Phase behavior of TXs_toluene_water microemulsion systems for solubilization absorption of toluene
多目标跟踪的多伯努利平滑方法
多目标跟踪的多伯努利平滑方法1 引言多目标跟踪是一种智能多智能体系统,它可以预测一组潜在的目标,并在其生命周期中跟踪它们。
多目标跟踪算法是当今多智能体系统的重要组成部分。
他们的主要功能是数据收集、分析和跟踪,它们可以帮助用户在其决策和行为中了解和规划他们要追踪的目标。
有几种流行的多目标跟踪算法,包括卡尔曼滤波(KF)、线性卡尔曼滤波(LKF)和半监督离散空间平滑算法(BSS)。
多伯努利平滑 (MBMS) 方法是一种基于多目标跟踪算法的先进方法。
它专门用于预测各种类型和形式的潜在目标,并通过监督离散空间平滑(SSS)算法实现跟踪。
MBMS解决了卡尔曼滤波(KF)和线性卡尔曼滤波(LKF)所存在的问题,如高误差和低效率。
总而言之,MBMS可以提高目标跟踪的准确性和效率。
2 MBMS方法概述MBMS方法利用了监督离散空间平滑(SSS)算法来预测和跟踪潜在的复杂目标。
MBMS算法通过监督离散空间平滑(SSS)再抽象出精简的核心算法,以实现其中的平滑处理。
这使得MBMS算法能够动态估计和有效地跟踪目标的多个参数(如位置、速度和加速度等)。
它的主要特点是简便、高效且精确。
3 基于MBMS的混合滤波基于MBMS的混合滤波(MHF)是一种改进的多伯努利平滑(MBMS)方法,它可以有效地处理复杂的多目标运动模型,同时具有针对潜在目标噪声严重的情况的稳健性能。
MHF方法利用了已经检测到的目标来预测未知目标,并利用历史目标位置数据创建一个比较新的位置估计。
通过相互约束,MHF算法可以有效地控制目标的运动,从而减少不确定性。
4 结论多伯努利平滑(MBMS)是一种简单实用的多目标跟踪算法,可以有效地预测和跟踪潜在的复杂目标。
它的特点是简单、高效且精确,可以提高目标跟踪的准确性和效率。
此外,MHF算法是MBMS的改进,可以有效处理复杂的多目标运动模型,具有较好的稳健性能。
未来研究可能会在这两种方法中建立更加复杂的模型,以实现更高效的跟踪结果。
水环境容量计算
NORMA 4000 5000 Power Analyzer 用户说明手册说明书
Since some countries or states do not allow limitation of the term of an implied warranty, or exclusion or limitation of incidental or consequential damages, the limitations and exclusions of this warranty may not apply to every buyer. If any provision of this Warranty is held invalid or unenforceable by a court or other decision-maker of competent jurisdiction, such holding will not affect the validity or enforceability of any other provision.
BEGRENZTE GEWÄHRLEISTUNG UND HAFTUNGSBESCHRÄNKUNG
Fluke gewährleistet, daß jedes Fluke-Produkt unter normalem Gebrauch und Service frei von Material- und Fertigungsdefekten ist. Die Garantiedauer beträgt 2 Jahre ab Versanddatum. Die Garantiedauer für Teile, Produktreparaturen und Service beträgt 90 Tage. Diese Garantie wird ausschließlich dem Erster
纹理物体缺陷的视觉检测算法研究--优秀毕业论文
摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II
《水文小波分析原理及其应用》带答案
《水文小波分析原理及其应用》考试试题课程编号:7.637 学分:3.0 任课教师:刘东考试形式:开卷(1)小波分析:wavelet analysis ;(2)小波变换:wavelet transformation ;(3)小波函数:wavelet function ;(4)小波消噪:Wavelet denoising;(5)小波方差:Wavelet varianee ;(6)连续小波变换:Continuous wavelet transform(7)离散小波变换:Discrete wavelet tran sform ;(8)小波人工神经网络模型:Wavelet artificial neural network model;(9)小波随机耦合模型:Wavelet stochastic coupling model(10)快速小波变换算法:Fast wavelet tra nsform algorithm。
答:水文学是研究地球上水分分布、循环、运动等变化规律及水-环境相互作用的一门科学,属于地球科学的一个分支。
水文时间序列在各种因素影响下具有确定性成分、随机成分)。
水文学的一个重要研究途径就是利用现有分析技术对水文时间序列进行描述,探讨水文系统的演变规律。
小波变换克服了Fourier变换的不足,能够反映出水文时间序列在时频域上的总体特征以及时频局部化信息,被誉为数学显微镜”。
利用小波分析的多分辨率功能,可以充分挖掘水文时间序列所包含的信息,展现水文时间序列的精细结构,从而使我们更好地掌握水文时间序列的多时间尺度变化特征及突变特征。
可以说,在水文学领域引入小波分析,为揭示水文时间序列变化规律提供了一条新的研究途径,极大地丰富了水文学的内容。
由此可见,小波分析技术受到了国内外多数学者的青睐。
我们作为农业水土工程专业的研究生,如果能够成功地将小波分析技术与我们的研究内容相结合,必然会使我们的毕业论文增色不少,而且也会发表一批高水平的学术论文。
高维半线性耗散波动方程外问题解的整体存在性
高维半线性耗散波动方程外问题解的整体存在性
解:
由于高维半线性耗散波动方程涉及到多个变量和不同的空间维度,因此它的外问题解的整体存在性取决于整个方程的情况。
一般来说,只有在下列条件满足时,该问题的解的存在性才能得到保证:
1. 方程必须具有足够的正则性,即可以由具有确定的初值的C1类正则解决。
2. 对邻域的解的正则性要求:方程的解的收敛必须满足Lipschiz条件,即在每一个时刻t,解的导数必须是连续的。
3. 必须满足一定的初值条件:在时间t=0处给定一个稳定的初值。
4. 提供正确的耗散项,使得方程具有稳定性,即该系统必须有能力收敛到解的本源状态(t→∞)。
如果上述条件均满足,高维半线性耗散波动方程的外问题解将是存在的,并且解的存在性是独立于初始条件的,即它可以由不同的初始条件产生不同的解。
SmartVFD COMPACT 31-00075-01 变频电机驱动说明文件说明书
PRODUCT DATA31-00075-01SmartVFD COMPACTGENERALSmartVFD COMP ACT variable frequency drives provide step less speed control for various applications:•Pumps •Fans•Compressors •Conveyors, etc.FEATURES•Compact size - saves space in your equipment cabinet •Flexible side-by-side mounting with screws or DIN-rail as standard •Single rating suitable for both pump and fan or machine applications •Maximum ambient temperature: + 122 °F •Integrated RFI-filters•Wide input and output connection possibilities •Configurable inputs and outputs •30 second Start-Up Wizard•Easy “keypad to remote” change with 1 button •Parameter upload/download even without main power to the drive with HVFDCABLE accessory •Quiet motor operation with 4 kHz switching frequency•Overtemperature ride-through •Power ride-through •Automatic restart •Integrated PI controller •Optional NEMA 1 enclosureSPECIFICATIONSMains ConnectionInput voltage U in:115Vac, -15%...+10% 1~208…240 Vac (-15…+10%), 1~208…240 Vac (-15…+10%), 3~380…480 Vac (-15…+10%), 3~600Vac (-15…+10%), 3~Input frequency: 45…66 HzConnection to mains : Once per minute or lessBrake chopper:Available on MI2 and MI3, with 3-phase units: 100% *TN with brake option; 30% *TN without brake option.Motor ConnectionOutput voltage: 0 - U in , 3~Output current:I N : Continuous output current with max. +50 °C ambient tem-perature, overloadability 1.5 x I N (1min/10min)Starting current: 2 x I N 2s/20s Output frequency: 0…320 Hz Frequency resolution: 0.01 HzControl CharacteristicsControl method:Frequency Control U/f Open Loop Sensorless Vector Control Switching frequency: 1.5...16 kHz; default 6 kHz Field weakening point: 30…320 Hz Acceleration time:0.1…3000 secSMARTVFD COMP ACT31-00075—012Deceleration time: 0.1…3000 secBraking torque:100% *TN with brake option (only in 3~ drives sizes MI2 and MI3)30%*TN without brake optionAmbient ConditionsOperating temperature:+ 14 °F (-10 °C) (no frost)…+ 104/122 °F(40/50 °C) for 115 Vac, 460 Vac and 600 Vac and + 104 °F (40 °C), for 208 Vac/230 Vac, rated loadability I N Storage temperature: -40 °F (-40 °C)…+158 °F (+70 °C)Air quality :Chemical vapors:IEC 721-3-3, unit in operation, class 3C2Mechanical particles:IEC 721-3-3, unit in operation, class 3S2Altitude:100% load capacity (no derating) up to 1000 m1% derating for each 100 m above 1000 m; max. 2000 m Relative humidity:0…95% RH, non-condensing, non-corrosive, no dripping water Vibration: 3...150 HzEN50178, EN60068-2-6:Displacement amplitude 1(peak) mm at 3...15.8 Hz Max acceleration amplitude 1 g at 15.8...150 Hz ShockEN50178, IEC 68-2-27:UPS Drop T est (for applicable UPS weights)Storage and shipping: max 15 g, 11 ms (in package)Enclosure class: Open chassis, NEMA 1 kit optionalElectro Magnetic Compatibility (EMC)Immunity:Complies with EN50082-1, -2, EN61800-3, Category C2Emissions:115V: Complies with EMC category C4230V: Complies with EMC category C2; with an internal RFI filter400V: Complies with EMC category C2; with an internal RFI filter600V: Complies with EMC category C4All: No EMC emission protection (Honeywell level N): Without RFI filterSafety:For safety: CB, CE, UL, cULFor EMC: CE, CB, c-tick(see unit nameplate for more detailed approvals)Control connectionsAnalog input voltage:0...+10V , Ri = 200k Ω (min), Resolution 10 bit, accuracy ±1%, electrically isolated Analog input current:0(4)…20 mA, Ri = 200Ω differential resolution 0.1%, accuracy ±1%, electrically isolated Digital inputs: 6 positive logic; 0…+30 VDC Voltage output for digital inputs:+24V , ±20%, max. load 50 mA Output reference voltage :+10V , +3%, max. load 10 mAAnalog output :0(4)…20 mA; RL max. 500Ω; resolution 16 bit; accuracy ±1%Digital outputs :Relays:2 programmable relay outputs (1 NO/NC and 1 NO), Max.switching load: 250 Vac/2 A or 250 Vdc/0.4 A Open collector:1 open collector output with max. load 48 V/50 mAProtectionsOvervoltage protection:875VDC in HVFDCDXCXXXXXXX 437VDC in HVFDCDXBXXXXXXX Undervoltage protection:333VDC in HVFDCDXCXXXXXXX 160VDC in HVFDCDXBXXXXXXXEarth-fault protection:In case of earth fault in motor or motor cable, only the fre-quency converter is protected Unit overtemperature protection: YES Motor overload protection: YESMotor stall protection (fan/pump blocked): YES Motor underload protection(pump dry / belt broken detection): YES Short-circuit protection of +24V and +10V reference voltages: YESOvercurrent protection: T rip limit 4,0*I N instantaneouslySMARTVFD COMP ACT331-00075—01MODELSTable 1.Nominal Voltage Nom. HP (Nom. Current)EMC Filter Full IO (6DI, 2AI, 1AO,1DO, 3RO, Modbus)Frame Size: MI1Dimensions: 6.2" H x 2.6" W x 3.9" D460V3~in 3~out0.5 HP (1.3 A)No HVFDCD3C0005F00EMC HVFDCD3C0005F010.75 HP (1.9 A)No HVFDCD3C0007F00EMC HVFDCD3C0007F011 HP (2.4 A)No HVFDCD3C0010F00EMC HVFDCD3C0010F01208/230V 1~in 3~out 0.25 HP (1.7 A)EMC HVFDCD1B0003F010.5 HP (2.4 A)EMC HVFDCD1B0005F010.75 HP (2.8 A)EMC HVFDCD1B0007F01208/230V 3~in 3~out 0.25 HP (1.7 A)No HVFDCD3B0003F000.5 HP (2.4 A)No HVFDCD3B0005F00Frame Size: MI2 Dimensions: 7.7" H x 3.5" W x 4.0" D460V3~in 3~out1.5 HP (3.3 A)No HVFDCD3C0015F00EMC HVFDCD3C0015F012 HP (4.3 A)No HVFDCD3C0020F00EMC HVFDCD3C0020F013 HP (5.6 A)No HVFDCD3C0030F00EMC HVFDCD3C0030F01208/230V 1~in 3~out 1 HP (3.7A)EMC HVFDCD1B0010F011.5 HP (4.8 A)EMC HVFDCD1B0015F012 HP (7 A)EMC HVFDCD1B0020F01208/230V 3~in 3~out 1 HP (3.7A)No HVFDCD3B0010F002 HP (7 A)No HVFDCD3B0020F00115V/230V 1~in 3~out0.25 HP (1.7 A)No HVFDCD1A0003F000.5 HP (2.4 A)No HVFDCD1A0005F001 HP (3.7A)NoHVFDCD1A0010F00SMARTVFD COMP ACT31-00075—014PRODUCT IDENTIFICATION CODEFig. 1. Product Identification Code.Frame Size: MI3Dimensions: 10.2" H x 3.9" W x 4.3" D460V3~in 3~out4 HP (7.6 A)No HVFDCD3C0040F00EMC HVFDCD3C0040F015 HP (9 A)No HVFDCD3C0050F00EMC HVFDCD3C0050F017.5 HP (12 A)No HVFDCD3C0075F00EMC HVFDCD3C0075F01208/230V 1~in 3~out 3 HP (1 A)EMC HVFDCD1B0030F01208/230V 3~in 3~out 3 HP (11 A)No HVFDCD3B0030F00115V/230V 1~in 3~out 1.5 HP (4.8 A)No HVFDCD1A0015F00600V3~in 3~out1 HP (2 A)No HVFDCD3D0010F002 HP (3.6 A)No HVFDCD3D0020F003 HP (5 A)No HVFDCD3D0030F005 HP (7.6 A)No HVFDCD3D0050F007.5 HP (10.4 A)NoHVFDCD3D0075F00Nominal Voltage Nom. HP (Nom. Current)EMC Filter Full IO (6DI, 2AI, 1AO,1DO, 3RO, Modbus)SMARTVFD COMP ACT531-00075—01MECHANICAL DIMENSIONS AND MOUNTINGThere are two possible ways to mount the SmartDrive Compact onto the wall; either screw or DIN-rail mounting. The mounting dimensions are also given on the back of the inverter.Fig. 2. Mounting with screws or DIN-rail.Fig. 3. Dimensions in inches.Mechanical size H1H2H3W1W2W3D1D2MI1 6.2 5.8 5.4 2.6 1.50.2 3.90.3MI27.77.2 6.7 3.5 2.50.2 4.00.3MI310.39.99.53.93.00.24.30.3SMARTVFD COMP ACT31-00075—016COOLINGForced air flow cooling is used in all SmartDrive Compact drives. Enough free space shall be left above and below the inverter to ensure sufficient air circulation and cooling. SmartDrive Compact products can be mounted side by side. Y ou will find the required dimensions for free space and cooling air in the tables below:Table 2.Table 3.CABLING AND FUSESUse cables with heat resistance of at least +158 °F (+70 °C). The cables and the fuses must be dimensioned according to the following tables. The fuses function also as cable overload protection. These instructions apply only to cases with one motor and one cable connection from the inverter to the motor. In any other case, contact your Honeywell Sales Representative.Table 4.Table 5. Cable and fuse sizes for 208-240 V .Table 6. Cable and fuse sizes for 380-480 V .Mechanical size Free space above [inches]Free space below [inches]MI1 4.0 2.0MI2 4.0 2.0MI34.0 2.0Mechanical size Cooling air required [CFM]MI1 5.89MI2 5.89MI317.7Connection Cable typeMains cable Power cable intended for fixed installation and the specific mains voltage. Shielded cable not required. (NKCABLES/MCMK or similar recommended)Motor cablePower cable equipped with compact low-impedance shield and intended for the specific mains voltage. (NKCABLES /MCCMK, SAB/ÖZCUY -J or similar recommended). 360º grounding of both motor and FC connection required to meet the standards.Control cableScreened cable equipped with compact low-impedance shield (NKCABLES /Jamak, SAB/ÖZCuY -O or similar).Size Type (power)I N [A]Fuse [A]Mains cable Cu[AWG]Terminals cable size (min/max)Main terminal [AWG]Earth terminal [AWG]Control terminal [AWG]Relayterminal [AWG]MI1P25 - P751,7 – 3,710 2 x 15 + 1515 - 1115 - 1120 - 1520 - 15MI21P1 - 1P54,8 – 7,020 2 x 13 + 1315 - 1115 - 1120 - 1520 - 15MI32P211322 x 9 + 915 - 915 - 920 - 1520 - 15Size Type (power)I N [A]Fuse [A]Mains cable Cu[AWG]Terminals cable size (min/max)Main terminal [AWG]Earth terminal [AWG]Control terminal [AWG]Relayterminal [AWG]MI1P37 - 1P11,9 – 3,36 3 x 15 + 1515 - 1115 - 1120 - 1520 - 15MI21P5 - 2P24,3 – 5,610 3 x 15 + 1515 - 1115 - 1120 - 1520 - 15MI33P0 - 5P57,6 - 1220 3 x 13 + 1315 - 915 - 920 - 1520 - 15SMARTVFD COMP ACTFig. 4. SmartDrive Compact power connections.Fig. 5. SmartDrive Compact control connections wiring.Fig. 6. SmartVFD Compact control connection terminals.731-00075—01SMARTVFD COMP ACT31-00075—018The table below shows the SmartDrive Compact control connections with the terminal numbers.Fig. 7. Control inputs and outputs – API Full.FEATURES / FUNCTIONSEasy to set-up featuresTable 7.FeatureFunctionsBenefit30 second Start-up wizardSimple 4 step wizard for specific applications Activate wizard by pressing stop for 5 seconds Tune the motor nominal speed Tune the motor nominal currentSelect mode (0=basic, 1= Fan, 2 = Pump and 3 = Conveyor)Fully configured inverter for the application in question Ready to accept 0-10V analog speed signal in just 30 seconds“Keypad – Remote” OperationPush the navigation wheel for 5 seconds to move from remote control (I/O or Fieldbus) to manual mode and back.Single button operation to change the control tomanual (keypad) and back. Useful function whencommissioning and testing applicationsQuick Setup MenuOnly the most commonly used parameters are visible in basic view to provide easier navigation. The full view can be seen after P13.1 Parameter conceal is deactivated by changing the value to 0.Easy navigation through the most common parameters SmartVFD Commissioning Tool1.Parameter sets can be uploaded and downloaded with thistool.2.Easy to use PC-tool for commissioning the SmartVFD Invert-ers. Connection with HVFDCABLE and MCA adapter, (HVFD-CDMCAKIT/U), to the USB port of the PC. PC-tools available for download free of charge fromhttps:///en-US/support/commercial/software/vfds/Pages/default.aspxParameter copying easily from 1 inverter to another.Easy download of parameter sets created with PC-tool Parametering with PC Saving settings to PC Comparing parameter settingsSMARTVFD COMP ACT931-00075—01Compact and robust design with easy installationTable 8.Uninterruptible operation functionsTable 9.VFD and motor control featuresTable 10.OPTIONAL ACCESSORIESTable 11. SmartVFD COMPACT Accessories.FeatureFunctionsBenefitCompact size Minimum free space above and below the drive is required for cooling airflow.Minimum space requirementsIntegrated RFI-filtersThe units comply with EN61800-3 category C2 as standard. This level is the required level for public electricity networks such as buildings.Easy selection and installation of products.Space savingsCost savings Single power ratingSingle power suitable for both pump and fan or machine applicationsEasy selectionMax. ambient temperature + 122 °FHigh maximum ambient operating temperature Uninterruptible operationSide by side mounting with screws or DIN-rail asstandardSmartDrive Compact can be mounted side by side with no space between the units either with screws or on DIN-rail as standard.Dimensions for screw mounting can be found also on the back of the inverter.Easy installationSpace savings FeatureFunctionsBenefitOvertemperature ride-through Automatically adjusts switching frequency to adapt to unusual increase in ambientUninterruptible operationPower ride-through Automatically lowers motor speed to adapt to sudden voltage drop such as power lossUninterruptible operation Auto restart functionAuto restart function can be configured to make VFD restart automatically once fault is addressedUninterruptible operationFeatureFunctionsBenefitFlying startAbility to get an already spinning fan under speed control Improved performance Ease of application Inbuilt PI- controllerCapability to make a standalone system with sensor connected directly to the inverter for complete PI- control.Cost savingModel NumberDescriptionHVFDCABLE/U SmartVFD Commissioning Cable and USB Adaptor HVFDCDMCA/U Compact Commissioning Device HVFDCDMCAKIT/U Compact Commissioning Kit HVFDCDNEMA1FR1/U Compact NEMA 1 Kit Frame Size1HVFDCDNEMA1FR2/U Compact NEMA 1 Kit Frame Size2HVFDCDNEMA1FR3/U Compact NEMA 1 Kit Frame Size3HVFDCDTRAINER/UCompact Training Demonstration KitSMARTVFD COMP ACT31-00075—0110SMARTVFD COMP ACT 1131-00075—01SMARTVFD COMP ACTAutomation and Control Solutions Honeywell International Inc.1985 Douglas Drive North Golden Valley, MN 55422 ® U.S. Registered T rademark© 2015 Honeywell International Inc. 31-00075—01 M.S. 01-15 Printed in United StatesBy using this Honeywell literature, you agree that Honeywell will have no liability for any damages arising out of your use or modification to, the literature. You will defend and indemnify Honeywell, its affiliates and subsidiaries, from and against any liability, cost, or damages, including attorneys’ fees, arising out of, or resulting from, any modification to the literature by you.。
传感器调度行为树模型的建模方法
传感器调度行为树模型的建模方法首先,让我们了解一下行为树模型。
行为树是一种用于描述系统行为的图形化建模工具,它由一系列节点和连接这些节点的边组成。
节点代表系统中的行为或动作,而边则表示这些行为之间的关系。
行为树模型可以帮助我们理解系统的运行逻辑,从而更好地进行系统设计和调度。
在传感器调度中,行为树模型可以用来描述传感器的工作流程和调度策略。
传感器的工作流程通常包括传感器的启动、采集数据、传输数据等行为,而调度策略则包括传感器的优先级、工作模式切换等决策。
通过行为树模型,我们可以清晰地描述这些行为和决策之间的关系,从而更好地理解传感器调度的工作原理。
在建模传感器调度行为树时,我们可以首先确定传感器的各种行为和决策,然后将它们表示为行为树的节点。
例如,我们可以将传感器的启动、数据采集和数据传输分别表示为行为树的不同节点,而传感器的优先级和工作模式切换则可以表示为行为树的决策节点。
接下来,我们可以使用边来表示这些节点之间的关系,例如数据采集需要在传感器启动后进行,数据传输需要在数据采集完成后进行等等。
一旦建立了传感器调度行为树模型,我们就可以通过模拟和分析这个模型来评估不同的调度策略。
例如,我们可以通过模拟传感器工作流程来评估不同的优先级设置对系统性能的影响,或者通过模拟传感器工作模式切换来评估不同的切换策略对系统能耗的影响。
通过这样的分析,我们可以找到最优的传感器调度策略,从而提高系统的效率和性能。
总之,传感器调度行为树模型是一种有效的建模方法,它可以帮助我们理解传感器调度的工作原理,并通过模拟和分析来优化调度策略。
在实际系统中,行为树模型可以帮助我们设计更加高效和可靠的传感器调度系统,从而更好地满足现代系统对传感器调度的需求。
水文模型中不同目标函数的影响分析比较
水 文
Vol.29 No.3 Jun., 200 9
2009 年 6 月
JOURNAL OF CHINA HYDROLOGY
水文模型中不同目标函数的影响分析比较
董磊华 , 熊立华
( 武汉大学水资源与水电工程科学国家重点实验室 , 湖北 武汉 430072 )
摘 要 : 在水文模型中 , 目标函数的选择对参数率定至关重要 , 不同的目标函数可以得到不同的模拟结果 。 本文以三水
2
2.1
新安江模型和 SCE-UA 算法
新安江模型 新安江模型是一种适用于湿润地区与半湿润地区的湿润季
2.2 SCE-UA 算法
由 于 李 致 家 等 人 用 SCE-UA 算 法 优 化 新 安 江 模 型 参 数 得出了比较理想的结果 [7], 本 文 将 采 用 SCE-UA 算 法 , 对 水 文 模 型进行参数优化 。 SCE-UA 算法 , 又叫混合复合形进化算法 , 其 基本思路是将基于确定性的复合型搜索技术和自然界中的生物 竞争进化原理相结合 。 它结合了现有算法 ( 包括基因算法等 ) 中 的一些优点 , 可以解决高维参数的全局优化问题 , 且不需要显式 的目标函数或目标函数的偏导数 [8]。
WM WUM/WM WLM/WM B IMP K C SM
50.0 0.0 0.1 0.1 0.0 0.2 0.01 0.01
300.0 0.5 0.9 2.0 0.5 2.0 0.3 40.0
KSS KG EX KKG KKSS N K’
0.01 0.01 0 0.95 0.5 0.01 0.01
1.0 1.0 2 1.0 0.9 10 10
Oudin
[2]
等人对比分析了四种不同的目标函数对模拟结果的影
自适应网格交互多模型不敏粒子滤波算法
摘 要 : 将一种变结构多模 型算法—— 自适应网格交互多模 型( G MM) AI 算法和不敏粒子 滤波 ( P ) 法相 U F算
结 合 , 出了 自适 应 网 格 交 互 多 模 型 不 敏 粒 子 滤 波 算 法 ( GMMU F 。 该 算 法 通 过 自适 应 网格 实 现 了模 型 自适 应 , 提 AI P) 从 而 以较 小 的 模 型 集 合 覆 盖 了 目标 大 范 围 的 机 动 , 以 此 来 克 服 固 定 结 构 交 互 多 模 型 粒 子 滤 波 ( M F 算 法 存 在 并 1 MP )
,
l tt n o x d s cu eitr cigmut l d lp r ce ftr I i ai ff e t tr nea t lpe mo e at l l ( MMP i o ec me . h n c ne mi o i u r n i i ie F) s v ro d T e u se td
关键 词 : 自适应 网格 ;变结构 多模 型算 法 ;不敏 粒子 滤波 中图分 类号 : T 9 7 N 5 文献标 识 码 : A
文 章 编 号 : 1 7 - 6 9 2 1 ) 8 0 1 ~ 5 d i1 . 4 4 ji n 17 — 6 9 2 1 . 8 0 4 6 2 7 4 ( 0 2 0 ~ 0 8 0 o :0 3 0 /.s . 6 2 7 4 . 0 2 0 . 0 s
固相微萃取-气相色谱-质谱联用技术测定废气中24种挥发性有机物
山东化工SHANDONG CHEMICAL INDUSTRY2021年第50卷・94・固相微萃取-气相色谱-质谱联用技术测定废气中24种挥发性有机物邢跃雯(江苏国创检测技术有限公司,江苏南通226000)摘要:使用Carboxen/PDMS75固相微萃取纤维头在标准气体中直接萃取目标组分,在选定的条件下,目标组分经过固相微萃取吸附、浓缩、解析等步骤进入气相色谱质谱联用仪进行分离,分离后的组分经MS检测器检测。
结果表明,24种挥发性有机物在3-200ng的范围内具有较好的线性,大部分响应因子相对标准偏差在30%之内,检出限范围为0.001-0.009憾/m3,回收率范围为70.1%-104%,RSD 范围为0.5%-9.5%o该方法快速、便捷,具有较好的准确度和灵敏度,能适用于废气中24种挥发性有机物的同时测定。
关键词:固相微萃取;挥发性有机物;Carboxen/PDMS中图分类号:O657.63文献标识码:A文章编号:1008-021X(2021)07-0094-03Determination of24VOCs in Waste Gas by Solid Phase Micro-extraction GasChromatography-mass SpectrometryXing Yuewen(Jiangsu Guochuang Technology Laboratory Ltd.,Nantong226000,China)Abstract:In this paper,A Carboxen/PDMS75Rm SPME filament head was used to extract the target fractions directly from a standard gas.Under selected conditions,the target components were separated by gas chromatography-mass spectrometry(GC-MS)after solid phase microextraction(SPME)adsorption,concentration and analysis,the separated components were detected by MS.The results showed that the24VOCs had good linearity in the range of3-200ng,the RSD of most of the response factors was within30%,the detection limit was within the range of0.001-0.009g/m3,the recovery range was70.1%-104%,and the RSD range was0.5%-9.5%.The method is fast,convenient,accurate and sensitive,suitable for simultaneous determination of 24volatile organic compounds in waste gas.Key words:solid phase micro-extraction;VOCs;Carboxen/PDMS随着大气环境的日益恶化,公众对大气中挥发性有机废气(volatile organic compounds,简称为VOCs)的关注程度原来越高。
基于时间序列与PSOSVR耦合模型的白水河滑坡位移预测研究
基于时间序列与PSOSVR耦合模型的白水河滑坡位移预测研究一、本文概述Overview of this article本文旨在探讨基于时间序列与粒子群优化支持向量回归(PSOSVR)耦合模型在白水河滑坡位移预测中的应用。
白水河滑坡作为一种典型的地质灾害,其位移预测对于滑坡预警和防治工作具有重要意义。
本文首先介绍白水河滑坡的地理位置、地质背景和滑坡特性,分析滑坡位移预测的重要性和挑战性。
This article aims to explore the application of a time series and particle swarm optimization support vector regression (PSOSVR) coupled model in displacement prediction of the Baishui River landslide. As a typical geological hazard, the displacement prediction of Baishui River landslide is of great significance for landslide warning and prevention work. This article first introduces the geographical location, geological background, and characteristics of the Baishui River landslide, and analyzes the importance and challenges oflandslide displacement prediction.接着,本文综述了时间序列分析和支持向量回归(SVR)模型在滑坡位移预测中的研究进展和应用现状。
时间序列分析能够通过挖掘滑坡位移数据中的时间依赖性,揭示滑坡位移的变化规律;而SVR模型作为一种有效的机器学习方法,能够在小样本、非线性、高维数据集上实现良好的预测性能。
对流亥姆霍兹方程actran
我们要探讨对流亥姆霍兹方程在ACTRAN中的实现。
首先,我们需要了解对流亥姆霍兹方程是什么,以及ACTRAN是什么。
对流亥姆霍兹方程是一个描述流体动力学中波动现象的偏微分方程。
它结合了亥姆霍兹方程(描述波动)和对流方程(描述流体流动)。
ACTRAN是一个用于计算流体动力学的软件,它可以模拟和分析各种复杂的流体流动和波动现象。
在ACTRAN中实现对流亥姆霍兹方程需要考虑以下几个关键点:
1. 模型建立:首先,我们需要建立对流亥姆霍兹方程的数学模型,包括波动部分和对流部分。
2. 离散化:接着,我们需要将连续的偏微分方程离散化为有限差分方程或有限元方程。
3. 边界条件和初始条件:定义适当的边界条件和初始条件对于求解对流亥姆霍兹方程至关重要。
4. 求解方法:选择合适的数值求解方法,如有限差分法、有限元法或谱方法。
5. 软件实现:最后,将上述步骤在ACTRAN软件中进行编程和实现。
通过以上步骤,我们可以在ACTRAN中实现对流亥姆霍兹方程的模拟和分析。
这有助于我们深入理解流体动力学中的波动现象,并为实际工程问题提供解决方案。
密集杂波背景下的水下多目标跟踪方法
he
rwi
s
ei
t
spe
r
f
o
rmanc
ewi
l
lde
c
l
i
ned
r
ama
t
i
c
a
l
l
. Aimi
nga
tt
h
i
spr
ob
ge
y
,
(
)
l
em as
l
i
d
i
ngwi
ndowtwos
t
epi
n
i
t
i
a
l
i
z
a
t
i
onGM-PHD SWTS
I
-GMPHD f
i
l
t
e
ri
sp
r
opo
s
ed
. The
opos
i
ng me
t
hodsi
nadens
ec
l
u
t
t
e
rs
c
ena
r
i
o
.
收稿日期:2023
06
15;修订日期:
2023
07
13
基金项目:国家自然科学基金(
62271162)
作者简介:张博宇(
1993
-),男,博士研究生,主要从事水下多目标跟踪方面的研究。
通信作者:齐滨(
1985
-),男,博士,副教授,主要从事水下多目标跟踪方面的研究。
2
. KeyLabo
r
a
t
o
r
非接触电导检测土壤养分离子的谱峰自动识别方法
2024 年 1 月第 6 卷第 1 期Jan.2024 Vol.6, No.1智慧农业(中英文) Smart Agriculture非接触电导检测土壤养分离子的谱峰自动识别方法唐超礼1,李浩1,3,王儒敬2,3*,王乐1,3,黄青2,3,4,王大朋2,3,张家宝3,陈翔宇2,3*(1.安徽理工大学电气与信息工程学院,安徽淮南 232001,中国; 2.中国科学院合肥物质科学研究院,智能机械研究所,安徽省智慧农业工程实验室,安徽合肥 230031,中国; 3.中科合肥智慧农业协同创新研究院,农业传感器与智能感知安徽省技术创新中心,安徽合肥 231131,中国)摘要:[目的/意义意义]]电容耦合非接触式电导检测(Capacitively Coupled Contactless Conductivity Detection, C4D)在农业土壤养分离子检测方面发挥着重要作用。
对C4D信号中离子特征峰的有效识别,有利于后续对离子特征峰的定性和定量分析,为加强农业土壤养分管理提供依据。
然而,C4D信号的特征峰检测仍然存在无法自动精准识别、人工操作复杂、效率低等缺点。
[方法方法]]提出一种基于连续小波变换结合粒子群优化(Particle Swarm Optimi⁃zation, PSO)和最大类间方差法(Otsu)的谱峰自动识别算法,旨在实现准确、高效、自动化的C4D信号峰识别。
采用C4D检测样品溶液,得到离子谱图信号,对谱图信号进行连续小波变换,得到小波变换系数矩阵。
通过搜索小波系数变换系数矩阵极值,识别出脊线和谷线。
将小波系数矩阵转换为灰度图像,结合PSO和Otsu寻找最佳阈值,进一步对灰度图像的背景和目标分割,再结合原始谱图中的脊谷线识别谱图中的特征峰。
[结果与讨论]测试含有41、61和102个峰的数据集,以受试者工作特性(Receiver Operating Characteristic, ROC)曲线和度量值作为评估峰值检测算法性能的准则。
利用方向特性实现非下采样Contourlet变换阈值去噪
利用方向特性实现非下采样Contourlet变换阈值去噪贾建;焦李成【期刊名称】《西安电子科技大学学报(自然科学版)》【年(卷),期】2009(036)002【摘要】系数闻值是流行的去噪方法,其中阈值方式与大小的选择是一个重要的技术问题.依据非下采样Contourlet分解系数尺度内与尺度间的相关性,考虑到相同尺度内不同方向上系数分布的聚集性依赖图像自身发生变化,提出一种利用方向特性实现非下采样Contourlet变换闻值去噪策略.对于被加性高斯白噪声污染的图像,实验中将利用方向特性实现非下采样Contourlet变换阈值去噪策略方法与小波阈值去噪、Contourlet变换去噪方法和非下采样Contourlet变换去噪方法进行了比较,结果表明利用方向特性实现非下采样Contourlet变换闻值去噪策略的峰值信噪比结果相比这些方法平均高出0.5~3.3 dB,在边缘特征方面保持了良好的视觉效果.【总页数】5页(P269-273)【作者】贾建;焦李成【作者单位】西安电子科技大学,智能感知与图像理解教育部重点实验室,陕西,西安,710071;西北大学,数学系,陕西,西安,710069;西安电子科技大学,智能感知与图像理解教育部重点实验室,陕西,西安,710071【正文语种】中文【中图分类】TP319.4【相关文献】1.基于全局人工鱼群算法的非下采样Contourlet变换阈值去噪研究 [J], 唐春菊;刘衍平2.一种基于非下采样Contourlet变换的自适应阈值去噪方法 [J], 黄宇达;魏霞;王迤冉;孙涛3.基于非下采样Contourlet变换的图像自适应阈值去噪算法 [J], 金彩虹4.一种基于非下采样Contourlet变换的子带自适应阈值去噪方法 [J], 杨鹏5.基于非下采样Contourlet变换的自适应阈值图像去噪方法 [J], 魏金成;吴昌东;江桦因版权原因,仅展示原文概要,查看原文内容请购买。
一种基于小波包样本熵和流形学习的故障特征提取模型
一种基于小波包样本熵和流形学习的故障特征提取模型向丹;葛爽【摘要】针对机械故障信号的非线性、故障征兆的多样性和复杂性等诊断问题,提出了一种基于小波包样本熵和流形学习的故障特征提取模型.该模型首先利用小波包的分解和重构,计算重构细节信号的样本熵,初步提取滚动轴承故障特征,然后利用流形学习法对初步的样本熵故障特征进行进一步的提取,在保留故障特征的整体几何结构信息的同时降低了特征数据的复杂度,增强了故障模式识别的分类性能.最后通过支持向量机对该模型提取的特征进行分类,通过比较初提取特征和再提取特征分类效果来验证该模型的优越性.【期刊名称】《振动与冲击》【年(卷),期】2014(033)011【总页数】5页(P1-5)【关键词】小波包;样本熵;流形学习;特征提取;支持向量机【作者】向丹;葛爽【作者单位】广东技术师范学院自动化学院,广州510635;华南理工大学机械与汽车工程学院,广州510640;华南理工大学机械与汽车工程学院,广州510640【正文语种】中文【中图分类】TH165利用振动信号对机械状态进行监测是机械故障诊断技术中的一种有效手段,而故障特征的提取是故障诊断的关键,关系到故障诊断的准确性和早期预报的可能性。
因此,人们从各种角度提取振动信号的特征参数,包括时域、频域和时频域等,取得了一定的效果[1-2]。
但由于机械故障信号的非线性、非平稳特性,使得传统的基于线性系统的特征提取方法不能有效提取故障的非线性特征。
因此,人们开始探索非线性动力学参数的特征提取方法。
近年来,人们将熵的概念,包括样本熵、能量熵、奇异熵和近似熵等,作为特征参数提取的方法引入到故障诊断领域。
YAN等[3]将近似熵概念引入到轴承状态监测上,并取得了很好的效果。
Pincus[4]提出了近似熵的改进算法样本熵,并广泛用于生理信号处理上。
赵志宏等[5]提出了一种基于经验模态分解与样本熵的轴承故障诊断方法。
流形学习作为一种非线性的数据维数约简方法,能有效地挖掘高维非线性数据内在几何分布特征,具有很好的非线性复杂信息处理能力,已被用于机械故障诊断的提取领域。
流域空间统计模型SPARROW及其研究进展
第9期流域空间统计模型SPARROW 及其研究进展吴在兴,王晓燕(首都师范大学资源环境与旅游学院,北京100048)摘要:SPARROW (SPAtially Referenced Regressions On Watershed attributes 流域属性基于空间的回归模型)是美国地质调查局(USGS)开发的经验统计和地表过程相结合的流域空间统计模型。
模型通过对河流水质数据和流域属性建立空间回归实现污染负荷产生和迁移的定量化。
模型的最大特色是其空间特性非常显著,可以将上游的营养盐污染源数据和下游的营养盐负荷数据联系起来,同时可以将河流中的水质监测数据或污染物通量数据和流域的空间属性特征(比如土地利用类型、河网、大气沉降等)联系起来。
模型除了一般水质模型所具有的水质模拟和流域污染源的分析功能外,还可在模拟过程中对流域中每个污染源、流域属性和污染物迁移过程对水质监测结果的影响进行显著性检验。
文章简要介绍了SPARROW 模型的结构和原理、功能和应用发展前景。
关键词:SPARROW ;流域统计模型;空间回归;污染负荷定量中图分类号:X522文献标志码:Adoi :10.3969/j.issn.1003-6504.2010.09.019文章编号:1003-6504(2010)09-0087-04SPARROW-Watershed Model and Research ProgressWU Zai-xing,WANG Xiao-yan(School of Resource,Environment and Tourism,Capital Normal University,Beijing 100048,China )Abstract :SPARROW (Spatially Referenced Regressions on Watershed Attributes)is a hybrid process -based andstatistical modeling approach for watershed which is developed by USGS.The model quantifies pollutant source and contaminant transport by relating in -stream water quality measurements to characteristics of watersheds.The spatial function and spatial characteristics of the model are very significant.Nutrients pollution source data of upstream and nutrients load data of downstream as well as river water quality monitoring data or pollutant flux data and watershed spatial attribute characteristics such as land use types,river network,atmospheric deposition were correlated by the model.A significant test was incorporated in the model as a function in addition to some general functions such as water quality simulation.The structure,principle,functions,applications and application prospects of the model are introduced as well.Key words :SPARROW;statistical model;spatially referenced regression;quantification of pollution load收稿日期:2009-12-21;修回2010-03-20基金项目:国家水体污染控制与治理科技重大专项(2008ZX07526);国家自然科学基金项目(40871219;40971258)作者简介:吴在兴(1985-),男,硕士研究生,主要从事流域水污染控制研究,(电子信箱)xingguang0215@ ;*通讯作者,(电子信箱)cnuwxy@ 。
板几何中一类具完全反射边界条件的奇异迁移算子的谱
板几何中一类具完全反射边界条件的奇异迁移算子的谱
王胜华;袁邓彬
【期刊名称】《应用泛函分析学报》
【年(卷),期】2006(8)4
【摘要】在L1空间上研究了板几何中一类具完全反射边界条件下各向异性、连续能量、均匀介质的奇异迁移方程.证明了这类方程相应的奇异迁移算子产生C0半群和该半群的Dyson-Phillips展开式的二阶余项是弱紧的,从而得到了该迁移算子的谱在区域Γ中仅由至多有限个具有限代数重数的离散本征值组成等结果.
【总页数】8页(P377-384)
【作者】王胜华;袁邓彬
【作者单位】上饶师院数学与计算机系,江西,上饶,334001;南昌大学数学系,江西,南昌,330047
【正文语种】中文
【中图分类】O1
【相关文献】
1.板几何中一类具完全反射边界条件迁移算子的谱 [J], 袁邓彬;王胜华
2.板几何中一类具广义边界条件的奇异迁移算子的谱 [J], 王胜华;张传美
3.板几何中一类具抽象边界条件迁移算子的谱 [J], 王胜华;黄伟
4.板几何中一类具反射边界条件的奇异迁移算子的谱 [J], 王胜华;翁云芳;袁邓彬
5.板模型中一类具反射边界条件的迁移算子的谱 [J], 王胜华
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c .c nJournal of Environmental Sciences 2010,22(2)271–276Phase behavior of TXs /toluene /water microemulsion systems for solubilizationabsorption of tolueneLian Liu,Senlin Tian ∗,Ping NingFaculty of Environmental Science and Engineering,Kunming University of Science and Technology,Kunming 650093,China.E-mail:liulianwin@Received 13March 2009;revised 04July 2009;accepted 10July 2009AbstractTriton Xs (TXs)surfactants /cosurfactant /water /oil (toluene)microemulsion systems for enhancing toluene solubilization were proposed and its potential was investigated for toluene removal from gas stream.The results indicated that TX-100was superior to other TXs surfactants in removing toluene without cosurfactant.The e fficiency of cosurfactants for improving toluene solubilization capacity follows the order:amine >alcohol >acid.According to the factor analysis,the linear cosurfactants are better than the branched ones.The e ffects of hydrophile-lipophile balance (HLB),salt (NaCl)concentration and temperature on the formation of microemulsion system were also discussed.The results suggested that the optimum value of HLB was 15,the e ffect of NaCl concentration on the system was inconspicuous and the lower temperature enhanced the solubilization capacity.Nonionic surfactant-based microemulsions had a significant absorption enhancement for toluene,indicated by as much as 82.72%of toluene in phase composition diagram,which will have a great prospect in air pollution treatment.Key words :microemulsion;phase behavior;absorption;toluene DOI :10.1016/S1001-0742(09)60104-2IntroductionV olatile organic compounds (VOCs)are the source of serious environmental issues and toluene is one of the most representative organic pollutants.VOCs emissions have been subjected to more and more stringent legislation (Hadjoudj et al.,2004).There are many techniques avail-able to control VOCs emission (e.g.,thermal or catalytic incineration,adsorption on activated carbon,biological,or membrane processes)with advantages and limitations (Fourmentin et al.,2006).Among them,absorption method is one of the most economical technologies,with a removal e fficiency of 95%–98%(Lawson and Adams,1999).The enhancement of VOCs solubility in water can be achieved in the presence of surfactants.Kim et al.(2001)reported that when the addition of fresh polyoxyethelene sorbitan ester (Tween)81solution (0.3%,W /V )into a jet loop reactor,over 90%absorbtion of toluene can last for 48hr with inlet toluene 1000µL /L or less.The function of surfactant was to enhance the solubility of hydrophobic organic compounds.However,the solubilization capacity of microemulsion far exceeds the capacity of micelle solu-tions formed with surfactants.The solubilization capacity of the oil-in-water (O /W)surfactants is 5%or 2oil molecu-lar per surfactant molecular,and the O /W microemulsions is 60%or 10–25oil molecular per surfactant molecular(Armand et al.,1990;Placet et al.,2000;Chen and Liu,2002;Hadjoudj et al.,2004;Ozturk and Yilmaz,2006).Hence,an absorption reactor filled with the microemulsion may be more e fficient than single surfactant solution.The capacity of nonionic surfactant microemulsions in trapping VOCs was studied in present study.Microemulsion is a system of water,oil and an amphiphile,which is a single optically isotropic and thermodynamically stable liquid solution (Rajib and Paul,2005).For simple aqueous systems,the formation of microemulsion is dependent on the type and structure of surfactant (Alany et al.,2000;Rudolph et al.,2000;Hsu and Nacu,2003;Rodriguez et al.,2004;Fanun,2007;Metha et al.,2007).Microemulsions have attract-ed considerable attention in many applications,such as cosmetics,foods,pharmaceuticals,pesticides,coating ma-terials in the last decade (Chernik,2000;Yaghnur et al.,2002).However,there is almost no application in environmental treatment.For this reason,the study focused on the absorption of VOCs based on nonionic surfactant microemulsions.Toluene was taken as oil phase,which simplified the composition of microemulsion,and apt to desorption.Solubilization and interfacial properties of microemul-sions depend upon pressure,temperature and the nature and concentration of the components.The determination ofc .c n272Lian Liu et al.V ol.22of di fferent structures formed within these water (salt)-oil-surfactant-cosurfactant systems in terms of variables are,therefore,very important.In using an adequate mode of representation,it is possible to describe not only the limits of existence of the single and multiphase regions,but also to characterize the equilibrium between phases (tie-lines,tie-triangles,critical points,etc.).In present study,the e ffect of cosurfactant,temper-ature and salt on water solubilization in a nonionic quaternary model system was discussed.Phase behavior of nonionic microemulsions was also investigated us-ing the pseudoternary phase diagram.Triton Xs (TXs)have more remarkable solubilization,and prone to form microemulsion with cosurfactant free.The formation of microemulsion solution is dependent on the absorption of toluene,and the proportion of surfactant-cosurfactant-water under a certain rge microemulsion region area will form with the presence of toluene in solution.The purpose of the current study was to propose a standard of screening microemulsion systems stress the potential of these microemulsions as delivery system,and to describe their phase behavior.This study provides a new technology in air pollution treatment using microemulsion systems.1Materials and methods1.1MaterialsThe surfactants TX-100,TX-305,and TX-405,were obtained from American Sigma Aldrich Fluka.Propanol,butanol,pentanol,butyric acid,n -butylamine,ethanolamine,diethanolamine,triethanolamine,n -methyl diethanolamine,NaCl,and toluene were purchased from China National Medicines Corporation.All reagents were analytical grade and used without purification.The physico-chemical parameters for cosurfactants are presented in Table 1.Double distilled water of conductance less than 2µS /cm was used for the preparation of microemulsion samples.1.2Preparation of microemulsion precursorsIn the phase diagram,the system includes water (W),oil (O),nonionic surfactant (C),cosurfactant (D),salt (E).The weight fraction of the surfactant and cosurfactantTable 1Physico-chemical parameters for the cosurfactantsCosurfactant Number of C (%)HLB Boiling F b carbon atoms value point (K)Propanol 337.17.53700Butanol 464.973890Pentanol 568.2 6.5411.10Butyric acid 454.57.64380n -Butylamine 465.814.53510Ethanolamine 239.317.34430Diethanolamine 445.718.3318.30Triethanolamine 648.319.1321.3 1.33n -Methyl440.317.7313.30.8diethanolaminein the mixture of surfactant,cosurfactant and water was nominated as α=(C +D)/(C +D +W),weight fraction of the salt in salt and water was denoted as β=E /(W +E),and weight fraction of the surfactant in surfactant and cosurfactant was nominated as γ=C /(C +D).Samples were firstly prepared individually by mixing the required weights of surfactant and cosurfactant (according to the Hydrophile-lipophile balance (HLB)value of surfactant and cosurfactant,mixed configured to samples with di ffer-ent γvalues).Then surfactant,cosurfactant,and water (α=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,and 0.9)were shaken vigorously in thermostat oscillator for 2hr to ensure proper mixing and kept at desired temperature.1.3Phase diagramsThe four-component systems were described on a pseudo-ternary phase diagrams.Figure 1shows the exam-ple of these phase diagrams.The four-component system includes water (W),oil (O),nonionic surfactant or sur-factant mixed with cosurfactant (S).Four independent variables,and other parameters such as temperature (T),salt (NaCl),and HLB value were involved.The phase diagram constructs three of the four parameters in three dimensions,and the other factors were kept constant.The prepared samples were put into thermostatic bath (±0.5K)with constant stirrer to ensure the solution mixed completely.After 5min,50µL of toluene was injected into samples.Toluene was added until the solution has become turbidity,and the samples were checked after complete phase change was detected by direct visual inspection (Rajib and Paul,2005).Desired amounts of toluene,surfactant,and water were pur into test tubes and sealed immediately.The proportion was drawn in the phase diagram,and the points were connected using a line as the boundary of microemulsion region.1.4Solubilization parametersThe most useful parameter to characterize microemul-sion is the size of microemulsion region area.The microemulsion region area was used to compare the solubi-c .c nNo.2Phase behavior of TXs /toluene /water microemulsion systems for solubilization absorption of toluene 273lization capacity of di fferent microemulsion systems.This diagram can be depicted as an equilateral triangle having the following vertices:100%water,100%toluene,and 100%of a binary mixture of surfactant and cosurfactant at a fixed weight ratio (Ezrahi et al.,2005).The samples were extracted in 50mL sealed conical flask.The gas phase above the solution was in the range of 20–40mL.After microemulsion saturated,only a few of toluene was evaporated as indicated in preliminary studies.The maximum relative deviation was 0.19%,the average relative deviation was 0.02%,and error analysis consistent with the previous report (Liu,2007).Therefore,the experimental error caused by the evaporation of toluene does not a ffect the experimental conclusions.2Results and discussion2.1Optimum surfactantIn order to obtain the most appropriate TXs surfac-tant for the solubilizing toluene,the phase behavior of TXs /butanol /toluene /water system was studied at 303K.The result is depicted in Fig.1.The lower part of the phase boundary represents a single-phase part region (mi-croemulsion region area),whereas the upper part is a two-phase ually,surfactant should be saturated with low solubility in oil and water so as to take much e ffect in oil and water interface.But in the recent study,surfactant was utilized to dissolve oil into water.As shown in Fig.1,TXs based microemulsions can form without the addition of cosurfactants,and the size of microemulsions region area is in a sequence:TX-100>TX-305>TX-405.The reason is that the HLB value of TX-100and TX-305are close to the value of toluene.Another reason is the ethoxy (EO)weight fraction.The structure of TXs is shown in Fig.2,in which R is octyl (C 8).The valuesCosurfactants can change the surface activity and HLB of surfactants,participate in a micelle and adjusting the polarity of water and oil,and thus a ffect the system of phase behavior and nature of the microemulsion com-ponents.The presence of solubilized hydrocarbon in the surfactant micelles generally increases the solubility of polar compounds in these micelles.The solubilized hydro-carbon causes the micelle to swell,and this may make it possible for the micelle to incorporate more polar material in the palisade layer.On the other hand,the solubilization of such polar material as alcohols,amines,and acids into the micelles of a surfactant appears to increase the solubilization of hydrocarbons.N -Butylamine,butanol,butyric acid were used as typical cosurfactant in this study.The experimental tem-perature was controlled at 303K,and HLB was 15.These cosurfactants contain straight chains,and the number of carbon is 4.As shown in Fig.3,the largest microemul-sion region area of TX-305and TX-405were surfactant mixed with n -butylamine,indicating the microemulsions achieve maximum solubilization capacity for toluene with n -butylamine as cosurfactant.Therefore,the optimum co-surfactant is n -butylamine,and the next is butanol.One explanation is that the lower polarity result in a lower degree of order in the micelle,with a consequent increase in solubilizing power for hydrocarbons;another is that the additives with lesser hydrogen bonding power are solubilized more deeply in the interior of the micelle,and hence expand this region,producing the same e ffect as a lengthening of the hydrocarbon chain of the micelle-producing molecule.c .c n274Lian Liu et al.V ol.222.3E ffect of the structure of cosurfactantThe structure of cosurfactant also has remarkable in-fluence on the phase behavior of microemulsion.Thus,eight alcohols were investigated,and branched surfactants may employ the classification of branching suggested by Wormuth and Zushma (1991):(1)Methyl branching –the amphiphile (surfactant or alcohol),has a single hy-drophobic chain with one or more methyl or ethyl groups distributed along the main chain.(2)Double-tail branching –the amphiphile,has a main hydrophobic chain attached to the headgroup.A pendant chain with at least three carbon atoms is attached at αand βcarbon to the headgroup.We can further extend the classification by distinguishing between equal and unequal “tails”of the amphiphile.(3)Multiple branching –highly branched amphiphiles,is based on some combination of the two former types of branching.Eight examples of branched amphiphiles are shown in Fig.4.The experimental temperature was 303K,and HLB value was 15.The branching factor (F b )may be calculated using the suggested equation (Ezrahi et al.,2005):F b =1d i l i t i (1)where,d is the length (i.e.,the number of carbon atoms)of the amphiphile main chain to which the side groups (or chains)are attached;l i is the length of the main chain section measured from the free and (i.e.,not attached to the headgroup)to the point where it joins the side chain (obviously,d l i );and t i is the length of the i branch (i.e.,the side chain).F b is calculated as follows:one of the chains (in the case of unequal tails,the longer one)is considered as the main chain,whereas the other one is taken as the branched.For the evaluation of secondary branching,i.e.,the attaching of side groups to a side chain,the primary branch (the side chain)itself plus the carbon atom of the junction point is considered as an apparent main chain to the secondary branch.It should be noted that the value of F b was 0,1.33,and 0.8for linear cosurfactants,triethanolamine,and n -methyl diethanolamine,respectively (Table 1).In Fig.4,triethanolamine and diethanolamine mixed with TX-305can form microemulsion,and the two microemulsion region areas are the smallest.The linear cosurfactants are superior to the branched for solubilization absorption of toluene.On the other hand,it was easily found that the microemulsion region area is larger with one functional group than two functional groups.A likely explanation is that the structure of TXs system is complex,the main chain is long and they have many branched chain and multi-functional groups.If the cosurfactant is su fficient complicated,it even can not form into microemulsion.Therefore,a simple structure of cosurfactant is favorable.2.4Optimum HLB valueHLB is considered to be the concept relating molecular structure to interfacial packing and film curvature.It is generally expressed as an empirical equation based on the relative proportions of hydrophobic and hydrophilic groups within the molecule and gave quantitative descrip-tion (Lu et al.,1992).The phase diagrams of TX-305/butanol /toluene /water system with HLB 13,14,15,16,and 17(the HLB of surfactant TX-305is 17,and cosurfactant butanol is 7)are shown in Fig.6.It is seen that the microemulsion region area have the following order:HLB 15>HLB 14>HLB 16>HLB 13>HLB 17.Many previous studies indicated that when HLB value of surfactant solution was equal to the HLB value of oil,the solubilization capacity will reach maximum.In this study,the oil was toluene,and the HLB value was 15.Thus,this theory in the TX-305/butanol /toluene /water system is applicable.The whole series of TXs have been studied and the results are similar to TX-305(Fig.5).2.5E ffect of temperatureThe temperature is essential to the stability of mi-croemulsion system,the increase of temperature is knownc .c nNo.2Phase behavior of TXs /toluene /water microemulsion systems for solubilization absorption of toluene 275where,K 0≈17HLB;the value of N 0based on the type of oil.In this research,oil is toluene,N 0=10.0,and PIT is 341K in this section.The phase diagram of TX-405/n -butylamine /toluene /water system at 298,303,313and 323K with HLB 15were prepared and represented in Fig.6.It shows that the microemulsion region areas decrease with increasing temperature.It has been reported previously the nonionic surfactants become lipophilic at higher temperatures due to the dehydration of the oxyethylene group (Karlstrom,1985).But in this study surfactant solution does not absorb more toluene at higher temperature.This is most likely ascribed to that the formation of microemulsion solution based on the absorption of toluene.Temperature and pressure are important factors on the absorption capacity or ability;therefore,reducing temperature or enhancing pres-sure can improve the solubilization capacity.In addition,with temperature increased further,the amount of material solubilized decreased and thus caused an increase in de-hydration and a tighter coiling of POE chains,decreasing the space available in the palisade layer and solubilization amount .2.6E ffect of saltThe phase behavior of TX-405/n -butylamine /toluene /On the basis of the results,it can be concluded that nonionic surfactant microemulsions are easy to prepare with the addition of various kinds of cosurfactant,and they can form di fferent microemulsions with various solubiliza-tion capacities without the significant solubilization role of toluene.In TX-405/n -butylamine /toluene /water system,the proportion of toluene in solution can achieve 82.72%,in other words,478.7g of toluene can be absorbed in every 100g of nonionic microemulsion,but toluene almost in-soluble in water.This study reveals that VOCs (especially toluene)absorbed by microemulsions have a great prospect for the development of air pollution treatment.3ConclusionsThe results of the present study indicate that it is pos-sible to formulate microemulsions as suitable absorbent to remove toluene from gas stream by using TXs surfactants.The findings proved that TX-100>TX-305>TX-405,which surfactant with cosurfactant free and based on the solubilization capacity of toluene.The optimum cosur-factant was amine followed by alcohol.Surfactants with linear chain were better than branched ones in forming the microemulsions.Various environmental conditions could control the formation of microemulsions.As an experi-mental result,the optimum HLB value is 15,the e ffect of salt solution is inconspicuous,and low temperature can enhance the solubilization capacity.Acknowledgmentsc .c n276Lian Liu et al.V ol.22National Science Research Foundation of Yunnan Province Educational O ffice (No.07Y11138).ReferencesArmand B L,Uddholm H B,Vikstrom P T,1990.Absorptionmethod to clean solvent-contaminated process air.Industri-al and Engineering Chemistry Research ,29(3):436–439.Alany R G,Rades T,Agatonovic K S,Davies N M,TuckerI G,2000.E ffects of alcohols and diols on the phase behaviour of quaternary systems.International Journal of Pharmaceutics ,196(2):141–145.Chernik G G,2000.Phase studies of surfactant-water systems.Current Opinion in Colloid and Interface Science ,4(6):381–390.Chen Y S,Liu H S,2002.Absorption of VOCs in a rotatingpacked bed.Industrial and Engineering Chemistry Re-search ,41(6):1583–1588.Ezrahi S,Tuval E,Aserin A,Garti N,2005.The e ffect ofstructural variation of alcohols on water solubilization in nonionic microemulsions 1.From linear to branched amphiphiles–General considerations.Journal of Colloid and Interface Science ,291(1):263–272.Fanun M,2007.Structure probing of water /mixed nonionicsurfactants /caprylic-capric triglyceride system using con-ductivity and NMR.Journal of Molecular Liquids ,133(1-3):22–27.Fourmentin S,Landy D,Blach P,Piat E,Surpateanu G,2006.Cyclodextrins:A potential absorbent for VOC abatement.Global NEST Journal ,8(3):324–329.Hadjoudj R,Monnier H,Roizard C,Lapicque F,2004.Ab-sorption of chlorinated VOCs in high-boiling solvents:determination of Henry’s Law constants and infinite di-lution activity coe fficients.Industrial and Engineering Chemistry Research ,43(9):2238–2246.Hsu J P,Nacu A,2003.Behavior of soybean oil-in-water emul-sion stabilized by nonionic surfactant.Journal of Colloid and Interface Science ,259(2):374–381.Karlstrom G,1985.Water structure and changes in thermalstability of the system poly (ethylene oxide)-water.Journal of Physical Chemistry ,89(23):4962–4964.Kim Y M,Harrad S,Harrison R M,2001.Concentrations andsources of VOCs in urban domestic and public microen-vironments.Environmental Science and Technology ,35(6):997–1004.Kunieda H,Hanno K,Yamaguchi S,Shinoda K,1985.Thethree-phase behavior of a brine /ionic surfactant /nonionicsurfactant /oil system:Evaluation of the hydrophile lipophile balance (HLB)of ionic surfactant.Journal of Colloid and Interface Science ,107(1):129–137.Lawson R B,Adams C D,1999.Enhanced VOC absorption usingthe ozone /hydrogen peroxide advanced oxidation process.Journal of the Air and Waste Management Association ,49(11):1315–1323.Liu M L,2007.Study on the vaporization velocity of benzeneand toluene in water.Journal of Sichuan Normal University (Natural Science),30(5):660–662.Lu J R,Simister E A,Lee E M,Thomas R K,Rennie A R,PenfoldJ,1992.Direct determination by neutron reflection of the penetration of water into surfactant layers at the air /water ngmuir ,8(7):1837–1844.Metha S K,Kaur G,Bhasin K K,2007.Analysis of Tweenbased microemulsion in the presence of TB drug rifampicin.Colloids and Surfaces B ,60(1):95–104.Ozturk B,Yilmaz D,2006.Absorptive removal of volatileorganic compounds from flue gas streams.Process Safety and Environment Protection ,84:391–398.Placet M,Mann C O,Gilbert R O,Niefer M J,2000.Emissions ofozone precursors from stationary sources:a critical review.Atmospheric Environment ,34(12-14):2183–2204.Rajib K,Paul B K,2005.E ffect of temperature and salt onthe phase behavior of nonionic and mixed nonionic-ionic microemulsions with fish-tail diagrams.Journal of Colloid and Interface Science ,291(2):550–559.Rodriguez C,Sakai T,Fujiyama R,Kunieda H,2004.Phasediagrams and microstructure of aggregates in mixed ionic surfactant /foam booster systems.Journal of Colloid and Interface Science ,270(2):483–489.Rudolph E S J,Langeveld J H,Deloos T W,Arons J D S,2000.Phase behaviour of water +nonionic surfactant systems:experiments and modeling applying the Peng-Robinson equation of state with the Wong-Sandler mixing rules and the UNIQUAC g E -model.Fluid Phase Equilibria ,173(1):81–96.Warisnoicharoen W,Lansley A B,Lawrence M J,2000.Nonionicoil-in-water microemulsions:the e ffect of oil type on phase behaviour.International Journal of Pharmaceutics ,198(1):7–27.Wormuth K R,Zushma S,1991.Phase behavior of branchedsurfactants in oil and ngmuir ,7(10):2048–2053.Yaghnur A,Aserin A,Garti N,2002.Phase behavior of mi-croemulsions based on food-grade nonionic surfactants:E ffect of polyols and short-chain alcohols.Colloids and Surfaces A ,209(1):71–81.。