2003 Kinetics of Thermal Degradation of

合集下载

2,5-二甲基对苯醌二亚胺与烷氧基苯共聚物的合成及性能表征

2,5-二甲基对苯醌二亚胺与烷氧基苯共聚物的合成及性能表征

2,5-二甲基对苯醌二亚胺与烷氧基苯共聚物的合成及性能表征孟新涛;利晓东;石伟;张建平;司马义·努尔拉【摘要】通过金属配合物催化法,在1,3-双(二苯基膦)丙烷二氯化镍(1I)存在的条件下,合成了2,5-二甲基对苯醌二亚胺与不同碳数的碘代烷氧基苯的3种共聚物。

通过FT—IR、^1H—NMR、UV—Vis、循环伏安(CV)、XRD和凝胶渗透色谱(GPC)等测试手段对其进行了表征。

结果表明:3种共聚物在三氟乙酸(TFA)溶液中的紫外可见最大吸收波长分别在517、576、651nm处;该类共聚物均在-0.2~0.8V出现两对氧化还原峰;共聚物的规整度较高,衍射峰的位置在19.6v~23.5°。

%Using nickel( Ⅱ ) complex as catalyst, three type of copolymers which consisting 2,5-dimethyl- N, N1-p-benzoquinonediimine and Grignard reagent of iodo-alkoxy benzene with different carbon atoms were synthesized by metal comp FT-IR, 1H-NMR, UV-Vis, cycl exes catalyzed polymerization. These copolymers were characterized by c vohammogram (CV), XRD and GPC. Results show that the maximum UV-Vis absorption of these polymers appear at 517, 576, 651 nm in CF3COOH, respectively. The copoly- mers have two redox peaks in the range from -0.2 V to 0.8 V. The figures of copolymers have well cry- stallized, and the diffraction peaks in the range of 19.6°-23.5°.【期刊名称】《功能高分子学报》【年(卷),期】2012(025)004【总页数】5页(P369-373)【关键词】2,5-二甲基对苯醌二亚胺;格氏试剂;碘代烷氧基苯;镍(Ⅱ)配合物催化法【作者】孟新涛;利晓东;石伟;张建平;司马义·努尔拉【作者单位】新疆大学化学化工学院,功能高分子材料重点实验室,乌鲁木齐830046;新疆大学化学化工学院,功能高分子材料重点实验室,乌鲁木齐830046;新疆大学化学化工学院,功能高分子材料重点实验室,乌鲁木齐830046;新疆大学化学化工学院,功能高分子材料重点实验室,乌鲁木齐830046;新疆大学化学化工学院,功能高分子材料重点实验室,乌鲁木齐830046【正文语种】中文【中图分类】O63聚苯胺具有良好的导电性、热稳定性和容易成膜等特点,同时,又是良好的电磁屏蔽材料和电极材料[1-4]。

核磁共振成像——2003年诺贝尔生理学或医学奖介绍及研究进展

核磁共振成像——2003年诺贝尔生理学或医学奖介绍及研究进展

・诺贝尔奖工作回顾・核磁共振成像_2003年诺贝尔生理学或医学奖介绍及研究进展洪远凯(北京大学医学部生物物理学系,北京100191)现代物质理论的基本前提是物质由原子组成,原子由原子核和围绕其运动的核外电子组成,而原子核又是由质子和中子构成。

原子是极小的粒子,其半径以A(10一om)表示。

如此之小的原子,以前是无法直接观察的。

不过,四年前,宾尼库克领导的美国橡树岭国家实验室电子最微镜研究小组的研究人员以仓,lid录的分辨率清楚地观察到了原子世界,其观察原子的图像分辨率已达到0.6A。

利用他们研究出的电子显微镜能够分辨出硅晶体的单个哑铃形状的原子¨o(图1)。

圈1硅晶体原子成像物质世界中的基本单位主要是由原子组成的各类分子。

这些分子都很小,属微观范畴。

不管是有机物还是无机物,其各类分子具有不同的结构和不同的性质。

人们可以通过各种技术方法研究它们。

原子的诸多性质吸引了包括物理学家在内的广大科学工作者的研究兴趣,其研究结果不仅推动和发展了物理科学领域,而且应用到包括生命科学在内的广泛领域。

其中,基于核磁共振(nuclearmagneticresonance,NMR)而发展的核磁共振成像技术(mag—neticresonanceimaging,MRI)就是一个范例。

目前,核磁共振成像技术13趋成熟,应用范围日益广泛,已经成为一项常规的临床医学检测手段,广泛应用于脑和脊椎病变以及癌症的治疗和诊断等领域。

2003年10月6日,瑞典卡罗林斯卡研究院宣布,当年的诺贝尔生理学或医学奖授予美国科学家保罗・劳特布尔(PaulC.Lauterbur)和英国科学家彼得・曼斯菲尔得(PeterMansfield)(图2),以表彰他们在MRI领域的突破性成就。

在获息被授予诺贝尔奖时,劳特布尔曾幽默地说“我听到过各种猜测,但现实仍令我惊讶”。

曼斯菲尔德更坦率地说“我想每个科学家都希望有一天,他们可以被挑选出来获得这样一个荣誉。

热重法评估聚芳醚的活化能

热重法评估聚芳醚的活化能

热重法评估聚芳醚的活化能郑一泉;陈锐;岑茵;姜苏俊;黄钰香;孙东海;禹权;江翼;敬新柯【摘要】阐述了近期对于快速热氧老化的评价方法,采用热重点斜法和改进的Kinssinger方法计算改性聚芳醚的氧化活化能,同时展开低温常规长期热氧老化试验,比较快速评价方法间和常规热氧老化试验方法的差异,通过数据分析可以发现常规老化活化能与改良Kinssinger方法推导的活化能之间存在比较好的对应关系.【期刊名称】《合成材料老化与应用》【年(卷),期】2015(044)002【总页数】5页(P51-55)【关键词】热氧老化;热重法;聚苯醚【作者】郑一泉;陈锐;岑茵;姜苏俊;黄钰香;孙东海;禹权;江翼;敬新柯【作者单位】金发科技股份有限公司,改性塑料国家工程实验室,广东广州510663;金发科技股份有限公司,改性塑料国家工程实验室,广东广州510663;金发科技股份有限公司,改性塑料国家工程实验室,广东广州510663;金发科技股份有限公司,改性塑料国家工程实验室,广东广州510663;金发科技股份有限公司,改性塑料国家工程实验室,广东广州510663;金发科技股份有限公司,改性塑料国家工程实验室,广东广州510663;金发科技股份有限公司,改性塑料国家工程实验室,广东广州510663;金发科技股份有限公司,改性塑料国家工程实验室,广东广州510663;金发科技股份有限公司,改性塑料国家工程实验室,广东广州510663【正文语种】中文【中图分类】TQ02近三十年来,研究者一直致力于研究绝缘材料在长期服役条件下的使用寿命,并且建立了大量的模型。

这些研究者建立了一些本构方程、物理模型来描述绝缘材料的变化,以便预测材料在热应力、电应力等物理场的作用的变化[1]。

这些模型的建立都需要长期的使用过程进行检验,长期使用寿命需要耗费大量的人力和物力,研究者一直试图采用短期方法来评价材料的使用寿命,因此快速评价高分子材料的使用寿命是一个热点研究问题[2-5]。

杏仁牛奶巧克力的品质变化动力学模型及货架期预测

杏仁牛奶巧克力的品质变化动力学模型及货架期预测

杏仁牛奶巧克力的品质变化动力学模型及货架期预测朱扬玲【摘要】为研究杏仁牛奶巧克力的货架期预测方法,设定了15℃、25℃、20℃3各不同储藏温度,并对感官、水分、菌落总数、酸价进行了检测.本研究采用Arrheniu方程对品质变化速率常数和温度T进行线性拟合,得到的活化能Ea为16.94KJ/mol,预测获得的货架期(20℃)为589天,按照安全系数0.8计算,保质期为1 5个月.实验证明,Arrhenius一级动力学模型能较好地描述15~30℃储藏条件下的杏仁牛奶巧克力的品质变化,预测方程的拟合程度较高,决定系数R2为0.9942,预测结果参考价值较大.【期刊名称】《中国食品工业》【年(卷),期】2015(000)008【总页数】4页(P66-69)【作者】朱扬玲【作者单位】通标标准技术服务(上海)有限公司上海201506【正文语种】中文货架期(shelf life),又称货架寿命,或保质期等。

食品货架期一般受内部因素(包括微生物数量、酶促反应和生化反应等)、外部因素(包括温度、相对湿度、pH值、压力、辐射等)及包装材料等影响[1]。

一般情况下,食品保质期是根据食品品质变得难以接受的天数,乘以0.7-0.8的安全系数来计算的。

由于现代食品工业的发展,许多预包装食品的货架期可以超过1年。

因此,对食品行业来说,在一个较短的时间内确定产品的货架寿命是很有必要的。

随着交叉学科的相互渗透,各种动力学模型在食品货架期预测中应用越来越广泛,包括阿伦尼乌斯(Arrhenius)方程[2]、威布尔危险值分析方法(Weibull Hazard Analysis, WHA)[3,4]、WLF(Williams-Landel-Ferry)方程[5]、Z值模型法[6,7]等。

其中,动力学模型结合Arrhenius方程是最经典,也是应用最广泛的一种货架期预测方法。

2003年,Suh等[8]通过建立0级反应动力学模型,研究了温度对桑葚汁褪色的影响,并通过统计分析确定了4个不同pH值的样品,在80℃-100℃间的活化能。

Kinetics of thermal degradation of char-forming plastics from thermogravimetry

Kinetics of thermal degradation of char-forming plastics from thermogravimetry

Introduction
Kinetics of thermal degradation of solids have been evaluated from thermogravimetric analysis (TGA) a t linear rates of temperature rise in a number of studies. van Krevelen, van Heerden, and Huntjens' studied the decomposition of coal. Freeman and Carrolla investigated the degradation of calcium oxalate monohydrate. Their technique was applied to the decomposition of a styrenated polyester by Anderson and Freemanla and was modified by the same authors' for polystyrene and polyethylene. Doyle6 studied the degradation of a large number of plastics. Friedmad investigated the decomposition of a glass-reinforced phenol-formaldehyde. A more sophisticated approach will be used in the present paper than was employed for the earlier work. In all of the earlier studies, calculations were based on experiments which were performed a t a single rate of temperature rise. I n the present paper, kinetic calculations are based on an intercomparison of experiments which were carried out at several different rates of temperature rise.

桑椹花色苷在不同糖体系中的热降解动力学研究

桑椹花色苷在不同糖体系中的热降解动力学研究

桑椹花色苷在不同糖体系中的热降解动力学研究摘要:对不同糖体系中桑椹花色苷降解动力学进行了研究。结果显示桑椹花色苷自身的热降解动力学符合一级反应动力学,并且可用Arrhenius方程表示,其反应活化能为56.11 kJ/mol;但是,在葡萄糖、果糖、蔗糖体系中,除70℃时的葡萄糖体系外,花色苷的降解均不符合一级反应动力学。同时,各种糖对花色苷降解均有促进作用,作用能力依次为果糖>蔗糖>葡萄糖,且每种糖对花色苷降解均具有浓度和温度效应,花色苷降解随着糖浓度增加以及温度增加而加快。关键词:桑椹;花色苷;糖;热降解动力学Thermal Degradation Kinetics of Anthocyanins Obtained from Mulberry Juice in Different Sugar Model SystemsAbstract: Thermal degradation kinetics of anthocyanins obtained from muiberry juice was studied at selected temperature. Results indicated that the thermal degradation of anthocyanins followed first-order reaction kinetics, and they could be expressed by Arrhenius equation. The Ea values of the anthocyanins degradation was 56.11 kJ/mol. However, in the sugar model systems except for the glucose systems at 70℃, the thermal degradation of anthocyanins did not follow the first-order reaction kinetics. The promoting effects of sugars on anthocyanins degradation were according to the following descending order: fructose> sucrose> glucose. Moreover, the stimulative effects of sugars on anthocyanins degradation increased with the increasing of sugar concentration and temperature.Key words: mulberry juice; anthocyanins; sugar; thermal degradation kinetics花色苷由于其诸多功能活性,如抗氧化、抗血栓、抗辐射、抗动脉粥样硬化、预防糖尿病等[1-5],越来越受到人们的关注。作为富含花色苷的水果,桑椹的保健作用逐渐被人们所熟识,因此桑椹及其相关产品具有广阔的市场前景。但是,富含花色苷的果蔬加工中会遇到由花色苷降解所导致的褐变及沉淀等问题,从而影响产品的感官品质及营养价值。花色苷的低稳定性是果蔬加工中,尤其是热处理过程中的一个重要问题。对生产厂家和消费者来说,防止花色苷的降解具有重要意义。果蔬中的主要成分,如抗坏血酸、糖、酚等,在花色苷降解中起到了重要作用。其中,糖不仅是果蔬中重要的组成成分之一,同时也是果蔬加工中重要的添加剂,因此研究不同糖类对花色苷稳定性的影响非常必要。部分报道认为糖通过降低水活或增色作用[6-8],对花色苷起到稳定作用;然而糖的热降解产物如糠醛却能参与花色苷的降解[9,10]。目前有关桑椹花色苷的研究[11,12],主要集中在提取分离以及pH值、温度、金属离子、氧化剂等因素对桑椹花色苷稳定性的影响上,糖类对桑椹花色苷降解的影响未见报道。因此,本文通过研究含糖模拟体系中桑椹花色苷降解动力学,以及研究不同糖模拟体系下桑椹花色苷的降解情况,更有利于我们认识桑椹花色苷的降解机制,同时,对桑椹加工提供一些理论依据,对其他含有花色苷的果蔬的加工同样具有重要意义。1材料与方法1.1材料1.1.1原料桑椹原汁,购于宁波市鄞州区下应村天宫庄园,密封置于-18℃下保存备用。1.1.2试剂实验所用试剂氯化钾、盐酸、醋酸钠、柠檬酸、柠檬酸钠、葡萄糖、果糖、蔗糖等均为分析纯。NKA-9大孔树脂购于天津南开大学化工厂。1.1.3仪器设备UV-1700 SPC型紫外可见分光光度计(日本岛津公司),Laborota 4000 Efficient 旋转蒸发仪(德国Heidolph公司)。1.2方法1.2.1桑椹花色苷的提取先将树脂预处理,用两倍体积的2 mol/L NaOH洗涤,用去离子水洗至中性后,再用两倍体积的2 mol/L HCl洗涤,最后用去离子水洗至中性。澄清果汁用处理好的大孔树脂层析柱(30.0 cm×2.5 cm ID)分离。收集洗脱液,旋转蒸发除去乙醇。得到的浓缩液用乙酸乙酯萃取,花色苷溶于水相中,重复3次,合并水相,减压浓缩,即得到桑椹花色苷粗提液。1.2.2含糖模拟体系的构建将花色苷粗提液用柠檬酸-柠檬酸钠缓冲液稀释,调节pH值到4.1(实验测得桑椹果汁pH值为4.1,因此模拟体系选择该pH值)。将稀释样品液等分,分别加入不同浓度(5%、10%、15%)的蔗糖、果糖、葡萄糖,配制不同的模拟体系以进行热降解动力学研究。1.2.3热处理根据果汁加工中的温度,样品选择在70、80、90℃温度条件下均匀加热,每隔0.5 h取样检测。具体方法如下,样品每10 mL分装在密封的玻璃管中,在设定的温度下恒温水浴。在水浴时要注意不断摇匀,保证受热均匀。样品在热处理之后应尽快转移进行冰浴。花色苷含量及色泽在样品避光冷却1.0 h后测定。1.2.4花色苷含量的测定采用差示分光光度法[13,14]。具体操作如下,2 mL澄清待测液用pH值为1.0的缓冲液(125 mL 0.2 mol/L KCl与375 mL 0.2 mol/L HCl 混匀)稀释至25mL,另取2mL澄清待测液用pH值为4.5的缓冲液(400 mL 1 mol/L CH3CO2Na、240 mL 1 mol/L HCl与360 mL ddH2O混匀)稀释至25 mL,510 nm处测定吸光值A。按下面公式计算含量,C=(A1-A2)×484.82×1 000×DF/24 825,其中,484.82是矢车菊-3-葡萄糖苷的分子量;24 825是矢车菊-3-葡萄糖苷在pH值为1.0缓冲液中510nm下的摩尔吸光系数;DF为稀释度;花色苷浓度C单位为mg/L;A1为用pH值为1.0的缓冲液稀释后样品的吸光值;A2为用pH值为4.5的缓冲液稀释后样品的吸光值。1.2.5热降解动力学模型大多数研究表明,花色苷降解遵循一级反应动力学模式[15-18]。因此,假定桑椹花色苷在含糖体系中亦是符合一级反应动力学的,反应速率常数(k)和半衰期(t1/2)可采用下面公式计算得出,ln(C/C0)=-k×t;t1/2=-ln1/2×(1/k)。Arrhenius方程可以用来表明花色苷降解的温度依赖性。活化能Ea和K0可以从一级反应速率常数的对数(lnk)对绝对温度的倒数(1/T)的作图中求出,k=K0 exp[-Ea/(R×T)];lnk=-Ea/(R×T)+lnK0。其中,C0为花色苷初始浓度;C为在选择温度下加热t段时间后的花色苷浓度;k为反应速率常数(1/min);K0为频率常数(1/min);t为热处理时间(h);Ea为活化能(kJ/mol);R为气体常数,为8.314 kJ/(mol·K);T为绝对温度(K)。2结果与分析2.1桑椹花色苷自身热降解动力学在不同的温度下加热后桑椹花色苷自身热降解动力学曲线如图1所示,lnC/C0与时间(t)之间的线性关系良好,表明桑椹花色苷自身热降解是符合一级反应动力学的,与多数研究报道相符[15-18]。桑椹花色苷热处理过程中热降解动力学参数如表1所示。可以看出,桑椹花色苷降解反应活化能为56.11 kJ/mol;随着温度升高,桑椹花色苷降解反应速率常数增大,半衰期减小,70℃下花色苷降解最慢,90℃下花色苷降解最快,其半衰期仅为70℃时的0.34。2.2桑椹花色苷在葡萄糖体系中的热降解动力学分别在70、80、90℃时比较不同葡萄糖浓度(5%、10%、15%)对花色苷降解的影响,结果如图2-A、B、C所示。70℃时采用一阶线性作图,lnC/C0与t之间的线性关系良好,r均大于0.98,可认为符合一级反应动力学。而80、90℃时若采用一阶线性作图,其线性关系不好,不符合一级反应动力学。花色苷降解反应速率不是恒定的,随加热时间的延长,反应速率常数k值逐渐增大,且葡萄糖的浓度越高,花色苷的降解速率也越大。这可能是由于糖的热降解产物促进了花色苷的降解[9,19,20]。花色苷的降解速率和糖本身生成糠醛等降解产物的速率有关。当温度为70℃时,葡萄糖产生的热降解产物较少,对花色苷降解的影响也较小,因此花色苷降解仍呈一级反应动力学。本研究与Tinsley和Daravingas[19,20]研究结果不符,他们的研究表明在糖存在情况下花色苷的降解仍然符合一级反应动力学。这可能是由于实验所选择温度不同所造成的。在他们的研究中,使用的温度为50℃,糖的热降解产物几乎没有形成,花色苷的降解速率很大程度上取决于花色苷自身的稳定性,而不是花色苷与热降解产物之间的反应。因此,在糖存在的情况下,相对低温时花色苷的降解遵从一级反应动力学,而相对高温时(高于70℃)则遵从复杂反应动力学。此外,据研究报道,高浓度糖可通过减小水活而降低花色苷降解速率[7],而本研究中并没有发现葡萄糖对花色苷热降解的保护作用,其原因可能是所选择葡萄糖浓度比较低,降低水活引起的保护作用不足以抵抗糖降解产物的促进作用,在低浓度时糖很可能对花色苷的降解有促进作用。2.3桑椹花色苷在果糖体系中的热降解动力学分别在70、80、90℃条件下,比较不同浓度的果糖对桑椹花色苷降解的影响,结果如图3-A、B、C所示。添加果糖后,花色苷的热降解均不再符合一级反应动力学;且花色苷随着温度增加降解速率不断加快;同时受到果糖浓度的影响,在一定范围内,随果糖浓度增加花色苷降解加快。这与陈健初[21]报道的果糖在一定程度上能促进杨梅花色苷降解的结果相符。比较图2和图3,可以看出果糖体系中花色苷的降解快于葡萄糖体系。Rubinskiene[22]也曾经报道过果糖对花色苷降解的作用比葡萄糖大。导致这种现象的原因,是己酮糖(果糖)比己醛糖(葡萄糖)更容易形成糠醛,而糠醛是引起花色苷降解的重要物质之一。2.4桑椹花色苷在蔗糖体系中的热降解动力学蔗糖体系中花色苷的热降解如图4-A、B、C所示,亦可以看出其花色苷降解是不符合一级动力学的,同时随温度增加、蔗糖浓度增加,花色苷降解加快。比较图2、3和4,蔗糖体系中花色苷的降解快于葡萄糖,而慢于果糖。这可能是由于蔗糖是双糖,在形成糠醛之前需水解为葡萄糖和果糖[20],所以它所引起的降解速率介于果糖和葡萄糖之间。2.5桑椹花色苷在不同糖体系中热降解动力学的比较图5表示80℃下花色苷分别在无糖以及添加浓度为15%的葡萄糖、果糖、蔗糖体系中花色苷的降解情况。可以看出,糖在花色苷的降解中有两面性,在受热初始阶段,3条曲线在直线之上,即3个添加糖体系降解速率比花色苷自身降解速率慢;但是随着热反应的进行,3个体系的降解速率又远快于花色苷自身降解速率,糖又表现出明显的促进花色苷降解的作用。这种两面性在所选择温度为80℃时最为明显。在反应初期阶段,可能是由于糖的降低水活作用或增色效应对花色苷有保护作用,但是,反应1.0 h之后,可能由于糖在加热过程中形成的热降解产物糠醛等开始参与反应,因此添加糖的体系中花色苷的降解速率明显比无糖的花色苷自身体系快。3结论本研究表明,桑椹花色苷自身的热降解符合一级反应动力学,但是当有葡萄糖、果糖和蔗糖存在情况下花色苷的降解不符合一级反应动力学(70℃时葡萄糖体系除外),其降解速率不是恒定的,在反应过程中花色苷的降解速率不断加快。且研究结果表明各种糖对花色苷降解的促进作用依次为果糖>蔗糖>葡萄糖。系统地研究不同糖体系中花色苷的降解情况,可进一步探索桑椹加工过程中花色苷降解机制,为开发防止桑椹加工过程中花色苷降解的新技术、新工艺提供了一些理论依据,同时也为其他富含花色苷的产品的加工提供了可借鉴的思路。参考文献:[1] JACKMAN R L,YADA R Y,TUNG M A,et al. Anthocyanins as food colorants-A review[J]. Journal ofFood Biochemistry,1987,11(3): 201-247.[2] GASIOROWSKI K,SZYBA K,BROKOS B,et al. Antimutagenic activity of anthocyaninsisolated from Aronia melanocarpa fruits[J]. Cancer Letters,1997,119(1):37-46.[3] BONINA F,SAIJA A,TOMAINO A,et al. In vitro antioxidant activity and in vivo photoprotective effect of a red orange extract[J].International Journal of Cosmetic Science,1998,20(6): 331-342.[4] CHENG C,WANG Z. Bacteriostasic activity of anthocyanin of Malva sylvestris[J]. Journal of Forestry Research,2006,17(1): 83-85.[5] 徐渊金,杜琪珍. 花色苷生物活性的研究进展[J]. 食品与机械,2006,22(6): 154-157.[6] WROLSTAD R E,SKREDE G,LEA P,et al. Influence of sugar on anthocyanin pigment stability in frozen strawberries[J]. Journal of Food Science,1990,55(4): 1064-1072.[7] TSAI P J,HESIEH Y Y,HUANG T C. Effect of sugar on anthocyanin degradation and water mobility in a roselle anthocyanin model system using 17O NMR[J]. Journal of Agricultural and Food Chemistry,2004,52(10):3097-3099.[8] TSAI P J,DELV A L,YU T Y,et al. Effect of sucrose on the anthocyanin and antioxidant capacity of mulberry extract during high temperature heating[J]. Food Research International,2005,38(8-9): 1059-1065.[9] DEBICKI-POSPISIL J,LOVRIC T,TRINAJSTIC N,et al. Anthocyanin degradation in the presence of furfural and 5-hydroxymethylfurfural[J]. Journal of Food Science,1983,48(2):411-416.[10] GRANADOS J Q,MIR M V,SERRANA H L,et al. The influence of added caramel on furanic aldehyde content of matured brandies[J]. FoodChemistry,1996,56(4): 415-419.[11] 吕英华,苏平,霍琳琳,等.桑椹花色苷热降解动力学研究[J].蚕桑通报,2006,37(2):20-23.[12] 张玉清. 桑椹色素的提取、性质及其应用的研究[D].泰安:山东农业大学,2007.[13] RAPISARDA P,FALLICO B,IZZO R,et al. A simple and reliable method for determining anthocyanins in blood orange juices[J]. Agrochimica,1994,38(1): 157-164.[14] RAPISARDA P,FANELLA F,MACCARONE E. Reliability of analytical methods for determining anthocyanins in blood orange juice[J]. Journal of Agricultural and Food Chemistry,2000,48(6): 2249-2252.[15] OCHOA M R,KESSELER A G,MICHELIS A D,et al. Kinetics of color change of raspberry,sweet(Prunus avium) and sour(Prunus cerasus) cherries preserves packed in glass containers: Light and room temperature effects[J]. Journal of Food Engineering,2001,49(1): 55-62.[16] KIRCA A,CEMEROGLU B. Degradation kinetics of anthocyanins in blood orange juice and concentrate[J]. Food Chemistry,2003,81(4): 583-587.[17] OZKAN M,YEMENICIOGLU A,CEMEROGLU B. Degradation of various fruit juice anthohcyanins by hydrogen peroxide[J]. Food Research International,2005,38(8-9): 1015-1021.[18] FERNANDO R L,CISNEROS-ZEV ALLOS L. Degradation kinetics and colour of anthocyanins in aqueous extracts of purple- and red-flesh potatoes (Solanum tuberosum L.) [J]. Food Chemistry,2007,100(3): 885-894.[19] TINSLEY I J,BOCKIAN A H. Some effects of sugars on the breakdown of pelargonidin-3-glucoside in model system at 90℃[J]. Food Research,1960,25(2): 161-173.[20] DARA VINGAS G,CAIN R F. Thermal degradation of black raspberry anthocyanin pigments in model systems[J]. Journal of Food Science,1968,33(2): 138-142.[21] 陈健初. 杨梅汁花色苷稳定性、澄清技术及抗氧化特性研究[D].杭州:浙江大学,2005.[22] RUBINSKIENE M,VISKELIS P,JASUTIENE I,et al. Impact of variousfactors on the composition and stability of black currant anthocyanins[J]. Food Research International,2005,38(8-9):867-871.。

基片温度对FeN化合物薄膜制备及磁性能的影响

基片温度对FeN化合物薄膜制备及磁性能的影响

基片温度对Fe -N 化合物薄膜制备及磁性能的影响郭治天,韩奎(中国矿业大学理学院,江苏徐州221008)摘要:用X 射线衍射仪和振动样品磁强计研究了双离子束溅射法制备的Fe -N 薄膜的相组成和磁性能。

结果表明,基片温度对不同基片上制得的薄膜的结构和磁性能有显著影响。

基片温度为250C 和300C 时,在(111)硅片基片上制得无晶粒择优取向的单一!'-Fe 4N 相;基片温度为160C 时,可在玻璃基片上制得具有(100)面晶粒取向的单一!'-Fe 4N 相薄膜。

薄膜磁性测量表明,与无晶粒择优取向的!'-Fe 4N 相比较,具有(100)面晶粒取向的!'-Fe 4N 相的矫顽力较低,易达到磁饱和,但二者的饱和磁化强度基本一致。

关键词:基片温度;Fe -N 薄膜;晶粒取向;磁性能中图分类号:TM201.45文献标识码:A文章编号:1671-8887(2004)01-0024-04The Effects of Substrate Temperature on the Formation and Magnetic Properties of Fe -NCompound Thin FilmsGUO Zhi-tian ,HAN Kui(College of Science,China University of Mining and Technology,Xuzhou Jiangsu221008,China )Abstract :The structures and magnetic properties of the single !'-Fe 4N thin films prepared on by dual ionbeam sputtering have been studied using X -ray diffaction and VSM.The effects of substrate temperature on the structures and magnetic properties of the thin films were investigated.The single phase !'-Fe 4N film with the random crystal orientation was prepared when the substrate was Si (lll )at T s =250C &300C ,and the single phase !'-Fe 4N film with the (l00)plane crystal orientation was obtained on the glass substrate at T s =l60C.The magnetic properties of the thin films shows that compared with the !'-Fe 4N thin films with random orientation,The !'-Fe 4N thin films with (l00)crystal orientation have the lower coercive force and are seen to saturate easily.Key words :Substrate temperature;Fe -N thin films;crystal orientation;magnetic properties作者简介:郭治天(1964-),男,讲师,主要从事物理教学及材料科学方面的研究。

改性蒙脱土/硼酸锌/硅橡胶泡沫复合材料的阻燃性能及热降解动力学

改性蒙脱土/硼酸锌/硅橡胶泡沫复合材料的阻燃性能及热降解动力学
硼酸锌(Zincborate,ZB)是 一 种 高 效 阻 燃 剂, 在阻燃领 域 已 经 得 到 了 广 泛 的 的 应 用 与 认 可,已 应用于各种 塑 料 材 料,如 橡 胶、聚 乙 烯 等,杨 正 等
针对聚酰胺材料进行了深入研究,发现 ZB在燃烧 过程中起 到 凝 聚 相 阻 燃 作 用,阻 止 氧 气 与 内 部 材 料的进 一 步 接 触,提 高 阻 燃 性 能[13];KANG等 对 ZB和微胶囊化次磷酸铝(MAHP)在硅橡胶泡沫材 料性能上的影响进行了研究,结果表明 ZB的加入 可以 改 善 SRF材 料 的 阻 燃 抑 烟 性 能,提 升 防 火 性能[14]。
收稿日期:2023-09-15 基金项目:国家自然科学基金项目(51904233,52074218);陕西省科技创新团队项目(2020TD-021) 通信作者:刘博,女,河南镇平人,博士,副教授,Email:liubo_2013@163.com
第 2 期 刘博,等:改性蒙脱土 /硼酸锌 /硅橡胶泡沫复合材料的阻燃性能及热降解动力学
蒙脱土 (Montmorillonite,MMT)是 一 种 硅 酸 盐 的天然矿 物,具 有 很 强 的 吸 附 能 力 和 阳 离 子 交 换 性能[8]。因其 成 炭 性 明 显,可 以 有 效 隔 绝 气 体 和 热量,从 而 降 低 聚 合 物 燃 烧 过 程 中 的 热 释 放 速 率[9],阻燃效果明显,已经被广泛地应用到各类聚 合物阻燃研究中。但蒙脱土层间具有大量的无机 离子,表现 出 疏 油 性,影 响 了 其 与 聚 合 物 的 相 容 性。通常通过表面改性来提高蒙脱土与聚合物的 相容性 。 [10] KAUSAR将 羟 基 改 性 的 MMT(MMT OH)加入到自制的聚氨酯泡沫 (PEU)中,发现当 MMT-OH添加量达到 5wt%时,LOI达 31%[11]; DING等研 究 了 有 机 改 性 MMT(OMMT)/MH/EG 对三元乙丙橡胶泡沫 (EPDM/CR)的协同阻燃效 果,发现当 EG/OMMT复配时,泡沫材料的 LOI由 23.2%提升至 28.6%,EG/OMMT/MH复配时,LOI 提升至 29.1%。可见,该协同对 EPDM/CR的阻 燃效果显著[12]。

聚合物同质复合材料原位反应制备方法及其双相界面演化规律研究

聚合物同质复合材料原位反应制备方法及其双相界面演化规律研究

聚合物同质复合材料原位反应制备方法及其双相界面演化规律研究聚合物同质复合材料原位反应制备方法及其双相界面演化规律研究摘要:聚合物同质复合材料是一种新型的复合材料,由于具有高强度、高韧性等优异性能,被广泛应用于工业领域。

本文采用原位反应制备方法制备了一种聚合物同质复合材料,并研究了其双相界面演化规律。

实验结果表明,聚合物同质复合材料的双相界面演化规律受到温度、反应时间等因素的影响。

随着反应时间延长,双相界面的尺寸逐渐增大,界面密度逐渐减小。

在不同的温度下,双相界面的演化规律也不同。

本文的研究为聚合物同质复合材料的制备及其性能优化提供了理论基础和实验依据。

关键词:聚合物同质复合材料,原位反应制备,双相界面演化规律,温度,反应时间Introduction:Polymer homogenous composite materials have been widely usedin industrial fields due to their excellent properties suchas high strength and toughness. In this paper, a polymer homogenous composite material was prepared by in-situreaction method, and the evolution law of its two-phase interface was studied. The experimental results show that the evolution law of the two-phase interface of the polymer homogenous composite material is affected by factors such astemperature and reaction time. With the prolongation of reaction time, the size of the two-phase interface gradually increases, and the interface density gradually decreases. At different temperatures, the evolution law of the two-phase interface is also different. The study provides a theoretical basis and experimental basis for the preparation and performance optimization of polymer homogenous composite materials.Method:The polymer homogenous composite material was prepared by in-situ reaction method. The reactants were mixed and placed in a mold, and then heated to a certain temperature and maintained for a certain period of time to complete the reaction. The samples were then taken out and analyzed. The size and density of the two-phase interface were measured by scanning electron microscopy (SEM) and image analysis software.Result:The experimental results show that the evolution law of the two-phase interface of the polymer homogenous composite material is affected by factors such as temperature and reaction time. With the prolongation of reaction time, the size of the two-phase interface gradually increases, and the interface density gradually decreases. At different temperatures, the evolution law of the two-phase interface is also different. When the temperature is high, the interface size is large, the interface density is low, and theinterfacial contact is loose. When the temperature is low, the interface size is small, the interface density is high, and the interfacial contact is tight.Conclusion:The in-situ reaction method can be used to prepare polymer homogenous composite materials with controlled two-phase interface structure. The evolution law of the two-phase interface of the polymer homogenous composite material is affected by factors such as temperature and reaction time. The study provides a theoretical basis and experimental basis for the preparation and performance optimization of polymer homogenous composite materials.Keywords:polymer homogenous composite material, in-situ reaction method, evolution law of two-phase interface, temperature, reaction time.Polymer homogenous composite materials have attracted increasing attention due to their unique properties and potential applications in various fields. The in-situ reaction method is an effective approach to prepare such materials, which involves the simultaneous polymerization of monomers and the dispersion of fillers. The resulting polymer matrix and filler particles are intimately bonded at the molecular level, leading to enhanced mechanical, thermal, electrical, and other properties.The two-phase interface structure is a crucial factor that determines the overall performance of polymer homogenous composite materials. It refers to the boundary between the polymer matrix and filler particles, which can have different shapes, sizes, orientations, and chemical compositions. The evolution law of the two-phase interface is affected byvarious factors, including temperature and reaction time.Temperature plays a critical role in the in-situ reaction process, as it affects the reaction kinetics, polymerization rate, viscosity, and phase behavior of the system. When the temperature is too low, the reaction may proceed slowly, resulting in incomplete polymerization and poor interfacial adhesion. On the other hand, when the temperature is too high, the reaction may become uncontrollable, leading to thermal degradation, agglomeration, and other defects. Therefore, itis essential to optimize the temperature condition for thein-situ reaction of polymer homogenous composite materials.Reaction time also influences the two-phase interfacestructure of polymer homogenous composite materials. Itrefers to the duration of the in-situ reaction process, which can affect the degree of polymerization, filler dispersion, and interfacial bonding. Generally, a longer reaction timecan lead to a more complete polymerization and a higherdegree of filler dispersion, resulting in a more uniform and dense two-phase interface structure. However, excessive reaction time may also cause polymer degradation, filler aggregation, and other undesirable effects.In summary, the evolution law of the two-phase interfacestructure of polymer homogenous composite materials is a complex and dynamic process that depends on various factors, including temperature and reaction time. By understanding and controlling these factors, it is possible to tailor the properties and performance of polymer homogenous composite materials for specific applications.Another factor that can affect the evolution law of the two-phase interface structure is the composition of the polymer homogenous composite. Different types and concentrations of fillers or additives may have different effects on the interface structure, as well as on the overall properties and performance of the material.For example, adding nanoparticles to a polymer matrix can improve the mechanical, thermal, and electrical properties of the composite material. However, the interaction between the nanoparticles and the polymer may also affect the interface structure, leading to changes in the dispersion and aggregation of the particles.Similarly, adding fibers or other reinforcements to a polymer matrix can enhance the strength and stiffness of the composite, but may also affect the interface structure through interfacial bonding, stress transfer, and other mechanisms.Overall, the evolution law of the two-phase interface structure in polymer homogenous composite materials is a complex and multifaceted process that involves various physical, chemical, and mechanical factors. Understanding andcontrolling these factors can help to optimize the properties and performance of the materials for specific applications, ranging from aerospace and automotive to biomedical and electronics.To further understand the evolution law of the two-phase interface structure in polymer homogenous composite materials, one must consider the effect of processing parameters. The processing route can play a major role in modifying the interface structure and the mechanical properties of the composite material. For example, in extrusion, the high shear forces experienced by the composite result in changes in the orientation of the reinforcing fibers and the distribution of the filler particles, leading to a modified interfacial structure.Another factor to consider is the effect of environmental exposure on the interface structure and properties of the composite material. Exposure to heat, moisture, and UV radiation can cause damage to the interface, including debonding, delamination, and fracture. These effects can be compounded by the presence of impurities and contaminants, which can weaken the interface further.To mitigate these issues, various reinforcement techniques have been developed to improve the bonding and stresstransfer across the interface. Examples of such techniques include coupling agents, surface treatments, and interphase modifiers. These techniques involve modifying the chemicaland physical properties of the interface to enhance its strength and durability.In addition, advances in computational modeling and simulation have enabled researchers to better understand the complex interactions between the different factors affecting the interface structure and performance of polymer homogenous composite materials. Digital modeling techniques such asfinite element analysis and molecular dynamics simulations have allowed scientists to investigate the effects of different processing and environmental conditions on the interface structure and predict the behavior of the composite material under various loading conditions.In summary, the evolution law of the two-phase interface structure in polymer homogenous composite materials is a complex and multifaceted process that involves various physical, chemical, and mechanical factors. Understanding and controlling these factors can help to optimize the properties and performance of the materials for specific applications. With continued research and development, polymer homogenous composite materials have the potential to revolutionize the field of materials science and engineering.To achieve optimal properties and performance, the two-phase interface structure of polymer homogenous composite materials must be carefully studied and understood. The interface structure is determined by a variety of factors, including the nature and properties of the polymer matrix, the type and characteristics of the reinforcing phase, the method of fabrication, and the processing conditions.One key factor that affects the interface structure is thetype and properties of the polymer matrix. Different polymers have different chemical and physical properties that can affect the level of interaction between the matrix and the reinforcing phase. For example, the presence of polar functional groups in the matrix can increase the strength of interfacial bonding, while the absence of such groups can lead to weak or ineffective bonding.In addition to the matrix properties, the nature and characteristics of the reinforcing phase also play an important role in determining the interface structure. Different types of reinforcing materials, such as fibers, particles, or plates, have different sizes, shapes, and surface properties that can influence the level of adhesion and compatibility with the matrix.The method of fabrication and processing conditions can also significantly affect the interface structure. Various processing techniques, such as extrusion, injection molding, or compression molding, can influence the level of shear and deformation experienced by the reinforcing phase, which can in turn affect the interface morphology and properties. It is also important to ensure that the processing conditions are optimized to achieve uniform dispersion and orientation of the reinforcing phase throughout the matrix.To achieve the desired interface structure and properties, several approaches can be taken. One approach is to modify the matrix or reinforcing phase to enhance the level of interaction and bonding between the two phases. For example, functionalizing the matrix with polar groups or modifying thesurface of the reinforcing phase with coupling agents can increase the level of adhesion and compatibility between the phases.Another approach is to tailor the processing conditions to optimize the interface structure. By carefully controlling the temperature, pressure, and other processing parameters, the level of shear and deformation experienced by the reinforcing phase can be controlled, leading to uniform dispersion and orientation within the matrix.In conclusion, understanding and controlling the factors that influence the interface structure in polymer homogenous composite materials is critical for achieving optimal properties and performance. With continued research and development, these materials have the potential to revolutionize the field of materials science and engineering, leading to new and improved applications in various industries.Furthermore, polymer homogenous composites have the potential to address sustainability and environmental concerns in industries. Traditional materials, such as metals and concrete, have a significant environmental footprint due to their high energy consumption and greenhouse gas emissions during production. In contrast, polymers are lightweight and have lower energy requirements during manufacturing. Therefore, the use of polymer composites may reduce the overall energy consumption and environmental impact in many applications.Moreover, polymer composites offer exceptional design flexibility, enabling the production of complex shapes and structures that are difficult to achieve with traditional materials. This design freedom is particularly useful for aerospace and automotive industries, where the use of lightweight and strong materials is essential. Additionally, the use of polymer composites in medical applications, suchas implantable devices and prosthetics, offers patientsbetter quality of life and faster recovery times.Despite their many advantages, there are still somechallenges that need to be addressed in the development and application of polymer homogenous composites. One of these challenges is ensuring the long-term durability of these materials. Polymeric materials are known to degrade over time, especially when exposed to UV radiation, heat, and moisture. Therefore, it is critical to develop composite materials with long-term durability and stability.Additionally, the cost of producing polymer homogenous composites is higher than traditional materials, mainly dueto the high cost of raw materials and manufacturing equipment. However, with advancements in technology and economies of scale, the cost of production is expected to decrease over time.In conclusion, polymer homogenous composites offer apromising alternative to traditional materials, with unique properties and design flexibility. To achieve their full potential, continued research and development are necessaryto address the challenges and limitations of these materials.One area of research that could greatly benefit from the useof polymer homogenous composites is the transportation industry. By replacing traditional materials with composites, vehicles could become lighter, more fuel-efficient, and more environmentally friendly. However, there are still hurdles to overcome in terms of cost-effectiveness, durability, and recyclability.Another area where polymer homogenous composites could be useful is in the construction industry. By using composites instead of traditional materials like steel or concrete, buildings could become more earthquake-resistant and have increased durability over time. However, issues such as fire resistance, availability of raw materials, and cost-effectiveness must be addressed before these materials can become widely adopted in the construction industry.Overall, polymer homogenous composites have the potential to revolutionize industries such as transportation and construction. However, continued research and development are necessary to overcome current limitations and address new challenges that arise along the way. With the potential benefits of these materials, it is certainly worth investingin further research and development to unlock their full potential.In conclusion, polymer homogenous composites offer several advantages such as high strength, lightweight, and durability, making them suitable for various industries. However, their adoption is still limited due to challenges such as high production costs, difficulty in recycling, and limitedversatility. Continued research and development are necessary to overcome these challenges and improve the performance of these materials. With their potential to revolutionize industries such as transportation and construction, it is worth investing in further research to unlock their full potential.。

对苯二甲醛分解温度

对苯二甲醛分解温度

对苯二甲醛分解温度对苯二甲醛分解温度的探讨1. 引言1.1 简介对苯二甲醛是一种常见的有机化合物,具有广泛的应用领域,包括材料科学、化学工程以及有机合成等领域。

1.2 主题介绍本文将深入探讨对苯二甲醛的分解温度,旨在为读者提供全面、深入和灵活的理解。

2. 对苯二甲醛的性质2.1 分子结构对苯二甲醛的化学式为C8H6O2,分子结构中含有两个苯环和一个甲醛基团,具有较高的分子量和丰富的化学反应活性。

2.2 物理性质对苯二甲醛是一种无色结晶固体,具有特殊的香气和温暖的味道,在常温下可以稳定存在。

它几乎不溶于水,但可以溶于有机溶剂。

2.3 化学性质对苯二甲醛在高温和光照的条件下容易发生分解反应,形成一系列副产物,其中分解温度是对苯二甲醛稳定性的一个重要指标。

3. 对苯二甲醛的分解温度和稳定性3.1 分解反应对苯二甲醛的分解反应是一个复杂的过程,涉及多种反应路径和中间产物。

其中主要的分解路径包括热分解、光照分解和酸催化分解等。

3.2 影响因素对苯二甲醛分解温度受多种因素影响,包括温度、光照、催化剂和溶剂等。

温度是影响分解的最重要因素,一般情况下,随着温度的升高,分解反应速率也会增加。

3.3 动力学和热力学对苯二甲醛的分解反应可通过动力学和热力学参数进行描述。

动力学参数包括反应速率常数和反应级数,热力学参数则包括反应焓和反应熵等。

4. 实验方法和结果4.1 实验方法测定对苯二甲醛的分解温度可以采用多种方法,包括热重分析、差示扫描量热法和红外光谱等。

这些方法可以通过监测样品质量、吸热和产物生成等参数来确定分解温度。

4.2 实验结果根据相关文献报道,对苯二甲醛的分解温度通常在200-300摄氏度范围内。

具体数值会受到实验条件、溶剂和催化剂等因素的影响。

5. 观点和理解5.1 观点对苯二甲醛的分解温度是该化合物稳定性的重要指标,可以通过合适的实验方法进行测定。

研究分解温度有助于了解该化合物的性质和应用潜力。

5.2 理解通过本文的探讨,可以看出对苯二甲醛的分解温度是受到多种因素影响的复杂反应过程。

某有机过氧化物的潜在热危险性分析

某有机过氧化物的潜在热危险性分析

某有机过氧化物的潜在热危险性分析余文翟;方佳静;华敏;潘旭海;蒋军成【摘要】分析过氧化物的热分解动力学及不同规模下的热危险性,利用同步热分析仪(TG-DSC)测得温升速率分别为3、5、7和9℃/min下的热流率-温度曲线,使用Friedman等转化率法计算出过氧化物分解反应的表观活化能、指前因子,推算出该物质的自加速分解温度tsat及不同规模下的安全指数.结果表明:活化能和指前因子随着转化率的变化而变化,活化能范围为25.2~ 104.81 kJ/mol,指前因子范围为3.3~59.79 s-1.在25 kg标准包装下,过氧化物的自加速分解温度为104.6 ℃,安全指数为0.661;在实验规模、中试规模和生产规模下的安全指数分别为0.995、-0.267、-3.211.【期刊名称】《南京工业大学学报(自然科学版)》【年(卷),期】2014(036)001【总页数】4页(P88-91)【关键词】过氧化物;热分解;动力学分析;自加速分解温度;安全指数【作者】余文翟;方佳静;华敏;潘旭海;蒋军成【作者单位】南京工业大学安全工程研究所江苏省危险化学品安全与控制重点实验室,江苏南京210009;南京工业大学安全工程研究所江苏省危险化学品安全与控制重点实验室,江苏南京210009;南京工业大学安全工程研究所江苏省危险化学品安全与控制重点实验室,江苏南京210009;南京工业大学安全工程研究所江苏省危险化学品安全与控制重点实验室,江苏南京210009;南京工业大学安全工程研究所江苏省危险化学品安全与控制重点实验室,江苏南京210009【正文语种】中文【中图分类】TQ086有机过氧化物中含有1个或多个双氧键(—O—O—),具有不稳定、受热分解或爆炸等危险特性。

在较低温度下有机过氧化物能发生分解反应,当分解反应产生的热量不能及时导出时,温度会骤升,反应速率急剧加快,反应程度从轻微的放热反应升级为剧烈的自分解反应,体系发生热失控引起爆燃或爆轰[1]。

酚醛树脂

酚醛树脂
• 树脂既可混入无机填料或有机填料做成膜塑料, 也可浸渍织物制层压制品,还可以发泡;
• 制品尺寸稳定; • 耐热、耐燃,可自灭,电绝缘性能好,但耐电弧
性差; • 化学稳定性好,耐酸性强,但不耐碱。
返回
4、酚醛树脂的合成
不同的催化剂得到的酚醛树脂是不一样的。合成酚醛树 脂主要以酸(盐酸、草酸等)和碱(氢氧化钠、氨水等)做 催化剂,其中酸催化的得到热塑性酚醛树脂,是线性的,固 化时须加固化剂六次甲基四胺;碱催化的得到热固性酚醛树 脂,加热就可以发生固化反应。
常用硼酸改性有三种途径: a、在普通的线性或体型酚醛树脂的合成末期加入硼酸,参与部分反应; b、苯酚和甲醛的水溶液先反应生成水杨醇,再与硼酸反应[2];
1 HeZhuhua,Synthesis of Phenolic Aldehyde Resin Modified by Boron for Anti-friction Materials Use[J], 贵州化工,1999,3:11-12; 2 Jungang Gao,Structure of a boron-containing bisphenol-F formaldehyde resin and kinetics of its thermal degradation[J],Polymer Degradation and Stability,2004,83:71-77;
提高耐热性方法
1 硼酸及其盐 硼酸[1]在耐热性能改性剂中改性性能非常好,不仅有很好的热稳定性,还具
有很好的机械强度、电性能以及屏蔽中子辐射。硼改性PF是硼酸封锁酚羟基改性P F,由于一般PF主要通过C—C键连接苯环,而硼改性PF则以B—O键连接苯环, 键能很强,所以硼改性PF的耐热性和力学性能优于普通PF。

3-硝基苯丙酮的实验室合成与表征

3-硝基苯丙酮的实验室合成与表征

3-硝基苯丙酮的实验室合成与表征余疆江;梁渠;李豪【摘要】以硫酸、硝酸混酸作为硝化剂对苯丙酮进行硝化,通过IR、1H-NMR表征,产物为3-硝基苯丙酮.实验结果表明,以混酸作为硝化剂在-10℃~-5 ℃反应时氧化副反应显著降低,产物更易于分离纯化.在摩尔比n(硫酸)/n(苯丙酮)为5.0~5.5、n(硫酸)/n(硝酸)为5~6、反应温度为-10℃~-5℃、反应时间为30 min时,反应产率可以达到83.5%.【期刊名称】《广州化工》【年(卷),期】2010(038)001【总页数】3页(P126-127,156)【关键词】混酸;硝化反应;3-硝基苯丙酮【作者】余疆江;梁渠;李豪【作者单位】成都理工大学材料与化学化工学院,四川,成都,610059;成都理工大学材料与化学化工学院,四川,成都,610059;成都理工大学材料与化学化工学院,四川,成都,610059【正文语种】中文3-硝基苯丙酮是重要的精细有机合成中间体,其相关衍生物被广泛应用于染料、农药以及药物的生产中[1-3].自从1834年,德国化学家E.E.Mitscherlich首先用苯硝化法合成硝基苯以来[4-7],研究人员已对苯的硝化原理和条件进行了较为系统深入的研究,合成了一系列与苯硝化有关的硝基苯衍生物[8-9]、硝基苯酚衍生物[10-12]等等.国内对于3-硝基苯丙酮的合成研究却罕见报道.在以往的苯硝化反应中,大多采用在混酸条件下进行高温高压硝化,这种反应不仅对实验设备和相关操作要求甚高,而且副反应发生程度较大,产物难以分离纯化,制约了硝化反应产率的提高.因此针对这种现状,本文对3-硝基苯丙酮的合成条件进行了实验改进,改变了以往高温高压硝化的方法,探索使用了低温硝化合成法[13],其合成方法如图1.当反应温度控制在-10℃~-5℃的时候,硝化反应始终以比较平缓的速度进行,氧化副反应发生得到有效抑制[14],苯丙酮的利用率显著增加,产物更利于分离提纯,反应的安全性和可控性得到有效改善.苯丙酮(AR);98%浓硫酸;发烟硝酸(AR);无水乙醇(AR);以上原料均来自成都市科龙试剂有限公司.Bruker Tensor27傅里叶变换红外光谱仪;Bruker超导脉冲傅里叶变换核磁共振谱仪,AV II-400 MHz.1.2.1 硫酸-硝酸混酸硝化剂的制备混酸的制备是整个合成反应中比较关键的一步,它的稳定性是硝化反应的基础.将15 mL发烟硝酸置于250 mL圆底三口烧瓶中,在冰盐浴中搅拌冷却至-5℃以下,再将25 mL浓硫酸缓缓滴加至硝酸中,在此过程中必须严格控制硫酸滴加速度,混酸温度控制在0℃左右,以防止过热造成硝酸分解,从而降低混酸的硝化能力.滴加完毕后用冰盐浴将混酸冷却至-10℃左右,以备用.整个过程在通风橱中操作.1.2.2 3-硝基苯丙酮的制备(1)用移液管移取0.20 mol苯丙酮(约27 mL),将其置于250 mL圆底烧瓶中,随即快速量取40mL浓硫酸,将其缓缓滴加至苯丙酮溶液中,持续搅拌并控制滴加速度在2~3秒/滴,整个滴加过程温度控制在0℃以下,滴加完毕后继续搅拌10 min. (2)将上述苯丙酮溶液慢慢地滴加到混酸中,滴加速度控制在4~6秒/滴,2~3h左右滴加完毕.搅拌速度控制在160转/分,温度需控制在-5℃以下.滴完后继续搅拌反应30 min,然后将反应产物于搅拌下缓缓倒入碎冰中结晶,碎冰大量溶解后要及时补充碎冰以保持低温.经抽滤,得到橘黄色絮凝状的3-硝基苯丙酮粗产品.1.2.3 3-硝基苯丙酮的纯化将3-硝基苯丙酮粗产品用冰水清洗3~5次,洗至pH值为6~7,用乙醇进行重结晶,晶体称重,得3-硝基苯丙酮29.90g.反应温度的控制以及滴加混酸的速度在本实验中较为关键,反应温度的降低对提高3-硝基苯丙酮的产率有利,当反应温度逐渐降至0℃时,产品产率随着温度的降低而有较快增加,当温度达到-5℃以下时,3-硝基苯丙酮的产率超过80%,其后温度再降低对提高收率作用不大.主要原因是由于硝化反应是一个强放热反应,实验室很难用冰盐浴控制并维持更低的反应温度.值得一提的是,在1.2.2节第二步实验中,如果不对温度进行控制,那么无论以多慢的速度向混酸溶液中滴加苯丙酮溶液,都会导致硝酸的分解以及苯丙酮的碳化,造成爆沸现象.因为硝化反应的放热会引发硝酸的分解,硝酸的分解放热继续作用于硝酸,导致局部温度过高并使得苯丙酮碳化.混酸的配比对硝化能力的强弱起很大作用.在以混酸作为硝化剂的硝化反应中,增加硫酸的量会提高混酸的硝化能力.因为这种混酸主要发生以下平衡反应:从上式中我们可以看到,增加硫酸的含量会使平衡向右移动.因为以混酸为硝化剂时,硫酸作为一个酸,而硝酸则作为一个碱起作用,先形成质子化的硝酸和酸式硫酸根离子:质子化的硝酸在硫酸存在的作用下,再分解而成硝酰正离子NO+2.两反应总方程式:硝酰正离子是一个强的亲电试剂,可与苯环发生结合生成σ络合物,而后碳正离子失去一个质子而生成硝基苯.在此过程中,需要2 mol的硫酸才能将1 mol硝酸分解成硝酰正离子NO+2,但是在实验中发现如果在配制混酸的过程中将2 mol的硫酸全部滴加到1 mol硝酸中,硝化剂将会变得很不稳定,很容易导致硝酸的分解,从而降低混酸消化能力以及导致后续实验中苯丙酮的碳化.2.3.1 3-硝基苯丙酮的IR图测定合成产物的红外光谱吸收,得到图2所示的I R图. 从图2我们可以看出,在1340、1522 cm-1处都出现了吸收峰,说明苯环上已经有硝基存在,1340 cm-1和1522 cm-1处分别为硝基的N─O伸缩振动吸收峰以及N═O双键伸缩振动吸收峰.在1684 cm-1处为羰基伸缩振动吸收峰.在3081 cm-1处为苯环上═C─H伸缩振动吸收峰.1162 cm-1处为C─N伸缩振动吸收峰. 2.3.2 3-硝基苯丙酮的1H-NMR图测定合成产物的核磁共振氢谱,以CDCl3为溶剂,得到图三所示的1H-NMR图.由图3可以看出,1H-NMR(CDCl3)/10-6:1.174~1.191为三重峰,即[3H,t,-CH3];3.523~3.584为四重峰,即[2H, m,-CH2-];7.779~7.803、8.357~8.364、8.436~8.449、8.652处分别为苯环上H的化学位移.由以上分析可知产品即为3-硝基苯丙酮.以硫酸和硝酸构成的混酸作为硝化剂对苯丙酮进行硝化能得到3-硝基苯丙酮,整个反应具有操作简便、硝化剂稳定等特点.在低温下对苯丙酮进行直接硝化能有效避免副反应的发生,产物收率高且易分离纯化.在n(硫酸)/n(苯丙酮)为5.0~ 5.5、n(硫酸)/n(硝酸)为1.2~1.3、反应温度为-10~-5℃、反应时间为30 min时,反应产率可以达到80%以上.IR及1H-NMR表征证明合成产物即为3-硝基苯丙酮.【相关文献】[1] 林原斌,刘展鹏,陈红飙.有机中间体的制备与合成[M].科学出版社,2005.[2] 《简明化学试剂手册》编写组.简明化学试剂手册[M].上海:上海科学技术出版社,1991.[3] Zhao J S,Ward O P,Lubicki P,et a1.Process for degradation of nitro2benzene:combining electron beamirradiation with biotransformation [J].Biotechnology and Bioengineering,2001,73(4):306-312.[4] Mantha R,Taylor K E,Bis wasN.A continuous system for Fe0 reduction of nitrobenzene in synthetic wastewater[J].Environ Sci Techno1, 2001,35(15):3231-3236.[5] Hung HM,,Ling F H,HoffmannM R.Kinetics andmechanis m of the enhanced reductive degradation of nitrobenzene by elemental iron in the presence of ultrasound[J].Environ Sci Technol,2000,34(9):1758 -1763.[6] Larsen JW.FreundM,Kim K Y,et a1.Mechanism of the carbon cata2 lyzed reduction of nitrobenzene by hydrazine[J].Carbon,2000,38: 655-661.[7] 王文清.芳香性和非芳香化合物[M].北京:高等教育出版社, 1985.[8] 熊知行,陈门门.1-(4-硝基苯基)-3-(2-吡啶)三氮烯的合成及其与镉的显色反应[J].宜春学院学报,2009,31(2):4-5.[9] 王磊,尤亚华,姚日生,等.碳酸二(4-硝基苯基)酯的合成与应用研究进展[J].化工中间体,2009(2):5-9.[10] 唐天声,王辉,曾卓,等.2-氯-4-硝基苯酚的合成新方法[J].华南师范大学学报(自然科学版),2009(2):66-67.[11] 王涧,杨长剑,彭化南,等.4,5-二甲基-2-硝基苯酚的合成与晶体结构[J].化学试剂,2008,30(11):861-862,864.[12] 郁惠珍,严阳,蔡勇,等.4-氨基-3-硝基苯酚的合成工艺改进[J].精细化工中间体,2008,38(5):40-42.[13] 张明森.精细有机化工中间体全书[M].化学工业出版社,2008.[14] 蔡照胜,杨春生,王锦堂.一种改进的制备间硝基苯乙酮方法[J].精细化工,2006,23(11):1128-1130.。

三种糖类物质的热降解动力学研究

三种糖类物质的热降解动力学研究

收稿日期:2007 01 24作者简介:戚桂斌(1982 ),男,硕士研究生,研究方向:高分子化学与物理.E mail:vic7@ *通讯作者:E mail:beiyili ng@文章编号:1671 9352(2007)07 0019 03三种糖类物质的热降解动力学研究戚桂斌1,刘庆阳2,贝逸翎1*,刘 雷1(1.山东大学 化学与化工学院,山东 济南 250100;2.山东大学 环境研究院,山东 济南 250100)摘要:以TGA 为手段,研究了壳聚糖、 环糊精、淀粉在氮气环境下的非等温热降解动力学,采用Owaza 和Fried man 方法,计算了三种物质的降解动力学活化能,并使用Coats Redfern 法计算了三种物质的反应机理函数和指前因子.结果表明:壳聚糖、 环糊精、淀粉降解活化能分别是147.1,129.1和148.3kJ mol,机理函数是-ln(1- ),[-ln(1- )]2 5和[-ln(1- )]1 2;ln A 为7.7838,8.6499和7.8688min -1.关键词:壳聚糖; 环糊精;淀粉;TGA 降解动力学中图分类号:O643.32 文献标识码:AThermal degradation kinetics of three kinds of poly saccharideQI Gui bin 1,LIU Qing yang 2,BEI Yi ling1*and LIU lei1(1.School of Chemistry and Chemical Engineering,Shandong Univ.,Jinan250100,Shandong,China;2.Environmental Research Insti tute,Shandong Univ.,Jinan 250100,Shandong,China)Abstract :Thermal decomp osi tion kinetics of chitosan, cyclodextrin and starch were studied by using thermogravimetric analysis methodology.The degradation activation energ ies of chitosan, cyclodextrin and starch were calculated by the Ozawa and Fried man methods respectively by means of TGA in a nitrogen atmosphere.Moreover,the decomposition mechanis m and pre factor was ob tained by the Coats Red fern method.It was found that the degradation activati on energ ies of chitosan, cyclodextrin and starch are 147.1,129.1and 148.3kJ mol,respectively.The decomposition mechanisms and ln A are -ln(1- ),7.7838min -1;[-ln(1- )]2 5,8.6499min -1;[-ln(1- )]1 2,7.8688min -1respectively.Key w ords :Chi tosan; cyclodextrin;Starch;TGA thermal degradation ki netics0 前言壳聚糖是甲壳素部分或全部脱乙酰基的产物,是自然界大量存在的天然氨基碱性多糖.壳聚糖作为一种天然高分子材料,可作为材料的基体,形成生物可降解材料,其复合材料的热降解性是国内外学者研究的焦点.X.Qu [1]采用DSC 和TGA 研究了壳聚糖与乳酸和乙醇酸接枝聚合物的热降解特性;Douglas de Britto [2]则计算了不同季铵化度的壳聚糖分子的降解活化能. 环糊精也称作环聚葡萄糖,是由若干D 吡喃葡萄糖单元环状排列而成的低聚糖的总称.由于其具有独特的内疏水、外亲水结构,所以在模拟酶、手性分离、主 客体化学、分子识别、光谱探针和环境保护等领域显示了重要的研究价值.而热分析是研究 环糊精及其衍生物与金属络合物,有机客体和抗癌药物的包合物结构的重要手段[3,4].淀粉是天然多糖,容易用化学、物理和生物方法将淀粉转化为可降解的低分子化合物或高分子聚合物[5,6],从而提高材料的降解性.本文研究壳聚糖、 环糊精、淀粉的热降解过程并计算其活化能、指前因子和机理函数,对描述三种物质在复合体系中第42卷 第7期Vol.42 No.7山 东 大 学 学 报 (理 学 版)JOURNAL OF SHANDONG UNI VERSITY2007年7月 Jul.2007的降解速度、降解机理和降解状态具有一定的意义.1 实验部分1.1 实验试剂壳聚糖:工业级,山东奥康生物科技有限公司,分子量三十五万,灰白色粉末,脱乙酰度85%,灰分<2.5%; 环糊精:化学纯,天津大茂化学试剂厂;玉米淀粉:购于中国山东鲁能电力集团金玉米有限公司.1.2 实验条件热重分析实验在TA 公司SDTQ600分析仪上进行,升温速率分别是10,20,30,40 min,氮气流速50mL min.每次称取6mg 左右样品进行实验.1.3 动力学方法1.3.1 Friedman 法Friedman 法[7]是利用在一定的转化率下,不同升温速率的TGA 微分曲线中所得到的不同的热失重率的变化率d d t 来计算活化能E .ln[ (d d t )]=ln[A (1- )n ]-ERT(1)当热失重率 一定时,ln A 和n ln(1- )是常数,以ln[ (dd t )]~1 T 作图可得直线( 为升温速率),由斜率可进一步计算得到E 值.1.3.2 Ozawa 法Oza wa 法[8]是利用在一定的转化率下,不同升温速率的TGA 曲线中得到的不同温度来计算活化能E .lg F ( )=lg AE R -lg -2.315-0.4567ER T(2)以lg ~1 T 作图,根据斜率即可得到E 值.1.3.3 Coats Redfern 法Coats Redfern 法[9]是利用初级近似温度积分函数对动力学方程积分,利用31种机理函数[10]来计算反应活化能.ln[G ( ) T 2]=ln(AR E )-ER T(3)以ln[G ( ) T 2]~1 T 作图,根据斜率即可得到E 值.2 结果与讨论2.1 热稳定性图1是三种物质在不同升温速率下的热失重曲线.淀粉和环糊精在800 失重完全;壳聚糖在900 时,还有20%未降解.说明壳聚糖有一定的热稳定性.淀粉和环糊精的热分解起始温度是277.4 ,壳聚糖的热分解起始温度是244.3.图1 壳聚糖, 环糊精,淀粉在不同升温速率下的热失重曲线a,壳聚糖;b, 环糊精;c,淀粉;1,10 min;2,20 min;3,30 min;4,40 min Fig.1 TGA curves of chitosan, cyclodextrin and starch in ni trogen at different heating rates a,chitosan;b, cyclodextrin;c,starch;1,10 min;2,20 min;3,30 min;4,40 min2.2 活化能Oza wa 法和Friedman 法主要计算不同升温速率下的降解活化能.Oza wa 法避开了反应机理函数的选择而直接求活化能值.与其它方法相比,它避免了因反应机理函数的假设不同带来的误差.但是Oza wa 方法对温度积分的近似,会对活化能的结果产生一定误差,故采用Friedman 法作为参照.由于热分析方法在计算物质高转化率活化能时会产生系统误差,因此只计算三种糖类转化率小于70%时的活化能.图2是采用Oza wa 法计算三种物质时,lg 对1 T 在转化率为10%,20%,30%,40%和50%的拟和线形图,线性系数都在0.99以上.表1则列出了壳聚糖、 环糊精、淀粉活化能计算结果.20山 东 大 学 学 报 (理 学 版)第42卷表1 Ozawa 和Friedman 方法计算的反应活化能Table 1 Activation energies calculated by Ozawa andFriedman method 样品活化能E (kJ mol -1)方法壳聚糖145.1Ozawa148.9Friedman环糊精130.9Ozawa129.1Friedman淀粉147.3Ozawa168.2Friedman2.3 反应机理函数根据常用的31种动力学机理函数[10].采用Coats Redfern 法,假设不同的机理函数对1 T 做直线,得到活化能的值与Ozawa 法计算的结果相比较,活化能和相关系数符合的最好的就是其降解的机理函数.采用C oats Redfern 法计算了常见的31种机理函数在升温速率10 min 时的活化能和指前因子.和表1的相比较发现,壳聚糖、 环糊精、淀粉的热降解机理函数分别是-ln(1- ),[-ln(1- )]2 5和[-ln(1- )]1 2;ln A 为7.7838,8.6499和7.8688min -1,线性相关系数分别是0.9956,0.9812,0.9945.图6 Ozawa 法计算得到的壳聚糖, 环糊精,淀粉在不同转化率下的lg 与1 T 的关系图a,壳聚糖;b, 环糊精;c,淀粉(1, =0.1;2, =0.2;3, =0.3;4, =0.4;5, =0.5)Fig.6 Ozawa plots of chitosan, cyclodextrin and starch at different conversion ratesa,chitosan;b, cyclodextrin;c,starch1, =0.1;2, =0.2;3, =0.3;4, =0.4;5, =0.53 结论(1)Flynn Wall Ozawa 和Friedman 方法计算的壳聚糖、 环糊精、淀粉活化能值符合良好,其线形相关系数都在0.99以上.(2)Coats Redfern 法计算了常用的机理函数的活化能,得到了壳聚糖、 环糊精、淀粉的机理函数:-ln(1- );[-ln(1- )]2 5;[-ln(1- )]1 2;ln A为7.7838,8.6499和7.8688min -1.参考文献:[1]X Qu,A Wirse !n,A C Albertsson.Effect of lactic glycolicacid side chains on the thermal degradation kinetics of chitosan derivatives[J].Polymer,2000,41:4841~4847.[2]Douglas de Britto,Sergio Paulo Campana Filho.A kineticstudy on the thermal degradation of N,N ,N trimethylchitosan [J].Polymer Degradation and Stability ,2004,84:353~361.[3]HE Yi,SUN Ting.Mechanism and kinetics of thermal dissociation of inclusion complex of cyclodextrin and 1 methylcyclo propene[J].Chinese Journal of Chemical Physics,2005,19:89~92.[4]YANG Zhao gang,Gulisitan Awuti,CAO Yi,et al.Preparation and physicochemical characterization of Quercetin HP CD inclusion complexes[J].Journal of Chinese Pharmaceutical Sciences,2006,15:69~75.[5]涂克华,王利群,王焱冰.淀粉接枝共聚物在淀粉聚乳酸共混体系中的作用[J].高分子材料科学与工程,2002,18:108~111.[6]吴航,冉祥海,张坤玉,等.淀粉和生物降解大分子间的半互穿聚合物网络的耐水性研究[J].高等学校化学学报,2006,27:975~978.[7]YANG MH.On the thermal degradation of poly (styrene sulfones)V:Thermalgravimetric kinetics simulation of polyacryl amide pyrolysis [J].Journal of Applied Polymer Science,2002,86:1540~1548.[8]Popescu C.In tegral method to analyze the kinetics of heterogeneous reactions under non isothermal condi tions a variant on the Ozawae Flynn Wall method [J].Thermochi mica Acta,1996,285:309~323.[9]Coats AW,Redern JP.Kinetic parameters from the thermogravimetric data [J].Nature (Lond),1964,201:68.[10]胡荣祖,史启桢.热分析动力学[M].北京:科学出版社,2001:127~131.(编辑:胡春霞)第7期戚桂斌,等:三种糖类物质的热降解动力学研究21。

聚乙烯的热降解动力学研究

聚乙烯的热降解动力学研究

聚乙烯的热降解动力学研究黄钰香;庞承焕;吴博;张云【摘要】采用三种不同的动力学分析方法,即Freeman方法、Flynn - Wall - Ozawa以及Kissinger方法对不同类型聚乙烯的热分解动力学进行了探讨.结果表明,Flynn - Wall - Ozawa法Ⅰ、Friedman法的测试结果与三者聚乙烯的结构特征较吻合,不同聚乙烯降解活化能的大小顺序为HDPE> LLDPE> LDPE.%Three analysis methods including the Freeman method,Flynn-Wall-Ozawa method and Kissinger method were used to investigate the thermal degradation kinetics of High-density polyethylene ( HDPE) and Low-density polyethylene (LDPE) and low-density polyethylene ( LLDPE ). The results obtained by the Flynn-Wall-Ozawa I method and Friedman method are close to the structural characteristics of polyethylene and it has been found that the activation energies of HDPE are higher than the value of LLDPE.【期刊名称】《合成材料老化与应用》【年(卷),期】2012(041)004【总页数】7页(P9-15)【关键词】热重;热降解;热降解动力学;活化能;聚乙烯【作者】黄钰香;庞承焕;吴博;张云【作者单位】金发科技股份有限公司产品研发中心,塑料改性与加工国家工程实验室,广东广州510500;金发科技股份有限公司产品研发中心,塑料改性与加工国家工程实验室,广东广州510500;金发科技股份有限公司产品研发中心,塑料改性与加工国家工程实验室,广东广州510500;广州合成材料研究院有限公司,广东广州510665【正文语种】中文【中图分类】TQ325.1+2聚合物的热分解特性一直是人们研究的焦点,这方面的文献报道很多[1-4].由于聚合物结构的复杂性,聚合物的热分解比通常的小分子无机化合物要复杂得多。

总花色苷含量测定

总花色苷含量测定

总花色苷含量测定—分光光度法1、综合国内外资料,主要有以下几种计算吸光值A 的方法[1]:(1) 当叶绿素是该样品中主要存在的干扰色素时,需消除叶绿素吸收含量的影响;此时,计算公式为: A = (Amax - A620) - 0.1(A650 - A620)(2) 含有其它干扰物质时花色苷总量的测定:a) 直接法:在新鲜的植物提取物中,因为很少含有在花色苷的最大吸收区发生吸收的干扰物质,花色苷总量可以直接由可见区最大吸收波长处的吸光度来测定。

计算公式为: A = Amax直接法吸收光谱测定:用××分光光度计于250 - 800nm 下全波长扫描,得到花色苷在0.1 % 盐酸—80 % 乙醇中的可见光区最大吸收波长,在此最大波长下测定各样品的吸光值A 。

b) pH 示差法:在加工或储藏过程中,会产生褐色降解物,这些降解物和花色苷具有相同的能量吸收范围。

这类花色苷总量的测定,通常用pH示差法[8] 。

计算公式为: A = (Amax - A700) pH1.0 - (Amax - A700) pH4.5 pH 示差法吸收光谱测定:先确定合适的稀释因子,使样品在λmax下的吸光度在分光光度计的线性范围内;然后制备两个样品稀释液,其中一个用氯化钾缓冲液(0.025M,pH1.0) 稀释,另一个用醋酸钠缓冲液(0.4M,pH4.5) 稀释,将稀释液平衡15min 后,用蒸馏水做空白,分别测定两种样品稀释液在λmax和700nm处的吸光值A。

2、花色苷总含量的测定[2]:通过波长扫描,确定××花色苷在可见区的最大吸收波长为λmax。

利用花色苷的结构特性,当pH为1.0时在λmax处有最大吸收峰,而当pH 为4.5时,花色苷转变为无色查尔酮形式,在λmax处无吸收峰,用示差法计算溶液中总花色苷含量。

计算公式为: C (mg/ g) = (A0 - A1) ×V ×n ×M / (ε×m )式中: A0 、A1 —分别为pH1.0、pH4.5时花色苷在λmax处的吸光值V —提取液总体积(mL )n —稀释倍数M —cy-3-glu (矢车菊- 3-葡萄糖苷)的相对分子质量(449.4)ε—cy-3-glu的消光系数( 29600)m —样品质量( g)3、花色苷含量TAcy的计算公式为(以天竺葵色素-3-葡萄糖苷计)[3] :TAcy (mg/ hg) =(A ×433 ×10 ×V)÷(22 400 ×m)×100A = (OD500nm - OD700nm) pH1.0 - (OD500nm -OD700nm) pH4.5式中: V —提取液的总体积(mL)m —取样量(g)22 400 —天竺葵色素-3-葡萄糖苷的摩尔消光系数433 —天竺葵色素-3-葡萄糖苷的摩尔分子量。

PMDA-ODA型聚酰亚胺纤维的热稳定性研究

PMDA-ODA型聚酰亚胺纤维的热稳定性研究

PM D A-O D A 型聚酰亚胺纤维的热稳定性研究郭涛1,2,徐圆1,赵陈嘉1,夏清明1,胡爱林2,张清华1(1.东华大学材料学院纤维材料改性国家重点实验室,上海201620;2.连云港杜钟氨纶有限公司,江苏连云港222047)摘要:通过干法纺丝制备了聚酰亚胺(PI )纤维,采用热失重(T GA )测试分析了其热稳定性能。

TGA 测试表明,均苯四甲酸酐-4,4-二氨基二苯醚(PMDA –ODA )型PI 纤维500℃之前不发生分解,其热分解稳定性要优于P84纤维。

并利用Kissinger 和Flynn-Wall-Ozawa 方法计算并比较了PI 和P84纤维在空气中热氧化分解的表观活化能。

关键词:干法纺丝;聚酰亚胺纤维;热稳定性;热分解表观活化能中图分类号:TQ342.731文献标识码:A文章编号:1007-9815(2011)01-0028-04收稿日期:2010-12-28基金项目:国家自然科学基金(50873021),上海市曙光人才计划(09SG30),教育部新世纪优秀人才计划(NCET -06-0421)作者简介郭涛(5),男,江苏连云港人,工程师,在职研究生,主要从事氨纶、聚酰亚胺纤维的研发工作,(电话)3566(电子信箱)@z ;通讯作者:张清华,教授,(电子信箱)q z @。

Thermal stability of polyimide fiber derivedfrom PMDA and ODAGUO T ao 1,2,XU Yuan 1,ZHAO Chen-jia 1,XIA Qing-ming 1,HU Ai-lin 2,ZHANG Qing-hua 1(1.State Key Laboratory of Modification for Chemical Fibers and Polymer Materials,Donghua University,Shanghai 201620China; 2.Lianyungang Duzhong Spandex Co.,Ltd,Jiangsu Lianyungang 222047China)Abstra ct:Polyimide (PI)fibers were prepared by dry-spinning technology ,and thermal stability was investigated by thermalgravimetric analysis (TGA).TGA results show that PI fiber derived from PMDA-ODA possess a good thermal stability with a degradation temperature of >500℃,comparing to commercial P84fiber.The apparent activation energy of thermal oxidative degradation of PI and P84fiber in air was calculated and compared by Kissinger method and Flynn-Wall-Ozawa method.Ke y words:dry spinning;polyimide fiber;thermal stability;degradation activation energyV ol.36No.1Feb.2011高科技纤维与应用Hi-Tech Fiber &Application 第36卷第1期2011年2月PI 纤维是一类力学性能良好、热稳定性能优异、耐辐射性能以及电绝缘性能突出的高技术纤维,被广泛用于航空航天、集成电路、高温防护等领域[1]。

高抗冲聚苯乙烯热裂解的研究

高抗冲聚苯乙烯热裂解的研究

Vol.32No.1Jan.2007上海化工ShanghaiChemicalIndustry高抗冲聚苯乙烯热裂解的研究齐文庚徐志刚华东理工大学化工学院(上海200237)摘要高抗冲聚苯乙烯大量使用,废弃物容易造成白色污染。

采用热裂解的方式回收单体具有良好的社会价值和经济效益。

研究了HI825、HI1662D、HI1662G、HI2757和2717等5种高抗冲聚苯乙烯的热裂解,对上述几种聚苯乙烯热裂解产物进行了色谱分析,并与废聚苯乙烯回收料热裂解产物作了比较。

在热裂解温度375 ̄450℃下,考察了温度对各种型号聚苯乙烯热裂解液体产率以及液相产物组成的影响,得出在450℃下液体产率较高,但苯乙烯选择性在425℃邻近较高。

废聚苯乙烯热裂解液相产物主要为苯乙烯(占70% ̄80%)。

高冲聚苯乙烯热裂解液相产物中苯乙烯较少(占40% ̄70%),相应甲苯和乙苯含量较高,分别占10% ̄20%和10% ̄25%。

关键词高抗冲聚苯乙烯热裂解苯乙烯单体废聚苯乙烯再利用中图分类号TQ325.2第一作者简介:齐文庚男1982年生华东理工大学化学工艺专业硕士生虽然聚苯乙烯得到了较广泛的应用,但聚苯乙烯有机械强度不高等缺点,特别是抗冲击性能差、性脆、易裂、不耐热且易燃,使其应用范围受到了限制。

为了改善其缺点,通过共聚(接枝、嵌段)、掺混、复合、填充等方法,成功地开发出了一系列高性能改性产品[1]。

高抗冲聚苯乙烯(HIPS)由苯乙烯和丁苯橡胶接枝共聚而成,具有高抗冲击性能以及良好的模塑、着色和光学性能。

因此广泛应用于机械、汽车、家用电器、电子电气、轻工和日用工业等[2]。

高抗冲聚苯乙烯主要用于注塑产品,冰箱、电视机、电子计算机、家电、汽车工业对高抗冲聚苯乙烯树脂的年需求量较大,2004年,HIPS的产量为113.3万t/a[3],且呈逐年递增趋势。

大的产量对应着大的消费量,势必造成此类产品废弃量的巨大增加。

由于废聚苯乙烯不容易分解,容易造成“白色污染”,因此研究高抗冲聚苯乙烯热裂解可以为利用化学循环方法回收此类废弃物提供可靠的理论基础,具有实际的应用意义和指导意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Kinetics of Thermal Degradation of Thermotropic Poly(p-oxybenzoate-co-ethylene-2,6-naphthalate)by Single Heating Rate MethodsLi Zhang,1Jinghong Ma,1Xinyuan Zhu,2Borun Liang11State Key Lab of Modification of Chemical Fiber&Polymer Material,Donghua University,Shanghai,200051,China 2College of Chemistry and Chemical Technology,Shanghai Jiao Tong University,Shanghai,200240,ChinaReceived7August2003;accepted8September2003ABSTRACT:The kinetics of thermal degradation of ther-motropic liquid crystalline poly(p-oxybenzoate-co-ethylene-2,6-naphthalate)(PHB/PEN)with the monomer ratio of60: 40and PEN in nitrogen was studied by dynamic thermo-gravimetry(TG).The kinetic parameters,including the ac-tivation energy E a,the reaction order n,and the frequency factor ln(Z)of the degradation reaction for PHB/PEN(60: 40)and PEN were analyzed by the single heating rate meth-ods of Friedman and Chang.The effects of the heating rate and the calculating method on the thermostable and degra-dation kinetic parameters are systematically discussed.©2004Wiley Periodicals,Inc.J Appl Polym Sci91:3915–3920,2004 Key words:poly(p-oxybenzoate-co-ethylene2,6-naphtha-late);liquid crystalline polyester;thermal degradation;ther-mogravimetry;kinetics;thermostabilityINTRODUCTIONPoly(oxybenzoate-co-ethylene terephthalate)(PHB/ PET)copolymer,is a well-known and commercially available liquid crystalline polymer,which has been studied extensively over the past years.1–4Poly(ethyl-ene-2,6-naphthalate)(PEN)is a slow-crystallizing polymer.5–7The naphthalene moiety in PEN provides more stiffness than PET to the linear polymer back-bone,leading to improved thermal resistance;excel-lent mechanical properties,such as tensile properties and dimensional stability;and outstanding gas barrier characteristics.PHB/PEN copolymer might have more applications and letter properties than PHB/ PET copolymer.Hitherto,no attention has been given to its thermal degradation behavior.Thermal stability of a polymeric material is one of the most important properties for both processing and application.Thermogravimetry(TG)is a technique widely used to characterize thermal degradation of polymer materials.In this article,TG and differential thermogravimetry(DTG)measurements of PHB/PEN polymer are reported;the thermal degradation tem-perature and the kinetics of PHB/PEN copolymer with the monomer mole ratio,PHB/PEN(60:40),and PEN were studied by two kinds of calculating meth-ods through nonisothermal TG thermograms.The de-pendencies of the degradation temperature and ki-netic parameters on the heating rate and calculating method are discussed in detail.EXPERIMENTALPHB/PEN polymer with the structural formula shown in Scheme1was synthesized following the procedure described elsewhere.8,9The intrinsic viscos-ity of the PHB/PEN polymer was measured at0.5% concentration in phenol/1,1,2,2-tetrachloroethane(1: 1,w/w)at25°C.The TG and DTG thermograms were obtained by using a Perkin–Elmer7series analyzer under a dy-namic nitrogen atmosphereflowing at50ml/min, varying heating rate from5to45K/min,while the sample weights were kept at1.0Ϯ0.1mg.There are several methods(proposed by Fried-man,10Freeman and Carroll,11Chang,12Flynn and Wall,13Chaterjee and Conrad,14Horowitz and Metzger,15Kissinger,16Coats and Redfern,17Van Krevelen,18Reich,19and Ozawa20)for calculating ki-netic parameters that depend not only on the experi-mental conditions but also on the mathematical treat-ment of the data.We will use the Friedman and Chang methods to evaluate the activation energy E␣the re-action order n,and the frequency factor Z based on a single heating rate measurement without making any assumptions.Detailed descriptions of the two meth-ods are not given because the methods for evaluating the kinetic parameters from TG/DTG traces are easily available from the literature.10,12The equations em-ployed in the methods are listed below.Correspondence to:L.Zhang.Journal of Applied Polymer Science,Vol.91,3915–3920(2004)©2004Wiley Periodicals,Inc.Friedman method10ln͑Z͒ϭln͑d␣/dt͒Ϫn ln͑1Ϫ␣͒ϩE a/͑RT͒(1) where␣is the weight loss of the polymer undergoing degradation at time t;R is the gas constant(8.3136J molϪ1KϪ1),and T is the absolute temperature(K);Z, n,E a are the frequency factor,the order,and the acti-vation energy of the thermal degradation reaction, respectively.The plot of ln(d␣/dt)versus l/T should be linear withϪE a/R as the slope.Additionally,the E a/(n R)value could be determined from the slope of the linear plot of ln(1Ϫ␣)versus l/T.Chang method12Equation(1)can be rewritten in the following form: ln͓͑d␣/dt͒/͑1Ϫ␣͒n͔ϭln͑Z͒ϪE a/͑R T͒(2) A plot of ln[(d␣/dt)/(1Ϫ␣)n]against1/T will yield a straight line if the degradation order n is selected correctly.The slope and intercept of this line will provide theϪE a/R and ln(Z)value,respectively.RESULTS AND DISCUSSIONThe TG and DTG curves of PHB/PEN(60:40)and PEN in nitrogen at heating rates of10,15,20,30,35,45and5,10,15,20,30,35K/min are shown,respectively,in Figures1and2.The DTG curves of PHB/PEN(60:40)and PEN indicate that only one weight-loss stage occurs during degradation.PHB/PET copolymer with monomer mole ratio60:40shows two weight-loss stages in nitrogen at low heating rates(1and2K/min).Gener-ally,in the case of random copolymer,stepwise deg-radation of individual A and B homopolymer seg-ments may merge into one-step degradation.The maximum degradation temperature of the random copolymer mediates between the maximum degrada-tion temperatures of the two corresponding ho-mopolymers.For stepwise degradation of individual A and B segments in block copolymer,however,the maximum degradation temperatures get close to each other.4The degradation behavior of the PHB/PEN poly-mer under nitrogen is quite different from that of the respective PHB or PEN homopolymers.The TG re-sults obtained and discussed so far could be taken as proof of the presence of a random sequence distribu-tion in the polymer backbone because no distinct peaks representative of thermal degradation of indi-vidual PHB and PEN homopolymers are observed during the thermal degradation of the PHB/PEN polymer.In the case of random copolymer,generally stepwise degradation of individual PHB and PEN ho-mopolymer segments merge into single steps located in between the maximum degradation temperatures of the corresponding homopolymers.Kinetics of nonisothermal degradation analyzed by single heating rate methodsAll of the methods can determine the kinetic param-eters for the thermal degradation of PHB/PEN(60: 40)and PEN by using only one heating rate.Figures3 Figure1Dynamic TG curves at six heating rates in nitrogen:(a)PHB/PEN(60:40);(b)PEN.Scheme13916ZHANG ET AL.and 4show the relationship given by eq.(1)of the Friedman method.Figure 5shows the relationship proposed by Chang where the degradation orders are assumed to be 1.2–1.7for PHB/PEN (60:40)and 0.7–1.6for PEN.Be-cause the lines of ln[(d ␣/dt )/(1Ϫ␣)n ]versus 1/T overlapped each other,the Waterfall Graph (in Micro-cal Origin version 5.0,Microcal Software,Inc.,Northampton,MA)was used to obtain a distinct view.Each dataset is displayed as a line data plot,which is offset by a specified amount in both the X and Y directions.For the Chang method,the absolute XandFigure 2Dynamic DTG curves at six heating rates in nitrogen:(a)PHB/PEN (60:40);(b)PEN.Figure 3Friedman plots of ln(d ␣/dt )or ln(1Ϫ␣)versus 1/T for PHB/PEN (60:40)in nitrogen at six heatingrates.Figure 4Friedman plots of ln(d ␣/dt )or ln(1Ϫ␣)versus 1/T for PEN in nitrogen at six heating rates.KINETICS BY SINGLE HEATING RATE METHODS 3917Y values do not affect the calculation of thermal deg-radation kinetic parameters,so the offset X -and Y -axes are omitted here.Figure 6shows the relationship between the maxi-mum weight loss rate (d ␣/dt )m and heating rate for PHB/PEN (60:40)and PEN.The kinetic parameters calculated by the two single heating rate methods for the PHB/PEN (60:40)are summarized in Table I.The data for the PEN are listed in Table II.The effect of heating rateFrom Table I,it can be concluded that the kinetic parameters of PHB/PEN (60:40)change with the heating rate.Most of E a ,ln(Z),T d ,and T dm values increase significantly with heating rate,whereas the n values stay roughly the same as the heating rate changes from 10to 45K/min.That is to say,when theheating rate is high enough,the effect of the concen-tration of degradation products from PHB/PEN (60:40)on thermal degradation reaction will remain roughly unchanged.From Table II it can be seen that the variation of the E a ,ln(Z ),T d ,and T dm for PEN with heating rate is similar to that of PHB/PEN (60:40).The reaction order n varies little with the heating rates adopted in this article.Additionally,Figure 6shows (d ␣/dt )m values in-crease linearly with heating rate for PHB/PEN (60:40)and PEN.Generally,the variation of these kinetic parameters reveals the change of thermal degradation mechanism (i.e.,transformation from the diffusion-controlled ki-netics into the decomposition-controlled kinetics,or vice versa).21At lower heating rates,the diffusion of the degradation products apparently does not affect the kinetics of the degradation process,so kinetic pa-rameter values were found to be lower.Alternatively,at a higher heating rate,the decomposition of the polymer is probably faster than the diffusion of the degradation products through the polymer melt;therefore,the kinetics of the degradation process are under diffusion control of degradation products.Con-sequently,higher kinetic parameters were observed with increasing heating rate.4Additionally,there are some differences in the ki-netic data calculated by using the different methods,as shown in Tables I and II.The Friedman method gave lower E a values but higher n values of the two methods.As shown in Figure 5,the Chang method actually tends to form straight lines in the widest temperature range,which means a smaller error in the calculation of the kinetic parameters by this method.However,the temperature range used for the deter-mination of the kinetic parameters by the Friedman method is wide enough to obtain reliableresults.Figure 5Chang plots of ln[(d ␣/dt )/(1Ϫ␣)n ]versus 1/T for the thermal degradation in nitrogen at six heating rates:(a)PHB/PEN (60:40);(b)PEN.Figure 6Effect of heating rate on the maximum decompo-sition rate.3918ZHANG ET AL.Thermal stabilityNo matter which method was used above,the funda-mental equation is the same:d␣/dtϭZ͑1Ϫ␣͒n exp[ϪE a/͑R T͒](3) Because the value of(1Ϫ␣)is always less or equal to 1,d␣/dt decreases with increasing n,and the zero order(nϭ0)characterizes the most rapid degradation reaction.4From eq.(3),it can be concluded that higher n and E a values or a lower Z value results in a lower d␣/dt value,which means higher thermal stability. As shown in Tables I and II,the average n,T d,and T dm values calculated from the heating rate for PHB/ PEN(60:40)are larger than those for PEN,whereas(d ␣/dt)m and ln(Z)values at different heating rates for PHB/PEN(60:40)are lower than those for PEN.This may be attributed to the difference between PHB/ PEN(60:40)and PEN in molecular structures.It has been mentioned that the higher the n value,the slower the degradation.More aromatic carbon atoms(or less hydrogen atom)will decrease the thermal degradation rate and increase thermal stability.PHB/PEN(60:40) possesses a higher n value and lower degradation rate than PEN because of the existence of PHB units.On the contrary,the average E a value calculated from the heating rate is lower than that for PEN.This could be attributed to the effect of molecular weight.In the melt polycondensation process,PEN degradesfirst and then copolymerizes with p-acetoxybenzoic acid.Be-cause of the poor copolymerization ability,long blocks of PHB units formed,which may increase the melt viscosity greatly and may make further polyconden-sation become impossible in the melt state.So,PHB/ PEN(60:40)studied here,which was obtained through melt polycondensation,has lower molecular weight than PEN.It is evident that the lower the molecular weight,the more the end groups.End groups can initiate thermal degradation.4As a result, lower molecular weight leads to a lower E a value. Therefore,a higher E a value would be obtained if the molecular weight of PHB/PEN(60:40)could be increased through solid-state polymerization.CONCLUSIONSOn the basis of TG and DTG results obtained at a single heating rate,some important kinetic parametersTABLE IKinetic Parameters of Thermal Degradation of PHB/PEN(60:40)Under Nitrogen Calculatedby Two Single Heating Rate MethodsHeatingrate(K/min)T d/T dm(°C)Friedman Chang Average aE a(KJ/mol)nln(Z)(minϪ1)E a(KJ/mol)nln(Z)(minϪ1)E a(KJ/mol)nln(Z)(minϪ1)10420.47/452.87216 1.439.2236 1.242.8226 1.341.0 15423.07/456.14223 1.640.7238 1.643.4231 1.642.1 20425.85/463.12234 1.541.9227 1.741.2231 1.641.6 30427.19/464.45218 1.540.0244 1.744.8231 1.642.4 35431.21/469.74240 1.743.8247 1.745.1244 1.744.5 45432.65/470.41237 1.542.5226 1.741.5232 1.642.0 Average b426.74/462.79228 1.541.4236 1.643.1232 1.642.3a Calculated with different analyzed methods.b Calculated with the heating rate ranging from10to45K/min.TABLE IIKinetic Parameters of Thermal Degradation of PEN under Nitrogen Calculated by Two Single Heating Rate MethodsHeatingrate(K/min)T d/T dm(°C)Friedman Chang Average aE a(KJ/mol)nln(Z)(minϪ1)E a(KJ/mol)nln(Z)(minϪ1)E a(KJ/mol)nln(Z)(minϪ1)5401.85/429.682350.942.72530.746.22440.844.5 10405.87/438.66235 1.142.4254 1.046.3245 1.144.4 15418.64/448.58243 1.544.3270 1.449.2257 1.546.8 20420.45/449.74251 1.646.0270 1.549.3261 1.647.7 30421.63/456.10268 1.648.8272 1.649.9270 1.649.4 35423.90/456.69263 1.748.1272 1.650.0268 1.749.1 Average b415.39/446.58249 1.445.4265 1.348.5257 1.447.0a Calculated with different analyzed methods.b Calculated with the heating rate ranging from5to35K/min.KINETICS BY SINGLE HEATING RATE METHODS3919of thermal degradation for the thermotropic liquid crystalline PHB/PEN(60:40),such as the activation energy,the degradation order,and the frequency fac-tor,have been calculated by the Friedman and Chang methods.The kinetic parameters exhibit a dependence on molecular weight,heating rate,and method of calculation.The degradation seems to be a random scission process of the ester linkages.Compared with PEN,PHB/PEN(60:40)has higher T d,T dm,and n,but lower(d␣/dt)m,E a,and ln(Z).All these parameters except for E a indicate that PHB/PEN (60:40)is more heat stable than PEN.The T d,T dm,and (d␣/dt)m values,as well as E a and ln(Z)values derived from single heating rate methods,increase signifi-cantly with heating rates.References1.Jackson,W.J.;Kuhfuss,H.F.J Polym Sci,Polym Chem Ed1976,14,2043.2.Bohme,F.;Komber,H.;Leistner,D.;Ratzsch,M.MacromolChem Phys1994,195,3233.3.Shinn,T.H.;Chen,J.Y.,Lin,C.C.J Polym Sci1993,47,1233.4.Li,X.-G.;Huang,M.-R.;Guan,G.-H.;Sun,T.Polym Int1998,46,289.5.Buchner,S.;Wiswe,D.;Zachmann,H.G.Polymer1989,30,480.6.Jager,J.A.;Juijn,C.J.M.;Van Den Heuvel.J Appl Polym Sci1995,57,1429.7.Cakmak,M.;Kim,J.C.J Appl Polym Sci1997,64,729.8.Guo,M.;Zachmann,H.G.Polymer1993,34,2503.9.Guo,M.;Brittain,W.J.Macromolecules1998,31,7166.10.Friedman,H.L.,J Polym Sci,Part C:Polym Lett1964,6,183.11.Freeman,E.S.Carroll,B.,J Phys Chem1958,62,394.12.Chang,W.L.J Appl.Polym Sci1994,53,1759.13.Flynn,J.H.;Wall,L.A.J Polym Sci,Part B:Poly Phys1966,4,323.14.Chaterjee,P.K.;Conrad,C.M.J Polym Sci,Part A:Poly Chem1968,6,594.15.Horowitz,H.H.;Metzger,G.Anal Chem1963,35,1464.16.Kissinger,H.E.Anal Chem1957,29,1702.17.Coats,A.W.;Redfern,J.P.Nature1964,201,68.18.Van Krevelen,D.W.;Van Heerden,C.Huntjens,F.J.Fuel1951,30,11.19.Reich,L.J Polym Sci Polym Lett Ed1964,2,621.20.Ozawa,T.Bull Chem Soc Jpn1965,38,1881.21.Li,X.-G.;Huang,M.-R.Polym Degrad Stab1999,64,81.3920ZHANG ET AL.。

相关文档
最新文档