人教版必修高一数学第三章三角恒等变换测试题及答案
人教版高一数学第三章《三角恒等变换》测试题(A卷)及答案
i
sin
1
B.-3
cos
a的值为
1
代3
3—sin70的
8.2等于
2—cos10
1 2
A.2b.~2"
1n
9.把尹n20+cos(§—
2,3
3
C.
2
n
2 0)]—sin —cosCf^+20)化简,可得
A.sin20B.—sin20C.cos20D.—cos20
10.已知3cos(2a+ 3+5cos3=0,贝U tan(a+ 3tana的值为
三、解答题(共76分).
15.(本题满分
12分)已知
cosa—sin
a=
3.2,且
n«|n,求
sin2a+2sin
1—tana
a的值.
16.(本题满分12分)已知
(X、
B均为锐角,且
cos
^5
sinA ,w,求
a—3的值.
1
17.(本题满分12分)求证:丽
疏=|2cos20°
高中数学必修
考试时间:100分钟,满分:150分
、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代
号填在题后的括号内(每小题5分,共50分)
2
1.计算1-2sin 22.5的结果等于
A.1B晋
2 2
2.cos39 cos(—9°)—sin39
1
A.2
7
A.8
C.
3.已知
4,则
A. ±4B.4C.—4D.1
二、填空题(每小题6分,共计24分).
11.(1+tan17 )(1+tan28的=.
高一必修三角恒等变换练习题及答案
高一必修三角恒等变换练习题及答案Revised by BLUE on the afternoon of December 12,2020.2006学年高一必修4三角恒等变形练习题满分100分,时间:100分钟增城市新塘中学 段建辉 一、选择题(每题4分,计40分)1.已知0,2παβπ<<<<又,54)sin(,53sin -=+=βαα,则sin β=( ).()A 1- ()B 1-或257- ()C 257- ()D 2572.如果1sin ,cos 33αα=-=则2α为第____象限角. ()A 一 ()B 二 ()C 三 ()D 四3.设1tan 2,1tan xx +=-则sin 2x 的值是( ).()A 35 ()B 34- ()C 34()D 1-4.已知(,2)αππ∈等于( ).()A sin2α()B cos2α()C sin2α- ()D cos2α-5.化简1sin 2cos 21sin 2cos 2αααα+-++的结果是( )()A 2sin α ()B cos α ()C n ta α ()D 2tan α6.cos 23x x a +=-中,a 的取值域范围是( )()A 2521≤≤a ()B 21≤a ()C 25>a ()D 2125-≤≤-a 7.若x 是一个三角形的最小内角,则函数sin cos y x x =-的值域是( )()A [ ()B 1(1,]2- ()C 1[1,]2- ()D 1(1,)2-8.设0020sin13cos13,142b c α=+=-=则( ) ()A a c b >> ()B c b a >> ()C b c a >> ()D c a b >>9函数cos 1sin xy x=-的单调增区间是( )()A 3[2,2]22k k ππππ-+ ()B [2,2]22k k ππππ-+ ()C 3[2,2]22k k ππππ-- ()D [,]22k k ππππ-+10.在ABC ∆中,tan tan tan A B A B +=,则C 等于( )()A 3π ()B 23π ()C 6π ()D 4π二、填空题(每小题4分,共16分)11.已知),4,0(,135)4sin(πααπ∈=-则=+)4cos(2cos απα______.12.已知βαtan ,tan 是方程04332=++x x 的两根,且),2,2(,ππβα-∈则βα+等于______.13.函数xx xx y 2sin 2cos 2sin 2cos -+=的最小周期是______14.在ABC ∆中,,53sin ,135cos ==B A 则C cos =______.三、解答题15(10分)化简000020cos 1)]10tan 31(10sin 50sin 2[+++16(10分)已知)(,2,2,sin 3)2sin(Z k k k ∈+≠++≠=+ππβαππαββα求证:αβαtan 2)tan(=+.17(12分)已知函数).(),12(sin 2)62sin(3)(2R x x x x f ∈-+-=ππ(1)求)(x f 的最小正周期.(2)求使函数)(x f 取得最大值时x 的集合.18(12分)如图所示,已知OPQ 是半径为1,圆心角为3π的扇形,ABCD 是扇形的内接矩形,C B ,两点在圆弧上,OE 是POQ ∠的平分线,连接OC ,记α=∠COE ,问:角α为何值时矩形ABCD面积最大,并求最大面积.Q[参考答案]1~5:CDADC 5~10: ABCAA(11)1324 (12) 23π- (13)2π (14)651615.解:原式=630cos 22)1040cos(22]10sin 40sin 10cos 40[cos 22]40sin 10sin 210cos 50sin 2[210cos ]10cos 40sin 210sin 50sin 2[210cos 2]10cos 10sin 310cos 10sin 50sin 2[10cos 2)]10cos 10sin 31(10sin 50sin 2[000000000000000000020=⋅=-=+=+=⋅⋅+=⋅+⋅+=++16.证明:))sin((3))sin((sin 3)2sin(ββααβαββα-+=++⇒=+ββαββαββαββαsin )cos(3cos )sin(3sin )cos(cos )sin(+-+=+++⇒ββαββαsin )cos(4cos )sin(2+-=+-⇒ αβαtan 2)tan(=+⇒17.解:(1))]12(2cos(1[)62sin(3)(ππ--+-=x x x f1)62cos()62sin(3+---=ππx x1)]62cos(21)62sin(23[2+---=ππx x 1)32sin(2+-=πxππ==+22min T (2)当Z k k x ∈+=-,2232πππ即Z k k x ∈+=,125ππ时,3max =y 解:设OE 交AD 于M ,交BC 于N ,显然矩形ABCD 关于OE 对称,而M ,N 均为AD ,BC 的中点,在ONC Rt ∆中,cos ,sin αα==ON CN ,sin 3336tan/απ====CN DM DM OMααsin 3cos -=-=∴OM ON MN即ααsin 3cos -=ABαsin 22==∴CN BC故:αααsin 2sin 3cos ⋅-=⋅=)(矩BC AB S ααα2sin 32cos sin 2-=)(αα2cos 132sin --=32cos 32sin -+=αα 332sin 2-+=)(πα32323,320,60ππαππαπα<+<<<∴<< 故当,232ππα=+即12πα=时,矩形S 取得最大,此时32-=矩形S。
高一数学三角恒等变换试题答案及解析
高一数学三角恒等变换试题答案及解析1.(12分)(1)求的值.(2)若,,,求的值.【答案】(1)1(2)【解析】(1)原式……6分(2),①②①-②得,. ……12分【考点】本小题主要考查利用和差角公式、同角三角函数基本关系式等求三角函数值,考查学生的运算求解能力.点评:解决给值求值问题时,要尽量用已知角来表示未知角.2.设-3π<α<-,则化简的结果是()A.sin B.cosC.-cos D.-sin【答案】C【解析】∵-3π<α<-π,∴-π<<-π,∴cos<0,∴原式==|cos|=-cos.3.已知cos2α-cos2β=a,那么sin(α+β)·sin(α-β)等于()A.-B.C.-a D.a【答案】C【解析】法一:sin(α+β)sin(α-β)=(sinαcosβ+cosαsinβ)(sinαcosβ-cosαsinβ)=sin2αcos2β-cos2αsin2β=(1-cos2α)cos2β-cos2α(1-cos2β)=cos2β-cos2α=-a,故选C.法二:原式=-(cos2α-cos2β)=-(2cos2α-1-2cos2β+1)=cos2β-cos2α=-a.4.若cos2α=m(m≠0),则tan=________.【答案】【解析】∵cos2α=m,∴sin2α=±,∴tan===.5.求sin42°-cos12°+sin54°的值.【答案】【解析】sin42°-cos12°+sin54°=sin42°-sin78°+sin54°=-2cos60°sin18°+sin54°=sin54°-sin18°=2cos36°sin18°=====.6.给出下列三个等式f(xy)=f(x)+f(y),f(x+y)=f(x)·f(y),f(x+y)=,下列函数中不满足其中任何一个等式的是()A.f(x)=3x B.f(x)=sin xC.f(x)=logx D.f(x)=tan x2【答案】B【解析】对选项A,满足f(x+y)=f(x)·f(y),对选项C,满足f(xy)=f(x)+f(y),对选项D,满足f(x+y)=,故选B.7.的值为()A.2+B.C.2-D.【答案】C【解析】sin6°=sin(15°-9°)=sin15°cos9°-cos15°sin9°,cos6°=cos(15°-9°)=cos15°cos9°+sin15°sin9°,∴原式=tan15°=tan(45°-30°)==2-,故选C.8.已知α、β为锐角,cosα=,tan(α-β)=-,则tanβ的值为()A.B.C.D.【答案】B【解析】∵α是锐角,cosα=,故sinα=,tanα=∴tanβ=tan[α-(α-β)]==.9.已知sinα=,α为第二象限角,且tan(α+β)=1,则tanβ的值是() A.-7B.7C.-D.【答案】B【解析】由sinα=,α为第二象限角,得cosα=-,则tanα=-.∴tanβ=tan[(α+β)-α]===7.10.若a=tan20°,b=tan60°,c=tan100°,则++=()A.-1B.1C.-D.【答案】B【解析】∵tan(20°+100°)=,∴tan20°+tan100°=-tan60°(1-tan20°tan100°),即tan20°+tan60°+tan100°=tan20°·tan60°·tan100°,∴=1,∴++=1,选B.11.如果tan=2010,那么+tan2α=______.【答案】2010【解析】∵tan=2010,∴+tan2α=+====tan=2010.12.若π<α<,化简+.【答案】-cos【解析】∵π<α<,∴<<,∴cos<0,sin>0.∴原式=+=+=-+=-cos.13. cos75°cos15°-sin255°sin15°的值是()A.0B.C.D.-【答案】B【解析】原式=cos75°·cos15°+sin75°sin15°=cos(75°-15°)=cos60°=.14.已知0<α<<β<π,cosα=,sin(α+β)=-,则cosβ的值为() A.-1B.-1或-C.-D.±【答案】C【解析】∵0<α<, <β<π,∴<α+β<π,∴sinα=,cos(α+β)=-,∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=×+×=-,故选C.15. cos+sin的值为()A.-B.C.D.【答案】B【解析】∵cos+sin=2=2=2cos=2cos=.16.=________.【答案】【解析】=cos cos-sin sin=cos cos+sin sin=cos=cos=.17.已知α、β为锐角,且tanα=,tanβ=,则sin(α+β)=________.【答案】【解析】∵α为锐角,tanα=,∴sinα=,cosα=,同理可由tanβ=得,sinβ=,cosβ=.∴sin(α+β)=sinαcosβ+cosαsinβ=×+×=.18.函数y=cos x+cos的最大值是________.【答案】【解析】法一:y=cos+cos=cos·cos+sin sin+cos=cos+sin==cos=cos≤.法二:y=cos x+cos x cos-sin x sin=cos x-sin x==cos,当cos=1时,y=.max19.已知<β<α<,cos(α-β)=,sin(α+β)=-,求sin2α的值.【答案】-.【解析】∵<β<α<,∴π<α+β<,0<α-β<.∴sin(α-β)===.∴cos(α+β)=-=-=-.则sin2α=sin[(α+β)+(α-β)]=sin(α+β)cos(α-β)+cos(α+β)sin(α-β)=×+×=-.20.在△ABC中,若sin A=,cos B=,求cos C.【答案】【解析】∵0<cos B=<,且0<B<π.∴<B<,且sin B=.又∵0<sin A<<,且0<A<π,∴0<A<或π<A<π.若π<A<π,则有π<A+B<π,与已知条件矛盾,∴0<A<,且cos A=.∴cos C=cos[π-(A+B)]=-cos(A+B)=sin A sin B-cos A cos B=×-×=.[点评]本题易忽视对角范围的讨论,直接由sin A=得出cos A=±,导致错误结论cos C=或.。
第三章 3.2简单的三角恒等变换(一)答案
2019-2020学年高一数学必修四校本作业课题:3.2 简单的三角恒等变换(一)班级_______姓名________座号________一、选择题1.已知tan θ-1tan θ=m ,则tan2θ=( ) A .-1m B .-2mC .2m D.2m解析:tan θ-1tan θ=m =tan 2θ-1tan θ又tan2θ=2tan θ1-tan 2θ=-2tan θtan 2θ-1,∴tan θ=-2m . 答案:B2.已知cos α=15,α∈⎝⎛⎭⎫3π2,2π,则sin α2等于( ) A.105 B .-105 C.265 D.255 考点 利用简单的三角恒等变换化简求值题点 利用半角公式化简求值答案 A解析 ∵α∈⎝⎛⎭⎫3π2,2π,∴α2∈⎝⎛⎭⎫3π4,π, sin α2=1-cos α2=105. 3.化简2sin 2α1+cos 2α·cos 2αcos 2α的结果为( ) A .tan α B .tan 2α C .1 D .2考点 利用简单的三角恒等变换化简求值题点 利用半角公式化简求值答案 B解析 原式=2sin 2α2cos 2α·cos 2αcos 2α=tan 2α. 4.sin x cos x +sin 2x 可化为( )A.22sin ⎝⎛⎭⎫2x -π4+12B.2sin ⎝⎛⎭⎫2x +π4-12 C .sin ⎝⎛⎭⎫2x -π4+12 D .2sin ⎝⎛⎭⎫2x +3π4+1 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 A解析 y =12sin 2x +1-cos 2x 2=12sin 2x -12cos 2x +12=22⎝⎛⎭⎫22sin 2x -22cos 2x +12=22sin ⎝⎛⎭⎫2x -π4+12.故选A. 5.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A .c <b <a B .a <b <cC .a <c <bD .b <c <a考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用答案 C解析 a =sin 30°cos 6°-cos 30°sin 6°=sin(30°-6°)=sin 24°,b =2sin 13°cos 13°=sin 26°,c =sin 25°,∵当0°≤x ≤90°时,y =sin x 是单调递增的,∴a <c <b .6.使函数f (x )=sin(2x +θ)+3cos(2x +θ)为奇函数的θ的一个值是( )A.π6 B.π3 C.π2 D.2π3考点 利用简单的三角恒等变换化简求值题点 利用辅助角公式化简求值答案 D解析 f (x )=sin(2x +θ)+3cos(2x +θ)=2sin ⎝⎛⎭⎫2x +π3+θ.当θ=23π时,f (x )=2sin(2x +π)=-2sin 2x 是奇函数.7.已知函数f (x )=sin ⎝⎛⎭⎫2x -π6+2cos 2x -1,则函数f (x )的单调递增区间为()A.⎣⎡⎦⎤2k π-π3,2k π+π6(k ∈Z )B.⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z )C.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z )D.⎣⎡⎦⎤2k π-π6,2k π+π3(k ∈Z )考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用答案 C解析 因为f (x )=sin ⎝⎛⎭⎫2x -π6+2cos 2x -1=32sin 2x -12cos 2x +cos 2x =32sin 2x +12cos 2x =sin ⎝⎛⎭⎫2x +π6,所以函数f (x )的单调递增区间是⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ),故选C. 二、填空题8.已知α∈⎝⎛⎭⎫0,π2,sin 2α=12,则sin ⎝⎛⎭⎫α+π4=________. 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 32解析 因为1-2sin 2⎝⎛⎭⎫α+π4=cos ⎝⎛⎭⎫2α+π2=-sin 2α, 所以sin 2⎝⎛⎭⎫α+π4=34, 因为α∈⎝⎛⎭⎫0,π2, 所以α+π4∈⎝⎛⎭⎫π4,3π4, 所以sin ⎝⎛⎭⎫α+π4=32. 9.若cos α=-45,α是第三象限角,则1+tan α21-tan α2等于( ) A .-12 B.12C .2D .-2 考点 利用简单的三角恒等变换化简求值题点 利用弦化切对齐次分式化简求值答案 A解析 ∵α是第三象限角,cos α=-45,∴sin α=-35.∴1+tan α21-tan α2=1+sinα2cos α21-sin α2cos α2=cos α2+sin α2cos α2-sin α2=cos α2+sin α2cos α2-sin α2·cos α2+sin α2cos α2+sin α2=1+sin αcos α=1-35-45 =-12.故选A. 10.化简:sin50°(1+3tan10°).解:原式=sin50°cos10°+3sin10°cos10°=2sin50°sin40°cos10°=sin80°cos10°=1. 11.设0≤α≤π,不等式8x 2-8x sin α+cos 2α≥0对任意x ∈R 恒成立,则α的取值范围是________.答案 ⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 解析 Δ=(8sin α)2-4×8×cos 2α≤0,即2sin 2α-cos 2α≤0,所以4sin 2α≤1,所以-12≤sin α≤12. 因为0≤α≤π,所以0≤α≤π6或5π6≤α≤π. 三、解答题12.已知α,β为锐角,tanα=43,cos(α+β)=-55. (1)求cos2α的值;(2)求tan(α-β)的值.解析 (1)因为tanα=43,tanα=sinαcosα, 所以sinα=43cosα. 因为sin 2α+cos 2α=1,所以cos 2α=925, 因此,cos2α=2cos 2α-1=-725. (2)因为α,β为锐角,所以α+β∈(0,π).因为cos(α+β) =-55,所以sin(α+β)=1-cos 2(α+β)=255. 因此tan(α+β)=-2. 因为tanα=43,所以tan2α=2tanα1-tan 2α=-247, 因此tan(α-β)=tan[2α-(α+β)]=tan2α-tan (α+β)1+tan2αtan (α+β)=-211.13.已知函数f (x )=cos x ·sin(x +π3)-3cos 2x +34,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在区间[-π4,π4]上的值域.解:(1)由已知有f (x )=cos x (12sin x +32cos x )-3cos 2x +34=12sin x cos x -32cos 2x +34=14sin2x -34(1+cos2x )+34=14sin2x -34cos2x=12sin(2x -π3).∴f (x )的最小正周期T =2π2=π.(2)∵x ∈[-π4,π4],∴2x -π3∈[-5π6,π6].当2x -π3=-π2,即sin(2x -π3)=-1时,f (x )取最小值为-12.当2x -π3=π6,即sin(2x -π3)=12时,f (x )取最大值为14.∴f (x )在区间[-π4,π4]上的值域为[-12,14]14.已知sin θ=m -3m +5,cos θ=4-2mm +5⎝⎛⎭⎫π2<θ<π,则tan θ2等于() A .-13 B .5C .-5或13D .-13或5 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换化简求值答案 B解析 由sin 2θ+cos 2θ=1,得⎝ ⎛⎭⎪⎫m -3m +52+⎝ ⎛⎭⎪⎫4-2m m +52=1, 解得m =0或8,当m =0时,sin θ<0,不符合π2<θ<π. ∴m =0舍去,故m =8,sin θ=513,cos θ=-1213, tan θ2=1-cos θsin θ=1+1213513=5. 15.已知α,β均为锐角,且sin2α=2sin2β,则( )A .tan(α+β)=3tan(α-β)B .tan(α+β)=2tan(α-β)C .3tan(α+β)=tan(α-β)D .3tan(α+β)=2tan(α-β)解析:∵sin2α=2sin2β,∴sin[(α+β)+(α-β)]=2sin[(α+β)-(α-β)], ∴sin(α+β)cos(α-β)+cos(α+β)sin(α-β)=2sin(α+β)cos(α-β)-2cos(α+β)sin(α-β), ∴3cos(α+β)sin(α-β)=sin(α+β)cos(α-β), ∴tan(α+β)=3tan(α-β),故选A.答案:A。
人教必修高一数学第三章三角恒等变换测试题及答案
高中数学必修4第三章《三角恒等变换》测试题A 卷考试时间:100分钟,满分:150分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.计算1-°的结果等于 ( )2.cos39°cos(-9°)-sin39°sin(-9°)等于 ( ) C .-12D .-323.已知cos ⎝ ⎛⎭⎪⎫α-π4=14,则sin2α的值为 ( )B .-78D .-344.若tan α=3,tan β=43,则tan(α-β)等于 ( )A .-3B .-13C .35.cos 275°+cos 215°+cos75°·cos15°的值是( )D .1+236.y =cos 2x -sin 2x +2sin x cos x 的最小值是 ( ) B .-2 C .2D .-27.已知sin ⎝ ⎛⎭⎪⎫α-π3=13,则cos ⎝ ⎛⎭⎪⎫π6+α的值为 ( )B .-13D .-233等于 ( )C .29.把12[sin2θ+cos(π3-2θ)]-sin π12cos(π12+2θ)化简,可得 ( )A .sin2θB .-sin2θC .cos2θD .-cos2θ10.已知3cos(2α+β)+5cos β=0,则tan(α+β)·tan α的值为 ( )A .±4B .4C .-4D .1二、填空题(每小题6分,共计24分). 11.(1+tan17°)(1+tan28°)=________. 12.化简3tan12°-3sin12°·4cos 212°-2的结果为________.13.若α、β为锐角,且cos α=110,sin β=25,则α+β=______.14.函数f (x )=sin ⎝⎛⎭⎪⎫2x -π4-22sin 2x 的最小正周期是________.三、解答题(共76分).15.(本题满分12分)已知cos α-sin α=352,且π<α<32π,求sin2α+2sin 2α1-tan α的值.16.(本题满分12分)已知α、β均为锐角,且cos α=25,sin β=310,求α-β的值.17.(本题满分12分)求证:1sin 210°-3cos 210°=32cos20°.18.(本题满分12分)已知-π2<α<π2,-π2<β<π2,且tan α、tan β是方程x 2+6x +7=0的两个根,求α+β的值.19.(本题满分14分)已知-π2<x <0,sin x +cos x =15,求:(1)sin x -cos x 的值;(2)求3sin 2x 2-2sin x 2cosx2+cos 2x2tan x +1tan x的值.20.(本题满分14分)已知函数f (x )=12sin2x sin φ+cos 2x cos φ-12sin ⎝ ⎛⎭⎪⎫π2+φ(0<φ<π),其图象过点⎝ ⎛⎭⎪⎫π6,12.(1)求φ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值.高中数学必修4第三章《三角恒等变换》测试题A 卷参考答案一、选择题 1. 【答案】B.【解析】 1-°=cos45°=22,故选B.2. 【答案】B.【解析】 cos39°cos(-9°)-sin39°sin(-9°)=cos(39°-9°)=cos30°=32.3. 【答案】B.【解析】 sin2α=cos(2α-π2)=2cos 2⎝ ⎛⎭⎪⎫α-π4-1=-78.4. 【答案】 D【解析】 tan(α-β)=tan α-tan β1+tan αtan β=3-431+3×43=13.5. 【答案】 A 【解析】原式=sin 215°+cos 215°+sin15°cos15°=1+12si n30°=54. 6. 【答案】 B【解析】y =cos2x +sin2x =2sin(2x +π4),∴y max =-2.7. 【答案】B.【解析】 cos ⎝ ⎛⎭⎪⎫π6+α=sin ⎝ ⎛⎭⎪⎫π2-π6-α =sin ⎝ ⎛⎭⎪⎫π3-α=-sin ⎝ ⎛⎭⎪⎫α-π3=-13.8.【答案】C.【解析】 3-sin70°2-cos 210°=3-sin70°2-1+cos20°2=23-cos20°3-cos20°=2.9.【答案】A.【解析】原式=12[cos(π2-2θ)+cos(π3-2θ)]-sin π12cos(π12+2θ)=cos(5π12-2θ)cos π12-sin π12sin(5π12-2θ)=cos[(5π12-2θ)+π12]=cos(π2-2θ)=sin2θ. 10.【答案】C.【解析】 3cos[(α+β)+α]+5cos β=0,即3cos(α+β)cos α-3sin(α+β)sin α+5cos β=0.3cos(α+β)cos α-3sin(α+β)sin α+5cos[(α+β)-α]=0,3cos(α+β)cos α-3sin(α+β)sin α+5cos(α+β)·cos α+5sin(α+β)sin α=0,8cos(α+β)cos α+2sin(α+β)sin α=0,8+2tan(α+β)tan α=0,∴tan(α+β)tan α=-4. 二、填空题 11. 【答案】 2【解析】原式=1+tan17°+tan28°+tan17°·tan28°,又tan(17°+28°)=tan17°+tan28°1-tan17°·tan28°=tan45°=1,∴tan17°+tan28°=1-tan17°·tan28°,代入原式可得结果为2. 12.【答案】-43【解析】3tan12°-3sin12°·4cos 212°-2=3tan12°-32sin12°·cos24°=3tan12°-32cos12°2sin12°·cos12°·2cos24°=23sin 12°-6cos12°sin48°=43sin12°·cos60°-cos12°·sin60°sin48°=-43sin48°sin48°=-43.13.【答案】3π4【解析】∵α、β为锐角,∴sin α=31010,cos β=55,∴cos(α+β)=cos αcos β-sin αsin β =1010×55-31010×255=-22<0,又0<α<π2,0<β<π2,∴π2<α+β<π. ∴α+β=3π4.14.【答案】π【解析】f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4-22sin 2x =sin ⎝⎛⎭⎪⎫2x -π4-2(1-cos2x ) =sin2x cos π4-sin π4cos2x +2cos2x -2=22sin2x -22cos2x +2cos2x - 2 =22sin2x +22cos2x -2=sin ⎝⎛⎭⎪⎫2x +π4-2∴最小正周期为π. 三、解答题15. 解: 因为cos α-sin α=325,所以1-2sin αcos α=1825,所以2sin αcos α=725. 又α∈(π,3π2),故sin α+cos α=-1+2sin αcos α=-425,所以sin2α+2sin 2α1-tan α=2sin αcos α+2sin 2αcos αcos α-sin α=2sin αcos αcos α+sin αcos α-sin α=725×-425325=-2875. 16. 解: 已知α、β均为锐角,且cos α=25,则sin α=1-252=15.又∵sin β=310,∴cos β=1-3102=110. ∴sin(α-β)=sin αcos β-cos αsin β =15×110-25×310=-550=-22.又∵sin α<sin β,∴0<α<β<π2.∴-π2<α-β<0.∴α-β=-π4.17. 证明:左边=11-cos20°2-31+cos20°2=21-cos20°-61+cos20°=8cos20°-41-cos 220°=8cos20°-12sin 220° =8cos20°-cos60°sin 220°=8[cos40°-20°-cos40°+20°]sin 220°=16sin40°sin20°sin 220°=32sin 220°cos20°sin 220°=32cos20°=右边, ∴原式成立.18. 解: 由题意知tan α+tan β=-6,tan αtan β=7 ∴tan α<0,tan β<0. 又-π2<α<π2,-π2<β<π2,∴-π2<α<0,-π2<β<0.∴-π<α+β<0.∵tan(α+β)=tan α+tan β1-tan αtan β=-61-7=1,∴α+β=-3π4.19. 解:(1)由sin x +cos x =15,得2sin x cos x =-2425.∵(sin x -cos x )2=1-2sin x cos x =4925, ∵-π2<x <0.∴sin x <0,cos x >0.∴sin x -cos x <0.故sin x -cos x =-75.(2)3sin 2x 2-2sin x 2cos x2+cos 2x2tan x +1tan x=2sin 2x2-sin x +1sin x cos x +cos xsin x=sin x cos x ⎝⎛⎭⎪⎫2sin 2x2-sin x +1 =sin x cos x [2(1-cos 2x2)-sin x +1)]=sin x cos x ⎝ ⎛⎭⎪⎫1-2cos 2x2+2-sin x=sin x cos x (-cos x +2-sin x )=⎝ ⎛⎭⎪⎫-1225×⎝ ⎛⎭⎪⎫2-15 =-108125.20. 解:(1)因为f (x )=12sin2x sin φ+cos 2x cos φ-12sin ⎝ ⎛⎭⎪⎫π2+φ(0<φ<π),所以f (x )=12sin2x sin φ+1+cos2x 2cos φ-12cos φ=12sin2x sin φ+12cos2x cos φ =12(sin2x sin φ+cos2x cos φ) =12cos(2x -φ). 又函数图象过点⎝ ⎛⎭⎪⎫π6,12,所以12=12cos ⎝ ⎛⎭⎪⎫2×π6-φ,即cos ⎝ ⎛⎭⎪⎫π3-φ=1. 又0<φ<π,∴φ=π3.(2)由(1)知f (x )=12cos ⎝⎛⎭⎪⎫2x -π3. 将f (x )图象上所有点的横坐标缩短到原来的12,纵坐标不变,变为g (x )=12cos ⎝⎛⎭⎪⎫4x -π3.∵0≤x ≤π4,∴-π3≤4x -π3≤2π3.当4x -π3=0,即x =π12时,g (x )有最大值12;当4x -π3=2π3,即x =π4时,g (x )有最小值-14.。
高一必修 三角恒等变换练习题及答案
高一必修三角恒等变换练习题及答案2006学年高一必修4三角恒等变形练题满分100分,时间:100分钟______一、选择题(每题4分,计40分)1.已知 $\frac{\pi}{4}<\alpha<\beta<\pi$。
又,$\sin\alpha=\frac{2}{5}$,$\sin(\alpha+\beta)=-\frac{7}{25}$,则$\sin\beta=$($\quad$)。
A)-1$ $(B)-\frac{1}{2}$ $(C)-\frac{7}{25}$ $(D)\frac{7}{25}$2.如果$\sin\alpha=-\frac{1}{2}$,$\cos\alpha=-\frac{\sqrt{3}}{2}$,则$\alpha$所在的象限是($\quad$)。
A)$一 $(B)$二 $(C)$三 $(D)$四3.设$\frac{1+\tan x}{1-\tan x}=2$,则$\sin 2x$的值是($\quad$)。
A)-\frac{3}{4}$ $(B)-\frac{4}{3}$ $(C)-\frac{3}{5}$ $(D)-\frac{5}{4}$4.已知$\alpha\in(\pi,2\pi)$,则$\frac{1+\sin^2\alpha-\cos^2\alpha}{1+\sin^2\alpha+\cos^2\alpha}$等于($\quad$)。
A)\sin\alpha$ $(B)\cos\alpha$ $(C)-\sin\alpha$ $(D)-\cos\alpha$5.化简$\frac{2\sin\alpha}{1+\cos\alpha}$的结果是($\quad$)。
A)2\sin\alpha$ $(B)\cos\alpha$ $(C)\tan\alpha$ $(D)2\tan\alp ha$6.在$3\sin x+\cos x=2a-3$中,$a$的取值范围是($\quad$)。
2023-2024学年高一上数学必修一:三角恒等变换(附答案解析)
一、选择题(每小题 5 分,共 40 分)
1.cos2π-1的值为( B ) 84
A. 2-1 B. 2+1 C. 2 D. 2
4
4
4
2
解析:cos2π-1=1+cosπ4-1= 2+1.
84
2
44
2.若sinα+cosα=1,则 tan2α等于( B ) sinα-cosα 2
第3页共6页
9.化简 cos(36°+α)cos(α-54°)+sin(36°+α)sin(α-54°)=0.
解析:原式=cos[(36°+α)-(α-54°)]=cos90°=0.
10.如图,在平面直角坐标系中,锐角α,β的终边分别与单位圆
交于
A,B
两点,如果点
A
的纵坐标为3,点 5
B
的横坐标为 5 ,则 13
3- 2. 2
解析:由题可得
f(x)=
22sin
2x-π4
+3,所以最小正周期 2
T=π,
最小值为3- 2. 2
三、解答题(共 45 分)
12.(15 分)求证:ta1ncαo-s2tαanα2=14sin2α. 2
第4页共6页
cos2α
cos2α
cos2α
证明:左边=
1 sinα
-1-cosα sinα
2sin10°cos10°
1cos10°- 3sin10°
2
2
=
4sins3in02°-0°10°=14.
4.tan13°+tan32°+tan13°tan32°等于( D )
A.- 2 B. 2 C.-1 D.1 22
第1页共6页
三角恒等变形测试题及答案解析
三角恒等变形测试题及答案解析一、命题意图恒等变形能力是数学学习和应用中的一项重要的基本功。
基本的三角恒等变形公式是实践中经常使用的工具。
在力学、物理、电气工程、机械制造、图象处理以及其他科学研究和工程实践中经常会用到这些公式。
基本三角恒等变形公式及简单应用,提高了学生理解和运用三角恒等变形公式的能力,培养学生数形结合的思想能力。
本章内容一直是高考的热点、重点,新课改下仍立于不败之地。
本套试题紧扣教学大纲,依据往届高考要求,注重基础知识、基本技能考察,体现了新课程标准数学的基本理念,考察了学生的运用能力和基础知识的掌握情况,难度适中,对新课程标准要求下的三角恒等变形知识的有很好的检测作用。
二、试卷结构特点本章试题是对高一数学必修4第三章“三角恒等变换”的单元检测,满分150分,时间90分钟,分为Ⅰ卷和Ⅱ卷,共有试题22道,其中12道选择题,共60分;5道填空题,共30分;5道解答题,共60分。
难度为中等水平,既有基础题,也有拔高题。
用基础题考察学生对基本知识技能的掌握情况,也同时用拔高题来提高学生的灵活应用能力,为培养学生的数学意识和数学知识的实践与应用能力打基础。
三、典型试题例说以18题为例:18.已知12cos,13α=求sinα和tanα[分析]本题易错,学生看到题目只考虑角在第一象限的情况,或忽视了第四象限这一种情况造成结果不全。
[解析]因为12cos13α=>0,且cosα≠1,所以α是第一或第四象限的角.当α是第一象限的角时,sinα>0.5sin sin,13sin5135tan.cos131212αααα=====⨯=当α是第四象限角时,sin0.α<5sin,13sin5tan.cos12αααα==-==-(参考评分说明:写对角所在象限得2分,分两中情况每种得6分.)以19题为例:19.设cos(α-β2)=-19,sin(α2-β)=23,且π2<α<π,0<β<π2,求cos (α+β).[分析]讲求做题技巧和方法,培养学生的创新意识是新课标理念,对本题学生易受惯性思维的影响,拿到题容易直接展开做,结果南辕北辙。
高一三角恒等变换典型练习及答案
一.解答题(共20小题)1.已知函数f(x)=(1)求f(x)的对称中心(2)若x,f(x)=,求cos2x的值2.已知函数.(1)求f(x)的对称轴;(2)当α∈[0,π]时,若f(α)=1,求α的值.3.已知的最大值为.(Ⅰ)求实数a的值;(Ⅱ)若,求的值.4.已知函数.(Ⅰ)求f(x)的最小正周期及单调递减区间;(Ⅱ)若f(x)在区间上的最小值为1,求m的最小值.5.已知函数(x∈R).(1)求f(x)的最小正周期与单调递增区间;(2)求满足的x的集合.6.已知函数.(1)求函数f(x)的最小正周期及图象的对称轴方程;(2)△ABC中,角A,B,C所对的边分别为a,b,c,若a≤b≤c,则求函数的值域.7.已知函数.(1)求的值.(2)求函数f(x)在上的值域.8.已知函数.(1)求f(x)的最小正周期;(2)求f(x)在区间上的值域.9.已知函数f(x)=sin2x+a cos2x的图象关于直线对称.(1)求实数a的值;(2)若对任意的,使得m[f(x)+8]+2=0有解,求实数m的取值范围;10.已知函数f(x)=x sinθ﹣cosθ,其中θ∈[0,2π).(1)若f(2)=0,求sin2θ的值;(2)求f(1)+sin2θ的最大值.11.已知函数f(x)=2cos x(sin x+cos x)﹣1.(Ⅰ)求函数f(x)在区间[0,]上的最小值;(Ⅱ)若f(x)=,x∈[]求cos2x的值;(Ⅲ)若函数y=f(ωx)(ω>0)在区间[]上是单调递增函数,求正数ω的取值范围.12.已知函数.(1)求f(x)的单调递增区间;(2)求f(x)在区间上的值域.13.已知函数.(1)求函数f(x)的最小正周期;(2)若函数在的最大值为2,求实数a的值.14.已知.(1)求f(x)在的值域;(2)若,求的值.15.已知函数.(1)求y=f(x)的单调增区间;(2)当时,求f(x)的最大值和最小值16.已知函数.(1)求函f(x)的最小正周期和单调递增区间;(2)将函数f(x)的图象向右平移个单位后得到函数y=g(x)的图象,求函数y=g(x)在区间上的值域.17.已知函数.(1)求函数f(x)单调递增区间;(2)若f(x)<m在内有解,求m的取值范围.18.已知f(x)=2sin x cos x+(cos2x﹣sin2x).(1)求函数y=f(x)的最小正周期和对称轴方程;(2)若x∈[0,],求y=f(x)的值域.19.已知函数.(1)求函数f(x)的最小正周期及其对称中心;(2)若,求f(x)的最值.20.已知函数f(x)=cos(2x+)+sin2x﹣cos2x+2sin x cos x.(1)化简f(x);(2)若f(α)=,2α是第一象限角,求sin2α.一.解答题(共20小题)1.已知函数f(x)=(1)求f(x)的对称中心(2)若x,f(x)=,求cos2x的值【分析】(1)利用倍角公式降幂,再由辅助角公式化积,由相位终边落在y轴上求得x值,则答案可求;(2)由f(x)=求得sin(2x﹣)=,分类求出cos(2x﹣),再由cos2x=cos[(2x﹣)+],展开两角和的余弦求解.【解答】解:(1)f(x)=====.由,得x=,k∈Z.∴f(x)的对称中心为(,0),k∈Z;(2)由f(x)=,得,∴sin(2x﹣)=,∵x,∴2x﹣∈[﹣,],则cos(2x﹣)=±.当cos(2x﹣)=时,cos2x=cos[(2x﹣)+]=cos(2x﹣)cos﹣sin(2x﹣)sin==;当cos(2x﹣)=﹣时,cos2x=cos[(2x﹣)+]=cos(2x﹣)cos﹣sin(2x﹣)sin=.【点评】本题考查三角函数的恒等变换与化简求值,考查计算能力,是中档题.2.已知函数.(1)求f(x)的对称轴;(2)当α∈[0,π]时,若f(α)=1,求α的值.【分析】(1)利用倍角公式降幂,再由辅助角公式化积,则函数的对称轴方程可求;(2)由f(α)=1,得sin()=,结合α的范围求得α的值.【解答】解:(1)===.由,得,k∈Z.∴f(x)的对称轴为,k∈Z;(2)由f(α)=1,得,∴sin()=,∵α∈[0,π],∴∈[,],则=或,即或.【点评】本题考查三角函数的恒等变换应用,考查y=A sin(ωx+φ)型函数的图象与性质,训练了利用三角函数值求角,是基础题.3.已知的最大值为.(Ⅰ)求实数a的值;(Ⅱ)若,求的值.【分析】(Ⅰ)直接利用三角函数关系式的恒等变换求出结果.(Ⅱ)利用三角函数的关系式的变换和同角三角函数及倍角公式的应用求出结果.【解答】解:(Ⅰ)===,由于函数的最大值为,故,解得a=﹣.(Ⅱ)由于f(x)=,所以,整理得.所以,所以=.=或,所以或,故==,所以当时..当时,,所以原式=.【点评】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.4.已知函数.(Ⅰ)求f(x)的最小正周期及单调递减区间;(Ⅱ)若f(x)在区间上的最小值为1,求m的最小值.【分析】(Ⅰ)直接利用三角函数关系式的恒等变换和正弦型函数的性质的应用求出结果.(Ⅱ)利用正弦型函数的性质的应用求出结果.【解答】解:(Ⅰ)由已知,有,=,=,所以f(x)的最小正周期:.由得f(x)的单调递减区间是.(Ⅱ)由(1)知,因为,所以.要使f(x)在区间上的最小值为1,即在区间上的最小值为﹣1.所以,即.所以m的最小值为.【点评】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.5.已知函数(x∈R).(1)求f(x)的最小正周期与单调递增区间;(2)求满足的x的集合.【分析】(1)利用倍角公式降幂,再由辅助角公式化积,由周期公式求周期,再由复合函数的单调性求函数的单调增区间;(2)直接求解三角不等式得答案.【解答】解:(1)∵==.∴T=.由,解得,k∈Z.∴f(x)的单调增区间为[,],k∈Z;(2)由>﹣,得<<,∴kπ<x<,k∈Z.∴满足的x的集合为{x|kπ<x<,k∈Z}.【点评】本题考查三角函数的恒等变换与化简求值,考查y=A sin(ωx+φ)型函数的图象与性质,是中档题.6.已知函数.(1)求函数f(x)的最小正周期及图象的对称轴方程;(2)△ABC中,角A,B,C所对的边分别为a,b,c,若a≤b≤c,则求函数的值域.【分析】(1)利用两角和与差的三角函数公式将f(x)化简,利用正弦函数的性质可求f(x)的对称轴方程及单调递增区间;(2)△ABC中由a≤b≤c∴A≤B≤C⇒3A≤π,得出角A的取值范围,化简g(A),利用配方法求得g (A)的值域.【解答】解:(1)==.所以最小正周期.由得.函数图象的对称轴方程为.(2)=.∴a≤b≤c∴A≤B≤C⇒3A≤π⇒当时,g(A)取得最小值;当时,g(A)有最大值;故g(A)的值域为.【点评】本题考查两角和与差的正弦与余弦公式,考查三角变换与辅助角公式的应用,强调数形结合,属于中档题.7.已知函数.(1)求的值.(2)求函数f(x)在上的值域.【分析】利用二倍角的余弦把已知函数解析式变形.(1)把x=代入函数解析式即可求得的值;(2)令t=cos(),把原函数化为关于t的一元二次函数,再由二次函数求最值得答案.【解答】解:===.(1)f()=;(2)设t=cos(),∴x∈,∴t∈[,1],则原函数化为g(t)=,t∈[,1],∴f(t)∈[,2].【点评】本题考查三角函数的恒等变换应用,考查三角函数值的求法,训练了利用换元法求函数的值域,是中档题.8.已知函数.(1)求f(x)的最小正周期;(2)求f(x)在区间上的值域.【分析】利用倍角公式降幂,再由辅助角公式化积.(1)直接利用周期公式求周期;(2)由x的范围求得相位的范围,则函数值域可求.【解答】解:f(x)===.(1)f(x)的最小正周期为;(2)由x∈,得2x+∈[,],∴f(x)∈[﹣1,2].即f(x)在区间上的值域为[﹣1,2].【点评】本题考查三角函数的恒等变换应用,考查三角函数的周期性与值域的求法,是中档题.9.已知函数f(x)=sin2x+a cos2x的图象关于直线对称.(1)求实数a的值;(2)若对任意的,使得m[f(x)+8]+2=0有解,求实数m的取值范围;【分析】(1)利用辅助角公式化简,结合题意可得|﹣+a|=,求解即可得到a值;(2)把m[f(x)+8]+2=0化为:m[sin(2x﹣)+8]+2=0.讨论m=0和m≠0,分离参数m,得sin(2x﹣)+8=﹣.由x的范围求得sin(2x﹣)的范围,转化为关于m的不等式求解.【解答】解:(1)f(x)=sin2x+a cos2x=sin(2x+θ)(tanθ=a).∵图象关于直线x=﹣对称,∴|f(﹣)|=|﹣sin+a•cos|=|﹣+a|=,两边平方得,(a+1)2=0,即a=﹣1;(2)m[f(x)+8]+2=0可化为:m[sin(2x﹣)+8]+2=0.当m=0时,等式不成立;当m≠0时,化为sin(2x﹣)+8=﹣.∵x∈[0,],2x﹣∈[﹣,],∴sin(2x﹣)∈[﹣,],∴sin(2x﹣)+8∈[7,9].即7≤﹣≤9,解得﹣≤m≤﹣.【点评】本题考查根的存在性及根的个数判断,考查y=A sin(ωx+φ)型函数的图象和性质,考查一元二次方程根的分布应用,是中档题.10.已知函数f(x)=x sinθ﹣cosθ,其中θ∈[0,2π).(1)若f(2)=0,求sin2θ的值;(2)求f(1)+sin2θ的最大值.【分析】(1)由f(2)=0,求得tanθ的值,再利用二倍角公式、同角三角函数的基本关系求得sin2θ的值.(2)设t=sinθ﹣cosθ,化简f(1)+sin2θ为g(t)=t+1﹣t2,再利用二次函数的性质得它的最大值.【解答】解:(1)由f(2)=2sinθ﹣cosθ=0,tanθ=∴sin2θ=;(2)f(1)+sin2θ=(sinθ﹣cosθ)+2sinθcosθ,设t=sinθ﹣cosθ=sin(θ﹣),则t∈[﹣,],∴2sinθcosθ=1﹣t2,∴g(t)=t+1﹣t2=,∴当t=时,,∴f(1)+sin2θ的最大值为:.【点评】本题主要考查三角恒等变换,二次函数的性质,考查了转化思想和整体思想,属基础题.11.已知函数f(x)=2cos x(sin x+cos x)﹣1.(Ⅰ)求函数f(x)在区间[0,]上的最小值;(Ⅱ)若f(x)=,x∈[]求cos2x的值;(Ⅲ)若函数y=f(ωx)(ω>0)在区间[]上是单调递增函数,求正数ω的取值范围.【分析】(Ⅰ)化简f(x),利用整体法求出f(x)的最小值即可;(Ⅱ)由f(x)=可得,然后再由cos2x=求值即可;(Ⅲ)由条件可得,k∈Z,然后求出的范围即可.【解答】解:(Ⅰ)==.∵x∈[0,],∴,故;∴函数f(x)在区间上的最小值为﹣1;(Ⅱ)∵,∴,又∵x∈,∴,故,∴cos2x===;(Ⅲ)当x∈时,,于是,k∈Z.∴,k∈Z.∵ω>0,∴ω的取值范围为.【点评】本题考查了三角恒等变换及化简求值和三角函数的图象与性质,考查了整体法和数形结合思想,属中档题.12.已知函数.(1)求f(x)的单调递增区间;(2)求f(x)在区间上的值域.【分析】(1)先由诱导公式及差角余弦公式对已知函数进行化简,然后结合正弦函数的单调性可求f(x)的单调递增区间;(2)结合正弦函数的值域及函数图象可求.【解答】解:(1),=,=,==,=,令,k∈z解可得,,∴f(x)的单调递增区间为;(2)由得,故.∴f(x)在区间上的值域为[1,]【点评】本题主要考查了诱导公式,差角的余弦公式及辅助角公式在三角化简中的应用,正弦函数的性质的应用,属于中档试题.13.已知函数.(1)求函数f(x)的最小正周期;(2)若函数在的最大值为2,求实数a的值.【分析】(1)直接利用三角函数关系式的变换,把函数的关系式变形成正弦型函数,进一步求出函数的最小正周期.(2)利用分类讨论思想和二次函数的性质的应用求出结果.【解答】解:(1),=(2+2sin x)sin x+1﹣2sin2x﹣1=2sin x.∴T=2π.(2).令sin x﹣cos x=t,则sin2x=1﹣t2.∴,=.∵,由,得,∴.①当,即时,在处.由,解得(舍去).②当,即时,,由,得a2﹣2a﹣8=0,得a=﹣2或a=4(舍去).③当,即a>2时,在t=1处,由,得a=6.综上,a=﹣2或a=6为所求.【点评】本题考查的知识要点:三角函数关系式的恒等变换的应用,正弦型函数的性质的应用,二次函数的性质的应用,主要考察学生的运算能力和转换能力,属于基础题型.14.已知.(1)求f(x)在的值域;(2)若,求的值.【分析】(1)先利用诱导公式及二倍角公式对已知函数进行化简,然后结合正弦函数的性质即可求解;(2)由f(x)=,可求sin(x+)及cos(x+),然后由二倍角的正弦公式即可求解.【解答】解:(1),=,==,∵,∴,∴,∴函数的值域为(2)∵f(x)=,∴sin(x+)=,∴cos(x+)=±,又,∴,∵,∴,或(舍),∴cos(x+)=,∴sin(2x+)=2sin(x+)cos(x)=.【点评】本题主要考查了诱导公式,辅助角公式及同角平方关系和正弦函数的图象及性质的综合应用,属于中档试题15.已知函数.(1)求y=f(x)的单调增区间;(2)当时,求f(x)的最大值和最小值【分析】(1)利用三角恒等变换化简函数为正弦型函数,利用正弦函数的单调性即可得解;(2)求出时f(x)的值域,即可得出f(x)的最大、最小值.【解答】解:(1)=2sin(2x+),令2kπ﹣≤2x+≤2kπ+,k∈Z,解得:kπ≤x≤kπ+,k∈Z,可得y=f(x)的单调递增区间为:;(2)当时,2x+∈[﹣,],∴当2x+=﹣时,即x=﹣时,f(x)取得最小值﹣1;当2x+=时,即x=时,f(x)取得最小值2.即f(x)的最大值为2,最小值为﹣1.【点评】本题考查了三角恒等变换以及三角函数的图象与性质的应用问题,属于基础题.16.已知函数.(1)求函f(x)的最小正周期和单调递增区间;(2)将函数f(x)的图象向右平移个单位后得到函数y=g(x)的图象,求函数y=g(x)在区间上的值域.【分析】(1)利用三角恒等变换化简函数的解析式,再利用正弦函数的单调性,得出结论.(2)根据y=A sin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用正弦函数的定义域和值域,得到结果.【解答】解:(1)f(x)=cos x(sin x+cos x)+=cos x sin x+cos2x+=cos2x+1=,∴f(x)的周期T=,由﹣+2kπ(k∈Z),得﹣+kπ(k∈Z),∴f(x)的单调增区间为;(2)函数f(x)的图象向右平移个单位后,得g(x)==,∵x∈,∴2x﹣,∴,∴g(x)∈,∴g(x)的值域为:.【点评】本题主要考查三角恒等变换,正弦函数的单调性,y=A sin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,属基础题.17.已知函数.(1)求函数f(x)单调递增区间;(2)若f(x)<m在内有解,求m的取值范围.【分析】(1)由三角函数恒等式、二倍角公式,推导出f(x)=sin(2x+),令,能求出函数f(x)的单调递增区间.(2)由,从而,由f(x)<m在内有解,由此能求出m的取值范围.【解答】解:(1)由=,令,解得∴函数f(x)的单调递增区间为.(2)由,∴,由f(x)<m在内有解,∴m>f(x)min,则m>0,∴m的取值范围为(0,+∞).【点评】本题考查实三角函数的增区间、实数的取值范围的求法,考查三角函数的性质等基础知识,考查运算求解能力,是中档题.18.已知f(x)=2sin x cos x+(cos2x﹣sin2x).(1)求函数y=f(x)的最小正周期和对称轴方程;(2)若x∈[0,],求y=f(x)的值域.【分析】(1)将f(x)化简,利用整体法求出f(x)的对称轴和周期即可;(2)根据正弦函数的单调性,求出f(x)的最大值和最小值即可.【解答】解:(1)f(x)=2sin x cos x+(cos2x﹣sin2x)=令,则f(x)的对称轴为,最小正周期;(2)当x∈[0,]时,,因为y=sin x在单调递增,在单调递减,在取最大值,在取最小值,所以,所以f(x)∈[﹣1,2].【点评】本题考查了三角函数的图象与性质和三角函数的化简求值,属基础题.19.已知函数.(1)求函数f(x)的最小正周期及其对称中心;(2)若,求f(x)的最值.【分析】(1)化简f(x),然后利用整体法求出周期和对称轴即可;(2)由条件可得,因此,然后求出f(x)的值域即可.【解答】解:(1)===∴最小正周期为T=,对称中心为;(2)∵,∴,∴,∴,f(x)max=2,∴f(x)的值域为[].【点评】本题考查了三角函数的图象与性质,考查了整体思想,属基础题.20.已知函数f(x)=cos(2x+)+sin2x﹣cos2x+2sin x cos x.(1)化简f(x);(2)若f(α)=,2α是第一象限角,求sin2α.【分析】(1)利用三角函数恒等式、二倍角公式能化简f(x).(2)由f(α)=sin(2)=,2α是第一象限角,即2kπ<2α<+2kπ(k∈Z),从而cos(2)=,再由sin 2α=sin[(2)+],能求出结果.【解答】解:(1)f(x)=cos 2x﹣sin 2x﹣cos 2x+sin 2x=sin 2x﹣cos2x=sin(2x﹣).(2)f(α)=sin(2)=,2α是第一象限角,即2kπ<2α<+2kπ(k∈Z),∴2kπ﹣<2α﹣<+2kπ(k∈Z),∴cos(2)=,∴sin 2α=sin[(2)+]=sin(2)•cos+cos(2)•sin=×+×=.【点评】本题考查三角函数的化简.考查三角函数恒等式、二倍角公式等基础知识,考查运算求解能力,是中档题.。
高中数学(人教A版)必修一课后习题:三角恒等变换的应用(课后习题)【含答案及解析】
三角恒等变换的应用课后篇巩固提升合格考达标练1.(2021济宁高一期末)若tan α=2,则sin2α1+cos 2α=( )A.16 B .13C .23D .1tan α=2,则sin2α1+cos 2α=2sinαcosα2cos 2α+sin 2α=2tanα2+tan 2α=2×22+22=23.故选C .2.化简sin α2+cos α22+2sin 2π4−α2得( )A.2+sin α B .2+√2sin α-π4 C .2 D .2+√2sin α+π4解析原式=1+2sin α2cos α2+1-cos 2π4−α2=2+sin α-cos π2-α=2+sin α-sin α=2. 3.函数f (x )=sin x cos x+cos 2x-1的值域为( ) A.[-√2+12,√2-12] B.[√2-12,√2+12] C.[-1,0] D.[0,12](x )=sin x cos x+cos 2x-1=12sin 2x+1+cos2x 2-1=12sin 2x+12cos 2x-12=√22sin (2x +π4)−12, 因为-1≤sin (2x +π4)≤1,所以y ∈[-√2+12,√2-12].4.函数f (x )=sin 2x-π4-2√2sin 2x 的最小正周期是 .解析f (x )=√22sin 2x-√22cos 2x-√2(1-cos 2x )=√22sin 2x+√22cos 2x-√2=sin 2x+π4-√2,所以T=2π2=π. 5.若3sin x-√3cos x=2√3sin(x+φ),φ∈(-π,π),则φ= . -π6解析因为3sin x-√3cos x=2√3√32sin x-12cos x =2√3sin x-π6,因为φ∈(-π,π),所以φ=-π6. 6.化简:sin4x 1+cos4x ·cos2x 1+cos2x ·cosx1+cosx = .tan x2=2sin2xcos2x 2cos 22x ·cos2x 1+cos2x ·cosx1+cosx=sin2x 1+cos2x ·cosx1+cosx=2sinxcosx 2cos 2x ·cosx1+cosx=sinx 1+cosx =tan x2. 7.已知函数f (x )=4cos 4x -2cos2x -1sin (π4+x )sin (π4-x ). (1)求f (-11π12)的值; (2)当x ∈[0,π4)时,求函数g (x )=12f (x )+sin 2x 的最大值和最小值.f (x )=(1+cos2x )2-2cos2x -1sin (π4+x )sin (π4-x )=cos 22xsin (π4+x )cos (π4+x )=2cos 22x sin (π2+2x )=2cos 22xcos2x=2cos 2x , 所以f (-11π12)=2cos (-11π6)=2cos π6=√3.(2)g (x )=cos 2x+sin 2x=√2sin (2x +π4).因为x ∈[0,π4),所以2x+π4∈[π4,3π4), 所以当x=π8时,g (x )max =√2, 当x=0时,g (x )min =1.等级考提升练8.已知α满足sin α=13,则cos (π4+α)cos (π4-α)= ( )A.718B.2518C.-718D.-2518解析cos (π4+α)cos (π4-α)=cosπ2-π4-α·cosπ4-α=sinπ4-αcosπ4-α=12sinπ2-2α=12cos 2α=12(1-2sin 2α)=12(1-2×19)=718,故选A .9.(2021黑龙江哈尔滨道里高一期末)已知函数f (x )=sin 2x+2√3sin x cos x-cos 2x ,x ∈R ,则( ) A.f (x )的最大值为1B .f (x )在区间(0,π)上只有1个零点C .f (x )的最小正周期为π2 D .x=π3为f (x )图象的一条对称轴 解析函数f (x )=sin 2x+2√3sin x cos x-cos 2x=√3sin 2x-cos 2x=2√32sin 2x-12cos 2x =2sin 2x-π6,可得f (x )的最大值为2,最小正周期为T=2π2=π,故A,C 错误;由f (x )=0,可得2x-π6=k π,k ∈Z ,即为x=kπ2+π12,k ∈Z ,可得f (x )在(0,π)内的零点为π12,7π12,故B 错误;由fπ3=2sin2π3−π6=2,可得x=π3为f (x )图象的一条对称轴,故D 正确.故选D .10.设a=2sin 13°cos 13°,b=2tan13°1+tan 213°,c=√1-cos50°2,则有( )A.c<a<bB.a<b<cC.b<c<aD.a<c<ba=2sin 13°cos 13°=sin 26°,b=2tan13°1+tan 213°=tan 26°,c=√1-cos50°2=sin 25°,且正弦函数y=sin x 在区间[0,π2]上单调递增,所以a>c ;在区间[0,π2]上tan α>sin α,所以b>a ,所以c<a<b ,故选A . 11.已知函数f (x )=sin x+λcos x 的图象的一个对称中心是点(π3,0),则函数g (x )=λsin x cos x+sin 2x 的图象的一条对称轴是直线( ) A.x=5π6B.x=4π3C.x=π3D.x=-π3f (x )=sin x+λcos x 的图象的一个对称中心是点(π3,0),所以f (π3)=0,即sin π3+λcos π3=0,解得λ=-√3,故g (x )=-√3sin x cos x+sin 2x ,整理得g (x )=-sin (2x +π6)+12,所以对称轴直线方程为2x+π6=k π+π2(k ∈Z ),当k=-1时,一条对称轴是直线x=-π3.12.(多选题)(2020福建福州一中高一期末)以下函数在区间0,π2上单调递增的有( ) A.y=sin x+cos x B.y=sin x-cos x C .y=sin x cos xD .y=sinxcosx解析对于A 选项,y=sin x+cos x=√2sin x+π4,当x ∈0,π2时,x+π4∈π4,3π4,所以函数在区间0,π2上不单调;对于B 选项,y=sin x-cos x=√2sin x-π4,当x ∈0,π2时,x-π4∈-π4,π4,所以函数在区间0,π2上单调递增;对于C 选项,y=sin x cos x=12sin 2x ,当x ∈0,π2时,2x ∈(0,π),所以函数在区间0,π2上不单调;对于D 选项,当x ∈0,π2时,y=sinxcosx=tan x ,所以函数在区间0,π2上单调递增.13.(多选题)(2020山东枣庄高一期末)设函数f (x )=sin 2x+π4+cos 2x+π4,则f (x )( ) A.是偶函数B.在区间0,π2单调递减 C .最大值为2D .其图象关于直线x=π2对称解析f (x )=sin 2x+π4+cos 2x+π4=√2sin 2x+π4+π4=√2cos 2x.f (-x )=√2cos(-2x )=√2cos 2x=f (x ),故f (x )是偶函数,A 正确;∵x ∈0,π2,所以2x ∈(0,π),因此f (x )在区间0,π2上单调递减,B 正确;f (x )=√2cos 2x 的最大值为√2,C 不正确;当x=π2时,f (x )=√2cos 2×π2=-√2,因此当x=π2时,函数有最小值,因此函数图象关于x=π2对称,D 正确.14.已知cos θ=-725,θ∈(π,2π),则sin θ2+cos θ2的值为 .解析因为θ∈(π,2π),所以θ2∈π2,π,所以sin θ2=√1-cosθ2=45,cos θ2=-√1+cosθ2=-35, 所以sin θ2+cos θ2=15.15.化简:tan 70°cos 10°(√3tan 20°-1)= .1 解析原式=sin70°cos70°·cos 10°·√3sin20°cos20°-1=sin70°cos70°·cos 10°·√3sin20°-cos20°cos20°=sin70°cos70°·cos 10°·2sin (-10°)cos20°=-sin70°cos70°·sin20°cos20°=-1. 16.已知函数f (x )=4tan x sin (π2-x)cos (x -π3)−√3.(1)求f (x )的定义域与最小正周期; (2)讨论f (x )在区间[-π4,π4]上的单调性.f (x )的定义域为{x |x ≠π2+kπ,k ∈Z}.f (x )=4tan x cos x cos (x -π3)−√3 =4sin x cos (x -π3)−√3 =4sin x (12cosx +√32sinx)−√3 =2sin x cos x+2√3sin 2x-√3=sin 2x+√3(1-cos 2x )-√3 =sin 2x-√3cos 2x=2sin (2x -π3). 所以f (x )的最小正周期T=2π2=π.(2)令z=2x-π3,函数y=2sin z 的单调递增区间是[-π2+2kπ,π2+2kπ],k ∈Z .由-π2+2k π≤2x-π3≤π2+2k π,k ∈Z ,得-π12+k π≤x ≤5π12+k π,k ∈Z . 设A=[-π4,π4],B=x -π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B=[-π12,π4].所以,当x ∈[-π4,π4]时,f (x )在区间[-π12,π4]上单调递增,在区间[-π4,-π12]上单调递减.新情境创新练17.如图,某污水处理厂要在一个矩形ABCD 的池底水平铺设污水净化管道(Rt △EFG ,E 是直角顶点)来处理污水,管道越长,污水净化效果越好,设计要求管道的接口E 是AB 的中点,F ,G 分别落在AD ,BC 上,且AB=20 m,AD=10√3 m,设∠GEB=θ.(1)试将污水管道的长度l 表示成θ的函数,并写出定义域; (2)当θ为何值时,污水净化效果最好,并求此时管道的长度.由题意,∠GEB=θ,∠GEF=90°,则∠AEF=90°-θ.∵E 是AB 的中点,AB=20 m,AD=10√3 m . ∴EG=10cosθ,EF=10cos (90°-θ)=10sinθ. ∴FG=√EG 2+EF 2=10cosθsinθ. 则l=10sinθ+10cosθ+10sinθcosθ,定义域θ∈π6,π3.(2)由(1)可知,l=10sinθ+10cosθ+10sinθcosθ,θ∈π6,π3.化简可得l=10(sinθ+cosθ)+10sinθcosθ.令t=sin θ+cos θ=√2sin θ+π4.∵θ∈π6,π3,∴θ+π4∈5π12,7π12,可得sin θ+π4∈√6+√24,1,则t ∈√3+12,√2.可得sin θcos θ=t 2-12,且t ≠1, 那么l=10+10t t 2-12=20(1+t )t 2-1=20t -1. 当t=√3+12时,l 取得最大值为20(1+√3).此时t=√2sin θ+π4=√3+12,即θ+π4=5π12或7π12,∴θ=π6或π3.故当θ=π6或π3时,污水净化效果最好,此时管道的长度为20(1+√3)m .。
高一数学三角恒等变换试题答案及解析
高一数学三角恒等变换试题答案及解析1.若x=,则sin4x-cos4x的值为A.-B.-C.-D.-【答案】D【解析】因为==-,所以-=-=-,故选D。
【考点】本题主要考查二倍角的余弦公式、同角公式。
点评:二倍角的余弦公式具有多种形式,是高考考查的重点内容之一。
此类问题往往是先化简,再求值。
2.已知是方程的两个根,且,则的值为( ) A.B.C.D.【答案】B【解析】因为是方程的两个根,所以,因此:因为,所以则或而,则,故选B.【考点】本题主要考查两角和的正切公式。
点评:首先利用韦达定理求出,,再由两角差的正切公式对其进行化简,进一步求角。
此类问题,要注意角的范围。
3.设()【答案】B【解析】,故选B。
【考点】本题主要考查两角和与差的正切公式。
点评:本题主要找已知角与要求的角的关系:,采取整体思想,再利用两角和与差的正切公式.“变角”是常用技巧之一,属常考题型。
4. .【答案】【解析】【考点】本题主要考查两角和与差的正切公式。
点评:要注意公式的变形使用和逆向使用,注意公式的灵活运用。
5.已知,是方程的两根,求的值.【答案】【解析】为方程的两根,,而所以,.【考点】本题主要考查两角和与差的正切公式。
点评:利用韦达定理,两角和的正切公式及同角三角函数关系,先化简,再求值.“ 变角”是常用技巧。
6.是否存在锐角和,使得:(1) (2)同时成立?若存在,求及的值;若不存在,说明理由。
【答案】存在锐角,使得(1)、(2)同时成立。
【解析】由(1)将(2)代入上式则、是的两根,解之得由于,从而,将代入(1)式得:存在锐角,使得(1)、(2)同时成立。
【考点】本题主要考查两角和与差的正切公式。
点评:利用韦达定理,通过构造一元二次方程,简化了解题过程.存在性问题,常常从已知出发加以探究。
7.若,则=()A.B.C.D.【答案】B【解析】因为,所以=,即,cos=,所以=,故选B。
【考点】本题主要考查“倍半公式”、诱导公式、同角公式的应用点评:此类问题,主要是通过三角恒等变换先“化一”,再求值。
高一数学三角恒等变换试题答案及解析
高一数学三角恒等变换试题答案及解析1.已知函数,,且求的值;设,,,求的值.【答案】(1);(2).【解析】(1)利用公式化简,要熟练掌握公式,不要把符号搞错,很多同学化简不正确;(2)求解较复杂三角函数的时,寻求角与角之间的关系,化非特殊角为特殊角;正确灵活运用公式,通过三角变换消去或约去一些非特殊角的三角函数值,注意题中角的范围;;(3)要注意符号,有时正负都行,有时需要舍去一个;(4)三角函数的给值求值的问题一般是正用公式将“复角”展开,看需要求相关角的哪些三角函数值,然后根据角的范围求出相应角三角函数值,代入展开即可,注意角的范围.试题解析:解:(1),解得. 5分(2),即,,即. 8分因为,所以,,所以. 12分【考点】(1)三角函数给值求值,(2)诱导公式的应用.2.化简得到()A.B.C.D.【答案】A【解析】【考点】三角函数的诱导公式和倍角公式.3.【答案】【解析】本题为由切求弦,由已知利用两角差的正切公式计算可得的值,并将已知化为正切的形式,考虑恒等变化故在原式填一分母,然后弦化切(分子分母同除以).试题解析:因为所以所以 3分故 7分10分【考点】由切求弦.4.已知、、是△的三内角,向量,且,,求.【答案】.【解析】首先运用内角和定理将问题转化为,这样只要研究、的三角函数值即可,由条件可以建立两个关于、的方程,可解出关于、的三角函数值,进而求出的值.试题解析:由,得,即 1分而∴∴, 3分7分∴ 9分∴为锐角,∴ 10分13分【考点】三角恒等变换中的求值问题.5.已知,则 .【答案】【解析】两式平方相加并整理得,所以.注意公式的结构特点,从整体去解决问题.【考点】三角恒等变换.6. (cos- sin) (cos+sin)= ()A.B.C.D.【答案】【解析】显然上式满足平方差公式,所以其等于,发现符合余弦二倍角公式,所以等于.【考点】三角化简.7.已知=2,则的值为;的值为_____.【答案】【解析】,又,,。
高一数学三角恒等变换含答案
【例题四】
在三角形 ABC 中,三内角分别是 A、B、C,若 sin C=2cos Asin B,则三角形 ABC 的形
状是__________三角形.
【解析】∵sin C=sin(A+B) =sin Acos B+cos Asin B =2cos Asin B, ∴sin Acos B-cos Asin B=0. 即 sin(A-B)=0,∴A=B.
15° 15°=sin
1 15°cos
2 15°=sin 30°=4.
【练习一】 sin 15°cos 75°+cos 15°sin 105°=________.
【练习二】
sin 68°-cos 60°sin 8° 式子cos 68°+sin 60°sin 8°的值是________
【题型二】给值求值 给出某些角的三角函数值,求另外一些角的三角函数值,解题的关键在于变角,使其角相同 或有某种关系。
【例题一】
1 tan 15°+tan 15°=________
【解析】原式=scions
15° cos 15°+sin
15° 15°=sin
1 15°cos
2 15°=sin 30°=4.
【练习一】
sin 15°cos 75°+cos 15°sin 105°=________.
【解析】原式=sin 15°cos 75°+cos 15°sin 75°=sin 90°=1.
三角恒等变换每日一练
【题型一】给角求值 一般所给出的角都是非特殊的角,从表面上来看是很难的,但是观察非特殊的角总有一定的 关系,解题时要利用观察得到的关系,结合公式转化为特殊角并消除非特殊角的三角函数来 求解。
【例题一】
1 tan 15°+tan 15°=________
高一数学三角函数三角恒等变换解三角形试题答案及解析
高一数学三角函数三角恒等变换解三角形试题答案及解析1.(本小题满分12分)已知函数.(1)化简;(2)已知常数,若函数在区间上是增函数,求的取值范围;(3)若方程有解,求实数a的取值范围.【答案】(1)f(x)(2)(3)【解析】(1)························· 4分(2) ∵由∴的递增区间为∵在上是增函数∴当k = 0时,有∴解得∴的取值范围是····················· 8分(3) 解一:方程即为从而问题转化为方程有解,只需a在函数的值域范围内∵当;当∴实数a的取值范围为················ 12分解二:原方程可化为令,则问题转化为方程在[– 1,1]内有一解或两解,设,若方程在[– 1,1]内有一个解,则解得若方程在[– 1,1]内有两个解,则解得∴实数a的取值范围是[– 2,]2.已知函数(1)求函数f(x)的最小正周期及单调递增区间;(2)在中,A、B、C分别为三边所对的角,若a=f(A)=1,求的最大值.【答案】(1),单调增区间;(2)【解析】(1)首先借助于基本三角函数公式将函数式化简为的最简形式,周期由的系数求解,求增区间需令,解得的范围得到单调区间;(2)中由的值求得角,借助于三角形余弦定理可得到关于两边的关系式,进而结合不等式性质得到关于的不等式,求得范围试题解析:(1),所以函数的最小正周期为.由得所以函数的单调递增区间为.(2)由可得,又,所以。
人教版必修4高一数学第三章《-三角恒等变换》测试题(A卷)及答案
审查意见:
□ 同意使用。 □ 不同意使用。
项目监理部(章):
专业监理工程师(签字ห้องสมุดไป่ตู้:
年月日
123)
2、大型设备开箱检查建设单位、设计单位代表应参加。
第五版表 江苏省住房和城乡建设厅监制
工程材料、构配件、设备报审表
工程名称:—
致:(项目监理机构)
于年月日进场的拟用于工程部位的,经我方检验合格,现将相关资料报上,请予以审查。
附件:
□ 工程材料/构配件/设备清单
□ 质量证明文件
□ 自检结果
□ 复试报告
□
本次报审内容系第次报审。
施工项目经理部(章):
项目经理(签字):
年月日
项目监理机构签收人姓名及时间
高中数学必修三角恒等变换测试题3含答案
三角恒等变换一、选择题10=( )A .1B .2C D2.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于( )A .3-B .2-C .1-D .3.函数2sin cos y x x x =+的图象的一个对称中心是( )A.2(,3πB.5(,6πC.2(3π-D.(,3π 4.△ABC 中,090C ∠=,则函数2sin 2sin y A B =+的值的情况( )A .有最大值,无最小值B .无最大值,有最小值C .有最大值且有最小值D .无最大值且无最小值5.0000(1tan 21)(1tan 22)(1tan 23)(1tan 24)++++ 的值是( )A.16B.8C.4D.2 6.当04x π<<时,函数22cos ()cos sin sin x f x x x x =-的最小值是( ) A .4 B .21C .2 D .41 二、填空题 1.给出下列命题:①存在实数x ,使3sin cos 2x x +=; ②若,αβ是第一象限角,且αβ>,则cos cos αβ<; ③函数2sin()32y x π=+是偶函数;④函数sin 2y x =的图象向左平移4π个单位,得到函数sin(2)4y x π=+的图象. 其中正确命题的序号是____________.(把正确命题的序号都填上)2.函数xx y sin 12tan-=的最小正周期是___________________。
3.已知sin cos αβ+13=,sin cos βα-12=,则sin()αβ-=__________。
4.函数x x y cos 3sin +=在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为. 5.函数(cos sin )cos y a x b x x =+有最大值2,最小值1-,则实数a =____,b =___三、解答题1.已知函数()sin()cos()f x x x θθ=+++的定义域为R ,(1)当0θ=时,求()f x 的单调区间;(2)若(0,)θπ∈,且sin 0x ≠,当θ为何值时,()f x 为偶函数.2.已知△ABC 的内角B 满足2cos 28cos 50,B B -+=,若BC a =u u u r r ,CA b =u u u r r 且,a b r r 满足:9a b =-r r g ,3,5a b ==r r ,θ为,a b r r 的夹角.求sin()B θ+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修4第三章《三角恒等变换》测试题A 卷考试时间:100分钟,满分:150分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.计算1-°的结果等于 ( )2.cos39°cos(-9°)-sin39°sin(-9°)等于 ( )C .-12D .-323.已知cos ⎝ ⎛⎭⎪⎫α-π4=14,则sin2α的值为 ( ) B .-78 D .-344.若tan α=3,tan β=43,则tan(α-β)等于 ( )A .-3B .-13C .35.cos 275°+cos 215°+cos75°·cos15°的值是( )D .1+236.y =cos 2x -sin 2x +2sin x cos x 的最小值是 ( ) B .- 2 C .2D .-27.已知sin ⎝ ⎛⎭⎪⎫α-π3=13,则cos ⎝ ⎛⎭⎪⎫π6+α的值为 ( ) B .-13D .-233等于 ( ) C .29.把12[sin2θ+cos(π3-2θ)]-sin π12cos(π12+2θ)化简,可得 ( )A .sin2θB .-sin2θC .cos2θD .-cos2θ10.已知3cos(2α+β)+5cos β=0,则tan(α+β)·tan α的值为 ( ) A .±4 B .4 C .-4 D .1 二、填空题(每小题6分,共计24分). 11.(1+tan17°)(1+tan28°)=________.12.化简3tan12°-3sin12°·4cos 212°-2的结果为________. 13.若α、β为锐角,且cos α=110,sin β=25,则α+β=______.14.函数f (x )=sin ⎝⎛⎭⎪⎫2x -π4-22sin 2x 的最小正周期是________.三、解答题(共76分).15.(本题满分12分)已知cos α-sin α=352,且π<α<32π,求sin2α+2sin 2α1-tan α的值.16.(本题满分12分)已知α、β均为锐角,且cos α=25,sin β=310,求α-β的值.17.(本题满分12分)求证:1sin 210°-3cos 210°=32cos20°. 18.(本题满分12分)已知-π2<α<π2,-π2<β<π2,且tan α、tan β是方程x 2+6x +7=0的两个根,求α+β的值.19.(本题满分14分)已知-π2<x <0,sin x +cos x =15,求:(1)sin x -cos x 的值;(2)求3sin 2x 2-2sin x 2cos x2+cos2x2tan x +1tan x的值.20.(本题满分14分)已知函数f (x )=12sin2x sin φ+cos 2x cos φ-12sin ⎝ ⎛⎭⎪⎫π2+φ(0<φ<π),其图象过点⎝ ⎛⎭⎪⎫π6,12. (1)求φ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值.高中数学必修4第三章《三角恒等变换》测试题A 卷参考答案一、选择题1. 【答案】B.【解析】 1-°=cos45°=22,故选B. 2. 【答案】B.【解析】 cos39°cos(-9°)-sin39°sin(-9°)=cos(39°-9°)=cos30°=32. 3. 【答案】B.【解析】 sin2α=cos(2α-π2)=2cos 2⎝⎛⎭⎪⎫α-π4-1=-78. 4. 【答案】 D【解析】 tan(α-β)=tan α-tan β1+tan αtan β=3-431+3×43=13. 5. 【答案】 A【解析】 原式=sin 215°+cos 215°+sin15°cos15°=1+12si n30°=54.6. 【答案】 B【解析】y =cos2x +sin2x =2sin(2x +π4),∴y max =- 2.7. 【答案】B.【解析】 cos ⎝ ⎛⎭⎪⎫π6+α=sin ⎝ ⎛⎭⎪⎫π2-π6-α =sin ⎝ ⎛⎭⎪⎫π3-α=-sin ⎝ ⎛⎭⎪⎫α-π3=-13. 8.【答案】C.【解析】 3-sin70°2-cos 210°=3-sin70°2-1+cos20°2=23-cos20°3-cos20°=2. 9.【答案】A.【解析】原式=12[cos(π2-2θ)+cos(π3-2θ)]-sin π12cos(π12+2θ)=cos(5π12-2θ)cos π12-sin π12sin(5π12-2θ)=cos[(5π12-2θ)+π12]=cos(π2-2θ)=sin2θ. 10.【答案】C.【解析】 3cos[(α+β)+α]+5cos β=0,即3cos(α+β)cos α-3sin(α+β)sin α+5cos β=0.3cos(α+β)cos α-3sin(α+β)sin α+5cos[(α+β)-α]=0,3cos(α+β)cos α-3sin(α+β)sin α+5cos(α+β)·cos α+5sin(α+β)sin α=0,8cos(α+β)cos α+2sin(α+β)sin α=0,8+2tan(α+β)tan α=0,∴tan(α+β)tan α=-4. 二、 填空题 11. 【答案】 2【解析】原式=1+tan17°+tan28°+tan17°·tan28°,又tan(17°+28°)=tan17°+tan28°1-tan17°·tan28°=tan45°=1,∴tan17°+tan28°=1-tan17°·tan28°,代入原式可得结果为2.12.【答案】-43【解析】3tan12°-3sin12°·4cos 212°-2=3tan12°-32sin12°·cos24° =3tan12°-32cos12°2sin12°·cos12°·2cos24°=23sin 12°-6cos12°sin48°=43sin12°·cos60°-cos12°·sin60°sin48° =-43sin48°sin48°=-4 3.13.【答案】3π4【解析】∵α、β为锐角,∴sin α=31010,cos β=55,∴cos(α+β)=cos αcos β-sin αsin β=1010×55-31010×255=-22<0,又0<α<π2,0<β<π2,∴π2<α+β<π. ∴α+β=3π4. 14.【答案】π【解析】f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4-22sin 2x =sin ⎝ ⎛⎭⎪⎫2x -π4-2(1-cos2x ) =sin2x cos π4-sinπ4cos2x +2cos2x -2正周期为π.三、 解答题15. 解: 因为cos α-sin α=325,所以1-2sin αcos α=1825,所以2sin αcos α=725.又α∈(π,3π2),故sin α+cos α=-1+2sin αcos α=-425,所以sin2α+2sin 2α1-tan α=2sin αcos α+2sin 2αcos αcos α-sin α=2sin αcos αcos α+sin αcos α-sin α=725×-425325=-2875.16. 解: 已知α、β均为锐角,且cos α=25,则sin α=1-252=15.又∵sin β=310,∴cos β=1-3102=110.∴sin(α-β)=sin αcos β-cos αsin β =15×110-25×310=-550=-22.又∵sin α<sin β,∴0<α<β<π2.∴-π2<α-β<0.∴α-β=-π4.17. 证明:左边=11-cos20°2-31+cos20°2=21-cos20°-61+cos20°=8cos20°-41-cos 220°=8cos20°-12sin 220° =8cos20°-cos60°sin 220°=8[cos40°-20°-cos40°+20°]sin 220°=16sin40°sin20°sin 220°=32sin 220°cos20°sin 220° =32cos20°=右边,∴原式成立.18. 解: 由题意知tan α+tan β=-6,tan αtan β=7 ∴tan α<0,tan β<0. 又-π2<α<π2,-π2<β<π2,∴-π2<α<0,-π2<β<0.∴-π<α+β<0.∵tan(α+β)=tan α+tan β1-tan αtan β=-61-7=1,∴α+β=-3π4.19. 解:(1)由sin x +cos x =15,得2sin x cos x =-2425.∵(sin x -cos x )2=1-2sin x cos x =4925,∵-π2<x <0.∴sin x <0,cos x >0.∴sin x -cos x <0.故sin x -cos x =-75.(2)3sin 2x 2-2sin x 2cos x2+cos2x2tan x +1tan x=2sin 2x2-sin x +1sin x cos x +cos xsin x=sin x cos x ⎝ ⎛⎭⎪⎫2sin 2x2-sin x +1=sin x cos x [2(1-cos 2x2)-sin x +1)]=sin x cos x ⎝ ⎛⎭⎪⎫1-2cos 2x2+2-sin x=sin x cos x (-cos x +2-sin x ) =⎝ ⎛⎭⎪⎫-1225×⎝ ⎛⎭⎪⎫2-15 =-108125. 20. 解:(1)因为f (x )=12sin2x sin φ+cos 2x cos φ-12sin ⎝ ⎛⎭⎪⎫π2+φ(0<φ<π),所以f (x )=12sin2x sin φ+1+cos2x 2cos φ-12cos φ=12sin2x sin φ+12cos2x cos φ =12(sin2x sin φ+cos2x cos φ) =12cos(2x -φ). 又函数图象过点⎝ ⎛⎭⎪⎫π6,12, 所以12=12cos ⎝ ⎛⎭⎪⎫2×π6-φ,即cos ⎝ ⎛⎭⎪⎫π3-φ=1.又0<φ<π,∴φ=π3.(2)由(1)知f (x )=12cos ⎝⎛⎭⎪⎫2x -π3.将f (x )图象上所有点的横坐标缩短到原来的12,纵坐标不变,变为g (x )=12cos ⎝⎛⎭⎪⎫4x -π3.∵0≤x ≤π4,∴-π3≤4x -π3≤2π3.当4x -π3=0,即x =π12时,g (x )有最大值12;当4x -π3=2π3,即x =π4时,g (x )有最小值-14.。