拱坝设计计算书
拱坝计算书
![拱坝计算书](https://img.taocdn.com/s3/m/b6d4ed00bed5b9f3f90f1ccb.png)
计算书目录:1、设计参数及控制指标2、拱坝体形3、应力计算4、拱肩稳定计算5、消能计算6、坝体细部及放空、取水孔设计1、设计参数及控制指标1.1设计参数坝体材料:200#砼,容重2.4t/m3,弹模1.7E6(坝体弹模考虑徐变的影响,取为瞬时弹性模量的0.6--0.7),泊松比0.167,线胀系数1×10-5/℃,导温系数3m2/月。
坝基:灰岩,容重3t/m3,弹模2E6,泊松比0.27,线胀系数1.4×10-5/℃,导温系数3m2/月。
淤沙浮容重按1t/m3,内摩擦角14°。
水文及地基f、c等有关各专业的基础资料请见附件1。
温度荷载按规范(SD145-85)附录公式由程序动计算,封拱灌浆温度取8-12℃。
1.2控制指标大坝拱肩稳定及应力控制指标均严格按照《混凝土拱坝设计规范》(SD145-85)执行,见表1-1、1-2。
表1-1 抗滑稳定安全系数表2、拱坝体形拱坝体形为双曲拱坝,拱圈平面曲线采用圆弧。
因两岸地形不完全对称而采用两岸不同半径的双曲拱坝。
2.1坝顶高程的拟定设计洪水位(p=2%):848.35m正常蓄水位:848m2.1.2 坝顶高程根据各种运行情况的水库静水位加上相应超高后的最大值确定。
顶超高值Δh按下式计算(请见SD145-85《混凝土拱坝设计规范》第八章拱坝构造)Δh=2h l + h0 + h c式中:Δh………坝顶距水库静水位高度(m)2h l………浪高(m)h0………波浪中心线至水库静水位的高度(m)h c………安全超高(m):正常运用情况取0.4m,非常运用情况取0.3m。
2.1.3 波浪要素按“官厅——鹤地”公式计算:2h l = 0.0166 V f5/4 D f1/32L1 = 10.4(2h l ) 0.8h0 = 4πh l2 /(2L1)式中:2L1 ………波长(m);D f ………吹程,由坝前沿水面至对岸的最大直线距离(km) ,取1Km。
拱桥设计计算书
![拱桥设计计算书](https://img.taocdn.com/s3/m/29b8bfc36f1aff00bed51ec7.png)
目录目录 (I)第一章前言 (6)第二章基本设计资料及技术指标 (7)2.1设计依据 (7)2.2工程地质条件与评价 (7)2.2.1 地形地貌 (7)2.2.2 地基土的构成及工程特性 (7)2.2.3水文地质条件 (7)2.2.4不良地质现象及地质灾害 (7)2.3主要技术标准 (8)第三章桥梁结构设计方案比选 (9)3.1设计要求 (9)3.1.1设计标准及要求 (9)3.1.2主要技术规范 (9)3.2.桥型的方案比选 (9)3.2.1桥型选取的原则 (9)3.2.2入选方案 (9)3.3.3 推荐方案说明 (15)第四章模型设计及计算 (17)4.1 桥型与孔跨布置 (17)4.2主要技术标准及设计采用规范 (17)4.2.1主要技术标准 (17)4.2.2设计采用规范 (17)4.3桥梁结构设计说明 (18)4.3.1上部结构设计说明 (18)4.3.2下部结构设计说明 (18)4.4桥面工程及其它 (18)4.5桥梁结构分析方法 (19)4.5.2荷载内力组合 (19)4.6主要建筑材料 (19)第五章上部结构计算 (21)5.1 桥梁的总体布置 (21)5.2 桥底标高 (21)5.3 拱肋刚度的取值: (21)5.4 毛截面几何特征计算 (22)5.5 拱肋承载力计算: (23)5.6 拱肋稳定系数计算 (24)5.7 作用组合 (24)5.8 横梁的计算 (25)5.8.1按平面静力计算 (25)5.9 建立全桥模型 (26)5.9.1 建立主拱圈模型 (27)5.9.2 矢跨比 (28)5.9.3 拱顶和拱脚高度 (28)5.10 全桥模型的建立 (29)5.11 辽河大桥静力特性分析 (32)5.11.1活载作用下主拱内力及应力 (32)5.12 辽河大桥动力特性分析 (38)5.12.1动力特性的分析方法 (38)5.13 全桥验算 (39)5.13.1 稳定性验算 (39)第六章施工阶段分析 (42)6.1 加工阶段介绍 (42)6.2 施工计算中的钢材应力标准: (42)6.3 施工中关键问题在施工计算中的考虑 (42)第七章下部结构计算 (44)7.1 埋置式桥台设计 (44)7.1.2 基底偏心距演算 (49)7.1.3基础稳定性演算 (49)7.1.4 沉降计算 (50)7.2 桥墩墩柱设计计算 (51)第八章施工组织设计 (60)8.1 编制依据 (60)8.2 编制范围 (60)8.3 编制原则 (60)8.4 工程范围 (60)8.5 进度计划安排 (61)8.6 劳动力安排 (61)8.7 确保工期的措施 (64)8.7.1 工期保证措施 (64)8.8 施工准备 (66)8.8.1项目部组建 (66)8.9 施工方案 (66)8.9.1 钢管拱桥的施工方法 (66)8.9.2 辽河大桥的施工过程 (68)8.9.3 辽河大桥施工要点 (74)8.9.4 雨季施工其它注意事项 (74)8.9.5 安全保证体系 (75)8.10 他应说明的事项 (78)8.10.1 现场文明施工 (78)8.10.2 环境保护 (78)第九章报价计算 (80)总结与展望 (81)总结 (81)结论 (81)展望 (81)谢辞 ............................................................................................................. 错误!未定义书签。
某江水利枢纽拱坝设计计算书毕业论文
![某江水利枢纽拱坝设计计算书毕业论文](https://img.taocdn.com/s3/m/cc076d9d67ec102de3bd8906.png)
某江水利枢纽拱坝设计计算书毕业论文目录第一章调洪演算 (3)1.1调洪演算的原理 (3)1.2泄洪方案的选择 (3)1.2.1 对三种方案进行调洪演算 (3)1.2.2 对三种方案分别计算坝顶高程 (7)1.2.3 对三种方案进行比较 (9)第二章大坝工程量比较 (10)2.1大坝剖面设计计算 (10)2.2工程量比较 (16)第三章第一建筑物——大坝的设计计算 (18)3.1拱坝的剖面设计以及拱坝的布置 (18)3.1.1 坝型选择双曲拱坝 (18)3.1.2 拱坝的尺寸 (18)3.2荷载组合 (19)3.3拱坝的应力计算 (20)3.3.1 对荷载组合⑴,⑵,⑶使用FORTRAN程序进行电算 (20)3.3.2 对荷载组合⑷进行手算 (22)3.4坝肩稳定验算 (31)3.4.1 计算原理 (31)3.4.2 验算工况 (31)3.4.3 验算步骤 (32)第四章泄水建筑物的设计 (38)4.1泄水建筑物的型式尺寸 (38)4.2坝身进水口设计 (38)4.2.1 管径的计算 (38)4.2.2 进水口的高程 (38)4.3泄槽设计计算 (39)4.3.1 坎顶高程 (39)4.3.2坎上水深h c (39)4.3.3反弧半径R (40)4.3.4 坡度(直线段):与孔身底部坡度一致。
(40)4.3.5 挑射角θ=20° (40)4.4 导墙设计 (40)4.5消能防冲计算 (41)4.5.1水舌挑距 (41)4.5.2冲刷坑深 (42)参考文献 (45)附录一 (46)附录二 (47)第一章 调洪演算1.1 调洪演算的原理先对一种泄洪方案,求得不同水头下的孔口泄洪能力,并作孔口泄洪能力曲线,再假定几组最大泄流量,对设计(校核)洪水过程线进行调洪演算,求得这几组最大泄流量分别对应的水库存水量,查水位库容曲线,得出这几组最大泄流量分别对应的上游水位,并作最大泄流量与上游水位的关系曲线。
拱坝设计计算书最详细的
![拱坝设计计算书最详细的](https://img.taocdn.com/s3/m/266236b9c77da26925c5b0a9.png)
表2.2-1 组成各滑动块体的节理面产状参数表滑动动块体计算图平面投影见图2.2-2。
拱坝坝肩稳定分析中考虑的作用荷载有:坝体作用与滑动体的作用力(包括拱端轴向力H a,径向剪力V a,梁底切向剪力V ct,梁底径向剪V cr,垂直力W1。
由拱梁分载法应力计算获得其分布),滑动体自重,作用于滑动体各面上的扬压力或水压力。
荷载组合:基本组合时,以“正常蓄水位+温降”和“校核洪水位+温升”情况为代表情况;特殊组合时,以“校核洪水位+温升”为代表情况。
2.4 荷载计算a)拱端力计算由于双曲拱坝各高程拱圈拱端轴向和径向各不相同,为计算拱端合力,以坝顶拱圈拱端的轴向和径向为基准,将以下各拱圈的拱端力和梁底剪力换算成坝顶拱圈拱端的轴向和径向两各方向的分布力,然后根据坝肩滑动体在坝基面出露的范围计算坝体作用于滑动体的合力。
坝顶拱圈左拱端轴向方位角为151.98°,右拱端轴向方位角为234.82°。
由拱梁分载法计算给出的左、右岸各拱圈拱端力、梁底剪力分布,以及转换为沿坝顶拱端轴向和径向作用力分布(沿单位高度分布)见表2.5-1到表2.5-5。
表2.4-1 左岸各拱圈拱端力和梁底剪力分布单位:1000kN/m表2.4-2 右岸各拱圈拱端力和梁底剪力分布单位:1000kN/m表2.4-3 左岸各拱圈拱端力和梁底剪力分布单位:1000kN/m表2.4-4 右岸各拱圈拱端力和梁底剪力分布单位:1000kN/m表2.4-5 左岸各拱圈拱端力和梁底剪力分布单位:1000kN/m表2.4-6 右岸各拱圈拱端力和梁底剪力分布单位:1000kN/m根据各滑动楔形体在坝基面上出露的高程范围由表 4.5-1~表4.5-5计算得出作用于各块体拱端力见表4.5-6。
表2.4-7 拱坝坝端作用于各滑动体的合力计算结果单位:1000kNB)滑动体自重计算滑动块体体积由其平面图采用平行切面法计算,岩体容重为26.3kN/m。
拱桥计算书
![拱桥计算书](https://img.taocdn.com/s3/m/2b2f33d084254b35eefd3427.png)
设计计算书一、设计资料(一)设计标准设计荷载:汽车-20级,挂车-100,人群荷载3KN/m2 净跨径:L0=16m净矢高:f0=2.28m桥面净宽:净6.5+2*(0.25+1.5m人行道)(二)材料及其数据拱顶填土厚度h d=0.5m,γ3=22KN/m3拱腔填料单位重γ=20KN/m3腹孔结构材料单位重γ2=24KN/m3主拱圈用10号砂浆砌号60块石,γ1=24KN/m3,极限抗压强度R j a=9.0MP a,弹性模量E=800R a j。
(三)计算依据1、交通部部标准《公路桥涵设计通用规范(JTJ021-89)》,人民交通出版社,1989年。
2、交通部部标准《公路砖石及混凝土桥涵设计规范(JTJ022-85)》,人民交通出版社,1985年。
3、《公路设计手册-拱桥》(上、下册),人民交通出版社,1994年。
4、《公路设计手册-基本资料》,人民交通出版社,1993年。
二、上部结构计算(一)主拱圈1、主拱圈采用矩形横截面,其宽度b0=10.0m,主拱圈厚度d=mkl01/3=6*1.2*16001/3=84.2cm,取d=85cm。
假定m=1.988,相应的y1/4/f=0.225,查《拱桥》附表(Ⅲ)-20(9)得Ψj=33003′32″,sinΨj=0.54551, cosΨj=0.83811 2、主拱圈的计算跨径和矢高L=l0+dsinΨj=16+0.85*0.54551=16.4637mf=f0+d/2-dcosΨ/2=2.28+0.85/2-0.85*0.83811/2=2.3488j3、主拱圈截面坐标将拱中性轴沿跨径24等分,每等分长Δl=l/24=0.6860m,每等分点拱轴线的纵坐标y1=[《拱桥》(上册)表(Ⅲ)-1值]f,相应拱背曲面的坐标y′1=y1-y上/cosΨ,拱腹曲面相应点的坐标y″1=y1+y下/cosΨ,具体位置见图1-1,具体数值见表1-1。
主拱圈截面计算表表1-1(二)拱上结构1、主拱圈拱上每侧对称布置截面高度d′=0.25m的石砌等截面圆弧线腹拱圈,其净跨径l′=1.5m,净矢高f′=0.3m,净矢跨比为1/5。
拱桥设计计算书
![拱桥设计计算书](https://img.taocdn.com/s3/m/c046ee04cc175527072208bf.png)
本设计的步骤为:根据设计任务要求,依据现行公路桥梁设计规范,综合考虑桥位的地质、地形条件,经初选后提出了三跨连续梁桥、下乘式钢管混凝土拱桥、独塔双跨式混凝土斜拉桥三个比选桥型。
按“实用、经济、安全、美观”的桥梁设计原则,比较三个方案的优缺点。
比选后把下承式钢管混凝土拱桥作为主要推荐设计方案,并进行了结构细部尺寸拟定、主梁内力计算、主梁和桥墩配筋设计及控制截面强度、应力验算,活载变形验算等。
经分析比较及验算表明该设计计算方法正确,内力分布合理,符合设计任务的要求。
关键词:比选方案;三跨连续梁桥;下承式钢管混凝土拱桥;独塔双跨式混凝土斜拉桥;主要推荐设计方案;结构分析;验算Abstract: the process of designment:According to the design assignment and the present Highway Bridge Specifications, Take the geological and the landform of the bridge site for further analysis, after preliminary selection, three bridge type schemas are presented, they are Three-span continuous beam bridge, Xia Sheng-type steel arch bridge and Single tower cable-stayed double-span paring their characters comprehensively, the Xia Sheng-type steel arch bridge i s selected as the main design scheme by the philosophy of bridge design as “Practicability, Economy, Security, Beauty”. Through drawing up of structure’s dimension, internal force calculation of dead and living load, prestressed steel design, hypoforce calculation, assessment of prestressing loss, checking computation and pier of key section intension, stress, living load distortion, The conclusion can be drawn that the design is up to the assignment.Key word: Program Comparison ; Three-span continuous beam bridge;Xia Sheng-type steel arch bridge ;Single tower cable-stayed double-span concrete ; the main design scheme for further analysis ; Structure analysis and checking computation目录目录 (1)第一章前言 (1)第二章基本设计资料及技术指标 (2)2.1设计依据 (2)2.2工程地质条件与评价 (2)2.2.1 地形地貌 (2)2.2.2 地基土的构成及工程特性 (2)2.2.3水文地质条件 (2)2.2.4不良地质现象及地质灾害 (2)2.3主要技术标准 (3)第三章桥梁结构设计方案比选 (4)3.1设计要求 (4)3.1.1设计标准及要求 (4)3.1.2主要技术规范 (4)3.2.桥型的方案比选 (4)3.2.1桥型选取的原则 (4)3.2.2入选方案 (4)3.3.3 推荐方案说明 (10)第四章模型设计及计算 (12)4.1 桥型与孔跨布置 (12)4.2主要技术标准及设计采用规范 (12)4.2.1主要技术标准 (12)4.2.2设计采用规范 (12)4.3桥梁结构设计说明 (13)4.3.1上部结构设计说明 (13)4.3.2下部结构设计说明 (13)4.4桥面工程及其它 (13)4.5桥梁结构分析方法 (14)4.5.2荷载内力组合 (14)4.6主要建筑材料 (14)第五章上部结构计算 (16)5.1 桥梁的总体布置 (16)5.2 桥底标高 (16)5.3 拱肋刚度的取值: (16)5.4 毛截面几何特征计算 (17)5.5 拱肋承载力计算: (18)5.6 拱肋稳定系数计算 (19)5.7 作用组合 (19)5.8 横梁的计算 (20)5.8.1按平面静力计算 (20)5.9 建立全桥模型 (21)5.9.1 建立主拱圈模型 (22)5.9.2 矢跨比 (23)5.9.3 拱顶和拱脚高度 (23)5.10 全桥模型的建立 (24)5.11 辽河大桥静力特性分析 (27)5.11.1活载作用下主拱内力及应力 (27)5.12 辽河大桥动力特性分析 (33)5.12.1动力特性的分析方法 (33)5.13 全桥验算 (34)5.13.1 稳定性验算 (34)第六章施工阶段分析 (37)6.1 加工阶段介绍 (37)6.2 施工计算中的钢材应力标准: (37)6.3 施工中关键问题在施工计算中的考虑 (37)第七章下部结构计算 (39)7.1 埋置式桥台设计 (39)7.1.2 基底偏心距演算 (44)7.1.3基础稳定性演算 (44)7.1.4 沉降计算 (45)7.2 桥墩墩柱设计计算 (46)第八章施工组织设计 (55)8.1 编制依据 (55)8.2 编制范围 (55)8.3 编制原则 (55)8.4 工程范围 (55)8.5 进度计划安排 (56)8.6 劳动力安排 (56)8.7 确保工期的措施 (59)8.7.1 工期保证措施 (59)8.8 施工准备 (61)8.8.1项目部组建 (61)8.9 施工方案 (61)8.9.1 钢管拱桥的施工方法 (61)8.9.2 辽河大桥的施工过程 (63)8.9.3 辽河大桥施工要点 (69)8.9.4 雨季施工其它注意事项 (69)8.9.5 安全保证体系 (70)8.10 他应说明的事项 (73)8.10.1 现场文明施工 (73)8.10.2 环境保护 (73)第九章报价计算 (75)总结与展望 (76)总结 (76)结论 (76)展望 (76)谢辞 .......................................................................................................... 错误!未定义书签。
拱坝设计计算书
![拱坝设计计算书](https://img.taocdn.com/s3/m/5b642f272f60ddccda38a03f.png)
目录第一章调洪演算........................................ - 3 -1.1调洪演算的原理............................................................................................................... - 3 -1.2 泄洪方案的选择.............................................................................................................. - 3 -1.2.3 确定坝高............................................................................................................ - 5 - 第二章大坝工程量比较.................................. - 6 -2.1 大坝剖面设计计算.......................................................................................................... - 6 -2.2工程量比较..................................................................................................................... - 10 - 第三章第一建筑物——大坝的设计计算................... - 11 -3.1 拱坝形式尺寸及拱坝布置............................................................................................ - 11 -3.1.1 坝型选择双曲拱坝............................................................................................ - 11 -3.1.2拱坝的尺寸......................................................................................................... - 11 -3.2荷载组合......................................................................................................................... - 13 -3.3拱坝的应力计算............................................................................................................. - 13 -3.3.1对荷载组合⑴,⑵,⑶使用FORTRAN程序进行电算..................................... - 13 -3.3.2对荷载组合⑷进行手算..................................................................................... - 14 -3.4坝肩稳定计算................................................................................................................. - 21 -3.4.1计算原理............................................................................................................. - 21 -3.4.2验算工况............................................................................................................. - 22 -3.4.3验算步骤............................................................................................................. - 22 - 第四章泄水建筑物的设计............................... - 25 -4.1 泄水建筑物的型式尺寸................................................................................................ - 25 -4.2 泄槽设计计算................................................................................................................ - 25 -4.3 导墙设计........................................................................................................................ - 26 -4.3 消能防冲计算................................................................................................................ - 26 -4.3.1 水舌挑距.......................................................................................................... - 26 -4.3.2 冲刷坑深度...................................................................................................... - 27 -4.3.3 消能率计算...................................................................................................... - 27 -4.3.4 孔口应力计算及配筋...................................................................................... - 28 - 参考文献.............................................. - 31 -附录一................................................ - 32 -附录二................................................ - 33 -第一章 调洪演算1.1调洪演算的原理先对一种泄洪方案,求得不同水头下的孔口泄洪能力,并作孔口泄洪能力曲线,再假定几组最大泄流量,对设计(校核)洪水过程线进行调洪演算,求得这几组最大泄流量分别对应的水库存水量,查水位库容曲线,得出这几组最大泄流量分别对应的上游水位,并作最大泄流量与上游水位的关系曲线。
拱坝设计计算书2.doc
![拱坝设计计算书2.doc](https://img.taocdn.com/s3/m/f921bbd7d4d8d15abe234e7f.png)
六、双曲拱坝坝肩稳定分析1 概述某水利枢纽工程坝址出露地层为三迭系上统须家河组浅灰色厚层石屑砂岩夹少量灰质页岩、泥岩和灰质页岩透镜体。
岩层走向88°,与河流流向近于正交,倾向NW,倾角36°,即倾向上游略偏右岸。
坝址断层不发育,主要地质构造发育有4组陡倾角节理:①组走向320°~330°,倾向SW∠50°~55°;②组走向50°~60°,倾向SE∠60°~70,③组走向335°~345°,倾向SW∠65°~88°;④组走向310°~320°,倾向SW∠58°~78°。
节理连通率为0.6,其中第④组节理有夹泥。
水库正常蓄水位675.00m,大坝采用双曲拱坝坝型,坝体采用小石子混凝土砌块石。
坝顶高程676.60m,河床坝基面高程596.00m,坝顶弧长162.23m,中心角97.16°,坝顶宽5.00m,最大坝高80.60m,最大坝底厚24.00m,大坝体形几何参数见表1-1,表1-1某拱坝体形参数表2 坝肩稳定分析2.1 坝肩稳定地质条件分析根据坝址地质情况,拱坝两岸坝肩无明显的断裂构造切割,形成特定的滑动块体。
影响坝肩稳定的主要地质因素为坝址区发育的4组陡倾角节理和倾角较缓的岩层层面(走向88°,倾向NW∠36°)。
根据这几组节理面的产状与拱坝两岸坝肩坝轴线方向的几何关系分析,节理①、③、④可构成右岸坝肩的侧向切割面和左岸坝肩的上游拉裂面,节理②可构成左岸坝肩的侧向切割面和右岸坝肩的上游拉裂面,而缓倾角的岩层层可构成坝肩滑动体的底滑面。
因此,左、岸坝肩受节理切割均有可能构成影响坝肩稳定的滑动楔形体。
由于岩层倾向上游偏右岸,相对左岸坝肩而言,岩层层面为倾向上游偏河床,对左岸坝肩稳定的影响较不利;相对右岸坝肩来说,岩层层面为倾向下游偏山里,对右岸坝肩稳定的影响比左岸要小。
拱坝设计计算书.doc
![拱坝设计计算书.doc](https://img.taocdn.com/s3/m/934e4225844769eae009edc2.png)
某拱坝设计计算书一、工程概况某水利枢纽正常水位相应库容982万m3;设计水位675.09m;校核洪水位676.01m,相应库容1027万m3。
拱坝以50一遇洪水设计,500年一遇洪水校核。
二、拱坝坝高及体型设计1.1坝顶高程计算:拱坝中间为溢流坝段,两端为挡水坝段。
溢流坝段为2孔泄流,孔口尺寸为7×4m,采用弧形闸门,堰顶高程为▽671.00m。
校核洪水频率P=0.2%,坝前校核洪水位▽676.01m,坝下校核洪水位▽595.72m。
设计洪水频率P=2%,坝前校核洪水位▽676.01m,坝下设计洪水位▽595.31m。
坝顶高于静水位的超高值△h=h l+h z+h ch l——波浪高度(m)。
h z——波浪中心线至正常或校核洪水位的高差(m)。
h c——安全加高(m)。
(《混凝土重力坝规范》P43)坝的安全级别为Ⅲ级,校核洪水位时h c=0.3m,设计洪水位h c=0.4m。
h l=0.0166V05/4D1/3L=10.4(h l)0.8V0——计算风速(m/s)D ——风作用于水域的长度(km ),称为吹程。
相应季节50年重现期的最大风速为20m/s ,相应洪水期最大风速的多年平均风速为9.90 m/s 。
吹程为0.4km 。
h z =LHcth L h l ππ22H ——坝前水深(m ),校核洪水位H=73.41m ,设计洪水位H=72.49m 。
1.2校核洪水位时:h l =0.0166×9.945×0.431=0.215mL=10.4 ×(0.215)0.8=3.041m h z =041.341.732041.3215.02ππcth=0.048m △h=0.215+0.048+0.3=0.56m校核洪水位坝顶防浪墙高:Z 校坝=Z 校核水位+△h Z 校坝=676.01+0.563=676.57m 1.3设计洪水位时:h l =0.0166×2045×0.431=0.517mL=10.4 ×(0.517)0.8=6.135m h z =135.649.722135.6517.02ππcth=0.137m △h=0.517+0.137+0.4=1.054m设计洪水位坝顶防浪墙高:Z 设坝=Z 设计水位+△h Z 设坝=675.09+1.0555=676.14m 坝顶高程取以上结果较大值676.60m 。
拱坝毕业设计计算书-龙源口水库
![拱坝毕业设计计算书-龙源口水库](https://img.taocdn.com/s3/m/c128096dcc22bcd127ff0ca1.png)
目录第一章拱坝基本参数计算 (2)1.1坝顶高程的确定 (2)1.1.1坝顶超高计算 (2)1.1.2坝顶高程计算 (3)1.2坝型方案及结构布置 (3)第二章应力分析 (6)2.1 荷载计算 (6)2.1.1自重 (6)2.1.3泥沙压力 (9)2.1.4扬压力 (10)2.1.5温度荷载 (11)2.2 地基位移计算 (12)2.3拱冠应力分析(拱冠梁法) (15)γγ的确定 (38)2.2.3拱冠径向变位系数,i i2.2.4拱冠梁变位的计算 (41)2.2.5拱冠梁应力计算 (44)2.2.6拱圈应力计算 (52)第三章坝肩稳定分析 (56)3.1 稳定分析 (56)3.1.1计算式 (56)3.1.2分析过程 (57)第四章溢流设计及消能防冲设计 (60)4.1溢流面计算 (60)4.2下游消能防冲复核 (60)第一章拱坝基本参数计算1.1坝顶高程的确定1.1.1坝顶超高计算根据《水利水电工程等级划分及洪水标准》(SL252—2000)规定:龙源口水库设计洪水标准采用50年一遇,校核洪水标准采用500年一遇,按照《浆砌石坝设计规范》SL25—91,《砼拱坝设计规范》SL282—2003中规定计算大坝需要的坝顶超高。
坝顶超高按下式计算:△h=Zhi +h+hC式中:Zhi—波浪高(m)h—波浪中心线至水库静水位的高度(m)h C —安全超高(m)(正常运行情况hC=0.4m,非常运行情况hC=0.3m)g(Zhi)/V△2=0.0076V-1/12(gD/V2)1/3gLm/ V02=0.331 V-7/15(gD/V2)4/15h 0=[π(Zhi)2/Lm]Cth(2πH1/Lm)式中:Lm—波长(m)D—吹程(D=3000m)V 0—多年平均最大风速,V=17.5m/s,正常运用条件下采用 V′=1.5 VH1—水域平均水深(m)坝顶超高计算成果列如表1-4。
表1-4 坝顶超高计算成果表1.1.2坝顶高程计算坝顶高程计算结果列表于1-5。
(精品)福州大学拱坝毕业课程设计计算说明书
![(精品)福州大学拱坝毕业课程设计计算说明书](https://img.taocdn.com/s3/m/16f9b02e10661ed9ad51f3f5.png)
《水工建筑物课程设计计算说明书》课程设计学生姓名:学号:专业班级:水利水电(2 )指导教师:二○一二年九月十四日目录1.课程设计目的 (3)2.课程设计题目描述和要求 (3)2.1设计的内容 (3)3.设计步骤 (4)3.1工程等级的确定 (4)3.2拱坝形式的选择与坝高的确定 (5)3.3拟定圆心角与坝轴线半径 (6)3.4 初步拟定拱冠梁的剖面尺寸 (6)3.5拱坝应力分析 (10)3.6 坝肩稳定分析 (12)3.7坝体细部构造设计 (15)4.结束语 (20)参考书目: (21)1.课程设计目的本课程设计的目的是为巩固和加强所学《水工建筑物》课程关于拱坝部分的知识,进一步理解拱坝的设计原理,为今后的工作学习设计拱坝做准备。
本课程设计的任务是设计某河水库混凝土双曲拱坝体型设计的合理布置。
2.课程设计题目描述和要求2.1设计的内容1.选择拱坝的布置型式。
2.进行坝体平面布置及断面初选。
3.通过拱冠梁法对坝体应力及坝肩稳定进行分析计算。
4.通过消能计算评价所选定的消能防冲措施的安全可靠性。
5.通过设计成果分析,对所选定的拱坝体型布置提出评价或修改意见2.2工程概况2.2.1设计标准设计标准,本水库总库容2.1千万方。
灌溉2万亩,电站装机1万千瓦2.2.2坝址地形地质条件1.坝址区峡谷呈“V””型,两岸谷坡陡削,高程300米以下较为对称,坡角40—50度。
唯右岸自高程300米以上地形转缓变为 25~30度。
两岸附近山高均超出 400米高程以上.河谷底宽11米高程260米,左岸受冲沟切割后山脊较为单薄。
2.河床和岸坡有大片基岩课露,距河床高47米范围内形成岩石陡壁。
以上为第四纪残、坡积的砂壤覆盖层。
厚度左岸2~5米,右岸3~5米,坝址区基岩一般风化不深,剧风化垂直深度,左岸为3~6米,右岸为4~8米,河床为0~3米,微风化或新鲜基岩距地表深度,在320米高程以下:两岸为10~20米,河床为4米左右。
拱桥设计实用计算表
![拱桥设计实用计算表](https://img.taocdn.com/s3/m/ce9551d180eb6294dd886c8c.png)
H=1.2h1=60L0=F0/L0=F0=一.截面几何特性计算拱圈由二个拱箱组成(如图),整个设计按全宽进行 1.截面积m^2 2.绕箱底边缘的静面矩S=m^33.主拱圈截面重心轴 y下=S/A=m y上= 1.2=4.主拱圈截面绕重心轴的惯性矩Ix=m^4Rw=(Ix/A)^(1/2)= 二.确定拱轴系数(一)上部结构构造布置1.主拱圈k=ln(m+(m^2-1)^(1/2))=cos φj=则主拱圈的计算跨径和计算矢高:L=m F=m 拱脚截面的水平投影和竖向投影:X= 1.2*Y= 1.2*将拱轴沿跨径24等分,每等分长△L=L/24=截面号xy 1/fy 10.00025.411 1.00010.1841.00023.2940.8188.3302.00023.2940.659 6.7163.00019.0590.522 5.3194.00016.9410.404 4.1195.00014.8230.304 3.0976.00012.7060.220 2.2407.00010.5880.151 1.5358.0008.4700.0950.9729.000 6.3530.0530.54210.000 4.2350.0240.24011.000 2.1180.0060.06012.0000.0000.0000.0002.拱上腹孔布置 从主拱两端起拱线向外延伸2.15m后向跨中对称布置四对圆弧小拱50.8228110.183980.59310.438假定m=2.24,相应的Y/F=0.220.730570.20.60251.8623A= 3.091-0.6498主拱圈几何特性0.730570.68284排架式腹拱墩支承的宽为0.6m的钢筋混凝土盖梁上。
腹拱拱顶的拱背和主拱拱顶的拱背在同一拱线的高度h=y 1+y 上*(1-1/cos φ)-(d'+f 0'),分别计算如下表:项目Lx ξ=2*Lx/L k ξ1号立柱21.5000.846 1.2232号立柱16.9000.6650.9613号立柱12.3000.4840.7004号腹拱座7.9680.3140.453空实腹段分界线7.8850.3100.449由F 0'/L 0'=sin φ0=腹拱拱脚的水平投影和竖向投影:x'=d'sin φ0=y'=d'cos φ0=(二)上部结构恒载计算恒载计算,首先把桥面系换算成填料厚度,然后按主拱圈、横隔板、拱上实腹段、拱上空腹段1.桥面系拱顶填料及沥青表处面层重力1/2*(0.56+.63)*2*7/2*23=则换算容重γ=23KN/m^3的计算平均填料厚度为24h d =(9.4+95.795)/9.8/23=2.主拱圈P 0-12=M l/4=M J =*3.横隔板横隔板的设置受箱肋接头位置的控制,必须先确定接头位置后载按箱肋轴线等弧长(1)箱肋有关几何要素1)箱肋截面积A′=3.02*0.1+3.16*0.1+4*1/2*2)箱肋截面静矩J′=3.02*0.1*(+=3)截面重心距箱底的距离y F ′=J′/A′=4)箱肋计算跨径L′=L 0+2*y F ′*sin φj =5)箱肋轴线弧长S′=(2)确定箱肋接头、设置横隔板1)确定接头位置箱肋分三段吊装合拢,接头宜选在箱肋自重作用O.O870.5240.126腹拱0.1250.552S x ′=2)布置横隔板横隔板沿箱肋中轴线均匀设置,取板间间距△L′S 11/2=1/2*(则接头位置刚好在ε= 端段箱肋弧长S 1=1/2*( 端段箱肋设(3)横隔板与接头加强部分的重力横隔板厚均为0.06m。
拱坝设计资料
![拱坝设计资料](https://img.taocdn.com/s3/m/6ee06330f12d2af90242e658.png)
计算书目录:1、设计参数及控制指标2、拱坝体形3、应力计算4、拱坝稳定计算5、消能计算6、坝体细部及放空、取水孔设计1、设计参数及控制指标1.1坝体参数坝体材料:C15砼砌600#毛石,坝体容重r=2.3t/m3,坝体弹模E=9.0×109Pa,坝体变模E′=5.0×109Pa,泊松比μ=0.25。
线膨胀系数取0.8×105/℃,导温系数取3m2/月。
坝基:左坝基为灰岩,变形模量E′=5.0×109Pa,泊松比μ=0.28。
右坝基为泥灰岩,变形模量E′=3.8×109Pa,泊松比μ=0.30,坝体底部为泥页岩,变形模量E′=2.5×109Pa,泊松比μ=0.32。
线膨胀系数取0.8×105/℃,导温系数取3m2/月。
水文及地质资料见附件1。
1.2控制指标大坝坝肩稳定及应力控制指标按《浆砌石坝设计规范》(SL25-91)执行,见表1-1、1-2。
表1-1 抗滑稳定安全系数表表1-2 大坝允许应力表2、拱坝体形拱坝体形为双曲拱坝,拱圈平面曲线采用圆弧。
因两岸地形基本对称而采用相同半径的双曲拱坝。
2.1 坝顶高程的拟定2.1.1 已知:校核洪水位(p=0.2%):746.50m设计洪水位(p =2%):744.00m 正常蓄水位:742.50m2.1.2 坝顶高程根据各种运行情况的水库静水位加上相应超高后的最大值确定。
坝顶超高值△h 按下式计算(《浆砌石坝设计规范》(SL25-91)第八章坝体构造)△h =2 h 1+h 0+hc 式中:△h……坝顶距水库静水位的高度,m 2 h……波浪高,mh 0……波浪中心线超出水库静水位的风壅高度,mhc……安全超高,m :正常运用情况取0.4m ,非常运用取0.3m 。
2.1.3 波浪要素按《浆砌石坝设计规范》(SL25-91)附录二计算。
波高、波长可按下式计算2h 2=31450166.0f f D υ 2L L =8.01)2(4.10hh 0=LL L H cth L h 12124ππ式中:2h 2——浪高,m ;2L L ——波长,m ;f υ——计算风速,按瓮安县多年平均最大风速为11.1m/s ; f D ——计算吹程(km ),f D =0.8km ;h 0——波浪中心线超出水库静水位的风雍高度,m ; H 1——坝前上游水深,m 。
低拱坝拱圈厚度计算
![低拱坝拱圈厚度计算](https://img.taocdn.com/s3/m/cfb082d5d4bbfd0a79563c1ec5da50e2524dd1dd.png)
拱坝拱圈厚度计算根据《浆砌石坝设计规范》浆砌石拱坝设计的相关规定,计算本次拱坝拱圈厚度;根据现场测量数据,本次拱坝属于小于15米挡水高度的低拱坝,拱圈厚度采用圆筒计算公式计算。
一、基本参数确定:1、坝前挡水高度12.5米;2、拱圈圆心角为90°;3、拱坝处在U型河谷,设计采用沿上游面单曲拱坝形式。
4、拱坝坝址处,河谷宽度L=20.9米,最大挡水高度12.5米,河谷特征宽高比L/H=1.67,拱坝形式采用薄拱坝。
二、水力计算:1、水压计算由于拱坝最大应力常出现在坝高1/3~1/2的位置处,本次计算采用坝前水深H=7.8~8.8位置作为最大应力位置计算拱圈厚度,以高度为1m的拱梁迎水面计算水压荷载,如图所示:所以拱梁迎水面荷载P:P=1/2×(γH1+γH2)×1m=40.67kN/m2、拱梁受力计算:如图所示,以水深H=7.8m截面至H=8.8m截面的拱圈作为单元体看做“拱梁”,计算拱梁受力。
已知拱圈外径R0=15.83米,拱圈厚度为T,所以拱圈轴线上的均布荷载压力P1:P1=R0R0−T2×P作用在拱轴线上水压力总和P’:P′=2×P1·R0·cos a·d aa0=2×P1·R0·sin a 根据受力平衡,水压力总和P’与轴向力N形成平衡条件:P′=2·N·sin a所以,2×P1·R0·sin a=2·N·sin a得:N=P′·R0根据轴向力N,以及拱梁截面,可求得拱梁轴向压力σ:σ=NF=P′·R0T式中:F为拱圈梁截面面积,F=1×T;根据拱坝材料允许应力值[σ]=1MPa~1.5MPa。
由试算表格可得,在满足拱坝材料允许应力[σ]条件下,拱圈厚度T≥1.2m。
某水利枢纽拱坝设计计算书
![某水利枢纽拱坝设计计算书](https://img.taocdn.com/s3/m/82c78b7e7cd184254a353544.png)
某水利枢纽拱坝设计计算书第一章 枢纽布置1.1 调洪演算1.1.1 基本资料的收集1、根据蓝图上的典型洪水过程线,用同倍比放大法放大得出设计、校核洪水过程线。
同倍比放大法:以洪峰控制,其放大倍比为:MDMPQ Q Q k =Q k -以洪峰控制的放大系数MP Q -设计、校核标准下的洪峰流量MD Q -典型洪峰流量水库的设计标准P =1%,其洪峰流量为3785m 3/s ;校核标准P =0.1%,其洪峰流量为5285m 3/s 。
放大后的设计、校核洪峰过程线如表1-1。
设计放大系数:37.127603785==Q k ;校核放大系数:91.127605285==Q k 。
表1-1 天 0.71233.545678典型洪峰流量(m 3/s ) 400 440800 2200 2760 2480 1600 920480 400设计洪峰流量(m 3/s ) 549 603 1097 3017 3785 3401 2194 1262 658 549 校核洪峰流量(m 3/s )766 843 1532 4213 5285 4749 3064 1762 919 766 2、水库水位~容积曲线如蓝图所示。
3、上游的最高限制水位为87m。
4、下游最大允许下泄流量:正常情况下为3200m3/s;校核情况下为3500m3/s。
5、起调水位为正常蓄水位82m。
6、起调时刻为来流量等于正常水位闸门全开时的泄量。
1.1.2 孔口尺寸的拟定方案一:①单宽流量q=80 m2/s;②溢流前沿长度为:设计情况:3200/80=40m校核情况:3500/80=42m③孔口尺寸:设计情况:中孔:孔宽6m,孔高7m,孔数3个;深孔:孔宽6m,孔高7m,孔数3个。
校核情况:中孔:孔宽6m,孔高7m,孔数3个;深孔:孔宽6m,孔高7m,孔数4个。
④孔口中心、底板高程:初拟底板高程时,中孔设在死水位(70m)以上,深孔设在泥沙淤积高程(60m)以上。
拱桥设计计算说明书
![拱桥设计计算说明书](https://img.taocdn.com/s3/m/36cfd10bee06eff9aef80740.png)
目录一、设计背景 (1)(一)概述 (1)(二)设计资料 (1)1、设计标准 (1)2、主要构件材料及其参数 (1)3、设计目的及任务 (2)4、设计依据及规范 (3)二、主拱圈截面尺寸 (4)(一)拟定主拱圈截面尺寸 (4)1、拱圈的高度 (4)2、拟定拱圈的宽度 (4)3、拟定箱肋的宽度 (4)4、拟定顶底板及腹板尺寸 (5)(二)箱形拱圈截面几何性质 (5)三、确定拱轴系数 (7)(一)上部结构构造布置 (7)1、主拱圈 (7)2、拱上腹孔布置 (9)(二)上部结构恒载计算 (9)1、桥面系 (9)2、主拱圈 (10)(三)拱上空腹段 (10)1、填料及桥面系的重力 (10)2、盖梁、底梁及各立柱重力 (11)3、各立柱底部传递的力 (11)(四)拱上实腹段 (12)1、拱顶填料及桥面系重 (12)2、悬链线曲边三角形 (12)四、拱圈弹性中心及弹性压缩系数 (14)(一)弹性中心 (14)(二)弹性压缩系数 (14)五、主拱圈截面内力计算 (15)(一)结构自重内力计算 (15)1、不计弹性压缩的恒载推力 (15)2、计入弹性压缩的恒载内力 (15)(二)活载内力计算 (15)1、车道荷载均布荷载及人群荷载内力 (15)2、集中力内力计算 (17)(三)温度变化内力计算 (20)1、设计温度15℃下合拢的温度变化内力 (20)2、实际温度20℃下合拢的温度变化内力 (20)(四)内力组合 (21)1、内力汇总 (21)2、进行荷载组合 (22)六、拱圈验算 (23)(一)主拱圈正截面强度验算 (23)1、正截面抗压强度和偏心距验算 (23)(二)主拱圈稳定性验算 (24)1、纵向稳定性验算 (24)2、横向稳定性验算 (25)(三)拱脚竖直截面(或正截面)抗剪强度验算 (25)1、自重剪力 (25)2、汽车荷载效应 (26)3、人群荷载剪力 (27)4、温度作用在拱脚截面产生的内力 (28)5、拱脚截面荷载组合及计算结果 (28)七、裸拱验算 (30)(一)裸拱圈自重在弹性中心产生的弯矩和推力 (30)(二)截面内力 (30)1、拱顶截面 (30)2、14截面 (30)3、拱脚截面 (31)(三)强度和稳定性验算 (31)八、总结 (32)九、参考文献 (33)一、设计背景(一)概述在我国公路桥梁建设中,拱桥,特别是圬工拱桥得到了广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
某拱坝设计计算书一、工程概况某水利枢纽正常水位相应库容982万m3;设计水位675.09m;校核洪水位676.01m,相应库容1027万m3。
拱坝以50一遇洪水设计,500年一遇洪水校核。
二、拱坝坝高及体型设计1.1坝顶高程计算:拱坝中间为溢流坝段,两端为挡水坝段。
溢流坝段为2孔泄流,孔口尺寸为7×4m,采用弧形闸门,堰顶高程为▽671.00m。
校核洪水频率P=0.2%,坝前校核洪水位▽676.01m,坝下校核洪水位▽595.72m。
设计洪水频率P=2%,坝前校核洪水位▽676.01m,坝下设计洪水位▽595.31m。
坝顶高于静水位的超高值△h=h l+h z+h ch l——波浪高度(m)。
h z——波浪中心线至正常或校核洪水位的高差(m)。
h c——安全加高(m)。
(《混凝土重力坝规范》P43)坝的安全级别为Ⅲ级,校核洪水位时h c=0.3m,设计洪水位h c=0.4m。
h l=0.0166V05/4D1/3L=10.4(h l)0.8V 0——计算风速(m/s )D ——风作用于水域的长度(km ),称为吹程。
相应季节50年重现期的最大风速为20m/s ,相应洪水期最大风速的多年平均风速为9.90 m/s 。
吹程为0.4km 。
h z =LHcth L h l ππ22H ——坝前水深(m ),校核洪水位H=73.41m ,设计洪水位H=72.49m 。
1.2校核洪水位时:h l =0.0166×9.945×0.431=0.215mL=10.4 ×(0.215)0.8=3.041m h z =041.341.732041.3215.02ππcth=0.048m △h=0.215+0.048+0.3=0.56m校核洪水位坝顶防浪墙高:Z 校坝=Z 校核水位+△h Z 校坝=676.01+0.563=676.57m 1.3设计洪水位时:h l =0.0166×2045×0.431=0.517mL=10.4 ×(0.517)0.8=6.135m h z =135.649.722135.6517.02ππcth=0.137m △h=0.517+0.137+0.4=1.054m设计洪水位坝顶防浪墙高:Z 设坝=Z 设计水位+△hZ设坝=675.09+1.0555=676.14m坝顶高程取以上结果较大值676.60m。
2、拱坝坝体尺寸的初步拟定2.1坝顶宽度为5.00m,最大坝高H=80.6m,β1=0.65 ,凸度β2=0.18最大倒悬度S=0.25。
Z0=β1H=0.65×80.6=52.39mD A=β2H=0.18×80.6=14.51m2.2拱冠梁厚度设计T C=5m,T52.39=21m,T B=24m3、WES溢流堰剖面设计采用WES实用堰,2表孔溢流,堰顶高程671.00m,空口尺寸为4×7(高×宽)。
3.1堰顶O 点上游三段圆弧的半径及其水平坐标值为: H d =675.09-671.00=4.09m R 1=0.50 H d =0.50×4.09=2.045m X 1=-0.175 H d =-0.175×4.09=-0.716m R 2=0.20 H d =0.20×4.09=0.818m X 2=-0.276 H d =-0.276×4.09=-1.129m R 2=0.04 H d =0.04×4.09=0.164m X 2=-0.282 H d =-0.282×4.09=-1.153m3.2 O 点下游的曲线方程))85.15.0⎝⎛= ⎝⎛ddH xH y85.1151.0x y =按上式算得的坐标值如下:3.3坡度m=0.7的下游直线段CD 与曲线OC 相切于C 点。
C 点坐标X C ,Y C 如下求得:对堰面曲线求一阶导数85.0279.0x dx dy= 直线CD 的坡度为 8.011==m dx dy 故 8.01279.085.0=x X C =5.38m Y C =3.396m2. 4鼻坎挑流的泄洪方式,66.118.92965.0⨯⨯⨯=v =14.588m/s挑流鼻坎水深h 1=q/v=21.423÷14.588=1.468m 为R=(4~10)h 1反弧半径R=6.00m ,挑射角α=25° 二、拱坝水力学计算 1、挑流消能计算 1.1.1校核水位工况校核水位工况挑流消能计算,校核水位676.01m,校核水位下游水位605.02,河床高程599.20。
溢流堰顶宽度14m ,挑流鼻坎宽度15.24m 。
最大下泄流量326.5m ,鼻坎单宽流量q=21.423m 3/s.m 。
[])cos (2sin cos cos sin 1212212h h g v v v gL ÷÷÷=θθθθθ L ——自挑流鼻坎摸段末端起至下游河床床面的挑流水舌外缘挑距,mθ——挑流水舌水面出射角,近视可取用鼻坎挑角,(°) h 1——挑流鼻坎末端法向水深,m h 2——鼻坎坎顶至下游河床高差,m ,v ——挑坎坎顶至水面流速,m/s ,可按鼻坎处平均流速v 的1.1倍计。
关于鼻坎的平均流速。
适用范围,S <3218q s=16.47m 18×21.4232/3=138.84m 此公式使用02gZ v φ=21Z h Z h j f --=φq Z S h f /014.05.10767.0=v ——鼻坎末端断面平均流速,m/s Z 0——鼻坎末端断面水面以上的水头,mφ——流速系数h f ——泄槽沿程损失,mh j ——泄槽各项局部水头损失之和,m ,可取h j /Z 0为0.05 S ——泄槽流程长度,mQ ——泄槽单宽流量,m 3/(s.m ) Z 0=11.66m423.21/66.1147.16014.05.1767.0⨯⨯=f h =0.22m05.066.11145.012--=φ=0.931 66.118.92965.0⨯⨯⨯=v =14.588m/s挑流鼻坎水深h 1=q/v=21.423÷14.588=1.468mL=⎥⎥⎦⎤⎢⎢⎣⎡+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯)15.6525cos 468.1(8.9225sin 588.1425cos 588.1425cos 25sin 588.148.91222=57.72m1.1.2冲刷坑最大水垫深度4121Z kq T =T ——自下游水面至坑底最大水垫深度m q ——鼻坎末端断面单宽流量m 3/(s.m ) Z ——上下游水位差m K ——综合冲刷系数Z=70.99m k=1.2 q=21.423 m 3/(s.m )412199.70423.212.1⨯⨯=T=16.12m 冲坑深度:T 1=16.13-5.82=10.31m 1.2.1设计水位工况设计水位工况挑流消能计算,设计水位675.09m ,设计水位下游水位604.24m ,河床高程599.20m 。
溢流堰顶宽度14m ,挑流鼻坎宽度15.24m 。
最大下泄流量264.8m ,鼻坎单宽流量q=17.375m 3/s.m 。
[])cos (2sin cos cos sin 1212212h h g v v v gL ÷÷÷=θθθθθ L ——自挑流鼻坎摸段末端起至下游河床床面的挑流水舌外缘挑距,mθ——挑流水舌水面出射角,近视可取用鼻坎挑角,(°) h 1——挑流鼻坎末端法向水深,m h 2——鼻坎坎顶至下游河床高差,m ,v ——挑坎坎顶至水面流速,m/s ,可按鼻坎处平均流速v 的1.1倍计。
5.2关于鼻坎的平均流速。
适用范围,S <3218q s=16.47m 18×23.322/3=146.9m 此公式使用02gZ v φ=21Z h Z h j f --=φq Z S h f /014.05.10767.0=v ——鼻坎末端断面平均流速,m/s Z 0——鼻坎末端断面水面以上的水头,mφ——流速系数h f ——泄槽沿程损失,mh j ——泄槽各项局部水头损失之和,m ,可取h j /Z 0为0.05 S ——泄槽流程长度,mQ ——泄槽单宽流量,m 3/(s.m ) h 1=0.05m Z 0=10.46m375.17/46.1047.16014.05.1767.0⨯⨯=f h =0.234m05.046.10234.012--=φ=0.928 46.108.92963.0⨯⨯⨯=v =13.789m/sh 1=q/v=17.375÷13.789=1.260mL=⎥⎥⎦⎤⎢⎢⎣⎡+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯)15.6525cos 26.1(8.9225sin 789.1325cos 789.1325cos 25sin 789.138.91222=53.99m1.2.2冲刷坑最大水垫深度4121Z kq T =T ——自下游水面至坑底最大水垫深度m q ——鼻坎末端断面单宽流量m 3/(s.m ) Z ——上下游水位差m K ——综合冲刷系数Z=70.85m k=1.2 q=17.375 m 3/(s.m )412185.70375.172.1⨯⨯=T=14.51m 冲坑深度:T 1=14.51-5.04=9.47m 三、荷载计算及表数 1静水压力h P w W γ=水的容重w γ=1t/m 3 2动水压力溢流坝面的反弧段上的动水压力强度dr gr rqvP =式中:P r ——垂直与反弧面的动水压力t/m 2q ——泄洪单宽流量 m 3/s.m g ——重力加速度 9.81m/s 2 r d ——反弧段的曲率半径 m v ——反弧段上的平均流速 m/s1h q v =v=747.132.23=13.349m/s h 1为跃前水深0222131=+-gq zh h按水力学公式计算,h f 为头损失,z 为水库水位至反弧段最低点的距离。
Z=10.83 m h 1=1.747m2/353.658.9349.1332.231m t p r =⨯⨯⨯=动水压力的水平分力)cos (cos 12θθ-=d r x r p p=6.353×5×(34.51cos 25cos -O )=8.945t/m 2垂直分力)sin (sin 12θθ-=d r y r p p=6.353×5×(O O +25sin 34.51sin )=38.229t/m 23扬压力浮托力P U =h w γ下=1×8.675=8.75t/m 2 渗透压力P=1×145.44+0.91×57.97+0.78×54.6=240.78t/m4浪压力31450166.0D v h b ==0.0166×2045×0.431=0.517mL=10.4(l h )0.8=10.4 ×(0.517)0.8=6.135m h z =135.649.722135.6517.02ππcth=0.137m )(4z b wh h L B +=γ=)137.0517.0(135.641+⨯⨯ =4.012t/m 25淤沙压力坝前淤沙高程Z沙=631.24m淤沙r=14 KN/m3空隙率n=0.4内摩察角θ=186、拱坝计算参数汇总⑴、校核洪水位高程676.01m,校核洪水下游水位605.02m。