北京市昌平区2013届高三元月上学期期末考试数学文试题

合集下载

北京市昌平区2013届高三元月上学期期末考试数学文试题

北京市昌平区2013届高三元月上学期期末考试数学文试题

DCBA 北京市昌平区2013届高三元月上学期期末考试数学文试题(满分150分,考试时间 120分钟)2013.1考生须知:三、本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。

四、答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。

五、答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。

请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。

六、修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。

保持答题卡整洁,不要折叠、折皱、破损。

不得在答题卡上做任何标记。

七、考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。

第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)复数21ii-的虚部是A. 1-B. 1C. i -D. i(2) “2a =”是“直线214ay ax y x =-+=-与垂直”的 A. 充分不必要条件 B 必要不充分条件C. 充要条件D.既不充分也不必要条件 (3)在数列{}n a 中 ,111,,)2n n a a a y x +==点(在直线上,则4a 的值为 A .7B .8C .9D .16(4)如图,在,2.=ABC BD DC AB ,AC ,AD ∆==中若则a =bA.2133+a b B. 2133-a b C. 1233+a b D. 1233-a b (5)已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积为 A. 4 B .8 C. 12 D. 24 (6)函数22()log (1)f x x x =+-的零点个数为A. 0B. 1C. 2D. 3(7)设不等式组22,4,2x y x y -+≥≥-⎧⎪⎨⎪⎩0≤ 表示的平面区域为D .在区域D 内随机取一个点,则此点到直线+2=0y 的距离大于2的概率是A.413 B. 513 C. 825D.925(8)设定义域为R 的函数)(x f 满足以下条件;①对任意0)()(,=-+∈x f x f R x ; ②对任意当],,1[,21a x x ∈有时,12x x >21()()f x f x >.则以下不等式一定成立....的是 ①()(0)f a f >②)()21(a f af >+③)3()131(->+-f aaf ④)()131(a f aa f ->+-A. ①③B. ②④C. ①④D. ②③第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分,共30分)(9)在ABC △中,若3b =,1c =,1cos 3A =,则a =28-3,15,a a ==则(10)已知n S 是等差数列{}n a 的前n 项和,其中(11)已知某算法的流程图如图所示,则程序运行结束时输出的结果为 .(12)以双曲线221916x y -=的右焦点为圆心,并与其 渐近线相切的圆的标准方程是 _______.(13) 已知函数1()(0),()213(0),xx f x x x ⎧≤⎪=⎨⎪->⎩ 则((1))f f -=________;若2(23)(5)f a f a ->,则实数a 的取值范围是_______________.(14)过椭圆22221(0)x y a b a b+=>>上一点M 作直线,MA MB交椭圆于,A B 两点,设,MA MB 的斜率分别为12,k k ,若点,A B 关于原点对称,且121,3k k ⋅=-则此椭圆的离心率为___________.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.) (15)(本小题满分13分)已知函数()(232cos )cos 1f x x x x =-⋅+.(Ⅰ)求()f x 的最小正周期;OFEDCBA(Ⅱ)求()f x 在区间[,]42ππ上的最值.(16) (本小题满分14分)在四棱锥EABCD 中,底面ABCD 是正方形,,AC BD O 与交于ECABCD F 底面,为BE 的中点.(Ⅰ)求证:DE ∥平面ACF ; (Ⅱ)求证:BD AE ;(Ⅲ)若2,ABCE 在线段EO 上是否存在点G ,使CGBDE 平面?若存在,求出EGEO的值,若不存在,请说明理由.(17) (本小题满分13分)以下茎叶图记录了甲、乙两组各四名同学在某次数学测验中的成绩,甲组记录中有一个数据模糊,无法确认,在图中以X 表示. 甲组 乙组 6 X 8 7 4 1 9 0 0 3(Ⅰ)如果甲组同学与乙组同学的平均成绩一样,求X 及甲组同学数学成绩的方差;(Ⅱ)如果X=7,分别从甲、乙两组同学中各随机选取一名,求这两名同学的数学成绩之和大于180的概率.(注:方差2222121=[()()...()],n s x x x x x x n-+-++-其中12,,...,.n x x x x 为的平均数)(18)(本小题满分13分)已知函数3211()()32f x x a x a a =-+∈R . (Ⅰ)若1,a =求函数()[0,2]f x 在上的最大值;(Ⅱ)若对任意(0,+)x ∈∞,有()0f x >恒成立,求a 的取值范围.19. (本小题满分13分)已知椭圆:M 22221(0)x y a b a b+=>>,其短轴的一个端点到右焦点的距离为2,且点A 在椭圆M 上. 直线l 的斜率为2,且与椭圆M 交于B 、C 两点. (Ⅰ)求椭圆M 的方程; (Ⅱ)求ABC ∆面积的最大值.20. (本小题满分14分)已知每项均是正整数的数列123100,,,,a a a a ,其中等于i 的项有i k 个(1,2,3)i =,设j j k k k b +++= 21(1,2,3)j =,12()100m g m b b b m =+++-(1,2,3).m =(Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====, ①求(1),(2),(3),(4)g g g g ;②求123100a a a a ++++的值;(Ⅱ)若123100,,,,a a a a 中最大的项为50, 比较(),(1)g m g m +的大小.昌平区2012-2013学年第一学期高三年级期末质量抽测数 学 试卷 参考答案(文科)GABC DEFO一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)二、填空题(本大题共6小题,每小题5分,共30分.) (9)(10)6;9(11) 3 (12)22(5)16x y -+=(13) -5; 1(,3)2- (14三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.)(15)(本小题满分13分)解:(Ⅰ)因为()2cos )cos 1f x x x x =-⋅+2cos 2x x =-π2sin(2)6x =-.………………………………5分所以()f x 的最小正周期2ππ2T ==.…………………7分 (II )由 5[,],2[,],2[,],422636x x x πππππππ…………..9分 当52,,()1662x x f x πππ-==即时取得最小值,…………….11分 当2,,()2623x x f x πππ-==即时取得最大值.……………….13分 (16)(本小题满分14分) 解:(I )连接OF .由ABCD 是正方形可知,点O 为BD 中点. 又F 为BE 的中点,所以OF ∥DE ………………….2分 又,,OFACF DE ACF 平面平面所以DE ∥平面ACF ………….4分 (II) 证明:由ECABCD BD ABCD 底面,底面,所以,EC BD由ABCD 是正方形可知, ,ACBD又=,,ACEC C AC EC ACE 平面,所以,BD ACE 平面………………………………..8分又AEACE 平面,所以BD AE …………………………………………..9分(III) 在线段EO 上存在点G ,使CG BDE 平面. 理由如下:如图,取EO 中点G ,连接CG . 在四棱锥E ABCD 中,22,2AB CE COAB CE ,所以CGEO .…………………………………………………………………..11分由(II )可知,,BD ACE 平面而,BDBDE 平面所以,,ACE BDE ACE BDE EO 平面平面且平面平面,因为,CG EO CGACE 平面,所以CGBDE 平面…………………………………………………………. 13分故在线段EO 上存在点G ,使CGBDE 平面.由G 为EO 中点,得1.2EGEO …………………………………………… 14分 (17)(本小题满分13分)解:(I )乙组同学的平均成绩为87909093904+++=,甲组同学的平均成绩为90,所以8086919490,9.4X X ++++==…………………………………2分甲组同学数学成绩的方差为222228690)(8990)(9190)(9490)17=42s -+-+-+-=甲(…………… 6分(II)设甲组成绩为86,87,91,94的同学分别为1234,,,,a a a a 乙组成绩为87,90,90,93的同学分别为1234,,,,b b b b 则所有的事件构成的基本事件空间为:11121314212223243132{(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),a b a b a b a b a b a b a b a b a b a b333441424344(,),(,),(,),(,),(,),(,)}.a b a b a b a b a b a b 共16个基本事件.设事件A =“这两名同学的数学成绩之和大于180”,则事件A 包含的基本事件的空间为{32333441424344(,),(,)(,),(,),(,),(,),(,)}.a b a b a b a b a b a b a b 共7个基本事件,7()16P A =………………………………………………………………………….13分 (18)(本小题满分13分) 解:(I )当1a =时,311()32f x x x =-+,2'()1f x x =- .............1分令12'()01, 1.f x x x ==-=,得..................................2分列表:∴当[0,2]x ∈时,()f x 最大值为()26f =. ………………………7分(Ⅱ)22'()()(),f x x a x a x a =-=-+令12'()0,,.f x x a x a ==-=得① 若0,)()0,()a a f x f x '<<∴在(0,-上,单调递减.)()0,()a f x f x '∞>∴在(-,+上,单调递增.所以,()f x 在x a =-时取得最小值()332121()3232a f a a a a a -=-++=+, 因为()2221210,0,()03232a a f a a a <+>-=+<所以.0,0,+()0.a x f x <∈∞>所以当时对任意(),不成立…………………..9分② 若20,()0,()0+a f x x f x '==≥∞所以在(,)上是增函数, 所以当=0()(0)0.a f x f >=时,有……………………………………..10分 ③若0,)()0,()a a f x f x '><在(0,上,所以单调递减.)()0,()a f x f x '∞>在(,+上,所以单调递增.所以,()f x 在x a =取得最小值()332121()3232a f a a a a a =-+=--,令()222121()0,0,0,03232f a a a a a a =-->>-<<<由得,0,()0.a x f x <<>>所以当0对任意都成立 综上,a的取值范围是[0.………………………………13分 (19)(本小题满分13分)解: (Ⅰ)由题意知222112a b a ⎧+=⎪⎨⎪=⎩,所以b =故所求椭圆方程为22142x y +=………………………………….5分 (Ⅱ) 设直线l的的方程为2y x m =+,则0m ≠.设1122(,),(,),B x y C x y代入椭圆方程并化简得2220x m +-=, …………6分 由22224(2)2(4)0m m m ∆=--=->,可得204m << . (*)由(*),得1,2x =,故12BC x =-==…..9分 又点A 到BC的距离为d =, …………………10分故12ABCS BC d ∆=⋅=22(4)2m m +-=≤=当且仅当224m m =-,即m =时取等号满足(*)式. 所以ABC ∆面积的最大值为2. ……………………13分(20)(本小题满分13分)解: (I)① 因为数列1240,30,k k ==320,k =410k =, 所以123440,70,90,100b b b b ====,所以(1)60,(2)90,(3)100,(4)100g g g g =-=-=-=- . ………8分 ②123100401302203104200a a a a ++++=⨯+⨯+⨯+⨯=……….10分(II) 一方面,1(1)()100m g m g m b ++-=-,根据j b 的含义知1100m b +≤,故0)()1(≤-+m g m g ,即 )1()(+≥m g m g , 当且仅当1100m b +=时取等号. 因为123100,,,,a a a a 中最大的项为50,所以当50m ≥时必有100m b =,所以(1)(2)(49)(50)(51)g g g g g >>>===即当149m ≤<时,有()(1)g m g m >+; 当49m ≥时,有()(1)g m g m =+. 14分。

8北京市昌平区2013届高三第二次质量抽测数学文试题(Word解析版) 2

8北京市昌平区2013届高三第二次质量抽测数学文试题(Word解析版) 2

昌平区2012-2013学年第二学期高三年级第二次质量抽测数 学 试 卷(文科)(满分150分,考试时间 120分钟)2013.4考生须知:1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。

2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。

3. 答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。

请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。

4. 修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。

保持答题卡整洁,不要折叠、折皱、破损。

不得在答题卡上做任何标记。

5. 考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。

第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)(1)i 是虚数单位,则复数21=i z i-在复平面内对应的点在 A .第一象限 B.第二象限 C.第三象限 D.第四象限【答案】A【解析】2211=222i i z i i i i-=-=-=+,所以对应的点的坐标为(2,1),在第一象限,选A. (2)已知集合{|21}x A x =>,{|1}B x x =<,则A B =A. {|1}x x >B. {|0}x x >C. {|01}x x <<D. {|1}x x <【答案】C【解析】{|21}{0}xA x x x =>=>,所以AB = {|01}x x <<,选C.(3)已知命题 :p x ∀∈R ,2x ≥,那么下列结论正确的是A. 命题:2p x x ⌝∀∈R ≤, B .命题:2p x x ⌝∃∈<R ,C .命题:2p x x ⌝∀∈-R ≤,D .命题:2p x x ⌝∃∈<-R ,【答案】B【解析】全称命题的否定是特称命题,所以命题:2p x x ⌝∃∈<R ,,选B.(4) 执行如图所示的程序框图,输出的S 值为A .102B .81C .39D .21【答案】A【解析】第一次循环,133,2S n =⨯==.第二次循环,232321,3S n =+⨯==.第三次循环,32133102,4S n =+⨯==.此时不满足条件,输出102S =,选A. (5)在区间(0,)2π上随机取一个数x ,则事件“2tan cos 2x x ≥g ” 发生的概率为A. 34B. 23C. 12D. 13 【答案】C 【解析】由2tan cos 2x x ≥g 得2sin 2x ≥,解得42x ππ≤≤,所以事件“2tan cos 2x x ≥g ”发生的概率为12422πππ-=,选C. (6)某地区的绿化面积每年平均比上一年增长18%,经过x 年,绿化面积与原绿化面积之比为y ,则()y f x =的图像大致为【答案】D【解析】设某地区起始年的绿化面积为a ,因为该地区的绿化面积每年平均比上一年增长18%,所以经过x 年,绿化面积()(118%)xg x a =+,因为绿化面积与原绿化面积之比为y ,则()()(118%) 1.18x x g x y f x a===+=,则函数为单调递增的指数函数。

【Word版解析】北京市昌平区2013届高三上学期期末考试 数学理试题

【Word版解析】北京市昌平区2013届高三上学期期末考试 数学理试题

昌平区2012-2013学年第一学期高三年级期末质量抽测数 学 试 卷(理科)(满分150分,考试时间 120分钟)2013.1考生须知: 1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。

2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。

3.答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。

请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。

4.修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。

保持答题卡整洁,不要折叠、折皱、破损。

不得在答题卡上做任何标记。

5.考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。

第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)设集合{}{}>1,|(2)0A x x B x x x ==-<,则B A 等于 A .{|2}x x > B .{}20<<x xC .{}21<<x xD .{|01}x x <<【答案】C【解析】{}|(2)0{02}B x x x x x =-<=<<,所以{12}A B x x =<<,选C.(2)“2a =”是“直线214ay ax y x =-+=-与垂直”的 A. 充分不必要条件 B 必要不充分条件C. 充要条件D.既不充分也不必要条件 【答案】A【解析】若直线214a y ax y x =-+=-与垂直,则有=14aa -⨯-,即24a =,所以2a =±。

所以“2a =”是“直线214ay ax y x =-+=-与垂直”的充分不必要条件,选A.(3)已知函数()=ln f x x ,则函数()=()'()g x f x f x -的零点所在的区间是A.(0,1)B. (1,2)C. (2,3)D. (3,4) 【答案】B【解析】函数的导数为1'()f x x =,所以1()=()'()ln g x f x f x x x-=-。

2013北京市昌平区期末考试数学(理科)和(文科)试题和答案汇编

2013北京市昌平区期末考试数学(理科)和(文科)试题和答案汇编

昌平区2012-2013学年第一学期高三年级期末质量抽测数学试卷(理科)(满分150分,考试时间 120分钟)2013.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)设集合{}{}>1,|(2)0A x x B x x x ==-<,则B A 等于 A .{|2}x x > B .{}20<<x xC .{}21<<x xD .{|01}x x <<(2)“2a =”是“直线214ay ax y x =-+=-与垂直”的 A. 充分不必要条件 B 必要不充分条件C. 充要条件D.既不充分也不必要条件 (3)已知函数()=ln f x x ,则函数()=()'()g x f x f x -的零点所在的区间是A.(0,1)B. (1,2)C. (2,3)D. (3,4) (4)设不等式组22,42x y x y -+≥≥-⎧⎪⎨⎪⎩0≤, 表示的平面区域为D .在区域D 内随机取一个点,则此点到直线+2=0y 的距离大于2的概率是A.413B.513C.825D.925(5)设n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,则21a a 等于 A.1 B. 2 C. 3 D. 4(6)在高三(1)班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连续出场,且女生甲不能排在第一个,那么出场顺序的排法种数为A. 24B. 36C. 48D.60(7)已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的全面积为A. 10+B .10+C. 14+D. 14+(8)已知函数:①2()2f x x x =-+,②()cos()22xf x ππ=-,③12()|1|f x x =-.则以下四个命题对已知的三个函数都能成立的是命题:p ()f x 是奇函数; 命题:q (1)f x +在(0),1上是增函数;命题:r 11()22f >; 命题:s ()f x 的图像关于直线1x =对称A .命题p q 、B .命题q s 、C .命题r s 、D .命题p r 、第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.(9)若221aii i=-+-,其中i 是虚数单位,则实数a 的值是____________.(10)以双曲线221916x y -=的右焦点为圆心,并与其渐近线相切的圆的标准方程是 _____.(11)在ABC △中,若b =1c =,tan B =,则a = . (12)已知某算法的流程图如图所示,则程序运行结束时输出的结果为 .(13)在Rt ABC ∆中,90C ︒∠=,4,2AC BC ==,D 是BC的中点,那么()AB AC AD -∙=uu u r uu u r uuu r____________;若E 是AB 的中点,P 是ABC ∆(包括边界)内任一点.则AD EP ⋅uuu r uu r的取值范围是___________.(14)在平面直角坐标系中,定义1212(,)d P Q x x y y =-+-为两点11(,)P x y ,22(,)Q x y 之间的“折线距离”. 则① 到坐标原点O 的“折线距离”不超过2的点的集合所构成的平面图形面积是_________;OFEDCBA② 坐标原点O与直线20x y --=上任意一点的“折线距离”的最小值是_____________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分13分)已知函数1sin cos )2sin sin 32()(2+⋅-=xxx x x f .(Ⅰ)求()f x 的定义域及最小正周期; (Ⅱ)求()f x 在区间[,]42ππ上的最值.(16) (本小题满分14分)在四棱锥E ABCD -中,底面ABCD 是正方形,,AC BD O 与交于点EC ABCD F 底面,^为BE 的中点. (Ⅰ)求证:DE ∥平面ACF ; (Ⅱ)求证:BD AE ^;(Ⅲ)若,AB =在线段EO 上是否存在点G ,使CG BDE 平面^?若存在,求出EGEO的值,若不存在,请说明理由.(17)(本小题满分13分)为了解甲、乙两厂的产品的质量,从两厂生产的产品中随机抽取各10件,测量产品中某种元素的含量(单位:毫克).下表是测量数据的茎叶图: 甲厂乙厂93 9 6 5 8 18 4 5 6 9 0 31 5 0 3 21 0 3规定:当产品中的此种元素含量满足≥18毫克时,该产品为优等品. (Ⅰ)试用上述样本数据估计甲、乙两厂生产的优等品率;(Ⅱ)从乙厂抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优等品数ξ的分布列及其数学期望()E ξ;(Ⅲ)从上述样品中,各随机抽取3件,逐一选取,取后有放回,求抽到的优等品数甲厂恰比乙厂多2件的概率.(18)(本小题满分13分)已知函数32()4f x x ax =-+-(a ∈R ).(19)(本小题满分13分)已知椭圆M 的对称轴为坐标轴, 且抛物线2y =的焦点是椭圆M 的一个焦点.(Ⅰ)求椭圆M 的方程;(Ⅱ)设直线l 与椭圆M 相交于A 、B 两点,以线段,OA OB 为邻边作平行四边形OAPB ,其中点P 在椭圆M 上,O 为坐标原点. 求点O 到直线l 的距离的最小值.(20)(本小题满分14分) 已知每项均是正整数的数列123100,,,,a a a a ,其中等于i 的项有i k 个(1,2,3)i =,设j j k k k b +++= 21(1,2,3)j =,12()100m g m b b b m =+++-(1,2,3).m =(Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====,求(1),(2),(3),(4)gg g g;(Ⅱ)若123100,,,,a a a a 中最大的项为50, 比较(),(1)g m g m +的大小; (Ⅲ)若12100200a a a +++=,求函数)(m g 的最小值.G BCEF昌平区2012-2013学年第一学期高三年级期末质量抽测数 学 试卷 参考答案(理科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符二、填空题(本大题共6小题,每小题5分,共30分.) (9)4 (10)22(5)16x y -+=(11) 3(12)4 (13)2; [-9,9] (14) 三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.)(15)(本小题满分13分)解:(Ⅰ)由sin 0x ≠得πx k ≠(k ∈Z ),故()f x 的定义域为{x ∈R |π,x k ≠k ∈Z }.…………………2分因为1sin cos )2sin sin 32()(2+⋅-=xxx x x f 2cos )cos 1x x x =-⋅+ 2cos 2x x -π2sin(2)6x =-,………………………………6分所以()f x 的最小正周期2ππ2T ==.…………………7分 (II )由 5[,],2[,],2[,],422636x x x πππππππ挝-?…………..9分 当52,,()1662x x f x πππ-==即时取得最小值,…………….11分 当2,,()2623x x f x πππ-==即时取得最大值.……………….13分 (16)(本小题满分14分) 解:(I )连接OF .由ABCD 是正方形可知,点O 为BD 中点. 又F 为BE 的中点,所以OF ∥DE ………………….2分 又,,OF ACF DEACF 平面平面趟所以DE ∥平面ACF ………….4分(II) 证明:由EC ABCD BD ABCD 底面,底面,^? 所以,EC BD ^由ABCD 是正方形可知, ,AC BD ^又=,,AC EC C AC EC ACE 平面,翘所以,BD ACE 平面^………………………………..8分又AE ACE 平面,Ì所以BD AE ^…………………………………………..9分(III)解法一:在线段EO 上存在点G ,使CG BDE 平面^. 理由如下: 如图,取EO 中点G ,连接CG .在四棱锥E ABCD -中,,2AB CO AB CE ===, 所以CG EO ^.…………………………………………………………………..11分 由(II )可知,,BD ACE 平面^而,BD BDE 平面Ì 所以,,ACE BDE ACE BDE EO 平面平面且平面平面,^?因为,CG EO CG ACE 平面,^?所以CG BDE 平面^…………………………………………………………. 13分 故在线段EO 上存在点G ,使CG BDE 平面^.由G 为EO 中点,得1.2EG EO =…………………………………………… 14分 解法二:y由EC ABCD 底面,^且底面ABCD 建立空间直角坐标系,C DBE -由已知,AB =设(0)CE a a =>,则(0,0,0),,0,0),,0),(0,0,),C D B E a(,,0),,,0),(0,,),,,).2222O a a BD BE a EO a a uu u r uuruu u r =-=-=-设G 为线段EO 上一点,且(01)EGEOλλ=<<,则,),22EG EO a a a λλλλuuu r uu u r ==-,,(1)),22CG CE EO a a a λλλλuuu r uur uu u r =+=-…………………………..12分由题意,若线段EO 上存在点G ,使CG BDE 平面^,则CG BD ^uuu r uu u r ,CG BE ^uu u r uur.所以,221(1)0,0,12a a λλλ解得,()-+-==?, 故在线段EO 上存在点G ,使CG BDE 平面^,且1.2EG EO =…………………… 14分 (17)(本小题满分13分)解:(I )甲厂抽取的样本中优等品有6件,优等品率为63.105= 乙厂抽取的样本中优等品有5件,优等品率为51.102=………………..2分 (II )ξ的取值为0,1,2,3.0312555533101015(0),(1),1212C C C C P P C C ξξ⋅⋅======21355533101051(2),(3)1212C C C P P C C ξξ⋅====== 所以ξ的分布列为故155130123.121212122E ξξ=⨯+⨯+⨯+⨯=的数学期望为()……………………9分(III) 抽取的优等品数甲厂恰比乙厂多2件包括2个事件,即A=“抽取的优等品数甲厂2件,乙厂0件”,B=“抽取的优等品数甲厂3件,乙厂1件”2200333321127()()()()()5522500P A C C =⨯=331123331181()()()()5221000P B C C =⨯=抽取的优等品数甲厂恰比乙厂多2件的概率为278127()().5001000200P A P B +=+=…13分 (18)(本小题满分13分)解:(I ).23)(2ax x x f +-=' …………………………. ……………1分根据题意,(1)tan1,321, 2.4f a a π'==∴-+==即 …………………3分 此时,32()24f x x x =-+-,则2()34f x x x '=-+. 令124'()00,.f x x x ===,得 …………………………………………………………………………………………. 6分∴当[]1,1x ∈-时,()f x 最小值为()04f =-. ………………………7分 (II )).32(3)(a x x x f --='①若0,0,()0,()(0,)a x f x f x '><∴+∞≤当时在上单调递减. 又(0)4,0,() 4.f x f x =-><-则当时000,0,()0.a x f x ∴>>当≤时不存在使…………………………………………..10分②若220,0,()0;,()0.33a aa x f x x f x ''><<>><则当时当时从而)(x f 在(0,23a )上单调递增,在(23a,+)∞上单调递减..4274494278)32()(,),0(333max-=-+-==+∞∈∴a a a a f x f x 时当根据题意,33440,27. 3.27a a a ->>∴>即 …………….............................. 13分 综上,a 的取值范围是(3,)+∞. (19)(本小题满分13分)解:(I )由已知抛物线的焦点为,故设椭圆方程为22221(0)x y a b a b +=>>,则22, 2.2c e a b ====由得所以椭圆M 的方程为22 1.42x y +=……5分 (II )当直线l 斜率存在时,设直线方程为y kx m =+,则由22,1.42y kx m x y=+⎧⎪⎨+=⎪⎩ 消去y 得,222(12)4240k x kmx m +++-=, …………………6分222222164(12)(24)8(24)0k m k m k m ∆=-+-=+->, ①…………7分设AB P 、、点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则: 012012122242,()21212km mx x x y y y k x x m k k =+=-=+=++=++,…………8分由于点P在椭圆M上,所以2200142x y+=. ……… 9分从而2222222421(12)(12)k m mk k+=++,化简得22212m k=+,经检验满足①式.………10分又点O到直线l的距离为:2d===≥=………11分当且仅当0k=时等号成立………12分当直线l无斜率时,由对称性知,点P一定在x轴上,从而点P的坐标为(2,0)(2,0)-或,直线l的方程为1x=±,所以点O到直线l的距离为1 . 所以点O到直线l的距离最小值为2. ………13分(20)(本小题满分14分)解: (I) 因为数列1240,30,k k==320,k=410k=,所以123440,70,90,100b b b b====,所以(1)60,(2)90,(3)100,(4)100g g g g=-=-=-=-…………………4分(II) 一方面,1(1)()100mg m g m b++-=-,根据j b的含义知1100mb+≤,故0)()1(≤-+mgmg,即)1()(+≥mgmg,①当且仅当1100mb+=时取等号.因为123100,,,,a a a a中最大的项为50,所以当50m≥时必有100mb=,所以(1)(2)(49)(50)(51)g g g g g>>>===即当149m≤<时,有()(1)g m g m>+;当49m≥时,有()(1)g m g m=+…9分(III )设M 为{}12100,,,a a a 中的最大值.由(II )可以知道,()g m 的最小值为()g M . 根据题意,123100,M M b k k k k =++++=L123123123....M k k k M k a a a a ++++=++++L 下面计算()g M 的值.123()100M g M b b b b M =++++-1231(100)(100)(100)(100)M b b b b -=-+-+-++- 233445()()()()M M M M k k k k k k k k k k =----+----+----++-23[2(1)]M k k M k =-+++-12312(23)()M M k k k Mk k k k =-++++++++123100()M a a a a b =-+++++123100()100a a a a =-+++++,∵123100200a a a a ++++= , ∴()100g M =-,∴()g m 最小值为100-. ………………………………………….14分昌平区2012-2013学年第一学期高三年级期末质量抽测数 学 试 卷(理科)(满分150分,考试时间 120分钟)2013.1考生须知: 1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。

北京市昌平区2013-2014学年第一学期高三年级期末理科数学-含答案

北京市昌平区2013-2014学年第一学期高三年级期末理科数学-含答案

昌平区2013-2014学年第一学期高三年级期末质量抽测数 学 试 卷(理 科)(满分150分,考试时间120分钟) 2014.1考生须知:1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。

2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。

3.答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。

请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。

4.修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。

保持答题卡整洁,不要折叠、折皱、破损。

不得在答题卡上做任何标记。

5.考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。

第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项.)(1) 已知全集=R U ,集合{1,0,1}=-A ,2{20}=-<B x x x , 则=I ðU A B(A) {1,0}- (B) {1,0,2}- (C) {0} (D) {1,1}- (2) “1cos 2α=”是“3πα=”的(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件(3) 给定函数①21y x =+,②12log y x =,③12y x =,④1()2xy =,其中在区间(0,1)上单调递增的函数的序号是(A )② ③(B )① ③ (C )① ④(D )② ④w(4) 执行如图所示的程序框图,输出的k 值是 (A)1 (B)2 (C)3 (D)4俯视图左视图主视图(5) 若实数,x y 满足10,2,3,+-≥⎧⎪≤⎨⎪≤⎩x y x y 则z y x =-的最小值是(A) 1 (B) 5 (C) 3- (D) 5- (6) 一个几何体的三视图如图所示,则这个几何体的体积是 (A) 1 (B) 2(C)23 (D)13(7) 连掷两次骰子得到的点数分别为m 和n ,若记向量()m n ,a =与向量(12)=-,b 的夹角为θ,则θ为锐角的概率是 (A)536 (B) 16 (C) 736(D) 29(8)已知函数21,0,(),40⎧+>⎪=-≤≤x x f x a x 在点(1,2)处的切线与()f x 的图象有三个公共点,则a 的取值范围是(A)[8,4--+ (B)(44---+ (C)(48]-+ (D)(48]---第二卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分,共30分.)(9) 已知θ是第二象限的角,3sin 5θ=,则tan θ的值为___________ .(10) 如图,在复平面内,复数z 对应的向量为OA uu r,则复数i ⋅z =_______ .(11) 已知等差数列{}n a 的前n 项和为n S ,若2461a a a -+=,则4a =_____ ,7S = _____. (12)曲线11,2,,0====x x y y x所围成的图形的面积等于___________ .(13) 在ABC ∆中,4,5,2==⋅=AB BC BA AC u u r u u u r,则AC =________ .(14) 将含有3n 个正整数的集合M 分成元素个数相等且两两没有公共元素的三个集合A B C 、、,其中12{,,,}n A a a a =L ,12{,,,}n B b b b =L ,12{,,,}n C c c c =L ,若A B C 、、中的元素满足条件:12n c c c <<<L ,k k k a b c +=,(1,2,3,,)k n =,则称M 为“完并集合”.①若{1,,3,4,5,6}M x =为“完并集合”,则x 的一个可能值为 .(写出一个即可) ②对于“完并集合”{1,2,3,4,5,6,7,8,9,10,11,12}M =,在所有符合条件的集合C 中,其元素乘积最小的集合是 .三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.)(15)(本小题满分13分)已知函数2()cos 2sin 1f x x x x =+-.(Ⅰ)求函数()f x 的最小正周期; (Ⅱ)当5[,]126x ππ∈-时,求函数()f x 的取值范围.(16)(本小题满分13分)为了调研某校高一新生的身高(单位:厘米)数据,按10%的比例对700名高一新生按性别分别进行“身高”抽样检查,测得“身高”的频数分布表如下表1、表2.(Ⅰ)求高一的男生人数并完成下面的频率分布直方图; (Ⅱ)估计该校学生“身高”在[165,180)之间的概率;(Ⅲ)从样本中“身高”在[180,190)的男生中任选2人,求至少有1人“身高”在[185,190)之间的概率.D CBAP(17)(本小题满分14分)在四棱锥P ABCD -中,PD ⊥平面ABCD ,2PD CD BC AD ===,//,90AD BC BCD ∠=︒.(Ⅰ)求证:BC PC ⊥;(Ⅱ)求PA 与平面PBC 所成角的正弦值;(Ⅲ)线段PB 上是否存在点E ,使AE ⊥平面PBC ?说明理由.(18)(本小题满分13分)在平面直角坐标系x y O 中,已知点(,0)(0)≠A a a ,圆C 的圆心在直线4y x =-上,并且与直线:10l x y +-=相切于点(3,2)P -.(Ⅰ)求圆C 的方程;(Ⅱ)若动点M 满足2MA MO =,求点M 的轨迹方程;(Ⅲ)在(Ⅱ)的条件下,是否存在实数a ,使得CM 的取值范围是[1,9],说明理由.(19)(本小题满分13分)已知函数2(2)()m xf x x m-=+.(Ⅰ)当1m =时,求曲线()f x 在点11(,())22f 处的切线方程; (Ⅱ)求函数()f x 的单调区间.(20)(本小题满分14分)设满足以下两个条件的有穷数列123,,,,n a a a a L 为(2,3,4,)=L n n 阶“期待数列”: ①1230++++=L n a a a a ,②1231++++=L n a a a a .(Ⅰ)若等比数列{}n a 为2()∈N*k k 阶“期待数列”,求公比q ;(Ⅱ)若一个等差数列{}n a 既是2()∈N*k k 阶“期待数列”又是递增数列,求该数列的通项公式; (Ⅲ)记n 阶“期待数列”{}i a 的前k 项和为(1,2,3,,)=L k S k n .(1)求证: 12≤k S ; (2)若存在{1,2,3,,}∈L m n ,使12=m S ,试问数列{}(1,2,3,,)=L i S i n 能否为n 阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.昌平区2013-2014学年第一学期高三年级期末质量抽测数学试卷(理科)参考答案及评分标准 2014.1一、选择题共10小题,每小题5分,共50分。

昌平区2012-2013学年第一学期高三年级期末质量抽测

昌平区2012-2013学年第一学期高三年级期末质量抽测

昌平区2012-2013学年第一学期高三年级期末质量抽测数 学 试 卷(理科) (满分150分,考试时间 120分钟)2013.1考生须知: 1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。

2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。

3. 答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。

请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。

4. 修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。

保持答题卡整洁,不要折叠、折皱、破损。

不得在答题卡上做任何标记。

5. 考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。

第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)设集合{}{}>1,|(2)0A x x B x x x ==-<,则B A 等于 A .{|2}x x > B .{}20<<x xC .{}21<<x xD .{|01}x x <<(2)“2a =”是“直线214ay ax y x =-+=-与垂直”的 A. 充分不必要条件 B 必要不充分条件C. 充要条件D.既不充分也不必要条件 (3)已知函数()=ln f x x ,则函数()=()'()g x f x f x -的零点所在的区间是A.(0,1)B. (1,2)C. (2,3)D. (3,4) (4)设不等式组22,42x y x y -+≥≥-⎧⎪⎨⎪⎩0≤, 表示的平面区域为D .在区域D 内随机取一个点,则此点到直线+2=0y 的距离大于2的概率是A. 413B.513C.825D.925(5)设n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,则21a a 等于 A.1 B. 2 C. 3D. 4(6)在高三(1)班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连续出场,且女生甲不能排在第一个,那么出场顺序的排法种数为A. 24B. 36C. 48D.60(7)已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的全面积为A. 10+ B.10+C. 14+D.14+(8)已知函数:①2()2f x x x =-+,②()cos()22xf x ππ=-,③12()|1|f x x =-.则以下四个命题对已知的三个函数都能成立的是命题:p ()f x 是奇函数; 命题:q (1)f x +在(0),1上是增函数;命题:r 11()22f >; 命题:s ()f x 的图像关于直线1x =对称A .命题p q 、B .命题q s 、C .命题r s 、D .命题p r 、第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.(9)若221aii i =-+-,其中i 是虚数单位,则实数a 的值是____________.(10)以双曲线221916x y -=的右焦点为圆心,并与其渐近线相切的圆的标准方程是 _____.(11)在ABC △中,若b =1c =,tan B =a = . (12)已知某算法的流程图如图所示,则程序运行结束时输出的结果为 .(13)在Rt ABC ∆中,90C ︒∠=,4,2AC BC ==,D 是BC 的中点,那么()AB AC AD -∙=uu u r uuu r uuu r____________;若E 是AB 的中点,P 是ABC ∆(包括边界)内任一点.则AD EP ⋅uuu r uu r的取值范围是___________.(14)在平面直角坐标系中,定义1212(,)d P Q x x y y =-+-为两点11(,)P x y ,22(,)Q x y 之间的“折线距离”. 则① 到坐标原点O 的“折线距离”不超过2的点的集合所构成的平面图形面积是_________;② 坐标原点O 与直线20x y --=上任意一点的“折线距离”的最小值是_____________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分13分)已知函数1sin cos )2sin sin 32()(2+⋅-=xxx x x f .(Ⅰ)求()f x 的定义域及最小正周期; (Ⅱ)求()f x 在区间[,]42ππ上的最值.OFEDCBA(16) (本小题满分14分)在四棱锥E ABCD -中,底面ABCD 是正方形,,AC BD O 与交于点EC ABCD F 底面,^为BE 的中点. (Ⅰ)求证:DE ∥平面ACF ;(Ⅱ)求证:BD AE ^;(Ⅲ)若,AB =在线段EO 上是否存在点G ,使CG BDE 平面^?若存在,求出EGEO的值,若不存在,请说明理由.(17)(本小题满分13分)为了解甲、乙两厂的产品的质量,从两厂生产的产品中随机抽取各10件,测量产品中某种元素的含量(单位:毫克).下表是测量数据的茎叶图: 甲厂乙厂93 9 6 5 8 18 4 5 6 9 0 31 5 0 3 21 0 3规定:当产品中的此种元素含量满足≥18毫克时,该产品为优等品. (Ⅰ)试用上述样本数据估计甲、乙两厂生产的优等品率;(Ⅱ)从乙厂抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优等品数ξ的分布列及其数学期望()E ξ;(Ⅲ)从上述样品中,各随机抽取3件,逐一选取,取后有放回,求抽到的优等品数甲厂恰比乙厂多2件的概率.(18)(本小题满分13分)已知函数32()4f x x ax =-+-(a ∈R ).(19)(本小题满分13分)已知椭圆M 的对称轴为坐标轴, 离心率为2且抛物线2y =的焦点是椭圆M 的一个焦点.(Ⅰ)求椭圆M 的方程;(Ⅱ)设直线l 与椭圆M 相交于A 、B 两点,以线段,OA OB 为邻边作平行四边形OAPB ,其中点P 在椭圆M 上,O 为坐标原点. 求点O 到直线l 的距离的最小值.(20)(本小题满分14分)已知每项均是正整数的数列123100,,,,a a a a ,其中等于i 的项有i k 个(1,2,3)i = ,设j j k k k b +++= 21(1,2,3)j = ,12()100m g m b b b m =+++- (1,2,3).m = (Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====,求(1),(2),(3),(4)g g g g;(Ⅱ)若123100,,,,a a a a 中最大的项为50, 比较(),(1)g m g m +的大小; (Ⅲ)若12100200a a a +++= ,求函数)(m g 的最小值.昌平区2012-2013学年第一学期高三年级期末质量抽测数 学 试卷 参考答案(理科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符二、填空题(本大题共6小题,每小题5分,共30分.) (9)4 (10)22(5)16x y -+=(11) 3 (12)4(13) 2; [-9,9] (14) 三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.)(15)(本小题满分13分)解:(Ⅰ)由sin 0x ≠得πx k ≠(k ∈Z ),故()f x 的定义域为{x ∈R |π,x k ≠k ∈Z }.…………………2分因为1sin cos )2sin sin 32()(2+⋅-=xxx x x f2cos )cos 1x x x =-⋅+2cos 2x x -π2sin(2)6x =-,………………………………6分所以()f x 的最小正周期2ππ2T ==.…………………7分 (II )由 5[,],2[,],2[,],422636x x x πππππππ挝- …………..9分 当52,,()1662x x f x πππ-==即时取得最小值,…………….11分 当2,,()2623x x f x πππ-==即时取得最大值.……………….13分G ABC DEFO(16)(本小题满分14分) 解:(I )连接OF .由ABCD 是正方形可知,点O 为BD 中点. 又F 为BE 的中点,所以OF ∥DE ………………….2分 又,,OF ACF DEACF 平面平面趟所以DE ∥平面ACF ………….4分(II) 证明:由EC ABCD BD ABCD 底面,底面,^ 所以,EC BD ^由ABCD 是正方形可知, ,AC BD ^又=,,AC EC C AC ECACE 平面,翘 所以,BD ACE 平面^………………………………..8分又AE ACE 平面,Ì所以BD AE ^…………………………………………..9分(III)解法一:在线段EO 上存在点G ,使CG BDE 平面^. 理由如下: 如图,取EO 中点G ,连接CG . 在四棱锥E ABCD -中,,AB CO AB CE ===, 所以CG EO ^.…………………………………………………………………..11分 由(II )可知,,BD ACE 平面^而,BD BDE 平面Ì 所以,,ACE BDE ACE BDE EO 平面平面且平面平面,^? 因为,CG EO CG ACE 平面,^所以CG BDE 平面^…………………………………………………………. 13分 故在线段EO 上存在点G ,使CG BDE 平面^.由G 为EO 中点,得1.2EG EO =…………………………………………… 14分 解法二:y由EC ABCD 底面,^且底面ABCD 建立空间直角坐标系,C DBE -由已知,AB =设(0)CE a a =>,则(0,0,0),,0,0),,0),(0,0,),C D B E a(,,0),,,0),(0,,),(,,).2222O a a BD BE a EO a a uu u r uuruu u r =-=-=-设G 为线段EO 上一点,且(01)EGEOλλ=<<,则,),EG EO a a a λλuu u r uu u r ==-(,,(1)),22CG CE EO a a a λλλλuu u r uur uu u r =+=-…………………………..12分由题意,若线段EO 上存在点G ,使CG BDE 平面^,则CG BD ^uu u r uu u r ,CG BE ^uu u r uur.所以,221(1)0,0,12a a λλλ解得,()-+-==, 故在线段EO 上存在点G ,使CG BDE 平面^,且1.2EG EO =…………………… 14分 (17)(本小题满分13分)解:(I )甲厂抽取的样本中优等品有6件,优等品率为63.105= 乙厂抽取的样本中优等品有5件,优等品率为51.102=………………..2分(II )ξ的取值为0,1,2,3.0312555533101015(0),(1),1212C C C C P P C C ξξ⋅⋅======21355533101051(2),(3)1212C C C P P C C ξξ⋅====== 所以ξ的分布列为故155130123.121212122E ξξ=⨯+⨯+⨯+⨯=的数学期望为()……………………9分(III) 抽取的优等品数甲厂恰比乙厂多2件包括2个事件,即A=“抽取的优等品数甲厂2件,乙厂0件”,B=“抽取的优等品数甲厂3件,乙厂1件”2200333321127()()()()()5522500P A C C =⨯=331123331181()()()()5221000P B C C =⨯=抽取的优等品数甲厂恰比乙厂多2件的概率为278127()().5001000200P A P B +=+=…13分 (18)(本小题满分13分)解:(I ).23)(2ax x x f +-=' …………………………. ……………1分根据题意,(1)tan1,321, 2.4f a a π'==∴-+==即 …………………3分 此时,32()24f x x x =-+-,则2()34f x x x '=-+. 令124'()00,.f x x x ===,得 …………………………………………………………………………………………. 6分∴当[]1,1x ∈-时,()f x 最小值为()04f =-. ………………………7分 (II )).32(3)(a x x x f --='①若0,0,()0,()(0,)a x f x f x '><∴+∞≤当时在上单调递减. 又(0)4,0,() 4.f x f x =-><-则当时000,0,()0.a x f x ∴>>当≤时不存在使…………………………………………..10分②若220,0,()0;,()0.33a aa x f x x f x ''><<>><则当时当时从而)(x f 在(0,23a )上单调递增,在(23a,+)∞上单调递减..4274494278)32()(,),0(333m ax-=-+-==+∞∈∴a a a a f x f x 时当根据题意,33440,27. 3.27a a a ->>∴>即 …………….............................. 13分 综上,a 的取值范围是(3,)+∞. (19)(本小题满分13分)解:(I )由已知抛物线的焦点为,故设椭圆方程为22221(0)x y a b a b+=>>,则22, 2.c e a b ====由得所以椭圆M 的方程为22 1.42x y +=……5分 (II )当直线l 斜率存在时,设直线方程为y kx m =+,则由22,1.42y kx m x y=+⎧⎪⎨+=⎪⎩ 消去y 得,222(12)4240k x kmx m +++-=, …………………6分222222164(12)(24)8(24)0k m k m k m ∆=-+-=+->, ①…………7分 设A B P 、、点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则: 012012122242,()21212km mx x x y y y k x x m k k =+=-=+=++=++,…………8分由于点P在椭圆M上,所以2200142x y+=. ……… 9分从而2222222421(12)(12)k m mk k+=++,化简得22212m k=+,经检验满足①式.………10分又点O到直线l的距离为:d====………11分当且仅当0k=时等号成立………12分当直线l无斜率时,由对称性知,点P一定在x轴上,从而点P的坐标为(2,0)(2,0)-或,直线l的方程为1x=±,所以点O到直线l的距离为1 . 所以点O到直线l的距离最小值为2. ………13分(20)(本小题满分14分)解: (I) 因为数列1240,30,k k==320,k=410k=,所以123440,70,90,100b b b b====,所以(1)60,(2)90,(3)100,(4)100g g g g=-=-=-=-…………………4分(II) 一方面,1(1)()100mg m g m b++-=-,根据j b的含义知1100mb+≤,故0)()1(≤-+mgmg,即)1()(+≥mgmg,①当且仅当1100mb+=时取等号.因为123100,,,,a a a a中最大的项为50,所以当50m≥时必有100mb=,所以(1)(2)(49)(50)(51)g g g g g>>>===即当149m≤<时,有()(1)g m g m>+;当49m≥时,有()(1)g m g m=+…9分(III )设M 为{}12100,,,a a a 中的最大值. 由(II )可以知道,()g m 的最小值为()g M . 根据题意,123100,M M b k k k k =++++=L123123123....M k k k M k a a a a ++++=++++L 下面计算()g M 的值.123()100M g M b b b b M =++++-1231(100)(100)(100)(100)M b b b b -=-+-+-++-233445()()()()M M M M k k k k k k k k k k =----+----+----++- 23[2(1)]M k k M k =-+++-12312(23)()M M k k k Mk k k k =-++++++++123100()M a a a a b =-+++++ 123100()100a a a a =-+++++ ,∵123100200a a a a ++++= , ∴()100g M =-, ∴()g m 最小值为100-. ………………………………………….14分。

北京市昌平区2013届高三第二次质量抽测数学文试题(Word解析版)

北京市昌平区2013届高三第二次质量抽测数学文试题(Word解析版)

昌平区2012-2013学年第二学期高三年级第二次质量抽测数 学 试 卷(文科)(满分150分,考试时间 120分钟)2013.4考生须知: 1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。

2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。

3. 答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。

请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。

4. 修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。

保持答题卡整洁,不要折叠、折皱、破损。

不得在答题卡上做任何标记。

5. 考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。

第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)(1)i 是虚数单位,则复数21=i z i-在复平面内对应的点在 A .第一象限 B.第二象限 C.第三象限 D.第四象限 【答案】A 【解析】2211=222i iz i i i i-=-=-=+,所以对应的点的坐标为(2,1),在第一象限,选A. (2)已知集合{|21}xA x =>,{|1}B x x =<,则A B =A. {|1}x x >B. {|0}x x >C. {|01}x x <<D. {|1}x x < 【答案】C【解析】{|21}{0}xA x x x =>=>,所以AB = {|01}x x <<,选C. (3)已知命题 :p x ∀∈R ,2x ≥,那么下列结论正确的是A. 命题:2p x x ⌝∀∈R ≤, B .命题:2p x x ⌝∃∈<R , C .命题:2p x x ⌝∀∈-R ≤, D .命题:2p x x ⌝∃∈<-R , 【答案】B【解析】全称命题的否定是特称命题,所以命题:2p x x ⌝∃∈<R ,,选B.(4) 执行如图所示的程序框图,输出的S 值为A .102B .81C .39D .21 【答案】A【解析】第一次循环,133,2S n =⨯==.第二次循环,232321,3S n =+⨯==. 第三次循环,32133102,4S n =+⨯==.此时不满足条件,输出102S =,选A.(5)在区间(0,)2π上随机取一个数x ,则事件“2tan cos 2x x ≥g ” 发生的概率为 A.34 B. 23 C. 12 D. 13【答案】C【解析】由2tan cos 2x x ≥g 得2sin 2x ≥,解得42x ππ≤≤,所以事件“2tan cos 2x x ≥g ”发生的概率为12422πππ-=,选C.(6)某地区的绿化面积每年平均比上一年增长18%,经过x 年,绿化面积与原绿化面积之比为y ,则()y f x =的图像大致为【答案】D【解析】设某地区起始年的绿化面积为a ,因为该地区的绿化面积每年平均比上一年增长18%,所以经过x 年,绿化面积()(118%)xg x a =+,因为绿化面积与原绿化面积之比为y ,则()()(118%) 1.18x x g x y f x a===+=,则函数为单调递增的指数函数。

昌平区2013-2014学年第一学期高三年级期末数学

昌平区2013-2014学年第一学期高三年级期末数学
可以使用 2B 铅笔。请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域 作答的均不得分。 4. 修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。保持答题卡整洁,不要折叠、折皱、破损。 不得在答题卡上做任何标记。 5. 考试结束后,考生务必将答题卡 交 监考老师收回,试卷自己妥善保存。
之间的概率 .
频率 /组距
0.070 0.060 0.050 0.040 0.030 0.020 0.010
0
160 165 170 175 180 185 190
身高
(17)( 本小题满分 14 分 )
在四棱锥 P ABCD 中, PD 平面 ABCD ,
PD CD BC 2AD , AD // BC , BCD 90 .
第二卷 (非选择题 共 110 分)
二、填空题(本大题共 6 小题,每小题 5 分,共 30 分. )
(9) 已知 是第二象限的角, (10) 如图,在复平面内,复数
sin
3
,则
tan
的值为 ___________ .
5
uur z 对应的向量为 OA ,则复数 z i =_______ .
(11) 已知等差数列 { an} 的前 n 项和为 Sn ,若 a2 a4 a6 1 ,则 a4 _____ , S7 _____.
( 12)曲线 x 1,x
2, y
1 ,y
x
(13) 在 ABC 中, AB 4, BC
0 所围成的图形的面积等于 ___________ .
uur uuur 5, BA AC 2 , 则 AC ________ .
(14) 将 含 有 3n 个 正 整 数 的 集 合 M 分 成 元 素 个 数 相 等 且 两 两 没 有 公 共 元 素 的 三 个 集 合 A、 B、 C , 其 中

北京市昌平区第一学期高三期末考试数学(文科)答案

北京市昌平区第一学期高三期末考试数学(文科)答案

昌平区第一学期高三期末考试数学参考答案(文科)二、填空题(本大题共6小题,每小题5分,共30分.)(9)(0,3±) (10) 600,32 (11) 4,10(12) 3 (13) ①和④ (14) [3,)+∞三、解答题(本大题共6小题,共80分)(15)(本小题满分13分)解:(I),ABC ∆在中由正弦定理得:2sin ,2sin ,2sin a R A b R B c R C ===代入 (2)cos cos a c B b C -=整理得:2sin cos sin cos sin cos A B B C C B =+..…3分即:2sin cos sin()sin A B B C A =+=,在三角形中,sin 0A >,2cos 1B =,∵∠B是三角形的内角,∴B=60°. ……………………………………………… 6分(II),ABC ∆在中由余弦定理得:2222cos b a c ac B =+-⋅2()22cos a c ac ac B =+--⋅4b a c =+=将代入整理得3ac = …………………………………………10分故13sin sin 6022ABC S ac B ∆==︒= …………………………………………… 13分 (16)(本小题满分14分)解:(I)设数列{}n a 的公差为d ,则3410a a d d =-=-,642102a a d d =+=+, 1046106a a d d =+=+ ……2分由3610a a a ,,成等比数列得23106a a a =,……………………………………………… 4分即2(10)(106)(102)d d d -+=+,整理得210100d d -=, 解得0d =或1d =. ∵0d ≠,∴1d = ……………………………………………… 6分141310317,(1)6n a a d a a n d n =-=-⨯==+-=+, 于是2012019202S a d ⨯=+207190330=⨯+=.…………………………………… 9分 (II) 11111(6)(7)(6)(7)n n a a n n n n +==-++++ ……………………………………11分 111111()()...()788967n T n n =-+-++-++=1177n -+ ……………………14分 (17)(本小题满分14分)解:(I)证明:由已知D 在平面ABC 上的射影O 恰好在AB 上, ∴DO ⊥平面ABC ,∴AO 是AD 在平面ABC 上的射影. …………………………………… 2分又∵BC ⊥AB ,∴BC ⊥AD . …………………………………… 4分(II)解:由(1)得AD ⊥BC ,又AD ⊥DC又BC ∩DC=C ,∴AD ⊥平面BDC又∵BD ⊂平面ADB ,∴AD ⊥BD , ……………………………………6分在R T ⊿ABD 中,由已知AC = 2,得2=AB ,AD = 1,∴BD = 1, ∴BD = AD,∴O 是AB 的中点. ……………………………………8分(III)解:过D 作DE ⊥AC 于E ,连结OE ,∵DO ⊥平面ABC ,∴O E 是DE 在平面ABC 上的射影.∴OE ⊥AC∴∠DEO 是二面角D -AC -B 的平面角, …………………………………11分 22=DO且3sin 23AD DC DO DE DEO AC DE ==∴∠== 即二面角D -AC -B ……………………………………14分 (18)(本小题满分13分)解:(I)2'()663f x x ax b =++ ……………………………………2分 ()12f x x x ==由函数在及时取得极值,得'(1)0,'(2)0,f f ==即6630,3, 4.241230,a b a b a b ++=⎧=-=⎨++=⎩解得 ……………………………………5分 (II)由(1)知322()29128,'()618126(1)(2).f x x x x c f x x x x x =-++=-+=-- (0,1)'()0;(1,2)'()0;(2,3)'()0.x f x x f x x f x ∈>∈<∈>当时,当时,当时, …………8分 1()(1)58.(0)8,(3)98,[0,3]()(3)98.x f x f c f c f c x f x f c ==+==+∈=+当时,取得极大值又则当时,的最大值为11分 22[0,3],(),19,(,1)(9,).x f x c c c c c c ∈<<<->-∞-⋃+∞因为对任意的有恒成立所以9+8,解得或即的取值范围是13分(19)(本小题满分13分)解(I )设“设抛掷一颗骰子掷出的点数为3的倍数”为事件A。

昌平一模北京市昌平区届高三上学期期末测验文科数学试题-

昌平一模北京市昌平区届高三上学期期末测验文科数学试题-

昌平一模北京市昌平区届高三上学期期末测验文科数学试题-————————————————————————————————作者:————————————————————————————————日期:DCBA 昌平区2012-2013学年第一学期高三年级期末质量抽测数 学 试 卷(文科)(满分150分,考试时间 120分钟)2013.1考生须知: 1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。

2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。

3. 答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。

请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。

4. 修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。

保持答题卡整洁,不要折叠、折皱、破损。

不得在答题卡上做任何标记。

5. 考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。

第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)复数21ii-的虚部是A. 1-B. 1C. i -D. i(2) “2a =”是“直线214ay ax y x =-+=-与垂直”的 A. 充分不必要条件 B 必要不充分条件C. 充要条件D.既不充分也不必要条件 (3)在数列{}n a 中 ,111,,)2n n a a a y x +==点(在直线上,则4a 的值为 A .7B .8C .9D .16(4)如图,在,2.=ABC BD DC AB ,AC ,AD ∆==中若则a =b A.2133+a b B. 2133-a b C. 1233+a b D. 1233-a b (5)已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积为A. 4 B .8 C. 12 D. 24 (6)函数22()log (1)f x x x =+-的零点个数为A. 0B. 1C. 2D. 3(7)设不等式组22,4,2x y x y -+≥≥-⎧⎪⎨⎪⎩0≤ 表示的平面区域为D .在区域D 内随机取一个点,则此点到直线+2=0y 的距离大于2的概率是A.413 B. 513C. 825D.925(8)设定义域为R 的函数)(x f 满足以下条件;①对任意0)()(,=-+∈x f x f R x ;②对任意当],,1[,21a x x ∈有时,12x x >21()()f x f x >.则以下不等式一定成立....的是 ①()(0)f a f >②)()21(a f af >+③)3()131(->+-f aaf ④)()131(a f aa f ->+-A. ①③B. ②④C. ①④D. ②③第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分,共30分)(9)在ABC △中,若3b =,1c =,1cos 3A =,则a =(10)已知n S 是等差数列{}n a 的前n 项和,其中2856-3,15,=_______;_______.a a a S ===则(11)已知某算法的流程图如图所示,则程序运行结束时输出的结果为 .(12)以双曲线221916x y -=的右焦点为圆心,并与其 渐近线相切的圆的标准方程是 _______.(13) 已知函数1()(0),()213(0),xx f x x x ⎧≤⎪=⎨⎪->⎩ 则((1))f f -=________;若2(23)(5)f a f a ->,则实数a 的取值范围是_______________.(14)过椭圆22221(0)x y a b a b+=>>上一点M 作直线,MA MB 交椭圆于,A B 两点,设,MA MB 的斜率分别为12,k k ,若点,A B 关于原点对称,且121,3k k ⋅=-则此椭圆的离心率为___________.OFEDCBA三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.) (15)(本小题满分13分)已知函数()(23sin 2cos )cos 1f x x x x =-⋅+.(Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在区间[,]42ππ上的最值.(16) (本小题满分14分)在四棱锥EABCD 中,底面ABCD 是正方形,,AC BD O 与交于ECABCD F 底面,为BE 的中点.(Ⅰ)求证:DE ∥平面ACF ; (Ⅱ)求证:BD AE ;(Ⅲ)若2,ABCE 在线段EO 上是否存在点G ,使CGBDE 平面?若存在,求出EGEO的值,若不存在,请说明理由.(17) (本小题满分13分)以下茎叶图记录了甲、乙两组各四名同学在某次数学测验中的成绩,甲组记录中有一个数据模糊,无法确认,在图中以X 表示. 甲组 乙组 6 X 8 7 4 1 9 0 0 3(Ⅰ)如果甲组同学与乙组同学的平均成绩一样,求X 及甲组同学数学成绩的方差;(Ⅱ)如果X=7,分别从甲、乙两组同学中各随机选取一名,求这两名同学的数学成绩之和大于180的概率.(注:方差2222121=[()()...()],n s x x x x x x n-+-++-其中12,,...,.n x x x x 为的平均数)(18)(本小题满分13分)已知函数3211()()32f x x a x a a =-+∈R . (Ⅰ)若1,a =求函数()[0,2]f x 在上的最大值;(Ⅱ)若对任意(0,+)x ∈∞,有()0f x >恒成立,求a 的取值范围.19. (本小题满分13分)已知椭圆:M 22221(0)x y a b a b+=>>,其短轴的一个端点到右焦点的距离为2,且点A (2,1)在椭圆M 上. 直线l 的斜率为22,且与椭圆M 交于B 、C 两点. (Ⅰ)求椭圆M 的方程; (Ⅱ)求ABC ∆面积的最大值.20. (本小题满分14分)已知每项均是正整数的数列123100,,,,a a a a ,其中等于i 的项有i k 个(1,2,3)i =,设j j k k k b +++= 21(1,2,3)j =,12()100m g m b b b m =+++-(1,2,3).m =(Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====, ①求(1),(2),(3),(4)g g g g ;②求123100a a a a ++++的值;(Ⅱ)若123100,,,,a a a a 中最大的项为50, 比较(),(1)g m g m +的大小.GABC DEFO昌平区2012-2013学年第一学期高三年级期末质量抽测数 学 试卷 参考答案(文科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)题 号 (1) (2) (3) (4) (5) (6) (7) (8) 答案BABCACDB二、填空题(本大题共6小题,每小题5分,共30分.) (9) 22 (10)6;9(11) 3 (12)22(5)16x y -+=(13) -5; 1(,3)2- (14)63三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.)(15)(本小题满分13分)解:(Ⅰ)因为()(23sin 2cos )cos 1f x x x x =-⋅+3sin 2cos 2x x =-π2sin(2)6x =- (5)分所以()f x 的最小正周期2ππ2T ==.…………………7分 (II )由 5[,],2[,],2[,],422636x x x πππππππ…………..9分 当52,,()1662x x f x πππ-==即时取得最小值,…………….11分 当2,,()2623x x f x πππ-==即时取得最大值.……………….13分 (16)(本小题满分14分) 解:(I )连接OF .由ABCD 是正方形可知,点O 为BD 中点. 又F 为BE 的中点,所以OF ∥DE ………………….2分 又,,OFACF DE ACF 平面平面所以DE ∥平面ACF ………….4分 (II) 证明:由ECABCD BD ABCD 底面,底面,所以,EC BD由ABCD 是正方形可知, ,ACBD又=,,ACEC C AC EC ACE 平面,所以,BD ACE 平面………………………………..8分又AEACE 平面,所以BD AE …………………………………………..9分(III) 在线段EO 上存在点G ,使CG BDE 平面. 理由如下:如图,取EO 中点G ,连接CG . 在四棱锥E ABCD 中,22,2AB CE COAB CE ,所以CGEO .…………………………………………………………………..11分由(II )可知,,BD ACE 平面而,BDBDE 平面所以,,ACE BDE ACE BDEEO 平面平面且平面平面,因为,CG EO CG ACE 平面,所以CGBDE 平面…………………………………………………………. 13分故在线段EO 上存在点G ,使CGBDE 平面.由G 为EO 中点,得1.2EGEO …………………………………………… 14分 (17)(本小题满分13分)解:(I )乙组同学的平均成绩为87909093904+++=,甲组同学的平均成绩为90,所以8086919490,9.4X X ++++==…………………………………2分甲组同学数学成绩的方差为222228690)(8990)(9190)(9490)17=42s -+-+-+-=甲(……………6分(II)设甲组成绩为86,87,91,94的同学分别为1234,,,,a a a a 乙组成绩为87,90,90,93的同学分别为1234,,,,b b b b 则所有的事件构成的基本事件空间为:11121314212223243132{(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),a b a b a b a b a b a b a b a b a b a b333441424344(,),(,),(,),(,),(,),(,)}.a b a b a b a b a b a b 共16个基本事件.设事件A =“这两名同学的数学成绩之和大于180”,则事件A 包含的基本事件的空间为{32333441424344(,),(,)(,),(,),(,),(,),(,)}.a b a b a b a b a b a b a b 共7个基本事件,7()16P A =………………………………………………………………………….13分 (18)(本小题满分13分) 解:(I )当1a =时,311()32f x x x =-+,2'()1f x x =- .............1分令12'()01, 1.f x x x ==-=,得..................................2分列表:x 0(0,1)1 (1,2)2 ()f x '1-- 0+3()f x12↘16-↗76 ∴当[0,2]x ∈时,()f x 最大值为()726f =. ………………………7分(Ⅱ)22'()()(),f x x a x a x a =-=-+令12'()0,,.f x x a x a ==-=得① 若0,)()0,()a a f x f x '<<∴在(0,-上,单调递减.)()0,()a f x f x '∞>∴在(-,+上,单调递增.所以,()f x 在x a =-时取得最小值()332121()3232a f a a a a a -=-++=+, 因为()2221210,0,()03232a a f a a a <+>-=+<所以.0,0,+()0.a x f x <∈∞>所以当时对任意(),不成立…………………..9分② 若20,()0,()0+a f x x f x '==≥∞所以在(,)上是增函数, 所以当=0()(0)0.a f x f >=时,有……………………………………..10分 ③若0,)()0,()a a f x f x '><在(0,上,所以单调递减.)()0,()a f x f x '∞>在(,+上,所以单调递增.所以,()f x 在x a =取得最小值()332121()3232a f a a a a a =-+=--, 令()2221213()0,0,0,0.32322f a a a a a a =-->>-<<<由得3,0,()0.2a x f x <<>>所以当0时对任意都成立 综上,a 的取值范围是3[0)2,.………………………………13分 (19)(本小题满分13分)解: (Ⅰ)由题意知222112a b a ⎧+=⎪⎨⎪=⎩,所以2b =.故所求椭圆方程为22142x y +=………………………………….5分 (Ⅱ) 设直线l 的的方程为22y x m =+,则0m ≠.设1122(,),(,),B x y C x y 代入椭圆方程并化简得22220x mx m ++-=, …………6分 由22224(2)2(4)0m m m ∆=--=->,可得204m << . (*)由(*),得21,222(4)2m m x -±-=,故22212231()2(4)3(4)22BC x x m m =+-=⨯-=-…..9分 又点A 到BC 的距离为26m d =, …………………10分故22113(4)226ABC m S BC d m ∆=⋅=-⨯ 222211(4)(4)2222m m m m +-=⨯-≤⨯=,当且仅当224m m =-,即2m =±时取等号满足(*)式.所以ABC ∆面积的最大值为2. ……………………13分(20)(本小题满分13分)解: (I)① 因为数列1240,30,k k ==320,k =410k =,所以123440,70,90,100b b b b ====,所以(1)60,(2)90,(3)100,(4)100g g g g =-=-=-=- . ………8分 ②123100401302203104200a a a a ++++=⨯+⨯+⨯+⨯=……….10分 (II) 一方面,1(1)()100m g m g m b ++-=-,根据j b 的含义知1100m b +≤, 故0)()1(≤-+m g m g ,即 )1()(+≥m g m g , 当且仅当1100m b +=时取等号.因为123100,,,,a a a a 中最大的项为50,所以当50m ≥时必有100m b =, 所以(1)(2)(49)(50)(51)g g g g g >>>===即当149m ≤<时,有()(1)g m g m >+; 当49m ≥时,有()(1)g m g m =+. 14分。

【高三】北京市昌平区届高三上学期期末考试数学文试题

【高三】北京市昌平区届高三上学期期末考试数学文试题

【高三】北京市昌平区届高三上学期期末考试数学文试题试卷说明:昌平区——学年第一学期,高三(文科)期末质量抽样试卷(满分150分,考试时间120分钟)。

1考生须知:本试卷共6页,分为两部分:第一卷选择题和第二卷非选择题。

在回答问题之前,考生必须用黑色签名笔在答题卡上填写学校、班级、姓名和考试号。

答题纸上的第一卷(选择题)必须用2B铅笔回答,第二卷(非选择题)必须用黑色签名笔回答。

2B铅笔可以用来画画。

请根据问题编号顺序在每个问题的答案区域进行回答。

未在相应答案区域或答案区域之外回答的人将不会得分。

修改时,应使用塑料橡皮擦将多选零件涂干净,不得使用修正液。

保持答题纸干净整洁,不要折叠、起皱或损坏答题纸。

不要在答题纸上做任何标记。

考试结束后,考生必须将答题卡交回监考人,并妥善保管试卷。

第一卷(共40分的多项选择题)I.共有8道各5分的多项选择题,共40分。

从每个子主题中列出的符合主题要求的四个选项中选择一个。

)如果已知完整的集合,则表示复数平面中复数的集合(b)(c)(d)(2)的点位于(a)第一象限(b)第二象限(c)第三象限(d)第四象限(3)。

如果右图中显示了程序框图,然后程序的输出等于(a)63(b)31(c)127(d)15(4)”,这是“直线和平行的”(a)充分和不必要条件(b)必要和不充分条件(c)充分和必要条件(d)既不充分也不必要条件(5)设置为两条不同的直线和两个不同的平面。

以下命题是正确的:是和,然后(b)和(c),然后(d),然后(6)将函数的图像向右移动一个单位长度,然后将获得的图像上所有点的横坐标缩短为原始值(纵坐标保持不变)。

函数的解析式是(a)(b)(c)(d)(7)已知函数,那么实数是(b)(c)(d)(8)与已知函数图像相邻的最大值点和最小值点正好在圆上,那么一个对称轴的图像的功能可以是(a)直线(b)直线(c)直线(d)直线卷二(非多项选择题,共110分)2。

如果这个问题中的每一个点的实际值是,那么这个问题中的每一个点的实际值是,从小到大的顺序是13,如果它是2和8等比的中间,则圆锥曲线的偏心率定义为。

北京市昌平区2013届高三仿真模拟数学文科试卷4 Word版含答案

北京市昌平区2013届高三仿真模拟数学文科试卷4 Word版含答案

北京市昌平区2013届高三仿真模拟数学文科试卷4一.选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设集合{}01|2<-=x x M ,{}12|>=x x N ,则N M ⋃等于A {}1|->x xB {}11|<<-x xC {}0|>x xD {}10|<<x x2.已知)()(1,0,0,121==e e ,212e e +=,21e e -=λ,当∥时,实数λ等于 A 1- B 0 C 21-D 2- 3.设n m ,是两条不同的直线,γβα,,是三个不同的平面,则下列命题正确的是A 若α⊂⊥n n m ,,则α⊥mB 若m n m //,α⊥,则α⊥nC 若αα//,//n m ,则n m //D 若γβγα⊥⊥,,则βα// 4.已知等比数列{}n a 中,各项都是正数,且2312,21,a a a 成等差数列,则7698a a a a ++等于 A 21+ B 21- C 223+ D 223-5.设抛物线px y =2的焦点与椭圆12622=+y x 的右焦点重合,则p 的值为,A -4B 4C - 8D 86. a=0是函数c bx ax x f ++=2)(为奇函数的A 充分但不必要条件B 必要但不充分条件C 充要条件D 既不充分也不必要条件7.已知点),(y x P 的坐标满足条件⎪⎩⎪⎨⎧≥+-≥≥0321y x x y x ,那么点P 到直线0943=--y x 的距离的最小值为 A514 B 56C 2D 1 8.已知定义在区间⎥⎦⎤⎢⎣⎡-2,ππ上的函数)(x f y =的图像关于直线4π-=x 对称,当4π-≤x 时,x x f sin )(=,如果关于x 的方程a x f =)(有解,记所有解的和为S, 则S 不可能...为 A π45-B π-C π43- D 2π-二.填空题(本大题共6小题,每小题5分,共30分) 9.在复平面内,复数ii++121对应的点的坐标为________________________. 10. 在两个袋内,分别装着写有0,1,2,3,4,5六个数字的6张卡片,今从每个袋中任取一张卡片,则两数之和等于5的概率为______________________. 11.在△ABC 中,若b=1,c=3,6π=∠A ,则a=________,=B sin ________________.12.如图是一个正三棱柱的三视图,若三棱柱的体积是38,则=a ____________________.13.某棉纺厂为了解一批棉花的质量,从中随机抽测100根棉花纤维的长度(棉花纤维的长度是棉花质量mm)的重要指标)。

北京市昌平区-第一学期高三期末考试数学(文科)答案

北京市昌平区-第一学期高三期末考试数学(文科)答案

昌平区2008-2009学年第一学期高三期末考试数学参考答案(文科) 2009.1二、(9)(0,3±) (10) 600,32 (11) 4,10(12) 3 (13) ①和④ (14) [3,)+∞三、解答题(本大题共6小题,共80分)(15)(本小题满分13分)解:(I),ABC ∆在中由正弦定理得:2sin ,2sin ,2sin a R A b R B c R C ===代入 (2)cos cos a c B b C -=整理得:2sin cos sin cos sin cos A B B C C B =+..…3分 即:2sin cos sin()sin A B B C A =+=,在三角形中,sin 0A >,2cos 1B =,∵∠B是三角形的内角,∴B=60°. ……………………………………………… 6分 (II),ABC ∆在中由余弦定理得:2222cos b a c ac B =+-⋅2()22cos a c ac ac B =+--⋅4b a c =+=将代入整理得3ac = …………………………………………10分故13sin sin 60224ABC S ac B ∆==︒=. …………………………………………… 13分 (16)(本小题满分14分)解:(I)设数列{}n a 的公差为d ,则3410a a d d =-=-,642102a a d d =+=+, 1046106a a d d =+=+ ……2分由3610a a a ,,成等比数列得23106a a a =,……………………………………………… 4分即2(10)(106)(102)d d d -+=+,整理得210100d d -=, 解得0d =或1d =. ∵0d ≠,∴1d = ……………………………………………… 6分 141310317,(1)6n a a d a a n d n =-=-⨯==+-=+,于是2012019202S a d ⨯=+207190330=⨯+=.…………………………………… 9分(II)11111(6)(7)(6)(7)n n a a n n n n +==-++++ ……………………………………11分 111111()()...()788967n T n n =-+-++-++=1177n -+ ……………………14分 (17)(本小题满分14分) 解:(I)证明:由已知D 在平面ABC 上的射影O 恰好在AB 上, ∴DO ⊥平面ABC ,∴AO 是AD 在平面ABC 上的射影. …………………………………… 2分 又∵BC ⊥AB ,∴BC ⊥AD . …………………………………… 4分 (II)解:由(1)得AD ⊥BC ,又AD ⊥DC又BC ∩DC=C ,∴AD ⊥平面BDC又∵BD ⊂平面ADB ,∴AD ⊥BD , ……………………………………6分 在R T ⊿ABD 中,由已知AC = 2,得2=AB ,AD = 1,∴BD = 1, ∴BD = AD, ∴O 是AB 的中点. ……………………………………8分 (III)解:过D 作DE ⊥AC 于E ,连结OE ,∵DO ⊥平面ABC ,∴O E 是DE 在平面ABC 上的射影.∴OE ⊥AC∴∠DEO 是二面角D -AC -B 的平面角, …………………………………11分 22=DO且3sin AD DC DO DE DEO AC DE ==∴∠==即二面角D -AC -B ……………………………………14分 (18)(本小题满分13分)解:(I)2'()663f x x ax b =++ ……………………………………2分 ()12f x x x ==由函数在及时取得极值,得'(1)0,'(2)0,f f ==即6630,3, 4.241230,a b a b a b ++=⎧=-=⎨++=⎩解得 ……………………………………5分 (II)由(1)知322()29128,'()618126(1)(2).f x x x x c f x x x x x =-++=-+=-- (0,1)'()0;(1,2)'()0;(2,3)'()0.x f x x f x x f x ∈>∈<∈>当时,当时,当时, …………8分 1()(1)58.(0)8,(3)98,[0,3]()(3)98.x f x f c f c f c x f x f c ==+==+∈=+当时,取得极大值又则当时,的最大值为11分22[0,3],(),19,(,1)(9,).x f x c c c c c c ∈<<<->-∞-⋃+∞因为对任意的有恒成立所以9+8,解得或即的取值范围是13分(19)(本小题满分13分)解(I )设“设抛掷一颗骰子掷出的点数为3的倍数”为事件A。

北京市昌平区高三数学上学期期末考试试题 文

北京市昌平区高三数学上学期期末考试试题 文

昌平区2014-2015学年第一学期高三年级期末质量抽测数学试卷(文科)考生注意事项:1.本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,考试时间 120分钟.2.答题前,考生务必将学校、班级、姓名、考试编号填写清楚.答题卡上第一部分(选择题)必须用2B 铅笔作答,第二部分(非选择题)必须用黑色字迹的签字笔作答,作图时必须使用2B 铅笔.3.修改时,选择题用塑料橡皮擦干净,不得使用涂改液.请保持卡面整洁,不要折叠、折皱、破损.不得在答题卡上作任何标记.4.请按照题号顺序在各题目的答题区域内作答,未在对应的答题区域作答或超出答题区域的作答均不得分.第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)1. 已知集合{1},{|0},M x N x x =<=>则M N I 等于 A.{}1x x < B. {}1x x >C. {}01x x <<D.∅2.下列函数中,在区间(0,π2)上是减函数的是 A . cos y x = B . sin y x = C .2y x = D . 21y x =+3. 在ABC ∆中,60,A AC BC ︒∠===,则B ∠等于A. 120oB. 90oC. 60oD. 45o4.某四棱锥的三视图如图所示,其中正(主)视图是等腰直角三角形,侧(左)视图是等腰三角形,俯视图是正方形,则该四棱锥的体积是 A .8B .83C .4侧(左)视图正(主)视图D .435. “αβ=”是“sin sin αβ=”的A .充分不必要条件 B.必要不充分条件 C .充要条件 D.既不充分也不必要条件6. 已知直线m 和平面α,β,则下列四个命题中正确的是A. 若αβ⊥,m β⊂,则m α⊥B. 若//αβ,m α⊥,则m β⊥C. 若//αβ,//m α,则//m βD. 若//m α,//m β,则//αβ7. 某位股民购进某只股票,在接下来的交易时间内,他的这只股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这只股票的盈亏情况(不考虑其它费用)是A. 略有盈利B. 略有亏损C.没有盈利也没有亏损D.无法判断盈亏情况8. 已知数列}{n a 满足*134(1),n n a a n n ++=≥∈N ,且,91=a 其前n 项之和为n S ,则满足不等式1|6|40n S n --<成立的n 的最小值是 A.7 B.6 C.5 D.4第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分,共30分).9. 计算:(1i)(12i)+-= .(i 为虚数单位) 10. 执行如图所示的程序框图,如果输入2-是 ,如果输入4,那么输出的结果是 .11. 设x ,y 满足约束条件1,,0,x y y x y +⎧⎪⎨⎪⎩≤≤≥ 则z x y =+2的最大值是 .12. 平面向量a 与b 的夹角为60o,(1,0)=a ,=2|b |,则|2|a b -= .13. 双曲线13:22=-y x C 的离心率是_________;若抛物线mx y 22=与双曲线C 有相同的焦点,则=m _____________.14. 在下列函数①13,x y +=②,log 3x y =③21,y x =+④,sin x y =⑤cos()6y x π=+中,满足“对任意的1x ,2x ∈(0,1),则1212()()22x x f x f x f ++⎛⎫≤⎪⎝⎭恒成立”的函数是________.(填上所有正确的序号)三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.)15.(本小题满分13分) 已知函数1()cos cos 2 1.2f x x x x =++ (I) 求函数()f x 的最小正周期;(II)当[0,]2x π∈时,求函数()f x 的最大值及取得最大值时的x 值.16.(本小题满分13分)有20名学生参加某次考试,成绩(单位:分)的频率分布直方图如图所示:(I )求频率分布直方图中m 的值;(Ⅱ) 分别求出成绩落在[70,80),[80,90),[90,100]46532中的学生人数;(III )从成绩在[80,100]的学生中任选2人,求所选学生的成绩都落在[80,90)中的概率.17.(本小题满分13分)在等比数列{}n a 中,252,16a a ==. (I )求等比数列{}n a 的通项公式;(II )若等差数列{}n b 中,1582,b a b a ==,求等差数列{}n b 的前n 项的和n S ,并求n S 的最大值.18. (本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,=90DAC ∠o ,O 为AC 的中点,PO ⊥底面ABCD .(I )求证:AD ⊥平面PAC ;(II )在线段PB 上是否存在一点M ,使得//OM 平面PAD ?若存在,写出证明过程;若不存在,请说明理由.19. (本小题满分14分) 已知函数() 1.xxf x e xe =-- (I )求函数()f x 的最大值; (Ⅱ)设()(),f x g x x= 其中1,0x x >-≠且,证明: ()g x <1.20. (本小题满分13分)已知椭圆C :22221(0)y x a b a b+=>>的离心率为2,其四个顶点组成的菱形的面积是42,O 为坐标原点,若点A 在直线2=x 上,点B 在椭圆C 上,且OA OB ⊥.(I ) 求椭圆C 的方程; (II )求线段AB 长度的最小值; (III )试判断直线AB 与圆222x y +=的位置关系,并证明你的结论.昌平区2014-2015学年第一学期高三年级期末质量抽测 数学试卷(文科)参考答案及评分标准 2015.1一、选择题(本大题共8小题,每小题5分,共40分.)题号 1 2 3 4 5 6 7 8 答案CADDABBC二、填空题(本大题共6小题,每小题5分,共30分.)9. 3i - 10. 10 ; 4 11. 2 12. 2 13. 332; 4± 14. ① ③三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.)15.(本小题满分13分) 解:(Ⅰ)因为 31()sin 2cos 2122f x x x =++ ………… 4分 sin(2)16x π=++ ………… 6分所以22T π==π. ………… 7分 (Ⅱ)因为()sin(2)16f x x π=++, 02x π≤≤,所以2666x ππ7π≤+≤. …………9分所以当262x ππ+=即6x π=时,函数)(x f 的最大值是2. …………13分16.(本小题满分13分)解:(I )由题意10(23456)1m m m m m ⨯++++=,0.005m =. ………3分 (II )成绩落在[70,80)中的学生人数为20100.036⨯⨯=, 成绩落在[80,90)中的学生人数20100.024⨯⨯=成绩落在[90,100]中的学生人数20100.012⨯⨯=. ……………6分 (III )设落在[80,90)中的学生为1234,,,a a a a ,落在[90,100]中的学生为12,b b ,则1121314111223242122343132414212{,,,,,,,,,,,,,,}a a a a a a a b a b a a a a a b a b a a a b a b a b a b b b Ω=,基本事件个数为15=n ,设A =“此2人的成绩都在[80,90)”,则事件A 包含的基本事件数6m =, 所以事件A 发生概率62()155m P A n ===. ……………13分17.(本小题满分13分)解:(I )在等比数列{}n a 中,设公比为q ,因为 252,16a a ==,所以 1412,16a q a q =⎧⎨=⎩得112a q =⎧⎨=⎩所以 数列{}n a 的通项公式是 12n n a -=. ……………5分(II )在等差数列{}n b 中,设公差为d .因为 1582,b a b a ==,所以 1582=16,=2b a b a =⎧⎨=⎩ 1116,+7=2b b d =⎧⎨⎩ 1=16,=2b d ⎧⎨-⎩ ……………9分方法一 21(1)172n n n S b n d n n -=+=-+, 当89n =或时,S n 最大值为72. ……………13分 方法二由182n b n =-,当1820n b n =-≥,解得9n ≤,即980, 2.a a ==所以当89n =或时,S n 最大值为72. ……………13分18. (本小题满分14分) 证明:(I )在ADC ∆中,=90.DAC AD AC ∠⊥o 因为,所以又因为 PO ABCD ⊥面,AD ABCD ⊂平面所以 PO AD ⊥. 又因为 =PO AC O PC AC PAC ⊂I 平面,、,所以AD PAC ⊥平面. ……………6分 (II )存在.当M 为PB 中点时,OM//PAD 平面. ……………7分 证明:设PA AD 、的中点分别为E F 、,连结OF ME EF 、、,ACD O AC ∆在中,为的中点,所以1//,=2OF CD OF CD .PAB M E PB PA ∆在中,、为、的中点, 所以 1//,=2ME AB ME AB ,//=ME OF ME OF ,,所以 四边形OMEF 是平行四边形, 所以 //OM EF .因为 OM PAD ⊄平面,EF PAD ⊂平面,所以 //OM PAD 平面. ……………14分19. (本小题满分14分)解:(Ⅰ)'(),xf x xe =- …………………2分 当(,0)x ∈-∞时,f (x )>0,f (x )单调递增; …………………4分 当(0,)x ∈+∞时,f(x )<0,f (x )单调递减. …………………6分x( , 0)-∞0 (0 , )+∞)(' x f+ 0 - )(x f↗极大值↘ 所以f (x )的最大值为f (0)=0.…………………7分DABC FEM OP(Ⅱ)由(Ⅰ)知,当0x >时,()0,()0 1.f x g x <<< …………………9分 当10x -<<时,()1g x <等价于().f x x > 设()()h x f x x =-,则'()1xh x xe =--.当(1,0)x ∈-时,01,01,xx e <-<<<则01,xxe <-<从而当(1,0)x ∈-时,'()0h x <,()h x 在(1,0)-单调递减.…………………12分 当(1,0)x ∈-时,()(0)0,h x h >= 即()(0)0,()f x x h f x x ->=>所以, 故g (x )<1. 综上,总有g (x )<1.…………………14分20. (本小题满分13分)解:(I)由题意2c e a ab ⎧==⎪⎨⎪=⎩,解得224,2a b ==.故椭圆C 的标准方程为22142y x +=. ……………3分 (II )设点A ,B 的坐标分别为00(2,),(,)t x y ,其中00≠y ,因为OA OB ⊥,所以0OA OB ⋅=uu r uu u r,即0020+=x ty , ……………4分解得002=-x t y ,又220024+=x y , 所以22200||(2)()=-+-AB x y t=2200002(2)()-++x x y y =2220002044+++x x y y=2220002042(4)42--+++y y y y =2200284(04)2++<≤y y y ,……………5分因为22002084(04)2+≥<≤y y y ,当且仅当204=y 时等号成立,所以2||8AB ≥,故线段AB长度的最小值为……………7分(III )直线AB 与圆222x y +=相切. ……………8分证明如下:设点A,B 的坐标分别为00(,)x y ,(2,)t ,其中00y ≠.因为OA OB ⊥,所以0OA OB ⋅=u u u r u u u r ,即0020x ty +=,解得002xt y =-. (9)分直线AB 的方程为00(2)2y ty t x x --=--, 即0000()(2)20y t x x y y tx ----+=, ……………10分圆心O 到直线AB 的距离d =, ……………11分由220024y x +=,02x t y =-, 故d ===,所以 直线AB 与圆222x y +=相切. ……………13分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DCBA 北京市昌平区2013届高三元月上学期期末考试数学文试题(满分150分,考试时间 120分钟)2013.1考生须知:三、本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。

四、答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。

五、答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。

请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。

六、修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。

保持答题卡整洁,不要折叠、折皱、破损。

不得在答题卡上做任何标记。

七、考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。

第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. (1)复数21i i-的虚部是A. 1-B. 1C. i -D. i(2) “2a =”是“直线214a y ax y x =-+=-与垂直”的A. 充分不必要条件 B 必要不充分条件C. 充要条件D.既不充分也不必要条件 (3)在数列{}n a 中 ,111,,)2n n a a a y x +==点(在直线上,则4a 的值为 A .7B .8C .9D .16(4)如图,在,2.=ABC BD D C AB ,AC ,AD ∆== 中若则a =b(5)已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积为 A. 4 B .8 C. 12 D. 24 (6)函数22()log (1)f x x x =+-的零点个数为A. 0B. 1C. 2D. 3(7)设不等式组22,4,2x y x y -+≥≥-⎧⎪⎨⎪⎩0≤ 表示的平面区域为D .在区域D内随机取一个点,则此点到直线+2=0y 的距离大于2的概率是A.413B.513C.825D.925(8)设定义域为R 的函数)(x f 满足以下条件;①对任意0)()(,=-+∈x f x f R x ;②对任意当],,1[,21a x x ∈有时,12x x >21()()f x f x >.则以下不等式一定成立....的是 ①()(0)f a f > ②)()21(a f a f >+③)3()131(->+-f aa f④)()131(a f aa f ->+-A. ①③B. ②④C. ①④D. ②③第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分,共30分) (9)在A B C △中,若3b =,1c =,1cos 3A =,则a =(10)已知n S 是等差数列{}n a 的前n 项和,其中2856-3,15,=_______;_______.a a a S ===则(11)已知某算法的流程图如图所示,则程序运行结束时输出的结果为 . (12)以双曲线221916xy-=的右焦点为圆心,并与其渐近线相切的圆的标准方程是 _______.(13) 已知函数1()(0),()213(0),xx f x x x ⎧≤⎪=⎨⎪->⎩则((1))f f -=________;若2(23)(5)f a f a ->,则实数a 的取值范围是_______________.(14)过椭圆22221(0)x y a b ab+=>>上一点M 作直线,M A M B 交椭圆于,A B 两点,设,M A M B 的斜率分别为12,k k ,若点,A B 关于原点对称,且121,3k k ⋅=-则此椭圆的离心率为___________.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.) (15)(本小题满分13分)已知函数()2cos )cos 1f x x x x =-⋅+.OFEDCBA(Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在区间[,]42ππ上的最值.(16) (本小题满分14分)在四棱锥E A B C D -中,底面A B C D 是正方形,,AC BD O 与交于EC ABCD F 底面,^为B E 的中点.(Ⅰ)求证:D E ∥平面A C F ; (Ⅱ)求证:BD AE ^;(Ⅲ)若,AB E =在线段E O 上是否存在点G ,使CG BDE 平面^?若存在,求出E G E O的值,若不存在,请说明理由.(17) (本小题满分13分)以下茎叶图记录了甲、乙两组各四名同学在某次数学测验中的成绩,甲组记录中有一个数据模糊,无法确认,在图中以X 表示. 甲组 乙组 6 X8 74 1 9 0 0 3(Ⅰ)如果甲组同学与乙组同学的平均成绩一样,求X 及甲组同学数学成绩的方差;(Ⅱ)如果X=7,分别从甲、乙两组同学中各随机选取一名,求这两名同学的数学成绩之和大于180的概率.(注:方差2222121=[()()...()],n s x x x x x x n-+-++-其中12,,...,.n x x x x 为的平均数)(18)(本小题满分13分)已知函数3211()()32f x x a x a a =-+∈R .(Ⅰ)若1,a =求函数()[0,2]f x 在上的最大值;(Ⅱ)若对任意(0,+)x ∈∞,有()0f x >恒成立,求a 的取值范围.19. (本小题满分13分)已知椭圆:M 22221(0)x y a b ab+=>>,其短轴的一个端点到右焦点的距离为2,且点A 在椭圆M 上. 直线l 的斜率为2,且与椭圆M 交于B 、C 两点.(Ⅰ)求椭圆M 的方程; (Ⅱ)求ABC ∆面积的最大值.20. (本小题满分14分)已知每项均是正整数的数列123100,,,,a a a a ,其中等于i 的项有i k 个(1,2,3)i = ,设j j k k k b +++= 21(1,2,3)j = ,12()100m g m b b b m =+++- (1,2,3).m =(Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====, ①求(1),(2),(3),(4)g g g g ;②求123100a a a a ++++L 的值;(Ⅱ)若123100,,,,a a a a 中最大的项为50, 比较(),(1)g m g m +的大小.昌平区2012-2013学年第一学期高三年级期末质量抽测G ABCDEFO数 学 试卷 参考答案(文科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)二、填空题(本大题共6小题,每小题5分,共30分.) (9)(10)6;9(11) 3 (12)22(5)16x y -+=(13) -5; 1(,3)2- (143三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.)(15)(本小题满分13分)解:(Ⅰ)因为()2cos )cos 1f x x x x =-⋅+2cos 2x x=-π2sin(2)6x =-.………………………………5分所以()f x 的最小正周期2ππ2T ==.…………………7分(II )由 5[,],2[,],2[,],422636x x x πππππππ挝- …………..9分 当52,,()1662x x f x πππ-==即时取得最小值,…………….11分当2,,()2623x x f x πππ-==即时取得最大值.……………….13分(16)(本小题满分14分) 解:(I )连接O F .由A B C D 是正方形可知,点O 为BD 中点. 又F 为B E 的中点,所以O F ∥D E ………………….2分 又,,OF ACF DEACF 平面平面趟所以D E ∥平面A C F ………….4分(II) 证明:由EC ABCD BD ABCD 底面,底面,^ 所以,EC BD ^由A B C D 是正方形可知, ,AC BD ^又=,,AC EC C AC ECACE 平面,翘 所以,BD ACE 平面^………………………………..8分又AE ACE 平面,Ì所以BD AE ^…………………………………………..9分(III) 在线段E O 上存在点G ,使CG BDE 平面^. 理由如下: 如图,取E O 中点G ,连接C G .在四棱锥E A B C D -中,,2AB E C O AB C E ===,所以C G E O ^.…………………………………………………………………..11分 由(II )可知,,BD ACE 平面^而,BD BDE 平面Ì 所以,,ACE BDE ACE BDE EO 平面平面且平面平面,^? 因为,CG EO CG ACE 平面,^所以CG BDE 平面^…………………………………………………………. 13分 故在线段E O 上存在点G ,使CG BDE 平面^.由G 为E O 中点,得1.2E G E O=…………………………………………… 14分(17)(本小题满分13分)解:(I )乙组同学的平均成绩为87909093904+++=,甲组同学的平均成绩为90,所以8086919490,9.4X X ++++==…………………………………2分甲组同学数学成绩的方差为222228690)(8990)(9190)(9490)17=42s -+-+-+-=甲(…………… 6分(II)设甲组成绩为86,87,91,94的同学分别为1234,,,,a a a a 乙组成绩为87,90,90,93的同学分别为1234,,,,b b b b 则所有的事件构成的基本事件空间为:11121314212223243132{(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),a b a b a b a b a b a b a b a b a b a b33344142434(,),(,),(,),(,),(,),(,)}.a b a b a b a b a b a b 共16个基本事件. 设事件A =“这两名同学的数学成绩之和大于180”,则事件A 包含的基本事件的空间为{32333441424344(,),(,)(,),(,),(,),(,),(,)}.a b a b a b a b a b a b a b 共7个基本事件,7()16P A =………………………………………………………………………….13分(18)(本小题满分13分) 解:(I )当1a =时,311()32f x x x =-+,2'()1f x x =- .............1分令12'()01, 1.f x x x ==-=,得..................................2分列表:∴当[0,2]x ∈时,()f x 最大值为()726f =. ………………………7分(Ⅱ)22'()()(),f x x a x a x a =-=-+令12'()0,,.f x x a x a ==-=得① 若0,)()0,()a a f x f x '<<∴在(0,-上,单调递减.)()0,()a f x f x '∞>∴在(-,+上,单调递增.所以,()f x 在x a =-时取得最小值()332121()3232a f a a a a a -=-++=+,因为()2221210,0,()03232a a f a a a <+>-=+<所以.0,0,+()0.a x f x <∈∞>所以当时对任意(),不成立…………………..9分② 若20,()0,()0+a f x x f x '==≥∞所以在(,)上是增函数, 所以当=0()(0)0.a f x f >=时,有……………………………………..10分③若0,)()0,()a a f x f x '><在(0,上,所以单调递减.)()0,()a f x f x '∞>在(,+上,所以单调递增.所以,()f x 在x a =取得最小值()332121()3232a f a a a a a =-+=--,令()222121()0,0,0,032322f a a a a a a =-->>-<<<由得,0,()0.2a x f x <<>>所以当0对任意都成立综上,a 的取值范围是[0)2,.………………………………13分(19)(本小题满分13分)解: (Ⅰ)由题意知222112a ba ⎧+=⎪⎨⎪=⎩,所以b =.故所求椭圆方程为22142xy+=………………………………….5分(Ⅱ) 设直线l的的方程为2y x m=+,则0m ≠.设1122(,),(,),B x y C x y代入椭圆方程并化简得2220x m ++-=, …………6分 由22224(2)2(4)0m m m ∆=--=->,可得204m << . (*) 由(*),得1,22x =,故12BC x =-==…..9分又点A 到BC的距离为d =, …………………10分故12ABC S BC d ∆=⋅=22(4)2m m +-=≤=,当且仅当224m m =-,即m =时取等号满足(*)式.所以ABC ∆面积的最大值为2. ……………………13分(20)(本小题满分13分)解: (I)① 因为数列1240,30,k k ==320,k =410k =, 所以123440,70,90,100b b b b ====,所以(1)60,(2)90,(3)100,(4)100g g g g =-=-=-=- . ………8分 ②123100401302203104200a a a a ++++=⨯+⨯+⨯+⨯=L ……….10分 (II) 一方面,1(1)()100m g m g m b ++-=-,根据j b 的含义知1100m b +≤,故0)()1(≤-+m g m g ,即 )1()(+≥m g m g ,当且仅当1100m b +=时取等号.因为123100,,,,a a a a 中最大的项为50,所以当50m ≥时必有100m b =, 所以(1)(2)(49)(50)(51)g g g g g >>>===即当149m ≤<时,有()(1)g m g m >+; 当49m ≥时,有()(1)g m g m =+. 14分。

相关文档
最新文档