整式的乘除单元设计
初中整式的乘除教案
初中整式的乘除教案教学目标:1. 理解整式的乘法概念,掌握整式乘法的方法和步骤。
2. 掌握整式的除法概念,能够进行简单的整式除法运算。
3. 能够应用整式的乘除法解决实际问题。
教学重点:1. 整式的乘法方法。
2. 整式的除法概念和步骤。
教学难点:1. 整式乘法中的项的合并。
2. 整式除法中的除法法则的应用。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾已学的整式加减法,复习相关的数学概念和运算规则。
2. 提问:我们已经学习了整式的加减法,那么有没有什么方法可以将整式相乘或相除呢?二、整式的乘法(15分钟)1. 讲解整式乘法的概念:将两个整式相乘,得到一个新的整式。
2. 示例:给出两个整式 a(x + y) 和 b(x + y),引导学生通过分配律进行乘法运算,得到 (ax + ay + bx + by)。
3. 练习:让学生独立进行一些简单的整式乘法运算,并及时给予指导和反馈。
三、整式的除法(15分钟)1. 讲解整式除法的概念:将一个整式除以另一个整式,得到一个新的整式。
2. 示例:给出一个整式 ax + b 和另一个整式 cx + d,引导学生通过长除法或其他方法进行除法运算,得到 (ax + b) ÷ (cx + d)。
3. 练习:让学生独立进行一些简单的整式除法运算,并及时给予指导和反馈。
四、应用和拓展(15分钟)1. 给出一些实际问题,让学生应用整式的乘除法进行解决。
2. 引导学生思考整式的乘除法在实际生活中的应用,例如代数表达式的计算、几何图形的面积计算等。
五、总结和作业布置(5分钟)1. 对本节课的内容进行总结,强调整式的乘除法的概念和运算规则。
2. 布置一些练习题,让学生巩固所学的内容。
教学反思:本节课通过讲解和练习,让学生掌握了整式的乘除法概念和运算方法。
在教学过程中,要注意引导学生理解和掌握运算规则,并通过练习及时给予指导和反馈。
第一讲整式的乘除(教案)
在今天的教学中,我发现学生们对整式的乘除运算表现出较大的兴趣,但同时也存一些问题。在导入新课环节,通过日常生活中的实例引入整式的乘除概念,学生们能够很快地进入学习状态,这让我觉得这个切入点是成功的。
然而,在理论介绍和案例分析环节,我发现部分学生对分配律和乘法公式的理解还不够透彻,导致在实际运算中容易出现错误。在今后的教学中,我需要更加注重对这部分内容的讲解和巩固,可以通过更多的例题和练习来加强学生对这些概念的理解。
突破方法:通过具体例题演示分配律的应用,让学生反复练习,加深理解。
(2)乘法公式的记忆与运用:学生对乘法公式的记忆容易混淆,导致在计算过程中公式应用错误。
突破方法:通过对比、归纳总结,帮助学生记忆乘法公式,并通过大量练习巩固应用。
(3)整式除法的步骤:整式除法的步骤相对复杂,学生容易在运算过程中出现错误。
在总结回顾环节,学生对整式的乘除运算有了更为全面的掌握,但仍有个别学生存在疑问。在课后,我会鼓励这部分学生主动提问,及时解答他们的疑惑,帮助他们更好地消化和吸收所学知识。
1.强化学生对基本概念和公式的理解和记忆。
2.通过丰富多样的教学手段,提高学生的学习兴趣和参与度。
3.加强对学生的个别辅导,关注他们的学习需求。
第一讲整式的乘除(教案)
一、教学内容
本讲主要围绕初中数学教材中“整式的乘除”这一章节展开。内容包括:
1.单项式乘单项式:介绍相同字母相乘、不同字母相乘的运算规则,以及如何简化乘积。
2.单项式乘多项式:通过分配律展开乘法运算,解决实际应用问题。
3.多项式乘多项式:运用分配律和结合律进行乘法运算,掌握乘积的简化方法。
在新课讲授过程中,我尽量将重点和难点内容进行详细讲解,但发现学生在实践活动和小组讨论中,还是会对一些细节问题产生疑惑。这说明我在教学中可能没有充分考虑到学生的接受程度,或者讲解方式不够通俗易懂。为此,我将在接下来的课程中尝试用更简洁明了的语言进行讲解,并加强对学生的个别辅导。
第一章 整式的乘除 单元整理分析教案
单项式除法运算. 含有的字母三部分
运算.
活动二:完成例题学
习巩固知识点.
1.7.2 多项式除 1.理解和掌握多项式除 1.会进行多项式除 活动一:通过复习上
以单项式
以单项式的运算法则. 以单项式的运算. 节课所学的单项式
2.会进行简单的多项式 2.准确运用法则将 除以单项式的运算,
除以单项式的运算.
知识体系的整体认知,进行了幂的运算和简单的整式乘除运算的练习,但容易混淆的乘
法公式、稍复杂的综合题目还未进行复习与练习.
单元目标 (一)教学目标
1.体会和掌握类比的思想方法,如通过数的运算,类比归纳得出整式的运算性质. 2.体会和掌握转化的思想方法,如将多项式除以单项式转化为单项式除以单项式 进行计算. 3.体会和掌握数形结合的思想方法。在学习本章内容时,要注意代数与几何之间的
联系,如在整式乘法和乘法公式部分,借助几何图形对运算法则及公式作了直观解释, 体现了数形结合的思想方法.
(二)教学重点、难点
教学重点:幂的运算,整式的乘除运算,乖法公式.
教学难点:幂的运算法则及平方差公式和完全平方公式的灵活运用.
单元知识 结构框架 及课时安
(一)单元知识结构框架
1.教材特点分析:
指数幂的意义,并能进 算法则拓广到整数 生自己去体会法则、
行负整数指数幂的运 指数幂的范围. 掌握法则、印象更为
算;
2.理解零指数幂和 深刻.
3.会用同底数幂的除法 负整数指数幂的意 活动二:完成例题学
法则进行计算.
义.
习巩固知识点.
1.3.2 用科学记 ⒈ 会用科 学记 数法表 1.会用科学记数法 活动一:回忆乘方的
单项式与多项式相乘
1
整式的乘除与因式分解全单元的教案范文
整式的乘除与因式分解全单元的教案范文第一章:整式的乘法1.1 教学目标理解整式乘法的基本概念掌握整式乘法的基本法则能够正确进行整式乘法运算1.2 教学内容整式乘法的定义和基本概念整式乘法的基本法则整式乘法的运算步骤1.3 教学方法通过示例和练习,让学生理解整式乘法的概念和法则使用多媒体教学工具,展示整式乘法的运算过程提供充足的练习机会,让学生巩固整式乘法的运算技巧1.4 教学评估通过课堂练习和作业,检查学生对整式乘法的理解和掌握程度设计一些综合性的题目,评估学生对整式乘法的应用能力第二章:整式的除法2.1 教学目标理解整式除法的基本概念掌握整式除法的基本法则能够正确进行整式除法运算2.2 教学内容整式除法的定义和基本概念整式除法的基本法则整式除法的运算步骤2.3 教学方法通过示例和练习,让学生理解整式除法的概念和法则使用多媒体教学工具,展示整式除法的运算过程提供充足的练习机会,让学生巩固整式除法的运算技巧2.4 教学评估通过课堂练习和作业,检查学生对整式除法的理解和掌握程度设计一些综合性的题目,评估学生对整式除法的应用能力第三章:因式分解3.1 教学目标理解因式分解的基本概念掌握因式分解的基本方法能够正确进行因式分解运算3.2 教学内容因式分解的定义和基本概念因式分解的基本方法因式分解的运算步骤3.3 教学方法通过示例和练习,让学生理解因式分解的概念和法则使用多媒体教学工具,展示因式分解的运算过程提供充足的练习机会,让学生巩固因式分解的运算技巧3.4 教学评估通过课堂练习和作业,检查学生对因式分解的理解和掌握程度设计一些综合性的题目,评估学生对因式分解的应用能力第四章:多项式的乘法4.1 教学目标理解多项式乘法的基本概念掌握多项式乘法的基本法则能够正确进行多项式乘法运算4.2 教学内容多项式乘法的定义和基本概念多项式乘法的基本法则多项式乘法的运算步骤4.3 教学方法通过示例和练习,让学生理解多项式乘法的概念和法则使用多媒体教学工具,展示多项式乘法的运算过程提供充足的练习机会,让学生巩固多项式乘法的运算技巧4.4 教学评估通过课堂练习和作业,检查学生对多项式乘法的理解和掌握程度设计一些综合性的题目,评估学生对多项式乘法的应用能力第五章:多项式的除法5.1 教学目标理解多项式除法的基本概念掌握多项式除法的基本法则能够正确进行多项式除法运算5.2 教学内容多项式除法的定义和基本概念多项式除法的基本法则多项式除法的运算步骤5.3 教学方法通过示例和练习,让学生理解多项式除法的概念和法则使用多媒体教学工具,展示多项式除法的运算过程提供充足的练习机会,让学生巩固多项式除法的运算技巧5.4 教学评估通过课堂练习和作业,检查学生对多项式除法的理解和掌握程度设计一些综合性的题目,评估学生对多项式除法的应用能力第六章:平方差公式与完全平方公式6.1 教学目标理解平方差公式和完全平方公式的基本概念掌握平方差公式和完全平方公式的运用能够运用平方差公式和完全平方公式进行整式的运算6.2 教学内容平方差公式的定义和基本概念完全平方公式的定义和基本概念平方差公式和完全平方公式的运用6.3 教学方法通过示例和练习,让学生理解平方差公式和完全平方公式的概念使用多媒体教学工具,展示平方差公式和完全平方公式的运用过程提供充足的练习机会,让学生巩固平方差公式和完全平方公式的运用技巧6.4 教学评估通过课堂练习和作业,检查学生对平方差公式和完全平方公式的理解和掌握程度设计一些综合性的题目,评估学生对平方差公式和完全平方公式的应用能力第七章:分式的乘除法7.1 教学目标理解分式乘除法的基本概念掌握分式乘除法的运算方法能够正确进行分式乘除法的运算7.2 教学内容分式乘除法的定义和基本概念分式乘除法的运算方法分式乘除法的运算步骤7.3 教学方法通过示例和练习,让学生理解分式乘除法的概念和方法使用多媒体教学工具,展示分式乘除法的运算过程提供充足的练习机会,让学生巩固分式乘除法的运算技巧7.4 教学评估通过课堂练习和作业,检查学生对分式乘除法的理解和掌握程度设计一些综合性的题目,评估学生对分式乘除法的应用能力第八章:分式的化简与分解8.1 教学目标理解分式化简与分解的基本概念掌握分式化简与分解的方法能够正确进行分式的化简与分解运算8.2 教学内容分式化简与分解的定义和基本概念分式化简与分解的方法分式化简与分解的运算步骤8.3 教学方法通过示例和练习,让学生理解分式化简与分解的概念和方法使用多媒体教学工具,展示分式化简与分解的运算过程提供充足的练习机会,让学生巩固分式化简与分解的运算技巧8.4 教学评估通过课堂练习和作业,检查学生对分式化简与分解的理解和掌握程度设计一些综合性的题目,评估学生对分式化简与分解的应用能力第九章:整式与分式的综合应用9.1 教学目标理解整式与分式的综合应用的基本概念掌握整式与分式的综合应用的方法能够正确进行整式与分式的综合应用运算9.2 教学内容整式与分式的综合应用的定义和基本概念整式与分式的综合应用的方法整式与分式的综合应用的运算步骤9.3 教学方法通过示例和练习,让学生理解整式与分式的综合应用的概念和方法使用多媒体教学工具,展示整式与分式的综合应用的运算过程提供充足的练习机会,让学生巩固整式与分式的综合应用的运算技巧9.4 教学评估通过课堂练习和作业,检查学生对整式与分式的综合应用的理解和掌握程度设计一些综合性的题目,评估学生对整式与分式的综合应用的应用能力第十章:复习与提高10.1 教学目标巩固本单元所学知识提高学生解决实际问题的能力培养学生的数学思维和综合运用能力10.2 教学内容复习整式、分式的乘除法、因式分解、平方差公式、完全平方公式等基本概念和运算方法通过实际问题,引导学生运用所学知识解决实际问题总结本单元的重点知识和难点知识10.3 教学方法通过练习题和实际问题,让学生巩固所学知识使用多媒体教学工具,展示实际问题的解决过程组织小组讨论,培养学生的合作学习和解决问题的能力10.4 教学评估通过课堂练习和作业,检查学生对复习内容的掌握程度设计一些综合性的题目重点解析本文全面介绍了整式的乘除法、因式分解、平方差公式、完全平方公式、分式的乘除法、分式的化简与分解、整式与分式的综合应用等基本概念、运算方法和实际应用。
北师大版七年级数学下册教学设计(含解析):第一章整式的乘除7整式的除法
北师大版七年级数学下册教学设计(含解析):第一章整式的乘除7整式的除法一. 教材分析北师大版七年级数学下册第一章整式的乘除7整式的除法,主要介绍了整式除法的基本概念和运算法则。
本节内容是在学习了整式的乘法的基础上进行的,是对整式乘法的进一步拓展和延伸。
通过本节内容的学习,学生能够掌握整式除法的基本运算方法,并能够运用整式除法解决一些实际问题。
二. 学情分析学生在学习本节内容之前,已经学习了整式的乘法,对于整式的运算已经有了一定的基础。
但是,学生对于整式除法的理解和运用还不够熟练,需要通过本节课的学习来进一步巩固和提高。
同时,学生对于算式运算的规律和技巧还需要进一步的引导和培养。
三. 教学目标1.理解整式除法的概念,掌握整式除法的运算方法。
2.能够运用整式除法解决一些实际问题。
3.培养学生的运算能力和逻辑思维能力。
四. 教学重难点1.整式除法的概念和运算方法。
2.运用整式除法解决实际问题。
五. 教学方法采用讲授法、示范法、练习法、问题驱动法等教学方法,通过教师的引导和学生的积极参与,使学生能够理解和掌握整式除法的概念和运算方法,并能够运用整式除法解决一些实际问题。
六. 教学准备1.PPT课件。
2.教学素材和练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出整式除法的概念,激发学生的学习兴趣。
示例:已知一个数的平方加上这个数等于18,求这个数。
2.呈现(10分钟)教师通过PPT课件,呈现整式除法的定义和运算方法,引导学生理解和掌握。
示例:单项式除以单项式,多项式除以单项式,单项式除以多项式。
3.操练(10分钟)学生分组进行练习,教师巡回指导,及时纠正错误,帮助学生巩固所学内容。
(1)计算:(a+b)÷a=?(2)计算:6x²÷3x=?(3)计算:12x³y²÷4x²y=?4.巩固(10分钟)学生独立完成练习题,教师选取部分学生的作业进行讲解和分析,帮助学生进一步巩固所学内容。
七年级数学下册第一章整式的乘除1.4整式的乘法2教学设计新版北师大版
七年级数学下册第一章整式的乘除1.4整式的乘法2教学设计新版北师大版一. 教材分析本节课的教学内容是北师大版七年级数学下册第一章整式的乘除1.4整式的乘法2。
这部分内容是在学习了整式的加减、乘法法则等知识的基础上进行进一步学习的。
教材通过实例和练习,使学生掌握整式乘法的基本方法和技巧,培养学生解决实际问题的能力。
二. 学情分析面对刚从小学升入初中的学生,他们对整式的概念和运算可能还不是很熟悉。
因此,在教学过程中,我需要从学生的实际出发,注重基础知识的教学,通过生动的例子和实际问题,激发学生的学习兴趣,引导学生主动探索,提高他们的数学素养。
三. 教学目标1.理解整式乘法的基本概念和方法。
2.能够运用整式乘法解决实际问题。
3.培养学生的数学思维能力和团队协作能力。
四. 教学重难点1.整式乘法的基本概念和方法。
2.运用整式乘法解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。
通过生动有趣的例子和实际问题,激发学生的学习兴趣,引导学生主动探索,培养学生的数学思维能力和团队协作能力。
六. 教学准备1.准备相关的教学案例和实际问题。
2.准备多媒体教学资源,如PPT等。
3.准备练习题和作业。
七. 教学过程1.导入(5分钟)通过一个实际问题,如“一块长方形的地,长是10米,宽是5米,求这块地的面积。
”引导学生思考如何解决这个问题。
2.呈现(10分钟)呈现整式乘法的定义和方法,通过PPT等教学资源,讲解整式乘法的概念和运算规则。
同时,给出一些例子,让学生跟随老师一起完成运算。
3.操练(10分钟)让学生分成小组,共同完成一些整式乘法的练习题。
教师在这个过程中,要引导学生运用所学的知识,解答问题。
4.巩固(10分钟)通过一些实际问题,让学生运用整式乘法进行解答。
教师在这个过程中,要引导学生将所学的知识运用到实际问题中,巩固所学的内容。
5.拓展(10分钟)让学生思考:整式乘法有哪些方法和技巧?如何提高整式乘法的运算速度?教师在这个过程中,引导学生进行思考和讨论,培养学生的数学思维能力。
北师大版七年级数学下册教学设计(含解析):第一章整式的乘除4整式的乘法
北师大版七年级数学下册教学设计(含解析):第一章整式的乘除4整式的乘法一. 教材分析北师大版七年级数学下册第一章整式的乘除4整式的乘法,主要让学生掌握整式乘法的基本方法和技巧。
本节内容是在学生已经掌握了整式的加减、乘法的基本概念和运算规则的基础上进行学习的,通过本节的学习,让学生能够熟练运用整式乘法解决实际问题。
二. 学情分析学生在学习本节内容时,已经有了一定的数学基础,对于整式的加减、乘法的基本概念和运算规则有一定的了解。
但是,对于整式乘法的具体方法和技巧还不够熟练,需要通过本节课的学习来进一步掌握。
三. 教学目标1.让学生掌握整式乘法的基本方法和技巧。
2.培养学生运用整式乘法解决实际问题的能力。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.教学重点:整式乘法的基本方法和技巧。
2.教学难点:如何灵活运用整式乘法解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究整式乘法的方法和技巧。
2.使用案例教学法,让学生通过实际案例来理解和掌握整式乘法。
3.采用小组合作学习法,培养学生的团队协作能力和逻辑思维能力。
六. 教学准备1.准备相关的教学案例和实际问题,用于引导学生进行探究和练习。
2.准备多媒体教学设备,用于展示和讲解整式乘法的具体方法。
七. 教学过程1.导入(5分钟)通过提出一些实际问题,引导学生思考如何利用整式乘法来解决问题。
例如,计算(x+2)(x+3)的结果。
2.呈现(10分钟)利用多媒体教学设备,呈现整式乘法的基本方法和技巧,让学生了解和掌握整式乘法的具体操作步骤。
3.操练(10分钟)让学生通过实际案例来练习整式乘法,例如,计算(x-1)(x+4)和(x+1)(x-2)的结果。
4.巩固(5分钟)通过一些练习题来巩固学生对整式乘法的掌握程度,例如,计算(a+b)(a-b)和(a+b)(b-a)的结果。
5.拓展(5分钟)引导学生思考如何将整式乘法应用到实际问题中,例如,计算一块矩形的面积,其中长和宽分别是(x+2)和(x+3)。
整式的乘除主题单元设计__数学-陈东-专题三
整式的乘除主题单元教学设计
后,就要对所学的内容进行反思及实践,加深对分解因式的掌握及理解,就是专题三的内容了。
本单元的学习方式主要采用小组合作、探究的学习方式,通过本单元的学习,掌握理解分解因式的概念方法的基础上,进一步发展学生观察、归纳、类比、概括等能力,发展有条理思考及语言表达能力。
主题单元规划思维导图
主题单元学习目标
知识与技能:
1、使学生掌握正整数幂的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算。
2、使学生掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算。
3、使学生学会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算。
4、使学生理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解。
过程与方法:
1、经历用字母表示数量关系以及探索整式运算法则的过程,理解字母表示数的意义以及整式运算的算理。
2、经历探索整式运算法则的过程,发展学生观察、归纳、类比、概括能力。
3、经历探索整式运算法则的过程,发展学生有条理的思考及语言表达能力和符号感。
4、经历探究多项式的因式分解过程,培养学生的逆向思维能力。
情感态度与价值观:
1、从生活中取材,让学生从中体会数学的应用价值。
北师大版七年级下册《整式的乘除》主题单元设计
北师大版七年级下册《整式的乘除》主题单元设计《北师大版七年级下册《整式的乘除》主题单元设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、主题单元学习概述在七年级上册我们已经学习了整式的加、减运算,在这个过程中初步体会了代数式运算在解决“具有一般性”的问题中的作用。
这一章学习整式的乘、除运算,将进一步体会整式运算的意义。
本章教材分为三个部分。
第一部分(3个小节)是幂的运算性质:同底数幂的乘法、幂的乘方与积的乘方、同底数幂的除法。
第二部分(3个小节)是整式的乘法:整式的乘法(单项式乘以单项式、单项式乘以多项式、多项式乘以多项式)、平方差公式、完全平方公式。
第三部分是整式的除法(1个小节).第一部分是学习本章知识的基础,也是学习第二、第三部分的关键,是学习本章其他主要内容的“桥梁”。
这几个部分一环扣一环,层层递进。
二、主题单元学习目标知识与技能:1、了解整数指数幂的意义,并会进行同底数幂的乘法、幂的乘方与积的乘方、同底数幂的除法运算。
2、了解并记住零指数幂、负整指数幂的意义。
3、理解整式乘法法则(包括乘法公式),能熟练地进行整式的乘法运算。
4、以整式乘法法则为基础理解整式除法法则,并会进行整式除法运算。
5、进一步用科学记数法表示小于1的正数。
过程与方法:1、类比数的运算,通过观察和体会、运用幂的意义,最终得到以字母为底数的幂的运算法则。
2、借用几何图形来理解整式乘法公式,发展几何直观。
3、运用整式乘法的逆运算引入整式的除法法则。
情感态度与价值观:1、在教学法则的过程中,通过创设情景问题、穿插应用问题等,让学生从不同角度体会引入这些运算的意义。
2、进一步强调代数式运算在解决“具有一般性”的问题中的作用,进一步发展符号意识。
3、进一步学习用类比、归纳、转化等方法进行思考和运算,发展运算能力。
三、对应课标1、借助现实情境了解代数式,进一步理解用字母表示数的意义。
2、能分析具体问题中的简单数量关系,并用代数式表示。
《整式的乘除》单元教学设计
《整式的乘除》单元教学设计《《整式的乘除》单元教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!作业内容整式的乘除单元整体教学设计一、课程标准分析1、了解整数指数幂的意义和基本性质;会用科学记数法表示数(包括在计算器上表示);2、能进行简单的整式乘法运算(其中多项式相乘仅指一次式之间以及一次式与二次式相乘)和除法运算(仅限单项式除以单项式,多项式除以单项式且商为整式);3、能推导乘法公式:(a+b)(a-b)=a²-b²,(a±b)²=a²±2ab+b²,了解每个公式几何背景,并能利用公式进行简单的计算。
二、教材分析本章教材首先安排了同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,在此过程中使学生进一步体会幂的意义;然后通过具体问题引入整式的乘法,使学生通过对乘法分配律等的运用探索了整式乘法的运算法则以及两个重要的公式(平方差公式和完全平方公式);最后是整式的除法,本章只要求单项式除以单项式,多项式除以多项式并且结果是整式,这样的安排符合学生的认知基础,也符合相关知识之间的内在联系,同时注重了符号的表示作用。
本章的呈现方式是:整式及整式运算产生的世界背景——使学生经历实际问题“符号化”的过程,发展学生的符号感;有关运算法则的探索过程——为探索有关运算法则设置了归纳、类比等活动,对算理的理解和基本运算技能的掌握——设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。
三、学习目标1、经历用字母表示数量关系的过程,在现实情境中进一步理解字母表示数的意义,发展学生的符号感。
2、经历探索整式运算法则的过程,理解整式运算的算理,进一步发展观察、归纳、类比、概括等能力,发展学生有条理的思考及语言表达能力。
3、了解整数指数幂的意义和正整数指数幂的运算性质;了解整式产生的背景和整式的概念,会进行简单的整式加、减、乘、除运算。
七年级数学下册第一章整式的乘除1.4整式的乘法1教学设计新版北师大版
七年级数学下册第一章整式的乘除1.4整式的乘法1教学设计新版北师大版一. 教材分析本节课的教学内容是北师大版七年级数学下册第一章整式的乘除1.4整式的乘法1。
这部分内容是学生在学习了整式的加减、乘法运算法则等知识的基础上进行的,是进一步深化学生对整式运算的理解,培养学生运用整式运算解决实际问题的能力。
本节课的主要内容包括单项式乘单项式、单项式乘多项式以及多项式乘多项式。
二. 学情分析学生在进入七年级之前,已经掌握了整数的四则运算和代数式的知识,对整式的加减运算有一定的了解。
但是,对于整式的乘法运算,尤其是多项式乘多项式的运算,可能会感到较为抽象和困难。
因此,在教学过程中,需要引导学生通过实际操作和举例,逐步理解和掌握整式的乘法运算规律。
三. 教学目标1.知识与技能:使学生掌握整式的乘法运算,包括单项式乘单项式、单项式乘多项式以及多项式乘多项式。
2.过程与方法:通过小组合作、探究学习,培养学生的团队协作能力和问题解决能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力和创新精神。
四. 教学重难点1.重点:掌握整式的乘法运算规律。
2.难点:理解多项式乘多项式的运算方法,并能灵活运用。
五. 教学方法采用“引导探究式”教学法,通过设置问题情境,引导学生主动探究,合作交流,从而解决问题,达到学习目标。
同时,运用“案例分析法”和“实践操作法”,让学生在实际操作中感受和理解整式乘法运算的规律。
六. 教学准备1.教学PPT:制作包含教学内容的PPT,以便在课堂上进行展示和讲解。
2.教学素材:准备一些实际的例子和练习题,用于引导学生进行探究和练习。
3.学生活动材料:为学生提供一些纸张和笔,以便他们在课堂上进行实际操作和记录。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何进行整式的乘法运算。
例如,给出一个长方形的面积公式,让学生思考如何通过整式乘法运算求解长方形的面积。
2.呈现(10分钟)利用PPT展示整式的乘法运算规律,包括单项式乘单项式、单项式乘多项式以及多项式乘多项式。
整式的乘除主题单元教学设计[优秀范文5篇]
整式的乘除主题单元教学设计[优秀范文5篇]第一篇:整式的乘除主题单元教学设计整式的乘除主题单元教学设计模板(填写说明:文档内所有斜体字均为提示信息,在填写后请删除提示信息)主题单元标题作者姓名整式的乘除学科领域(在学科名称后打√ 表示主属学科,打+ 表示相关学科)思想品德语文数学体育音乐美术外语物理化学生物历史地理信息技术科学社区服务社会实践劳动与技术其他(请列出):适用年级所需时间初中数学一年级(说明:课内共用几课时,每周几课时;课外共用几课时)课内共用6课时,每周5课时;课外共用2课时主题单元学习概述(说明:简述主题单元在课程中的地位和作用、单元的组成情况,单元的学习重点和难点、解释专题的划分和专题之间的关系,单元的主要的学习方式和预期的学习成果,字数300-500) 本单元主要研究的是整式运算及其应用,它是初中数学的重要内容之一,是以后学习分式和根式运算、方程以及函数等知识的基础.由数到式的学习过程,也是学生改进认识方式,数学思想发生飞跃的变化过程。
研究方法主要是充分利用问题情境,争取学生主动参与,通过丰富有趣的活动让学生经历符号化的过程。
从中观层面上看,本单元既是中学数学中数与式的重要组成部分,又是联系现实世界及其他学科的重要工具。
本单元分为四个专题:专题一整式的乘法主要内容:1.掌握同底数幂的乘法及乘方法则;2.会利用法则进行单项式的乘法运算;3.会利用乘法分配律进行单项式与多项式的乘法运算;专题二乘法公式主要内容:1.在专题三的基础上,会进行多项式与多项式的乘法运算;2.了解平方差公式的几何背景,能够利用平方差公式进行有关计算;3.利用多项式乘法法则推导完全平方公式,了解公式的几何背景,运用公式进行计算;专题三整式的除法。
主要内容:1.掌握同底数幂的除法法则,理解负整数指数幂的意义;2.会利用法则进行单项式的除法运算;3.会进行多项式除以单项式的运算专题四整式的乘除综合运用主要内容:熟练运用幂的运算法则、整式乘除法进行运算;综合运用这些知识解决稍复杂的问题.本单元预期的学习成果:1.熟练掌握幂的运算法则;2.能够熟练的进行整式乘除法的运算;3.能熟练运用乘法公式及其变形解决相关问题;主要的学习方式:自主探究小组合作观察课件演示实践操作主题单元规划思维导图(说明:将主题单元规划的思维导图导出为jpeg文件后,粘贴在这里;如果提交到平台,则需要使用图片导入的功能,具体操作见《2013学员教师远程研修手册》。
整式的乘除整章教案
第13章整式的乘除整章教案§13.1幂的运算1. 同底数幂的乘法2. 幂的乘方3. 积的乘方4. 同底数幂的除法§13.2整式的乘法1. 单项式与单项式相乘2. 单项式与多项式相乘3. 多项式与多项式相乘§13.3乘法公式1. 两数和乘以这两数的差2. 两数和的平方阅读材料贾宪三角§13.4整式的除法1. 单项式除以单项式2. 多项式除以单项式§13.5因式分解阅读材料你会读吗小结复习题课题学习面积与代数恒等式第13章整式的乘除某地区在退耕还林期间,将一块长m米、宽a米的长方形林区的长、宽分别增加n米和b米.用两种方法表示这块林区现在的面积,可得到:(m+n)(a+b)=ma+mb+na+nb你知道上面的等式蕴含着什么样的运算法则吗?·§13.1 幂的运算1. 同底数幂的乘法试一试(1)23×24=(2×2×2)×(2×2×2×2)=2();(2)53×54=5();(3)a3·a4=a().概括a m·a n=(a·a·…·a)(a·a·…·a)=a·a·…·a=a n m+.可得a m·a n=a n m+(m、n为正整数).这就是说,同底数幂相乘,底数不变,指数相加.例1计算:(1)103×104;(2)a·a3;(3)a·a3·a5.解(1)103×104=1043+=107.(2)a·a3=a31+=a4.(3)a·a3·a5=a4·a5=a9.练习1. 判断下列计算是否正确,并简要说明理由.(1)a·a2=a2;(2)a+a2=a3;(3)a3·a3=a9;(4)a3+a3=a6.2. 计算:(1)102×105;(2)a3·a7;(3)x·x5·x7.2. 幂的乘方试一试根据乘方的意义及同底数幂的乘法填空:(1)(23)2=23×23=2();(2)(32)3=32×32×32=3();(3)(a3)4=a3·a3·a3·a3=a().概括(a m)n=a m·a m·…·a m(n个)=a m++...(n个)m+m=a mn可得(a m)n=a mn(m、n为正整数).这就是说,幂的乘方,底数不变,指数相乘.例2计算:(1)(103)5;(2)(b3)4.解(1)(103)5=105*3=1015.(2)(b3)4=b4*3=b12.练习1. 判断下列计算是否正确,并简要说明理由.(1)(a3)5=a8;(2)a5·a5=a15;(3)(a2)3·a4=a9.2. 计算:(1)(22)2;(2)(y2)5;(3)(x4)3;(4)(y3)2·(y2)3.3. 积的乘方试一试(1)(ab)2=(ab)·(ab)=(aa)·(bb)=a()b();(2)(ab)3===a()b();(3)(ab)4===a()b().概括(ab)n=(ab)·(ab)·…·(ab)(n个)=(a·a·…·a)·(b·b·…·b)=a n b n.可得(ab)n=a n b n(n为正整数).这就是说,积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.例3计算:(1)(2b)3;(2)(2×a3)2;(3)(-a)3;(4)(-3x)4.解(1)(2b)3=23b3=8b3.(2)(2×a3)2=22×(a3)2=4×a6.(3)(-a)3=(-1)3·a3=-a3.(4)(-3x)4=(-3)4·x4=81x4.练习1. 判断下列计算是否正确,并说明理由.(1)(xy3)2=xy6;(2)(-2x)3=-2x3.2. 计算:(1)(3a)2;(2)(-3a)3;(3)(ab2)2;(4)(-2×103)3.4. 同底数幂的除法我们已经知道同底数幂的乘法法则:a m·a n=a n m+,那么同底数幂怎么相除呢?试一试用你熟悉的方法计算:(1)25÷22=;(2)107÷103=;(3)a7÷a3=(a≠0).概括由上面的计算,我们发现:25÷22=23=225-;107÷103=104=1037-;a7÷a3=a4=a37-.一般地,设m、n为正整数,m>n,a≠0,有a m÷a n=a n m-.这就是说,同底数幂相除,底数不变,指数相减.我们可以利用除法的意义来说明这个法则的道理:因为除法是乘法的逆运算,a m÷a n实际上是要求一个式子(),使a n·()=a m.而由同底数幂的乘法法则,可知a n·a n m-=a)+=a m,(nn-m所以要求的式子(),就是a n m-,从而有a m÷a n=a n m-.例4计算:(1)a8÷a3;(2)(-a)10÷(-a)3;(3)(2a)7÷(2a)4.解(1)a8÷a3=a38-=a5.(2)(-a)10÷(-a)3=(-a)310-=(-a)7=-a7.(3)(2a)7÷(2a)4=(2a)47-=(2a)3=8a3.思考你会计算(a+b)4÷(a+b)2吗?练习1. 填空:(1)a5·()=a9;(2)()·(-b)2=(-b)7;(3)x6÷()=x;(4)()÷(-y)3=(-y)7.2. 计算:(1)a10÷a2;(2)(-x)9÷(-x)3;(3)m8÷m2·m3;(4)(a3)2÷a6.习题13.11. 计算(以幂的形式表示):(1)93×95;(2)a7·a8;(3)35×27;(4)x2·x3·x4.2. 计算(以幂的形式表示):(1)(103)3;(2)(a3)7;(3)(x2)4;(4)(a2)3·a5.3. 判断下列等式是否正确,并说明理由.(1)a2·a2=(2a)2;(2)a2·b2=(ab)4;(3)a12=(a2)6=(a3)4=(a5)7.4. 计算(以幂的形式表示):(1)(3×105)2;(2)(2x)2;(3)(-2x)3;(4)a2·(ab)3;(5)(ab)3·(ac)4.5. 计算:(1)x12÷x4;(2)(-a)6÷(-a)4;(3)(p3)2÷p5;(4)a10÷(-a2)3.6. 判断下列计算是否正确,错误的给予纠正.(1)(a2b)2=a2b2;(2)a5÷b2=a3b;(3)(3xy2)2=6x2y4;(4)(-m)7÷(-m)2=m5.7. 计算:(1)(a3)3÷(a4)2;(2)(x2y)5÷(x2y)3;(3)x2·(x2)3÷x5;(4)(y3)3÷y3÷(-y2)2.8. 用多少张边长为a的正方形硬纸卡片,能拼出一个新的正方形?试写出三个答案,并用不同的方法表示新正方形的面积.从不同的表示方法中,你能发现什么?§13.2 整式的乘法1. 单项式与单项式相乘计算:2x3·5x2.例1计算:(1)3x2y·(-2xy3);(2)(-5a2b3)·(-4b2c).解(1)3x2y·(-2xy3)=[3·(-2)]·(x2·x)·(y·y3)(2)(-5a2b3)·(-4b2c)=[(-5)·(-4)]·a2·(b3·b2)·c =20a2b5c.概括单项式与单项式相乘,只要将它们的系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式.例2卫星绕地球表面做圆周运动的速度(即第一宇宙速度)约为7.9×103米/秒,则卫星运行3×102秒所走的路程约是多少?解7.9×103×3×102=23.7×105=2.37×106(米).答:卫星运行3×102秒所走的路程约是2.37×106米.讨论你能说出a·b,3a·2a,以及3a·5ab的几何意义吗?练习1. 计算:(1)3a2·2a3;(2)(-9a2b3)·8ab2;(3)(-3a2)3·(-2a3)2;(4)-3xy2z·(x2y)2.2. 光速约为3×108米/秒,太阳光射到地球上的时间约为5×102秒,则地球与太阳的距离约是多少米?3. 小明的步长为a厘米,他量得一间屋子长15步,宽14步,这间屋子的面积有多少平方厘米?2. 单项式与多项式相乘试一试计算:2a2·(3a2-5b).例3计算:(-2a2)·(3ab2-5ab3).解(-2a2)·(3ab2-5ab3)=(-2a2)·3ab2+(-2a2)·(-5ab3)=-6a3b2+10a3b3.概括单项式与多项式相乘,只要将单项式分别乘以多项式的每一项,再将所得的积相加.练习1. 计算:(1)3x3y·(2xy2-3xy);(2)2x·(3x2-xy+y2).2. 化简:x(x2-1)+2x2(x+1)-3x(2x-5).3. 多项式与多项式相乘回忆我们再来看一看本章导图中的问题:图13.2.1某地区在退耕还林期间,将一块长m米、宽a米的长方形林区的长、宽分别增加n米和b米.用两种方法表示这块林区现在的面积.这块林区现在长为(m+n)米,宽为(a+b)米,因而面积为(m+n)(a+b)米2.也可以这样理解:如图13.2.1所示,这块地由四小块组成,它们的面积分别为ma米2、mb米2、na米2、nb米2,故这块地的面积为(ma+mb+na+nb)米2.由于(m+n)(a+b)和(ma+mb+na+nb)表示同一块地的面积,故有(m+n)(a+b)=ma+mb+na+nb.实际上,把(m+n)看成一个整体,有(m+n)(a+b)=(m+n)a+(m+n)b=ma+mb+na+nb.如下式所示,等式的右边可以看作左边用线相连各项乘积的和:(m+n)(a+b)=ma+mb+na+nb概括这个等式实际上给出了多项式乘以多项式的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.例4计算:(1)(x+2)(x-3);(2)(3x-1)(2x+1).解(1)(x+2)(x-3)=x2-3x+2x-6=x2-x-6.(2)(3x-1)(2x+1)=6x2+3x-2x-1=6x2+x-1.例5计算:(1)(x-3y)(x+7y);(2)(2x+5y)(3x-2y).解(1)(x-3y)(x+7y)=x2+7xy-3yx-21y2=x2+4xy-21y2.(3)(2x+5y)(3x-2y)=6x2-4xy+15yx-10y2=6x2+11xy-10y2.练习1. 计算:(1)(x+5)(x-7);(2)(x+5y)(x-7y);(3)(2m+3n)(2m-3n);(4)(2a+3b)(2a+3b).2. 小东找来一张挂历纸包数学课本.已知课本长a厘米,宽b厘米,厚c厘米,小东想将课本封面与封底的每一边都包进去m厘米.问小东应在挂历纸上裁下一块多大面积的长方形?习题13.21. 计算:(1)5x3·8x2;(2)11x12·(-12x11);(3)2x2·(-3x)4;(4)(-8xy2)·-(1/2x)3.2. 世界上最大的金字塔——胡夫金字塔高达146.6米,底边长230.4米,用了约2.3×106块大石块,每块重约2.5×103千克.请问:胡夫金字塔总重约多少千克?3. 计算:(1)-3x·(2x2-x+4);(2)5/2xy·(-x3y2+4/5x2y3).4. 化简:(1)x(1/2x+1)-3x(3/2x-2);(2)x2(x-1)+2x(x2-2x+3).5. 一块边长为xcm的正方形地砖,被裁掉一块2cm宽的长条.问剩下部分的面积是多少?6. 计算:(1)(x+5)(x+6);(2)(3x+4)(3x-4);(3)(2x+1)(2x+3);(4)(9x+4y)(9x-4y).7. 一块长a厘米、宽b厘米的玻璃,长、宽各减少c厘米后恰好能铺盖一张办公桌台面(玻璃与台面一样大小).问台面面积是多少?§13.3 乘法公式1.两数和乘以这两数的差做一做计算:(a+b)(a-b).这两个特殊的多项式相乘,得到的结果特别简洁:(a+b)(a-b)=a2-b2.这就是说,两数和与这两数差的积,等于这两数的平方差.试一试图13.3.1先观察图13.3.1,再用等式表示下图中图形面积的运算:=-.例1计算:(1)(a+3)(a-3);(2)(2a+3b)(2a-3b);(3)(1+2c)(1-2c);(4)(-2x-y)(2x-y).解(1)(a+3)(a-3)=a2-32=a2-9.(2)(2a+3b)(2a-3b)=(2a)2-(3b)2=4a2-9b2.(3)(1+2c)(1-2c)=12-(2c)2=1-4c2.(4)(-2x-y)(2x-y)=(-y-2x)(-y+2x)=(-y)2-(2x)2=y2-4x2.例2计算:1998×2002.解1998×2002=(2000-2)×(2000+2)=20002-22=4000000-4=3999996.例3街心花园有一块边长为a米的正方形草坪,经统一规划后,南北向要加长2米,而东西向要缩短2米.问改造后的长方形草坪的面积是多少?解(a+2)(a-2)=a2-4(平方米).答:改造后的长方形草坪的面积是(a2-4)平方米.练习1. 计算:(1)(2x+1/2)(2x-1/2);(2)(-x+2)(-x-2);(3)(-2x+y)(2x+y);(4)(y-x)(-x-y).2. 计算:(1)498×502;(2)999×1001.3. 用一定长度的篱笆围成一个矩形区域,小明认为围成一个正方形区域时面积最大,而小亮认为不一定.你认为如何?2.两数和的平方做一做计算:(a+b)2.经计算,我们又得到一个漂亮的结果:(a+b)2=a2+2ab+b2.这就是说,两数和的平方,等于它们的平方和加上这两数积的2倍.试一试先观察图13.3.2,再用等式表示下图中图形面积的运算:图13.3.2 =++.例4计算:(1)(2a+3b)2;(2)(2a+b/2)2.解(1)(2a+3b)2=(2a)2+2·2a·3b+(3b)2=4a2+12ab+9b2.(2)(2a+b/2)2=(2a)2+2·2a·b/2+b/22=4a2+2ab+b2/4.(1)(a-b)2;(2)(2x-3y)2.解(1)(a-b)2=[a+(-b)]2=a2+2·a·(-b)+(-b)2=a2-2ab+b2.(2)(2x-3y)2=[2x+(-3y)]2=(2x)2+2·(2x)·(-3y)+(-3y)2=4x2-12xy+9y2.本题也可直接运用小题(1)的结果(两数差的平方公式)来计算:(2x-3y)2=(2x)2-2·(2x)·(3y)+(3y)2=4x2-12xy+9y2.图13.3.3讨论你能从图13.3.3中的面积关系来解释小题(1)的结果吗?练习1. 计算:(1)(x+3)2;(2)(2x+y)2.(1)(x-3)2;(2)(2m-n)2.3. 计算:(1)(-2m+n)2;(2)(-2m-n)2.4. 要给一边长为a米的正方形桌子铺上正方形的桌布,桌布的四周均超出桌面0.1米,问需要多大面积的桌布?习题13.31. 计算:(1)(a+2b)(a-2b);(2)(2a+5b)(2a-5b);(3)(-2a-3b)(-2a+3b);(4)(-1/3a+1/2b)(1/3a+1/2b).2. 计算:(1)(3a+b)2;(2)(2a+1/3b)2;(3)(2a+1)(-2a -1).3. 计算:(1)(2a-4b)2;(2)(1/2a-1/3b)2.4. 填空:(1)a2+6a+=(a+)2;(2)4x2-20x+=(2x-)2;(3)a2+b2=(a-b)2+;(4)(x-y)2+=(x+y)2.5. 有一块边长为a米的正方形空地,现准备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池.你能计算出喷泉水池的面积吗?阅读材料贾宪三角贾宪三角(如图1)最初于11世纪被发现,原图载于我国北宋时期数学家贾宪图1的《黄帝九章算法细草》一书中,原名“开方作法本源图”,用来作开方运算,在数学史上占有领先地位.我国南宋时期数学家杨辉对此有着记载之功,他于1261年写下的《详解九章算法》一书中记载着这一图表.因此,后人把这个图表称作贾宪三角或杨辉三角.在欧洲,贾宪三角则被人们称为“帕斯卡三角”,这是因为法国数学家帕斯卡于1654年发表了此“三角”,并且影响较大.但这比我国已经迟了近600年.其实,数学史上有不少人各自独立地绘制过类似图表,如1427年阿拉伯的数学家阿尔·卡西,1527年德国的阿皮亚纳斯,1544年德国的施蒂费尔,1545年法国的薛贝尔等.贾宪三角在历史上被不同时代的人绘制出来,是有着不同的应用趋向的.贾宪将它应用于开方运算,注重增乘方法并把这种方法推向求高次方根;帕斯卡关心数字三角阵的性质探讨以及把这种性质推广到组合数的性质上;而施蒂费尔则注重二项展开式系数间的关系;还有我国元代数学家朱世杰于13世纪巧妙地利用贾宪三角得出了一系列级数求和的重要公式,并且利用这些公式求出许多更为复杂的级数之和,这在当时世界上也处于领先水平.与我们现在的学习联系最紧密的是二项式乘方展开式的系数规律.如图2,在贾宪三角中,第三行的三个数(1,2,1)恰好对应着两数和的平方公式(a+b)2的展开式a2+2ab+b2的系数.类似地,通过计算可以发现:第四行的四个数(1,3,3,1)恰好对应着两数和的立方(a+b)3的展开式a3+3a2b+3ab2+b3的系数,第五行的五个数(1,4,6,4,1)恰好对应着两数和的四次方(a+b)4的展开式a4+4a3b+6a2b2+4ab3+b4的系数,等等.由此可见,贾宪三角可以看作是对我们现在学习的两数和的平方公式的推广而得到的.(a+b)0…………(a+b)1…………(a+b)2…………(a+b)3…………(a+b)4…………(a+b)5…………(a+b)6…………11121133114641151010511615201561图2同学们,贾宪三角告诉了我们二项式乘方展开式的系数规律,你发现其中的字母及字母指数的排列规律了吗?如果发现了,请你试着写出(a+b)5、(a+b)6与(a+b)77的展开式.§13.4 整式的除法1. 单项式除以单项式计算:12a5c2÷3a2.根据除法的意义,上式就是要求一个单项式,使它与3a2相乘的积等于12a5c2.∵(4a3c2)·3a2=12a5c2,∴12a5c2÷3a2=4a3c2.概括单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式中出现的字母,则连同它的指数一起作为商的一个因式.例1计算:(1)24a3b2÷3ab2;(2)-21a2b3c÷3ab;(3)(6xy2)2÷3xy.解(1)24a3b2÷3ab2=(24÷3)(a3÷a)(b2÷b2)=8a13-·1=8a2.(2)-21a2b3c÷3ab=(-21÷3)a12-b13-c=-7ab2c.(3)(6xy2)2÷3xy=36x2y4÷3xy=12xy3.思考你能用a-b的幂表示下式的结果吗?12(a-b)5÷3(a-b)2.例2地球的质量约为5.98×1024千克,木星的质量约为1.9×1027千克.问木星的质量约是地球的多少倍?(结果保留三个有效数字)分析本题只需做一个除法运算:(1.9×1027)÷(5.98×1024),我们可以先将1.9除以5.98,再将1027除以1024,最后将商相乘.27-≈0.318解(1.9×1027)÷(5.98×1024)=(1.9÷5.98)×1024×103=318.答:木星的质量约是地球的318倍.练习1. 填表:缘故.已知光在空气中的传播速度约为3×108米/秒,而声音在空气中的传播速度约为3.4×102米/秒.请计算一下,光速是声速的多少倍?(结果保留两个有效数字)2. 多项式除以单项式试一试计算:(1)(ax+bx)÷x;(2)(ma+mb+mc)÷m.根据除法的意义,容易探索、计算出结果.以小题(2)为例,(ma+mb+mc)÷m就是要求一个多项式,使它与m的积是ma+mb+mc.∵m(a+b+c)=ma+mb+mc,∴(ma+mb+mc)÷m=a+b+c.概括多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.例3计算:(1)(9x4-15x2+6x)÷3x;(2)(28a3b2c+a2b3-14a2b2)÷(-7a2b).解(1)(9x4-15x2+6x)÷3x=9x4÷3x-15x2÷3x+6x÷3x=3x3-5x+2.(2)(28a3b2c+a2b3-14a2b2)÷(-7a2b)=28a3b2c÷(-7a2b)+a2b3÷(-7a2b)-14a2b2÷(-7a2b)=-4abc-1/7b2+2b.练习1. 计算:(1)(3ab-2a)÷a;(2)(5ax2+15x)÷5x;(3)(12m2n+15mn2)÷6mn;(4)(x3-2x2y)÷(-x2).2. 计算:(1)(4a3b3-6a2b3c-2ab5)÷(-2ab2);(2)x2y3-1/2x3y2+2x2y2÷1/2xy2.习题13.41.计算:(1)-21a2b3÷7a2b;(2)7a5b2c3÷(-3a3b);(3)-1/2a4x4÷-1/6a3x2;(4)(16x3-8x2+4x)÷(-2x).2.计算:(1)(6a3b-9a2c)÷3a2;(2)(4a3-6a2+9a)÷(-2a)(3)(-4m4+20m3n-m2n2)÷(-4m2);(4)x2y-1/2xy2-2xy÷1/2xy.3.计算:(1)(12p3q4+20p3q2r-6p4q3)÷(-2pq)2;(2)[4y(2x-y)-2x(2x-y)]÷(2x-y).4. 一颗人造地球卫星的速度是8×103米/秒,一架喷气式飞机的速度是5×102米/秒,试问:这颗人造地球卫星的速度是这架喷气式飞机的速度的多少倍?5. 聪聪在一次数学课外活动中发现了一个奇特的现象:他随便想一个非零的有理数,把这个数平方,再加上这个数,然后把结果除以这个数,最后减去这个数,所得结果总是1.你能说明其中的道理吗?§13.5 因式分解回忆运用前面所学的知识填空:〖〗你能发现这两组等式之间的联系和区别吗?(1)m(a+b+c)=;(2)(a+b)(a-b)=;(3)(a+b)2=.试一试填空:(1)ma+mb+mc=()();(2)a2-b2=()();(3)a2+2ab+b2=()2.概括我们“回忆”的是已熟悉的整式乘法运算,而“试一试”中的问题,其过程正好与整式的乘法相反,它是把一个多项式化为几个整式的积的形式.把一个多项式化为几个整式的积的形式,叫做多项式的因式分解(factorization).多项式ma+mb+mc中的每一项都含有一个相同的因式m,我们称之为公因式(common factor).把公因式提出来,多项式ma+mb+mc就可以分解成两个因式m和(a+b+c)的乘积了.像这种因式分解的方法,叫做提公因式法.“试一试”中的(2)、(3)小题,实际上是将乘法公式反过来用,对多项式进行因式分解的,这种因式分解的方法称为公式法.做一做把下列多项式分解因式:(1)3a+3b=;(2)5x-5y+5z=;(3)x2-4y2=;(4)m2+6mn+9n2=.例1把下列多项式分解因式:(1)-5a2+25a;(2)3a2-9ab;(3)25x2-16y2;(4)x2+4xy+4y2.解(1)-5a2+25a=-5a(a-5).(2)3a2-9ab=3a(a-3b).(3)25x2-16y2=(5x)2-(4y)2=(5x+4y)(5x-4y).(4)x2+4xy+4y2=x2+2·x·2y+(2y)2=(x+2y)2.例2把下列多项式分解因式:(1)4x3y+4x2y2+xy3;(2)3x3-12xy2.解(1)4x3y+4x2y2+xy3=xy(4x2+4xy+y2)=xy(2x+y)2.(2)3x3-12xy2=3x(x2-4y2)=3x[x2-(2y)2]=3x(x+2y)(x-2y).练习1. 判断下列因式分解是否正确,并简要说明理由.如果不正确,请写出正确答案.(1)4a2-4a+1=4a(a-1)+1;(2)x2-4y2=(x+4y)(x-4y).2. 把下列各式分解因式:(1)a2+a;(2)4ab-2a2b;(3)9m2-n2;(4)2am2-8a;(5)2a2+4ab+2b2.3. 丁丁和冬冬分别用橡皮泥做了一个长方体和圆柱体,放在一起,恰好一样高.丁丁和冬冬想知道哪一个体积较大,但身边又没有尺子,只找到了一根短绳,他们量得长方体底面的长正好是3倍绳长,宽是2倍绳长,圆柱体的底面周长是10倍绳长.你知道哪一个体积较大吗?大多少?(提示:可设绳长为a厘米,长方体和圆柱体的高均为h厘米)习题13.51. 把下列多项式分解因式:(1)3x+3y;(2)-24m2x-16n2x;(3)x2-1;(4)(xy)2-1;(5)a4x2-a4y2;(6)3x2+6xy+3y2;(7)(x-y)2+4xy;(8)4a2-3b(4a-3b).2. 先将下列代数式分解因式,再求值:2x(a-2)-y(2-a),其中a=0.5,x=1.5,y=-2.3. 在一块边长为a=6.6米的正方形空地的四角均留出一块边长为b =1.7米的正方形修建花坛,其余的地方种草坪.问草坪的面积有多大?4. 一块边长为a米的正方形广场,扩建后的正方形边长比原来长2米,问扩建后的广场面积增大了多少?你会读吗阅读材料你会读吗数学中有不少运算符号与记号,如何用英语准确地表达这些符号与记号呢?读一读,看看你能读懂多少?A+B=C……A plus B equals CA-B=C……A minus B equals CA×B=C……A multiplied by B equals C……A times B equals CA÷B=C……A divided by B equals C1/2……one half2/3……two thirdsA2……A squared A3……A cubedA>B……A is greater than BA∶B……the ratio of A to Bl∥m……l is parallel to m小结一、知识结构二、概括1. 本章主要研究整式的乘法与除法运算,其运算法则从根本上说是运用了数的运算律,最终都可以归结为单项式乘以单项式与单项式除以单项式,其中幂的运算是它们的基础.2. 在多项式乘以多项式中,有一些特殊形式的乘法运算结果较为简洁,在计算中可以作为乘法公式直接运用.学习中要注意掌握这些公式的结构特点,以便能准确地运用公式来简化计算.3. 因式分解与因数分解类似,它与整式乘法的过程恰好相反,我们可以运用整式的乘法得到因式分解的方法,也可以运用整式乘法来检验因式分解的正确性.复习题A组1. 计算:(1)a10·a8;(2)(xy)2·(xy)3;(3)[(-x)3]2;(4)[(-x)2]3;(5)(-2mn2)3;(6)(y3)2·(y2)4.2. 计算:(1)(4×104)×(2×103);(2)2a·3a2;(3)(-3xy)·(-4yz);(4)(-2a2)2·(-5a3);(5)(-3x)·(2x2-x-1);(6)(x+2)(x+6);(7)(x-2)(x-6);(8)(2x-1)(3x+2).3. 计算:(1)(x+2)(x-2);(2)(m+n)(m-n);(3)(-m-n)(-m+n);(4)(-m-n)(m+n);(5)(-m+n)(m-n);(6)2/3x+3/4y2.4. 计算:(1)20012-2002×2000;(2)(2x+5)2-(2x-5)2;(3)-12xy·3x2y-x2y·(-3xy);(4)2x·1/2x-1-3x1/3x+2/3;(5)(-2x2)·(-y)+3xy·1-1/3x;(6)(-6x2)2+(-3x)3·x.5. 计算:(1)a·a4÷a3;(2)(-x)6÷(-x)2·(-x)3;(3)27x8÷3x4;(4)-12m3n3÷4m2n3;(5)(6x2y3z2)2÷4x3y4;(6)(-6a2b5c)÷(-2ab2)2.6. 计算:(1)(6a4-4a3-2a2)÷(-2a2);(2)(4x3y+6x2y2-xy3)÷2xy;(3)(x4+2x3-1/2x2)÷(-1/2x)2;(4)(2ab2-b3)2÷2b3.7. 计算:[(x-2y)2+(x-2y)(x+2y)-2x(2x-y)]÷2x.8. 把下列多项式分解因式:(1)x2-25x;(2)2x2y2-4y3z;(3)am-an+ap;(4)x3-25x;(5)1-4x2;(6)25x2+20xy+4y2;(7)x3+4x2+4x.9. 先化简,再求值:(1)3a(2a2-4a+3)-2a2(3a+4),其中a=-2;(2)(a-3b)2+(3a+b)2-(a+5b)2+(a-5b)2,其中a=-8,b=-6.10. 一个正方形的边长增加3cm,它的面积增加了45cm2.求这个正方形原来的边长.若边长减少3cm,它的面积减少了45cm2,这时原来边长是多少呢?11. 1千克镭完全蜕变后,放出的热量相当于3.75×105千克煤放出的热量,据估计地壳里含1×1010千克镭.试问这些镭完全蜕变后放出的热量相当于多少千克煤放出的热量.B组12. 求下列各式的值:(1)(3x4-2x3)÷(-x)-(x-x2)·3x,其中x=-1/2;(2)[(ab+1)(ab-2)-2a2b2+2]÷(-ab),其中a=3/2,b=-4/3.13. 已知(x+y)2=1,(x-y)2=49,求x2+y2与xy的值.14. 已知a+b=3,ab=2,求a2+b2的值.15. 已知a-b=1,a2+b2=25,求ab的值.16. 把下列各式分解因式:(1)x(x+y)-y(x+y);(2)(a+b)2+2(a+b)+1;(3)4x4-4x3+x2;(4)x2-16ax+64a2;(5)(x-1)(x-3)+1;(6)(ab+a)+(b+1).C组17. 一个长方形的长增加4cm,宽减少1cm,面积保持不变;长减少2cm,宽增加1cm,面积仍保持不变.求这个长方形的面积.18. 当整数k取何值时,多项式x2+4kx+4恰好是另一个多项式的平方?19. 试判断下列说法是否正确,并说明理由.(1)两个连续整数的平方差必是奇数;(2)若a为整数,则a3-a能被6整除.课题学习面积与代数恒等式在前面的学习中,我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释这些代数恒等式.例如,图1可以用来解释(2a)2=4a2,图2可以用来解释(a+b)2=a2+2ab+b2.〖〗图1〖〗图2〖〗图3还有很多代数恒等式可以用硬纸片拼成的图形面积来说明其正确性.现在让我们一起参加下面的实践与探索活动.(1)尽可能多地做一些如图3所示的正方形与长方形的硬纸片.(2)利用制作的硬纸片拼成一些长方形或正方形,并用所拼成的图形面积来说明所学的乘法公式及某些幂的运算公式的正确性.图4(3)根据图4,利用面积的不同表示方法写出一个代数恒等式来.(4)试写出一个代数恒等式,比如(a+2b)(2a-b)=2a2+3ab -2b2,然后用上述方法来说明它的正确性.。
整式的乘除与因式分解全单元的教案
整式的乘除与因式分解全单元的教案整式的乘除与因式分解全单元的教案范文第十五章整式的乘除与因式分解15.1.1 整式教学目标1.单项式、单项式的定义.2.多项式、多项式的次数.3、理解整式概念.教学重点单项式及多项式的有关概念.教学难点单项式及多项式的有关概念.教学过程Ⅰ.提出问题,创设情境在七年级,我们已经学习了用字母可以表示数,思考下列问题1.要表示△ABC的周长需要什么条件?要表示它的面积呢?2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少?结论:1、要表示△ABC的周长,需要知道它的各边边长.要表示△ABC 的面积需要知道一条边长和这条边上的高.如果设BC=a,AC=b,AB=c.AB边上的高为h,那么△ABC的周长可以表示为a+b+c;△ABC的面积可以表示为 ?c?h.2.小王的平均速度是.问题:这些式子有什么特征呢?(1)有数字、有表示数字的字母.(2)数字与字母、字母与字母之间还有运算符号连接.归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.判断上面得到的三个式子:a+b+c、 ch、是不是代数式?(是)代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.Ⅱ.明确和巩固整式有关概念(出示投影)结论:(1)正方形的周长:4x.(2)汽车走过的路程:vt.(3)正方体有六个面,每个面都是正方形,这六个正方形全等,所以它的表面积为6a2;正方体的体积为长×宽×高,即a3.(4)n的相反数是-n.分析这四个数的特征.它们符合代数式的定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、ch、中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.请同学们阅读课本P160~P161单项式有关概念.根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、ch、这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.结论:4x、vt、6a2、a3、-n、 ch是单项式.它们的系数分别是4、1、6、1、-1、.它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、ch都是二次单项式;a3是三次单项式.问题:vt中v和t的指数都是1,它不是一次单项式吗?结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一次单项式.生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢?写出下列式子(出示投影)结论:(1)t-5.(2)3x+5y+2z.(3)三角尺的面积应是直角三角形的面积减去圆的面积,即ab-3.12r2.(4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为3×2、4×3,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18.我们可以观察下列代数式:a+b+c、t-5、3x+5y+2z、ab-3.12r2、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式?这样推理合情合理.请看投影,熟悉下列概念.根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.a+b+c的项分别是a、b、c.t-5的项分别是t、-5,其中-5是常数项.3x+5y+2z的项分别是3x、5y、2z.ab-3.12r2的项分别是 ab、-3.12r2.x2+2x+18的项分别是x2、2x、18.找多项式的次数应抓住两条,一是找准每个项的次数,二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也到符号的魅力所在.我们把单项式与多项式统称为整式.Ⅲ.随堂练习1.课本P162练习Ⅳ.课时小结通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,发展符号感.Ⅴ.课后作业1.课本P165~P166习题15.1─1、5、8、9题.2.预习“整式的加减”.课后作业:《课堂感悟与探究》15.1.2 整式的加减(1)教学目的:1、解字母表示数量关系的过程,发展符号感。
北师大版七年级数学下册第一章《整式的乘除》新课标大单元教学设计
(一)教学重难点
1.教学重点:整式的乘除法则及其运用,包括多项式乘以多项式、多项式乘以单项式、单项式乘以单项式、多项式除以单项式的运算法则。
教学难点:理解并熟练运用整式的乘除法则,尤其是多项式乘以多项式的运算过程,以及如何将实际问题转化为整式的乘除运算。
2.教学重点:培养学生观察、分析、归纳和解决问题的能力。
二、学情分析
七年级下册的学生已经具备了一定的数学基础,掌握了基本的算术运算、代数式的概念以及简单的方程求解。在此基础上,本章《整式的乘除》的学习对于学生来说是一个重要的过渡阶段,既是对以往知识的巩固,也是对后续学习内容的铺垫。学生在这个阶段对新知识的接受能力较强,但个体差异仍然存在。部分学生对乘除法则的理解可能存在困难,需要教师在教学过程中关注这些学生的需求,给予个别指导。此外,学生在解决实际问题时,可能缺乏将问题转化为整式乘除运算的能力,需要教师引导他们通过观察、分析、归纳等方法,逐步培养这种转化能力。在教学过程中,教师应关注学生的情感态度,营造轻松愉快的学习氛围,使学生在愉悦的情感体验中积极投入学习。
3.引发思考:让学生尝试计算这个表达式,观察他们是否能运用已学的知识解决问题。在此基础上,引出整式的乘除法则,激发学生的学习兴趣。
(二)讲授新知,500字
在讲授新知环节,教师应详细讲解以下内容:
1.多项式乘以多项式的运算法则:通过具体例题,如(x+1)(x+2),讲解如何将每一项相乘,并合并同类项。
北师大版七年级数学下册第一章《整式的乘除》新课标大单元教学设计
一、教学目标
(一)知识与技能
1.理解多项式乘以多项式、多项式乘以单项式、单项式乘以单项式的运算法则,并能运用这些法则进行简便计算。
单元设计:整式的乘除
第一章整式的乘除一、单元要素分析北师大版七年级数学下册第一章《整式的乘除》,是在学习了七年级上册有理数的运算和整式加减的基础上,进一步体会代数式运算在解决“具有一般性”问题中的作用,又是在结合学生已有的数学经验基础上,深入学习同底数幂的乘、除法则,幂的乘方和积的乘方法则等运算规则,实现由整式的加减运算到整式的乘除运算的学习,进而体会整式运算的意义,使学生思维品质提升到一个更高的层面,实现学生思维活动的一个新的飞跃。
同时它又为以后学习因式分解、分式及运算、解方程和函数等内容奠定良好基础。
因此这一章在整个初中代数中起着举足轻重的作用。
二、单元教学目标1、经历探索整式乘、除法运算法则的过程,理解整式乘、除法运算的算理,进一步发展观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力。
2、了解整式指数幂的意义和整数指数幂的运算性质,掌握同底数幂的乘、除法则,以及幂的乘方和积的乘方法则,并能进行简单的混合运算。
3、掌握整式乘除的运算法则,会进行简单的整式加、减、乘、除混合运算,并能解决实际问题(其中多项式相乘仅限于一次式相乘,整式的除法只要求到多项式除以单项式且结果是整式)。
4、能推导乘法公式:(a+b)(a-b)=a2-b2;(a±b)2=a2±2ab+b2,并能进行简单的计算,了解公式的几何背景,发展几何直观。
5、在解决问题的过程中了解数学的价值,发展“用数学”的信心。
以及感受推理过程的意义和必要性,并进一步体会用字母表示数的意义,发展符号意识。
6、经历观察,比较,分析及概括的过程发展学生的逆向思维。
三、单元设计思路1、本单元知识框架:2、本单元知识点的教学流程:本单元教学时通过创设实际问题情境引入新知识,使得知识的构建比较自然,同时学生在自主探索这些实际应用问题的过程中,体会这些运算出现的必要性。
在教师的引导下,学生自主进行探索、合作交流,讨论归纳,达到感悟知识、应用知识的目的,通过教师适时的修正、补充、强调,使所学的知识及时地纳入学生的认知结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“整式的乘除”主题单元设计
1.同底数幂的乘法
2.幂的乘方与积的乘方
3.同底数幂的除法
4.零指数幂与负整数指数幂
5.整式的乘法
6.平方差公式
7.完全平方公式
8.整式的除法
9.综合与实践:设计自己的运算程序
知识与技能:
1.了解幂的运算性质,并能解决一些实际问题
2. 在具体情境中了解整式乘法的意义,理解整式的乘法法则,会利用法则进行单项式的乘法运算.掌握单项式与单项式、单项式与多项式乘法的计算方法
3. 经历探索平方差公式和完全平方公式的过程,会推导并能运用公式进行有关计算,进一步发展符号感和推理能力.
4. 理解整式除法运算的算理,会进行简单的整式除法运算;
过程与方法:
1.能够在实际情境中,抽象概括出所要研究的数学问题,增强数感符号感,通过与同伴合作,经历探索幂的运算性质过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力.
2.经历探索整式乘法和除法法则的过程,理解整式乘法和除法运算的算理,发展学生有条理的思考能力和语言表达能力.
3.通过创设问题情境,让学生在数学活动中建立平方差公式和完全平方公式模型,感受数学公式的意义和作用.在公式的推导过程中,培养学生观察、发现、归纳、概括、猜想能力和有条理的表达能力.
情感态度与价值观:
1.感受数学与现实生活的密切联系,增强学生的数学应用意识,养成学会分析问题、解决问题的良好习惯;
2.在探究学习中体会数学的现实意义,培养学习数学的信心;
3.体会数学在生活中的广泛应用
1.借助现实情境了解代数式,进一步理解用字母表示数的意义;
2.能分析具体问题中的简单数量关系,并用代数式表示;
3.会求代数式的值,并能根据特定的问题查阅资料,找到所需要的公式,并能带入具体的值进行计算;
4.了解整数指数幂的性质,会用科学记数法表示数;
5.理解整式的概念。
能进行简单的乘法运算;
6.会推导平方差公式和完全平方公式,了解共识的几何背景,并能运用公式进行简单的运算。
重点:运算法则及公式的发生过程及运用。
难点: 1.幂的运算性质的正确使用. 2.整式混合运算的运算顺序. 3.乘法公式的正确使用. 4.整式乘法与因式分解的区分。
1、同底数幂的乘法与除法法则是什么?
2、积的乘方与幂的乘方的意义是什么?
3、指数可以是零和负整数吗?
4、单项式的乘法法则是什么?
5、多项式与多项式如何相乘?
6、乘法公式有哪些?什么特征的多项式相乘可用乘法公式?
7、什么是因式分解?因式分解有哪些方法?
8、你会不会用不同的方法对同一个整式进行因式分解?
1.同底数幂的乘法(1课时)
2.幂的乘方与积的乘方(2课时)
3.同底数幂的除法(1课时)
4.零指数幂与负整数指数幂(2课时)
5.整式的乘法(1课时)
6.平方差公式(2课时)
7.完全平方公式(2课时)
8.整式的除法(2课时)
9.综合与实践:设计自己的运算程序(2课时)
本章的内容不难理解,但容易混淆的问题很多,过于集中,学生在解题时容易顾此失彼。
本章所涉及的数学教学内容之间不仅具有密切的联系,且具有很强的逻辑关系。
整式的乘法与除法是互为逆运算,乘法公式是具有特殊形式的整式乘法问题,整式的乘法与因式分解是方向相反的恒等变形,在涉及的这些内容中,整式的乘法是引入后续内容教学的基础,从某些具体的数与式计算,归纳得到一般的式的运算法则,是一个由特殊到一般,从具体到抽象的归纳过程,使学生在这个过程中理解和掌握性质和公式,并能用代数式和文字语言正确地表述这些性质和熟练地进行运算。
其中,“分解因式”主题单元的学习内容以整式运算为基础,是整式的一种重要的恒等变形,它和整式乘法运算,尤其是多项式乘法运算有着密切的联系,分解因式时后续学习分式的化简与运算、解一元二次方程的重要基础。
本单元主要研究分解因式的概念、分解因式的基本方法。