22.3 第1课时 二次函数与图形面积

合集下载

(人教版)最新九年级数学上册教材配套教学课件:22.3.1 实际问题与二次函数(一)——几何图形的最大面积

(人教版)最新九年级数学上册教材配套教学课件:22.3.1 实际问题与二次函数(一)——几何图形的最大面积

t/s
动中的最大高度是 45 m.
例1 用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化 而变化.当l是多少时,场地的面积S最Байду номын сангаас?
1.矩形面积公式是什么? 2.如何用l表示另一边? 3.面积S的函数关系式是什么?
l 30-l
S=l(30-l), 即 S=-l2+30l (0<l<30).
速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过 3 秒,
C 四边形APQC的面积最小.
Q
A P 图1 B
3.已知直角三角形的两直角边之和为8,两直角边分别为多少时,此三角形
的面积最大?最大值是多少?
解:设一直角边长为x,则另一直角边长为 (8 x ),
依题意得:
S 1 x(8 x) 2
0<60-2x≤32,即14≤x<30.
32
5.如何求最值? S=x(60-2x)=-2x2+60x(14≤x<30)
最值在其顶点处,即当x=15m时,S=450m2.
如图,用一段长为60m的篱笆围成一个一边靠墙的矩形菜园,墙长18m,
这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
1.变式2与变式1有什么异同?
当 x b 时,二次函数 y = ax 2 + bx + c 有最小(大) 值 y 4ac b2 .
2a
4a
t
b 2a
2
30 (
5)
3,
h/m
40
h= 30t - 5t 2
h
4ac b2 4a
302 4 ( 5)
45.
20
小球运动的时间是 3s 时,小球最高.小球运 O 1 2 3 4 5 6

人教版九年级数学上册 22.3.1 实际问题与二次函数--最大面积教案

人教版九年级数学上册  22.3.1 实际问题与二次函数--最大面积教案

1 / 223.3.1实际问题与二次函数——图形面积的最值问题一、教学目标:能够表示实际问题中变量之间的二次函数关系,会运用二次函数的顶点坐标求出实际问题的最大值(或最小值)。

二、教学重点:探究利用二次函数的最大值(或最小值)解决实际问题的方法。

三、教学过程:课前准备:写出下列抛物线的开口方向、对称轴和顶点坐标,并写出其最值.(1) (配方法) (2) (公式法) 问题1 二次函数的最值由什么决定? 归纳:实数范围内二次函数的最值在 顶点 取得, 即当时,求下列函数的最大值和最小值求函数最值的方法归纳(1)当自变量的范围没有限制时,二次函数的最值在顶点取得 (2)当自变量的范围有限制时,二次函数的最值可以根据以下步骤来确定1. 转化为顶点式求出顶点坐标及对称轴2. 判断x 的取值范围与对称轴的位置关系.3. 根据二次函数的性质,确定当x 取何值时函数有最大或最小值.4. 然后根据x 的值,求出函数的最值.例1:用总长为20m 的篱笆围成矩形场地,矩形面积S 随矩形一边长x 的变化而变化。

当x 是多少时,场地的面积S 最大?A BD2 / 2 变式:1、如图,用总长20米的篱笆围成一个一面靠墙的矩形菜园,墙长14米,设菜园垂直于墙的一边为x 米,面积为y 平方米。

(1)求y 与x 的函数关系式及自变量的取值范围;(2)怎样围才能使菜园的面积最大?最大面积是多少?2、如图,用总长20米的篱笆围成一个一面靠墙的矩形菜园,墙长8米,设菜园垂直于墙的一边为x 米,面积为y 平方米。

(1)求y 与x 的函数关系式及自变量的取值范围;(2)怎样围才能使菜园的面积最大?最大面积是多少?课堂小结(1) 如何求二次函数的最小(大)值,并利用其解决实际问题?(2) 在解决问题的过程中应注意哪些问题?你学到了哪些思考问题的方法? 拓展练习1:如图,在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从A 始向B 以1cm/s 的速度移动,点Q 从B 开始向C 以2cm/s 的速度移动。

九年级数学人教版(上册)22.3第1课时二次函数与图形面积

九年级数学人教版(上册)22.3第1课时二次函数与图形面积
C
Q
A P 图1 B
侵权必究
当堂练习
4、如图,四边形的两条对角线AC、BD互相垂直,AC+ BD=10,当AC、BD的长是多少时,四边形ABCD的面 积最大?
解:设AC=x,四边形ABCD面积为y,
则BD=(10-x).
y 1 x(10 x) 1 ( x 5)2 25 .
2
2
2
当x=5时, y有最大值 25 . 2
S 60 x • x 1 x2 30x 1 (x 30)2 450
2
2
2
侵权必究
问题4 当x=30时,S取最大值,此结论是否正确?
不正确.
问题5 如何求自变量的取值范围?
0 < x ≤18.
问题6 如何求最值?
由于30 >18,因此只能利用函数的增减性求其最值. 当x=18时,S有最大值是378.
侵权必究
讲授新课
✓ 典例精讲 ✓ 归纳总结
侵权必究
讲授新课
1
合作探究
求二次函数得最大(或最小)值
问题1
二次函数 y ax2 bx c 的最值由什么决定?
y
x b
2a
y 最大值
x b 2a
O
x
最小值
O
x
二次函数 y ax2 bx c 的最值由a及自变量的取值范围决定.
侵权必究
讲授新课
变式2 如图,用一段长为60m的篱笆围成一个一边靠墙的矩
形菜园,墙长18m,这个矩形的长、宽各为多少时,菜园的面 积最大,最大面积是多少?
问题1 变式2与变式1有什么异同? 问题2 可否模仿变式1设未知数、列函数关系式? x
问题3 可否试设与墙平行的一边为x米?则如何表示另一边与

【最新】新人教版九年级数学上册四清导航同步习题精讲课件22.3.1二次函数与图形面积

【最新】新人教版九年级数学上册四清导航同步习题精讲课件22.3.1二次函数与图形面积

5.(4分)用一定长度的绳子围成一个矩形,若矩形的一边长 x(m)与面积y(m2)满足关系式y=-(x-12)2+144(0<x<24), 144 ,此时x=____ 12 . 则该矩形面积的最大值为____
6.(4分)某农场要盖一排三间长方形的羊圈,打算一面利用长 为16 m的旧墙,其余各面用木材围成栅栏,栅栏的总长为24 m, 设每间羊圈与墙垂直的一边长为x(m),三间羊圈的总面积为 S(m2),则S与x的函数关系式为 S=-4x2+24x ,x的取值范围 3 2≤x<6 ,当x=____ 是 时,面积S最大, 36m2 最大面积为____ .
2
8.(8分)手工课上,小明准备做一个形状是菱形的风筝, 这个菱形的两条对角线长度之和恰好为60 cm,菱形的面积 S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而 变化.
(1)请直接写出S与x之间的函数解析式(不要求写出自变量 x的取值范围);
(2)当x是多少时,菱形风筝的面积S最大?最大面积是多 少?
11.如图所示,已知正方形 ABCD 的边长为 1,E,F,G,H 分别为各边上的点,且 AE=BF=CG=DH,设小正方形 EFGH 的面 2 积为 S,AE 为 x,则 S 关于 x 的函数解析式为 S=2x -2x+1 , 1 当 x=____ 2 时,S 的值最小.
三、解答题(共 42 分) 12.(12 分)某高中学校为高一新生设计的学生单人桌的抽屉部分 是长方体,抽屉底面周长为 180 cm,高为 20 cm,请通过计算说明, 当底面的宽 x 为何值时, 抽屉的体积 y 最大?最大为多少?(材质及其 厚度等暂忽略不计)
1 1 2 解:(1)S= ·x(60-x)=- x +30x 2 2
1 2 1 b (2)∵S=- x +30x, a=- <0, ∴S 有最大值, ∴当 x=- = 2 2 2a 1 2 4 ×(- )× 0 - 30 2 4ac-b 2 30 - =30 时, S 有最大值为 = = 1 4a 1 2×(- ) 4×(- ) 2 2 450.∴当 x 为 30 cm 时,菱形风筝的的面积最大,为 450 cm2

桐城市第三中学九年级数学上册第二十二章二次函数22.3实际问题与二次函数第1课时几何图形的最大面积教

桐城市第三中学九年级数学上册第二十二章二次函数22.3实际问题与二次函数第1课时几何图形的最大面积教

22.3 实际问题与二次函数第1课时 几何图形的最大面积1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系. 2.会运用二次函数求实际问题中的最大值或最小值. 3.能应用二次函数的性质解决图形中最大面积问题.一、情境导入孙大爷要围成一个矩形花圃.花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米,矩形ABCD 的面积为S 平方米.当x 为何值时,S 有最大值?并求出最大值.二、合作探究探究点:最大面积问题【类型一】利用二次函数求最大面积小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?解析:利用矩形面积公式就可确定二次函数.(1)矩形一边长为x ,则另一边长为60-2x2,从而表示出面积;(2)利用配方法求出顶点坐标. 解:(1)根据题意,得S =60-2x 2·x =-x 2+30x .自变量x 的取值范围是0<x <30.(2)S =-x 2+30x =-(x -15)2+225,∵a =-1<0,∴S 有最大值,即当x =15(米)时,S 最大值=225平方米.方法总结:二次函数与日常生活的例子还有很多,体现了二次函数这一数学模型应用的广泛性.解决这类问题关键是在不同背景下学会从所给信息中提取有效信息,建立实际问题中变量间的二次函数关系.【类型二】利用二次函数判断面积取值成立的条件用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x 米,面积为y平方米.(1)求y 关于x 的函数关系式;(2)当x 为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.解析:(1)先表示出矩形的另一边长,再利用矩形的面积公式表示出函数关系式;(2)已知矩形的面积,可以转化为解一元二次方程;(3)求出y 的最大值,与70比较大小,即可作出判断.解:(1)y =x (16-x )=-x 2+16x (0<x <16);(2)当y =60时,-x 2+16x =60,解得x 1=10,x 2=6.所以当x =10或6时,围成的养鸡场的面积为60平方米;(3)方法一:当y =70时,-x 2+16x =70,整理得:x 2-16x +70=0,由于Δ=256-280=-24<0,因此此方程无实数根,所以不能围成面积为70平方米的养鸡场.方法二:y =-x 2+16x =-(x -8)2+64,当x =8时,y 有最大值64,即能围成的养鸡场的最大面积为64平方米,所以不能围成70平方米的养鸡场.方法总结:与面积有关的函数与方程问题,可通过面积公式列出函数关系式或方程.【类型三】最大面积方案设计施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM 为12米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系(如图所示).(1)直接写出点M 及抛物线顶点P 的坐标; (2)求出这条抛物线的函数关系式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB ,使A 、D 点在抛物线上,B 、C 点在地面OM 上.为了筹备材料,需求出“脚手架”三根木杆AB 、AD 、DC 的长度之和的最大值是多少,请你帮施工队计算一下.解:(1)M (12,0),P (6,6).(2)设这条抛物线的函数关系式为y =a (x -6)2+6,因为抛物线过O (0,0),所以a (0-6)2+6=0,解得,a =-16,所以这条抛物线的函数关系式为:y =-16(x -6)2+6,即y=-16x 2+2x .(3)设OB =m 米,则点A 的坐标为(m ,-16m 2+2m ),所以AB =DC =-16m 2+2m .根据抛物线的轴对称,可得OB =CM =m ,所以BC =12-2m ,即AD =12-2m ,所以l =AB +AD +DC =-16m 2+2m +12-2m -16m 2+2m =-13m 2+2m +12=-13(m -3)2+15.所以当m =3,即OB =3米时,三根木杆长度之和l 的最大值为15米.三、板书设计教学过程中,强调学生自主探索和合作交流,引导学生设计有助于学生设计表格,经历计算、观察、分析、比较的过程,直观地看出变化情况.8 圆内接正多边形1.掌握正多边形和圆的关系.2.理解正多边形的中心、半径、中心角、边心距等概念.3.能运用正多边形的知识解决圆的有关计算问题.4.能利用尺规作一个已知圆的内接正多边形.重点掌握正多边形的概念与正多边形和圆的关系,并能进行有关计算.难点正多边形的半径、边心距及边长的计算问题转化为解直角三角形的问题.一、复习导入1.什么叫正多边形?2.正多边形是轴对称图形、中心对称图形吗?其对称轴有几条?对称中心是哪一点?3.以对称中心为圆心,以对称中心到正多边形的一个顶点的长为半径画圆,你有何发现?引导学生得出:①正多边形的顶点都在圆上;②圆经过正多边形的所有顶点.二、探究新知1.圆内接正多边形的概念定义:顶点都在同一圆上的正多边形叫做圆内接正多边形.这个圆叫做该正多边形的外接圆.(1)把一个圆n等分(n≥3 ),依次连接各分点,我们就可以作出一个圆内接正多边形.(2)如图,五边形 ABCDE是⊙O的内接正五边形,圆心O叫做这个正五边形的中心;OA是这个正五边形的半径;∠AOB是这个正五边形的中心角;OM⊥BC,垂足为 M,OM 是这个正五边形的边心距.2.尺规作一个已知圆的内接正多边形(1)用尺规作一个已知圆的内接正六边形.作法:①作⊙O的任意一条直径FC;②分别以F,C为圆心,以⊙O的半径R为半径作弧,与⊙O相交于点E,A和D,B,则A,B,C,D,E,F是⊙O的六等分点;③顺次连接AB,BC,CD,DE,EF,FA,便得到正六边形ABCDEF.(2)用尺规作一个已知圆的内接正四边形. (3)思考:作正多边形有哪些方法? 三、举例分析例 如图,在圆内接正六边形 ABCDEF 中,半径OC =4,OG ⊥BC ,垂足为 G ,求这个正六边形的中心角、边长和边心距.(1)正六边形的中心角是多少度?(2)正六边形的中心角的一半是多少度? (3)如何作出正六边形的边心距?(4)你能利用已知条件构造直角三角形吗? (5)你能利用解直角三角形的知识解决问题吗? 解:连接OD.∵六边形ABCDEF 为正六边形. ∴ ∠COD =360°6=60°.∴ △COD 为等边三角形. ∴ CD =OC =4.在 Rt △COG 中,OC =4,CG =12BC =2,∴OG =2 3.∴正六边形ABCDEF 的中心角为60°,边长为4,边心距为 2 3.总结:正多边形的有关计算可转化为解直角三角形,这个直角三角形的构成是:斜边为半径,一直角边为边心距,另一直角边为边长的一半,顶点在中心的锐角为中心角的一半.四、练习巩固1.正三角形的边心距、半径和高的比是( )A .1∶2∶3B .1∶ 2 ∶ 3C .1∶ 2 ∶3D .1∶2∶ 32.已知正六边形的外接圆半径为3 cm ,那么它的周长为________cm .3.已知:如图,正三角形ABC ,求作:正三角形ABC 的外接圆和内切圆.(要求:保留作图痕迹,不写作法)五、课堂小结1.易错点:(1)求正多边形的中心角、边长和边心距;(2)用尺规作圆内接正多边形.2.归纳小结:(1)正多边形的概念:各边相等、各角也相等的多边形叫做正多边形;(2)顶点都在同一圆上的正多边形叫做圆内接正多边形.这个圆叫做该正多边形的外接圆;(3)一个正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距.3.方法规律:(1)把一个圆分成几等分,连接各分点所得到的多边形是正多边形,它的中心角等于360°;边数(2)正多边形的有关计算可转化为解直角三角形,这个直角三角形的构成是:斜边为半径,一直角边为边心距,另一直角边为边长的一半,顶点在中心的锐角为中心角的一半.六、课外作业1.教材第98页“随堂练习”.2.教材第99页习题3.10第1、2、3、4、5题.本节课新概念较多,对概念的教学要注意从“形”的角度去认识和辨析,但对概念的严格定义不能要求过高.在概念教学中,要重视运用启发式教学,让学生从“形”的特征获得对几何概念的直观认识,鼓励学生用自己的语言表达有关概念,再进一步准确理解有关概念的文字表述,促进学生主动学习.所以在教学的过程中应尽量使用多媒体教学手段.22.1 比例线段第1课时相似图形1.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 .2.在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.请你在如图所示的4×4的方格纸中,画出两个相似但不全等的格点三角形(要求:所画三角形为钝角三角形,标明字母,并说明理由).4.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.5.如图,测量小玻璃管口径的量具ABC,AB的长为10cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是多大?。

22.3.1实际问题与二次函数-面积问题

22.3.1实际问题与二次函数-面积问题

解:由题意,得: 即s与x之间的函数关系式为: s=-x2+30x ∴这个二次函数的对称轴是:x=30
又由题意,得: 解之,得: ∴当x ≤ 30时,s随x的增大而增大。 ∴当与墙平行的一边长为28米,另一边长为16米 时,围成的矩形面积最大,其最大值是448米2。
变式:如图,在一面靠墙的空地上用长为24米的
10
15
20
30
面积 S
1.表格中s与x之间是一种什么关系?
2.在这个问题中,x只能取10,15,20,30 这几个值才能围成矩形吗?如果不是,还可 以取哪些值? 3.请同学们猜一猜:围成的矩形的面 积有没有最大值?若有,是多少?
合作交流
九年级的小勇同学家是开养鸡场的,现要用 60米长的篱笆围成一个矩形的养鸡场地。
问题2: 小勇的爸爸请他用所学的数学知识设 计一个方案,使围成的矩形的面积最 大。小勇一时半会儿毫无办法,非常 着急。请你帮小勇设计一下。
解:由题意,得:s=x(30-x) 即s与x之间的函数关ห้องสมุดไป่ตู้式为: s=-x2+30x 配方,得:S=-(x-15)2+225 又由题意,得: 解之,得: ∴当x=15时,s有最大值。
b 4ac-b 当x=- 时,y有最大(小)值 2a 4a
2
自主探究
九年级的小勇同学家是开养鸡场的,现要用 60米长的篱笆围成一个矩形的养鸡场地。 问题1:
(1)若矩形的一边长为10米,它的面积s 是多少?
(2)若矩形的一边长分别为15米、20米、 30米,它的面积s分别是多少?
一边长 x 另一边长
C
A
2cm/秒
P
Q
1cm/秒
B
解:根据题意,设经过x秒后Δ PBQ的面积y最大 A AP=2x cm QB=x cm 则 y=1/2 x(8-2x) (0<x<4) =-x2 +4x =-(x2 -4x +4 -4)

人教版九年级数学上册22.3 实际问题与二次函数第一课时课件

人教版九年级数学上册22.3 实际问题与二次函数第一课时课件
(2)当x是多少时,菱形风筝的面积S最大?最大面积是多 少?
解:(1)S=12·x(60-x)=-12x2+30x
(2)∵S=-12x2+30x,a=-12<0,∴S 有最大值,∴当 x=-2ba= -2×(30-12)=30 时,S 有最大值为4ac4-a b2=4×(4×-(12)-×12)0-302= 450.∴当 x 为 30 cm 时,菱形风筝的的面积最大,为 450 cm2
(1)求四边形APQC的面积y(cm2)与运动时间x(s)之间的函数关 系式,并写出x的取值范围.
(2)求四边形APQC面积的最小值,并求出此时x的值.
由题意,得 AP=2x,BQ=x,∴S△PBQ=12PB·BQ=12(22-2x)x =-x2+11x.∵S 四边形 APQC=S△ABC-S△PBQ,∴y=12×22×20-(-x2 +11x)=x2-11x+220(0≤x≤11)
最大(小)值__4_a_.
2.面积最值问题应设图形的一边长为 自变量 ,所求面积为因 变量,建立 二次函数 的模型,利用二次函数有关知识求得最值, 要注意函数自变量的 取值范围 .
知识点1 求二次函数的最值问题
1.(4分)关于二次函数y=x2-8x+c的最小值为0,那么c的
值等于( D )
A.4 B. 8
(1)设△POQ的面积为y,求y关于t的函数解析式; (2)当△POQ的面积最大时,将△POQ沿直线PQ翻折得到△PCQ ,试判断点C是否落在直线AB上,并说明理由.
解:(1)∵OA=12,OB=6,由题意得 BQ=t,OP=t.∴OQ=6 -t,∴y=12·OP·OQ=12t(6-t)=-12t2+3t(0≤t≤6)
解:根据题意,得 y=20x·(1280-x),整理得 y=-20x2+1 800x =-20(x2-90x+2 025)+40 500=-20(x-45)2+40 500,∵a=-20 <0,∴当 x=45 时,函数 y 有最大值,y 最大=40 500

人教版九年级数学上册22.3.1《二次函数与图形面积问题》教学设计

人教版九年级数学上册22.3.1《二次函数与图形面积问题》教学设计

人教版九年级数学上册22.3.1《二次函数与图形面积问题》教学设计一. 教材分析人教版九年级数学上册22.3.1《二次函数与图形面积问题》这一节主要介绍了二次函数在几何图形中的应用,通过研究二次函数图象与几何图形面积的关系,让学生进一步理解二次函数的性质,提高解决实际问题的能力。

本节内容是初中数学的重要知识,也是中考的热点,对于学生来说,理解并掌握二次函数与图形面积问题的解决方法具有重要意义。

二. 学情分析九年级的学生已经学习了二次函数的基本性质和图象,对于二次函数的解析式、顶点坐标、开口方向等概念有了一定的了解。

但是,将二次函数与几何图形的面积联系起来,可能会对学生造成一定的困扰。

因此,在教学过程中,需要引导学生将已知的二次函数知识与新的面积问题相结合,通过实例分析,让学生体会二次函数与图形面积问题的联系。

三. 教学目标1.理解二次函数图象与几何图形面积的关系。

2.学会利用二次函数解决实际面积问题。

3.提高学生的数学思维能力和解决实际问题的能力。

四. 教学重难点1.重点:二次函数图象与几何图形面积的关系。

2.难点:如何将二次函数与实际面积问题相结合,找出解决问题的方法。

五. 教学方法1.实例分析法:通过具体的实例,让学生观察二次函数图象与几何图形面积的关系。

2.问题驱动法:引导学生提出问题,分析问题,解决问题,培养学生的数学思维能力。

3.小组合作法:让学生分组讨论,共同解决问题,提高学生的合作能力。

六. 教学准备1.准备相关的实例,以便在课堂上进行分析。

2.准备一些练习题,以便在课堂上进行操练。

3.准备多媒体教学设备,以便进行图象展示。

七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生回顾二次函数的基本性质和图象,为新课的学习做好铺垫。

2.呈现(15分钟)展示一些实际的面积问题,让学生观察并思考这些问题与二次函数图象之间的关系。

3.操练(20分钟)让学生分组讨论,尝试利用已知的二次函数知识解决呈现的面积问题。

九年级数学上册第二十二章二次函数22.3实际问题与二次函数第1课时二次函数与图形面积教案(新版)新人教版

九年级数学上册第二十二章二次函数22.3实际问题与二次函数第1课时二次函数与图形面积教案(新版)新人教版

22.3 第1课时 二次函数与图形面积01 教学目标1.会求二次函数y =ax 2+bx +c 的最小(大)值.2.能从实际问题中分析、找出变量之间的二次函数关系,并能利用二次函数及性质解决与面积有关的最小(大)值问题.02 预习反馈阅读教材P 49~50(探究1),完成下列问题.1.一般地,当a >0时,抛物线y =ax 2+bx +c 的顶点是最低点,也就是说,当x =-b 2a 时,二次函数y =ax 2+bx +c 有最小值4ac -b 24a;当a <0时,抛物线y =ax 2+bx +c 的顶点是最高点,也就是说,当x =-b 2a 时,二次函数y =ax 2+bx +c 有最大值4ac -b 24a.2.从地面竖直向上抛出一小球,小球的高度h(单位:m )与小球的运动时间t(单位:s )之间的关系式是h =30t -5t 2(0≤t≤6),其图象如图所示.(1)小球运动的时间是3s 时,小球最高; (2)小球运动中的最大高度是45m .3.一个直角三角形的两条直角边长的和为20 cm ,其中一直角边长为x cm ,面积为y cm 2,则y 与x 的函数的关系式是y =12x(20-x),当x =10时,面积y 最大,为50cm 2.03 新课讲授例1 (教材P49探究)用总长为60 m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化.当l 是多少米时,场地的面积S 最大?【思路点拨】 先写出S 关于l 的函数解析式,再求出使S 最大的l 值.【解答】 ∵矩形场地的周长是60 m ,一边长为l m ,则另一边长为(602-l )m ,∴场地的面积S =l (602-l )=-l 2+30l (0<l <30).∴当l =-b 2a =-302×(-1)=15时,S 有最大值4ac -b 24a =-3024×(-1)=225.答:当l 是15 m 时,场地的面积S 最大.【点拨】 在实际问题中,求函数的解析式时,一定要标注自变量的取值范围,同时在求函数的最值时,一定要注意顶点的横坐标是否在自变量的取值范围内.【跟踪训练1】 (22.3第1课时习题)如图,假设篱笆(虚线部分)的长度为16 m ,则所围成矩形ABCD 的最大面积是(C)A .60 m 2B .63 m 2C .64 m 2D .66 m 2例2 (教材P49探究的变式)如图,用长为6 m 的铝合金条制成一个“日”字形窗框,已知窗框的宽为x m ,窗户的透光面积为y m 2(铝合金条的宽度不计).(1)求出y 与x 的函数关系式;【思路点拨】由题意可知,窗户的透光面积为长方形,根据长方形的面积公式即可得到y 和x 的函数关系式.【解答】 ∵大长方形的周长为6 m ,宽为x m , ∴长为6-3x2m.∴y =x ·(6-3x )2=-32x 2+3x (0<x <2).【点拨】 求y 与x 的函数关系式时,一定不能漏掉自变量的取值范围.(2)如何安排窗框的长和宽,才能使得窗户的透光面积最大?并求出此时的最大面积. 【思路点拨】 由(1)中的函数关系可知,y 和x 是二次函数关系,根据二次函数的性质即可得到最大面积.【解答】 由(1)可知,y 和x 是二次函数关系. ∵a =-32<0,∴函数有最大值.当x =-32×(-32)=1时,y 最大=32 m 2,此时6-3x2=1.5.答:窗框的长和宽分别为1.5 m 和1 m 时,才能使得窗户的透光面积最大,此时的最大面积为1.5 m 2.【点拨】 要考虑x =1是不是在自变量的取值范围内.【跟踪训练2】 如图,点C 是线段AB 上的一点,AB =1,分别以AC 和CB 为一边作正方形,用S 表示这两个正方形的面积之和,下列判断正确的是(A )A .当C 是AB 的中点时,S 最小 B .当C 是AB 的中点时,S 最大 C .当C 为AB 的三等分点时,S 最小D .当C 是AB 的三等分点时,S 最大04 巩固训练1.为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100 m ,则池底的最大面积是(B )A .600 m 2B .625 m 2C .650 m 2D .675m 22.如图,利用一面墙(墙的长度不超过45 m ),用80 m 长的篱笆围成一个矩形场地,当AD =20m 时,矩形场地的面积最大,最大面积为800m 2.3.(22.3第1课时习题)手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm ,菱形的面积S (单位:cm 2)随其中一条对角线的长x (单位:cm)的变化而变化.(1)请直接写出S 与x 之间的函数关系式(不要求写出自变量x 的取值范围); (2)当x 是多少时,菱形风筝面积S 最大?最大面积是多少? 解:(1)S =-12x 2+30x .(2)∵S =-12x 2+30x =-12(x -30)2+450,且a =-12<0,∴当x =30时,S 有最大值,最大值为450.即当x 为30 cm 时,菱形风筝的面积最大,最大面积是450 cm 2.05 课堂小结1.主要学习了如何将实际问题转化为数学问题,特别是如何利用二次函数的有关性质解决实际问题的方法.2.利用二次函数解决实际问题时,根据面积公式等关系写出二次函数表达式是解决问题的关键.。

22.3.1--利用二次函数求几何面积的最值问题教案与例题

22.3.1--利用二次函数求几何面积的最值问题教案与例题

的 因此,当 t = - =- = - 时,二次函数 y =ax 2+bx +c 有最小(大)值 。

2.已知 0≤x≤ ,那么函数 y =-2x 2+8x -6 的最大值是(B ) 4.二次函数 y =2x 2-6x +1,当 0≤x≤5 时,y 的取值范围是- ≤y≤21 . 第 1 课时 利用二次函数求几何面积的最值问题1.二次函数的最值问题:从地面竖直向上抛出一小球,小球的高度 h(单位:m)与小球的运动时间 t(单位:s)之 间的关系式是 h =30t -5t 2(0≤t ≤6).小球运动的时间是多少时,小球最高?小球运动中的最 大高度是多少?可以借助函数图象解决这个问题.画出函数 h =30t -5t 2(0≤t≤6)图象(如图). 可以看出,这个函数的图象是一条抛物线的一部分.这条抛物线的顶点是这个函数的图象的最高点,也就是说,当 t 取顶点的横 坐标时,这个函数有最大值. b 30 2a 2 ⨯ (-5)= 3 时,h 有最大值 4ac - b 2 = -302= 45. 4a 4 ⨯ (-5)也就是说,小球运动的时间是 3 s 时,小球最高.小球运动中的最大高度是 45 m.一般地,当 a>0(a<0)时,抛物线 y =ax 2+bx +c 的顶点是最低(高)点,也就是说,当 xb 2a 4ac - b 2 4a例题:1.二次函数 y =x 2-4x +c 的最小值为 0,则 c 的值为(B )A.2B.4C.-4 D .161 2A. -6B.-2.5C.2 D .不能确定3.已知 y =-x (x +3-a )+1 是关于 x 的二次函数,当 x 的取值范围在 1≤x≤5 时,若 y 在 x =1 时取得最大值,则实数 a 的取值情况是(D )A.a=9B.a=5C .a≤9D .a≤57 25.若二次函数 y =x 2+ax +5 的图象关于直线 x =-2 对称,且当 m≤x≤0 时,y 有最大值 5, 最小值 1,则 m 的取值范围是-4≤m≤-2 .所以另一边长⎛ 60 2 - l ⎪ 因此,当 l = - =- = 15 时, 2.几何面积的最值问题:总长为 60 m 的篱笆围成矩形场地,矩形面积 S 随矩形一边长 l 的变化而变化,当 l 是 多少米时,场地的面积 S 最大?解:矩形场地的周长是 60 m ,一边长为 l m ,⎫ ⎝ ⎭ 为 m . 场地的面积 S =l(30-l),即 S =-l 2+30l(0<l<30).b 30 2a 2 ⨯ (-1)4ac - b 2 -302 = = 225. 4a 4 ⨯ (-1)S 有最大值也就是说,当 l 是 15 m 时,场地的面积 S 最大.在周长一定的情况下,所围成的几何图形的形状不同,所得到的几何图形的面积也不同. 利用二次函数求几何图形的最大(小)面积的一般步骤:(1)引入自变量,用含自变量的代数式分别表示与所求问题相关的量.(2)分析题目中的数量关系,根据题意列出函数解析式.(3)根据函数解析式求出最值及取得最值时自变量的值,注意自变量的取值范围.例题:1.已知一个直角三角形两直角边长之和为 20cm ,则这个直角三角形的最大面积为(B ) A .25cm 2 B .50cm 2 C .100cm 2 D .不确定2.用一条长为 40cm 的绳子围成一个面积为 acm 2 的长方形,a 的值不可能为(D )A.20B.40C.100 D .1203.如图,在矩形 ABCD 中,AD =1,AB =2,从较短边 AD 上找一点 E ,过这点剪下两个正 方形,它们的边长分别是 AE ,DE 的长,当剪下的两个正方形的面积之和最小时,点 E 应选 在(A )A .AD 的中点B.AE:ED=( 5 -1):2C.AE:ED= 2 :1D.AE:ED=( 2 -1):24.(2016 兰州)某农场拟建三间长方形种牛饲养室饲养室的一面靠 墙(墙长 50m ),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为 48m ,则这三间长方形种牛饲养室的总占地面积的最大值为 144 m 2.5.如图,线段 AB =6,点 C 是 AB 上一点,点 D 是 AC 的中点,分別以 AD ,DC ,CB 为边作正方形,则当 AC =4 时,∵a=-2<0,- =- = . ∴当 x = 时,y 有最大值,y 三个正方形的面积之和最小。

人教版九年级上册数学:第22章 二次函数 22.3.1-几何图形的最大面积 课件资料

人教版九年级上册数学:第22章 二次函数 22.3.1-几何图形的最大面积 课件资料

变式 1 如图,用一段长为 60m 的篱笆围成一个一边靠 墙的矩形菜园,墙长 32m ,这个矩形的长、宽各为多少
时,菜园的面积最大,最大面积是多少?
问题1 变式1与例题有什么不同? x
x
60-2x 问题2 我们可以设面积为S,如何设自变量? 设垂直于墙的边长为x米 问题3 面积S的函数关系式是什么? S=x(60-2x)=-2x2+60x.
是 h= 30t - 5t (0≤t≤6).小球的运动时间是多少时,
小球最高?小球运动中的最大高度是多少?
可以出,这个函数的图象是一 条抛物看线的一部分,这条抛物 h/m
2
40
h= 30t - 5t 2
线的顶点是这个函数的图象的最 20 高点.也就是说,当t取顶点的横
坐标时,这个函数有最大值.
O
1 2 3 4 5 6
讲授新课
一 求二次函数的最大(或最小)值
合作探究
2 y ax bx c 的最值由什么决定? 二次函数 y y b b
问题1
x
x
2a
2a
最大值
O
x 最小值
O
x
二次函数 y ax2 bx c的最值由a及自变量的取值范围决定.
问题2 当自变量x为全体实数时,二次函数
y ax2 bx c 的最值是多少?
解:根据题意得 S=l(30-l), 即 S=-l2+30l (0<l<30).
b 30 l 15 2a 2 (1)
2
s
200
因此,当 时, 4ac b
4a
100
S有最大值
302 225 4 (1)
O
5

22.3.1二次函数与图形面积问题课件 2024-2025学年人教版数学九上

22.3.1二次函数与图形面积问题课件 2024-2025学年人教版数学九上
位:平方米)随矩形一边长x(单位:米)的变化而变化.
(1)求S与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x是多少时,矩形场地面积S最大?最大面积是多少?
(2)S=-x2+30x=-(x-15)2+225,
∵a=-1<0,∴S有最大值,
即当x=15(米)时,S最大值=225平方米.
知识讲解
(4) 当l是多少米时,场地的面积S最大?
(4)解:根据题意得S=-l2+30l (0<l<30).
因此,当l=
b
30

15时,
2a
2 ( 1)
2
2
S有最大值 4ac b 30 225.
4a
4 ( 1)
也就是说,当l是15m时,场地的面积S最大.
随堂练习
2. 用长为6米的铝合金材料做一个形状如图所示的矩形窗框.窗框的高与
随堂练习
4. 某广告公司设计一幅周长为12 m的矩形广告牌,广告设计费用每平
方米1 000元,设矩形的一边长为x(m),面积为S(m2).
(1) 写出S与x之间的关系式,并写出自变量x的取值范围;
(2) 请你设计一个方案,使获得的设计费最多,并求出这个费用.
解:(1)设矩形一边长为x,则另一边长为(6-x),
知识点 利用二次函数解决几何图形的最值问题
【例 2】用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为
x米,面积为y平方米.
(1)求y关于x的函数关系式;
(2)当x为何值时,围成的养鸡场面积为60平方米?
(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果
不能,请说明理由.
知识讲解

九年级数学上册 第二十二章《二次函数》22.3 实际问题与二次函数 第1课时 几何图形的面积问题试题

九年级数学上册 第二十二章《二次函数》22.3 实际问题与二次函数 第1课时 几何图形的面积问题试题

22.3实际问题与二次函数第1课时几何图形的面积问题知识要点基础练知识点利用二次函数求图形面积的最值1.用长60 m的篱笆围成一个矩形花园,则围成的花园的最大面积为(D)A.150 m2B.175 m2C.200 m2D.225 m22.已知一个直角三角形两直角边之和为20 cm2,则这个直角三角形的最大面积为(B)A.25 cm2B.50 cm2C.100 cm2D.不确定3.如图,用总长度为12米的不锈钢材料设计成如图所示的外观为矩形的框架,所有横档和竖档分别与AD,AB平行,则矩形框架ABCD的最大面积为4平方米.4.手工课上,小明准备做个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm,菱形的面积为S,随其中一条对角线的长x的变化而变化.(1)求S与x之间的函数解析式.(不要求写出取值范围)(2)当x是多少时,菱形风筝的面积S最大?最大的面积是多少?解:(1)S=x(60-x)=-x2+30x.(2)由(1)得S=-x2+30x=-(x-30)2+450,故当x是30 cm时,菱形风筝的面积S最大,最大的面积是450 cm2.综合能力提升练5.合肥寿春中学劳动课上,老师让学生利用成直角的墙角(墙足够长),用10 m长的栅栏围成一个矩形的小花园,花园的面积S m2与它一边长a m的函数解析式是S=-a2+10a ,面积S 的最大值是25.6.如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A开始沿AB向B点以2 cm/s的速度移动,点Q从点B开始沿BC向C点以1 cm/s的速度移动,如果P,Q分别从A,B同时出发,当△PBQ的面积为最大时,运动时间t为2s.7.(衢州中考)某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为144 m2.8.如图,有一块边长为a的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中虚线折起,做成一个无盖的直三棱柱纸盒,若该纸盒侧面积的最大值是 cm2,则a的值为3cm.9.在美化校园的活动中,巢湖一中初三一班的兴趣小组利用如图所示的直角墙角(两边足够长),用32 m长的藤条圈成一个长方形的花圃ABCD(藤条只围AB,BC两边),设AB=x m.(1)若花圃的面积为252 m2,求x的值;(2)正好在P处有一棵桃树与墙CD,AD的距离分别是17 m和8 m,如果把将这棵桃树围在花圃内(含边界,不考虑树的粗细),老师让学生算一下花圃面积的最大值是多少?解:(1)因为AB=x,则BC=32-x,所以x(32-x)=252,解得x1=14,x2=18,故x的值为14 m或18 m.(2)因为AB=x,所以BC=32-x,所以S=x(32-x)=-x2+32x=-(x-16)2+256,因为在P处有一棵桃树与墙CD,AD的距离分别是17 m和8 m,所以,所以8≤x≤15,所以当x=15时,S取到最大值为S=-(15-16)2+256=255,故花圃面积S的最大值为255 m2.10.如图所示,在矩形ABCD中,AB=6 cm,BC=12 cm,点P从点A出发,沿AB边向点B以1 cm/s 的速度移动,同时点Q从点B出发,沿BC边向点C以2 cm/s的速度移动,如果P,Q两点在分别到达B,C两点后就停止移动,回答下列问题:(1)运动开始后第多少秒时,△PBQ的面积等于8 cm2.(2)设运动开始后第t秒时,五边形PQCDA的面积为S cm2,写出S与t的函数解析式,并指出自变量t的取值范围.(3)t为何值时S最小?求出S的最小值.解:(1)设x秒后△PBQ的面积等于8 cm2.则AP=x,QB=2x,∴PB=6-x,∴×(6-x)×2x=8,解得x1=2,x2=4.运动开始后第2秒或第4秒时△PBQ的面积等于8 cm2.(2)第t秒时,AP=t cm,PB=(6-t) cm,BQ=2t cm,∴S△PBQ=·(6-t)·2t=-t2+6t.∵S矩形ABCD=6×12=72,∴S=72-S△PBQ=t2-6t+72(0≤t≤6).(3)∵S=t2-6t+72=(t-3)2+63,∴当t=3秒时,S有最小值63 cm2.11.工人师傅用一块长为10 dm,宽为6 dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12 dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?解:(1)如图所示:设裁掉的正方形的边长为x dm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2 dm,底面积为12 dm2.(2)因为长不大于宽的五倍,所以10-2x≤5(6-2x),解得0<x≤2.5,设总费用为w元,由题意可知w=0.5×2x(16-4x)+2(10-2x)(6-2x)=4x2-48x+120=4(x-6)2-24,因为对称轴为x=6,开口向上,所以当0<x≤2.5时,w随x的增大而减小,所以当x=2.5时,w有最小值,最小值为25元,答:当裁掉边长为2.5 dm的正方形时,总费用最低,最低费用为25元.拓展探究突破练12.(安徽中考)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域面积相等.设BC的长度是x米,矩形区域ABCD的面积为y平方米.(1)求y与x之间的函数解析式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?解:(1)设AE=a,由题意得AE·AD=2BE·BC,AD=BC,∴BE=a,AB=a.由题意得2x+3a+2·a=80,∴a=20-x.∴y=AB·BC=a·x=x,即y=-x2+30x(0<x<40).(2)∵y=-x2+30x=-(x-20)2+300,∴当x=20时,y有最大值,最大值是300平方米.13.如图,一面利用墙,用篱笆围成一个外形为矩形的花圃,花圃的面积为S平方米,平行于院墙的一边长为x米.(1)若院墙可利用最大长度为10米,篱笆长为24米,花圃中间用一道篱笆间隔成两个小矩形,求S与x之间函数关系.(2)在(1)的条件下,围成的花圃面积为45平方米时,求AB的长.能否围成面积比45平方米更大的花圃?如果能,应该怎么围?如果不能请说明理由.(3)当院墙可利用最大长度为40米,篱笆长为77米,中间建n道篱笆间隔成小矩形,当这些小矩形为正方形,且x为正整数时,请直接写出一组满足条件的x,n的值.解:(1)由题意得:S=x×=-x2+8x(0<x≤10).(2)由S=-x2+8x=45,解得x1=15(舍去),x2=9,所以x=9,AB==5,又S=-x2+8x=-(x-12)2+48,0<x≤10,因为当x≤10时,S随x的增大而增大,所以当x=10米时,S最大,为平方米>45平方米,所以平行于院墙的一边长为10米时,就能围成面积比45平方米更大的花圃.(3)根据题意可得,则n=4,x=35或n=2,x=33.如有侵权请联系告知删除,感谢你们的配合!。

人教版九年级数学上册(课件)22.3 第1课时 几何图形面积问题

人教版九年级数学上册(课件)22.3   第1课时 几何图形面积问题

7.用12 m长的木料做成如图的矩形窗框,则当长和宽各为多少米时, 矩形窗框的面积最大?最大面积是多少?
解:设长为 x m,则宽为13(12-3x)=(4-x) m, 则矩形窗框的面积 S=x(4-x)=-x2+4x=-(x-2)2+4, ∴当 x=2 m 时,矩形窗框的面积有最大值,最大值为 4 m2
10.如图,线段AB=6,点C是AB上一点,点D是AC的中点,分别以AD, 4
DC,CB为边作正方形,则AC=____时,三个正方形的面积之和最小.
11.如图,正方形 ABCD 边长为 1,E,F,G,H 分别为各边上的点, 且 AE=BF=CG=DH,设小正方形 EFGH 的面积为 S,AE 的长为 x,则 S 关于 x 的函数关系式是 S=2x2-2x+1,当 x=_12___时,S 的值最小.
(2)∵S=-12x2+30x=-12(x-30)2+450,且
1 a=-2<0,
∴当 x=30 时,S 最大=450,即当 x 为 30 cm 时, 菱形风筝的面积最大,最大面积是 450 cm2
9.(2016·衢州)某农场拟建三间矩形种牛饲养室,饲养室的一面靠 墙(墙长50 m),中间用两道墙隔开(如图).已知计划中的建筑材料可 建墙的总长度为48 m,则这三间矩形种牛饲养室的总占地面积的最大 值为_1_4_4_m2.
第二十二章 二次函数
22.3 实际问题与二次函数
第1课时 几何图形面积问题
1.如图,假设篱笆(虚线部分)的长度为16 m,则所围成矩形ABCD的 最大面积是( C) A.60 m2 B.63 m2 C.64 m2 D.66 m2
2.用一根长为40 cm的绳子围成一个面积为a cm2的矩形,那么a 的值不可能为( D ) A.20 B.40 C.100 D.120 3.已知一个直角三角形两直角边长之和为20 cm,则这个直角三 角形的最大面积为( )B A.25 cm2 B.50 cm2 C.100 cm2 D.不确定

人教版九年级数学上册22.3.1《二次函数与图形面积问题》说课稿

人教版九年级数学上册22.3.1《二次函数与图形面积问题》说课稿

人教版九年级数学上册22.3.1《二次函数与图形面积问题》说课稿一. 教材分析人教版九年级数学上册22.3.1《二次函数与图形面积问题》这一节主要讲述了二次函数在几何图形中的应用,通过研究二次函数图象与几何图形的关系,引导学生利用二次函数解决实际问题。

本节内容是学生在学习了二次函数的基本性质和图象特征之后,进一步拓展和加深对二次函数的理解,提高解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数的基本概念、性质和图象特征有了初步的认识。

但是,对于二次函数在几何图形中的应用,以及如何利用二次函数解决实际问题,部分学生可能还存在一定的困难。

因此,在教学过程中,需要关注学生的个体差异,引导他们通过自主学习、合作交流等方式,逐步掌握二次函数与图形面积问题的解决方法。

三. 说教学目标1.理解二次函数与几何图形的关系,掌握二次函数图象上点的坐标特征。

2.学会利用二次函数解决图形面积问题,提高解决问题的能力。

3.培养学生的合作交流意识,提高学生的数学思维能力。

四. 说教学重难点1.重点:二次函数与几何图形的关系,二次函数图象上点的坐标特征。

2.难点:如何利用二次函数解决图形面积问题,以及在不同情境下选择合适的方法。

五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生通过自主学习、合作交流的方式,探索二次函数与图形面积问题的解决方法。

2.利用多媒体课件、几何画板等教学手段,直观展示二次函数图象与几何图形的关系,帮助学生更好地理解知识点。

六. 说教学过程1.导入新课:通过展示一些实际问题,引导学生关注二次函数与图形面积问题的关系,激发学生的学习兴趣。

2.自主学习:让学生回顾二次函数的基本性质和图象特征,为本节课的学习打下基础。

3.合作交流:引导学生分组讨论,探讨如何利用二次函数解决图形面积问题,分享各自的解题方法。

4.讲解演示:教师对学生的讨论进行点评,总结二次函数与图形面积问题的解决方法,利用多媒体课件进行演示。

第22章 人教版数学九年级上册教案9 第1课时二次函数与图形面积问题

第22章 人教版数学九年级上册教案9 第1课时二次函数与图形面积问题

22.3 实际问题与二次函数 第1课时 二次函数与图形面积问题课题第1课时 二次函数与图形面积问题授课人知识技能1.通过图形的面积关系列出函数解析式;2.用二次函数的知识分析解决有关面积的实际问题.数学思考对实际问题的探究,体会数学知识的现实意义,进一步认识利用二次函数的有关知识解决实际问题.问题解决通过实际问题与二次函数的关系的探究,让学生掌握利用顶点坐标解决最大值(或最小值)的方法.教学目标情感态度体会数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.教学重点用二次函数的知识分析解决有关面积的实际问题.教学难点通过图形的面积关系列出函数解析式.授课类型新授课课时教具多媒体教学活动教学步骤师生活动设计意图回顾1.请写出下列抛物线的开口方向、对称轴和顶点坐标:(1)y=6x2+12x;(2)y=-4x2+8x-10.2.以上两个函数,哪个函数有最大值,哪个函数有最小值?并说出两个函数的最大值或最小值分别是多少.师生活动:学生自主进行解答,教师做好指导和点评.提示:求解二次函数的最值一般有两种方法:一是把一般式化为顶点式;二是利用顶点坐标公式求解.(1)y=6(x+1)2-6,所以抛物线开口向上,对称轴为直线x=-1,顶点坐标为(-1,-6),当x=-1时,y有最小值-6.(2)y=-4(x-1)2-6,所以抛物线开口向下,对称轴为直线x=1,顶点坐标为(1,-6),当x=1时,y有最大值-6.通过回顾二次函数的最值问题,为讲解新课做铺垫,两种求解方法为学生深刻理解知识提供理论支持.活动一:创设情境导入新课【课堂引入】问题:用总长为60 m的篱笆围成矩形场地,矩形场地的面积S随一边长l的变化而变化,当l是多少米时,矩形场地的面积S最大?师生活动:1.教师引导学生分析与矩形面积相关的量;2.教师设问,如何用含l的代数式表示与其相邻的边通过典型的实际问题,激发学生解答的欲望,让学生在合作中学习,共同解答问题,培养学生的探究能力和合作意识.的长度;3.学生自主列函数解析式,并进行整理,讨论问题解答的正确性;4.针对问题要求进行求解,并回答问题.教师关注:1.学生能否根据矩形的面积公式列函数解析式;2.学生能否根据以前所学知识准确求出函数的最大值.活动二:实践探究交流新知1.探究新知活动一:针对[课堂引入]的问题进行探究,教师总结解题过程.师生活动:(1)确定解题的步骤:先表示矩形的长和宽,再利用面积公式列解析式,最后求最值.(2)解答过程:矩形场地的一边长为l m,则另一边长为(30-l)m,所以矩形场地的面积S=l(30-l)=-l2+30l(0<l<30).当l=-b2a=15时,S有最大值4ac-b24a=225.也就是说,当l是15 m时,矩形场地的面积S最大.2.师生总结教师指导学生总结解答问题的方法和步骤,学生代表通过典型问题的设计和解答,让学生体会函数模型在解决实际问题中的作用.进行说明,全班互相交流,师生共同确定解题思路:(1)表示与面积相关的量;(2)利用面积公式列函数解析式,并进行整理;(3)确定自变量的取值范围;(4)利用公式求出最值.【应用举例】例1 如图22-3-10,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD.设AB边的长为x米,则菜园的面积y(米2)与x(米)之间的函数解析式为 y=-12x2+15x (不要求写出自变量x的取值范围).图22-3-10师生活动:学生自主进行解答,教师巡视、指导、点评.教师引导学生阐述解答过程:(1)用含x的代数式表示出AD的长度;(2)利用矩形的面积公式列出函数解析式.应用举例是对于课题学习的针对性练习.活动三:开放训练体现应用【拓展提升】例2 如图22-3-11,点E,F,G,H分别位于正方形ABCD的四条边上,四边形EFGH也是正方形,当点E位于何处时,正方形EFGH的面积最小?拓展提升是对于基础知识的提高和应用,培养学生的实际应用能力,提升思维能力.图22-3-11师生活动:学生小组内讨论、交流,教师参与小组合作,并引导学生理清解题思路.教师做好总结和展示:设AE=x,AB=1,正方形EFGH的面积为y.根据题意,得y=1-2x(1-x).整理,得y=2x2-2x+1,所以当x=0.5时,正方形EFGH的面积最小,最小值为0.5,即当点E在AB的中点处时,正方形EFGH的面积最小.活动四:课堂总结反思【达标测评】1.给你一根长为8 m的铁丝,用它围成一个矩形方框,当这个矩形的长为 2 m 时,矩形的面积最大.2.某居民小区要在一块一边靠墙(墙长15米)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40 m的栅栏围成.若设花园的宽为x m,花园的面积为y m2.(1)求y与x之间的函数解析式,并写出自变量的取值范围;(2)根据(1)中求得的函数解析式,描述其图象的针对本课时的主要问题,从多个角度、分层次进行检测,达到学有所成、了解课堂学习效果的目的.变化趋势,并结合题意判断,当x取何值时,花园的面积最大,最大面积是多少?3.如图22-3-12所示,要建一个矩形养鸡场,养鸡场的一边靠墙,计划用50 m长的篱笆围成中间有一道篱笆隔墙的养鸡场,设养鸡场的长为x m.(1)要使养鸡场的面积最大,养鸡场的长应为多少米?(2)如果中间有n道篱笆隔墙,要使养鸡场的面积最大,养鸡场的长应为多少米?图22-3-12比较(1)(2)的结果,你能得到什么结论?学生进行当堂检测,完成后,教师进行批阅、点评、讲解.1.课堂总结:你在本节课中有哪些收获?有哪些进步?还有哪些困惑?请谈一谈.教师强调:利用面积公式列函数解析式是解答问题的主要方法.2.布置作业:教材第52页习题22.3第4,6题.小结环节的设置能够让学生养成自主归纳课堂重点的习惯,提高学生的学习能力.【知识网络】提纲挈领,重点突出.【教学反思】①[授课流程反思]在创设情境和探究新知环节中,利用实际问题激发学生的求知欲,渗透转化思想,把知识回归生活,又从生活中走出来,使学生乐学、好学;通过层层设疑、由易到难,符合学生的认知水平和认知规律,引导学生不断思考、积极探索.②[讲授效果反思]教师提醒学生注意:(1)一般地,面积问题中常把面积作为函数,边长作为自变量;(2)确定自变量的取值范围是解答此类问题的注意点;(3)求最值问题可选用公式法或将函数解析式由一般式化为顶点式.③[师生互动反思]从课堂发言和检测来看,学生能够积极发言、小组讨论富有实效,能够把知识进行化归,建立函数模型.④[习题反思]好题题号 反思教学过程和教师表现,进一步优化操作流程和提升自身素质.错题题号 典案二导学设计学习目标:1.能够分析和表示实际问题中变量之间的关系,并运用二次函数的知识求出实际中面积的最大(小)值,提高解决问题的能力.2.经历利用二次函数解决实际问题的过程,感受数学的应用价值,增进对数学的理解和学好数学的信心.学习过程:(一)情境创设木工师傅需要一块面积足够大的矩形木料,但是手边只有一块三角形的木料,怎么样才能锯出一块面积最大的矩形木料呢?小明和小玲给出了自己的建议。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档