保利(A)结合蛋白核1禁止显示可选择的切割和多聚腺苷酸化协作平台

合集下载

药物筛选生物技术方法考核试卷

药物筛选生物技术方法考核试卷
7.生物技术药物筛选中,__________技术可以用于筛选和优化生物大分子药物。
8.药物筛选的__________阶段主要是对筛选出的先导化合物进行结构优化和活性评估。
9.__________是一种基于细胞的分析技术,可以用于药物筛选中的毒性评估。
10.__________技术可以用于药物筛选中的靶点发现和验证。
6.生物技术药物筛选仅限于蛋白质类药物。(√)
7.药物筛选中的先导化合物优化不需要考虑药物的药代动力学性质。(×)
8. NMR技术可以用于药物分子的结构鉴定和结合亲和力测定。(√)
9.在药物筛选中,所有的化合物筛选都是通过高通量筛选进行的。(×)
10.基因组学技术可以用于药物筛选中的靶点发现和验证。(√)
A. qPCR
B. RNAi
C. ChIP
D. Western Blot
三、填空题(本题共10小题,每小题2分,共20分,请将正确答案填到题目空白处)
1.药物筛选的生物技术方法中,__________技术可以用于研究蛋白质与配体之间的相互作用。
2.在高通量筛选中,常用的生物检测方法包括__________和__________。
标准答案
一、单项选择题
1. D
2. B
3. C
4. B
5. D
6. B
7. C
8. B
9. C
10. C
11. C
12. B
13. C
14. A
15. B
16. A
17. D
18. A
19. A
20. A
二、多选题
1. ABD
2. AB
3. BD
4. ABCD
5. ABC

教学生物实验中的分子生物学技术考核试卷

教学生物实验中的分子生物学技术考核试卷
18. ABCD
19. ABCD
20. ABC
三、填空题
1.互补
2.翻译
3. DNA聚合酶
4. 30亿
5. Western blot
6. BLAST
7.引物1、引物2、引物3
8.核酸内切
9.线粒体
10.三级结构
四、判断题
1. √
2. √
3. √
4. √
5. ×
6. ×
7. √
8. √
9. ×
10. √
14. A
15. B
16. D
17. A
18. C
19. A
20. A
二、多选题
1. ABC
2. ABC
3. ABC
4. AB
5. ABC
6. BC
7. ABCD
8. ABC
9. ABC
10. ABC
11. ABCD
12. ABC
13. ABC
14. ABCD
15. AB
16. ABCD
17. ABC
8.下列哪种技术用于蛋白质的分离?()
A. PCR
B.电泳
C. X射线晶体学
D.亲和层析
9.哪个过程负责将DNA上的信息转化为蛋白质?()
A.转录
B.翻译
C.克隆
D.突变
10.下列哪种酶在DNA复制过程中起关键作用?()
A. DNA聚合酶
B. DNA连接酶
C.逆转录酶
D.限制性内切酶
11.在分子生物学中,SDS-PAGE主要用于?()
C. PhyML
D. GROMACS
18.下列哪些是实验室常用的细胞培养技术?()

细胞转导习题(优选.)

细胞转导习题(优选.)

细胞信号转导李婧 2015212351 一、名词解释内分泌接触依赖性通讯受体G蛋白第二信使二、单项选择题1、下列不属于信号分子的是A.K+B.cAMPC. cGMPD.Ca2+2、下列那个不是信号转导系统的主要特性A.特异性B.放大效应C.整合作用D.传递作用3、()是细胞表面受体中最大的多样性家族A.G蛋白偶联受体B.RTKC.NotchD.细胞因子4、G蛋白偶联受体中()是分子开关蛋白A.Gα B.GβC.GΘD.Gγ5、G蛋白偶联的光敏感受体的活化诱发()的关闭A.cAMP–PKA信号通路B.Notch信号通路C.JAK-STAT信号通路D. cGMP门控阳离子通道6、()信号对细胞内糖原代谢起关键调控作用A.IP3-Ca2+ B.DAG-PKC C. cAMP–PKA D.RTK-Ras7、()的主要功能是引发贮存在内质网中的Ca2+转移到细胞质基质中,使胞质中游离Ca2+浓度提高A. IP3B.PIP2C.DAGD.PKC8、()主要功能是控制细胞生长、分化,而不是调控细胞中间代谢A.RTKB. PKCC.PKBD.Wnt9、Hedgehog信号通路控制A.糖原代谢B.细胞凋亡C.细胞分化D.氨基酸代谢10、细胞通过配体依赖性的受体介导的()减少细胞表面可利用受体数目。

A. 抑制性蛋白产生B.内吞作用C.敏感性下调D.消化降解三、多项选择题1、细胞分泌化学信号可长距离或短距离发挥作用,其作用方式分为A.内分泌B.旁分泌C.通过化学突出传递神经信号D.外分泌2、下列()是糖脂A.霍乱毒素受体B.百日咳的毒素受体C.甲状腺受体D.胰岛素受体3、下面关于受体酪氨酸激酶的说法正确的是A.是一种生长因子类受体B.受体蛋白只有一次跨膜C.与配体结合后两个受体相互靠近,相互激活D.具有SH2结构域4、下面关于PKA的说法错误的是A.它是G蛋白的效应蛋白B.它由4个亚单位组成C.它由cAMP激活D.它可导致蛋白磷酸化5、下列物质中不可以作为信使分子的有A.短肽B.核苷酸C.氨基酸D.二氧化碳6、细胞间通讯是通过A.与质膜相结合的信号分子B.分泌化学信号C.间隙连接D.传递物理信号7、下列关于SH2结构域说法错误的是A.是许多信号转导蛋白都具有的结构域B.长约100个氨基酸C.通常存在于具有催化活性的蛋白质的多肽序列中D.可抑制腺苷酸环化酶8、下列属于细胞表面受体的是A.离子通道偶联受体B.G蛋白偶联受体C.甾体激素受体 D酶偶联受体9、下列蛋白激酶中属于Ras信号通路的是A.Raf蛋白激酶B.Mek蛋白激酶C.Src蛋白激酶D.Erk蛋白激酶10、下列关于信号分子,正确的是A.本身不介导催化反应B.本身不具有酶的活性C.能够传递信息D.可作为作用底物一、判断改错题1、NO作为局部介质可激活靶细胞内可溶性鸟甘酸环化酶。

《细胞生物学》期末考试

《细胞生物学》期末考试

《细胞生物学》期末考试1. 关于通道蛋白介导的运输,叙述错误的是 [单选题] *通道蛋白分子无需与转运物质结合绝大多数通道蛋白形成有选择性开关的多次跨膜通道通道蛋白具备离子的选择性和构象可调控性(正确答案)配体门通道蛋白包括胞外配体门通道和胞内配体门通道2. 在受体介导的胞吞作用中,其大部分受体的命运是 [单选题] *受体不再循环进入溶酶体消化返回原来的质膜结构域(正确答案)参与跨细胞的转运与胞内体融合3. 不是前导肽特性的是 [单选题] *带有较多的碱性氨基酸酸性氨基酸含量多(正确答案)羟基氨基酸比较多具有双亲性4. 高尔基复合体中最具代表性的酶是 [单选题] *磷酸葡萄糖苷酶单胺转移酶(正确答案)细胞色素氧化酶糖基转移酶5. 下列细胞器中,有极性的是 [单选题] *溶酶体微体线粒体高尔基体(正确答案)6. 内质网上进行N-连接的糖基化,第一个糖残基是 [单选题] *半乳糖核苷糖N-乙酰葡萄糖胺(正确答案)N-乙酰半乳糖胺7. 下列说法不正确的是 [单选题] *内质网是细胞内所有膜结构的来源高尔基体膜脂的成分介于内质网和细胞膜之间高尔基体中由形成面到成熟面膜的厚度是逐渐减小的(正确答案)在内质网膜、高尔基体膜和质膜中,质膜上蛋白质的糖基化程度最高8. 在N-连接的糖基化中,与糖链相连接的是 [单选题] *天冬酰胺(正确答案)天冬氨酸脯氨酸羟脯氨酸9. 以下运输途径中,COPI包被参与的是 [单选题] *高尔基体→线粒体高尔基体→溶酶体高尔基体→内质网(正确答案)内质网→高尔基体10. 指导蛋白质到内质网上合成的氨基酸序列称为 [单选题] *导肽信号肽(正确答案)转运肽新生肽11. 反面高尔基体膜囊能将溶酶体酶识别并包装在一起,是因为这些蛋白质具有[单选题] *Ser-Lys-LeuKKXX序列M6P标志(正确答案)KDEL序列12. 以下运输途径中,COPII包被参与的是 [单选题] *质膜→内体高尔基体→溶酶体高尔基体→内质网内质网→高尔基体(正确答案)13. 线粒体外膜的标志酶是 [单选题] *单胺氧化酶(正确答案)腺苷酸激酶细胞色素氧化酶苹果酸脱氢酶14. 内质网的标志酶是 [单选题] *葡萄糖-6-磷酸酶(正确答案)酸性磷酸酶糖基转移酶过氧化氢酶15. 蛋白质从细胞质基质输入到线粒体内膜过程中涉及的膜受体是[单选题] *Tom70/22(正确答案)Tom40Tim22/54Tim9/1016. 过氧化物酶体蛋白分选进入过氧化物酶体过程中涉及到的通道是 [单选题] * Pex5Pex14Pex12/Pex10/Pex2(正确答案)Pex217. 指导蛋白质到内质网上合成的氨基酸序列称为()? [单选题]A、导肽B、信号肽(正确答案)C、转运肽D、新生肽答案解析:无18. 反面高尔基体膜囊能将溶酶体酶识别并包装在一起,是因为这些蛋白质具有()? [单选题]A、Ser-Lys-LeuB、KKXX序列C、M6P标志(正确答案)D、KDEL序列答案解析:无19. ras基因突变引起细胞过度分裂的原因是()? [单选题]A、发生突变后不能水解GTP(正确答案)B、发生突变后不能与GTP结合C、发生突变后不能同GRB和Sos结合D、发生突变后不能同Ras结合答案解析:无20. 在下列通讯系统中,受体可进行自我磷酸化的是()? [单选题]A、鸟苷酸环化酶系统B.酪氨酸蛋白激酶系统(正确答案)C.腺苷酸环化酶系统D.肌醇磷脂系统答案解析:无21. 下列激酶中,除哪项外,都是靶细胞蛋白的丝氨酸或苏氨酸磷酸化。

分子生物学试题_完整版(Felisa)

分子生物学试题_完整版(Felisa)

05级分子生物学真题一、选择题1、激活子的两个功能域,一个是转录激活结构域,另一个是(DNA结合域)2、转录因子包括通用转录因子和(基因特异转录因子)3、G-protein 激活needs ( GTP ) as energy.4、Promoters and (enhancers) are cis-acting elements.5、噬菌体通过(位点专一重组)整合到宿主中6、在细菌中,色氨酸操纵子的前导区转录后,(翻译)就开始7、mRNA的剪切跟(II)类内含子相似8、UCE是(I)类启动子的识别序列9、TATA box binding protein 在下列哪个启动子里面存在(三类都有)10、(5S rRNA)是基因内部启动子转录的11、人体全基因组大小(3200000000 bp)12、与分枝位点周围序列碱基配对的剪接体(U2 snRNP)13、tRNA基因是RNA聚合酶(III)启动的14、在细菌中,色氨酸操纵子的前导区转录后,(翻译)就开始15、乳糖操纵子与阻遏蛋白结合的物质是(异构乳糖)。

16、核mRNA的内含子剪接和(II类内含子剪接)的过程相似17、基因在转录时的特点(启动子上无核小体)18、RNA干涉又叫(转录后的基因沉默,PTGS)19、内含子主要存在于(真核生物)20、snRNA在下列哪种反应中起催化酶的作用(mRNA的剪接)二、判断题1、原核生物有三种RNA聚合酶。

2、抗终止转录蛋白的机制是使RNA聚合酶忽略终止子。

3、RNA聚合酶II结合到启动子上时,其亚基的羧基末端域(CTD)是磷酸化的。

4、Operon is a group of contiguous, coordinately controlled genes.5、RNA聚合酶全酶这个概念只应用于原核生物。

6、聚腺苷酸尾是在mRNA剪接作用前发生的。

7、σ在转录起始复合复合物中使得open到closed状态(closed转变成open)8、剪接复合体作用的机制:组装、作用、去组装,是一个循环三、简答题1、原核生物转录终止的两种方式。

大豆分离蛋白

大豆分离蛋白

大豆分离蛋白目录一、产品概述 (2)1.1 大豆分离蛋白定义 (3)1.2 大豆分离蛋白的来源与特点 (3)二、生产工艺 (4)2.1 原料选择与处理 (5)2.2 蛋白提取与分离 (7)2.3 分离蛋白的干燥与包装 (8)三、营养成分 (9)3.1 大豆分离蛋白的营养成分 (10)3.2 大豆分离蛋白的营养价值与应用 (10)四、应用领域 (12)4.1 食品工业中的应用 (12)4.2 医药保健领域的应用 (13)4.3 环保材料领域的应用 (14)五、市场分析 (15)5.1 国内外市场现状与发展趋势 (16)5.2 市场竞争格局与主要参与者 (18)六、政策法规 (19)6.1 国家相关政策支持 (20)6.2 行业标准与监管要求 (21)七、技术进展 (22)7.1 新技术在分离蛋白生产中的应用 (24)7.2 技术创新对市场的影响 (25)八、投资分析 (27)8.1 行业投资前景与机会 (28)8.2 投资风险及应对策略 (29)九、结论与展望 (31)9.1 大豆分离蛋白产业的发展总结 (32)9.2 对未来发展的展望与建议 (33)一、产品概述大豆分离蛋白(Soybean Protein Isolate,简称SPI)是一种从大豆中提取的高纯度蛋白质,是大豆加工行业的重要副产品。

SPI 的主要成分是80左右的蛋白质,同时还含有少量的碳水化合物、纤维素、矿物质和维生素等。

由于其高蛋白质含量且不含胆固醇,SPI 被认为是一种营养丰富的食品原料,广泛应用于食品、保健品和化妆品等领域。

SPI的生产过程主要包括脱脂、脱糖、中和和水解等步骤。

将大豆进行脱脂处理,去除其中的脂肪;然后进行脱糖处理,以降低酸价;接着进行中和处理,调整pH值至适宜范围;最后进行水解处理,将大豆蛋白质分解为小分子肽和氨基酸。

通过这些步骤,SPI的蛋白质含量得到显著提高,同时降低了不良风味和抗原性。

SPI具有许多优点,如高蛋白质含量、易消化吸收、低脂肪、低胆固醇、无乳糖等。

第七章:RNA转录后加工

第七章:RNA转录后加工

SR蛋白因它们的C端结构域有一个富含Ser(S)和Arg(R) 的区域而得名。SR蛋白结合到外显子中外显子剪接增强子 (exonic splicing enhancer, ESE)。与ESE位点结合的SR 蛋白将U2AF蛋白引导到3’剪接位点,并将U1 snRNP引导到5’ 剪接位点,这是剪接过程的一个关键步骤,该步骤决定着哪些 位点将被连接起来。
CPSF和CstF结合位置处于切割与多聚腺苷酸化位点两侧,它 们为切割因子、Poly A聚合酶以及Poly A结合蛋白的组装提供 了平台。一旦聚腺苷酸化复合体组装完成,由切割因子I和切 割因子II构成的内切核酸酶对RNA进行切割, 切割位点就位于 5’-CA-3’二核苷酸的后面。Poly A聚合酶(Poly A polymerase) 在新生的3’末端添加多聚A尾巴。Poly A结合蛋白与多聚A尾 巴结合。
(3)作为进出细胞核的识别标记 凡由RNA聚合酶II转录的 RNA均在5’端加帽,包括snRNA,这是RNA分子进出细胞核 的识别标记。U6 snRNA 由RNA聚合酶III转录,其5’端保留3 个磷酸基团,无帽子结构,因而不能输出细胞核。 (4)提高mRNA的剪接效率 5’帽结合蛋白涉及第一个内含子 剪接复合物的形成,直接影响mRNA的剪接效率。
哺乳动物肌钙蛋白T基因初级转录产物具有5个外显子。该 pre-mRNA可以通过两种途径进行剪接,产生两种不同的 mRNA。一种mRNA含有外显子1、2、3和外显子5,编码 α肌钙蛋白T,另一种mRNA含有外显子1、2、4和外显子5, 编码β肌钙蛋白T。
SV40病毒的T抗原基因初级转录产物通过选择性剪接,产生两
7-甲基鸟嘌呤结构称为0型帽子(type 0 cap), 是酵母中最常见的形式。在高等真核生物中5’端还 会发生更多的修饰。在转录产物的第一个核苷酸核 糖的2’-OH被甲基化,形成I型帽子。脊椎动物转 录产物的第二个核苷酸核糖的2’-OH也被甲基化, 则形成II型帽子。

异质核糖核蛋白C_生理功能、在肿瘤发生发展及治疗中的作用研究进展

异质核糖核蛋白C_生理功能、在肿瘤发生发展及治疗中的作用研究进展

异质核糖核蛋白C生理功能、在肿瘤发生发展及治疗中的作用研究进展谈元郡1,张百红2,马澜婧2,岳红云31 甘肃中医药大学第一临床医学院,兰州 730000;2 中国人民解放军联勤保障部队第九四〇医院肿瘤科;3 中国人民解放军联勤保障部队第九四〇医院眼科摘要:异质核糖核蛋白C(HNRNPC)是一类RNA结合蛋白,通过抑制mRNA前体(pre-mRNA)特定的3'剪接位点调节pre-mRNA可变剪接,并与Poly(A)位点附近富含U(尿苷)的区域结合调节pre-mRNA选择性多聚腺苷酸化,作为N6-甲基腺苷(m6A)“读取器”参与m6A修饰过程。

HNRNPC在多种肿瘤中呈异常高表达状态,作为促癌因子通过与其下游靶点或与其他肿瘤相关蛋白相互作用,促进肿瘤细胞恶性增殖、侵袭和转移。

在肿瘤治疗过程中,HNRNPC诱导肿瘤细胞耐药,增加肿瘤细胞辐射抗性,抑制HNRNPC则恢复肿瘤细胞对化学药物及放射治疗的敏感性。

关键词:异质核糖核蛋白C;肿瘤;mRNA前体;可变剪接;选择性多聚腺苷酸化;m6A修饰;细胞增殖;细胞转移;细胞耐药;细胞辐射抗性doi:10.3969/j.issn.1002-266X.2023.24.023中图分类号:R730.2 文献标志码:A 文章编号:1002-266X(2023)24-0093-04异质核糖核蛋白(HNRNPs)是一类RNA结合蛋白,HNRNP家族成员根据34~120 kDa不同的分子量,按字母顺序从HNRNPA到HNRNPU命名。

异质核糖核蛋白C(HNRNPC)定位于细胞核,其编码基因位于14号染色体长臂1区2带,是最早被发现参与RNA剪接的HNRNPs。

HNRNPs通常包含四种RNA结合域,即RNA识别基序、类RNA识别基序、富含甘氨酸的RGG盒、KH结构域,在RNA结构域旁边含有辅助结构[1]。

HNRNPC仅包含一个RNA 结构域,其单体通过位于HNRNPC辅助域中的亮氨酸拉链基序介导的聚寡能力发挥协同作用[2]。

新员工考试试题

新员工考试试题

新员工考试试题您的姓名: [填空题] *_________________________________一、单选1. 以下哪类患者不属于当前肺癌分子检测的推荐适用人群?() [单选题] *A. IIIB期非小细胞肺癌B. 肺部腺鳞混合癌C. 可手术的肺腺癌D. 小细胞肺癌(正确答案)2. PCR-11基因产品检测突变类型不包括()。

[单选题] *A. RET DNA突变(正确答案)B. KRAS DNA突变C. ROS1 RNA融合D. BRAF DNA突变E. 123. 艾德PD-L1 E1L3N抗体获批哪个药物的伴随诊断?() [单选题] *A. 度伐利尤单抗B. 帕博利珠单抗(正确答案)C. 纳武利尤单抗D. 阿替利珠单抗4. 我司以下哪项检测可使用血液标本进行检测?() [单选题] *A. PD-L1蛋白表达检测B. PCR-9基因检测C. Classic Panel检测D. Master Panel检测(正确答案)5. Classic Panel要求的组织肿瘤细胞含量是() [单选题] *A、10%B、15%C、20%(正确答案)D、30%6. MSI片段分析法伴随诊断的药物是() [单选题] *A. K药B. O药C. 百泽安(正确答案)D. 艾瑞利7. 奥拉帕利在卵巢癌___维持治疗需要检测BRCA基因() [单选题] *A. 一线(正确答案)B. 铂敏感复发C. 铂耐药8. 根据PRIMA研究,卵巢癌中HRD检测较BRCA基因检测可多筛选出___% PARPi获益人群() [单选题] *A. 20%B. 30%(正确答案)C. 50%9. 艾德HRD Complete检测精选____多个SNP位点() [单选题] *A. 15000B. 24000(正确答案)C. 4000010. HRD Complete评分阳性阈值为__分() [单选题] *A. 38B. 42C. 50(正确答案)11.艾德的乳腺癌21基因检测产品是一款基于什么技术平台的检测试剂盒() [单选题] *A. NGSB. ARMS-PCRC. RT-PCR(正确答案)D. FISH12. 除三阴性乳腺癌外,以下哪种亚型乳腺癌患者也应进行BRCA基因检测()[单选题] *A. HER2阳性B. HR阳性/HER2阳性C. HR阳性/HER2阴性(正确答案)D. 都不应该13. 以下方法中,目前最灵敏、准确的评估甲状腺结节良恶性的检查方法是()[单选题] *A. 分子诊断B. 分子诊断+细胞学诊断(正确答案)C. 超声影像学诊断D. 细胞学诊断14.以下哪个产品/产品组合,是2023年甲状腺癌主推产品() [单选题] *A. KNBB. KNBPC. KNB+TH+RET+NTRK(正确答案)D. TC 21基因15. 艾德PD-L1在肺癌判读 时所用的评分方法是?() [单选题] *A. TPS(正确答案)B. CPSC. TCD. IC16. 以下不可用于结直肠癌指导用药的是() [单选题] *A.HER2B.EGFR(正确答案)C.KRASD.BRAF17.ADx PD-L1,在NSCLC中采用()规则判读,在尿路上皮癌中采用()规则判读? [单选题] *都是TPSTPS,CPS(正确答案)CPS,TPS都是CPS18.关于NGS预实验,描述不正确的是()? [单选题] *地区经理为第一责任人流程简单,因此客户提出需求后就可以自行申请试剂(正确答案)每家单位情况不一样,需技术跟客户沟通后才能明确场地和设备是否满足预实验要求预实验前明确预实验目的,不建议客户随口一提试试看就马上申请预实验19.宏石SLAN-96S使用的耗材为? [单选题] *乳白高管乳白矮管透明高管(正确答案)透明矮管磨砂高管磨砂矮管20.肺癌类药物统称为? [单选题] *小分子化合物(正确答案)免疫抑制剂络氨酸激酶抑制剂单克隆抗体PARP抑制剂21. EASY 12提取方法是什么? [单选题] *柱提法磁珠法(正确答案)二、多选1. 以下哪些检测项目可在RNA水平上检测基因融合?() *A. PCR-11基因(正确答案)B. NGS-10基因C. Classic Panel(正确答案)D. Pan 116基因E. Master Panel(正确答案)2. 相比捕获建库的NGS检测项目,PCR多基因与Classic Panel 有哪些共同优势?() *A. 基于RNA检测融合基因更准确(正确答案)B. 报告周期短(正确答案)C. 用于血液检测D. 适合院内开展(正确答案)3. 以下哪些是NGS-10基因试剂盒的优势?() *A. 获批适用癌种最多(正确答案)B. 获批可检基因数最多(正确答案)C. 获批药物伴随诊断数量最多(正确答案)D. 组织检测灵敏度好(正确答案)E. RNA检测融合性能优异4. 以下哪些产品获批了药物伴随诊断?() *A. PCR-11基因(正确答案)B. NGS-10基因(正确答案)C. Super-ARMS EGFR(正确答案)D. PD-L1抗体(正确答案)E. Master Panel5. 2023年KNBP的主要目标科室是() *A. 肿瘤内科(正确答案)B. 胃肠外科(正确答案)C. 普外科D. 大肠外科6. 国内NMPA批准的结直肠癌适应症的公司和产品有() *A. 艾德生物:KNBP联合检测试剂盒(正确答案)B.艾德生物:10基因突变检测试剂盒(正确答案)C. 臻悦生物:KNBP检测试剂盒D. 思路迪:KNBP检测试剂盒7. KRAS需要检测的外显子是() *A.2号外显子(正确答案)B.3号外显子(正确答案)C.4号外显子(正确答案)D.5号外显子8. Classic Panel的产品优势有() *A.准:与伴随诊断产品准确性一致率高(正确答案)B.全:检测靶点全,变异类型全(正确答案)C.快:专利技术缩短建库时间,院内3天可出报告(正确答案)D.新:数据库时时更新,报告精准易读(正确答案)9. BRCA1/2基因检测在卵巢癌临床诊疗中的意义包括() *A. 判断预后(正确答案)B. 指导治疗(正确答案)C. 遗传筛查(正确答案)D.指导手术10. 艾德HRD Complete的检测内容包括() *A. BRCA1/2基因(正确答案)B. MMR基因C. HRR通路其他基因D. HRD 评分(正确答案)11. HRD Complete GSS评分检测_____三种基因组不稳定形式() *A. LCN(正确答案)B. TCN(正确答案)C. SCN(正确答案)12. 所有的乳腺癌患者都应做BRCA1/2突变检测,尤其以下哪几类乳腺癌患者一定要做BRCA1/2检测() *A. 发病年龄<45岁(正确答案)B. 有乳腺癌家族史(正确答案)C. 三阴性乳腺癌患者(正确答案)D. 双侧乳腺癌患者(正确答案)13. . 进行BRCA1/2基因检测,其意义包括() *A. 早期乳腺癌患者BRCA基因突变可指导含铂化疗药物、PARP抑制剂使用(正确答案)B. 晚期乳腺癌患者BRCA基因突变可指导含铂化疗药物、PARP抑制剂使用(正确答案)C. 早期乳腺癌患者BRCA基因突变可指导术式选择(正确答案)D. 健康人群可提示遗传性乳腺癌发病风险(正确答案)14. 使用以下哪种类型的样本,可以做到使分子诊断与细胞学诊断同步开展() *A. 穿刺样本洗脱液(正确答案)B. 独立穿刺物(正确答案)C. 细胞蜡块D. 手术样本15. 纵观甲状腺癌的患者流,艾德产品首推的卖点为术前辅助良恶性鉴别,该节点上BRAF单点检测需升级为多基因检测;除BRAF外,以下哪些基因可以在该节点上推广() *A. TERT(正确答案)B. EGFRC. NRAS(正确答案)D. KRAS(正确答案)16. 艾德PD-L1能在哪些平台使用?() *A. 徕卡 BOND平台(正确答案)B. 罗氏 Ventana平台(正确答案)C. DAKO LINK48平台(正确答案)D. 艾德STAR平台(正确答案)17. 艾德PD-L1与迈杰PD-L1比较,不同之处主要体现在哪些?() *A. 获批适应症不同(正确答案)B. 进行比对的克隆号不同(正确答案)C. 药效试验所选用的药物不同(正确答案)D. 克隆号不同18. 艾德目前在仪器平台的布局包含哪些仪器?() *A. PCR仪(正确答案)B.全自动核酸提取仪(正确答案)C.高通量测序仪(正确答案)D.免疫组化染色仪(正确答案)19. 关于乳腺癌各产品的检测机会,以下描述正确的是() *A. BRCA、HRR可以推广至HER2-乳腺癌患者,术后辅助治疗阶段(正确答案)B. BRCA、HRR可以推广至HER2-乳腺癌患者,晚期一线治疗阶段(正确答案)C. 21基因可以推广至HR+/HER2-乳腺癌患者,术后辅助治疗阶段(正确答案)D. PIK3CA可以推广至HER2+和HR+/HER2-乳腺癌患者(正确答案)20. EASY 12的优势主要体现在哪些方面?() *A. 可进行DNA与RNA的共提(正确答案)B. 可处理大体积血浆样本(正确答案)C. 可提取全血DNA(正确答案)D. 通量很大E. 可以全自动运行操作简便(正确答案)21.ADx PD-L1产品已验证可使用机型包括()? * Leica Bond Max(正确答案)迈新DAKO AutoStainer Link48(正确答案)Ventana BenchMark ULTRA(正确答案)22.关于ADx PD-L1抗体以下说法正确的是()? *是O药的伴随诊断试剂保存温度是4度(正确答案)属于兔源(正确答案)具备三类注册证(正确答案)23.IHC常见的染色模式包括()? *膜染(正确答案)胞浆染色(正确答案)核染(正确答案)核染+质染(正确答案)24.IHC预实验申请一般包括()? *PD-L1(正确答案)IgG(正确答案)核酸提取试剂预实验配套试剂(正确答案)25.二代测序的技术特点包括()? *已知突变和未知突变均能检测(正确答案)一次可检测多个至上千个基因(正确答案)操作简单,1天即可出报告可以对突变进行定量检测(正确答案)26.HANDLE建库相对于杂交捕获建库的优势有()? *操作简单,步骤更少,人员要求相对较低(正确答案)实验周期更短,最快3天出报告(正确答案)设备要求少,不需要超声打断仪,浓缩仪等昂贵设备(正确答案)目前可以应用于大panel的检测27.我司NGS产品目前可应用于哪些二代测序平台()? * Illumina(正确答案)LifeADx-SEQ200 Plus(正确答案)适用于华大平台的所有机型28.Illumina平台测序仪在医院最常见到的有()? *NextSeq 500/CN500/550Dx(正确答案)MiSeqDx/MiSeq(正确答案)MiniSeq(正确答案)ADx-SEQ200 Plus29.NGS实验室相对于PCR实验室,其要求是()? *房间更多(HANDLE一般5间,杂交捕获8-9间)(正确答案)设备更多(正确答案)区域更大(正确答案)要求更高(正确答案)30.核酸包括? *单链结构的RNA(正确答案)双链结构的DNA(正确答案)双链结构的RNA蛋白质染色体31.市面上常见的qPCR仪是? *MX3000P(正确答案)ABIQ5(正确答案)ABI7500(正确答案)LC480(正确答案)SLAN 96S(正确答案)CFX 9632.以下哪些不是临床PCR实验室设计的一般原则()? *各区合并(正确答案)单向通道不可逆向因地制宜方便工作33.使用乳白高管的仪器为()? *MX3000P(正确答案)ABI7500(正确答案)LightCycler 480 I宏石34.以下哪些PCR仪需要辅助器? *ABI7500(正确答案)3000P罗氏480(正确答案)CFX96宏石35. EASY 12目前可以从哪些类型的样本中提取核酸? *FFPE手术样本(正确答案)血浆样本(正确答案)全血样本(正确答案)FFPE穿刺样本(正确答案)新鲜组织1.艾德PD-L1抗体需要稀释后使用 [判断题] *对错(正确答案)2.ADx PD-L1不支持手工染色 [判断题] *对(正确答案)错3.科室内有DAKO AutoStainer Link48和Ventana BenchMark ULTRA平台,优先选择后者进行预实验 [判断题] *对错(正确答案)4.NGS预实验成本集中在测序试剂,一般情况下预实验仅提供一套测序试剂 [判断题] *对(正确答案)错5.血液白细胞检测的是胚系变异,肿瘤组织检测的是体细胞变异 [判断题] *对(正确答案)错6.服务器的功能是做数据储存及分析,因此各厂家的服务器都是通用的 [判断题] *对错(正确答案)7.BRAF试剂盒是大包装试剂,上机时需要根据仪器选择相匹配的耗材,如安捷伦3000P为乳白矮管 [判断题] *对错(正确答案)8.基因是具有遗传功能的NDA片段 [判断题] *对(正确答案)错9.MSI是微卫星不稳定 [判断题] *对(正确答案)错。

第十单元 课时练61 基因工程的基本工具和基本操作程序

第十单元 课时练61 基因工程的基本工具和基本操作程序

一、选择题1.(2024·泉州高三质检)像BclⅠ(-T↓GA TCA-)、BglⅡ(-A↓GATCT-)、MboⅠ(-↓GATC -)这样,识别序列不同,但能产生相同的黏性末端的一类限制酶被称为同尾酶。

如图表示目的基因及质粒上的酶切位点。

选用不同的限制酶对质粒和目的基因进行切割,并用DNA连接酶进行连接。

下列分析错误的是()选项切割质粒切割目的基因结果分析A BclⅠ和BglⅡBclⅠ和BglⅡ形成的重组质粒的碱基排列顺序不一定相同B BclⅠ和BglⅡMboⅠ切割后的质粒不可自我环化,切割后的目的基因可以自我环化C MboⅠBclⅠ和BglⅡ形成的重组质粒可被MboⅠ再次切开,但可能无法被BclⅠ和BglⅡ再次切开D MboⅠMboⅠ切割后的质粒可以自我环化,切割后的目的基因也可以自我环化2.(2023·新课标,6)某同学拟用限制酶(酶1、酶2、酶3和酶4)、DNA连接酶为工具,将目的基因(两端含相应限制酶的识别序列和切割位点)和质粒进行切割、连接,以构建重组表达载体。

限制酶的切割位点如图所示。

下列重组表达载体构建方案合理且效率最高的是()A.质粒和目的基因都用酶3切割,用E.coli DNA连接酶连接B.质粒用酶3切割、目的基因用酶1切割,用T4 DNA连接酶连接C.质粒和目的基因都用酶1和酶2切割,用T4 DNA连接酶连接D.质粒和目的基因都用酶2和酶4切割,用E.coli DNA连接酶连接3.(2023·重庆,12)某小组通过PCR(假设引物长度为8个碱基短于实际长度)获得了含有目的基因的DNA片段,并用限制酶进行酶切(下图),再用所得片段成功构建了基因表达载体。

下列叙述错误的是()A.其中一个引物序列为5′-TGCGCAGT-3′B.步骤①所用的酶是SpeⅠ和CfoⅠC.用步骤①的酶对载体进行酶切,至少获得了2个片段D.酶切片段和载体连接时,可使用E.coli DNA连接酶或T4 DNA连接酶4.(2024·镇江高三二模)转基因植物中标记基因的剔除可有效防止基因污染,剔除常用分离剔除法和重组剔除法。

(最新整理)PolyA(多聚腺苷酸)

(最新整理)PolyA(多聚腺苷酸)

(完整)PolyA(多聚腺苷酸)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)PolyA(多聚腺苷酸))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)PolyA(多聚腺苷酸)的全部内容。

PolyA(多聚腺苷酸)解释通常位于mRNA上的150-200个腺苷酸残基(又称为特殊的尾巴结构)。

多聚腺苷酸化是指多聚腺苷酸与信使RNA(mRNA)分子的共价链结。

在蛋白质生物合成的过程中,这是产生准备作翻译的成熟mRNA的方式的一部份。

在真核生物中,多聚腺苷酸化是一种机制,令mRNA分子于它们的3'端中断。

多聚腺苷酸尾(或聚A尾)保护mRNA,免受核酸外切酶攻击,并且对转录终结、将mRNA从细胞核输出及进行翻译都十分重要。

一些原核生物的mRNA都会被多聚腺苷酸化,但多聚腺苷酸尾的功能则与真核生物有所不同.当去氧核糖核酸(DNA)在细胞核内转录成核糖核酸(RNA)的过程中及完成后,多聚腺苷酸化就会出现.当转录停止后,mRNA链会由核酸外切酶及RNA聚合酶切开。

切开位点的附近有着AAUAAA序列。

当mRNA被切开后,会加入50-250个腺苷到切开位点的3’端上.这个反应是由多聚腺苷酸聚合酶。

多聚腺苷酸化过程1,切割及多聚腺苷酸化特异因子(CPSF)及切割活化因子(CstF)两个蛋白质复合物会开始与末端的RNA聚合酶Ⅱ结合。

2,当RNA聚合酶Ⅱ前进时经过多聚腺苷酸化信号序列的CPSF,及CstF转移至新的mRNA 前体,CPSF会与AAUAAA序列结合,而CstF会与其后3的GU序列或充满U的序列结合。

4,CPSF及CstF会在约AAUAAA序列后35个核苷启动切割.多聚腺苷酸聚合酶(PAP)会立即展开编写多聚腺苷酸尾.细胞核内的多聚腺苷酸结合蛋白(PABPN1)会立即与新的多聚腺苷酸序列结合。

cas9蛋白的结构解释

cas9蛋白的结构解释

cas9蛋白的结构解释Cas9蛋白是一种CRISPR系统中的核酸酶,它在基因编辑和基因治疗中发挥着重要作用。

Cas9蛋白通过靶向特定DNA序列并实现DNA片段的剪切与修复,可以用于定点基因编辑、基因沉默和转录调控等应用。

本文将对Cas9蛋白的结构和功能进行详细解释。

Cas9蛋白来源于细菌的自身免疫系统,可以用来识别和破坏入侵的病毒基因组。

Cas9蛋白的结构由多个功能域组成,包括核酸结合域、核酸切割域和两个REC (RuvC-like endonuclease)结构域。

核酸结合域通常由两个核酸结合螺旋构成,可以通过与RNA分子的互作用来实现特异性DNA识别。

核酸切割域则是Cas9蛋白的核酸酶活性所在,具有切割双链DNA的能力。

REC结构域则起到了连接两个功能域的桥梁作用。

Cas9蛋白的结构还包括一个肽片段,被称为PAM (protospacer adjacent motif)。

PAM序列通常位于目标DNA序列的末端,它是Cas9蛋白选择性结合和切割DNA的关键部分。

PAM序列的存在使得Cas9蛋白能够识别特定的DNA序列,并具有高度的特异性和准确性。

Cas9蛋白的工作机制可以分为两个主要步骤,包括识别目标DNA 和切割DNA。

首先,Cas9蛋白与一段由RNA组成的辅助分子结合,形成一个CRISPR-Cas9复合物。

这个复合物通过互作用将辅助RNA上的引导RNA序列与Cas9蛋白的核酸结合域连接起来。

引导RNA的序列会与目标DNA上的互补序列结合,从而使Cas9蛋白能够识别和定位目标DNA。

一旦Cas9蛋白与目标DNA结合,核酸切割域就会发挥作用,通过切割相应的DNA链来实现基因编辑。

Cas9蛋白的核酸切割域通常具有两个活性位点,分别位于两个REC结构域之间。

这些活性位点在切割DNA时会产生双链断裂,导致DNA片段的修复和改变。

双链断裂可以通过非同源末端连接或同源重组等方式进行修复,从而实现基因组的修复和编辑。

多腺苷酸化的名词解释

多腺苷酸化的名词解释

多腺苷酸化的名词解释多腺苷酸化(Polyadenylation)是指RNA分子的3'末端通过添加腺嘌呤核苷酸(Adenosine)而形成一系列连续的腺苷酸。

多腺苷酸化是真核生物前mRNA后处理的重要步骤之一。

前mRNA是由DNA转录而来,经过多个过程(包括修饰和剪接)形成成熟mRNA。

其中,多腺苷酸化是后处理中最后一个步骤。

该过程不仅仅是为了稳定RNA分子,还与转录调控、mRNA运输和翻译等多个层面的生物学功能息息相关。

多腺苷酸化通常发生在mRNA的3'末端。

首先,前mRNA发生切割,移除5'端的RNA片段。

然后,多聚腺苷酸聚合酶(Poly(A) polymerase)在这个切割位点上开始添加腺苷酸。

这个过程一直持续到腺苷酸的数量达到一定的长度(通常为数十个核苷酸),形成所谓的多腺苷酸尾(Poly(A) tail)。

多腺苷酸化在多个层面对基因表达产生了影响。

首先,多腺苷酸尾的添加可以提高mRNA的稳定性。

多腺苷酸尾可能与RNase(核酸酶)结合,防止RNA的降解,从而延长mRNA的寿命。

其次,多腺苷酸化还参与了mRNA的核糖体识别。

核糖体是蛋白质合成的主要机器,会通过多腺苷酸尾识别mRNA,从而实现翻译启动。

此外,多腺苷酸化还有助于mRNA的核质转运。

多腺苷酸尾能够与RNA结合蛋白形成复合物,从而帮助mRNA与核质间转运。

多腺苷酸化是一个复杂的过程,涉及到多个蛋白质和调控因子的参与。

其中,多聚腺苷酸聚合酶是多腺苷酸化过程的核心酶。

这个酶可以识别切割位点,从而在正确的位置开始添加腺苷酸。

此外,多聚腺苷酸聚合酶还需要与多个辅助因子相互作用,形成复合物才能正常发挥功能。

除了在基因表达中的重要作用外,多腺苷酸化还与一些疾病的发生相关。

例如,一些研究发现多腺苷酸尾的长度在肿瘤细胞和正常细胞间存在差异。

这提示多腺苷酸化可能与肿瘤的发生和发展有关。

此外,多腺苷酸化还参与了一些遗传疾病的发病机制,如X-连锁遗传的血友病和高血压等。

真核生物多聚a尾的功能

真核生物多聚a尾的功能

真核生物多聚a尾的功能真核生物多聚A尾(poly(A) tail)是指在真核生物的mRNA(信使RNA)分子的3'端添加的多聚腺苷酸序列。

这个结构在基因表达和RNA稳定性中发挥着重要的作用。

在这篇文章中,我们将探讨多聚A尾的功能以及其在细胞过程中的指导意义。

首先,多聚A尾在mRNA的转录过程中起着关键的作用。

一般来说,真核生物的基因是由编码区(coding region)和非编码区(non-coding region)组成的,其中编码区编码着蛋白质的氨基酸序列。

转录是将基因的信息转录成mRNA分子的过程,而多聚A尾的添加发生在转录的最后阶段。

这个过程是由一种酶称为多聚腺苷酸聚合酶(poly(A) polymerase)完成的。

多聚A尾有几个重要的功能。

首先,它有助于mRNA的稳定性。

由于mRNA具有不稳定的特性,容易被降解酶降解。

多聚A尾的添加可以提高mRNA的稳定性,延长其寿命,使得mRNA能够在细胞内存在更长的时间,进而参与到蛋白质的合成过程中。

其次,多聚A尾在mRNA的转录后修饰和成熟过程中起着重要的调控作用。

在真核生物中,mRNA需要经过剪接(splicing)和核糖基化(capping)等过程才能成熟并具有功能。

多聚A尾的存在可以促进剪接过程的发生,以及与核糖基化之间的连接。

这样,多聚A尾不仅可以保护mRNA分子免受降解的影响,还可以确保这些分子具有正确的剪接和核糖基化形式,从而确保蛋白质的正常合成和功能。

此外,多聚A尾还可以在mRNA的转录后选择性地影响其转运和翻译。

研究表明,多聚A尾的长度与mRNA的稳定性、转运能力以及翻译效率之间存在一定的关联。

较长的多聚A尾通常会导致mRNA更加稳定和容易转运到胞质中,从而提高其翻译效率。

这对于维持正常的细胞功能以及调节基因表达都非常重要。

综上所述,真核生物多聚A尾的添加具有重要的生物学功能,并在细胞过程中发挥着指导意义。

它在mRNA的转录、修饰、稳定性以及功能方面起着重要的作用。

分子生物学-转录后加工

分子生物学-转录后加工

小鼠免疫球蛋白μ重链基因可变剪接
14-14
可变剪接的多种模式
• 转录物可以按不同的模式进行可变剪接,产生具有多样性的转录本, 许多基因有2种以上的剪接方式,有的甚至达上千种。
• 几种常见的选择性剪接模式: • 1)不同启动子;2)忽略外显子;3)5’选择性剪接;4)3’选择性 剪接;5)保留内含子;6)多腺苷酸化
• 如果装配在snRNP的剪接因 子识别外显子,则称为外显子 界定(exon definition)
• 如果装配在snRNP的剪接因 子识别内含子,则称为内含子 界定(intron definition)
• 通过外显子-内含子边界(剪 接位点)突变,可以分析外显 子-内含子的界定类型
14-12
RNA Pol II的CTD参与外显子界定
内含子类型
特征
剪接体内含子(spliceosomal introns)
细胞核,mRNA,由剪接体催化切除
tRNA内含子(tRNA introns)
细胞核或古菌tRNA基因,由蛋白催化切除
自切割I类内含子(self-splicing group I introns) 细胞器,由RNA催化切除
自切割II类内含子(self-splicing group II introns)细胞器,由RNA催化切除
• 如果在6个位点发生2个不同事件,将会产生26 = 64种结果
14-15
可变剪接示例:果蝇性别决定
• 果蝇的性别决定涉及sxl(sex lethal,性别致死)、 tra (transformer, 转换)和dsx(doublesex, 双性别)三个基因前体mRNA的可变剪接
• 这3个基因的剪接存在级联反应:sxl基因雌性特异性剪接可产生活性 蛋白,进一步增强sxl基因的雌性特异性剪接,同时引发tra基因的雌性 特异性剪接,再进一步引发dsx的雌性特异性剪接

一氧化氮合酶抑制剂

一氧化氮合酶抑制剂

一氧化氮(NO)信号通路研究一氧化氮合酶(NOS)抑制剂研究背景:一氧化氮( NO )是自分泌和旁分泌的信号通路分子,可以扩散进入生物膜。

发挥作用时间很短(几秒钟),主要的生理功能是促进血管动态平衡。

它能够抑制平滑肌收缩生长,阻止血小板凝聚以及防止白细胞 - 内皮细胞粘附。

另外它还参与免疫防御系统,神经传递,血管生成等过程。

NO 的下游靶标包括鸟苷酸环化酶和NF-κB,前者可以提高 cGMP 水平,后者在 iNOS 基因表达作为重要的转录因子。

体内 NO 水平和信号失调常发生于某些疾病状态。

糖尿病病人具有低于全球的 NO 水平,动脉粥样硬化常常会导致 NO 信号通路受损。

因此对 NO 信号通路的研究极具意义。

NO信号通路与NOS合酶:一氧化氮( NO )是由一氧化氮合酶( NOS )氧化 L- 精氨酸产生的,由于 NO 半衰期非常短(约5s ),为此大多数对 NO 功能的研究都是以 NOS 活性的调控为基础。

开发以 NOS 为靶标的抑制剂不仅能很好的阐明 NO 信号通路作用机制,也是开发 NO 引起的疾病治疗药物的重要思路。

►总NOS(一氧化氮合酶)抑制剂表 1 总NOS(一氧化氮合酶)抑制剂体目前发现参与 NO 正常生理或病理过程的有三种类型的 NOS ,分别是: nNOS (neuronal/Type I/NOS-1/bNOS) , eNOS (endothelial/Type III/NOS-3) 和iNOS (inducible/Type II/NOS-2) 。

►n NOS(神经一氧化氮合酶)抑制剂n NOS ,与 iNOS 和 eNOS 一起催化 L- 精氨酸和分子氧产生 NO 和 L- 瓜氨酸。

体内钙离子浓度超过 100 nm 可激活酶活性,酶的催化反应需要辅助因子四氢生物喋呤(H4B)、黄素腺嘌呤二核苷酸(FAD)、黄素单核苷酸(FMN)和NADPH的参与。

nNOS 的转录调控机制非常复杂, nNOS 基因通过可变启动子、选择性剪切、盒式插入 / 缺失、 3'-UTR 切割位点的变化和聚腺苷酸化等方式产生多种 mRNA 转录子,进而引起氨基酸序列的变化,从而翻译产生不同结构和功能特征的 nNOS 亚型。

可变多聚腺苷酸化(apa)的机制

可变多聚腺苷酸化(apa)的机制

可变多聚腺苷酸化(apa)的机制下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!可变多聚腺苷酸化(APA)的机制APA,即可变多聚腺苷酸化,是一种重要的基因表达调控机制,它能够影响转录后mRNA的3'端处理,从而产生不同长度的3'非翻译区(3' UTR)。

可变多聚腺苷酸化在肿瘤中的研究进展

可变多聚腺苷酸化在肿瘤中的研究进展

可变多聚腺苷酸化在肿瘤中的研究进展
周梦浩;梁华庚
【期刊名称】《临床医学进展》
【年(卷),期】2024(14)3
【摘要】可变多聚腺苷酸化(Alternative Polyadenylation, APA)作为一种转录后调控机制,其在基因表达调控中的作用越来越受到重视。

近期的许多研究发现APA 在肿瘤的发生发展和耐药机制中发挥着重要作用。

本文主要总结了APA在基因表达调控和癌症等疾病中的功能作用和新的APA相关的研究方法和数据库。

【总页数】9页(P1741-1749)
【作者】周梦浩;梁华庚
【作者单位】华中科技大学同济医学院附属协和医院泌尿外科武汉
【正文语种】中文
【中图分类】R73
【相关文献】
1.可选择性多聚腺苷酸化与肿瘤的相关研究进展
2.选择性多聚腺苷酸化的生物学效应及其调控机制研究进展
3.胞质多聚腺苷酸化成分结合蛋白与肿瘤相关研究进展
4.选择性多聚腺苷酸化在心血管疾病中的研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

The Poly(A)-Binding Protein Nuclear1 Suppresses Alternative Cleavageand Polyadenylation SitesMathias Jenal,1,5Ran Elkon,1,5Fabricio Loayza-Puch,1,5Gijs van Haaften,1,6Uwe Ku¨hn,2Fiona M.Menzies,3Joachim A.F.Oude Vrielink,1Arnold J.Bos,1Jarno Drost,1Koos Rooijers,1David C.Rubinsztein,3and Reuven Agami1,4,* 1Division of Gene Regulation,The Netherlands Cancer Institute,Plesmanlaan121,1066CX Amsterdam,The Netherlands2Institute of Biochemistry and Biotechnology,Martin-Luther-University Halle-Wittenberg,Kurt-Mothes-Strasse3,06120Halle,Germany3Department of Medical Genetics,Cambridge Institute for Medical Research,Wellcome/MRC Building,Addenbrooke’s Hospital,Hills Road,Cambridge CB20XY,UK4The Centre for Biomedical Genetics,Utrecht3584CG,The Netherlands5These authors contributed equally to this work6Present address:The Department of Medical Genetics,University Medical Center Utrecht,Utrecht3584CG,The Netherlands*Correspondence:r.agami@nki.nlDOI10.1016/j.cell.2012.03.022SUMMARYAlternative cleavage and polyadenylation(APA)is emerging as an important layer of gene regulation. Factors controlling APA are largely unknown.We developed a reporter-based RNAi screen for APA and identified PABPN1as a regulator of this process. Genome-wide analysis of APA in human cells showed that loss of PABPN1resulted in extensive 30untranslated region shortening.Messenger RNA transcription,stability analyses,and in vitro cleavage assays indicated enhanced usage of proximal cleavage sites(CSs)as the underlying mechanism. Using Cyclin D1as a test case,we demonstrated that enhanced usage of proximal CSs compromises microRNA-mediated repression.Triplet-repeat ex-pansion in PABPN1(trePABPN1)causes autosomal-dominant oculopharyngeal muscular dystrophy (OPMD).The expression of trePABPN1in both a mouse model of OPMD and human cells elicited broad induction of proximal CS usage,linked to binding to endogenous PABPN1and its sequestra-tion in nuclear aggregates.Our results elucidate a novel function for PABPN1as a suppressor of APA. INTRODUCTIONThe addition of an adenine tail(poly(A))to messenger RNA (mRNA)30ends is a cotranscriptional nuclear process that is important for nuclear export,translation,and mRNA stability(Le-may et al.,2010).mRNA polyadenylation is a two-step process consisting of an endonucleolytic cleavage and addition of an un-templated poly(A)tail.Adjacent cis-acting motifs direct cleavage position and efficiency.Mainly,an upstream hexamer polyade-nylation signal(PAS)and a downstream UG-rich sequence recruit the cleavage and polyadenylation specificity factor (CPSF)and the cleavage-stimulating factor(CSTF),respectively, both required for the polyadenylation process(Bentley,2005; Zhang et al.,2010).The canonical PAS is AAUAAA,which appears in about half of the cleavage sites(CSs).More than ten variants of the canonical PAS have been reported,and the most prominent among them is AUUAAA(Beaudoing et al., 2000;Tian et al.,2005).mRNA poly(A)tails are added by a highly evolutionary con-served poly(A)polymerase(PAP)and recruit poly(A)-binding proteins(PABPs),which come in twoflavors,the cytosolic PABPC and the nuclear PABPN1.The nuclear PABPN1is structurally and functionally different from PABPC and is thought to function during poly(A)tail addition to mRNAs. In vitro,efficient polyadenylation requires CPSF,PAP,and PABPN1(Ku¨hn et al.,2009;Wahle,1995).Whereas CPSF binds to PAS to cleave mRNAs and modestly stimulates polya-denylation,PABPN1addition to CPSF/PAP strongly stimulates polyadenylation.Most mammalian mRNAs contain a30untranslated region (30UTR)that plays a key role in regulating mRNA stability,local-ization,and translation efficiency(Andreassi and Riccio,2009; Fabian et al.,2010).These functions are mediated mostly through binding of microRNAs(miRNAs)and RNA-binding proteins(RBPs)to regulatory elements embedded in the target 30UTRs.miRNAs are small,noncoding RNAs that guide miRNP complexes to30UTRs by sequence-specific interaction with30 UTRs based on a6–8seed sequence at their50ends(Fabian et al.,2010).miRNAs are predicted to target the majority of human protein-coding genes,enabling them to play numerous regulatory roles in many physiological and developmental pro-cesses(Kedde and Agami,2008).RBPs,like miRNAs,are key components in gene expression regulation.They can either bind specific sequence elements on mRNAs(e.g.,the human Pumilio RBP family)or looser consensus sequences,such as U-and A/U-rich motifs,to control expression in a negative or positive manner(Filipowicz et al.,2008).Moreover,RBPs can538Cell149,538–553,April27,2012ª2012Elsevier Inc.bind30UTRs and interfere or stimulate miRNA function(Kedde et al.,2007,2010).Thus,it appears that30UTRs can be viewed as regulatory platforms that determine mRNA stability,subcel-lular localization,and rate of protein synthesis(van Kouwenhove et al.,2011).The number of human and mouse genes reported to use alter-native cleavage and polyadenylation(APA)to generate multiple mRNA isoforms with different30UTR lengths is continuously increasing and already passes the50%estimate(Fu et al., 2011;Jan et al.,2011;Lutz,2008;Ozsolak et al.,2010;Shepard et al.,2011;Tian et al.,2005).Therefore,APA is emerging as an important layer in gene regulation as it modulates the inclusion of target sites for miRNAs and RBPs in30UTRs.Already more than a decade ago,it was shown that changes in the concentration of CstF could affect APA of IgM heavy-chain transcripts during B cell development(Takagaki and Manley,1998;Takagaki et al., 1996).Recently,it was observed that whereas primary human cells mostly use distal PASs,usage of proximal sites,which results in30UTR shortening,is enhanced during cell activation (Sandberg et al.,2008),early in development(Ji et al.,2009), and in cancer(Mayr and Bartel,2009;for a recent review,see Di Giammartino et al.,2011).However,factors that regulate APA during cancer progression and differentiation are still largely unknown.Oculopharyngeal muscular dystrophy(OPMD)is an auto-somal-dominant form of late-onset(patients aged>40years), slowly progressive myopathy,characterized by bilateral eyelid ptosis(drooping),dysphagia(swallowing difficulties),and prox-imal limb weakness(Ru¨egg et al.,2005).Beyond the age of70, all patients are symptomatic.OPMD was reported in>30coun-tries worldwide,with a low estimated occurrence that can be as high as1:600in specific communities(Blumen et al.,1997). OPMD is caused by short expansions of a(GCG)6triplet repeat to(GCG)8–13in the PABPN1gene(trePABPN1),which results in the expansion of a polyalanine stretch from10to12–17 alanines in the amino terminus of the protein(Brais et al., 1998).Disease mutant(mut)trePABPN1induces nuclear protein aggregation and formsfilamentous nuclear inclusions,a patho-logical hallmark of OPMD(Calado et al.,2000;Thome´et al., 1997).How the triplet-expansion mutations affect PABPN1 activity and cellular behavior is currently unknown.To study OPMD,a transgenic mouse model was developed that expresses mut trePABPN1(A17)under the control of the muscle-specific human skeletal actin promoter(Davies et al., 2005).trePABPN1(A17)mice appear normal at birth but develop a progressive muscle weakness that is accompanied by the formation of trePABPN1(A17)-containing aggregates in the nuclei of skeletal myocytes and by accelerated apoptosis(Davies and Rubinsztein,2011;Davies et al.,2005).Here,using a wide-scale RNAi screen focused on human RBPs,we identified PABPN1as a suppressor of APA.Loss of PABPN1resulted in a global enhancement of proximal CSs usage in independent human cellular systems.In a mouse model for OPMD,as well as in human cells,the expression of a disease mut trePABPN1(A17)also resulted in an extensive enhancement of proximal CSs.Our results elucidate a role for PABPN1in sup-pressing APA sites and predict a role for unbalanced APA in OPMD.RESULTSAn RNAi Screen Identifies PABPN1as a Regulator of APA We designed a reporter system(named pSTAR;a p lasmid s ystem t o identify A PA r egulators)to identify factors that regulate the usage of APA sites.We cloned downstream to the Renillaluciferase in psiCHECK2(psiC)an$1kb region of the30UTRof the mixed leukemia lymphoma gene(MLL),recently discov-ered to strongly repress luciferase expression,mainly at thelevel of RNA synthesis(Figures1A;Figure S1A available online;Gomez-Benito et al.,2011).Physical engagement of RNA poly-merase(Pol)II with transcription of this MLL region results inrepression and low luciferase counts.Next,we cloned the prox-imal alternative PAS region of Cyclin D2(CCND2;Mayr andBartel,2009)upstream of the MLL insert and used the mutatedPAS as control(pSTAR-D2WT,pSTAR-D2mut;Figures1A,S1A,and S1B).We expected that the Renilla luciferase repressionby MLL-30UTR in pSTAR would be weakened due to earlycleavage mediated by the CCND2PAS in pSTAR-D2WT.Figures1A and S1C show that the MLL-30UTR repressor reduced the Renilla/Firefly(R/F)ratio by more than10-fold by lowering the Renilla luciferase expression.As expected,the insertion of CCND2wild-type(WT)proximal PAS significantly relieved therepression,and this relief was less effective when that PASwas mutated(Figure1A).Sequence analysis of transcript endsdownstream of the Renilla gene in pSTAR-D2WT revealed theexact expected CS(Figure S1B).Similar effects were observedwith the p27(CDKN1B)30UTR distal PAS region(Figures1Band S1D),albeit this PAS showed a stronger effect,which isconsistent with it being the strongest functional PAS of the p27gene(Figures1B and S4C).Therefore,in both cases our pSTARreporter system successfully monitored PAS activity.Next,we performed an RNA interference(RNAi)library screento identify RBP genes required for APA.We reasoned that knock-ing down genes involved in APA should attenuate the differencein R/F ratios measured for the WT and mutant proximal CCND2PAS constructs.Thus,we transfected pSTAR-D2WT and-D2mutinto U2OS cells and reverse transfected siRNA smart pools de-signed to target489RBP genes(Figure S1E).The R/F ratio ofpSTAR-D2WT was compared to that of-D2mut(Figure1C).Geneswere ranked according to the relative difference between R/Fratios for pSTAR-D2WT and-D2mut(Table S1).The top-scoringcandidate in this screen(i.e.,the candidate that minimized thegap between pSTAR-D2WT and-D2mut)was PABPN1(Figure1C,red point).To validate this result,we tested each individual smallinterfering RNA(siRNA)from the PABPN1smart pool.All foursiRNAs effectively silenced PABPN1expression and diminishedthe difference between pSTAR-D2WT and-D2mut(Figures1Eand1D).siRNA#1and#2were the most efficient ones.Thiseffect of PABPN1knockdown(kd)was confirmed at the mRNAlevel(Figure S1F).Detailed examination of the effect of PABPN1kd showed that in addition to its effect on the relative pSTAR-D2-WT/mut counts,it also lowered the basal R/F ratio(Figure1E).However,the latter effect was observed also in the controlpSTAR vector(Figure1F,upper panel),indicating it is not relatedto PABPN1’s role in regulating the usage of the CCND2-PASinsert.Intriguingly,the attenuation of the gap between pSTAR-D2WT and-D2mut caused by PABPN1kd did not result from Cell149,538–553,April27,2012ª2012Elsevier Inc.539Figure1.Functional Genetic Screen Identifies PABPN1as a Regulator of PAS Usage(A)Our pSTAR system consists of psiCHECK2(psiC)dual luciferase vectors(Figure S1A),containing the WT or mut proximal CCND2PAS(D2WT or D2mut; Figure S1B)upstream of the MLL-30UTR fragment(240–1143bp;named repressor[R]).These systems were transfected into U2OS cells for72hr.The relative R/F ratio(average±standard deviation[SD])was determined.540Cell149,538–553,April27,2012ª2012Elsevier Inc.a compromised relief of the Renilla luciferase repression in the pSTAR-D2WT construct:in PABPN1kd cells,the R/F ratio between pSTAR-D2WT and pSTAR(7.0)was similar to the control (5.5;Figures1F,upper panel and1G).Instead,in the absence of PABPN1,the effect of pSTAR-D2mut on the repression relief was markedly reduced(Figures1F,upper panel and1G).As an indi-cation for the specificity of PABPN1-mediated regulation of APA, no major effect of PABPN1kd was observed on the stronger distal p27-PAS(Figure1F,middle panel;PABPN1kd confirmed by quantitative reverse transcription-polymerase chain reaction [qRT-PCR];lower panel)nor on the proximal FGF2and Dicer1 PASs(Figure S1G).To further ascertain PABPN1’s involvement in the regulation of CCND2-PAS usage,we constructed siRNA-resistant PABPN1expression vectors for siRNAs#1 and#2.Expression of the siRNA-resistant PABPN1proteins restored in the presence of PABPN1siRNAs#1and#2the differ-ence in R/F ratio of WT versus mut CCND2-PAS to levels observed by WT PABPN1overexpression(Figure1H).We confirmed PABPN1kd and reconstitution by siRNA-resistant constructs with immunoblotting(Figure1I).Altogether,our results indicate that in the absence of PABPN1,early cleavage occurred efficiently in both the pSTAR-D2WT and-D2mut constructs,suggesting that loss of PABPN1activated a dormant CS in the CCND2-proximal PAS region to mediate an early cleavage in the mut PAS construct.Loss of PABPN1Induces Global30UTR ShorteningTo examine the role of PABPN1in PAS selection on a global scale,we applied a deep-sequencing-based technique adapted from Beck et al.(2010)and named30Seq(Figure S2A).30Seq allows precise mapping of30-end cleavage and poly(A)sites at a nucleotide resolution based on the alignment of sequenced reads that span the CS and therefore cover the beginning of the untemplated poly(A)tail(Figures S2B and S2C).We applied 30Seq to four independent U2OS-transfected control and two PABPN1kd samples.Analyzing the30Seq dataset,we identified 23,635CSs,of which58%mapped to30UTRs of9,345tran-scripts(Figure S2D).2,990(32%)transcripts contained more than one CS in their30UTR(Figure S2E).We benchmarked these CSs against annotated CSs recorded in the poly(A)database (Lee et al.,2007)or in Ozsolak et al.(2010)and found11,407 (83%)of the30UTR CSs to overlap with at least one of these resources but only2,227(22%)of other CSs(Figure S2F).There-fore,in subsequent analyses,we included only CSs that mapped to30UTRs.We next searched for enriched sequence motifs in the region of±50nt with respect to the CSs.The most enriched signal in this region was the canonical AAUAAA PAS(corre-sponding to AATAAA on the DNA level).Also,all major variants of the canonical signal(Tian et al.,2005)were highly enriched too,with AUUAAA being the second most prominent motif, appearing together with the canonical signal in$60%of the mapped CSs(Figure S2G).As an additional indication for the precision of the CS mapping by30Seq,the location distribution of the major PAS signals showed a sharp peak at the docu-mented position$20nt upstream of the CSs(Figure S2H)(Tian et al.,2005).De novo motif discovery analysis also detected enriched T/TG motifs,which,in accordance with previous reports(Hu et al.,2005;Lutz,2008;Nunes et al.,2010),peaked downstream of the CSs(Figure S2I).Next,we examined the effect of PABPN1kd on PAS selection. We identified572transcripts that showed a significant shift in CS usage in PABPN1kd versus control samples(p<0.001; chi-square test;Table S2A).In more than90%of these tran-scripts,the shift in CS usage was toward the proximal PASs (p<10À99;binomial tail),indicating an extensive30UTR short-ening in the absence of PABPN1(Figures2A and2B).We vali-dated by quantitative polymerase chain reaction(qPCR)and northern blot the increase in the level of the short relative to the long isoform for selected genes(Figures2C and S2M).The northern blot showed for the majority of the examined genes that PABPN1kd results in elevated(absolute)levels of the short isoform,indicating that the increase in the short/long ratio in the absence of PABPN1was associated with enhanced cleavage at the proximal PASs(Figure S2M,right panel).To quantify the relative usage of each PAS in a transcript,we defined the PAS usage index(PUI;Extended Experimental Procedures).Compar-ison of the proximal PUI distribution in PABPN1kd versus control samples further demonstrated the significantly enhanced usage of proximal PASs in the absence of PABPN1(Figures2D and2E). To confirm the effect of PABPN1kd on PAS selection,we applied30Seq to a second cell line(RPE-1).Here too,PABPN1 kd resulted in a broad30UTR shortening(Figures S2N–S2P). Of the357transcripts with a significant shift in CS usage,291 (82%)showed30UTR shortening in the PABPN1kd samples (p=3.97*10À35)(Figure S2Q).These results strongly suggest that PABPN1kd causes a significant shift toward proximal PAS usage.Therefore,we sought to identify sequence features that potentially differ(B)Same experiments as in(A),but a region encompassing the p27-PAS(p27WT and p27mut;Figure S1D)was used.(C)U2OS cells were transfected with pSTAR-D2WT and-D2mut constructs,reverse transfected with siRNA smart pools targeting489RBP genes(384-well format; Figure S1E).Standardized differences between log2of R/F ratios measured in the pSTAR-D2WT and-D2mut constructs are shown for each targeted gene. PABPN1kd(in red)strongly minimized the gap between pSTAR-D2WT and-D2mut.(D and E)The four individual siRNAs of the PABPN1smart pool used in(C)were reverse transfected.(D)shows the relative PABPN1mRNAs levels(qRT-PCR; relative to b-actin).(E)shows relative R/F ratios(average±SD)for pSTAR-D2WT and-D2mut in the individual siRNA samples.(F)pSTAR-D2WT and-D2mut were transfected into U2OS cells.After16hr,cells were reverse transfected with the indicated siRNAs.Seventy-two hours later,R/F ratios were determined(mean±standard error of the mean[SEM];upper and middle panels).Lower panel:PABPN1mRNA levels in transfected cells measured by qRT-PCR.(G)Quantification of the R/F ratios shown in(F)for WT and mut CCND2-PAS(n=15;mean±SEM;one-tailed t test).(H)In addition to the reporter constructs used in(F)(upper panel),expression vectors for empty control,PABPN1WT,or siRNA-resistant PABPN1were cotransfected.Data are represented as average±SD.(I)Immunoblot analysis with PABPN1and b-actin antibodies of whole-cell extracts(WCE)from the cell populations used in(H).See also Figure S1and Table S1.Cell149,538–553,April27,2012ª2012Elsevier Inc.541Figure2.PABPN1kd Induces Extensive30UTR Shortening(A)Examples of transcripts showing significant30UTR shortening,manifested by a prominent increase in the proximal CS level relative to the distal one in PABPN1kd compared to control samples.Transcripts with red-colored reads are encoded on the reverse DNA strand,thus the distal CS is on the left and the proximal CS is on the right side.542Cell149,538–553,April27,2012ª2012Elsevier Inc.between proximal and distal sites.Analyzing the set of tran-scripts containing exactly two30UTR CSs,we found a signifi-cantly higher prevalence of the canonical PAS,but not of its variants,in distal versus proximal sites(49%versus27%, respectively;Table S3).This difference was even more pro-nounced in the subset of transcripts,which showed significant 30UTR shortening in the PABPN1kd samples(Table S3),sug-gesting that PABPN1kd enhances the usage of noncanonical proximal PASs.Loss of PABPN1Enhances mRNA Cleavage Mediatedby Proximal PASsPABPN1kd significantly increased the usage of proximal CSs relative to distal ones in hundreds of transcripts,and for several transcripts,a clear upregulation of the short form was observed by northern blots(Figure S2M).However,it is possible that PABPN1kd globally destabilized transcript isoforms with longer 30UTRs(e.g.,due to broad activation of miRNA activity or RBPs). To examine this possibility,we measured the stability of short and long transcript isoforms for several genes that showed a significant shift toward the proximal PAS in PABPN1kd samples.We used30-end qRT-PCR to distinguish between the stability of isoforms with short and long30UTRs(generated by cleavage at proximal and distal CSs,respectively).To check the validity of the30-end qRT-PCR method,wefirst examined the relatively unstable p27transcript.Standard qRT-PCR measurement of p27mRNA stability showed that p27mRNA from U2OS cells has a half-life of$2hr(Figure3A).No significant change in p27stability was observed in PABPN1kd cells(Fig-ure3A).When the same total RNA samples were examined with30-end qRT-PCR covering the p27-PAS sequence,similar p27stability was found,and again no significant effect of PABPN1kd was seen(Figure3B,left panel).30-end qRT-PCR applied to b-actin mRNA expectedly revealed a highly stable transcript(Figure3B,right panel).Thus,stability estimates ob-tained by30-end qRT-PCR agree with those obtained with stan-dard qRT-PCR.Moreover,PABPN1kd did not significantly change the stability of these two single PAS-containing genes. Next,we applied30-end qRT-PCR to compare the stability of the long and short30UTR transcript isoforms of PSMD8, SUPT6H,PDRG1,E2F1,and CCND1that showed a strong shift toward the proximal PAS following PABPN1kd.Regardless of the stability of the30end observed in control cells(e.g., PSMD8is highly stable,whereas PDRG1is relatively unstable), PABPN1kd had no significant effect on the stability of allfive transcripts(Figures3C,4D,and S3A).qRT-PCR demonstrated an efficient PABPN1kd(Figure3D).We conclude that a global destabilization of longer transcripts is not a major cause of the broad shift toward proximal PASs observed in the absence of PABPN1.Next,we examined the transcription along MAPKAPK3, PDRG1,and E2F1,which showed significantly elevated usage of the proximal relative to the distal CS in PABPN1kd cells.If proximal PAS usage is indeed activated,reduced levels of Pol II occupancy should be detected in the30UTR downstream of the proximal PAS following loss of PABPN1expression. Conversely,if destabilization of the longer transcript causes the relative increase in the usage of the proximal versus the distal PAS,no change in Pol II levels along the30UTR should be observed in PABPN1kd samples.Chromatin immunoprecipita-tion(ChIP)from extracts of control and PABPN1siRNA-trans-fected cells showed that for these genes,but not for p27(nega-tive control),PABPN1kd significantly reduced Pol II interaction with distal30UTRs relative to coding sequence(CDS)(Figure3E). This indicates an early termination of Pol II transcription in the absence of PABPN1and supports the conclusion that a reduced level of PABPN1results in activation of proximal CSs.PABPN1Regulation of Proximal CSsThe extensive activation of proximal CSs in the absence of PABPN1can result from enhanced activity of the pre-mRNA 30-end processing machinery.A recent study identified>90 proteins that constitute this processing complex(Shi et al., 2009).Global upregulation of the set of genes encoding these factors accompanies the broad30UTR shortening observed during enhanced cellular proliferation(Ji et al.,2009and unpub-lished data).To examine whether a similar induction of30-end processing genes underlies the30UTR shortening in the absence of PABPN1,we used the30Seq data to derive gene expression estimates and compared the expression of these genes between control and PABPN1siRNA-transfected U2OS cells.However, no global change in the expression of genes involved in the 30-end processing was detected in PABPN1kd samples(Fig-ure S3B).This indicates that the absence of PABPN1does not activate proximal CSs through global induction of the30-end processing machinery.Another possible explanation for activated proximal CS usage in the absence of PABPN1is a direct interaction of PABPN1with proximal PAS regions,which are typically weaker than distal signals.Such binding of PABPN1may compete with PAS recog-nition and/or mRNA cleavage complexes and thus can reduce cleavage efficiency at these sites.To examine this model,we(B)Five hundred and seventy-two transcripts showed a significant shift(p<0.001;chi-square test;see Extended Experimental Procedures)in CS usage be-tween PABPN1kd and control samples.In523of these transcripts,absence of PABPN1enhanced the usage of the proximal site relative to the distal one, resulting in overall30UTR shortening.(p value calculated using binomial tail.)(C)To confirm the results of the30Seq,the same samples as in(B)were subjected to qRT-PCR.Results were normalized to siControl#1and shown as average±SD.(D)Comparison between the distribution of the PUI of the proximal sites in the PABPN1kd and control samples.The significant shift to the right demonstrates that PABPN1kd resulted in a global increase of proximal PAS usage(p value was calculated using Wilcoxon test).The analysis included the572transcripts that showed significant shift in CS usage.(E)The median of the proximal sites PUI distribution,calculated over all transcripts with more than one30UTR CS,was taken as a global measure for the usage of proximal CSs in each sample.PABPN1kd resulted in a marked increase in this measure.See also Figure S2and Tables S2A and S3.Cell149,538–553,April27,2012ª2012Elsevier Inc.543544Cell149,538–553,April27,2012ª2012Elsevier Inc.tested PABPN1interaction with proximal PAS regions in vivo. We immunoprecipitated PABPN1from U2OS cells that were subjected to4-thiouridine and ultraviolet(UV)crosslinking treatments.Then we performed qRT-PCR with reverse oligos immediately downstream of the proximal CSs of SUPT6H,MAP-KAPK3,and hnRNPUL2in order to distinguish unprocessed transcripts from cleaved and polyadenylated isoforms(Fig-ure S3C).Such primer setting is essential because PABPN1 strongly associates with poly(A)tails inside nuclei,and this binding may overshadow PABPN1binding to regions adjacent to proximal CSs.As control for the specificity of the PABPN1 binding,we used qRT-PCR primers mapping to coding regions (Figure S3C).The proximal PAS regions of all three genes exam-ined were significantly enriched for PABPN1binding(Figure3F). We then examined whether PABPN1binds to proximal PAS regions in vitro.We synthesized the proximal hnRNPUL2PAS including30nt down-and upstream and used RNA-electromo-bility shift assays(R-EMSA)to examine the binding of recombi-nant PABPN1(rPABPN1)to this radiolabeled proximal PAS region(Ku¨hn et al.,2009).We observed rPABPN1binding that was largely dependent on the integrity of the PAS sequence, as mutating the triple A of the PAS to triple C clearly reduced rPABPN1binding to this region(Figure3G).rPABPN1binding to the WT PAS region was efficiently competed with cold WT, but not mutated,PAS sequence(Figure3H).This indicates specific binding to the PAS region.Similar results were obtained with the proximal MAPKAPK3PAS region and increasing rPABPN1amounts(Figures3I and S3D).These results suggest a direct effect of PABPN1on proximal PAS usage.Next,we performed in vitro cleavage assays to test whether PABPN1directly regulates PAS-mediated cleavage.We used in vitro synthesized RNA probes comprising the proximal PAS regions of MAPKAPK3,hnRNPUL2,and SUPT6H and the distal PAS region of MAPKAPK3.In these probes,the CS of the MAPKAPK3distal PAS region is located$10nt from the30end, and the CSs of MAPKAPK3,hnRNPUL2,and SUPT6H proximal PAS regions at$25–30nt from the30end(Figure S3E).As controls,we used probes with mutated PAS sequence(AAA to CCC,designated WT to mut).When incubating these probes with nuclear extract of HeLa cells transfected with control siRNAs(Figure3J,lane C),we observed efficient and specific cleavage of the canonical distal MAPKAPK3region but very limited cleavage of the proximal PAS regions.PABPN1kd(#2) enhanced cleavage of all proximal probes but not of the canonical distal one.As no cleavage products of proximal or distal probes were seen when the control PAS mut probes were used,and as the lengths of the cleavage productsfit the expected sizes (Figure S3E),we conclude that this cleavage is mediated by the 30-end processing machinery and that loss of PABPN1enhances it.Supporting this notion,adding rPABPN1to the cleavage reac-tion markedly reduced PABPN1-induced cleavage efficiency (Figure3J,lane#2+P).PABPN1kd was confirmed by qRT-PCR and western blotting(Figure3J,upper right corner).This result strongly supports a direct role for PABPN1in suppressing PAS-mediated cleavage at proximal sites.PABPN1Contributes to Efficient30UTR-Mediated RepressionLoss of PABPN1in U2OS cells increased the usage of CCND1 proximal PAS by$2-fold(Figures4A–4C).This shift was not accompanied by any stability changes of the long or the short transcript isoforms(Figure4D).CCND1is a target of the miR-17-19cluster(Figure4E),which is expressed in U2OS cells(Fig-ure4F).Thus,we examined whether loss of PABPN1attenuates CCND1sensitivity to miR-17-19.We transfected U2OS cells with a construct containing the miR-17-19cluster(miRVec-17-19,expressing miR-17,-18a,-20a,-19a,and-19b-1;Fig-ure S4A),or a control vector,and reverse transfected these cells with control and PABPN1#1and#2siRNAs.Transfection of miRVec-17-19increased miR-20a levels and suppressed CCND1protein expression in control but not in PABPN1 siRNA-transfected cells(Figures4F and4G).To further examine the PABPN1effect on miR-17-19-mediated repression of the CCND130UTR,we constructed dual luciferase vectors contain-ing either the full-length CCND130UTR(psiC-D1-FL)or a short CCND130UTR that terminates at the proximal CS(psiC-D1-S). The transfection of miRVec-17-19resulted in$3.5-fold relative inhibition of the full-length CCND130UTR compared toFigure3.PABPN1Regulation of Proximal CSs(A and B)U2OS cells were transfected with PABPN1siRNAs(kd#1and#2)for72hr and incubated with actinomycin D(ActD)for6hr.mRNA levels were measured by standard qRT-PCR for p27-CDS(A)or by30-end qRT-PCR for p27-PAS and b-Actin PAS(B).Data are shown as average±SD.(C)The stability of mRNA isoforms terminated at the distal CS was measured by30-end qRT-PCR(average±SD).In none of the cases did PABPN1kd result in a destabilization of the longer transcript or in a stabilization of the shorter isofoms(Figure S3A).(D)qRT-PCR was performed to check PABPN1kd in the same samples as in(A),(B),and(C).Data are shown as average±SD.(E)Pol II ChIPs from extracts of U2OS cells transfected with control or PABPN1siRNAs.Pol II binding was measured in30UTRs downstream of the proximal PAS and in CDS(mean±SEM;one-tailed t test).Lower panel:schematic location of the primers.(F)WCE of4-thiouridine-treated and UV-crosslinked U2OS cells were immunoprecipitated with PABPN1or control IgG antibody,and qRT-PCR was performed (primers:Figure S3C).Relative enrichment of PABPN1over IgG was determined(mean±SEM;one-tailed t test).(G)R-EMSA performed with RNA oligonucleotides encompassing30nt up-and downstream of the proximal WT or mut hnRNPUL2PAS.Fifty nanomolar of bacterial rPABPN1was used.(H)WT hnRNPUL2PAS oligonucleotides were competed with increasing amounts of cold WT or mut hnRNPUL2PAS oligonucleotides.rPABPN1binding to WT hnRNPUL2PAS was efficiently competed with cold WT oligonucleotide but not with the mut oligonucleotide.(I)R-EMSA performed with RNA oligonucleotides surrounding the proximal WT or mut MAPKAPK3PAS and increasing rPABPN1amounts.(J)In vitro cleavage assays with probes encompassing the proximal MAPKAPK3,hnRNPUL2,and SUPT6H PASs and the distal MAPKAPK3PAS,incubated with nuclear extracts from HeLa cells transfected with control(C)or PABPN1(#2)siRNAs(Àand+P:probes incubated without nuclear extract or extracts supple-mented with50nM rPABPN1,respectively).The arrow marks the cleaved products.Upper right corner:qRT-PCR showing the relative PABPN1to b-actin mRNA levels(average±SD)and a western blot of PABPN1(same HeLa nuclear extracts as used for the cleavage assay).BG:background band.See also Figure S3.Cell149,538–553,April27,2012ª2012Elsevier Inc.545。

相关文档
最新文档