0,x+1≠0∴x≠±1,∴x=-2.当x=-2时,原式=-(-2)-1=2-1=1.20.解:(1)∵△=a2﹣4×1×(a﹣2)=a2﹣4a+8=(a﹣2)2+4>0 ∴不论a取何实数,该方程都有两个不相等的实数根;(2)将x=1代入方程,得:1+a+a﹣2=0解得a=12,将a=12代入方程,整理可得:2x2+x﹣3=0即(x﹣1)(2x+3)=0解得x=1或x=﹣3 2∴该方程的另一个根﹣3 2.21.(1)证明:由题意可知Δ=[﹣(2m﹣2)]2﹣4(m2﹣2m)=4>0 ∴方程有两个不相等的实数根.(2)解:∵x1+x2=2m﹣2,x1x2=m2﹣2m∴x12+x22=(x1+x2)2﹣2x1x2=10即(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0 解得m=﹣1或m=3.22.解:由题意得1+x+x•x=73即x2+x﹣72=0∴(x+9)(x﹣8)=0,解得x1=8,x2=﹣9(舍去)答:每个支干长出8个小分支.23.解:(1)经过t s后,P,Q两点的距离为5 2 cm,则PC=(7﹣2t)cm,CQ=5t cm 根据勾股定理,得PC2+CQ2=PQ2,即(7﹣2t)2+(5t)2=(52)2.解得t1=1,t2=﹣(不合题意,舍去).所以,经过1 s后,P,Q两点的距离为5 2 cm.(2)经过t s后,△PCQ的面积为15 cm2,则PC=(7﹣2t)cm,CQ=5t cm由题意,得12×(7﹣2t)×5t=15.解得t1=2,t2=1.5.所以经过2 s或1.5 s后,△PCQ的面积为15 cm2.24.解:(1)设甲种苹果的进价为a元/千克,乙种苹果的进价为b元/千克根据题意得解得答:甲种苹果的进价为10元/千克,乙种苹果的进价为8元/千克. (2)根据题意得(4+x)(100﹣10x)+(2+x)(140﹣10x)=960整理得x2﹣9x+14=0解得x1=2,x2=7,经检验,x1=2,x2=7均符合题意.答:x的值为2或7.。
一元二次方程100道计算题练习(附答案)+一元二次方程经典练习题(6套)附带详细答案
一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x--xx x(x+1)-5x=0. 3x(x-3) =2(x-1) (x+1).23(=)2)(11应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少? 思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
初中数学一元二次方程解法练习题(附答案)
初中数学一元二次方程解法练习题 一、单选题1.方程230x -=的根是( )D.3B.2112y ⎛⎫-= ⎪⎝⎭D.21324y ⎛⎫-= ⎪⎝⎭3.用配方法解下列方程,其中应在方程的左右两边同时加上4的是( )A.225x x -=B.245x x +=C.225x x +=D.2245x x -=4.若一元二次方程2x m =有解则m 的取值为( )A.正数B.非负数C.一切实数D.零5.用直接降次的方法解方程22(21)x x -=,做法正确的是( )A.21x x -=B.21x x -=-C.21x x -=±D.212x x -=±6.用配方法解下列方程时,配方正确的是( )A.方程2650x x --=,可化为2(3)4x -=B.方程2220200y y --=,可化为2(1)2020y -=C.方程2890a a ++=,可化为2(4)25a +=D.方程22670x x --=,可化为2323()24x -= 7.若226x x m ++是一个完全平方式,则m 的值是( )A.3B.3-C.3±D.以上都不对8.一元二次方程式2848x x -=可表示成2()48x a b -=+的形式,其中,a b 为整数,求a b +之值为何( )A.20B.12C.12-D.20-9.将代数式245a a +-变形,结果正确的是( )A.2(2)1a +-B.2(2)5a +-C.2(2)4a ++D.2(2)9a +- 二、解答题10.若,,a b c 是ABC △的三边长,且满足2226810500a b c a b c ++---+=.(1)求,,a b c 的值;(2)请判断ABC △的形状.12.小明设计了一个魔术盒,当任意实数对(,)a b 进入其中时,会得到一个新的实数223a b -+.若13.一元二次方程2(6)16x +=可转化为两个一元一次方程,其中一个一元一次方程是64x +=,参考答案1.答案:C解析:230x -=2.答案:B3.答案:B解析:因为方程245x x +=的二次项系数是1,一次项系数4,所以方程两边同时加上一次项系数一半的平方4.故选B.4.答案:B解析:当0m ≥时,一元二次方程2x m =有解.故选B.5.答案:C解析:一元二次方程22(21)x x -=,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即开方得21x x -=,故选C 6.答案:D解析:A 项原式可化为2(3)14x -=;B 项原式可化为2(1)2021y -=;C 项原式可化为2(4)7a +=;D 项正确.故选D.7.答案:C解析:22669x x m x x ++=++29,3m m ∴==±8.答案:A解析:2848x x -=表示成2()48x a b -=+的形式为2(4)64x -=4,16a b ∴==20a b ∴+=,故选A.9.答案:D解析:22245449(2)9a a a a a +-=++-=+-10.答案:(1)2226810500a b c a b c ++---+=,222(69)(816)(1025)0a a b b c c ∴-++-++-+=.222(3)(4)(5)0a b c ∴-+-+-=.222(3)0,(4)0,(5)0a b c -≥-≥-≥,30,40,50a b c ∴-=-=-=,3,4,5a b c ∴===.(2)222534=+,222c a b ∴=+,ABC ∴△是直角三角形.解析:11.答案:1,4- 解析:232x x -=,223x x ∴-=,则22131x x -+=+,即2(1)4x -=,14m n ∴=-=,12.答案:2解析:根据题意得22(2)31x x --+=-,整理得22440,(2)0x x x ++=+=,所以122x x ==-.13.答案:64x +=- 解析:2(6)16x +=,64x ∴+=或64x +=-, ∴另一个一元一次方程是64x +=-14.答案:1233x x ==-, 解析:22909x x -=∴=,,解得1233x x ==-,.。
中考数学《一元二次方程》专题训练(附带答案)
中考数学《一元二次方程》专题训练(附带答案)一、单选题1.关于x的方程x2-2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1B.k>1C.k<-1D.k>-12.关于x的一元二次方程x2+4x+k=0有两个相等的实数根,则k的值为()A.k=4B.k=﹣4C.k≥﹣4D.k≥43.关于x的一元二次方程方程(m-1)x2-2x-1=0有两个实数根,则实数m的取值范围是()A.B.C.D.4.方程x2﹣5x=0的解是()A.x1=0,x2=﹣5B.x=5C.x1=0,x2=5D.x=05.用配方法解一元二次方程x2+6x−10=0,此方程可变形为()A.(x+3)2=1B.(x−3)2=1C.(x−3)2=19D.(x+3)2=19 6.已知b2﹣4ac是一元二次方程ax2+bx+c=0(a≠0)的一个实数根,则ab的取值范围为()A.ab≥18B.ab≤18C.ab≥14D.ab≤147.已知A=x2+3,B=2x+1,则A,B的大小关系正确的是()A.A>B B.A<BC.A=B D.与x的大小有关8.已知关于x的一元二次方程2x²+4x·sinα+1=0有两个相等的实数根,则锐角α的度数为()A.30°B.45°C.60°D.75°9.用配方法解方程x2﹣x﹣1=0时,配方结果正确的是()A.(x﹣1)2=2B.(x −12)2=54C.(x −12)2=1D.(x −12)2=3410.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是()A.2500(1+x)2=3200B.2500(1−x)2=3200C.3200(1−x2)=2500D.3200(1−x)2=250011.用配方法解方程x2﹣4x﹣3=0,下列配方结果正确的是()A.(x﹣4)2=19B.(x﹣2)2=7C.(x+2)2=7D.(x+4)2=1912.下列关于x的方程中,没有实数解的是()A.x2﹣4x+4=0B.x2﹣2x﹣3=0C.x2﹣2x=0D.x2﹣2x+5=0二、填空题13.某企业2018年底缴税80万元,2020 年底缴税96.8万元,设这两年该企业交税的年平均增长率为x根据题意,可得方程为。
初中数学一元二次方程解法练习题(附答案)
初中数学一元二次方程解法练习题(附答案)初中数学一元二次方程解法练题一、单选题1.方程x2-3=0的根是()A.3B.-3C.±3D.无解2.一元二次方程y2-y-3/4=0配方后可化为()A。
(y+1/2)2=5/4B。
(y-1/2)2=5/4C。
(y+1/2)2=3/4D。
(y-1/2)2=3/43.用配方法解下列方程,其中应在方程的左右两边同时加上4的是( )A。
x2-2x=5B。
x2+4x=5C。
x2+2x=5D。
2x2-4x=54.若一元二次方程x2=m有解则m的取值为( )A.正数B.非负数C.一切实数D.零或正数5.用直接降次的方法解方程(2x-1)2=x2,做法正确的是()A。
2x-1=xB。
2x-1=-xC。
2x-1=±xD。
2x-1=±x26.用配方法解下列方程时,配方正确的是( )A。
方程x2-6x-5=0,可化为(x-3)2=4B。
方程y2-2y-2020=0,可化为(y-1)2=2020C。
方程a2+8a+9=0,可化为(a+4)2=25D。
方程2x2-6x-7=0,无法配方7.若x2+6x+m2是一个完全平方式,则m的值是( )A。
3B。
-3C。
±3D。
无法确定8.一元二次方程式x2-8x=48可表示成(x-a)2=48+b的形式,其中a,b为整数,求a+b之值为何( )A.20B.12C.-12D.-209.将代数式a2+4a-5变形,结果正确的是( )A。
(a+2)-1B。
(a+2)-5C。
(a+2)+4D。
(a+2)-9二、解答题10.若a,b,c是△ABC的三边长,且满足a2+b2+c2-6a-8b-10c+50=0.1)求a,b,c的值;2)请判断△XXX的形状.解:(1)将方程移项并配方得到(a-3)2+(b-4)2+(c-5)2=0,因此a=3,b=4,c=5.2)由于三角形的三边长都是正数,所以方程的解只有(a,b,c)=(3,4,5)一组,因此△ABC是一条直角三角形。
浙教版 八年级数学下册 第2章 一元二次方程 单元综合练习(Word版 含解析)
浙教版八年级数学下册《第2章一元二次方程》单元综合练习(附答案)一.选择题1.下列方程属于一元二次方程的是()A.x3+x2+2=0B.y=5﹣x C.x+=5D.x2+2x=32.已知关于x的一元二次方程x2﹣x﹣4=0,则这个方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定3.关于x的方程x(x﹣5)=3(x﹣5)的根是()A.x=5B.x=﹣5C.x1=﹣5;x2=3D.x1=5;x2=3 4.若x=1是关于x的一元二次方程ax2﹣bx﹣1=0的一个根,则2020+2a﹣2b的值为()A.2018B.2020C.2022D.20245.若关于x的方程mx2+2x﹣1=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1B.m>﹣1且m≠0C.m>﹣1D.m≥﹣1且m≠0 6.有一块矩形铁皮,长50cm,宽30cm,在它的四个角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒,要制作的无盖方盒的底面积为800cm2.设切去的正方形的边长为xcm,可列方程为()A.4x2=800B.50×30﹣4x2=800C.(50﹣x)(30﹣x)=800D.(50﹣2x)(30﹣2x)=8007.等腰三角形的两条边长分别是方程x2﹣8x+12=0的两根,则该等腰三角形的周长是()A.10B.12C.14D.10或148.若x=是某个一元二次方程的根,则这个一元二次方程是()A.3x2+2x﹣1=0B.2x2+4x﹣1=0C.﹣x2﹣2x+3=0D.3x2﹣2x﹣1=0 9.已知x1,x2是关于x的一元二次方程x2﹣(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值为()A.﹣3或1B.﹣1或3C.﹣1D.310.对于实数m,n,先定义一种新运算“⊗”如下:m⊗n=,若x⊗(﹣2)=10,则实数x等于()A.3B.﹣4C.8D.3或8二.填空题11.若(m+2)x|m|+(m﹣1)x﹣1=0是关于x的一元二次方程,则m的值是.12.代数式﹣x2+2x﹣4有最值,最值是.13.已知(a2+b2)(a2+b2﹣2)=8,那么a2+b2=.14.设α、β是方程(x+1)(x﹣4)=﹣5的两实数根,则=.三.解答题15.解方程:(1)4x2+2x﹣1=0;(2)2y(y﹣2)=y2﹣2.16.用适当的方法解下列方程:(1)2x2﹣3x﹣1=0;(2)3x(x﹣1)=2﹣2x;(3)(x+1)2=(2x﹣1)2.17.已知方程x2﹣3x+m=0的一个根是x1=1,求方程的另一个根x2.18.已知关于x的方程(m﹣1)+2x﹣3=0是一元二次方程.(1)求m的值;(2)解该一元二次方程.19.已知m和n是方程2x2﹣5x﹣3=0的两根,求:(1)+的值;(2)m2﹣mn+n2的值.20.已知关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0,其中a、b、c分别为△ABC 三边的长.(1)如果x=1是方程的根,试判断△ABC的形状,并说明理由;(2)如果△ABC是等边三角形,试求这个一元二次方程的根.21.已知:关于x的一元二次方程x2﹣(m+2)x+4(m﹣2)=0.(1)求证:方程总有两个实数根;(2)若方程有两个相等的实数根,求m的值及方程的根.22.用一面足够长的墙为一边,其余各边用总长42米的围栏建成如图所示的生态园,中间用围栏隔开.由于场地限制,垂直于墙的一边长不超过7米.(围栏宽忽略不计)(1)若生态园的面积为144平方米,求生态园垂直于墙的边长;(2)生态园的面积能否达到150平方米?请说明理由.23.白银市各级公安交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定.某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元/个,测算在市场中,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨0.5元/个,则月销售量将减少5个,为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?参考答案一.选择题1.解:A.未知数的最高次数是3,不是一元二次方程,故该选项不符合题意;B.方程中未知数个数为2,不是一元二次方程,故该选项不符合题意;C.是分式方程,故该选项不符合题意;D.该方程是一元二次方程,故该选项符合题意;故选:D.2.解:∵关于x的一元二次方程x2﹣x﹣4=0,∴Δ=(﹣1)2﹣4×1×(﹣4)=1+16=17>0,∴方程有两个不相等的实数根.故选:A.3.解:∵x(x﹣5)=3(x﹣5),∴x(x﹣5)﹣3(x﹣5)=0,则(x﹣5)(x﹣3)=0,∴x﹣5=0或x﹣3=0,解得x1=5,x2=3,故选:D.4.解:∵x=1是关于x的一元二次方程ax2﹣bx﹣1=0的一个根,∴a﹣b﹣1=0,∴a﹣b=1,∴2020+2a﹣2b=2(a﹣b)+2020=2×1+2020=2022.故选:C.5.解:∵关于x的方程mx2+2x﹣1=0有两个不相等的实数根,∴,解得:m>﹣1且m≠0.故选:B.6.解:设正方形的边长为xcm,则盒子底的长为(50﹣2x)cm,宽为(30﹣2x)cm,根据题意得:(50﹣2x)(30﹣2x)=800,故选:D.7.解:x2﹣8x+12=0,(x﹣6)(x﹣2)=0,x﹣6=0或x﹣2=0,所以x1=6,x2=2,因为2+2=4<6,所以等腰三角形的腰长为6,底边长为2,所以这个等腰三角形的周长=6+6+2=14.故选:C.8.解:∵x=是某个一元二次方程的根,∴此一元二次方程二次项系数a=3,一次项系数b=﹣2,常数项c=﹣1,∴这个一元二次方程可以是3x2﹣2x﹣1=0,故选:D.9.解:∵x1、x2是关于x的一元二次方程x2﹣(2m+3)x+m2=0的两个不相等的实数根,∴x1+x2=2m+3,x1x2=m2,∴+===1,解得:m=3或m=﹣1,把m=3代入方程得:x2﹣9x+9=0,Δ=(﹣9)2﹣4×1×9>0,此时方程有解;把m=﹣1代入方程得:x2+x+1=0,Δ=1﹣4×1×1<0,此时方程无解,即m=﹣1舍去.故选:D.10.解:当x≥﹣2时,x2+x﹣2=10,解得:x1=3,x2=﹣4(不合题意,舍去);当x<﹣2时,(﹣2)2+x﹣2=10,解得:x=8(不合题意,舍去);∴x=3.故选:A.二.填空题11.解:由题意得,|m|=2,m+2≠0,解得m=2.故答案为:2.12.解:﹣﹣x2+2x﹣4=﹣(x2﹣2x)﹣4=﹣(x2﹣2x+1)+1﹣4=﹣(x﹣1)2﹣3=﹣3﹣(x﹣1)2,∵(x﹣1)2≥0,∴﹣(x﹣1)2≤0,∴﹣3﹣(x﹣1)2≤﹣3,∴x=1时,代数式有最大值﹣3.故答案为:﹣3.13.解:设a2+b2=t(t≥0),则t(t﹣2)=8,整理,得(t﹣4)(t+2)=0,解得t=4或t=﹣2(舍去),则a2+b2=4.故答案是:4.14.解:方程(x+1)(x﹣4)=﹣5可化为x2﹣3x+1=0,∵α、β是方程(x+1)(x﹣4)=﹣5的两实数根,∴α+β=3,αβ=1,∴α2+β2=(α+β)2﹣2αβ=7,α4+β4=(α2+β2)2﹣2α2•β2=47,∴==47,故答案为:47.三.解答题15.解:(1)4x2+2x﹣1=0,这里:a=4,b=2,c=﹣1,∵Δ=b2﹣4ac=22﹣4×4×(﹣1)=4+16=20>0,∴x===,解得:x1=,x2=;(2)2y(y﹣2)=y2﹣2整理为y2﹣4y+2=0,这里:a=1,b=﹣4,c=2,∵Δ=b2﹣4ac=(﹣4)2﹣4×1×2=16﹣8=8>0,∴y===2±,解得:y1=2﹣,y2=2+.16.解:(1)2x2﹣3x﹣1=0,∵a=2,b=﹣3,c=﹣1,∴Δ=(﹣3)2﹣4×2×(﹣1)=17>0,∴x==,∴x1=,x2=;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,∴x﹣1=0或3x+2=0,∴x1=1,x2=﹣;(3)(x+1)2=(2x﹣1)2,(x+1)2﹣(2x﹣1)2=0,=0,3x(2﹣x)=0,∴3x=0或2﹣x=0,∴x1=0,x2=2.17.解:依题意得:x1+x2=3,即1+x2=3,解得:x2=2.∴方程的另一个根x2=2.18.解:(1)∵关于x的方程(m﹣1)+2x﹣3=0是一元二次方程,∴,解得m=﹣1;(2)方程为﹣2x2+2x﹣3=0,即2x2﹣2x+3=0,∵a=2,b=﹣2,c=3,∴b2﹣4ac=(﹣2)2﹣4×2×3=4﹣24=﹣20<0,故原方程无解.19.解:(1)∵m和n是方程2x2﹣5x﹣3=0的两根,∴m+n=,mn=﹣,∴+===﹣;(2)m2﹣mn+n2=(m+n)2﹣3mn=()2﹣3×(﹣)=+=10.20.解:(1)△ABC是等腰三角形,理由是:∵把x=1代入方程(a+c)x2﹣2bx+(a﹣c)=0得:a+c﹣2b+a﹣c=0,∴2a=2b,∴a=b,∴△ABC的形状是等腰三角形;(2)∵△ABC是等边三角形,∴a=b=c,∵(a+c)x2﹣2bx+(a﹣c)=0,∴(a+a)x2﹣2ax+a﹣a=0,即x2﹣x=0,解得:x1=0,x2=1,即这个一元二次方程的根是x1=0,x2=1.21.(1)证明:∵Δ=(m+2)2﹣16(m﹣2)=m2﹣12m+36=(m﹣6)2≥0,∴方程总有两个实数根;(2)解:∵方程有两个相等的实数根,∴Δ=(m﹣6)2=0,解得m=6,此时方程为x2﹣8x+16=0,∴(x﹣4)2=0,∴x1=x2=4.22.解:(1)设生态园垂直于墙的边长为x米,则平行于墙的边长为(42﹣3x)米,依题意,得(42﹣3x)x=144.解得x1=6,x2=8.由于x2=8>7,所以不合题意,舍去.所以x=6符合题意.答:生态园垂直于墙的边长为6米;(2)依题意,得(42﹣3x)x=150.整理,得x2﹣14x+50=0.因为Δ=(﹣14)2﹣4×1×50=﹣4<0.所以该方程无解.所以生态园的面积不能达到150平方米.23.解:(1)设该品牌头盔销售量的月增长率为x,依题意,得:150(1+x)2=216,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该品牌头盔销售量的月增长率为20%.(2)设该品牌头盔的实际售价为y元,依题意,得:(y﹣30)(600﹣×5)=10000,整理,得:y2﹣130y+4000=0,解得:y1=80(不合题意,舍去),y2=50,答:该品牌头盔的实际售价应定为50元.。
第二章《一元二次方程》期末复习卷(含答案)2020-2021学年浙教版数学八年级下册
2021年浙教版数学八年级下册《一元二次方程》期末复习卷一、选择题1.下列方程中是一元二次方程的是( )A.3(x+1)2=2(x-1)B.1x2+1x-2=0 C.ax2+bx+c=0 D.x2+2x=(x+1)(x-1)2.下列方程是一元二次方程的一般形式的是()A.(x﹣1)2=16B.3(x﹣2)2=27C.5x2﹣3x=0D. x2+2x=83.已知x=3是关于x的方程x2+kx﹣6=0的一个根,则另一个根是()A.x=1B.x=﹣1C.x=﹣2D.x=24.方程(x+2)2=9的适当的解法是( )A.直接开平方法B.配方法C.公式法D.因式分解法5.一元二次方程2x2+3x+1=0用配方法解方程,配方结果是( )A. B.C. D.6.用公式法解方程4x2﹣12x=3所得的解正确的是( )A.x=B.x=C.x=D.x=7.方程9(x+1)2﹣4(x﹣1)2=0正确解法是( )A.直接开方得3(x+1)=2(x﹣1)B.化为一般形式13x2+5=0C.分解因式得[3(x+1)+2(x﹣1)][3(x+1)﹣2(x﹣1)]=0D.直接得x+1=0或x﹣l=08.下列方程中两实数根互为倒数有()①x2﹣2x﹣1=0;②2x2﹣7x+2=0;③x2﹣x+1=0.A.0个B.1个C.2个D.3个9.若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为()A.0B.1C.2D.310.如图,某小区计划在一块长为32 m,宽为20 m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570 m2.若设道路的宽为x m,则下面所列方程正确的是( )A.(32-2x)(20-x)=570B.32x+2×20x=32×20-570C.(32-x)(20-x)=32×20-570D.32x+2×20x-2x2=57011.共享单车为市民出行带来了方便,某单车公司第一个月投放1 000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为( )A.1 000(1+x)2=1 000+440B.1 000(1+x)2=440C.440(1+x)2=1 000D.1 000(1+2x)=1 000+44012.三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,则这个三角形的周长是().A.8B.8或10C.10D.8和10二、填空题13.若关于x的一元二次方程(a-2)x2-(a2-4)x+8=0不含一次项,则a= .14.已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m= .15.已知x1,x2是关于x的方程x2+ax-2b=0的两实数根,且x1+x2=-2,x1·x2=1,则b a的值是 .16.若一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,则m的取值范围是______.17.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是.18.如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x的方程为.三、计算题19.用直接开平方法解方程:(x﹣2)2=3;20.用配方法解方程:x2=3﹣2x21.用公式法解方程:6x2-11x+4=2x-2;22.用因式分解法解方程:3x(x-2)=2(x-2).四、解答题23.已知关于x的一元二次方程x2﹣ax+2=0的两实数根x1、x2满足x1x2=x1+x2﹣2.(1)求a的值;(2)求出该一元二次方程的两实数根.24.已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根为x1,x2,且满足5x1+2x2=2,求实数m的值.25.有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?26.某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月卖出3部汽车,则每部汽车的进价为万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)参考答案1.答案为:A.2.答案为:C3.答案为:C4.答案为:A.5.答案为:B.6.答案为:D.7.答案为:C.8.答案为:B .9.答案为:A.10.答案为:A11.答案为:A12.答案为:C13.答案为:-2.14.答案为:6.15.答案为:0.25.16.答案为:m <0.2.17.答案为:百分率为20%.18.答案为:(9﹣2x )•(5﹣2x )=12. 19.解:x ﹣2=±,∴,x 2=2﹣, 20.解:x 2+2x=3,配方得:x 2+2x+1=3+1,(x+1)2=4,开方得:x=﹣1±2,x 1=1,x 2=﹣3;21.解:原方程可化为6x 2-13x +6=0.a=6,b=-13,c=6.Δ=b 2-4ac=(-13)2-4×6×6=25. x=13±252×6=13±512, x 1=32,x 2=23. 22.解:原方程变形为3x(x -2)-2(x -2)=0,即(3x -2)(x -2)=0,∴x 1=23,x 2=2. 23.解:(1)∵x 1+x 2=a ,x 1x 2=2,又x 1x 2=x 1+x 2﹣2,∴a ﹣2=2,a=4;(2)方程可化为x 2﹣4x+2=0,∴(x ﹣2)2=2,解得:x ﹣2= 或x ﹣2=﹣,∴x 1=2+,x 2=2﹣. 24.解:(1)∵方程有实数根,∴△=(﹣4)2﹣4m=16﹣4m ≥0,∴m ≤4;(2)∵x 1+x 2=4,∴5x 1+2x 2=2(x 1+x 2)+3x 1=2×4+3x 1=2,∴x 1=﹣2,把x 1=﹣2代入x 2﹣4x+m=0得:(﹣2)2﹣4×(﹣2)+m=0,解得:m=﹣12.25.解:(1)设每轮传染中平均一个人传染了x 人,则1+x +x(x +1)=64.解得x 1=7,x 2=-9(舍去).答:每轮传染中平均一个人传染了7个人.(2)64×7=448(人).答:第三轮将又有448人被传染.26.解:(1)∵若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,∴若该公司当月售出3部汽车,则每部汽车的进价为:27−0.1×(3−1)=26.8,故答案为:26.8;(2)设需要售出x 部汽车,由题意可知,每部汽车的销售利润为:28−[27−0.1(x −1)]=(0.1x +0.9)(万元),当0≤x ≤10,根据题意,得x •(0.1x +0.9)+0.5x =12,整理,得x 2+14x −120=0,解这个方程,得x 1=−20(不合题意,舍去),x 2=6,当x >10时,根据题意,得x•(0.1x+0.9)+x=12,整理,得x2+19x−120=0,解这个方程,得x1=−24(不合题意,舍去),x2=5,因为5<10,所以x2=5舍去.答:需要售出6部汽车.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程 复习测试
一、选择题:(每小题2分,共20分)
01.下列方程中不一定是一元二次方程的是
A.(a-3)x 2=8 (a ≠0)
B.ax 2
+bx+c=0
2
3
2057
x +
-= 02.已知一元二次方程ax 2
+c=0(a ≠0),若方程有解,则必须有C 等于 A.-
12 B.-1 C.1
2
D.不能确定 03.已知x =2是方程32
x 2
-2a =0的一个解,则2a -1的值是
A .3
B .4
C .5
D .6
04.一元二次方程x 2
=c 有解的条件是
A .c <O
B .c >O
C .c ≤0
D .c ≥0 05.若方程11x a x a +
=+的两根分别为a 和1a ,则方程11
11
x a x a +=+
-- 的根分别是 A.1,
1a a - B.11,1a a -- C.11,a a - D.,1
a a a - 06.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,若全班有x 名同学,根据题意列出的方程为
A .x(x +1)=1035
B .x(x -1)=1035×2
C .x(x -1)=1035
D .2x(x +1)=1035 07.一元二次方程2x(x -3)=5(x -3)的根为
A .x =52
B .x =3
C .x =-52
D .x 1=3,x 2=52
08.使分式256
1
x x x --+ 的值等于零的x 是
A.6
B.-1或6
C.-1
D.-6
09.方程x 2
-4│x │+3=0的解是
A.x=±1或x=±3
B.x=1和x=3
C.x=-1或x=-3
D.无实数根
10.若关于x 的方程x 2-k 2-16=0和x 2
-3k+12=0有相同的实数根,则k 的值是
A.-7
B.-7或4
C.-4
D.4
二、填空题:(每小题3分,共30分)
11.若
x 2
+mx+7=0的一个根,则m= ,另一根为 .
12.若方程3ax 2-bx-1=0和ax 2
+2bx-5=0有共同的根-1,则a= , b= .
13.若一元二次方程ax 2
+bx+c=0(a ≠0)有一个根为1,则a+b+c= ; 若有一个根为-1,则b 与a 、c 之间的关系为 ; 若有一个根为零,则c= .
14.有一个一元二次方程的未知数为y ,二次项系数为-1,一次项系数为3,常数项为-6,请你写出它的一般形式______________。
15.一元二次方程x 2-3x-1=0与x 2
-x+3=0的所有实数根的和等于__ _. 16.若某食品连续两次涨价10%后价格是a 元,则原价是_______ __. 17.若一元二次方程(x -1)(x -2)=0的两个根为x 1和x 2满足x 1>x 2,则x 1-2x 2=
18.已知一个正方体的表面积是384cm 2
,求它的棱长。
设这个正方体的棱长是xcm ,根据题意列方程得 ,解得x = . 19.用两边开平方的方法解下列方程:
⑴方程x 2
=49的根是 ;
⑵方程9x 2
-16=0的根是 ;
⑶方程(x -3)2
=9的根是 。
20.长方形铁片四角各截去一个边长为5cm 的正方形,而后折起来做一个没盖的盒子,铁片的长是宽的2倍,作成的盒子容积为1.5立方分米,则铁片的长等于________,宽等于________.
三、解答题:(每题7分,共21分)
21. 解下列方程:
⑴3x2-7x=O;
⑵2x(x+3)=6(x+3)
⑶3x2+2x-4=O;
⑷2x2-7x+7=0;
⑸(3x+5)(3x-5)+6x=-26
⑹(2y+1)2+2(2y+1)-3=0;
22. 阅读材料:
解方程(x2-1)2-5(x2-1)+4=0时,我们可以将x2-1视为一个整体,然后设x2-l=y,则(x2-1) 2=y2,
∴原方程化为y2-5y+4=0.(※)解得y1=1,y2=4
当y=1时,x2-1=1.∴x2=2.∴x=±2;
当y=4时,x2-1=4,∴x2=5,∴x=±5。
∴原方程的解为x1=2,x2=-2,x3=5,x4=- 5
解答问题:
⑴在由原方程得到方程(※)的过程中,利用法达到了
降次的目的,体现了的数学思想.
⑵解方程:x4-x2-6=0.
四、创意自编题
23. 小李和小张各自加工15个玩具,小李每小时比小张多加工1个,
结果比小张少1
2
小时完成任务.问两个每小时各加工多少个玩具?
要求:先根据题意设合适的未知数列出方程或方程组(不需解答),然后根据你所列出的方程或方程组编制一道行程问题的应用题.使你所列出的方程或方程组恰好也是你所编的行程应用题的方程或方程组并解这个行程问题. 五、列方程解应用题
24. 国家为了加强对香烟产销的宏观管理
,对销售香烟实行征收附加税政策. 现在知道某种品牌的香烟每条的市场价格为70元,不加收附加税时每年产销100万条,若国家征收附加税,每销售100元征税x元(叫做税率x%),则每年的产销量将减少10x万条.要使每年对此项经营所收取附加税金为168万元并使香烟的产销量得到宏观控制,年产销量不超过50万条,税率应确定为多少?
答案
一、1.B 2.D 3.c 4.D5.D 6.C. 7.C. 8.A 9.A 10.D
二、11.m=-6,另一根为
12.a=1,b=-2.
13.a+b+c=0,b=a+c,c=0.
14.-y2+3y-6=0
15.3
16.
100
121
a
元
17.x2=64,8
18.a+β≥1
19.略
20.60,30
三、21略;22.略;23.略;
24.由70(100-10x).x%=168整理得x2-10x+24=0,解得x1=6,x2=4
当x2=4时,100-10×4=60>50,不符合题意,舍去;
当x1=6时,100-10×6=40<50。
∴税率应确定为6%.
点拨:这是有关现实生活知识应用题,是近几年中考题的重要
类型,要切实理解和掌握.。