2018届中考数学复习《几何证明与计算》专题训练含答案

合集下载

2018届中考数学复习专题(七)圆的有关计算与证明(含答案)

2018届中考数学复习专题(七)圆的有关计算与证明(含答案)

(2017浙江衢州第19题)如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D。

连结OD,作BE ⊥CD于点E,交半圆O于点F。

已知CE=12,BE=9[来源:学#科#网Z#X#X#K](1)求证:△COD∽△CBE;(2)求半圆O的半径r的长[来源:学#科#网Z#X#X#K]:试题解析:(1)∵CD切半圆O于点D,∴CD⊥OD,∴∠CDO=90°,∵BE⊥CD,∴∠E=90°=∠CDO,又∵∠C=∠C,∴△COD∽△CBE.(2)在Rt△BEC中,CE=12,BE=9,∴BC=22CE BE=15,∵△COD∽△CBE.∴OD OCBE BC,即15915r r,解得:r=458.考点:1. 切线的性质; 2.相似三角形的判定与性质.2.(2017山东德州第20题)如图,已知RtΔABC,∠C=90°,D为BC的中点.以AC为直径的圆O交AB于点 E.[来源:](1)求证:DE是圆O的切线.(2)若AE:EB=1:2,BC=6,求AE的长.(1)如图所示,连接OE,CE∵AC是圆O的直径∴∠AEC=∠BEC=90°∵D是BC的中点∴ED=12BC=DC∴∠1=∠2∵OE=OC∴∠3=∠4∴∠1+∠3=∠2+∠4,即∠OED=∠ACD ∵∠ACD=90°∴∠OED=90°,即OE⊥DE又∵E是圆O上的一点∴DE是圆O的切线.考点:圆切线判定定理及相似三角形3.(2017甘肃庆阳第27题)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,AB AN,∴由勾股定理可知:NB=2243∴B(43,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=12NB=ND ,∴∠CND=∠NCD ,∵MC=MN ,∴∠MCN=∠MNC ,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC ⊥CD .∴直线CD 是⊙M 的切线.考点:切线的判定;坐标与图形性质.4.(2017广西贵港第24题)如图,在菱形ABCD 中,点P 在对角线AC 上,且PA PD ,O 是PAD 的外接圆.(1)求证:AB 是O 的切线;(2)若28,tan ,2AC BAC 求O 的半径.【答案】(1)证明见解析;(2)364.(1)连结OP 、OA ,OP 交AD 于E ,如图,∵PA=PD ,∴弧AP=弧DP ,∴OP ⊥AD ,AE=DE ,∴∠1+∠OPA=90°,∵OP=OA ,∴∠OAP=∠OPA ,∴∠1+∠OAP=90°,∵四边形ABCD 为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA ⊥AB ,∴直线AB 与⊙O 相切;(2)连结BD ,交AC 于点F ,如图,∵四边形ABCD 为菱形,∴DB 与AC 互相垂直平分,∵AC=8,tan ∠BAC=22,∴AF=4,tan ∠DAC=DF AF =22,∴DF=22,∴AD=22AF DF =26,∴AE=6,在Rt △PAE 中,tan ∠1=PEAE =22,∴PE=3,设⊙O 的半径为R ,则OE=R ﹣3,OA=R ,在Rt △OAE 中,∵OA 2=OE 2+AE 2,∴R 2=(R ﹣6)2+(3)2,∴R=364,即⊙O 的半径为364.考点:切线的判定与性质;菱形的性质;解直角三角形.5.(2017贵州安顺第25题)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD 的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=2 3,求阴影部分的面积.【答案】(1)证明见解析;(2)43﹣43π.(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,∵OD⊥BC,∴CD=BD,即OD垂中平分BC,∴EC=EB ,在△OCE 和△OBE 中OC OBOE OE EC EB,∴△OCE ≌△OBE ,∴∠OBE=∠OCE=90°,∴OB ⊥BE ,∴BE 与⊙O 相切;(2)解:设⊙O 的半径为r ,则OD=r ﹣1,在Rt △OBD 中,BD=CD=12BC=3,∴(r ﹣1)2+(3)2=r 2,解得r=2,∵tan ∠BOD=BDOD =3,∴∠BOD=60°,∴∠BOC=2∠BOD=120°,在Rt △OBE 中,BE=3OB=23,∴阴影部分的面积=S 四边形OBEC ﹣S 扇形BOC=2S △OBE ﹣S 扇形BOC=2×12×2×23﹣21202360=43﹣43π.考点:切线的判定与性质;扇形面积的计算.6.(2017湖北武汉第21题)如图,ABC 内接于O ,,AB AC CO 的延长线交AB 于点D .(1)求证AO 平分BAC ;(2)若36,sin5BC BAC ,求AC 和CD 的长.【答案】(1)证明见解析;(2)310;9013.(2)过点C 作CE ⊥AB 于E∵sin ∠BAC=35,设AC=5m ,则CE=3m ∴AE=4m ,BE=m在Rt ΔCBE 中,m 2+(3m)2=36 ∴m=3105,∴AC=310延长AO 交BC 于点H ,则AH ⊥BC ,且BH=CH=3,过点O 作OF ⊥AH 交AB 于点F ,∵∠HOC=∠BAC∴OH=4,OC=5。

2018年中考数学总复习经典(几何)试题(含答案)

2018年中考数学总复习经典(几何)试题(含答案)

中考数学总复习经典题(几何)(二)几何试题1、 如图,正方形ABCD 的边长为2,点E 在AB 边上.四边形EFGB 也为正方形,设△AFC 的面积为S ,则 ( )A .S=2B .S=2.4C .S=4D .S 与BE 长度有关2、正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图4所示,点G 在线段DK 上,正方形BEFG 的边长为4,则DEK △的面积为: (A)10 (B)12 (C)14 (D)163、如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,2EF BE =,则AFC S =△ 2cm .4、 如图,在△ABC 中, ο70=∠CAB . 在同一平面内, 将△ABC 绕点A 旋转到△//C AB 的位置, 使得AB CC ///, 则=∠/BAB ( )A. ο30 B. ο35 C. ο40 D. ο50 5、如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆1的半径)得图形34,,,,n P P P L L ,记纸板n P 的面积为n S , 试计算求出2S = ;3S = ;并猜想得到1n n S S --= ()2n ≥。

6、如图,在四边形ABCD 中,P 是对角线BD 的中点,E F ,分别是AB CD ,的中点,18AD BC PEF =∠=o ,,则PFE ∠的度数是 .(第16题)CFD BE A P (第6题)ADCEF GB 3题图 D ABRP F CGK图4E8题10题 12题7、如图,点G 是ABC △的重心,CG 的延长线交AB 于D ,5cm GA =,4cm GC =,3cm GB =,将ADG △绕点D 旋转180o得到BDE △,则DE = cm ,ABC △的面积= cm 2.8、如图,已知梯形ABCD ,AD BC ∥,4AD DC ==,8BC =,点N 在BC 上,2CN =,E 是AB 中点,在AC 上找一点M 使EM MN +的值最小,此时其最小值一定等于( ) A .6B .8C .4D .439、将一副直角三角板按图示方法放置(直角顶点重合),则AOB DOC ∠+∠= o.10、已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE=AP =1,PB = 5 .下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为 2 ;③EB ⊥ED ;④S △APD +S △APB =1+ 6 ;⑤S 正方形ABCD =4+ 6 .其中正确结论的序号是()A .①③④B .①②⑤C .③④⑤D .①③⑤11、如图,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为 ( ) A.5:3 B.3:5 C.4:3 D.3:412、如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,将腰CD 以D 为中心逆时针旋转90°至ED ,AE 、DE ,△ADE 的面积为3,则BC 的长为 . 13、如图,四边形OABC 为菱形,点B 、C 在以点O 为为圆心的上,若OA = 3,∠1 = ∠2,则扇形OEF 的面积为_________.14、 如图,点P 是∠AOB 的角平分线上一点,过点P 作PC ∥OA 交OB 于点C.若∠AOB = 60o,OC = 4,则点P 到OA 的距离PD 等于__________. 15、如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .32 B .76 C .256D .2B AC D O P (第14题) AD B EC (第15题) ABE G CD(第7题)C D AO B30°45°A D EM(第11题(第13题)O A B C F 1 2 E E D(第20题)16、如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且OP AB //.若阴影部分的面积为π9,则弦AB 的长为( )A .3B .4C .6D .917、如图,等腰△ABC 中,底边a BC =,︒=∠36A ,ABC ∠的平分线交AC 于D ,BCD ∠的平分线交BD 于E ,设215-=k ,则=DE ( )A .a k 2B .a k 3C .2k aD .3ka18、如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件是19、如图,把矩形纸条ABCD 沿EF 、GH 同时折叠,B 、C 两点恰好落在AD 边的P 点处,若∠FPH=90°,PF=8,PH=6,则矩形ABCD 的边BC 长为 . 20、.梯形ABCD 中AB ∥CD ,∠ADC +∠BCD =90°,以AD 、AB 、BC 为斜边向形外作等腰直角三角形,其面积分别是S 1、S 2、S 3 ,且S 1 +S 3 =4S 2,则CD =( )A. 2.5ABB. 3ABC. 3.5ABD. 4AB21、如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 .22、如图,已知a ∥b ,∠1=70°,∠2=40°,则∠3= __________。

精品上海市各区2018届精品中考二模数学分类汇编:几何证明专题(含答案)

精品上海市各区2018届精品中考二模数学分类汇编:几何证明专题(含答案)

上海市各区2018届九年级中考二模数学试卷精选汇编几何证明专题宝山区、嘉定区23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图6,在正方形ABCD 中,点M 是边BC 上的一点(不与B 、C 重合),点N 在CD 边的延长线上,且满足︒=∠90MAN ,联结MN 、AC ,MN 与边AD 交于点E . (1)求证;AN AM =;(2)如果NAD CAD ∠=∠2,求证:AE AC AM ⋅=2.23.证明:(1)∵四边形ABCD 是正方形∴AD AB =,︒=∠=∠=∠=∠90BCD ADC B BAD ……1分 ∴︒=∠+∠90MAD MAB ∵︒=∠90MAN∴︒=∠+∠90MAD NAD ∴NAD MAB ∠=∠………1分 ∵︒=∠+∠180ADC ADN ∴︒=∠90ADN ……1分 ∴ADN B ∠=∠……………………1分 ∴△ABM ≌△ADN ………………………1分 ∴AN AM = ……………………………1分(2)∵四边形ABCD 是正方形 ∴AC 平分BCD ∠和BAD ∠∴︒=∠=∠4521BCD BCA ,︒=∠=∠=∠4521BAD CAD BAC ……1分 ∵NAD CAD ∠=∠2 ∴︒=∠5.22NAD∵NAD MAB ∠=∠ ∴︒=∠5.22MAB ………1分 ∴︒=∠5.22MAC ∴︒=∠=∠5.22NAE MAC ∵AN AM =,︒=∠90MAN ∴︒=∠45ANE∴ANE ACM ∠=∠…………………1分图6图6∴△ACM ∽△ANE …………1分 ∴ANACAE AM =……1分 ∵AN AM =∴AE AC AM ⋅=2…………1分长宁区23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =. (1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵BC AD // ∴BG DG BE AD = (2分)∵AG GFBE AD =∴AGGF BG DG = (1分) ∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分) ∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分)ACDEF GB第23题图崇明区23.(本题满分12分,第(1)、(2)小题满分各6分)如图,AM 是ABC △的中线,点D 是线段AM 上一点(不与点A 重合).DE AB ∥交BC 于点K ,CE AM ∥,联结AE . (1)求证:AB CMEK CK=; (2)求证:BD AE =.23.(本题满分12分,每小题6分) (1)证明:∵DE AB ∥∴ ABC EKC =∠∠ ……………………………………………………1分∵CE AM ∥∴ AMB ECK =∠∠ ……………………………………………………1分∴ABM EKC △∽△ ……………………………………………………1分 ∴AB BMEK CK=………………………………………………………1分 ∵ AM 是△ABC 的中线∴BM CM = ………………………………………………………1分∴AB CMEK CK=………………………………………………………1分 (2)证明:∵CE AM ∥∴DE CMEK CK =………………………………………………………2分 又∵AB CMEK CK=∴DE AB = ………………………………………………………2分 又∵DE AB ∥(第23题图)ABK MCDE∴四边形ABDE 是平行四边形 …………………………………………1分 ∴BD AE = ………………………………………………………1分奉贤区23.(本题满分12分,每小题满分各6分)已知:如图7,梯形ABCD ,DC ∥AB ,对角线AC 平分∠BCD , 点E 在边CB 的延长线上,EA ⊥AC ,垂足为点A . (1)求证:B 是EC 的中点;(2)分别延长CD 、EA 相交于点F ,若EC DC AC ⋅=2,求证:FC AC AF AD ::=.黄浦区23.(本题满分12分)如图,点E 、F 分别为菱形ABCD 边AD 、CD 的中点. (1)求证:BE =BF ;(2)当△BEF 为等边三角形时,求证:∠D =2∠A .23. 证:(1)∵四边形ABCD 为菱形,∴AB =BC =AD =CD ,∠A =∠C ,——————————————————(2分)ACD E图7B又E、F是边的中点,∴AE=CF,——————————————————————————(1分)∴△ABE≌△CBF———————————————————————(2分)∴BE=BF. ——————————————————————————(1分)(2)联结AC、BD,AC交BE、BD于点G、O. ——————————(1分)∵△BEF是等边三角形,∴EB=EF,又∵E、F是两边中点,∴AO=12AC=EF=BE.——————————————————————(1分)又△ABD中,BE、AO均为中线,则G为△ABD的重心,∴1133OG AO BE GE===,∴AG=BG,——————————————————————————(1分)又∠AGE=∠BGO,∴△AGE≌△BGO,——————————————————————(1分)∴AE=BO,则AD=BD,∴△ABD是等边三角形,———————————————————(1分)所以∠BAD=60°,则∠ADC=120°,即∠ADC=2∠BAD. —————————————————————(1分)金山区23.(本题满分12分,每小题6分)如图7,已知AD是△ABC的中线,M是AD的中点,过A点作AE∥BC,CM的延长线与AE相交于点E,与AB相交于点F.(1)求证:四边形AEBD是平行四边形;(2)如果AC=3AF,求证四边形AEBD是矩形.E AFM23.证明:(1)∵AE //BC ,∴∠AEM =∠DCM ,∠EAM =∠CDM ,……………………(1分)又∵AM=DM ,∴△AME ≌△DMC ,∴AE =CD ,…………………………(1分) ∵BD=CD ,∴AE =BD .……………………………………………………(1分) ∵AE ∥BD ,∴四边形AEBD 是平行四边形.……………………………(2分)(2)∵AE //BC ,∴AF AEFB BC=.…………………………………………………(1分) ∵AE=BD=CD ,∴12AF AE FB BC ==,∴AB=3AF .……………………………(1分) ∵AC=3AF ,∴AB=AC ,…………………………………………………………(1分) 又∵AD 是△ABC 的中线,∴AD ⊥BC ,即∠ADB =90°.……………………(1分) ∴四边形AEBD 是矩形.……………………………………………………(1分)静安区23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分) 已知:如图,在平行四边形ABCD 中, AC 、DB 交于点E , 点F 在BC 的延长线上,联结EF 、DF ,且∠DEF =∠ADC .(1)求证:DBABBF EF =; (2)如果DF AD BD ⋅=22,求证:平行四边形ABCD 是矩形.23.(本题满分12分,第(1)小题6分,第(2)小题6分) 证明:(1)∵平行四边形ABCD ,∴AD //BC ,AB //DC∴∠BAD +∠ADC =180°,……………………………………(1分) 又∵∠BEF +∠DEF =180°, ∴∠BAD +∠ADC =∠BEF +∠DEF ……(1分)C第23题图AB DEFA DE∵∠DEF =∠ADC ∴∠BAD =∠BEF , …………………………(1分) ∵AB //DC , ∴∠EBF =∠ADB …………………………(1分)∴△ADB ∽△EBF ∴DB ABBF EF = ………………………(2分) (2) ∵△ADB ∽△EBF ,∴BFBEBD AD =, ………………………(1分) 在平行四边形ABCD 中,BE =ED =BD 21∴221BD BE BD BF AD =⋅=⋅∴BF AD BD ⋅=22, ………………………………………(1分) 又∵DF AD BD ⋅=22∴DF BF =,△DBF 是等腰三角形 …………………………(1分) ∵DE BE =∴FE ⊥BD , 即∠DEF =90° …………………………(1分) ∴∠ADC =∠DEF =90° …………………………(1分) ∴平行四边形ABCD 是矩形 …………………………(1分)闵行区23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)如图,已知在△ABC 中,∠BAC =2∠C ,∠BAC 的平分线AE 与∠ABC 的平分线BD 相交于点F ,FG ∥AC ,联结DG .(1)求证:BF BC AB BD ⋅=⋅; (2)求证:四边形ADGF 是菱形.23.证明:(1)∵AE 平分∠BAC ,∴∠BAC =2∠BAF =2∠EAC .∵∠BAC =2∠C ,∴∠BAF =∠C =∠EAC .…………………………(1分) 又∵BD 平分∠ABC ,∴∠ABD =∠DBC .……………………………(1分) ∵∠ABF =∠C ,∠ABD =∠DBC ,∴ABF CBD ∆∆∽.…………………………………………………(1分) ∴AB BFBC BD=.………………………………………………………(1分) ∴BF BC AB BD ⋅=⋅.………………………………………………(1分) (2)∵FG ∥AC ,∴∠C =∠FGB ,∴∠FGB =∠FAB .………………(1分)ABEGCFD(第23题图)∵∠BAF =∠BGF ,∠ABD =∠GBD ,BF =BF ,∴ABF GBF ∆∆≌.∴AF =FG ,BA =BG .…………………………(1分) ∵BA =BG ,∠ABD =∠GBD ,BD =BD ,∴ABD GBD ∆∆≌.∴∠BAD =∠BGD .……………………………(1分) ∵∠BAD =2∠C ,∴∠BGD =2∠C ,∴∠GDC =∠C ,∴∠GDC =∠EAC ,∴AF ∥DG .……………………………………(1分) 又∵FG ∥AC ,∴四边形ADGF 是平行四边形.……………………(1分) ∴AF =FG .……………………………………………………………(1分) ∴四边形ADGF 是菱形.……………………………………………(1分)普陀区23.(本题满分12分)已知:如图9,梯形ABCD 中,AD ∥BC ,DE ∥AB ,DE 与对角线AC 交于点F ,FG ∥AD ,且FG EF =. (1)求证:四边形ABED 是菱形; (2)联结AE ,又知AC ⊥ED ,求证:212AE EF ED =.23.证明:(1)∵ AD ∥BC ,DE ∥AB ,∴四边形ABED 是平行四边形. ··························· (2分)∵FG ∥AD ,∴FG CFAD CA=. ·················································································· (1分) 同理EF CFAB CA = . ··································································································· (1分) 得FG AD =EF AB∵FG EF =,∴AD AB =. ···················································································· (1分) ∴四边形ABED 是菱形. ························································································· (1分) (2)联结BD ,与AE 交于点H .ABC DE FG图9∵四边形ABED 是菱形,∴12EH AE =,BD ⊥AE . ····································· (2分) 得90DHE ∠= .同理90AFE ∠=.∴DHE AFE ∠∠=.································································································ (1分) 又∵AED ∠是公共角,∴△DHE ∽△AFE . ··················································· (1分)∴EH DEEF AE =. ········································································································· (1分) ∴212AE EF ED =. ······························································································ (1分) 青浦区23.(本题满分12分,第(1)、(2)小题,每小题6分)如图7,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点M ,点E 在边 BC 上,且 DAE DCB ∠=∠,联结AE ,AE 与BD 交于点F .(1)求证:2DM MF MB =⋅; (2)联结DE ,如果3BF FM =,求证:四边形ABED 是平行四边形.23.证明:(1)∵AD //BC ,∴∠=∠DAE AEB , ····························································· (1分)∵∠=∠DCB DAE ,∴∠=∠DCB AEB , ··········································· (1分) ∴AE //DC , ···································································································· (1分)∴=FM AMMD MC.·························································································· (1分) ∵AD //BC ,∴=AM DMMC MB, ····································································· (1分) ∴=FM DMMD MB, ························································································· (1分) 即2=⋅MD MF MB .(2)设=FM a ,则=3BF a ,=4BM a . ························································· (1分)由2=⋅MD MF MB ,得24=⋅MD a a ,∴2=MD a , ································································································ (1分) ∴3==DF BF a . ························································································ (1分) ∵AD //BC ,∴1==AF DFEF BF, ····································································· (1分) MFE DCBA图7∴=AF EF , ································································································· (1分) ∴四边形ABED 是平行四边形. ······································································ (1分)松江区23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)如图,已知梯形ABCD 中,AB ∥CD ,∠D =90°,BE 平分∠ABC ,交CD 于点E , F 是AB 的中点,联结AE 、EF ,且AE ⊥BE .求证:(1)四边形BCEF 是菱形;(2)2BE AE AD BC ⋅=⋅.23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分) 证明:(1) ∵BE 平分∠ABC ,∴∠ABE =∠CBE …………………………………………………1分 ∵AE ⊥BE ∴∠AEB =90° ∵F 是AB 的中点 ∴12EF BF AB ==………………………………………………1分 ∴∠FEB =∠FBE …………………………………………………1分 ∴∠FEB =∠CBE …………………………………………………1分 ∴EF ∥BC …………………………………………………1分 ∵AB ∥CD∴四边形BCEF 是平行四边形…………………………1分 ∵EF BF =∴四边形BCEF 是菱形……………………………………1分(2) ∵四边形BCEF 是菱形, ∴BC =BF∵12BF AB =(第23题图)FACD E(第23题图)FACD EB∴AB =2BC ………………………………………………1分∵ AB ∥CD∴ ∠DEA =∠EAB∵ ∠D =∠AEB∴ △EDA ∽△AEB ………………………………………2分∴AD AE BE AB = …………………………………………1分 ∴ BE ·AE =AD ·AB∴ 2BE AE AD BC ⋅=⋅…………………………………1分徐汇区23. 在梯形ABCD 中,AD ∥BC ,AB CD =,BD BC =,点E 在对角线BD 上,且DCE DBC ∠=∠.(1)求证:AD BE =;(2)延长CE 交AB 于点F ,如果CF AB ⊥,求证:4EF FC DE BD ⋅=⋅.杨浦区23、(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图7,在□ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD于点E、F,过点G 的直线MN分别交边AD、BC于点M、N,且∠AGE=∠CGN。

2018年中考数学专题复习卷 命题与证明(含解析)

2018年中考数学专题复习卷 命题与证明(含解析)

命题与证明一、选择题1.下列说法正确的是()A. 真命题的逆命题是真命题 B. 原命题是假命题,则它的逆命题也是假命题C. 定理一定有逆定理D. 命题一定有逆命题【答案】D【解析】:A、真命题的逆命题可能是真命题,也可能是假命题,故A不符合题意;B、原命题是假命题,则它的逆命题可能是假命题,也可能是真命题,故B不符合题意;C、逆定理一定是真命题,定理不一定有逆定理,故C不符合题意;D、任意一个命题都有逆命题;故D符合题意;故答案为:D【分析】根据把一个命题的条件和结论互换就得到它的逆命题,用逻辑方法判断为正确的命题叫定理,任何命题都有逆命题,对各选项逐一判断即可。

2.下列命题为真命题的是()。

A.两条直线被一组平行线所截,所得的对应线段成比例B.相似三角形面积之比等于相似比C.对角线互相垂直的四边形是菱形D.顺次连结矩形各边的中点所得的四边形是正方形【答案】A【解析】:A.根据平行线分线段成比例定理即可判断正确,A符合题意;B.相似三角形面积之比等于相似比的平方,故错误,B不符合题意;C.对角线互相垂直的平行四边形是菱形,故错误,C不符合题意;D.顺次连结矩形各边的中点所得的四边形是正菱形,故错误,D不符合题意;故答案为:A.【分析】A.根据平行线分线段成比例定理即可判断对错;B.根据相似三角形的性质即可判断对错;C.根据菱形的判定即可判断对错;D.根据矩形的性质和三角形中位线定理即可判断对错;3.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A. 点在圆内B. 点在圆上 C. 点在圆心上 D. 点在圆上或圆内【答案】D【解析】:点与圆的位置关系只有三种:点在圆内、点在圆上、点在圆外,如果点不在圆外,那么点就有可能在圆上或圆内故答案为D【分析】运用反证法证明,第一步就要假设结论不成立,即结论的反面,要考虑到反面所有的情况。

4.下列语句中,是命题的是()①若1=60 ,2=60 ,则1= 2;②同位角相等吗;③画线段AB=CD;④一个数能被2整除,则它也能被4整除;⑤直角都相等.A. ①④⑤B. ①②④C. ①②⑤D. ②③④⑤【答案】A【解析】:①若∠ 1=60 ∘,∠ 2=60 ∘,则∠ 1= ∠ 2;它是命题;②同位角相等吗,不是命题;③画线段AB=CD,不是命题;④一个数能被2整除,则它也能被4整除,是命题;⑤直角都相等.是命题;故事命题的有:①④⑤故答案为:A【分析】根据命题是判断一件事情的语句,构成命题必须有已知条件和结论,逐一判断即可求解。

河北省2018年中考数学总复习 几何证明专题

河北省2018年中考数学总复习 几何证明专题

河北中考复习之几何证明1、如图1,E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是【】A.22B.21 C.23 D.322、如图2,在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=12,BD=9,则此梯形的中位线长是A.10 B.212C.152D.123、小明爸爸的风筝厂准备购进甲、乙两种规格相同但颜色不同的布料生产一批形状如图3所示的风筝,点E,F,G,H分别是四边形ABCD各边的中点.其中阴影部分用甲布料,其余部分用乙布料(裁剪两种布料时,均不计余料).若生产这批风筝需要甲布料30匹,那么需要乙布料A.15匹B.20匹C.30匹D.60匹4、如图4,若将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于.5、一个正方形和两个等边三角形的位置如图5所示,若∠3=50°,则∠1+∠2=()A.90° B.100° C.130° D.180°6、把三张大小相同的正方形卡片A,B,C叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图6-1摆放时,阴影部分的面积为S1;若按图6-2摆放时,阴影部分的面积为S2,则S1 S2(填“>”、“<”或“=”).7、如图7-1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得到图7-2,则阴影部分的周长为.8、用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图8-1,用n个全等的正六边形按这种方式拼接,如图8-2,若围成一圈后中间也形成一个正多边形,则n的值为.9、如图10,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是()A.7 B.8 C.9 D.10、平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图10,则∠3+∠1-∠2= .BCDEF GHA图3AB CD图4图2AB CDABDCERPQ图1图5 图6-1 图7-1 图8-2图6-2 图7-2 图8-1图14 图10 图11 图12 图1312、如图12,边长为a 的正六边形内有两个三角形(数据如图),则空白阴影s s A . 3 B.4 C .5 D . 613、如图13,M 是铁丝AD 的中点,将该铁丝首尾相接折成△ABC ,且∠B=30°,∠C=100°,如图13.则下列说法正确的是( )A .点M 在AB 上 B .点M 在BC 的中点处 C .点M 在BC 上,且距点B 较近,距点C 较远D .点M 在BC 上,且距点C 较近,距点B 较远14、如图14,将长为8cm 的铁丝首尾相接围成半径为2cm 的扇形.则扇形s =15、小宇同学在一次手工制作活动中,先把一张矩形纸片按图9—1的方式进行折叠,使折痕的左侧部分比右侧部分短1cm ;展开后按图9—2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm ,再展开后,在纸上形成的两条折痕之间的距离是A .0.5cmB .1cmC .1.5cmD .2cm16、如图15,等边△ABC 的边长为1cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ′处,且点A ′在△ABC 外部,则阴影部分图形的周长为 cm .17、如图16,△ABC 中,D ,E 分别是边AB ,AC 的中点.若DE=2,则BC=( )A .2 B .3 C .4 D .5 18、如图17,将长为2、宽为1的矩形纸片分割成n 个三角形后,拼成面积为2的正方形,则n ≠( ) A .2 B .3 C .4 D .519、如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A ,B 围成的正方体上的距离是( )A .0 B .1 C .2 D . 320、如图14,已知△ABC (AC <BC ),用尺规在BC 上确定一点P ,使PA+PC=BC ,则符合要求的作图痕迹是( )A .B .C .D .20、嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD ,并写出了如下不完整的已知和求证. 已知:如图1,在四边形ABCD 中,BC=AD ,AB= 求证:四边形ABCD 是 四边形. (1)在方框中填空,以补全已知和求证; (2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为 . 21、如图,△ABC 中,AB=AC ,∠BAC=40°,将△ABC 绕点A 按逆时针方向旋转100°.得到△ADE ,连接BD ,CE 交于点F .左 右左 右 第二次折叠 第一次折叠 图9-1 图9-2 图15 图16 图17 图14(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABFE是菱形.22、如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,又知∠EFD=∠BCD,请问你能推出什么结论?(直接写出一个结论,要求结论中含有字母E)23、如图,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.22.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.23、在一平直河岸l同侧有A,B两个村庄,A,B到l的距离分别是3 km和2 km,AB= a km(a>1).现计划在河岸l上建一抽水站P,用输水管向两个村庄供水.方案设计某班数学兴趣小组设计了两种铺设管道方案:图13-1是方案一的示意图,设该方案中 管道长度为d 1,且d 1=PB+BA (km )(其中BP ⊥ l 于点P );图13-2是方案二的示意图,设该方案中管道长度为d 2 ,且d 2=PA +PB (km )(其中点A '与点A 关于l 对称,A 'B 与l 交于点P ).观察计算(1)在方案一中,d 1= km (用含a的式子表示);(2)在方案二中,组长小宇为了计算d 2的长,作了如图13-3所示的辅助线,请你按小宇同学的思路计算,d 2=km (用含a 的式子表示). 探索归纳(1)①当a = 4时,比较大小: d 1 d 2(填“>”、“=”或“<”);②当a = 6时,比较大小: d 1 d 2(填“>”、“=”或“<”);(2)请你参考右边方框中的方法指导,就a (当a >1时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?24、在正方形ABCD 中,点E 是AD 上一动点,MN ⊥AB 分别交AB ,CD 于M ,N ,连接BE 交MN 于点O ,过O 作OP ⊥BE 分别交AB ,CD 于P ,Q .探究:(1)如图①,当点E 在边AD 上时,请你动手测量三条线段AE ,MP ,NQ 的长度,猜测AE 与MP+NQ 之间的数量关系,并证明你所猜测的结论;探究:(2)如图②,若点E 在DA 的延长线上时,AE ,MP ,NQ 之间的数量关系又是怎样请直接写出结论; 再探究:(3)如图③,连接并延长BN 交AD 的延长线DG 于H ,若点E 分别在线段DH 和射线HG 上时,请在图③中完成符合题意的图形,并判断AE ,MP ,NQ 之间的数量关系又分别怎样?请直接写出结论.25、在图14-1至图14-3中,点B 是线段AC 的中点,点D 是线段CE 的中点.四边形BCGF 和CDHN 都是正方形.AE 的中点是M .(1)如图14-1,点E 在AC 的延长线上,点N 与点G 重合时,点M 与点C 重合,求证:FM = MH ,FM ⊥MH ;∵22()()m n m n m n -=+-,m +n >0, ∴(22m n -)与(m n -)的符号相同. 当22m n ->0时,m n ->0,即m >n ; 当22m n -= 0时, m n -= 0,即m =n 当22m n -<0时,m n -<0,即m <n . 方法指导 当不易直接比较两个正数m 与n 的 大小时,可以对它们的平方进行比较:A l 图13 -1 A B l A ' 图13 -2 A B P C 图13 -3 K l A ' BPC(2)将图14-1中的CE 绕点C 顺时针旋转一个锐角,得到图14-2,求证:△FMH 是等腰直角三角形; (3)将图14-2中的CE 缩短到图14-3的情况,△FMH 还是等腰直角三角形吗?(不必说明理由)26、操作示例 对于边长均为a 的两个正方形ABCD 和EFGH ,按图11—1所示的方式摆放,再沿虚线BD ,EG 剪开后,可以按图中所示的移动方式拼接为图11—1中的四边形BNED .从拼接的过程容易得到结论:①四边形BNED 是正方形; ②S 正方形ABCD +S 正方形EFGH =S 正方形BNED .实践与探究(1)对于边长分别为a ,b (a >b )的两个正方形ABCD 和EFGH ,按图11—2所示的方式摆放,连结DE ,过点D 作DM ⊥DE ,交AB 于点M ,过点M 作MN ⊥DM ,过点E 作EN ⊥DE ,MN 与EN 相交于点N .①证明四边形MNED 是正方形,并用含a ,b 的代数式表 示正方形MNED 的面积;②在图11—2中,将正方形ABCD 和正方形EFGH 沿虚线剪开后,能够拼接为正方形MNED .请简略说明你的拼接方法(类比图11—1,用数字表示对应的图形).(2)对于n (n 是大于2的自然数)个任意的正方形,能否通过若干次拼接,将其拼接为一个正方形?请简要说明你的理由.27、如图14—1,14—2,四边形ABCD 是正方形,M 是AB 延长线上一点.直角三角尺的一条直角边经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点A ,B 重合),另一条直角边与∠CBM 的平分线BF 相交于点F .(1)如图14—1,当点E 在AB 边的中点位置时: ①通过测量DE ,EF 的长度,猜想DE 与EF 满足的数量关系是 ;②连接点E 与AD 边的中点N ,猜想NE 与BF 满足的数量关系是 ;③请证明你的上述两个猜想.(2)如图14—2,当点E 在AB 边上的任意位置时,请你在AD 边上找到一点N ,使得NE =BF ,进而猜想此时DE 与EF 有怎样的数量关系.28、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想;A B C D E F GM图11—2(H ) A CDF图14—1 N A B C D E M F 图14—2 43 2 1 A B C D E F (H ) 图11—1 (G ) 5 6图14(2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.29、在图14-1—14-5中,正方形ABCD 的边长为a ,等腰直角三角形FAE 的斜边AE =2b ,且边AD 和AE 在同一直线上.操作示例 当2b <a 时,如图14-1,在BA 上选取点G ,使BG =b ,连结FG 和CG ,裁掉△FAG 和△CGB 并分别拼接到△FEH 和△CHD 的位置构成四边形FGCH .思考发现小明在操作后发现:该剪拼方法就是先将△FAG 绕点F 逆时针旋转90°到△FEH 的位置,易知EH 与AD 在同一直线上.连结CH ,由剪拼方法可得DH =BG ,故△CHD ≌△CGB ,从而又可将△CGB 绕点C 顺时针旋转90°到△CHD 的位置.这样,对于剪拼得到的四边形FGCH (如图14-1),过点F 作FM ⊥AE 于点M (图略),利用SAS 公理可判断△HFM ≌△CHD ,易得FH =HC =GC =FG ,∠FHC =90°.进而根据正方形的判定方法,可以判断出四边形FGCH 是正方形.实践探究(1)正方形FGCH 的面积是 ;(用含a ,b 的式子表示)(2)类比图14-1的剪拼方法,请你就图14-2—图14-4的三种情形分别画出剪拼成一个新正方形的示意图.联想拓展小明通过探究后发现:当b ≤a 时,此类图形都能剪拼成正方形,且所选取的点G 的位置在BA 方向上随着b 的增大不断上移.当b >a 时,如图14-5的图形能否剪拼成一个正方形?若能,请你在图中画出剪拼的示意图;若不能,简要说明理由.图E 图图(2b =a ) (a <2b <2a ) (b图14-1 (2b <a )图(b >a ) 图13-2 G图13-3图13-1 A ( E )D。

中考数学几何证明与计算专练

中考数学几何证明与计算专练

几何证明与计算专练1、如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D,E,F为BC中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.(1)线段BH与AC相等吗?若相等给予证明,若不相等请说明理由;(2)求证:BG2﹣GE2=EA2.2、等边△ABC的边长为2,P是BC边上的任一点(与B、C不重合),连接AP,以AP为边向两侧作等边△APD和等边△APE,分别与边AB、AC交于点M、N(如图1)。

(1)求证:AM=AN;(2)设BP=x。

①若,BM=38,求x的值;②记四边形ADPE与△ABC重叠部分的面积为S,求S与x之间的函数关系式以及S的最小值;③连接DE,分别与边AB、AC交于点G、H(如图2),当x取何值时,∠BAD=150?并判断此时以DG、GH、HE这三条线段为边构成的三角形是什么特殊三角形,请说明理由。

3、在正方形ABCD 中,对角线AC ,BD 交于点O ,点P 在线段BC 上(不含点B ),∠BPE =12∠ACB ,PE 交BO 于点E ,过点B 作BF ⊥PE ,垂足为F ,交AC 于点G .(1)当点P 与点C 重合时(如图①),求证:△BOG ≌△POE ; (2)通过观察、测量、猜想:BFPE,并结合图②证明你的猜想;(3)把正方形ABCD 改为菱形,其他条件不变(如图③),若∠ACB =α,求BFPE的值.(用含α的式子表示)4、如图,在正方形ABCD 中,E 是BC 上的一点,连结AE ,作BF ⊥AE ,垂足为H ,交CD 于F ,作CG ∥AE ,交BF 于G .(1)求证CG =BH ;(2)FC 2=BF·GF ;(3)22AB FC =GBGF .(图①)(图③)(图②)BEF G OBDACPP5、已知:在△ABC中,∠ACB=90°,点P是线段AC上一点,过点A作AB的垂线,交BP的延长线于点M,MN⊥AC于点N,PQ⊥AB于点Q,AQ=MN.(1)如图1,求证:PC=AN;(2)如图2,点E 是MN上一点,连接EP并延长交BC于点K,点D是AB上一点,连接DK,∠DKE=∠ABC,EF⊥PM 于点H,交BC延长线于点F,若NP=2,PC=3,CK:CF=2:3,求DQ的长.7、在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE= 度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.8、如图1,在等边△ABC中,点D是边AC的中点,点P是线段DC上的动点(点P与点C不重合),连接BP.将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连接AA1,射线AA1分别交射线PB、射线B1B于点E、F.(1)如图1,当0°<α<60°时,在α角变化过程中,△BEF与△AEP 始终存在关系(填“相似”或“全等”),并说明理由;(2)如图2,设∠ABP=β.当60°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;(3)如图3,当α=60°时,点E、F与点B重合.已知AB=4,设DP=x,△A1BB1的面积为S,求S关于x的函数关系式.9、如图(1),在直角△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E在AC上,BE交CD于点G,EF⊥BE交AB于点F,若AC=mBC,CE=nEA(m,n为实数).试探究线段EF与EG的数量关系.(1)如图(2),当m=1,n=1时,EF与EG的数量关系是.(2)如图(3),当m=1,n为任意实数时,EF与EG的数量关系是.(3)如图(1),当m,n均为任意实数时,EF与EG的数量关系是.(写出关系式,不必证明)10、已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF 的外心;(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断1DM+1DN是否为定值.若是,请求出该定值;若不是.请说明理由.11、已知:在△ABC中,BC=2AC,∠DBC=∠ACB,BD=BC,CD交线段AB于点E.(1)如图l,当∠ACB=90°时,则线段DE、CE之间的数量关系为;(2)如图2,当∠ACB=120°时,求证:DE=3CE;(3)如图3,在(2)的条件下,点F是BC边的中点,连接DF,DF与AB交于G,△DKG和△DBG关于直线DG对称(点B的对称点是点K,延长DK交AB于点H.若BH=10,求CE的长.12、如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90o,且EF交正方形外角的平分线CF于点F (1)证明:∠BA E=∠FEC;(2)证明:△AG E≌△ECF;(3)求△AEF的面积.13、(1)如图1,在正方形ABCD 中,M 是BC 边(不含端点B 、C )上任意一点,P 是BC 延长线上一点,N 是∠DCP 的平分线上一点.若∠AMN=90°,求证:AM=MN .(下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明)证明:在边AB 上截取AE=MC ,连ME .正方形ABCD 中,∠B=∠BCD=90°,AB=BC . ∴∠NMC=180°—∠AMN —∠AMB=180°—∠B —∠AMB=∠MAB=∠MAE . (下面请你完成余下的证明过程)(2)若将(1)中的“正方形ABCD ”改为“正三角形ABC ”(如图2),N 是∠ACP 的平分线上一点,则当∠AMN=60°时,结论AM=MN 是否还成立?请说明理由.(3)若将(1)中的“正方形ABCD ”改为“正n 边形ABCD ……X ”,请你作出猜想:当∠AMN= °时,结论AM=MN 仍然成立.(直接写出答案,不需要证明)14、Rt△ABC 与Rt△FED 是两块全等的含30o 、60o角的三角板,按如图(一)所示拼在一起,CB 与DE 重合.(1)求证:四边形ABFC 为平行四边形;(2)取BC 中点O ,将△ABC 绕点O 顺时钟方向旋转到如图(二)中△C B A '''位置,直线C B ''与AB 、CF 分别相交于P 、Q 两点,猜想OQ 、OP 长度的大小关系,并证明你的猜想. (3)在(2)的条件下,指出当旋转角至少为多少度时,四边形PCQB 为菱形(不要求证明).图(二)图(一)FFB(D)M N P D C E B A 图1 M NP C B A图215、在Rt ABC △中,902BAC AB AC ∠=== ,,点D 在BC 所在的直线上运动,作45ADE ∠=(A D E ,,按逆时针方向).(1)如图1,若点D 在线段BC 上运动,DE 交AC 于E . ①求证:ABD DCE △∽△;②当ADE △是等腰三角形时,求AE 的长. (2)①如图2,若点D 在BC 的延长线上运动,DE 的反向延长线与AC 的延长线相交于点E ',是否存在点D ,使ADE '△是等腰三角形?若存在,写出所有点D 的位置;若不存在,请简要说明理由;②如图3,若点D 在BC 的反向延长线上运动,是否存在点D ,使ADE △是等腰三角形?若存在,写出所有点D 的位置;若不存在,请简要说明理由.45 CDB A E E 'C ABD E 第28题图2 第28题图3 45 45 A B D C E 第28题图1。

人教版2018年数学中考《代数几何综合问题》复习题含答案

人教版2018年数学中考《代数几何综合问题》复习题含答案

2018年数学中考代数几何综合问题(1)专项练习1. 如图⑴,在平面直角坐标系中,O 为坐标原点,抛物线2+8+16+6y ax ax a =经过点B (0,4)。

⑴求抛物线的解析式;⑵设抛物线的顶点为D ,过点D 、B 作直线交x 轴于点A ,点C 在抛物线的对称轴上,且C 点的纵坐标为4-,连接BC 、AC 。

求证:△ABC 是等腰直角三角形;⑶在⑵的条件下,将直线DB 沿y 轴向下平移,平移后的直线记为l ,直线l 与x 轴、y 轴分别交于点A ′、B ′,是否存在直线l ,使△A ′B ′C 是直角三角形,若存在,求出直线l 的解析式,若不存在,请说明理由。

2. 二次函数2y ax bx c =++的图象的一部分如图所示。

已知它的顶点M 在第二象限,且经过点A (1,0)和点B (0,1)。

(1)试求a ,b 所满足的关系式;所满足的关系式;(2)设此二次函数的图象与x 轴的另一个交点为C ,当△AMC 的面积为△ABC 面积的54倍时,求a 的值; (3)是否存在实数a ,使得△ABC 为直角三角形。

若存在,请求出a 的值;若不存在,请说明理由。

请说明理由。

3. 如图,在平面直角坐标系中,二次函数26y ax x c =++的图象经过点A (4,0)、B (-1,0),与y 轴交于点C ,点D 在线段OC 上,OD =t ,点E 在第二象限,∠ADE =90°,12tan DAE Ð=,EF ⊥OD ,垂足为F 。

(1)求这个二次函数的解析式;)求这个二次函数的解析式;(2)求线段EF 、OF 的长(用含t 的代数式表示);的值。

(3)当△ECA为直角三角形时,求t的值。

代数几何综合问题(1)专项练习参考答案1. (1)解:由题意知:16a+6=4解得:a=81-故抛物线的解析式为:4812+--=x x y 。

⑵证明:由抛物线的解析式知:顶点D 坐标为(-4,6)∵点C 的纵坐标为-4,且在抛物线的对称轴上,∴C 点坐标为(-4,-4) 设直线BD 解析式为:()40y kx k =+¹,有:644k =-+,∴12k =-∴直线BD 解析式为142y x =-+ ∴直线BD 与x 轴的交点A 的坐标为(8,0) 过点C 作CE ⊥y 轴于点E ,则CE =4,BE =8 又∵OB =4,OA =8,∴CE =OB ,BE =OA ,∠CEB =∠BOA =90° ∴△CEB ≌△BOA (SAS ) ∴CB =AB ,∠CBE =∠BAO∵∠BAO +∠ABO =90°,∴∠CBE +∠ABO =90° 即∠ABC =90° ∴△ABC 是等腰直角三角形。

2018届中考数学复习专题(六)四边形有关的计算与证明(含答案)

2018届中考数学复习专题(六)四边形有关的计算与证明(含答案)
5
【解析】 试题分析:( 1)①分别在 Rt△ ABC, Rt△ BDC中,求出 AB、 BD 即可解决问题; ②想办法证明 DP∥ BC, DP=BC即可; ( 2)如图 2 中,作 DN⊥AB 于 N, PE⊥ AC 于 E,延长 BD 交 PA于 M .设 B D=AD=x,则 CD=4﹣ x,在 Rt△ BDC中,
∴ AB= 22 42
∵ AD=CD=2,
2 5,
∴ BD= 22 22
∵△ BCD是等腰直角三角形, ∴∠ BDC=45°, ∴∠ ADB=∠ BDP=135°, ∴∠ PDC=135°﹣ 45°=90°, ∴∠ BCD=∠ PDC=90°, ∴ DP∥ BC,∵ PD=AD=BC=2, ∴四边形 BCPD是平行四边形. ( 2)如图 2 中,作 DN⊥AB 于 N, PE⊥ AC 于 E,延长 BD 交 PA于 M .
( 1)如图 1,若点 D 是 AC 中点,连接 PC . ①写出 BP, BD 的长;②求证:四边形 BCPD 是平行四边形 .
( 2)如图 2,若 BD AD ,过点 P 作 PH BC 交 BC 的延长线于点 H ,求 PH 的长 .
4 【答案】( 1)① BD=2 2 , BP= 2 5 .②证明见解析; ( 2) .
∴ EO= BE2 OB2
2 13

3
4 13
∴ EF=2EO=

3
考点:矩形的性质;平行四边形的判定与性质;菱形的性质.
5.(2017 广西吴江第 26 题)已知,在 Rt ABC 中, ACB 90 , AC 4, BC 2, D 是 AC 边上的一个动点,将 ABD 沿 BD 所在直线折叠,使点 A 落在点 P 处 .
4 13

吉林省农安县2018中考数学《计算、统计和证明》专项训练含答案-教育文档

吉林省农安县2018中考数学《计算、统计和证明》专项训练含答案-教育文档

中考数学计算、统计和证明专项训练(一)三、解答题16. (8分)先化简,再求值:2234221121x x x x x x ++÷+骣琪-琪---桫,其中x 是不等式组30211x x ì+>ïí-<ïî的整数解. 17. (9分)图1表示的是某综合商场今年1~5月的商品各月销售总额的情况,图2表示的是商场服装部...各月销售额占商场当月销售总额的百分比情况,来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,观察图1、图2,解答下列问题: (1)请你根据题中信息将图1中的统计图补充完整. (2)商场服装部...5月份的销售额是多少万元?(3)小刚观察图2后认为,5月份商场服装部...的销售额比4月份减少了.你同意他的看法吗?请说明理由. 18. (9分)已知菱形ABCD 中,∠B =60°,点E 在边BC 上,点F 在边CD 上.(1)如图1,若E 是BC 的中点,∠AEF =60°,求 证:BE =DF ;(2)如图2,若∠EAF =60°,求证:△AEF 是等边 三角形.中考数学计算、统计和证明专项训练(二)三、解答题16. (8分)先化简:221211111x x x x x x ⎛⎫-+-+÷ ⎪+-+⎝⎭,然后从不等式组2324x x -+⎧⎨<⎩≤的解集中,选取一个你认为符合题意的x 的值代入求值.17. (9分)小明参加班长竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.如图是7位评委对小明“演讲答辩”的评分统计图及全班50位同学民主测评票数统计图.(1)求评委给小明演讲答辩分数的众数,以及民主测评为“良好”票数的扇形圆心角度数; (2)小明的综合得分是多少?(3)在竞选中,小亮的民主测评得分为82分,如 果他的综合得分不小于小明的综合得分,那么他的演讲答辩得分至少是多少分?18. (9分)已知:如图,在四边形ABCD 中,∠ABC =90°,CD ⊥AD ,AD 2+CD 2=2AB 2.(1)求证:AB =BC ;(2)当BE ⊥AD 于点E 时,试证明:BE =AE +CD . 中考数学计算、统计和证明专项训练(三) 三、解答题16. (8分)(1)若方程组ax y b x by a +=⎧⎨-=⎩的解是11x y =⎧⎨=⎩,求2()()()a b a b a b +--+的值. (2)解不等式组:302(1)33≥x x x +>⎧⎨-+⎩,并判断-1这两个数是否为该不等式组的解.17. (9分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A ,B ,C ,D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整). 请根据以上信息回答:(1)本次参加抽样调查的居民有___________人;(2)扇形统计图中:a =_________,b =________,并把条形统计图补充完整; (3)若居民区有8 000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A ,B ,C ,D 粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.18. (9分)如图,在□A B C D 中,延长C D 到E ,使D E =C D ,连接B E ,交A D 于点F ,交A C 于点G .(1)求证:AF =DF ;(2)若BC =2AB ,且DE =1,∠ABC =60°,求FG图2CF D A EB评分规则:(1)演讲答辩得分按“去掉一个最高分和一个最低分,计算平均分”的方法确定.(2)民主测评得分=“优秀”票数×2+“良好”票数×1+“一般”票数×0.(3)综合得分=演讲答辩得分×0.4+民主测评得分×0.6.EDCBA的长.中考数学计算、统计和证明专项训练(四)三、解答题16. (8分)(1)计算:()1132sin 458-⎛⎫π-︒- ⎪⎝⎭.(2)用配方法解方程:2221xx x -=+.17. (9分)九年级(1)班开展了为期一周的“孝敬父母,帮做家务”社会活动,并根据学生帮家长做家务的时间来评价学生在活动中的表现,把评价结果划分成A ,B ,C ,D ,E 五个等级.老师通过家长调查了全班50名学生在这次活动中帮父母做家务的时间,制作成如下的频数分布表和扇形统计图. (1)求a ,b 的值;(2)根据频数分布表估计该班学生在这次社会活动中帮父母做家务的平均时间; (3)该班的小明同学这一周帮父母做家务2小时,他认为自己帮父母做家务的时间比班级里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计量说明理由.18. (9分)已知:在△ABC 中,AC =BC ,∠ACB =90°,点D 是AB 边的中点,点E 是AB 边上一点.(1)如图1,BF ⊥CE 于点F ,交CD 于点G ,求证:AE =CG ;(2)如图2,AH ⊥CE ,垂足为点H ,交CD 的延长线于点M ,找出图中与BE 相等的线段,并证明.中考数学计算、统计和证明专项训练(五)三、解答题16. (8分)(1)先化简,再求值:2(3)(2)(2)x x x +++-,其中x =-2;(2)解不等式组:43+4212x xx x ->⎧⎪⎨<-⎪⎩. 17. (9分)某中学对本校500名毕业生中考体育加试测试情况进行调查,根据男生1 000米及女生800米测试成绩整理、绘制成如下不完整的统计图(图1、图2).图1 图2 请根据统计图提供的信息,回答下列问题: _________人,女生有_________人; a =________,b =________,并补全条形 a %”所对应的扇形圆心角的度数; 1 000米成绩为10分的概率是多少?18. ABCD 中,AD ∥BC ,AB =CD ,分别以AB ,CD 为边向外侧作等边三角形ABE 和等边三角形DCF ,连接AF ,(1)求证:AF =DE ;(2)若∠BAD =45°,AB =a ,△ABE 和△DCF 的面积之和等于梯形ABCD 的面积,求BC 的长.中考数学计算、统计和证明专项训练(六)三、解答题16. (8分)(1)先化简再求值:22122121x x x x xx x x ---⎛⎫-÷ ⎪+++⎝⎭,其中x 满足x 2-x -1=0. (2)解方程组:352215x yx y ⎧⎪⎪⎨⎪⎪⎩+=-=. 17. (9分)在书香校园活动中,某中学举行了“我和春天有个约会”的活动,聘请了10位老师和10位学生担任评委,其中甲班的得分情况如下统计图表所示.图1G FC BA人数1802060204020女生男生成绩10分9分8分8分180160140120100806040200图2H MABDECFDCB E A(1)在频数分布直方图中,自左向右第四组的频数为______,并补全频数分布直方图; (2)学生评委计分的中位数是_________分; (3)计分办法规定:老师、学生评委的计分各去 掉一个最高分、一个最低分,分别计算平均分, 且按老师、学生各占60%、40%的方法计算各班最 后得分.已知甲班最后得分为94.4分,求统计表 中x 的值.18. (9分)如图,正方形ABCD 的边长为3,E ,F 分别是AB ,BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:EF =FM ;(2)当AE =1时,求EF 的长.中考数学计算、统计和证明专项训练(七)三、解答题16. (8分)有一道题:“先化简再求值:642222x x x x x x --⎛⎫-÷⋅+ ⎪++⎝⎭(),其中x=x =x =,但他的计算结果也是正确的,请你通过计算解释这是怎么回事.17. (9分)6月5日是世界环境日,为了普及环保知识,增强环保意识,某市第一中学举行了“环保知识竞赛”,参赛人数1 000人,为了了解本次竞赛的成绩情况,学校团委从中抽取部分学生的成绩(满分为100分,得分取整数)进行统计,并绘制出不完整的频率分布表和频数分布直方图如下:(1)表中a =______,b =______,并补全频数分布直方图.(2)若成绩在80分以上(含80(3)若这组被抽查的学生成绩的中位数是80分的至少有多少人.18. (9分)如图,点E 是矩形ABCD F 落在AD 上.(1)求证:△ABF ∽△DFE ;(2)若sin ∠DFE =31,求tan ∠EBC 三、解答题16. (8分)先化简,再求值:222442a a a a a a -⎛-÷ ⎪++++⎝⎭,其中a 满足2210a a +-=.17. (9分)近年来,北京市大力发展轨道交通,轨道运营里程大幅增加,2019年北京市又调整修订了2019至2020年轨道交通线网的发展规划.以下是根据北京市轨道交通指挥中心发布的有关数据制作的统计图表的一部分. 请根据以上信息解答下列问题:(1)补全条形统计图并在图中标明相应数据;(2)按照2019年规划方案,预计2020年北京市轨道交通运营总里程将达到多少千米?(3)要按时完成截至2019年的轨道交通规划任务,从2019到2019年这4年中,平均每年需新增运营里程多少千米?18. (9分)如图,在梯形A B C D 中,A D ∥B C ,E 是B C 边上一点,且C E =8,B C =12,C D =,∠C=30°,∠B=60°.点P 是BC 边上一动点(包括B ,C 两点),设PB 的长为x . (1)当x=_________时,以P ,A ,D ,E 为顶点的四边形是直角梯形. (2)当x=_________时,以P ,A ,D ,E 为顶点的四边形是平行四边形.(3)当点P 在BC 边上运动时,以P ,A ,D ,E 为顶点的四边形能否为菱形?请说明理由.中考数学计算、统计和证明专项训练(九)三、解答题16. (8分)已知22+=0a ab b -,且a ,b 均为正数,先化简:()()222222+244+a b a abb a b a a ab b -----,再求值.M F EDC B A 89.5~99.579.5~89.569.5~79.559.5~69.5频率频数分组49.5~59.5a 2032b 0.080.12E17. (9分)某超市销售多种颜色的运动服装,平均每天销售红、黄、蓝、白四种颜色运动服装的数量如表,由此绘制的不完整的扇形统计图如图:中考数学计算、统计和证明专项训练(十)三、解答题16. (8分)下课了,老师给大家布置一道作业题:当1x =+()()22211112x x x x x x -+⎛⎫+÷+ ⎪-⎝⎭的值,雯雯一看,感慨道:“今天的作业要算很久啊!”你能找到简单的方法帮雯雯快速解决这个问题吗?请写出你的求解过程.17. (9分)某校初三(1)班共有40名同学,在一次30秒打字速度测试中他们的成绩统计如下:(1)表中a=______,b =______,c =______(2)这个班40名同学这次打字成绩的众数是_______个,中位数是______个,极差是______个.(3)用你的方法计算这个班40名同学这次打字成绩的平均数.18. (9分)已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE =AC ,连接AG . 17. (9分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了如下尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).甲、乙两人射箭成绩统计表(1)a =___________,x 乙(2(3)①观察折线图,可看出______定(填“甲”或“乙”)18. (9分)如图,等边三角形ABC 中,AO 是∠BAC 的平分线,D 为AO 上一点,以CD 为一边在CD 下方作等边三角形CDE ,连接BE .(1)求证:△ACD ≌△BCE ;(2)延长BE 至Q ,P 为BQ 上一点,连接CP ,CQ ,使CP =CQ =5.若BC =8,求PQ 的长.中考数学计算、统计和证明专项训练(十二) 三、解答题/个A16. (8分)先化简,再求值:2222223a ab b b ab a a b a b ⎛⎫+++÷+ ⎪--⎝⎭,其中a =-1,请取一个你喜欢的b 的值代入求值.17. (9分)某大学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下两幅不完整的统计图(如图1,图2,要求每位同学只能选择一种自己喜欢的球类).(1)在这次研究中,一共调查了多少名学生? (2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度? (3(4人,试估计该中学喜欢足球的有18. (9分)如图1,Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .AF 平分∠CAB ,交CD 于点E ,交CB 于点F .(1)求证:CE =CF .(2)将图1中的△ADE 沿AB 向右平移到△A′D′E′ 的位置,使点E′ 落在BC 边上,其他条件不变,如图2所示.试猜想BE′与CF 有怎样的数量关系,并证明你的结论.中考数学计算、统计和证明专项训练(一)参考答案 16.原式11x x -=+,不等式组的解集为31x -<<,取x =0,当x =0时,原式=-1.17.(1)4月份商场销售总额为75万元,统计图略;(2)12.8万元;(3)不同意,理由:4月份服装部的销售额为75×17%=12.75(万元)∵12.75<12.8, ∴不同意他的看法.18.证明略.中考数学计算、统计和证明专项训练(二)参考答案16.原式1xx =-,不等式组的解集为-1≤x <2,当x =0时,原式=0(答案不唯一). 17.(1)评委给小明演讲答辩分数的众数为94分,民主测评为“良好”票数的扇形圆心角度数为72°; (2)85.2分; (3)至少是90分. 18.证明略.中考数学计算、统计和证明专项训练(三)参考答案16.(1)2;(2)不等式组的解集为-3<x ≤1,-1组的解.17.(1)600;(2)30,20,统计图略;(3)3 200人;(4)14.18.(1)证明略;(2)3.中考数学计算、统计和证明专项训练(四)参考答案16.(1)7-;(2)1222x x ==17.(1)a =20,b =15;图2E ′B D E C F D ′A ′图2图1排球篮球兵乓球足球40%20%图图1E ′BD E C F BD′A ′FED C A(2)1.68小时;(3)符合实际,理由:设中位数为m ,根据题意,m 的取值范围是1.5≤m <2, 因为小明帮父母做家务的时间大于中位数,所以他帮父母做家务的时间比班 级里一半以上的同学多. 18.(1)证明略;(2)CM ,证明略.中考数学计算、统计和证明专项训练(五)参考答案16.(1)原式=6x +13,当x =-2时,原式=1;(2)2x >.17.(1)300,200;(2)12,62,统计图略; (3)43.2°; (4)35.18.(1)证明略;(2)BC=. 中考数学计算、统计和证明专项训练(六)参考答案16.(1)原式21x x +=,∵x 2-x -1=0,∴原式=1. (2)31x y =⎧⎨=⎩.17.(1)5,频数分布直方图略;(2)95;(3)x 的值为97. 18.(1)证明略;(2)52EF=. 中考数学计算、统计和证明专项训练(七)参考答案16.原式=24x-,当x =x =x 2-4的值均为2 009,∴小明虽然把x 值抄错,但他的计算结果也是正确的. 17.(1)12,0.28,频数分布直方图略;(2)600人; (3)至少有11人. 18.(1)证明略;(2)tan ∠EBC =.中考数学计算、统计和证明专项训练(八)参考答案16.(1)原式212a a=+,当2210a a +-=时,原式=1. 17.(1)统计图略;(2)1 000千米;(3)平均每年需新增运营里程82.75千米.18.(1)2或6;(2)0或8;(3)能成为菱形,理由略.中考数学计算、统计和证明专项训练(九)参考答案16.(1)原式22a ba b+=-,∵22+=0aab b -,且a ,b 均为正数,∴原式=5+.17.(1)160,40,90°,统计图略;(2)12.5元. 18.证明略.中考数学计算、统计和证明专项训练(十)参考答案16.(1)化简得原式=2.17.(1)2,5,8,频数分布直方图略;(2)64,64,19;(3)63个.18.(1)证明略;(2)2.中考数学计算、统计和证明专项训练(十一)参考答案16.(1)原式x yy+=,方程组的解为21xy=⎧⎨=-⎩,∴原式=-1.17.(1)4,6;(2)补全图形略;(3)①乙,验证略;②乙将被选中,理由略.18.(1)证明略;(2)6.中考数学计算、统计和证明专项训练(十二)参考答案16.(1)原式1a b=+,取b=0,原式=-1(答案不唯一).17.(1)100名;(2)36°;(3)统计图略;(4)1.7×104人.18.(1)证明略;(2)B E′=CF,证明略。

2018年中考压轴题汇编《几何证明及通过几何计算进行说理》含答案.doc

2018年中考压轴题汇编《几何证明及通过几何计算进行说理》含答案.doc

3.2几何证明及通过几何计算进行说理问题例1 2017年杭州市中考第22题如图1,在厶ABC中,BC> AC,/ ACB = 90°,点D在AB边上,DE丄AC于点E.(1)若AD =- , AE = 2,求EC 的长;DB 3(2)设点F在线段EC上,点G在射线CB上,以F、C、G为顶点的三角形与△ EDC 有一个锐角相等,FG交CD于点P •问:线段CP可能是△ CFG的高还是中线?或两者都有可能?请说明理由.例2 2017年安徽省中考第23题如图1,正六边形ABCDEF的边长为a, P是BC边上的一动点,过P作PM//AB交AF 于M,作PN//CD交DE于N.(1)①/ MPN =②求PM + PN = 3a;(2)如图2,点O是AD的中点,联结OM、ON.求证:0M = ON.(3)如图3,点O是AD的中点,四边形,并说明理由.OG平分/ MON,判断四边形OMGN是否为特殊的图1 图3例3 2018 年上海市黄浦区中考模拟第24题已知二次函数y=—x2+ bx+ c的图像经过点P(0, 1)与Q(2, —3).( 1 )求此二次函数的解析式;(2)若点A是第一象限内该二次函数图像上一点,过点A作x轴的平行线交二次函数图像于点B,分别过点B、A作x轴的垂线,垂足分别为C、D,且所得四边形ABCD恰为正方形.①求正方形的ABCD 的面积;②联结PA、PD, PD交AB于点E,求证:△ PADPEA.3.2几何证明及通过几何计算进行说理问题答案例1 2017年杭州市中考第22题如图1,在厶ABC中,BC> AC,/ ACB = 90°,点D在AB边上,DE丄AC于点E.(1)若AD =- , AE = 2,求EC 的长;DB 3(2)设点F在线段EC上,点G在射线CB上,以F、C、G为顶点的三角形与△ EDC 有一个锐角相等,FG交CD于点P •问:线段CP可能是△ CFG的高还是中线?或两者都有可能?请说明理由.动感体验请打开几何画板文件名“ 15杭州22”,拖动点D在AB上运动,可以体验到,CP既可以是△ CFG的高,也可以是△ CFG的中线.思路点拨CFG与厶EDC都是直角三角形,有一个锐角相等,分两种情况.2. 高和中线是直角三角形的两条典型线,各自联系着典型的定理,一个是直角三角形的两锐角互余,一个是直角三角形斜边上的中线等于斜边的一半.3. 根据等角的余角相等,把图形中相等的角都标记出来.满分解答(1)由/ ACB = 90°, DE丄AC,得DE//BC .所以些=AD =1 •所以_L =!•解得EC= 6.EC DB 3 EC 3(2)^ CFG与厶EDC都是直角三角形,有一个锐角相等,分两种情况:①如图2,当/ 1 = / 2时,由于/ 2与/ 3互余,所以/ 2与/ 3也互余.因此/ CPF = 90°.所以CP是厶CFG的高.②如图3,当/ 1 = / 3时,PF = PC.又因为/ 1与/ 4互余,/ 3与/ 2互余,所以/ 4=/ 2.所以PC= PG .所以PF = PC = PG .所以CP是厶CFG的中线.综合①、②,当CD是/ ACB的平分线时,CP既是△ CFG的高,也是中线(如图4).图2 图3 图4考点伸展这道条件变换的题目,不由得勾起了我们的记忆:如图5,在厶ABC中,点D是AB边上的一个动点,DE//BC交AC于E, DF//AC交BC于F,那么四边形CEDF是平行四边形.如图6,当CD平分/ ACB时,四边形CEDF是菱形.如图7,当/ACB=90°,四边形CEDF是矩形.如图8,当/ ACB= 90° , CD平分/ ACB时,四边形CEDF是正方形.图6图7 图8例2 2017年安徽省中考第23题如图1,正六边形ABCDEF的边长为a, P是BC边上的一动点,过P作PM//AB交AF于M,作PN//CD交DE于N.(1)①/ MPN =②求PM + PN = 3a;(2)如图2,点O是AD的中点,联结OM、ON.求证:0M = ON.(3)如图3,点O是AD的中点,四边形,并说明理由.动感体验请打开几何画板文件名“ 14安徽23”,拖动点P运动,可以体验到,PM + PN等于正六边形的3条边长.△ AOM ◎△ BOP , △ COP^A DON ,所以OM = OP = ON.还可以体验到,△ MOG与厶NOG是两个全等的等边三角形,四边形OMGN是菱形.思路点拨1. 第(1)题的思路是,把PM + PN转化到同一条直线上.2•第(2)题的思路是,以O为圆心,OM为半径画圆,这个圆经过点N、P •于是想到联结OP,这样就出现了两对全等三角形.3.第(3)题直觉告诉我们,四边形OMGN是菱形.如果你直觉△ MOG与厶NOG是等边三角形,那么矛盾就是如何证明/ MON = 120 ° .满分解答(1)①/ MPN = 60°②如图4,延长FA、ED交直线BC与M'、N ;那么△ ABM'、△ MPM '、△ DCN'、△ EPN都是等边三角形.所以PM + PN= M N = M B + BC+ CN = 3a.(2)如图5,联结OP .由(1)知,AM = BP, DN = CP.由AM = BP,/ OAM = Z OBP = 60°, OA = OB, 得厶AOM ◎△ BOP .所以OM = OP .同理△ COP也厶DON,得ON = OP .所以OM = ON .(3)四边形OMGN是菱形.说理如下:由(2)知,/ AOM =Z BOP,/ DON =Z COP (如图5).OG平分/ MON,判断四边形OMGN是否为特殊的图4 图5图1 图3图6所以/ AOM + / DON = / BOP+Z COP= 60° .所以/ MON = 120° . 如图6,当OG 平分Z MON 时,Z MOG =/ NOG = 60° .又因为Z AOF = Z FOE = Z EOD = 60°,于是可得Z AOM = Z FOG = Z EON . 于是可得厶AOM ◎△ FOG ◎△ EON .所以OM = OG = ON.所以△ MOG与厶NOG是两个全等的等边三角形.所以四边形OMGN的四条边都相等,四边形OMGN是菱形.考点伸展在本题情景下,菱形OMGN的面积的最大值和最小值各是多少?因为△ MOG与厶NOG是全等的等边三角形,所以OG最大时菱形的面积最大,OG最小时菱形的面积最小.OG的最大值等于OA,此时正三角形的边长为a,菱形的最大面积为-^a2.2OG与EF垂直时最小,此时正三角形的边长为3a ,菱形的最小面积为色』a2.2 8例3 2018年上海市黄浦区中考模拟第24题已知二次函数y=—x2+ bx+ c的图像经过点P(0, 1)与Q(2, —3).(1)求此二次函数的解析式;(2)若点A是第一象限内该二次函数图像上一点,过点A作x轴的平行线交二次函数图像于点B,分别过点B、A作x轴的垂线,垂足分别为C、D,且所得四边形ABCD恰为正方形.①求正方形的ABCD的面积;②联结PA、PD, PD交AB于点E,求证:△ PADPEA.动感体验请打开几何画板文件名“ 13黄浦24”,拖动点A在第一象限内的抛物线上运动,可以体验到,/ PAE与/ PDA总保持相等,△ PAD与厶PEA保持相似.请打开超级画板文件名“ 13黄浦24”,拖动点A在第一象限内的抛物线上运动,可以体验到,/ PAE与/ PDA总保持相等,△ PAD与厶PEA保持相似.思路点拨1•数形结合,用抛物线的解析式表示点A的坐标,用点A的坐标表示AD、AB的长,当四边形ABCD是正方形时,AD = AB.2. 通过计算/ PAE与/ DPO的正切值,得到/ PAE = Z DPO =Z PDA ,从而证明厶PADPEA.满分解答(1)将点c =1,P(0, 1)、Q(2, —3)分别代入y=—x2+ bx+ c,得解得b=0,以2b 1 二-3. C=1.所以该二次函数的解析式为y= —x2+ 1.(2)①如图1,设点A的坐标为(x, —x2+ 1),当四边形ABCD恰为正方形时,AD = AB.此时y A= 2x A.解方程—x2+ 1 = 2x,得x - -1 _ 2 .所以点A的横坐标为••.2-1.因此正方形ABCD的面积等于[2( 2 -1)]2 =12 _8 2 .②设OP 与AB 交于点F,那么PF =OP -OF =1 - 2( & -1) =3-= ( "2 - 1)2.所以tan N PAE = 〔)=近_1 .AF 血―1又因为tan • PDA 二tan • DPO = = 2 -1 ,OP所以/ PAE=Z PDA.考点伸展事实上,对于矩形ABCD,总有结论△ PAD s\ PEA•证明如下:如图2,设点A 的坐标为(x, —x2+ 1),那么PF = OP —OF = 1 —( —x2+ 1) = x2.2所以tan ZPA^PF =- x .AF x又因为tan . PDA =tan. DPO =x , OP所以/ PAE=Z PDA .因此△ PADPEA .。

2018重庆中考数学25题几何证明

2018重庆中考数学25题几何证明

2018重庆中考数学25题⼏何证明2017年12⽉04⽇⽉之恒的初中数学组卷⼀.解答题(共23⼩题)1.(2017?贵港)已知:△ABC是等腰直⾓三⾓形,动点P在斜边AB所在的直线上,以PC为直⾓边作等腰直⾓三⾓形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:①线段PB= ,PC= ;②猜想:PA2,PB2,PQ2三者之间的数量关系为;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成⽴,请你利⽤图②给出证明过程;(3)若动点P满⾜=,求的值.(提⽰:请利⽤备⽤图进⾏探求)2.(2017?保亭县模拟)如图1,在△ABC和△EDC中,AC=CE=CB=CD,∠ACB=∠ECD=90°,AB与CE交于F,ED与AB、BC分别交于M、H.(1)试说明CF=CH;(2)如图2,△ABC不动,将△EDC从△ABC的位置绕点C顺时针旋转,当旋转⾓∠BCD 为多少度时,四边形ACDM是平⾏四边形,请说明理由;(3)当AC=时,在(2)的条件下,求四边形ACDM的⾯积.3.(2017春?嘉兴期末)如图,菱形ABCD中,∠ABC=60°,有⼀度数为60°的∠MAN绕点A旋转.(1)如图①,若∠MAN的两边AM,AN分别交BC,CD于点E,F,则线段CE,DF的⼤⼩关系如何?请证明你的结论;(2)如图②,若∠MAN的两边AM,AN分别交BC,CD的延长线于点E,F,则线段CE,DF还有(1)中的结论吗?请说明你的理由.4.(2017?营⼝)【问题探究】(1)如图1,锐⾓△ABC中分别以AB、AC为边向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接B D,CE,试猜想BD与CE的⼤⼩关系,并说明理由.【深⼊探究】(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45°,求BD 的长.(3)如图3,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.5.(2017?菏泽)如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上⼀点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是⼀个固定的值吗?若是,请求出它的度数;若不是,请说明理由.6.(2017春?重庆校级期末)如图1,△ABC中,BE⊥AC于点E,AD⊥BC于点D,连接DE.(1)若AB=BC,DE=1,BE=3,求△ABC的周长;(2)如图2,若AB=BC,AD=BD,∠ADB的⾓平分线DF交BE于点F,求证:BF=DE;(3)如图3,若AB≠BC,AD=BD,将△ADC沿着AC翻折得到△AGC,连接DG、EG,请猜想线段AE、BE、DG之间的数量关系,并证明你的结论.7.(2017?于洪区⼀模)如图1,在△ABC中,∠ACB为锐⾓,点D为射线BC上⼀点,连接AD,以AD为⼀边且在AD的右侧作正⽅形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为,线段CF、BD的数量关系为;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成⽴,并说明理由;(2)如果AB≠AC,∠BAC是锐⾓,点D在线段BC上,当∠ACB满⾜什么条件时,CF⊥BC(点C、F不重合),并说明理由.8.(2017?绍兴)(1)如图1,正⽅形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直⾓三⾓形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN =45°,若BM=1,CN=3,求MN的长.9.(2017?东营)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂⾜分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐⾓或钝⾓.请问结论DE=BD+CE是否成⽴?如成⽴,请你给出证明;若不成⽴,请说明理由.(3)拓展与应⽤:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E 三点互不重合),点F为∠BAC平分线上的⼀点,且△ABF和△ACF均为等边三⾓形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.10.(2017?昭通)已知△ABC为等边三⾓形,点D为直线BC上的⼀动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成⽴?若不成⽴,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边CB的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.11.(2017?常德)已知两个共⼀个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同⼀直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.12.(2017?庐阳区校级模拟)如图,将两个全等的直⾓三⾓形△ABD、△ACE拼在⼀起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的⼤⼩改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成⽴吗?说明理由. 13.(2017?武汉模拟)已知△ABC中,AB=AC.(1)如图1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求证:CD=BE;(2)如图2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=3,CD=4,求BD 的长;(3)如图3,在△ADE中,当BD垂直平分AE于H,且∠BAC=2∠ADB时,试探究CD2,BD2,AH2之间的数量关系,并证明.14.(2017?长春)感知:如图①,点E在正⽅形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明)拓展:如图②,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD 上,∠1、∠2分别是△ABE、△CAF的外⾓.已知AB=AC,∠1=∠2=∠BAC,求证:△ABE≌△CAF.应⽤:如图③,在等腰三⾓形ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的⾯积为9,则△ABE与△CDF的⾯积之和为.15.(2017?昌平区模拟)(1)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD;(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成⽴?(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成⽴?若成⽴,请证明;若不成⽴,请写出它们之间的数量关系,并证明.16.(2017?哈尔滨模拟)已知△ABC是等腰三⾓形,AB=AC,D为边BC上任意⼀点,DE⊥AB 于E,DF⊥AC于F,且E,F分别在边AB,AC上.(1)如图a,当△ABC是等边三⾓形时,证明:AE+AF=BC.(2)如图b,若△ABC中,∠BAC=120°,探究线段AE,AF,AB之间的数量关系,并对你的猜想加以证明.(3)如图c,若△ABC中,AB=10,BC=16,EF=6,利⽤你对(1),(2)两题的解题思路计算出线段CD(BD>CD)的长.17.(2017?绍兴)数学课上,李⽼师出⽰了如下框中的题⽬.⼩敏与同桌⼩聪讨论后,进⾏了如下解答:(1)特殊情况?探索结论当点E为AB的中点时,如图1,确定线段AE与的DB⼤⼩关系.请你直接写出结论:AE DB(填“>",“<"或“=”).(2)特例启发,解答题⽬解:题⽬中,AE与DB的⼤⼩关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)(3)拓展结论,设计新题在等边三⾓形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).18.(2017?沈阳)已知,△ABC为等边三⾓形,点D为直线BC上⼀动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成⽴;(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成⽴?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.19.(2017?梅州)如图1,已知线段AB的长为2a,点P是AB上的动点(P不与A,B重合),分别以AP、PB为边向线段AB的同⼀侧作正△APC和正△PBD.(1)当△APC与△PBD的⾯积之和取最⼩值时,AP= ;(直接写结果)(2)连接AD、BC,相交于点Q,设∠AQC=α,那么α的⼤⼩是否会随点P的移动⾯变化?请说明理由;(3)如图2,若点P固定,将△PBD绕点P按顺时针⽅向旋转(旋转⾓⼩于180°),此时α的⼤⼩是否发⽣变化?(只需直接写出你的猜想,不必证明)20.(2017?抚顺)如图1,在△ABC中,∠ABC=90°,AB=BC,BD为斜边AC上的中线,将△ABD绕点D顺时针旋转α(0°<α<180°),得到△EFD,点A的对应点为点E,点B的对应点为点F,连接BE、CF.(1)判断BE与CF的位置、数量关系,并说明理由;(2)若连接BF、CE,请直接写出在旋转过程中四边形BCEF能形成哪些特殊四边形;(3)如图2,将△ABC中AB=BC改成AB≠BC时,其他条件不变,直接写出α为多少度时(1)中的两个结论同时成⽴.21.(2017?安徽模拟)如图,在△ABC中,AB=AC=a,BC=b,且2a>b,BG⊥AC于G,DE⊥AB于E,DF⊥AC于F.(1)在图(1)中,D是BC边上的中点,计算DE+DF和BG的长(⽤a,b表⽰),并判断DE+DF与BG的关系.(2)在图(2)中,D是线段BC上的任意⼀点,DE+DF与BG的关系是否仍然成⽴?如果成⽴,证明你的结论;如果不成⽴,请说明理由.(3)在图(3)中,D是线段BC延长线上的点,探究DE、DF与BG的关系.(不要求证明)22.(2017?丹东)如图,已知等边三⾓形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上⼀动点,△DMN为等边三⾓形(点M的位置改变时,△DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线N E上?都请直接写出结论,不必证明或说明理由;(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成⽴?若成⽴,请利⽤图2证明;若不成⽴,请说明理由;(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF 的数量关系是否仍然成⽴?若成⽴,请直接写出结论,不必证明或说明理由.23.(2017?铁岭)△ABC是等边三⾓形,点D是射线BC上的⼀个动点(点D不与点B、C重合),△ADE是以AD为边的等边三⾓形,过点E作BC的平⾏线,分别交射线AB、AC于点F、G,连接BE.(1)如图(a)所⽰,当点D在线段BC上时.①求证:△AEB≌△ADC;②探究四边形BCGE是怎样特殊的四边形?并说明理由;(2)如图(b)所⽰,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成⽴;(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.。

2018年人教版中考数学《几何证明综合题》专项复习含答案

2018年人教版中考数学《几何证明综合题》专项复习含答案

2018年中考数学几何证明综合题热点聚焦(1)专项练习1. 已知:在△AOB 与△COD 中,OA =OB ,OC =OD ,︒=∠=∠90COD AOB 。

(1)如图1,点C 、D 分别在边OA 、OB 上,连接AD 、BC ,点M 为线段BC 的中点,连接OM ,则线段AD 与OM 之间的数量关系是__________,位置关系是__________。

(2)如图2,将图1中的△COD 绕点O 逆时针旋转,旋转角为α(︒<<︒900α)。

连接AD 、BC ,点M 为线段BC 的中点,连接OM 。

请你判断(1)中的两个结论是否仍然成立。

若成立,请证明;若不成立,请说明理由。

(3)如图3,将图1中的△COD 绕点O 逆时针旋转到使△COD 的一边OD 恰好与△AOB 的边OA 在同一条直线上时,点C 落在OB 上,点M 为线段BC 的中点。

请你判断(1)中线段AD 与OM 之间的数量关系是否发生变化,写出你的猜想,并加以证明。

2. 在Rt △ABC 中,AB=BC ,∠B=90°,将一块等腰直角三角板的直角顶点O 放在斜边AC 上,将三角板绕点O 旋转。

(1)当点O 为AC 中点时,①如图1,三角板的两直角边分别交AB ,BC 于E 、F 两点,连接EF ,猜想线段AE 、CF 与EF 之间存在的等量关系(无需证明);②如图2,三角板的两直角边分别交AB ,BC 延长线于E 、F 两点,连接EF ,判断①中的猜想是否成立。

若成立,请证明;若不成立,请说明理由;(2)当点O 不是AC 中点时,如图3,三角板的两直角边分别交AB ,BC 于E 、F 两点,若14 AO AC =,求OE OF的值。

3. 在矩形ABCD 中,点F 在AD 延长线上,且DF =DC ,M 为AB 边上一点,N 为MD 的中点,点E 在直线CF 上(点E 、C 不重合)。

(1)如图1,若AB =BC ,点M 、A 重合,E 为CF 的中点,试探究BN 与NE 的位置关系及BMCE 的值,并证明你的结论;(2)如图2,且若AB =BC ,点M 、A 不重合,BN =NE ,你在(1)中得到的两个结论是否成立,若成立,加以证明;若不成立,请说明理由;(3)如图3,若点M、A不重合,BN=NE,你在(1)中得到的两个结论是否成立,若不成立,请直接写出你的结论。

初中数学专题复习几何的证明与计算(含答案)

初中数学专题复习几何的证明与计算(含答案)

专题复习3 几何的证明与计算◆考点链接几何的证明与计算是中考的必考题型,几何的证明题常以全等和相似为载体,与圆的有关知识相结合;几何计算题则是把几何知识与代数知识有机结合起来,渗透数形结合思想,重在考查分析问题的能力、逻辑思维和推理能力. ◆典例精析【例题1】(天津)已知Rt △ABC 中,∠ACB=90°,AC=6,BC=8. (1)如图①,若半径为r 1的⊙O 1是Rt △ABC 的内切圆,求r 1;(2)如图②,若半径为r 2的两个等圆⊙O 1、⊙O 2外切,且⊙O 1与AC 、AB 相切,⊙O 2与BC 、AB 相切,求r 2;(3)如图③,当n 是大于2的正整数时,若半径为r n 的n 个等圆⊙O 1、⊙O 2、…、⊙O n 依次外切,且⊙O 1与AC 、AB 相切,⊙O n 与BC 、AB 相切,⊙O 2、⊙O 3、…、⊙O n-1均与AB 边相切,求r n .解:(1)∵在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,∴.如图,设⊙O 1与Rt △ABC 的边AB 、BC 、CA 分别切于点D 、E 、F ,连接O 1D 、O 1E 、O 1F 、AO 1、BO 1、CO 1.于是,O 1D ⊥AB ,O 1E ⊥BC ,O 1F ⊥AC ,S △AO1C =12AC·O 1F=12AC·r 1=3r 1, S △BO1C =12BC·O 1E=12BC·r 1=4r 1,S △AO1B =12AB·O 1D=12AB·r 1=5r 1, S △ABC =12AC·BC=24.又∵S △ABC =S △AO1C +S △BO1C +S △AO1B , ∴24=3r 1+4r 1+5r 1, ∴r 1=2.(2)如图,连接AO 1、BO 2、CO 1、CO 2、O 1O 2,则S △AO1C =12AC·r 2=3r 2, S △BO2C =12BC·r 2=4r 2,∵等圆⊙O 1、⊙O 2外切, ∴O 1O 2=2r 2,且O 1O 2∥AB .过点C 作CM ⊥AB 于点M ,交O 1O 2于点N ,则CM=AC BC AB =245, CN=CM -r 2=245-r 2,∴S △CO1O2 =12O 1O 2·CN=(245-r 2)r 2,∴S 梯形AO1O2B =12(2r 2+10)r 2=(r 2+5)r 2.∵S △ABC =S △AO1C +S △BO2C +S △CO1O2 +S 梯形AO1O2B , ∴24=3r 2+4r 2+(245-r 2)r 2+(r 2+5)r 2. 解得r 2=107. (3)如图,连接AO 1、BO n 、CO 1、CO n 、O 1O n ,则S △AO1C =12AC·r n =3r n , S △BOnC =12BC·r n =4r n ,∵等圆⊙O 1、⊙O 2、…、⊙O n 依次外切,且均与AB 边相切,∴O 1、O 2、…、O n 均在直线O 1O n 上,且O 1O n ∥AB , ∴O 1O n =(n -2)2r n +2r n =2(n -1)r n .过点C 作CH ⊥AB 于点H ,交O 1O n 于点K ,则CH=245,CK=245-r n . ∴S △CO1On =12O 1O n ·CK=(n -1)(245-r n )r n .S 梯形AO1OnB =12[2(n -1)r n +10]r n =[(n -1)r n +5]r n .∵S △ABC =S △AO1C +S △BOnC +S △CO1On +S 梯形AO1OnB , ∴24=3r n +4r n +(n -1)(245-r n )r n +[(n -1)r n +5]r n , 解得r n =1023n +. 评析:通过面积关系,建立所求半径的等量关系式,也是解决几何计算题一种重要的途径.【例题2】如图,AB 是⊙O 的直径,AE 平分∠BAF 交⊙O 于E 点,过点E 作直线与AF 垂直交AF 的延长线于D 点,交AB 延长线于C 点. (1)求证:CD 与⊙O 相切于点E ;(2)若CE·DE=154,AD=3,求⊙O 的直径及∠AED 的正切值. 解题思路:(1)连OE ,证OE ⊥CD ;(2)利用三角形相似线段成比例求半径.解:(1)连OE ,易证∠OEA=∠OAE=∠EAD ,∠OED=90°,得 OE ⊥CD ,CD 与⊙O 相切.(2)连BE 有BE=OE ,易证Rt △ABE ∽Rt △AED ,△CBE ∽△CEA ,得5,4DE BE CB CO OEBC AD AE CE AC AD====又,设⊙O •半径为R , 则CO=R+54,CA=54+2R ,∴45853R R R +=+,解得R=158或R=-1(舍),∴⊙O 直径为154,由CE 2=CB·CA=254,∴CE=52,DE=32,tan∠AED=2.评析:本题第(2)小题是几何计算,不少考生怕这种题型,•因它与证明题不同,证明题的结论是确定的,有目标可寻,而计算题则需要根据题设条件和学过的知识去分析和探索,包括一定的运算能力,这就要求考生平时多练习,多思考,增强信心,才能攻克这样的难关.◆探究实践【问题】(重庆)已知四边形ABCD中,P是对角线BD上的一点,过P作MN∥AD,EF•∥CD,分别交AB、CD、AD、BC于M、N、E、F,设a=PM·PE,b=PN·PF,解答下列问题:(1)当四边形ABCD是矩形时,见图①,请判断a与b的大小关系,•并说明理由;(2)当四边形ABCD是平行四边形,且∠A为锐角时,见图②,(1)•中的结论是否成立?请说明理由;(3)在(2)的条件下,设BPPD=k,是否存在这样的实数k,使得49PEAMABCSS∆=?若存在,请求出满足条件的所有k的值;若不存在,请说明理由.解题思路:(1)利用面积关系可证a=b;(2)可证S PEAM=PM·PE.sin∠MPE,S PNCF=PN·PF,•sin∠FPN.由S PEAM=S PNCF,可得a=b;(3)利用等高三角形面积比等于底边之比可求k值.(1)解:a=S矩形PEAM=S△BDA-S△PMB-S△PDE,b=S矩形PNCF=S△DBC-S△BFP-S△DPN,可证得a=b.(2)解:成立.仿(1)有S PEAM=S PNCF,作EH⊥MN,可证S PEAM=EH·PM=PM·PE.sin∠MPE.同理S PNCF=PN·PF.sin∠FPN.由sin ∠MPE=sin ∠FPN ,可得PM·PE=PN·PF .即a=b .(3)解法一:存在.连结AP ,设△PMB 、△PMA 、△PEA 、△PED 的面积分别为S 1、S 2、S 3、S 4,即.1221431342423423231234424,..,4,924,(21)9PEAM ABD s ks s k s S S BM BP AE BP s ks S AM PD S DE PD s s ks s s S S S S S S S S kS k k S ∆=⎧⎧=⎪=====∴⎨⎨==⎩⎪=⎩+∴==+++=++即即∴2k 2-5k+2=0,∴k 1=2,k 2=12. 解法二:由(2)可知SPEAM =AE·AM .sinA=29AD·ABsinA . 22222sin 2,sin 1,,,111,,11142,2520,119PEAM PEAM PEAMABD ABD ABCDS S S S S S AE AM A AE AMAD AB A AD AB BP BP k PD k PD BD k BD k AE BP k AM PD AD BD k AB BD k k k k k k ∆∆∴=======++====++∴⨯⨯=-+=++又即而即∴k=2或12.评析:巧用面积法解题,可化难为易,应引起注意.◆中考演练一、填空题1.(黄冈)如图1,在ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD=_______.(1) (2) (3) (4)2.(四川)如图2,AB、AC是互相垂直的两条弦,AB=8cm,AC=6cm,•则⊙O•半径OA长为_______cm.二、选择题1.(福州)如图3,EF过矩形ABCD对角线交于点O,且分别交AB、CD于E、F,•那么阴影部分的面积是矩形ABCD面积的().A.15B.14C.13D.3102.(黄冈)如图4,△ABC中,AB=AC,D为BC中点,E为AD上任意一点,过C 作CF∥AB交BE的延长线于F,交AC于G,连结CE,下列结论中不正确的是().A.AD平分∠BAC B.BE=CFC.BE=CE D.若BE=5,GE=4,则GF=9 4三、解答题1.(长春)如图,在等腰梯形ABCD中,AD∥BC,∠C=60°,AD=CD.E、F分别在AD、CD上,DE=CF,AF、BE交于点P,请你量一量∠BPF的度数,并证明你的结论.2.(青岛)已知:如图,AB是⊙O的直径,C为⊙O上一点,且∠BCE=∠CAB,•CE 交AB的延长线于点E,AD⊥AB,交EC的延长线于点D.(1)求证:DE是⊙O的切线.(2)若CE=3,BE=2,求CD的长.◆实战模拟一、填空题1.(四川)如图5,在半径为3的⊙O中,B是劣弧AC的中点,连结AB并延长到D,使BD=AB,连结AC、BC、CD.如果AB=2,那么CD=________.(5) (6) (7)2.(杭州)如图6,在等腰Rt△ABC中,AC=BC,以斜边AB为一边作等边△ABD,•使点C、D在AB的同侧;再以CD为一边作等边△CDE,使点C、E在AD的异侧.若AE=1,•则CD的长为________.3.(沈阳)如图7,已知在⊙O中,直径MN=10,正方形ABCD•的四个顶点分别在半径OM、OP以及⊙O上,并且∠POM=45°,则AB的长为________.二、选择题1.(宁波)如图8,在四边形ABCD中,E是AB上一点,EC∥AD,DE∥BC.若S△BEC=1,S△BEC=3,则S△CDE等于().A .2B .32C D(8) (9) (10)2.(河南)如图9,半径为4的两等圆相外切,•它们的一条外公切线与两圆围成的阴影部分中,存在的最大圆的半径等于( ). A .12 B .23 C .34D .1 3.(深圳)如图10,AB 是⊙O 直径,点D 、E 是半圆的三等分点,AE 、BD 延长线交于点C .若CE=2,则图中阴影部分的面积是( ).A .43π B .23π C .23π D .13π三、解答题1.(宁夏)如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,点E 在直角边AC 上(点E 与A 、C 两点均不重合),点F 在斜边AB 上(点F 与A 、B 两点均不重合). (1)若EF 平分Rt △ABC 的周长,设AE 的长为x ,试用含x 的代数式表示△AEF 的面积;(2)是否存在线段EF 将Rt △ABC 的周长和面积同时平分?若存在,求出此时AE 的长;若不存在,说明理由.2.(烟台)如图,从⊙O外一点A作⊙O的切线AC、AC,切点分别为B、C,且⊙O 直径BD=6,连结CD、AO.(1)求证:CD∥AO;(2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)若AO+CD=11,求AB的长.答案:中考演练一、1.10 2.5二、1.B 2.B三、1.证△ABE≌△DAF,∠BPF=120°2.(1)连结OC,证∠OCE=90°(2)CD=15 8实战模拟一、1.4323二、1.C 2.D 3.A三、1.(1)作FD⊥AC,由Rt△ADF∽Rt△ACB,得FD=45(6-x),S△AEF=-25x2+125x(0<x<3)(2)由-25x+125x=3,得x12x=(舍)2.(1)提示:证明AO⊥BC (2)△BDC∽△AOB,18BD DCyAO OB x=∴=,0<x<6(3)12122911()1892x xx yAB xy y y==+=⎧⎧⎧∴==⎨⎨⎨===⎩⎩⎩解得舍去。

2018年中考数学复习试题汇编----几何综合(含答案)

2018年中考数学复习试题汇编----几何综合(含答案)

2018年中考数学复习试题汇编----几何综合1.已知,△ABC中,∠ACB=90°,AC=BC,点D为BC边上的一点.(1)以点C为旋转中心,将△ACD逆时针旋转90°,得到△BCE,请你画出旋转后的图形;(2)延长AD交BE于点F,求证:AF⊥BE;(3)若AC= ,BF=1,连接CF,则CF的长度为.527.(1)补全图形……………………2分(2)证明:∵ΔCBE由ΔCAD旋转得到,∴ΔCBE≌ΔCAD,………………3分∴∠CBE=∠CAD,∠BCE=∠ACD=90°,……………4分∴∠CBE+∠E=∠CAD+∠E,∴∠BCE=∠AFE=90°,∴AF⊥BE.……………………………………5分(3)2………………………………………………7分2.△ACB中,∠C=90°,以点A为中心,分别将线段AB,AC逆时针旋转60°得到线段AD,AE,连接DE,延长DE交CB于点F.(1)如图1,若∠B=30°,∠CFE的度数为;(2)如图2,当30°<∠B<60°时,①依题意补全图2;②猜想CF与AC的数量关系,并加以证明.图1 图23.如图1,在Rt△AOB中,∠AOB=90°,∠OAB=30°,点C在线段OB上,OC=2BC,AO)得到边上的一点D满足∠OCD=30°.将△OCD绕点O逆时针旋转α度(90°<α<180°△OC D,C,D两点的对应点分别为点C,D,连接AC,BD,取AC的中点M,连接OM.(1)如图2,当C D∥AB时,α=°,此时OM 和BD之间的位置关系为;(2)画图探究线段OM和BD之间的位置关系和数量关系,并加以证明.图1 图2备用图4.如图,∠BAD=90°,AB=AD,CB=CD,一个以点C为顶点的45°角绕点C旋转,角两边与BA,DA交于点M,N,与BA,DA延长线交于点E,F,连接AC.(1)在∠FCE旋转的过程中,当∠FCA=∠ECA时,如图1,求证:AE=AF;(2)在∠FCE旋转的过程中,当∠FCA≠∠ECA时,如图2,如果∠B=30°,CB=2,用等式表示线段AE,AF之间的数量关系,并证明.图1 图227.解:(1)证明:∵AB=AD ,BC=CD ,AC=AC ,∴△ABC ≌△ADC .…1分∴∠BAC =∠DAC =45°,可证∠FAC =∠EAC =135°.……2分又∵∠FCA =∠ECA ,∴△ACF ≌△ACE .∴AE=AF .……3分其他方法相应给分.(2)过点C 作CG ⊥AB 于点G ,求得AC =2.……4分∵∠FAC =∠EAC =135°,∴∠ACF +∠F=45°.又∵∠ACF +∠ACE =45°,∴∠F=∠ACE .∴△ACF ∽△AEC.……5分∴AC AF AE AC ,即AF AE AC 2. ……6分∴2AF AE .……7分5.在等腰△ABC 中,AB=AC ,将线段BA 绕点B 顺时针旋转到BD ,使BD ⊥AC 于H ,连结AD 并延长交BC 的延长线于点P.(1)依题意补全图形;(2)若∠BAC=2α,求∠BDA 的大小(用含α的式子表示);(3)小明作了点D 关于直线BC 的对称点点E ,从而用等式表示线段DP 与BC 之间的数量关系.请你用小明的思路补全图形并证明线段DP 与BC 之间的数量关系.27.解:(1)如图……………………………………………1分(2) ∵∠BAC =2α,∠AHB =90°∴∠ABH=90°-2α (2)分∵BA=BD∴∠BDA =45°+α………………………………………………………………………………3分(3)补全图形,如图………………4分。

2018年苏州中考《第三讲:几何证明与计算题》专题复习含答案

2018年苏州中考《第三讲:几何证明与计算题》专题复习含答案

2018年苏州中考数学专题辅导第三讲 几何证明与计算题选讲真题再现:1.(2008年苏州•本题6分)如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4. 求证:(1)△ABC ≌△ADC ; (2)BO=DO .2.(2008年苏州•本题8分) 如图,在等腰梯形ABCD 中,AD ∥BC ,AB=DC=5,AD=6,BC=12.动点P 从D 点出发沿DC 以每秒1个单位的速度向终点C 运动,动点Q 从C 点出发沿CB 以每秒2个单位的速度向B 点运动.两点同时出发,当P 点到达C 点时,Q 点随之停止运动. (1)梯形ABCD 的面积等于 ;(2)当PQ//AB 时,P 点离开D 点的时间等于 秒; (3)当P 、Q 、C 三点构成直角三角形时,P 点离开D 点多少时间?3.(2009年江苏•本题满分10分)如图,在梯形ABCD 中,AD BC AB DE AF DC ∥,∥,∥, E 、F 两点在边BC 上,且四边形AEFD 是平行四边形. (1)AD 与BC 有何等量关系?请说明理由; (2)当AB DC =时,求证:ABCD 是矩形.4.(2009年江苏•本题满分10分)(1)观察与发现小明将三角形纸片()ABC AB AC >沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到AEF △(如图②).小明认为AEF △是等腰三角形,你同意吗?请说明理由.(2)实践与运用将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D '处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中α∠的大小.A D C F EBA C D 图① A C D 图②F E5.(2010年苏州•本题6分) 如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分 ∠BCD ,CD=CE .(1)求证:△ACD ≌△BCE ;(2)若∠D=50°,求∠B 的度数.6.(2010年苏州•本题8分) 如图,在△ABC 中,∠C=90°,AC=8,BC=6.P 是AB 边上的一个动点(异于A 、B 两点),过点P 分别作AC 、BC 边的垂线,垂足为M 、N .设AP=x . (1)在△ABC 中,AB= ;(2)当x= 时,矩形PMCN 的周长是14;(3)是否存在x 的值,使得△PAM 的面积、△PBN 的面积与矩形PMCN 的面积同时相等?请说出你的判断,并加以说明.7.(2011年苏州•本题6分)如图,已知四边形ABCD 是梯形,AD ∥BC ,∠A =90°,BC =BD ,CE ⊥BD ,垂足为E .(1)求证:△ABD ≌△ECB ;(2)若∠DBC =50°,求∠DCE 的度数. 8.(2011年苏州•本题8分)如图,小明在大楼30米高(即PH =30米)的窗口P 处进行观测,测得山坡上A 处的俯角为15°,山脚B 处的俯角为60°,已知该山坡的坡度i (即tan ∠ABC )为1P 、H 、B 、C 、A 在同一个平面上.点H 、B 、C 在同一条直线上,且PH ⊥HC . (1)山坡坡角(即∠ABC )的度数等于 ▲ 度;(2)求A 、B 两点间的距离(结果精确到0.1).E D CF B A 图③ E D C A B FG 'D ' A DE C BF α图④ 图⑤9.(2012年苏州•本题6分)如图,在梯形ABCD中,已知AD∥BC,AB=CD,延长线段CB到E,使BE=AD,连接AE、AC.(1)求证:△ABE≌CDA;(2)若∠DAC=40°,求∠EAC的度数.10.(2012年苏州•本题8分)如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC.现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据:≈1. 732).(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为米;(2)—座建筑物GH距离坡脚A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面上,点C、A、G在同一条直线上,且HG丄CG,问建筑物GH 高为多少米?11.(7分)(2013•苏州)如图,在一笔直的海岸线l上有A,B两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到达点C处.此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述2小题的结果都保留根号)12.(8分)(2013•苏州)如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长BP交边AD于点F,交CD的延长线于点G.(1)求证:△APB≌△APD;(2)已知DF :FA =1:2,设线段DP 的长为x ,线段PF 的长为y . ①求y 与x 的函数关系式;②当x =6时,求线段FG 的长.13.(6分)(2014年•苏州)如图,在Rt △ABC 中,∠ACB =90°,点D 、F 分别在AB ,AC 上,CF =CB .连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CE ,连接EF . (1)求证:△BCD ≌△FCE ;(2)若EF ∥CD .求∠BDC 的度数.14.(8分)(2015年•苏州)如图,在△ABC 中,AB =AC .分别以B 、C 为圆心,BC 长为半径在BC 下方画弧,设两弧交于点D ,与AB 、AC 的延长线分别交于点E 、F ,连接AD 、BD 、CD . (1)求证:AD 平分∠BAC ;(2)若BC =6,∠BAC =50︒,求DE 、DF 的长度之和(结果保留π). 15.(2016年苏州•8分)如图,在菱形ABCD 中,对角线AC 、BD 相交于点O,过点D 作对角线BD 的垂线交BA 的延长线于点E .(1)证明:四边形ACDE 是平行四边形; (2)若AC=8,BD=6,求△ADE 的周长.16. (2017年苏州•本题8分)如图,∠A =∠B ,AE =BE ,点D 在C A 边上,12∠=∠,AE 和D B 相交于点O .(1)求证:C ∆AE ≌D ∆BE ;(第14题)FEDCBA(2)若142∠=,求D ∠B E 的度数.模拟训练:1.(2017年常熟市•本题满分8分) 如图,在Rt ABC ∆中,90C ∠=︒,斜边AB 的垂直平分线MN 分别交BC 、AB 于点D 、E ,过点A 作//AF BC ,交MN 于点F . (1)求证:四边形ADBF 是菱形;(2)若4,8AC BC ==,求菱形ADBF 的周长。

河南中考数学18题几何证明与计算专练(含手写版答案)几何证明与推理——四边形存在性

河南中考数学18题几何证明与计算专练(含手写版答案)几何证明与推理——四边形存在性

几何证明与推理——四边形存在性1.如图,O是△ABC内一点,⊙O与BC相交于F,G两点,且与AB,AC分别相切于点D,E,DE∥BC,连接DF,EG.(1)求证:AB=AC.(2)填空:①若AB=10,BC=12,则当四边形DFGE是矩形时,⊙O的半径为_____;②若四边形DFGE是正方形,则∠B=_______.2.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:BE=EC.(2)填空:①若∠B=30°,AC=DE=______;②当∠B=_____°时,以O,D,E,C为顶点的四边形是正方形.3.如图,以AB为直径的⊙O外接于△ABC,过A点的切线AP与BC的延长线交于点P,∠APB的平分线分别交AB,AC于点D,E,其中AE,BD (AE<BD)的长是一元二次方程x2-5x+6=0的两个实数根.(1)求证:P A·BD=PB·AE.(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.4.如图,在Rt△ABC中,∠C=90°,点D在线段AB上,以AD为直径的⊙O与BC相交于点E,与AC相交于点F,∠B=∠BAE=30°.(1)求证:BC是⊙O的切线;(2)若AC=3,则⊙O的半径r为____________;(3)判断以A,O,E,F为顶点的四边形为哪种特殊四边形,并说明理由.5.如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.(1)求证:MD=ME.(2)填空:①若AB=6,当AD=2DM时,DE=___________;②连接OD,OE,当∠A的度数为__________时,四边形ODME是菱形.6.如图,在△ABD中,AB=AD,以AB为直径的⊙F交BD于点C,交AD于点E,CG⊥AD于点G,连接FE,FC.(1)求证:GC是⊙F的切线.(2)填空:①若∠BAD=45°,AB=CDG的面积为_______;②当∠GCD的度数为_______时,四边形EFCD是菱形.7.如图所示,半圆O的直径AB=4,=,DE⊥AB于E,DF⊥AC于F,连接CD,DB,OD.(1)求证:△CDF≌△BDE.(2)填空:①当AD=_______时,四边形AODC是菱形;②当AD=_______时,四边形AEDF是正方形.8.如图,已知AB是⊙O的直径,PC切⊙O于点P,过A作直线AC⊥PC,交⊙O于另一点D,连接P A,PB.(1)求证:AP平分∠CAB;(2)若P是直径AB上方半圆弧上一动点,⊙O的半径为2,则:①当弦AP的长是________时,以A,O,P,C为顶点的四边形是正方形;②当的长度是___________时,以A,D,O,P为顶点的四边形是菱形.CB9.如图,AB为⊙O的直径,点E在⊙O上,过点E的切线与AB的延长线交于点D,连接BE,过点O作BE的平行线,交⊙O于点F,交切线于点C,连接AC.(1)求证:AC是⊙O的切线;(2)连接EF,当∠D=______°时,四边形FOBE是菱形.CF EADO B10.如图,AB为⊙O的直径,点D,E是位于AB两侧的半圆AB上的动点,射线DC切⊙O于点D,连接DE,AE,DE与AB交于点P,F是射线DC上一动点,连接FP,FB,且∠AED=45°.(1)求证:CD∥AB;(2)填空:①若DF=AP,当∠DAE=__________时,四边形ADFP是菱形;②若BF⊥DF,当∠DAE=__________时,四边形BFDP是正方形.A11.如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为_________时,四边形ECFG为菱形;②当∠D的度数为_________时,四边形ECOG为正方形.B AB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018届初三数学中考复习 几何证明与计算 专题复习训练题C1. 如图,在△ ABC 中,ADL BC 于点 D, BD= AD, DG= DC 点 E , F 分别是 BQ AC 的中点.(1)求证:DE= DF, DEL DF;⑵连接EF ,若AC= 10,求EF 的长.2. 如图,在?ABCD 中 DE= CE 连接AE 并延长交BC 的延长线于点F.(1)求证:△ ADE^A FCE⑵若AB= 2BC / F = 36° .求/B 的度数.D t -------AC D3. 如图,在菱形ABCD K G 是BD 上一点,连接CG 并延长交BA 的延长线于点 F ,交AD 于点E.(1)求证:AG= CG⑵求证:AG = GE- GF.4. 如图,在厶 ABC 中, / C = 90°, / B = 30°, AD >^ ABC 的角平分线,DE// BA 交AC 于点E , DF / CA 交AB 于点F ,已知CD= 3.(1) 求AD 的长;(2) 求四边形AEDF 的周长.(注意:本题中的计算过程和结果均保留根号)5. 如图,在菱形ABCD中,点E, Q F分别为AB, AC AD的中点,连接CE CF,OE QF.(1)求证:△ BCE^A DCF⑵当AB与BC满足什么关系时,四边形AEQF是正方形?请说明理由.6. 如图,点E是正方形ABCD勺边BC延长线上一点,连接DE过顶点B作BF丄DE 垂足为F, BF分别交AC于点H,交CD于点G.(1)求证:BG= DE⑵若点G为CD的中点,求号的值.7. 如图,在正方形 ABCD 中,点G 在对角线BD 上(不与点B, D 重合),GEL DC 于点E , GF L BC 于点F ,连接AG.(1) 写出线段AG GE GF 长度之间的数量关系,并说明理由;⑵ 若正方形ABCD 的边长为1,Z AGF= 105°,求线段BG 的长.8. 如图,在厶ABC 中,AD L BC BE! AC 垂足分别为 D, E , AD 与BE 相交于点 F.(1)求证:△ AC BABFDE⑵当tan / ABD= 1, AO 3时,求BF的长.9. 如图,在菱形ABCD中G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:AG= CG ⑵求证:AG= GE- GF.10. 如图,在△ ABC和厶BCD中,/ BAC=Z BCD= 90°, AB= AC CB= CD延长CA至点E,使AE= AC延长CB至点F,使BF= BC•连接AD AF, DF, EF,延长DB交EF于点N.(1)求证:AD= AF;⑵求证:BD= EF;⑶ 试判断四边形ABNE 勺形状,并说明理由.11. 在厶ABC 中, Z ABMk 45°, AM L BM ,垂足为 M 点C 是BM 延长线上一点, 连接AC.(1)如图①,若AB= 3 2, BC= 5,求AC 的长;⑵ 如图②,点D 是线段AM 上一点,M O MC 点E 是厶ABC 外一点,EC= AC 连BD — CEF.12. 如图,正方形ABC[中, M为BC上一点,F是AM的中点,EF丄AM垂足为F, 交AD的延长线于点E,交DC于点N.(1)求证:△ ABMT A EFA⑵若AB= 12,BM= 5,求DE的长.参考答案:1. 解:(1)证明:T ADL BC •••/ADB=Z ADC= 90° .在厶BDG^ ADC中,『BD= AD彳/ BDG=Z ADC •△ BDG^A ADC.DG= DC•BG=AC, / BGD=Z C. v/ ADB=Z AD G 90° ,1E, F分别是BG AC的中点,二DE= 2BG= EG1DF= 2AC G AF. • DE= DF,/ EDG=Z EGD/ FDA=Z FAD.•/ EDG-Z FDA= 90°,二DEI DF.⑵v AC G 10,二DE= DF= 5,由勾股定理,得EF=pDE+ D F = 5寸2.2. 解:(1)证明:v四边形ABCD是平行四边形,• AD// BC, AD= BC.•Z D-Z ECF 在厶ADE^A FCE 中,Z D=Z ECFDE= CEZ AED=Z FEC•△ADE^A FCE ASA.(2)•••△ ADE^A FCE • AD= FC.v AD= BC AB= 2BC••• AB= FB.A Z BAF=Z F= 36°.B= 180°—2X36°= 108° .3. 证明:(1)T 四边形ABCD是菱形,• AB// CD AD= CD/ ADB=Z CDB 又GD为公共边,:.△CDG$A$ ,• AG= CG. (2)•••△ADG2A CDG^Z EAG=Z DCG^AB// CD•/ DCG=Z F. EAG=Z F. v/ AG=Z AGEAG EG 丄•△FGA.「. FG= AG • AG = GE- GF.4. 解:(1)v/ C= 90°,/ B= 30°,AZ CAB= 60°.1v AD平分/ CAB •/CAD=㊁/CAB= 30° .在Rt A ACD中, v/ ACD= 90°,/ CAD= 30°,二AD= 2CD= 6.(2)v DE// BA交AC于点E, DF// CA交AB于点F,•四边形AEDF是平行四边形,/ EAD=/ AD=/ DAF.•AF= DF.A四边形AEDF是菱形.• AE= DE= DF= AF.在Rt A CED中, v DE// AB, •/ CD=/ B= 30° .C D•DE=COS30。

= •四边形AEDF的周长为8羽.5. 解:(1)证明:v四边形ABCD是菱形,• / B=/ D,AB= BC= DC= AD.v点E, O, F分别为AB, AC AD的中点,1 1•AE=BE= DF=AF, OF=2DC OE= 2BC OE// BC.在厶BCE^H A DCF中,BE= DF,/ B=/ D, BCE^A DCF SAS . BC= DC⑵当AB丄BC时,四边形AEOF是正方形,理由如下:由(1)得AE= OE= OF= AF,二四边形AEOF是菱形.T AB! BC OE/ BC•••OEL AB. A/ AEO= 90° .二四边形AEOF是正方形.6. 解:(1)证明:T BF L DE GFD= 90° . BCG= 90°,/ BGC=/ DGF •/ CBG=Z CDE.CBG=/ CDE在^ BCG W^ DCE中J BC= CD/ BCG=/ DCE• △BCG2A DCE ASA , • BG= DE.(2)设CG= x, T G为CD的中点,• GD= CG= x ,由(1)可知△ BCG^A DCE ASA , • CG= CE= x.IC E GF由勾股定理可知DE= BG= “. 5x , T sin / CDE= =AB BH 2• △ABZ CGHJ.CB p 1.7. 解:(1)结论:A G=G E + GF.理由:连接CG.T四边形ABCD是正方形,•点A, C关于对角线BD对称.T点G在BD上,二GA= GC.T GEL DC 于点E , GFL BC于点F ,•/GEC=Z ECF=Z CFG= 90° . •四边形EGF(是矩形.=⑵过点B 作BN L AG 于点N,在BN 上取一点 M 使得AM= BM.设 AN= x. vZ AG 十 105°,/ FBG=Z FGB=Z ABG= 45° :•••/ AGB= 60°,Z GBN= 30°,Z ABM=Z MAB= 15•••Z AM 比 30° . • AM= BM= 2x , MN=- 3x.在 Rt A ABN 中, v A B =AN + B N ,「・1= x 2+ (2x + ^/3x)2,8. 解:(1) v ADL BC BEL AC , BDF=Z ADG=Z BEC= 90°, C +Z DBF=90°, Z C +Z DAC= 90°,DBF=Z DAC •△ ACDT A BFD/ / AD AC AD⑵ v tan Z ABD= 1, Z ADB= 90°,二 =1, */△ AC SA BFD 二 尸 产 1 ,BD BF BD• BF =AC= 39. 解:(1) v 四边形 ABCD 是 菱形,二 AB//CD AD= CD Z ADB=Z CDB 可证 △ ADG2A CDG 6A$,二 AG= CG (2) •••△ ADG2A CDG •Z EAG=Z DCG v AB// CD •Z DCG=Z F , •/ EAG10. 解:(1) v AB= AC Z BAC= 90°,•/ABC=Z ACB= 45°,•/ABF= 135° , vZ BCD= 90°,•/ ACD=Z AC +Z BCD= 135°,•/ ABF=Z ACD v CB= CD CB= BF, • BF = CD 可证△ ABF^A ACD SAS , • AD= AF(2) 由(1)知 AF = AD , △ ABB A ACD •Z FAB=Z DAC vZ BAC= 90°, • Z EAB=Z BAC= 90°, •/ EAF=Z BAD 可证△ AEF^A ABD(SA$ , • BD= EF(3) 四边形 ABNE 是正方形.理由如下:v CD= CB, Z BCD= 90°, •Z CBD =45°,又vZ ABC= 45°, •/ ABD=Z ABO Z CBD= 90°,由(2)知Z EAB= 90°, △ AEF^A ABD •Z AEF=Z ABD= 90°, •四边形 ABNE 是矩形,又 v AE =AB, •四边形ABNE 是正方形11. 解:(1)vZ ABM= 45° , AM L BM则 CM= BC- BM= 5- 3 = 2, • AC = , A M+ C M= 22 + 32= 13.解得 4 BN= 6 + '2 4 BN BG= cos 30 =Z F , vZ AGE=Z AGE •△ AG 0A FGA AG_EG FG = AG • AG = GE- GF• AM= BM= AB Cos 45=3 2^22 = 3.B\ /F w ci /⑵证明:延长EF到点G,使得FG= EF,连接BG.T DM k MC / BM圧/ AMC BM =AM 二△ BM^^ AMC6A$.「• AC= BD.又CE= AC,「• B[> CE.v BF= FC, / BFG =Z EFC FG= FE,BFG^A CFE.A BG= CE / G=Z E.「• B[> CE= BG :丄 BDG =Z G=ZE.12. 解:(1)证明:T四边形ABCD^正方形,••• A吐 AD, / B= 90°, AD// BC.A/ AM B=Z EAF.又T EF±AM AFE= 90°. B=Z AFE;・A ABMh^ EFA.(2) vZ B= 90° , A吐 AD- 12 , BM= 5 , • AM= 122+ 52= 13.1VF 是AM 的中点,• AF= 2AM= 6.5. •/△ ABMh^ EFABM AM 口□ 5 13• AT AM 即655 = A E• AE= 16・9, • DE= AE— A* 49。

相关文档
最新文档