EP2060461(A1)

合集下载

Intel cpu 电压、功耗大全

Intel cpu 电压、功耗大全

P4/P4 EE Notes:•Vmax is the maximum non-operating (failure) voltage.•Regarding the chip's wattage numbers, Intel states: "The [Thermal Design Power] numbers ... reflect Intel's recommended design point and are not indicative ofthe maximum power the processor can dissipate under worst case conditions."•The Estimated Max Power Dissipation numbers are based on the fact that Intel estimates the power dissipation for various software applications and sets theThermal Design Point as the upper limit for how far these applications mightpush the Pentium 4. Intel states: "Processor power dissipation simulationsindicate a maximum application power in the range of 75% of the maximumpower for a given frequency." So the Est Max Power Diss was calculated bydividing the TDP by 75%. However, it's unlikely the CPU will reach itsmaximum power dissipation since the processor will throttle down the CPUspeed as it reaches past certain temperatures. And in the event of acatastrophic cooling failure (i.e. leaving off the heatsink), it would completelyshut down the CPU.•If the on-Die thermal probe reaches approximately 135° C (its catastrophic temperature), the CPU will automatically shut down and "the system bus signalTHERMTRIP# will go active and stay active until the processor has cooleddown and a RESET# has been initiated."•The VR Down design guideline allows a Pentium 4 processor in the 478-pin package to decrease its voltage as amperage increases.•The low wattage Pentium 4 Northwood chips are intended for small form factor systems and are limited to less than 45W maximum power output.•Max Cover Temp (Tc) for Prescott is approximated from the thermal profile given in the datasheet.•Some of the Socket T chips have a PRB (platform requirement bit) set to indicate specific platform requirements (higher amperage and wattage).mobile P4 Notes:•Vmax is the maximum non-operating (failure) voltage.•As Intel states in their docs, the P-4M voltages are simply targets. Vcc is a typical voltage with the minimum being defined by how much current is drawn at thatvoltage.•Regarding the chip's wattage numbers, Intel states: "The [Thermal Design Power] numbers ... reflect Intel's recommended design point and are not indicative ofthe maximum power the processor can dissipate under worst case conditions."•If the on-Die thermal probe reaches approximately 135° C (its catastrophic temperature), the CPU will automatically shut down and "the system bus signalTHERMTRIP# will go active and stay active until the processor has cooleddown and a RESET# has been initiated."•The VR Down design guideline allows a Pentium 4 processor in the 478-pin package to decrease its voltage as amperage increases.Celeron Notes:•Vmax is the maximum non-operating (failure) voltage.•Regarding the chip's wattage numbers, Intel states: "The [Thermal Design Power] numbers ... reflect Intel's recommended design point and are not indicative ofthe maximum power the processor can dissipate under worst case conditions."•If the on-Die thermal probe reaches approximately 135° C (its catastrophic temperature), the CPU will automatically shut down and "the system bus signalTHERMTRIP# will go active and stay active until the processor has cooleddown and a RESET# has been initiated."•The VR Down design guideline allows a Pentium 4 processor in the 478-pin package to decrease its voltage as amperage increases.mobile Celeron Notes:•Vmax is the maximum non-operating (failure) voltage.•Regarding the chip's wattage numbers, Intel states: "The [Thermal Design Power] numbers ... reflect Intel's recommended design point and are not indicative ofthe maximum power the processor can dissipate under worst case conditions."•If the on-Die thermal probe reaches approximately 125° C (its catastrophic temperature), the CPU will automatically shut down and "the system bus signalTHERMTRIP# will go active and stay active until the processor has cooleddown and a RESET# has been initiated."•The VR Down design guideline allows a Pentium 4 processor in the 478-pin package to decrease its voltage as amperage increases.Core 2 Notes:•Vmax is the maximum non-operating (failure) voltage.•Intel states: "Thermal Design Power (TDP) should be used for processor thermal design targets. TDP is not the maximum power that the processor candissipate."Core i7 Notes:•-mobile Core 2 Notes:•THERMTRIP activates at 125C.mobile Core i7 Notes:•.mobile Celeron M Notes:•.mobile Atom Notes:•THERMTRIP activates at 125C.•Vmax is power-up voltage.•Max Core Amperage is recommended design target.•Wattage numbers are with HT enabled.mobile A100 Notes:•.Xeon Notes:•Vmax is the maximum non-operating (failure) voltage.•Regarding the chip's wattage numbers, Intel states: "The [Thermal Design Power] numbers ... reflect Intel's recommended design point and are not indicative ofthe maximum power the processor can dissipate under worst case conditions."•If the on-Die thermal probe reaches approximately 135° C (its catastrophic temperature), the CPU will automatically shut down and "the system bus signalTHERMTRIP# will go active and stay active until the processor has cooleddown and a RESET# has been initiated."•Core voltage varies with the amount of amperage being pulled by the CPU.Which is why the Prestonia's VID voltage (1.5v) is actually higher than it'smaximum rated voltage (the chip will never actually be run at its VID voltageexcept under no-load conditions).•Max Processor Power for the Xeon MP is the "maximum thermal power that can be dissipated by the processor through the integrated heat spreader."•In Sep 2002, electrical numbers for the 2.6 and 2.8GHz Prestonia chips changed.Not sure why. Voltage limits were adjusted slightly downward. Amperage wentup. Wattage decreased and max Tcase went up.•Tcase for the Nocona CPUs is the thermal solution design point (Tcase_maxB), though the TCC on the chip will not allow the processor to exceedTcase_maxA.•For Tulsa chips Icc_Max is based on Vcc_Max loadline.。

GigaSPEED XL 3071E-B ETL Verified Category 6 U UTP

GigaSPEED XL 3071E-B ETL Verified Category 6 U UTP

GigaSPEED XL® 3071E-B ETL Verified Category 6 U/UTP Cable, lowsmoke zero halogen, white jacket, 4 pair count, 1000 ft (305 m) length,reelProduct ClassificationRegional Availability EMEAPortfolio SYSTIMAX®Product Type Twisted pair cableProduct Brand GigaSPEED XL®General SpecificationsProduct Number3071EANSI/TIA Category6Cable Component Type HorizontalCable Type U/UTP (unshielded)Conductor Type, singles SolidConductors, quantity8Jacket Color WhitePairs, quantity4Separator Type BisectorTransmission Standards ANSI/TIA-568.2-D | CENELEC EN 50288-6-1 | ISO/IEC 11801 Class E DimensionsCable Length304.8 m | 1000 ftDiameter Over Insulated Conductor 1.041 mm | 0.041 inDiameter Over Jacket, nominal 5.918 mm | 0.233 inJacket Thickness0.559 mm | 0.022 inConductor Gauge, singles23 AWG13Page ofCross Section DrawingElectrical Specificationsdc Resistance Unbalance, maximum 5 %dc Resistance, maximum7.61 ohms/100 m | 2.32 ohms/100 ftDielectric Strength, minimum2500 VdcMutual Capacitance at Frequency 5.6 nF/100 m @ 1 kHzNominal Velocity of Propagation (NVP)70 %Operating Frequency, maximum300 MHzOperating Voltage, maximum80 VRemote Powering Fully complies with the recommendations set forth by IEEE 802.3bt (Type4) for the safe delivery of power over LAN cable when installed accordingto ISO/IEC 14763-2, CENELEC EN 50174-1, CENELEC EN 50174-2 or TIATSB-184-ASegregation Class cMaterial SpecificationsConductor Material Bare copperInsulation Material PolyolefinJacket Material Low Smoke Zero Halogen (LSZH)Separator Material PolyolefinPage of23Mechanical SpecificationsPulling Tension, maximum11.34 kg | 25 lbEnvironmental SpecificationsInstallation temperature0 °C to +60 °C (+32 °F to +140 °F)Operating Temperature-20 °C to +60 °C (-4 °F to +140 °F)Acid Gas Test Method EN 50267-2-3EN50575 CPR Cable EuroClass Fire Performance B2caEN50575 CPR Cable EuroClass Smoke Rating s1aEN50575 CPR Cable EuroClass Droplets Rating d0EN50575 CPR Cable EuroClass Acidity Rating a1Environmental Space Low Smoke Zero Halogen (LSZH)Smoke Test Method IEC 61034-2Packaging and WeightsCable weight38.097 kg/km | 25.6 lb/kftPackaging Type ReelRegulatory Compliance/CertificationsAgency ClassificationCENELEC EN 50575 compliant, Declaration of Performance (DoP) availableCHINA-ROHS Below maximum concentration valueISO 9001:2015Designed, manufactured and/or distributed under this quality management system REACH-SVHC Compliant as per SVHC revision on /ProductCompliance ROHSCompliantPage of33。

2060显卡参数

2060显卡参数

2060显卡参数2060显卡是英伟达公司推出的一款高性能显卡产品,具有以下主要参数。

首先,2060显卡采用了Turing架构,这是英伟达最新一代的显卡架构,相比之前的Pascal架构,Turing架构在性能表现上有了显著的提升。

同时,2060显卡还搭载了NVIDIA的RTX技术,支持光线追踪功能,使得游戏画面更加逼真细腻。

其次,2060显卡拥有1920个CUDA核心,这意味着它在处理图形数据时可以同时进行1920个线程的并行计算,从而提高了图形处理的效率和速度。

此外,2060显卡还拥有120个纹理单元和48个光栅化单元,可以提供更加细致的纹理效果和更高的渲染速度。

再次,2060显卡的显存容量为6GB GDDR6,显存频率高达14Gbps,带宽达到336GB/s,这使得它在处理大规模图形数据时具有更强大的存储和传输能力。

而且,GDDR6显存相比GDDR5显存拥有更高的带宽和更低的功耗,从而提升了显卡的整体性能和能效。

此外,2060显卡还支持多种显示输出接口,包括HDMI 2.0b、DisplayPort 1.4和DVI-D。

它还支持Microsoft DirectX 12和Vulkan API,可以在最新的游戏和图形应用程序中提供更好的兼容性和性能。

最后,2060显卡采用双风扇散热设计,同时还配备了6相供电系统和异步衰减功耗管理技术,以保持显卡在高负载下的稳定运行和低温工作。

此外,2060显卡还支持超频功能,用户可以通过软件进行超频设置,以进一步提升显卡的性能。

总的来说,2060显卡拥有强大的计算和处理能力,适用于高清游戏和图形设计等应用场景。

它的出现将进一步推动显卡技术的发展,并提供更好的图形性能和用户体验。

惠威HR70遥控器使用说明书

惠威HR70遥控器使用说明书
McIntosh Laboratory, Inc. 2 Chambers Street Binghamton, New York 13903-2699 Phone: 607-723-3512
HR070 Series Remote Control Programming Guide
6. Repeat steps 1 to 5 for the other components you want to control. For future reference, write down each working component code below:
HR Series Remote Control Programming
Assigned Push-button Component Program Code
TV
CBL
SAT
AUX
DVR
Push-buttons available for Programming
Flashes during Programming
4
Used to activate Programming Mode
with the most popular code first. If the component
responds, go to step 7.
6. If the component does not respond, press LEVEL+
Push-button and the Remote Control will test
The HR70 Series Remote Controls have stored in permanent memory the necessary information to send the correct commands to the component to be controlled. By entering a five digit numeric code the commands for controlling the component is activated.

6300B系列工业计算机产品选择指南说明书

6300B系列工业计算机产品选择指南说明书
4 GB (1 x SODIMM DDR4 module) / 8 GB/16GB/32GB (2 x SODIMM DDR4 modules)
1 x bootable CFast SATA III slot on board with external rear access 1 x onboard connector for direct insertion of M.2 2242 / 2280 SSD key M PCIex4 2 x onboard connector for 2.5 in. SSD/HDD SATA III 1 or 2 x extractable drawers for 2.5 in. units
Dual 4K Quad core Intel Atom x7-E3950 4 GB
1 x RS232 (DB9M)
1 x DVI-D
2 x PCIe x 4 or 1 x PCI + 1 x PCIe x4 (5 Gb/s), max 10W total
24V DC (18…32V DC) isolated, UPS option (future)
1 x DVI-D 1 x PCI or 1 x PCIe x4 (5 Gb/s) 24V DC (18…32V DC) isolated, UPS option (future)
-20…60 °C
CE, cULus Listed, EAC, KC and RCM Wall, VESA Mount, DIN Rail, Bookshelf, Machine N/A
Dual Single core Intel Atom E3815 1 GB N/A N/A
N/A
Fanless ThinManager® 24V DC

EIP-2060快速入门指南说明书

EIP-2060快速入门指南说明书

EIP-2060CDScrew DriverThe package includes the following items:Install EIP-2000 Utility:The software is located at:Fieldbus_CD:\EtherNetIP\remote-io\EIP-2060\UtilityQuick Start Guide (This Document)2I nstalling software on your PC1.Make sure your PC has workable network settings.2. Disable or well configure your Windows firewall and anti-virus firewall first, else the“Network Scan ” on step 4 may not work. (Please contact with your system Administrator)3. Check FW/OP DIP switch if it is on OP position.4. Connect both the EIP-2000 and your computer to the same sub network or the sameEthernet switch, and power the EIP-2000 on.3C onnecting the Power and PC5.I/O connector – EIP-20606.I/O Wire Connection1.Double click the “EIP -2000 Utility ” shortcut on the desktop. 2. Click the “Network Scan ” button to search your EIP-2000 modules.3. Click the EIP-2060 or other EIP-2000 modules on the device list below to open theconfiguration dialog of EIP-2000. Each EIP-2000 module has its own configuration interface.4. Test the digital outputs by clicking on the red circles, and the green circles indicate thestatus of digital input status. 4Using the EIP-2000 Utility5.The “Power On Value”, “Safe Value”and “Safe Delay”for digital output can be setwithout rebooting the module.6.If the network settings have been changed, please click the “Update Network Settings”button to update the configuration and reboot the module.1. Open RSLogix 5000 and create a new project.Figure5-1. Create a new project.2. Select the PLC type and give the project a name.Figure5-2. Set the PLC type and project name.5How to connect with Allen-Bradley PLC ?3.Create a new module in the “Ethernet” item.Figure 5-3. Create a new module.4.Select the “ETHERNET-MODULE” below “Communications” in the Select Modulewindow.Figure5-4. Select “ETHERNET-MODULE”.5.Configure the new module parameters. The I/O length of new module must be the same with the length of EIP-2060 I/O data(Table 5-1). The input data size is 26 bytes and output data size is 2 bytes. The instance ID please refer to Table 5-2.Figure5-5. The settings of EIP-2060 module。

网络设备产品参数

网络设备产品参数

安全产品技术规范杭州华三通信技术有限公司目录1.防火墙系列.......................................................................................................................................................1.1.M9000防火墙核心引导指标说明:...............................................................................................1.2.M9006..................................................................................................................................................1.3.M9010..................................................................................................................................................1.4.M9014..................................................................................................................................................1.5.新一代防火墙F50X0核心引导指标说明:..................................................................................1.6.F5040防火墙招标参数 .....................................................................................................................1.7.F5020防火墙招标参数 .....................................................................................................................1.8.F5000-S防火墙招标参数 .................................................................................................................1.9.F5000-C防火墙招标参数.................................................................................................................1.10.新一代F10X0防火墙核心引导指标说明:...............................................................................1.11.H3C SecPath F1020防火墙招标参数..............................................................................................1.12.H3C SecPath F1030防火墙招标参数..........................................................................................1.13.H3C SecPath F1050防火墙招标参数..........................................................................................1.14.H3C SecPath F1060防火墙招标参数..........................................................................................1.15.H3C SecPath F1070防火墙招标参数..........................................................................................1.16.H3C SecPath F1080防火墙招标参数..........................................................................................1.17.三款新千兆防火墙核心引导指标说明:...................................................................................1.18.F1000-E ...........................................................................................................................................1.19.F1000-E-SI ......................................................................................................................................1.20.F1000-A-EI .....................................................................................................................................1.21.F1000-S-AI......................................................................................................................................1.22.SecBlade FW Enhanced招标参数................................................................................................1.23.SecBlade FW招标参数 .................................................................................................................1.24.SecBlade FW Lite防火墙招标参数.............................................................................................1.25.新一代F1000-C-SI、F100-A/M-SI防火墙核心引导指标说明: ..........................................1.26.F1000-C-SI防火墙招标参数........................................................................................................1.27.F100-A-SI防火墙招标参数 .........................................................................................................1.28.F100-M-SI防火墙招标参数.........................................................................................................2.VPN系列.........................................................................................................................................................2.1.3.3.3.L1000-A...............................................................................................................................................4.流量分析NetStream (S75E、S95E、S105、S125配套)..........................................................................5.应用控制与审计网关ACG ...........................................................................................................................5.1.ACG 1000E(1G) .................................................................................................................................5.2.ACG 1000A(500M) ......................................................................................................................5.3.ACG 1000M(200M)......................................................................................................................5.4.ACG 1000S(30M) .........................................................................................................................5.5.ACG 1000C(10M).........................................................................................................................5.6.ACG 2000............................................................................................................................................5.7.ACG 8800............................................................................................................................................5.8.ACG 插卡(S75E、S95E、S105、S125配套) .........................................................................6.入侵防御IPS系列 .........................................................................................................................................6.1.IPS核心引导指标说明......................................................................................................................6.2.IPS T5000-S3 ......................................................................................................................................6.3.IPS T1000-A........................................................................................................................................6.4.IPS T1000-S ........................................................................................................................................6.5.IPS T1000-C........................................................................................................................................6.6.IPS T200-A..........................................................................................................................................6.7.IPS T200-M.........................................................................................................................................6.8.IPS T200-S ..........................................................................................................................................6.9.IPS 插卡(S125、S95E、S75E、S58、SR88、SR66配套) ...................................................7.UTM .................................................................................................................................................................7.1.UTM核心引导指标说明 ..................................................................................................................7.2.U200-A ................................................................................................................................................7.3.U200-M................................................................................................................................................7.4.U200-S.................................................................................................................................................7.5.UTM200-CA .......................................................................................................................................7.6.UTM200-CM.......................................................................................................................................7.7.UTM200-CS........................................................................................................................................1.防火墙系列防火墙整体引导策略:1、要求采用指定架构(M9000的分布式架构、中低端的多核非X86架构等),屏蔽和抬高友商。

H2N 伺服驱动器 说明书

H2N 伺服驱动器 说明书
操作
◆在机械设备开始运转前,请配置合适的参数设定值。若未能调整至合适的正确的设定 值,可能会导致机械设备运转失控或发生故障。 ◆在电机运转时,禁止触摸任何电机部件、电缆、散热器,否则可能造成人员伤害。 ◆禁止在带电情况下改变或拆除配线、拆除驱动器,防止触电。 ◆电源关闭 10 分钟内,不得接触接线端子,防止残余电压造成触电。
2、 请参照说明书,设置正确的电机型号参数 PA1,以使驱动器与电机相匹配。 3、 当电机负载的惯量比较大时,请正确设置 PA34。 4、 当电机高速起停很频繁时,驱动器需要外加制动电阻。请参照说明书或者
联系我们的技术支持,接入合适的外加制动电阻。 5、 请正确设置电子齿轮比参数 PA12,PA13。 6、 请正确设置脉冲指令输入方式参数 PA14。 7、 参数 PA1,PA14,PA34,PA35 的修改,是断电重新上电后生效。 8、 当客户自己制作编码线时,请用双绞屏蔽线,而且编码线的总长度不要
第三章 信号接口及接线.............................................................................................. 8
3.1 概述................................................................................................................... 8 3.2 CN1 接口 .......................................................................................................... 8

常见焊条焊丝型号牌号对照一览表同名11693.docx

常见焊条焊丝型号牌号对照一览表同名11693.docx

压力容器用钢焊材一览表类型牌号中国 GB美国 AWS 碳THJ422E4303—钢THJ426E4316E6016焊THJ427E4315E6015条THJ506E5016E7016THJ507E5015E7015THJ506R E5016-G E7016-GTHJ507RH E5015-G E7015-GTHJ557R E5MoV-15—低THJ606E6016-D1E9016-D1合金THJ607E6015-D1E9015-D1钢THW707Ni E5515-C1—焊THR207E5515-B1E8015-B1条THR307E5515-B2E8015-B2THR317E5515-B2-V—THR407E6015-B3—THR507E5MoV-15—类型不锈钢焊条气保护实芯焊丝牌号中国 GB美国 AWSTHA002E308L-16E308L-16THA022E316L-16E316L-16THA102E308-16E308-16THA107E308-15E308-15THA132E347-16E347-16THA137E347-15E347-15THA202E316-16E316-16THA207E316-15E316-15THA212E318-16E318-16THA242E317-16E317-16THA302E309-16E309-16THA307E309-15E309-15THG202E410-16E410-16———THQ-G2Si EN440 G38 4MG2SiTHQ-50CG4EN440 G38 3CG4Si1型号牌号GBTHT49-1ER49-1THT-10MnSi ER50-GTHT50-6ER50-6( TIG-J50 )THT55-B2ER55-B2 THT55-B2V ER55-GTHT-307H09Cr21Ni9Mn4Mo THS-307THT-307SiH10Cr21Ni10Mn6Si1 THS-307SiTHT-308H08Cr21Ni10Si THS-308THT-308LH03Cr21Ni10Si THS-308LTHT-308LSiH03Cr21Ni10Si1 THS-308LSiTHT-309H12Cr24Ni13Si THS-309THT-309MoH12Cr24Ni13Mo2 THS-309MoTHT-309LH03Cr24Ni13Si THS-309L类别碳钢焊丝珠光体耐热钢焊丝不锈钢焊丝氩弧焊焊丝主要用途用于船舶、石化、核电话等高压管的对接及角焊用于薄板及打底焊接结构用于管道、平板等需作抛光度准确时的焊接用于工作温度550℃以下的锅炉受热面管子蒸汽管道,高压容器,石油精练设备结构的焊接用于工作温度550℃以下的锅炉受热面管子蒸汽管道,高压容器,石油精练设备结构的焊接用于防弹钢、覆面不锈钢及碳钢异材的焊接用于高锰钢、硬化性耐磨钢及非磁性钢的焊接用于 308、 301、304 等不锈钢结构的焊接用于 304L 、 308L 等不锈钢结构的焊接用于改善填充金属的工艺性、焊接操作性及流动性用于异种钢的焊接,如碳钢、低合金钢与不锈钢的焊接用于 Cr22Ni12Mo2复合钢以及异种钢的焊接用于 309S、 1Cr13、 1Cr17、低碳不锈钢、低碳覆面钢以及异种钢的焊接THT-309LSi用于 309 型不锈钢以及 304 型不锈钢与碳钢的焊接H03Cr24Ni13Si1THS-309LSiTHT-309LMo用于异种钢的焊接或韧性较差的马氏体、铁素体不锈钢的焊接H03Cr24Ni13Mo2THS-309LMoTHT-310用于高温条件下工作的耐热钢以及1Cr5Mo 、 1Cr13 等不能进行预热及后热处理的焊接H12Cr26Ni21SiTHS-310THT-312用于异种母材不锈钢覆面、硬化性低合金钢以及焊接困难或易发生气孔情况的焊接H15Cr30Ni9THS-312THT-316用于磷酸、亚硫酸、醋酸及盐类腐蚀介质结构的焊接H08Cr19Ni12Mo2SiTHS-316THT-316L用于尿素、合成纤维等结构及不能进行热处理的铬不锈钢及复合钢的焊接H03Cr19Ni12Mo2SiTHS-316LTHT-316LSi用于相同类型不锈钢以及复合钢结构的焊接H03Cr19Ni12Mo2Si1THS-316LSiTHT-317用于重要的耐腐蚀化工容器的焊接H08Cr19Ni14Mo3THS-317THT-317L用于重要的耐腐蚀化工容器的焊接H03Cr19Ni14Mo3THS-317LTHT-321用于 304、 321、347 型不锈钢以及耐热钢的焊接H08Cr19Ni10TiTHS-321THT-347用于 304、 321、347 型不锈钢以及耐热钢的焊接H08Cr20Ni10NbTHS-347THT-410用于 410、 420 型不锈钢以及耐蚀耐磨表面的堆焊H12Cr13THS-410THT-420用于 Cr13 马氏体不锈钢耐腐蚀性材料的堆焊H31Cr13THS-420THT-430用于腐蚀(硝酸)、耐热同类型不锈钢表面堆焊H10Cr17THS-430THT-2209用于含 Cr22% 双相不绣钢的焊接H03Cr22Ni8Mo3NTHS-2209碳钢焊条熔敷金属化学成分(%)(≤)熔敷金属力学性能(≥)型号牌号GB C Mn Si S P其余Rel/RP0.2Rm A AKVMPa MPa%JJ421E43130.100.32/0.300.0300.035—355440/220℃0.5557047THJ421X E43130.100.32/0.300.0350.040—330420170℃0.5527THJ421Fe18E43240.120.30/0.350.0350.040—330420170℃0.6047THJ422E43030.100.32/0.250.0350.040330420220℃—0.5527THJ422GM E43030.100.32/0.250.0350.040330420220℃—0.5527THJ423E43010.100.32/0.300.0350.040—33042022-20℃0.5527THJ425X E43100.200.32/0.300.0350.040—33042022-30℃E43110.6027THJ426E43160.10 1.250.900.0350.040—33042022-30℃特点与用途焊接低碳钢结构,特别适用于薄板小件及短焊缝的间断焊和盖面焊。

这就是顶级TLC的样子-P4610

这就是顶级TLC的样子-P4610

这就是顶级TLC的样⼦-P4610实为D7的P4610在先前D5-P4420的评测中讲到过,Intel⽬前的数据中⼼级固态硬盘以D1、D3、D5、D7命名并区分等级。

其中基于3D QLC NAND的P4420/P4320被定为于D5,⽽更⾼端⼀些的3D TLC 盘被定义为D7。

然⽽这个命名规则是2018下半年才制定的,所以2018年Q2发布的P4610没有赶上这波命名规则的更替,所以他的正式依然为Intel SSD DC P4610在Intel的官⽅产品库中,P4610系列共有1.6T~7.68T四种不同容量,这次来到评测室的是容量适中的3.2T版本Intel的U.2接⼝数据中⼼固态硬盘长得都⼀样,我们基本上只能通过标签来区分它们具体是哪个型号散热处理做在背⾯侧⽅也贴有型号标签相⽐于之前那两款双PCB构造的QLC盘,这款P4610要好拆了许多我们可以看到单PCB构造正反⾯共12颗NAND,⼀个主控和四颗DRAM还有两个两颗35v/340uF的电容来提供完整的掉电保护主控的Spec Code为SLLWY,可以认为它和P4420/P4320采⽤了同款主控NAND分为两种,都来⾃Intel⾃家。

四颗29F04T2AOCTH1和⼋颗29F02T2ANCTH1.NAND总容量为512*4+256*8=4096GB,扣掉OP后的实际为3200GBDRAM这边则是⼀个略显奇葩的组合。

我们平时所看到的品牌内存模组,同⼀根内存条上的DRAM颗粒虽然不⼀定是同⼀周期,但⾄少也是同⼀⼚家同⼀型号的。

⽽P4610上⽤到的这组DRAM,别说型号了,就连⼚商和容量都是不⼀样的。

⼀颗三星的K4AAG085WB-MCRC,不过这和我们平时在超频内存中见到的三星B-DIE不同,那个B-DIE是单颗1GB的,⽽这个是单颗2GB。

还有⼀颗镁光D9TGL的512MB DRAM颗粒。

单⾯两颗DRAM⼀共2.5GB,双⾯总计5GB电源管理⽅案和P4320/P4420相同实际容量为3200GB在Windows操作系统格式化之后可⽤容量为2.91TB出⼚态测试我在之前的P4320/P4420的测试中只测试了他们的稳定态,只是说明数据中⼼级固态硬盘更注重稳定态⽽不强调出⼚态,⽽不是说他们的出⼚态表现不⾏。

卫星列表

卫星列表

Western HemisphereLocation Satellite SatellitebusSourceOperator TypeCoverageLaunchdate/rocket(GMT)AlllocationsRemarksAs of148.0°W EchoStar-1LockheedMartinAS-7000USEchostar/DISHNetworkDirectBroadcasting28December1995, LongMarch 2E119°W(1996-1999),148.0°W(1999—)Scheduled to moveto 77°Wsoon2009-02-06139.0°W Americom-8LockheedMartinA2100AUSSES Americom& AT&TAlascomTelevisionand radiobroadcasting24 Cband(Canada,Caribbean,mainlandUSA)19December2000,Ariane 5GPreviouslyGE-8 forGEAmericom; alsoknown asAurora III;replacedSatcomC-5 inMarch20012008-11-20137.0°W Americom-7LockheedMartinUS SES AmericomTelevisionand radioMainlandUSA,14SeptemberPreviouslyGE-7 for2008-11-20A2100A broadcasting Canada,Mexico2000,Ariane 5GGEAmericom135.0°W Americom-10LockheedMartinA2100AUS SES AmericomTelevisionand RadioBroadcastingMainlandUSA,Canada,Caribbean, Mexico5 February2004, AtlasII AS2008-11-20133.0°W Galaxy-12 OrbitalSciencesCorporationStar-2US IntelsatTelevision/RadioBroadcasting9 April2003,Ariane 5G123.0°WreplacedfailedGalaxy 15131.0°W Americom-11LockheedMartinA2100AUS SES AmericomTelevisionand RadioBroadcasting24C-BandTranspondersMainlandUSA,Canada,Caribbean, Mexico19 May2005, AtlasII AS2008-11-20129.0°W Galaxy-27SpaceSystems/Loral FS-1300US IntelsatTelevisionbroadcasting & SatelliteInternetAccess25September1999,Ariane 44LPFormerlyknown asIA-7 andTelstar-72008-11-20Ciel-2ThalesAlenia SpaceSpacebus4000 C4CanadaCiel SatelliteGroupDirectBroadcasting10December2008,Proton-MLeased toEchostar/DishNetwork2009-02-06127.0°W Galaxy-13BoeingBSS-601US Intelsat24C-Bandtransponders1 October2003,Zenit-3SLSamesatelliteasHorizons-12008-11-20Horizons-1BoeingBSS-601USJapan SatelliteSystems24Ku-Bandtransponders1 October2003,Zenit-3SLSamesatelliteasGalaxy-132008-11-20125.0°W Galaxy-14 OrbitalSciencesCorporationStar-2US Intelsat24C-Bandtransponders -NorthAmerica13 August2005,Soyuz-FG/Fregat2008-11-20123.0°W Galaxy-18 SpaceSystems/Loral LS-1300US IntelsatTelevisionand radiobroadcastingNorthAmerica21 May2008,Zenit-3SLHybridC/Ku-band satellite2008-11-19121.0°W Galaxy-23SpaceSystems/LorUS IntelsatDirectBroadcastinNorthAmerica7 August2003,HybridC/Ku/Ka-b2008-11-26al FS-1300 g Zenit-3SL andsatellite;C-bandpayloadreferred toasGalaxy-23EchoStar-9 SpaceSystems/Loral FS-1300USEchostar/DISHNetworkDirectBroadcastingNorthAmerica7 August2003,Zenit-3SLHybridC/Ku/Ka-bandsatellite;Ku/Ka-bandpayloadreferred toasEchoStar-92008-11-26119.0°W DirecTV-7SSpaceSystems/Loral LS-1300US DirecTVDirectBroadcasting54Ku-bandtransponders4 May 2004,Zenit-3SL8 activetransponders at thistime2008-11-26EchoStar-7LockheedMartinA2100AXUSEchostar/DISHNetworkDirectBroadcasting32Ku-bandtranspond21 February2002, AtlasIII B21 activetransponders at this2008-11-26ers time118.8°W Anik F3EADSAstriumEurostar-3000SCanada Telesat CanadaDirectBroadcasting24C-bandtransponders, 32Ku-bandtransponders, 2Ka-bandtransponders11 April2007,ProtonKu-Bandleased toEchostar/DishNetwork2008-11-26116.8°W SatMex-5HughesHS-601HPMexico Satmex24C-bandtransponders, 24Ku-bandtransponders5 December1998,Ariane 42L2008-11-26115.0°W XM-Blues US30 October2006,Zenit-3SL Solidaridad-2Mexico Satmex8 October1994,Ariane 44L113.0°W Satmex-6Mexico Satmex27 May2006, Ariane 5-ECA111.1°W Anik F2Boeing 702 Canada Telesat Canada DirectBroadcasting17 July2004,Ariane 5GHybridC/Ku/Ka-bandsatellite110.0°W EchoStar-11SpaceSystems/Loral LS-1300USEchostar/DISHNetworkDirectBroadcasting17 July2008,Zenit-3SL2008-11-19EchoStar-10A2100AXS USEchostar/DISHNetworkDirectBroadcasting15 February2006,Zenit-3SLDirecTV-5LS-1300US DirecTVDirectBroadcasting7 May 2002,Proton32Ku-bandtransponders107.3°W Anik F1Boeing 702 Canada Telesat CanadaDirectBroadcasting21November2000,Ariane 44LHybridC/Ku-band satellite;will bereplacedby AnikF1RAnik F1R Eurostar-300Canada Telesat Canada Direct 8 Hybrid0Broadcasting, WAASPRN #138 September2005,ProtonC/Ku-band satellite;willreplaceAnik F1105.0°W AMC-18A2100A US SES AmericomDirectBroadcastingMainlandUSA,Canada,Caribbean, Mexico8 December2006,Ariane 5Americom-15A2100AXS US SES AmericomDirectBroadcastingCONUS,Alaska,Hawaii15 October2004,Proton-MHybridKu/Ka-bandsatellite;twin ofAmericom-16103.0°W Americom-1A2100A US SES AmericomMainlandUSA,Canada,Mexico,Caribbean8September1996, AtlasII AHybridC/Ku-band satellite102.8°W SPACEWAY-1Boeing 702 US DirecTVDirectBroadcastin26 April2005,g Zenit-3SL101.2°W DirecTV-4SBoeing 601 US DirecTVDirectBroadcasting27November2001,Ariane 44LP48Ku-bandtransponders101.1°W DirecTV-9SLS-1300US DirecTVDirectBroadcasting13 October2006,Ariane5-ECA101.0°W AMC-4A2100AX US SES Americom MainlandUSA,Canada,Mexico,Caribbean, CentralAmerica13November1999,Ariane 44LPHybridC/Ku-band satellite100.8°W DirecTV-8LS-1300US DirecTV DirectBroadcasting22 May2005,ProtonHybridKu/Ka-bandsatellite99.2°W SPACEWAY-2US16November 2005,Ariane5-ECA99.0°W Galaxy-16FS-1300Intelsat 18 June 2006, Zenit-3SL97.0°W Galaxy-19SpaceSystems/Loral FS-1300US IntelsatTelevisionand RadioBroadcasting24 C- and28Ku-bandtransponders NorthAmerica24September2008,Zenit-3SL2008-11-2095.0°W Galaxy 3C US 15 June 2002, Zenit-3SL93.0°W Galaxy-26SSLFS-1300US15 February1999,Proton-K91.0°W Nimiq 1A2100AX Canada Telesat CanadaDirectBroadcasting20 May1999,Proton32Ku-bandtranspondersGalaxy 17Spacebus-3000B3US IntelsatTelevisionand radiobroadcastingNorthAmerica4 May 2007,Ariane5-ECA74°WJuly 2007to March2008HybridC/Ku-band satellite2008-06-1389.0°W Galaxy-28FS-1300ITSO Intelsat TheAmericas23 June2005,HybridC/Ku/Ka-bZenit-3SL andsatellite;launchedasTelstar 887.0°W AMC 3A2100A US SES Americom MainlandUSA,Canada,Mexico,Caribbean4September1997, AtlasII AHybridC/Ku-band satellite85.0°W XM-RhythmBoeing 702 USXM SatellieRadio HoldingsRadioBroadcastingCONUS28 February2005,Zenit-3SLAmericom-2A2100A US SES AmericomDirectBroadcastingMainlandUSA,Canada,Mexico30 January1997,Ariane 44LAmericom-16A2100AXS US SES AmericomDirectBroadcastingCONUS,Alaska,Hawaii17December2004, AtlasV (521)HybridKu/Ka-bandsatellite;twin ofAmericom-1584.0°W Brasilsat-B3Brazil4 February1998,Ariane 44LP83.0°W Americom-93000B3US SES AmericomDirectBroadcastingCONUS,Canada,Mexico,CentralAmerica,Caribbean7 June2003,ProtonHybridC/Ku-band satellite82.0°W Nimiq 2A2100AX Canada Telesat CanadaDirectBroadcasting29December2002,ProtonHybridKu/Ka-bandsatellite Nimiq 3HS-601Telesat CanadaDirectBroadcasting9 June1995,Ariane 42PPreviouslyDirecTV-3forDirecTV80.9°W SBS-6HS-393 US Intelsat Televisionand RadioBroadcasting12 October1990,Ariane 44L74°WNov 1995to Jan2008Beyondexpectedend of life.ServesArgentinanow2008-06-1379.0°W Americom Spacebus-20US SES Americom CONUS, 28 October-500 Canada,Mexico 1998, Ariane 44LSatcom C3US10September1992,Ariane 44LPInclinedorbit77.0°W EchoStar-4A2100AX USEchostar/DISHNetworkDirectBroadcasting8 May 1998,ProtonspareEchoStar-8FS-1300USEchostar/DISHNetworkDirectBroadcasting21 August2002,Proton110°W2008-11-1976.8°W Galaxy 4R US 19 April2000,Ariane 42LInclinedorbit75.0°W Brasilsat-B1Brazil10 August1994,Ariane 44LP74.9°W Galaxy-9US 24 May1996, DeltaII (7925)spare74.0°W Horizons-2STAR Bus US Intelsat JSATTelevisionand RadioBroadcastingCONUSCanadaCaribbean21December2007,Ariane 5GS20 KuXpndrs2008-06-1372.7°W EchoStar-6FS-1300USEchostar/DISHNetworkDirectBroadcasting14 July2000, AtlasII AS2008-11-1972.5°W Directv-1R US 10 October 1999, Zenit-3SL72.0°W AMC-6A2100AX US SES Americom CONUS,Canada,Mexico,Caribbean, CentralAmerica22 October2000,Proton-MHybridC/Ku-band satellite;a portionof theKu-bandpayload isdedicatedto SouthAmerica71.0°W Nahuel-1A Argentina30 January1997,Ariane 44L70.0°W Brasilsat-B4Brazil17 August2000,Ariane 44LP65.0°W Brasilsat-B2Brazil28 March1995,Ariane44LP+63.0°W Estrela doSul 1Brazil11 January2004,Zenit-3SL61.5°W EchoStar-12A2100AXS US17 July2003, AtlasV (521)FormerlyRainbow-1,purchased fromVOOM EchoStar-3A2100AX USEchostar/DISHNetworkDirectBroadcasting5 October1997, AtlasII AS61.0ºW HispasatAmazonasSpain4 August2004,Proton-M58.0°W Intelsat-9HS601HP US 28 July2000,Zenit-3SLformerlyPAS-955.5°W Intelsat-805ITSO18 June1998, AtlasII AS53.0°W Intelsat-707ITSO14 March1996,Ariane 450.0°W Intelsat-705ITSO22 March1995, AtlasII AS45.0°W Intelsat-1RHS702 US16November2000,Ariane 5GformerlyPAS-1R43.1°W Intelsat-3RHS601 US12 January1996,Ariane 44LformerlyPAS-3R43.0°W Intelsat-6BHS601HP22December1998,Ariane 42LformerlyPAS-6B40.5°W NSS-806LM AS-7000 Netherlands28 February1998, AtlasII AS37.5°W NSS-10Spacebus4000C33 February2005,ProtonTelstar-11USInclinedorbit34.5°W Intelsat-903ITSO30 March2002,Proton-K31.5°W Intelsat-801ITSO1 March1997,Ariane 44P30.0°W Hispasat-1CSpain3 February2000, AtlasII ASHispasat-1DSpain18September2002, AtlasII AS27.5°W Intelsat-907ITSO15 February2003,Ariane 44L24.5°W Intelsat-905ITSO5 June2002,Ariane 44L24.0°W Cosmos2379RussiaInclinedorbit22.0°W NSS-7LM A2100AX Netherlands16 April2002,Ariane 44L20.0°W Intelsat-603ITSO14 March1990,CommercialTitan IIIInclinedorbit18.0°W Intelsat-901ITSO9 June2001,Ariane 44L15.5°W Inmarsat 3F2IMSOEGNOSPRN #1206September1996,Proton-K15.0°W Telstar 12SSL US 19 October 1999, Ariane 44LP14.0°W Gorizont32RussiaInclinedorbit Express-A4Russia12.5°W AtlanticBird 1EUMETSAT28 August2002,Ariane 5G11.0°W Express-A3Russia24 June2000,Proton-K8.0°W AtlanticBird 2Eutelsat25September2001,Ariane 44PTelecom 2D France8 August1996,Ariane 44LInclinedorbit7.0°W Nilesat101Egypt28 April1998,Ariane 44P Nilesat102Egypt17 August2000,Ariane 44LP Nilesat103Egypt27 February1998,Ariane 42P AtlanticBird 4Eutelsat27 February1998,Ariane 42P5.0°W AtlanticBird 3Eutelsat4.0°W AMOS 1Israel16 May1996,Ariane 44L AMOS 2Israel27December2003,Soyuz-FG/Fregat3.4°W Meteosat828 August2002,Ariane 5G1.0°W Intelsat10-02ITSO16 June2004,Proton-M0.8°W Thor 2Norway20 May1997, DeltaIIThor 3Norway10 June1998, DeltaII (7925-9.5)[edit] Eastern HemisphereLocation Satellite SatellitebusSource Operator TypeCoverageLaunchdate/rocket(GMT)AlllocationsRemarks As of0.5°E Meteosat7ESAWeathersatellite2September1997,Ariane 44LPInclinedorbit3.0°E Telecom2A16December1991,Ariane 44L4.0°E Eurobird 4Eutelsat 2 September 1997, Ariane 44LP4.8°E Sirius 4A2100AX Sweden SES Sirius Comsat52Ku-bandcoveringEurope2Ka-bandcoveringScandinavia17November2007,Proton M2007-11-18 Astra 1CLuxembourg12 May1993,Ariane 42L0.9°inclinedorbit5.0°E Sirius 3Sweden 5 October 1998, Ariane 44L5.2°E Astra 1A GE 4000 11 December 1988, Ariane 44LP6.0°E Skynet 4F Militarycommunica7 February2001,Inclinedorbittions Ariane 44L7.0°E EutelsatW3AEutelsat15 March2004,Proton-M9.0°E Eurobird 9Eutelsat 21November1996, AtlasII AformerlyHot Bird 29.5°E Meteosat6ESAWeathersatellite20November1993,Ariane 44LPInclinedorbit10.0°E EutelsatW1Eutelsat6September2000,Ariane 44P12.5°E Raduga29RussiaInclinedorbit13.0°E Hot Bird 6Eutelsat21 August2002, AtlasV (401)Hot Bird7AEutelsat11 March2006,Ariane5-ECAHot Bird 8Eutelsat 4 August 2006, Proton16.0°E EutelsatW2Eutelsat5 October1998,Ariane 44L19.2°E Astra 1ELuxembourg19 October1995,Ariane 42L Astra 1FLuxembourg8 April1996,Proton-K Astra 1GLuxembourg12November1997,Proton-K Astra 1HLuxembourg18 June1999,Proton-K Astra 1KRLuxembourg20 April2006, AtlasV (411) Astra 1LLuxembourg4 May 2007,Ariane5-ECA20.0°E Arabsat2A9 July 1996,Ariane 44LInclinedorbit21.0°E AfriStar US 28 October 1998, Ariane 44L21.5°E EutelsatW6Artemis ESAEGNOSPRN #12412 July2001,Ariane 5GInclinedorbit.23.5°E Astra 3A Luxembourg29 March2002,Ariane 44L25.0°E Inmarsat 3F5IMSOEGNOSPRN #1264 February1998,Ariane 44LP25.5ºE Eurobird 2Eutelsat25.8°E Badr 226.0°E Badr 326.2°E Badr C28.2°E Astra 2A HS601HPLuxembourgAstra 2BLuxembourg14September2000, Ariane 5GAstra 2C Luxembourg16 June2001,Proton-KAstra 2D Luxembourg20December2000,Ariane 5G28.5°E Eurobird 1Spacebus3000Eutelsat8 March2001,Ariane 5G30.5°E Arabsat2BArabsat13November1996,Ariane 44L31.3°E Astra 1D HS-601LuxembourgSES Astra Comsat24Ku-band1 November1994,Ariane 419.2°E(1994–1998)28.2°E(1998)19.2°E(1998–1999)28.2°E2007-11-14(1999–2001)24.2°E(2001–2003)23.0°E(2003–2004)23.5°E(2004–2007)30.0°E(2007—) 31.5°E Sirius 2Sweden33.0°E Eurobird 3Eutelsat27September2003,Ariane 5G Intelsat802LM-3000 ITSO25 June1997,Ariane 44P36.0°E EutelsatSesat 1Eutelsat17 April2000,Proton-K Eutelsat Eutelsat24 May。

NVIDIA A100 GPU系统规格说明书

NVIDIA A100 GPU系统规格说明书

SYSTEM SPECIFICATIONSNVIDIA A100 for NVLinkNVIDIA A100 for PCIePeak FP649.7 TF 9.7 TF Peak FP64 Tensor Core 19.5 TF 19.5 TF Peak FP3219.5 TF 19.5 TF Tensor Float 32 (TF32)156 TF | 312 TF*156 TF | 312 TF*Peak BFLOAT16 Tensor Core 312 TF | 624 TF*312 TF | 624 TF*Peak FP16 Tensor Core 312 TF | 624 TF*312 TF | 624 TF*Peak INT8 Tensor Core 624 TOPS | 1,248 TOPS*624 TOPS | 1,248TOPS*Peak INT4 Tensor Core 1,248TOPS | 2,496TOPS*1,248TOPS | 2,496TOPS*GPU Memory 40GB 80GB 40GB GPU Memory Bandwidth 1,555 GB/s2,039 GB/s1,555 GB/s InterconnectNVIDIA NVLink 600 GB/s**PCIe Gen4 64 GB/s NVIDIA NVLink 600 GB/s**PCIe Gen4 64 GB/s Multi-Instance GPU Various instance sizes with up to 7 MIGs @ 10 GB Various instance sizes with up to 7 MIGs @ 5 GBForm Factor 4/8 SXM on NVIDIA HGX ™ A100PCIe Max TDP Power400 W400 W250 W* With sparsity** SXM GPUs via HGX A100 server boards; PCIe GPUs via NVLink Bridge for up to 2 GPUsNVIDIA A100TENSOR CORE GPUUNPRECEDENTED SCALE AT EVERY SCALEThe Most Powerful Compute Platform for Every WorkloadThe NVIDIA ® A100 Tensor Core GPU delivers unprecedented acceleration—at every scale—to power the world’s highest-performing elastic data centers for AI, data analytics, and high-performance computing (HPC) applications. As the engine of the NVIDIA data center platform, A100 provides up to 20X higher performance over the prior NVIDIA Volta ™ generation. A100 can efficiently scale up or be partitioned into seven isolated GPU instances, with Multi-Instance GPU (MIG) providing a unified platform that enables elastic data centers to dynamically adjust to shifting workload demands. NVIDIA A100 Tensor Core technology supports a broad range of math precisions, providing a single accelerator for every workload. The latest generation A100 80GB doubles GPU memory and debuts the world’s fastest memory bandwidth at 2 terabytes per second (TB/s), speeding time to solution for the largest models and most massive data sets. A100 is part of the complete NVIDIA data center solution that incorporates building blocks across hardware, networking, software, libraries, and optimized AI models and applications from NGC ™. Representing the most powerful end-to-end AI and HPC platform for data centers, it allows researchers to deliver real-world results and deploy solutions into production at scale.1X2X3XUp to 3X Higher AI Training on Largest Models DLRM TrainingUp to 249X Higher AI Inference Performance over CPUs BERT-LARGE InferenceGroundbreaking InnovationsNEXT-GENERATION NVLINKNVIDIA NVLink in A100 delivers 2X higher throughput compared to the previous generation. When combined with NVIDIA NVSwitch ™,up to 16 A100 GPUs can be interconnected at up to 600 gigabytes per second (GB/ sec), unleashing the highest application performance possible on a single server . NVLink is available in A100 SXM GPUs via HGX A100 server boards and in PCIe GPUs via an NVLink Bridge for up to 2 GPUs.efficiency at 95%. A100 delivers 1.7X highermemory bandwidth over the previous generation.to breakthrough acceleration for all their applications, and IT administrators can offer right-sized GPU acceleration for every job, optimizing utilization and expanding access to every user and application.STRUCTURAL SPARSITYAI networks have millions to billions of parameters. Not all of these parameters are needed for accurate predictions, and somecan be converted to zeros, making the models “sparse” without compromising accuracy. Tensor Cores in A100 can provide up to 2X higher performance for sparse models. While the sparsity feature more readily benefits AI inference, it can also improve the performance of model training.01X2XUp to 1.25X Higher AI Inference Performance over A100 40GB RNN-T Inference: Single StreamTime to Solution - Relative PerformanceCPU OnlyV100 32GBA100 40GBA100 80GBBig data analytics benchmark | 30 analytical retail queries, ETL, ML, NLP on 10TB dataset | CPU: Intel Xeon Gold 6252 2.10 GHz, Hadoop | V100 32GB, RAPIDS/Dask | A100 40GB and A100 80GB, RAPIDS/Dask/BlazingSQLUp to 1.8X Higher Performance for HPC Applications Quantum Espresso2017P1002016201820192020Throughput - Relative PerformanceGeometric mean of application speedups vs. P100: Benchmark application: Amber [PME-Cellulose_NVE], Chroma [szscl21_24_128], GROMACS [ADH Dodec], MILC [Apex Medium], NAMD [stmv_nve_cuda], PyTorch (BERT-Large Fine Tuner], Quantum Espresso [AUSURF112-jR]; Random Forest FP32 [make_blobs (160000 x 64: 10)], TensorFlow [ResNet-50], VASP 6 [Si Huge] | GPU node with dual-socket CPUs with 4x NVIDIA P100, V100, or A100 GPUs.Incredible Performance Across Workloads© 2021 NVIDIA Corporation. All rights reserved. NVIDIA, the NVIDIA logo, CUDA, DGX, HGX, HGX A100, NVLink, NVSwitch, OpenACC, TensorRT, To learn more about the NVIDIA A100 Tensor Core GPU, visit /a100The NVIDIA A100 Tensor Core GPU is the flagship product of the NVIDIA data center platform for deep learning, HPC, and data analytics. The platform accelerates over 1,800 applications, including every major deep learning framework. A100 is available everywhere, from desktops to servers to cloud services, delivering both dramatic performance gains and cost-saving opportunities.。

XB6 系列_ EtherNet IP_插片式 I O 用户手册说明书

XB6 系列_ EtherNet IP_插片式 I O 用户手册说明书

2.1
命名规则 .......................................................................................................................................................... 3
EtherNet/IP XB6 系列插片式 I/O 用户手册
南京实点电子科技有限公司
版权所有 © 南京实点电子科技有限公司 2023。保留一切权利。 非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。 商标声明
和其它实点商标均为南京实点电子科技有限公司的商标。 本文档提及的其它所有商标或注册商标,由各自的所有人拥有。 注意 您购买的产品、服务或特性等应受实点公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可 能不在您的购买或使用范围之内。除非合同另有约定,实点公司对本文档内容不做任何明示或默示的声明或保证。 由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的 所有陈述、信息和建议不构成任何明示或暗示的担保。
3.3
接口参数 .......................................................................................................................................................... 8
5.2
安装拆卸步骤 .............................................................................................................................................. 19

本机参数

本机参数

处理器型号:Intel 奔腾双核 P6200CPU主频(GHz):2.13标准内存容量:2GB硬盘容量(GB):320屏幕尺寸(英寸):14.0显示芯片:ATI Mobility Radeon HD 5470快速定位:基本规格处理器存储设备显示屏显卡音频/摄像头网络通信输入/输出接口输入设备外观特征电力规格其它信息推荐适用类型基本规格产品类型家用预装操作系统DOS处理器处理器系列Intel Pentium Dual Core处理器型号Intel 奔腾双核 P6200处理器主频(GHz) 2.13三级缓存(KB)3072前端总线频率1066MHz主板芯片组Intel HM55存储设备标准内存容量2GB内存类型DDR3内存描述DDR3 1066最大支持内存4GB硬盘容量(GB)320硬盘转速(转/分)5400硬盘描述Serial ATA 串口接口光驱类型DVD刻录机光驱描述支持DVD-SuperMulti双层刻录设计类型光驱内置显示屏屏幕尺寸(英寸) 14.0屏幕比例16:9宽屏是背光技术TFT LED屏幕分辨率1366×768显卡显卡类型独立显示芯片ATI Mobility Radeon HD 5470显存容量512流处理器个数80显存位宽64bit显存类型DDRIIIDirectX版本DirectX 11高清支持支持音频/摄像头音频系统内置立体声音效芯片扬声器内置双声道立体声扬声器网络通信无线网卡802.11b/g/n网卡描述10/100/1000Mbps网卡输入/输出接口摄像头内置高清晰摄像头读卡器3合1读卡器视频接口1个VGA 端口、HDMI高清晰度多媒体接口音频接口耳机输出接口,麦克风输入接口其它接口RJ45(网络接口),电源接口I/O接口RJ45(网络接口),耳机输出接口,麦克风输入接口,电源接口扩展插槽1个Express Card数据接口3×USB2.0输入设备指取设备触摸板键盘描述人体力学键盘扩展性能中等外观特征外壳材质钢琴烤漆外壳描述黑色重量(kg) 2.2长度(mm) 349宽度(mm) 238高度(mm) 36.5电力规格续航时间3-4电源适配器100-240V AC、50/60Hz国际通用电源适配器续航能力中等其它信息其他功能特性内置摄像头附带软件随机软件包装清单笔记本主机,电池,电源适配器,保修卡,说明书可选配件蓝牙2.1+EDR售后服务2年。

UltraCam系列航空摄影测量相机介绍

UltraCam系列航空摄影测量相机介绍
UltraCam 数码航摄仪系列产品 蓝皮书
北京四维空间数码科技有限公司
-1-
目录
Microsoft Vexcel 简介 ............................................................................................ 错误!未定义书签。
概述.................................................................................................................................................... 39 UltraMap 技术特点 ........................................................................................................................... 40
UltraCamXp WA (wide-angle) 广角大幅面数码航摄仪 .................................................................. 20
概述.................................................................................................................................................... 20 UltraCamXp WA ............................................................................................................................... 21 特性.................................................................................................................................................... 21 UltraCamXp WA 技术参数............................................................................................................... 21 UltraCamXp WA 影像产品展示....................................................................................................... 24

tms320f28335中文数据手册介绍

tms320f28335中文数据手册介绍
Literature Number: ZHCS889M June 2007 – Revised August 2012
TMS320F28335, TMS320F28334, TMS320F28332 TMS320F28235, TMS320F28234, TMS320F28232007 – REVISED AUGUST 2012
内容
1 TMS320F2833x,TMS320F2823x DSC .................................................................................. 10 1.1 特性 ......................................................................................................................... 10 1.2 开始使用 .................................................................................................................... 11
6441dma概述644232位cpu定时器0cpu定时器1cpu定时器26643增强型pwm模块6844高分辨率pwmhrpwm7245增强型cap模块7346增强型qep模块7547模数转换器adc模块77471如果adc未被使用adc连接20072012texasinstrumentsincorporatedtms320f28335tms320f28334tms320f28332tms320f28235tms320f28234tms320f28232wwwticomcnzhcs889mjune2007revisedaugust2012472adc寄存器82473adc校准8348多通道缓冲串行端口mcbsp模块8349增强型控制器局域网ecan模块ecana和ecanb86410串行通信接口sci模块sciascibscic91411串行外设接口spi模块spia95412部集成电路i2c98413gpiomux99414外部接口xintf10851器件和开发支持工具命名规则10852文档支持11053社区资源11661最大绝对额定值11662建议的运行条件11763电气特性11764118641减少流耗120642121643散热设计考虑12265在没有针对dsp的信号缓冲的情况下仿真器连接12366时序参数符号安排124661定时参数的通用注释124662测试负载电路124663器件时钟表12567时钟要求和特性12668电源排序127681电源管理和监控电路解决方案12869通用输入输出gpio131691gpio131692gpio132693针对输入信号的采样窗口宽度133694低功耗模式唤醒时序134610增强型控制外设1386101增强型脉宽调制器epwm时序1386102触发区输入时序1386103高分辨率pwm时序1396104增强型捕捉ecap时序1396105增强型正交编码器脉冲eqep时序1406106adc转换开始时序141611外部中断时序141612i2c电气特性和时序142613串行外设接口spi模块1426131主模式时序1426132spi受控模式时序147614外部接口xintf时序1516141useready1516142同步模式useready1readymode01526143异步模式useready1readymode11536144xintf信号与xclko

裸芯片种类

裸芯片种类

裸芯片种类裸芯片种类放大器:差动放大器AD629 AD8132 AD8351 AMP03 CA3026 INA117音频放大器LM1875 LM1876 LM2876 LM386 LM3875 LM3886 LM4766 LM4905 TDA1015 TTEA2025缓冲放大器HA0-5002HA0-5033HA-5002HAO-5033测量放大器AD524AD620AD622AD623AD624AD625AD627AMP02FSIN A110INA111INA118INA122INA128INA128AINA129NA129AINA163INA2 321INA321LTC6800PGA203PGA206隔离放大器AD202AD210INA110ISO122对数放大器AD8317SL2524BTL441低噪声放大器CHA2090F100MA01502D功率放大器CA3020LM1875LM1876LM2876LM386LM3875LM3886LM4 766LM4905MA08509BTDA1015TTDA2822TGA2710TGA4505TGA4513TGA4517TGA 4905可编程放大器AD526HA2400HA2405PGA103RF/IF放大器AD8351MC1550MC1590MCC1550采样-保持放大器AD585AAD684AD781HA0-5320LF198SHM-45MM可变增益放大器AD603AAD604SAD8367AD8369THS7530VCA810视频放大器AD813LM733LT1227TL592UA733C运算放大器AD515AD548AD549JAD644AD648AD704AD706AD708AD7 11AD712AD713AD741AD744AD746AD797AD8002AD8014AAD8033 AD8034AD8042AD8044AD8052AD8061AD8062AD8066AD8067AD8099AD8 11AD817AD820AD822AD823AD824AD825AD828AD829AD844AD846AD84 7AD848AD849AD8513AD8541AD8552AD8602AD8605AD8620AD86 51AD8672AD9617AD9632ADOP07CA258CA3078CA3080CA3094CA3140CA3160CA3193CLC4 00CLC449CLC501AMCHA0-2520HA0-2541HA0-2625HA0-5104HA2502HA2512HA-2515HA2522HA2525HA2529HA2540HA-2602HA2622HA2640HA2645HA-5102HA-5104HA5130 HA5142HAO-2540ICL7642ICL7650LF147LF153/LF353LF155LF156LF157LF347 LF351LF353LF356LF357LF411LF412LF441ALF442LF444LM10 7LM108LM108ALM118LM12LM124LM143LM1458LM148LM 1556LM158LM301LM307LM308ALM324LM343LM346LM347LM348LM 358LM432LM441LM675LM711LM715LM7171LM725LM741LM747LM7 59LM833LMC6034LMC6082LMH6624LMH6702LMV824LT1008LT1012CLT1013LT1014LT1055LT1057CLT1494LT1495LT1803LT1880LT6233LTC1052MA01M AX4020MAX407MAX4385EMAX4472MAX492MAX495MC1456MC1536MC1 537MC1556MC3303MC33171MC3503MC4741MCC1536MSK103NE5532OP07GBCOP07G RBCOP07NBCOP09OP11GBCOP11GRBCOP11NBCOP17OP177OP17NBCOP191OP196OP 200OP213OP215OP220NBCOP2228OP227OP249OP260OP262OP27OP270O P270GBCOP277OP279OP27GBCOP27NBCOP282OP282GBCOP284OP284GB COP285OP291OP297GBCOP37NBCOP400GBCOP4177OP420OP4227OP42NBCOP467 GBCOP470OP471OP471GBCOP482OP482GBCOP484OP491OP491GBCOP497OP727OP7 47OP77OP777OP77NBCOP90OP97NBCOPA111OPA128OPA132OPA177OPA2132OPA2227OPA2228OPA227OPA228OPA2350OPA241OPA2541OPA2658OPA277 OPA335OPA4134OPA4227OPA4234OPA4277OPA445OPA541OPA544OPA547OPA548O PA549OPA551OPA552OPA602OPA606OPA620OPA627OPA643OPA704OPA727PA7 6RC3078RC4136RC4558TCA0372THS4021THS4082TL061TL064TL071TL072T L081TL082TL084TLC2264TLC2274TLC274TLC27L4TLC27L9TLC4501TLE2 021CTLE2027TLE2064TLE2072TLE2074TLE2082TLE2161TLE2662TLV2211TLV2254T LV2324TLV2442TLV2764UA709电压比较器LM111LM119LM139LM1414LM1514LM161LM193LM2901L M2903LM306LM311LM319LM339LM361LM393LM710LMV393LMV7235L MV7239LMX393LT1713ILT1721MAX900MAX903MAX9030MAX909MAX9109 MAX912MAX913MAX921MAX923MAX975MAX998MC1414MC1514MC34074MCC15 14RC1414TLV3492TSM109(A)电压跟随器LM102LM110LM210LM310电源管理:电压调节器可调输出调节器LM133LM137HLM137KLM138LM150LM2576ADJLM317HL M317KLM337HLM337KLM338LM350LM396LM723LMV431LT1033LT1038SVR1038T LV431AUA723CUC1033KUC117UC137UC150KUC337BUCK(降压斩波)调节器LM2672 LM2674LM2675LM2676LM2677LT1076固定输出调节器78057809781278157905791278L1278M05C78M06FSC78M0 978M1878T1279L0979M0579M0679M1279M1579M15FSCK A78M10KA7906LM109KLM2576-12LM2576-5LM309KLM320-12LM320-15LM320-5LM323LM340-15LM7812LM78L09LM78L12ACLM79L09LM79M05LM79M12LM79M1 5MC7812ACMC78M18MC78M24UA78L09AUA78M10UA79M15UC7812低压差调节器ADP3338-5AME8805DEGTLM1084I-ADJLM1085LM1085I-ADJLM1117-1.8LM1117-ADJLM2936LM2940-15LM2940-5LM2941LM2990-15LM2991LMS1587-3.3LMS8117ALMS8117A-1.8LP2950LP2951ALP2980-5LP2985A-5.0LP2985AI-2.5LP2985LT1083LT1084-12LT1085CLT1086HLT1086KCLT1175LT1185LT1581-ADJ LT1763LT1764MAX1818MAX604MAX883MIC29150MIC2915 2MIC29300-5.0MIC29302MIC2941A-ADJMIC29500-3.3MIC29500-5.0MIC29502MIC29750-3.3MIC29750-5.0MIC29752MIC5201MIC5219-5.0MSK5012MSK5150RC1117RC1584RC1585RC1587TPS7301QTPS73HD318可编程调节器ICL7663MAX663MAX664MAX666开关调节器ADP1111ADP3000ADP3050T1074PWM控制LT1526MAX1993MC3406SG1526TL494TL598TOP222YUC15 26UC1843UC1846UC1863UC2825AUC2843UC2846UC3524UC3525AUC3526U C3526AUC3825AUC3840UC3842UC3843UC3845UC3846UC3851UC3856UCC1800UC C1805UCC1806UCC1846UCC2580UCC2805UCC3580-1UCC3581UCC3801UCC3802UCC3803UCC3805UCC3808UCC38 08UCC3810UCC3850-1UCC38C40DC-DCAD536AD636JAD637SADP2105HAT2099LTC3414LTC3416M AX762MAX764MC34063MX636PM7224GBCRMS-DC变换器AD536AD636JAD637SMX636电压-电流变换器XTR110AG电压变换器ICL7660ICL7662电压基准LM113MD8LM129LM136-5.0 LM199LM329LM336-2.5LM336-5.0LM385-2.5LM399LM4040LM4050A-10LM4050A-4.1LT1031CDMAX6065MAX6125MAX6143MAX6176MAX6220M AX6241MAX6325MAX6350MAX674REF01REF02REF05REF101REF10 2REF195TL1431TL431A马达控制MC33035MCC33035ML4425UC3625UC3637UC3638存储器:快闪存储器(FLASH)K8D6316UBMK9F28080U0CK9F2808U0CMT28C6428P18MT 28F128J3FSMT28F400B5BQ48AMT28F642D18SST39LF100SST39 VF080SST39VF1681TMS29F040X76F100随机存取存储器(RAM)IDT6116SAUIDT7026IDT7164IS61LV12816LIS61LV5128ALK4 H561638DK6R4008CIDK6R4016V1DMK68345MT28C6428P18 SMJ44C251BSTK12C68STK20C04X20C04只读存储器(ROM)IS93C66M27C1001M95640TMS27PC128X24C04X28C64X50 45X84641数据变换:模数转换器(ADC)14433AD9048AD1674AD537AD571SAD573AD574AD674AD7555AD7 575AD7671AD7723AD7864AD7870AD7875AD7876AD7889AD7 892AD7893AD7895AD9012AD9040AD9040AAD9042AD9048AD9050AD9058A D9200AD9203AD9240AD9260ADC0801ADC0802ADC0803ADC0804ADC0808ADC 0820ADC0844ADC0848ADC12081ADC500BMMADC674ADC825MMADS574SADS774ADS785 2ADS7864ADS805ADS8342CA3318DDC112UICL7107ICL7109LTC1608MAX162MAX170CMAX18 9MAX192MAX195MC14433TC7107THS1206THS1207TLC2543ZN447ZN449数模转换器(DAC)AD390AD396KAD5320AD5321AD5424AD5433AD5541AD5 58AD561JAD565AD664AD667AD7224AD7245AD7247AD7520AD7521AD753 3AD7534AD7538AD7541AD7542AAD7545AD7547AD9742AD9760CA3338DA C08DAC0800DAC0830DAC0832DAC1208DAC1210DAC1218DAC1219DAC1230DA C4813DAC4815DAC7724DAC8412DAC8562DAC-HZ12BMMMAX197MAX5201MAX530MAX5721MX7224MX7534 J/D数据采集系统AD363AD7716AD7874AD7890AD7891AD974MAX125压频(V/F)和频压(F/V)转换AD650ALM2917VFC32分立器件:二极管雪崩二极管BYV26B限流二极管CD5302快恢复二极管1N54181N581125F10030BF2030BF40CPD25FR104FR107FR 604MUR1100MUR120MUR130MUR410MUR460MURB1620CTMURC1520 MURC1540MURC1560MURC410MURC415MURC420MURC460MURC820MURS120US1M锗二极管1N60低漏电流二极管XPAD10PIN二极管5082-00015082-0012MA4P160-134整流二极管1N40011N40021N40041N40061N40481N47201N47221N5 4011N54811N5625CD483GL34DHSMS2820肖特基二极管1N57111N58181N58201N582230CLJQ100B340LABAS70BA T54CD5711CP108CPD77HSCH-5331MBR0520MBR10100MBR1545MBR20200MBR2060MBR253 5MBR3100MBRC1060MS1045MS16100MS1680MS8100SB360SB540SB560SBL164 0SC036H100S5BSC060S045ASC070H045ASC070H150ASC105H045ASC105H100ASC105S 030ASC105S060ASC125H100SSC125S060ASC125S060SSC200S0308SC200S045SSC275H100SSC275S030SSC275S050S5B开关二极管1N36001N41481N41531N914BAS16BAS21BAV21BAV70BAV 99BAW56CD4150CD4153瞬态电压抑制二极管(TVS)1.5KE18ACD1.5KE39CA1.5KE400A1.5KE47C1.5KE82A变容二极管BB132BBY40MC100EPT20齐纳二极管1N40661N41091N41181N43701N4370A1N47301N47331N 47341N4734A1N47381N47391N4739A1N47441N4744A1N47481N47721N4774A 1N5008A1N5013A1N5017A1N5036A1N5043A1N5048A1N5223B1N52311N52321N523 41N52421N52431N5243B1N52541N5254A1N5254B1N5333B1N5338B1N5343B1N59 131N5913B1N5936B1N5938B1N7456C1N746C1N750C1N7521N752A1N752C1N7531N75 3A1N754A1N755A1N755C1N756C1N757A1N758A1N825A1N8271N8291N829A1N938B1N939B1N957B1N9621N962BBZ03FBZX55C12BZX55C27BZX55C4V 3BZX55C5V1BZX55C5V6BZX55C7V2BZX84C18BZX84C27VBZX84C4V3BZX84C62BZX85C15BZX8 5C5V6CD4569CD4572CD4584CD4689CD4738ACD4772CD5243BCD5363BCD746ACD750ACD752C D755ACD757ACD823CD825CD827CD829CD957BCD962BNC27双极晶体管(BJT):达林顿晶体管2N62842N62872N6533BD651BDV65BCP117CP517MJ10007 MJ11015MJ11016MJD122TIP122TIP127TIP137TIP142ZTX603NPN型晶体管2C2222A2N16132N2219A2N22222N2222A2N2369A2N248 42N29202N30192N33022N34182N34402N35842N37162N37172N37712N3866A2N 39042N39462N39472N39612N41302N42402N50312N50382N51092N53012N5 3022N53302N53312N54862N55512N55842N56292N58852N58862N62702N6 2732N63542N63732N64312N64962N64972N65152N67182N7082N90132N91 82N930AT381AT387BC441BC817BC846BCX5616BF258BF620BF622BFG59 1BFQ18ABFR183BFR90ABFR92ABFR93BFS20BU406BU508ABUR52BU W45BUW45BUX98ACP310FCX493FJA13009FMMT491FMMTA42XCWKS C2258AKSC2330KSC5027KSC5042LM114LM194LM394MAT01MAT02MJ13015MJ15024MJ161 10MJE13009MJE180MJW16018MMBT3904MPSA05MPSA43MRF4427MRF581M RF951MRFC581PN3568PNP型晶体管2C2907A2N15362N21432N27932N2905A2N2907A2N3636 2N37992N38672N39062N40332N40362N42092N53792N54012N54162N56802N6 2112N62132N64202N64212N64233N108BC461BC557BC558BFT92BSR12BUW2 2CP608CP710D45H11KSA1304MJ15012MJD350MJE170MJE5172MJ EC15029MJEC350MMBT3906MMBTH81MPSA93MPSA94PN4258S9015TIP32C结型场效应晶体管(JFET):N沟道2N38232N41182N42212N43382N43912N43922N4416A2N54342N54572N54842N59022N59052N59062N59112N5912ATF13100J106MPF4 392NE321000NE32400NE32500SST108U310P沟道MMBFJ177SST177绝缘栅效应晶体管(MOSFET):N沟道2N66602N66612N67662N67962N70022N7002E2N72252N7 2682N72692N7394APT6060NDBLF244BLF246BS107ABSS138DAFDH27N50FD W2520CFQD13N06FQD2N60FQD6N40CFQP13N06FQP13N10FQP19N20CPWDFQP2N60CFQP33N10 PWDFQP5N50CFQPF16N15FQPF2N60CFQPF3N60HUF75639P3 IRCC130IRF1405LPBFIRF151IRF3706SIRF5NJ3315IRF5NJ540I RF5NJZ48IRF7452IRF7456IRF7811IRF7812IRF7828IRF840IRFB4310IRFBG20BVIRFBG30IRFC014 BIRFC024NBIRFC048NBIRFC110IRFC110BVIRFC11N50ABIRFC120BVIRFC120NBIRFC130IRFC 130BIRFC130BVIRFC130NBIRFC1310NBIRFC13N15D IRFC140BVIRFC140NBIRFC150IRFC150BIRFC18N15DIRFC21 0IRFC210BIRFC220BVIRFC22N50AIRFC230IRFC230BIRFC230BVIRFC240IRFC250BIRFC250NBIRFC260NBIRFC2807VIRFC3315BIRFC360IRFC3710IRFC3710BVIRFC3810BIRFC3815BVIRFC420IRFC430IRFC430 BIRFC430BVIRFC43N50KIRFC440IRFC440BVIRFC450IRFC450BVIRFC460IRFC52N15DBIRFC530BIRFC540I RFC540BIRFC90N20DIRFCF30IRFCF30BIRFCF50IRFCF50BVIRFD010BVIRFM250IRFP2907ZPBFIRFPS3 8N60LIRFS9N60AIRHF7230IRL5NJ7413IRLC2203IRLC2203NBIRLC240BIRLC2803IRLC3215IRLMS2002IXFB70N 60IXFH58N20IXFH74N20IXFH80N20IXFK64N60PIXFN80N50PIXKK85N60CJANTX2N7225LND150MMFT2406 T1MMFT6661TMPF6661MRF281MRF282MRF284MTB3N120EMTD6N10MTP10N10MTP3055MTP75N05HDP D57006SPD57060SPTF10045PTF10135PTF210451RFG70N06SD203SD211SD215SD303SD306SD5000SI7922SP P07N60C3SPW20N60C3SST215STD1NC60C-1STD2HNK60ZSTD2NC60C-1STP9NC65SUP60N06VMP4VN2001VN2010VN2222 VN3515VN4012VN66VNDQ3CHPWFP640XSD211P沟道2N68492N7426BS250BSS84FDC5614FDW2520CFQP17P10F QPF6P25IRF7325IRF7329IRF9510IRFC4905BVIRFC5210BIRFC5210BVIRFC7416BIRFC7 604IRFC9014IRFC9014BVIRFC9024NBIRFC9110BVIRFC9120BVIRFC9130IRFC9130BVIRFC9130NIRFC9130NBIR FC9140BIRFC9140BVIRFC9220IRFC9220BIRFC9220BV IRFC9240IRFC9634IRFD9010BVIRFP9150IRHM9160IRHM9250IRHM9260IRHNA9260IXTH11P50SFH9154SI2301DSVP0300异质结晶体管NE321000NE32400NE32500金属半导体晶体管MWT-16PHMWT-7H绝缘栅双极晶体管(IGBT)IRG4CC50FBIRG4CC50UIRGB15B60KBIRGC25B120KIXBH9N 160G可控硅(SCR)2N2324BT151晶体管阵列:达林顿MC1413ULN2002ULN2003AULN2004AULN2023ULN2803MOSFETTPIC2701VQ3001BJTCA3045CA3081CA3096LM3045MC3346逻辑电路:加法器5428354LS28354LS83CD4008BSN74283算术逻辑部件54HC181双向开关CD4016BCD4066B缓冲器5433543854405438544054C24454F24454HC12654HC24454 HCT36554LS0654LS0754LS12654LS24454LS2874HC24474LS0674LS 12674LS24474LS2874LS36774LS3774LS3874S14074S244CD4049UBCD4050BC D4502BCD4503NC7NZ34K8XSN74HC244计数器549054925492549374935416054161541975439054LS925416054161A54925493A54AC39054F16154F161A54FCT161 54HC16354HC19254HC19354HC404054HCT16154HCT16254HCT1954HCT393 54LS16054LS16154LS16254LS16354LS19054LS19254LS19354LS19654LS19754LS29054LS2935 4LS39354LS59054LS59054LS9054LS9254LS9354S16354S1967493A74HC19174HC40 1774HC404074LS16074LS16174LS16274LS19074LS19174LS19274LS19374LS1967 4LS19774LS29374LS39074LS39374LS9074LS9274LS9374S196CD40102BCD40110BC D40163BCD4017CD40193BHCD4022BCD4024BCD4029BCD4040BHCD4045CD4059ACD4 060BCD4510BCD4516BCD4520BCD4522BCD4526DM74LS393DM74LS90MC14522BMC1456 9SP8743译码器54ACT13854HC13854HC13954HC23854HCT15454LS1354LS 13854LS14554LS15454LS24754LS24854LS4254LS4854LS4974HCT15474LS13874LS14574 LS15474LS24774LS24874LS4274LS4774LS48编码器54C92254C92354HC14754HCT14754LS14754LS14874C92274LS14774LS148ADV7176MM54C922触发器547254735476541095472FSC5473547654AHCT7454ALS574 54F11254F27354F7454FCT57454H7454HC10754HC11254HC17554 HC27354HC7454HCT11254HCT7454L7354LS10754LS11254LS11354LS17554LS57454 LS7354LS7654S11254S7474FCT57474HC11274HC27374HC7474LS10974LS112 74LS11374LS27374LS37474LS7374LS7474S74CD4013BCD40174BCD4027BMCC74HC 107SN74157SN74175门电路540054015403540454055406540754085408540954105410542054215425542754305450546054AC0054ACT0054ACT8654AS0854F0254F8654H0054H0154H0154 H2054H2154H2254H4054H5254H5554HC0054HC0154HC1154HC132 54HC2054HC3254HCT0354HCT2054HCT8654L2054LS0054LS0154LS0354LS 0854LS0954LS1054LS1154LS13354LS2054LS2154LS2654LS26054LS26054LS2 6054LS2754LS3054LS3254LS3754LS38654LS4054LS8654S0054S0854S0954S 1054S14054S2054S327400740474057409741074AC0074AC1108674H C0074HCT0074HCT0374LCX084LS0074LS0474LS0874LS1074LS 1374LS13274LS2174LS2674LS26074LS3074LS3274LS38674LS86A74S004S087 4S10CD4000BCD4001BCD4002BCD4011BCD4012BCD4019CD4019BCD40 23BCD4025BCD4030BCD4068BCD4070BCD4071BCD4073BCD4077BCD4081BCD4082BDM7 4AS00DM74AS08DM74LS00DM74LS04DM74LS08DM74LS86MC10107MC10505MC5440FMCC10H 107MCC74LS86MIC320MPY54LS27NC7SZ08SN7440SN74LVC2G38反相器541454AHCT1G0454F0454HC1454HCT1454LS0454LS0554L S1454LV04741474F0474HCT0474LS0574LS14CD4007UBCD4069UBCD4502 BDM74ALS04BDS7812MM74HC04NL27WZ14SN74LVC2G14锁存器54755411654116547554ALS573C54F37354F57354HC53354 HC57354HCT37354HCT57354LS37354LS57354LS7554LS7774ALS57374HC57 374HCT573A74LS37374LS57374LS7574S196CD4508BCD74HC75寄存器5416414557B45575416454194541995429854HC16454HC59 554HCT16454HCT29954LS16454LS19554LS29554LS39554LS9554LS965 4S19474HC59574LS16474LS16574LS29574LS29974LS395CD4015BCD40194BCD402 1BCD4034BCD4035BCD4094BCD4517BCD4557BCD4562BHEF4557BMC14557MC14562M CC14557BMPY54LS164SN74194施密特触发器74HC14ACS14DMSRCD40106BCD4093BMC14584MCC1458 4B数值比较器54LS8574LS68874LS85CD4063BCD4585B多谐振荡器541215412354C22154HC12354HC22154HCT22154LS12254 LS12354LS22154S12374HC22174LS12274LS12374LS221CD14538CD4047BCD409 8BCD4528BCD4538BMC14528奇偶校验5418074LS280可编程逻辑器件(PLD)GAL16V8DGAL20V10GAL20V8BGAL22V10ISPLSI1032ISPLSI 1048PEEL22CV10AXC95144XC9536XC9572-15PC模拟开关和多路转换器:模拟开关AD7510AD7511AD7512ADG201ADG202ADG212AADG222B ADG411ADG412ADG413ADG419ADG433ADG436ADG442DG190DG201ADG300ADG 301ADG303DG303ADG307DG307ADG307BDG308ADG403DG405DG411ADG41 2DG413DG442HI-201HI-5043HI-5051ISL43141MAX313C/DMAX314MAX319MAX333MAX333AM AX352MAX4066C/DMAX4516C/DMAX4610MAX4622MAX4657MA X4658MAX4660MAX4662NLAS2066多路转换器54298AD7501JAD7503AD7506AD9300ADG506ADG507ADG 526AADG706ADG732CD4051BCD4052BCD4053BCD4067DG408DG458DG506AD G508AHCF4053MAX308MAX336MAX396MAX4519MC10174MC10574MC54HC75J MCC10174HI-548HI0-0509HI0-506HI-509HI-50854ACT25154HC15754HC406754LS29874ACT15374LS35774V HC4051多路分配器54HC13854HC13954HC406754HCT15454LS1354LS13854LS 15474HCT15474LS13874LS154CD4051BCD4052BCD4053BCD4067HCF4053光电器件:光耦合器4N244N486N1366N137FND400HCPL-5231ILQ55JANTX4N48MOC3063光敏二极管SP101-400微控制器:AT89C51AT89C52AT89S51AT89S52AT89S8253AT91FR40162P87C528GBLKAAT80C31X2P87C591P89V51TS80C32X2TSC87C52W77E58W78E54B接口电路:总线收发器82C87DS36C278ISO422MAX3318MAX3486MAX485MAX48 8MAX490SN75160SN75162SP485接收器82C5082C5182C52DS26LS33CDS7820DS9637DS96F173ICL2 32MAX232MAX233MAX238MAX243总线控制器MD82188驱动器DS96F174MAX232MAX233MAX238MAX243驱动器:全桥驱动器HIP4080HIP4081HIP4086IRS2453DL6203MOSFET驱动器ICL7667IR2104IR2110CIR2113CIR2130CIR2135IR2213IR221 4LM5112MIC4420MIC4423MIC4424MIC4426MIC4428MIC4429MIC4469TC442 3功率驱动器UC1708UC3707UC3708其余部分:有源滤波器MAX253MAX274MAX293MAX297S3528BS3529UAF42数字信号处理(DSP)SMJ320C40TMS320F240乘法器AD534KAD632ICL8013MC1594锁相环CD4046BHPE3236传感器ADXRS150ADXRS300ADXRS401LM20LM335ALM335A信号调节器AD598AD698NE5521SE5521定时器54LS29482C54CD4541BICM7555ICM7556LM555LM556MC1 4541NE555NE556振荡器74S124ICL8038LTC6906调制解调器LM1596MC14544MC34115MC3517TCM3105。

46120p技术规格书

46120p技术规格书

46120p技术规格书一、概述46120p技术规格书涵盖了该产品的主要技术规格和性能指标,旨在为用户提供详细的产品信息,方便用户进行选购和使用。

本规格书包括产品概述、外观设计、核心技术、性能参数、接口标准、电源要求、操作系统要求等内容。

二、产品概述46120p是一款高清晰度显示器,采用了领先的46120p技术,能够提供令人震撼的视觉体验。

该产品适用于家庭娱乐、办公和教育等多个领域,为用户带来更舒适和便捷的使用体验。

三、外观设计46120p外观设计简约大方,采用金属材质打造,具有较强的耐用性和抗摔能力。

产品背面设计了可调角度支架,用户可以根据自身需求进行调整,获得更佳的视觉体验。

四、核心技术46120p采用了先进的显示技术,拥有高分辨率、高对比度和高刷新率等特点。

通过5000000:1的动态对比度,能够展现丰富的色彩和细节,让用户在观看影片和玩游戏时享受更真实的画面。

五、性能参数46120p的主要性能参数如下:-分辨率:46120p-亮度:300cd/m²-对比度:5000000:1-刷新率:60Hz-响应时间:5ms六、接口标准46120p配备了多个常用接口,包括HDMI、VGA、DVI、USB等,方便用户连接外部设备,并且支持多种显示模式,满足用户不同的使用需求。

七、电源要求46120p的电源输入电压为100-240V AC,50/60Hz,功耗在正常使用状态下为30W,待机功耗低于0.5W,符合国际能源效率标准。

八、操作系统要求46120p兼容多种操作系统,包括Windows、Mac OS、Linux等,用户可以根据自己的使用习惯选择合适的操作系统进行使用。

总结:46120p技术规格书详细介绍了该产品的概述、外观设计、核心技术、性能参数、接口标准、电源要求和操作系统要求等内容,旨在为用户提供清晰的产品信息,帮助用户进行选择和购买。

该产品具有高清晰度、高对比度和高刷新率等优点,适用于多个领域的使用需求。

RTX2060即将来袭!2019年八代i7-8700配RTX2060组装电脑配置清单

RTX2060即将来袭!2019年八代i7-8700配RTX2060组装电脑配置清单

RTX2060即将来袭!2019年八代i7-8700配RTX2060组装电脑配置清单继GTX1060甜品级显卡之后,万众期待的RTX2060预计2019年1月15日正式发售,国外定价349美元,而国内定价2499起,虽然它是属于GTX1060下一代继承者,但是其性能提升还是十分大的,它的性能介于GTX1070Ti与GTX1080,完全也可以说是GTX1070Ti 升级版,同时保持了RTX特性,拥有光线追踪、DLSS等新技术。

RTX2060显卡即将来袭!考虑到intel九代处理器目前价格偏贵,相比八代升级也并不明显,所以这里装机之家分享一套2019年八代i7-8700配RTX2060组装电脑配置清单,具体的电脑配置方案如下。

装机之家电脑硬件点评:CPU方面,我们依然选用的是intel酷睿i7-8700处理器,相比上一代i7-7700综合性能提升约40%,从九代的性能提升与定价来说,现阶段八代还是十分适合的。

规格方面,intel酷睿i7-8700处理器是6核12线程设计,默认主频3.2Ghz,睿频频率4.6GHz,12M三级缓存,内置UH630核心显卡,功耗仅65W。

此外,我们选用了散片形式的i7 8700,主要是提升性价比,不过我们需要再购买一款第三方散热器,配置中选用的是主流用户热选的九州风神玄冰400散热器。

intel酷睿i7-8700处理器(散片)由于intel酷睿i7-8700处理器不支持超频,所以我们完全不用考虑定价昂贵的Z370主板,B360主流级主板更加适合一些。

华硕 TUF B360M-PLUS GAMING主板采用intel主流B360芯片,属于M-ATX 板型,现如今大板的销量不及小板这已经是事实,性价比优势、扩展性也完全够用。

华硕 TUF B360M-PLUS GAMING主板显卡方面,我们选用的是即将发售的RTX2060显卡(预计2019年1月15日),虽然是GTX1060下一代的继承者,但是它的性能略超GTX1070Ti,加入了全新光线追踪、DLSS新技术,我们完全可以看似它是GTX1070Ti升级版。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(19)E P 2 060 461A 1&(11)EP 2 060 461A1(12)EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC(43)Date of publication: 20.05.2009Bulletin 2009/21(21)Application number: 07830171.0(22)Date of filing: 19.10.2007(51)Int Cl.:B60W 20/00(2006.01)B60K 6/445(2007.10)B60K 6/547(2007.10)B60K 17/04(2006.01)B60L 11/14(2006.01)B60W 10/00(2006.01)B60W 10/02(2006.01)B60W 10/04(2006.01)B60W 10/06(2006.01)B60W 10/08(2006.01)B60W 10/10(2006.01)F02N 11/00(2006.01)F02N 11/04(2006.01)F02N 15/00(2006.01)(86)International application number:PCT/JP2007/070437(87)International publication number:WO 2008/053721 (08.05.2008Gazette 2008/19)(84)Designated Contracting States:DE FRDesignated Extension States:AL BA HR MK RS (30)Priority:31.10.2006JP 2006296482(71)Applicant: Toyota Jidosha Kabushiki KaishaToyota-s hi, Aichi 471-8571 (JP)(72)Inventors: •KATSUTA, Hiroshi Toyota-s hi Aichi 471-8571 (JP)•OBA, HidehiroToyota-s hiAichi 471-8571 (JP)(74)Representative: TBK-P atentBavariaring 4-680336 München (DE)(54)POWER OUTPUT DEVICE, HYBRID AUTOMOBILE HAVING THE DEVICE, AND CONTROLMETHOD FOR THE POWER OUTPUT DEVICE(57)The hybrid vehicle 20 transfers power between the motors MG1 and MG2, releases a coupling between one of the motors MG1 and MG2 and the drive shaft 67,adjusts the rotation speed of one of the motors MG1 and MG2 which is released from the coupling to the drive shaft 67 by the transmission 60 so as to enable drive source element connection, and connects the clutch C0as well as cranks the engine 22 by the motor MG1 orMG2 when the engine 22 is started while the clutch C0is released, the engine 22 is stopped, both the motorsMG1 and MG2 are coupled to the drive shaft 67 as wellas at least one of the motors MG1 and MG2 is causedto output power.5 10 15 20 25 30 35 40 45 50 55DescriptionTechnical Field[0001]The present invention relates to a power output apparatus for outputting power to a drive shaft, a hybrid vehicle having the same, and a method of controlling the power output apparatus.Background Art[0002]Conventionally, as such a power output apparatus, there has been known a power output apparatus including an internal combustion engine, two motors, a so-c alled ravigneaux planetary gear mechanism, a parallel shaft-t ype transmission capable of selectively coupling two output elements of the planetary gear mechanism to an output shaft (for example, see Patent Document 1). The power output apparatus is adapted for a front-w heel-d rive vehicle, and the power output apparatus is configured such that the internal combustion engine is arranged transversely, as well as the rotating shafts of the internal combustion engine and the planetary gear mechanism, the two motors, and the parallel shaft-t ype transmission extend in parallel to each other. In addition, conventionally, there has been known a power output apparatus including a planetary gear device having an input element connected to an internal combustion engine and two output elements; and a parallel shaft-t ype transmission having a countershaft connected to each of the corre-sponding output elements of the planetary gear device (for example, see Patent Document 2). According to the power output apparatus, each of the two output elements of the planetary gear device is fixed to an inner periphery of a corresponding rotor in an electric drive section.Patent Document 1: Japanese Patent Laid-O pen No. 2005-155891Patent Document 2: Japanese Patent Laid-O pen No. 2003-106389Disclosure of the Invention[0003]The power output apparatuses disclosed in the above individual Patent Documents can transmit power to an output shaft by stopping the internal combustion engine as well as changing the speed of the power output from one of the motors by a transmission. However, the above individual Patent Documents do not disclose in detail how to perform such a motor drive for outputting power only by the motor.[0004]In view of this, an object of the present invention is to start the internal combustion engine by more properly outputting a demanded power to the drive shaft when the power is transmitted to the drive shaft by stopping the internal combustion engine as well as changing the speed of the power output from the motor by the transmission mechanism. [0005]In order to achieve the above object, the power output apparatus and the hybrid vehicle in accordance with the present invention adopt the following means.[0006]The present invention is directed to a power output apparatus for outputting power to a drive shaft. The power output apparatus includes: an internal combustion engine; a first motor capable of inputting and outputting power; a second motor capable of inputting and outputting power; an accumulator capable of sending and receiving power to and from each of the first and second motors; a power distribution and integration mechanism having a first element connected to a rotating shaft of the first motor; a second element connected to a rotating shaft of the second motor; a third element connected to an engine shaft of the internal combustion engine, said power distribution and integration mechanism being configured so that these three elements can be differentially rotated with respect to each other; a connection/d isconnection device capable of performing a drive source element connection being any one of a connection between the first motor and the first element, a connection between the second motor and the second element, and a connection between the internal combustion engine and the third element, the connection/d isconnection device capable of performing a release of the drive source element connection; a transmission mechanism capable of selectively coupling one or both of the rotating shaft of the first motor and the rotating shaft of the second motor to the drive shaft, and transmitting power from the first motor and power from the second motor to the drive shaft at a predetermined speed ratio respectively; a power demand setting module for setting a power demand which is power required for the drive shaft; and a control module for controlling the first and second motors, the connection/d isconnection device, and the transmission mechanism so that power based on the set power demand is outputted to the drive shaft while performing a power transfer process of transferring power from one of the first and second motors to the other, a release of the coupling between one of the first and second motors and the drive shaft by the transmission mechanism, a rotation speed adjusting process of adjusting a rotation speed of one of the first and second motors released from the coupling to the drive shaft so as to enable the drive source element connection, the drive source element connection, and an engine start process of cranking the internal combustion engine by the first or second motor, if an engine start condition for starting the internal combustion engine is established when said transmission mechanism couples both the first and second motors to the drive shaft5 10 15 20 25 30 35 40 45 50 55and at least one of the first and second motors outputs power in a state in which the drive source element connection is released and the internal combustion engine is stopped.[0007]According to this power output apparatus, in a state in which the drive source element connection is released, the internal combustion engine is stopped, and the transmission mechanism is used to couple both the first and second motors to the drive shaft. By doing so, the internal combustion engine can be prevented from corotating, and power from at least one of the first and second motors can be transmitted to the drive shaft at a predetermined fixed speed ratio. In this state, a larger power can be output to the drive shaft in comparison with the state in which only one of the first and second motors is caused to output power. If the engine start condition is established while power from at least one of the first and second motors is being transmitted to the drive shaft at a predetermined fixed speed ratio, a power transfer process of transferring power from one of the first and second motors to the other is executed so as to output power based on the set power demand to the drive shaft in a state in which the drive source element connection is released. Then, the coupling between one of the first and second motors by the transmission mechanism and the drive shaft is released. Further, a rotation speed adjusting process of adjusting a rotation speed of one of the first and second motors released from the coupling to the drive shaft is executed so as to enable the drive source element connection as well as output power based on the set power demand to the drive shaft. Then, the drive source element connection can be executed. When the drive source element connection is performed, the internal combustion engine can be started by cranking the internal combustion engine by one of the first and second motors as well as outputting power based on the set power demand to the drive shaft. As a result, according to this power output apparatus, the internal combustion engine can be started by more properly outputting a demanded power to the drive shaft if the engine start condition is established while in a state in which the drive source element connection is released, the internal combustion engine is stopped, and power from at least one of the first and second motors is being transmitted to the drive shaft at a prede-termined fixed speed ratio by the transmission mechanism.[0008]In this case, the power transfer process may be a process of decreasing power from one of the first and second motors and increasing power from the other one of the first and second motors so that at a time when a predetermined transfer time has elapsed since the power transfer process started, power outputted from one of the first and second motors becomes a value of 0 and power outputted from the other of the first and second motors becomes a value based on the power demand and a target speed ratio which is a speed ratio of the transmission mechanism after a coupling between one of the first and second motors and the drive shaft is released.[0009]Moreover, the power transfer process may be a process of setting a torque command to the first motor and second motor based on power outputted from the first and second motors, a power demand set by the power demand setting module and the target speed ratio so that power based on a power demand is always outputted to the drive shaft during an execution of the power transfer process and the power transfer is completed within the transfer time. Thereby, even if the power demand is changed during the execution of the power transfer process, power based on the power demand set by the power demand setting module can be outputted more reliably to the drive shaft as well as the power can be transmitted between the first and second motors.[0010]The power transfer process may be a process of setting a torque command to the first and second motors based on power outputted from the first and second motors when the power transfer process starts, the power demand and the target speed ratio at the start time of the power transfer process so that the power transfer is completed within the transfer time. Thereby, the power outputted to the drive shaft can be suppressed from fluctuating due to a difference in response to the torque command between the first motor and the second motor as well as the power can be transferred between the first and second motors.[0011]Further, the rotation speed adjustment process may be a process of synchronizing a rotation speed of the first or second motor which is released from a coupling to the drive shaft with a rotation speed of the first or second element under the drive source element connection based on a rotation speed of the second or first motor which is coupled to the drive shaft.[0012]In addition, the transmission mechanism may be a parallel shaft-t ype transmission including:a first transmission mechanism having at least one parallel shaft-t ype gear train capable of coupling one of the first and second elements of the power distribution and integration mechanism to the drive shaft; and a second transmission mechanism having at least one parallel shaft-t ype gear train capable of coupling a rotating shaft of the first or second motor which corresponds to the other one of the first and second elements to the drive shaft. According to such a transmission mechanism which is a parallel shaft-t ype transmission, one of or both of the rotating shaft of the first motor and the rotating shaft of the second motor can be selectively coupled to the drive shaft.[0013]Further, the transmission mechanism may be a planetary gear transmission including a first transmission planetary gear mechanism having an input element connected to one of the first and second elements of the power distribution and integration mechanism, an output element connected to the drive shaft, and a fixable element, the first transmission planetary gear mechanism being configured so that these three elements can be differentially rotated with respect to each other; a first fixing mechanism capable of non-r otatably fixing said fixable element of the first transmission planetary gear mechanism; a second transmission planetary gear mechanism having an input element connected to a5 10 15 20 25 30 35 40 45 50 55rotating shaft of the first or second motor which corresponds to the other of said first and second elements, and an output element connected to the drive shaft, and a fixable element, the second transmission planetary gear mechanism being configured so that these three elements can be differentially rotated with respect to each other;and a second fixing mechanism capable of non-r otatably fixing the fixable element of the second transmission planetary gear mechanism. According to such a transmission mechanism which is a planetary gear transmission, when one of the first and second fixing mechanisms is placed in a fixed state, one of the rotating shaft of the first motor and the rotating shaft of the second motor can be coupled to the drive shaft. In addition, when both the first fixing mechanism and the second fixing mechanism are placed in a fixed state, both the rotating shaft of the first motor and the rotating shaft of the second motor can be coupled to the drive shaft.[0014]In this case, the transmission mechanism may further include a transmission connection/d isconnection device capable of performing a connection and a disconnection between the output element of one of the first transmission planetary gear mechanism and the second transmission planetary gear mechanism and the fixable element. According to such a transmission mechanism, an output element of the first or second transmission planetary gear mechanism which corresponds to the transmission connection/d isconnection device is connected to the fixable element by the transmission connection/d isconnection device, as well as a fixable element of the second or first transmission planetary gear mechanism which does not correspond to the transmission connection/d isconnection device is non-r otatably fixed. By doing so, both the rotating shaft of the first motor and the rotating shaft of the second motor can be coupled to the drive shaft. In addition, according to this transmission mechanism, an output element of the first or second transmission planetary gear mechanism which corresponds to the transmission connection/d isconnection device is connected to a fixable element, as well as a fixable element of the second or first transmission planetary gear mechanism which does not correspond to the transmission connection/d isconnection device is non-r otatably fixed. In this state, if the fixable element of the second or first transmission planetary gear mechanism is made to be rotatable, the individual elements of the first or second transmission planetary gear mechanism corresponding to the transmission connection/d isconnection device are substantially locked by the transmission connection/d isconnection device to rotate integrally. Therefore, power from one of the rotating shaft of the first motor and the rotating shaft of the second motor can be directly transmitted to the drive shaft.[0015]The present invention is directed to a hybrid vehicle including a drive wheel driven by power from a drive shaft. The hybrid vehicle includes: an internal combustion engine; a first motor capable of inputting and outputting power; a second motor capable of inputting and outputting power; an accumulator capable of sending and receiving power to and from each of the first and second motors; a power distribution and integration mechanism having a first element connected to a rotating shaft of the first motor; a second element connected to a rotating shaft of the second motor; a third element connected to an engine shaft of the internal combustion engine, the power distribution and integration mechanism being configured so that these three elements can be differentially rotated with respect to each other; a connection/d isconnection device capable of performing a drive source element connection being any one of a connection between the first motor and the first element, a connection between the second motor and the second element, and a connection between the internal combustion engine and the third element, the connection/d isconnection device capable of performing a release of the drive source element connection; a transmission mechanism capable of selectively coupling one or both of the rotating shaft of the first motor and the rotating shaft of the second motor to the drive shaft, and transmitting power from the first motor and power from the second motor to the drive shaft at a predetermined speed ratio respectively; a power demand setting module for setting a power demand which is power required for the drive shaft; and a control module for controlling the first and second motors, the connection/d isconnection device, and the transmission mechanism so that power based on the set power demand is outputted to the drive shaft while performing a power transfer process of transferring power from one of the first and second motors to the other, a release of the coupling between one of the first and second motors and the drive shaft by the transmission mechanism, a rotation speed adjusting process of adjusting a rotation speed of one of the first and second motors released from the coupling to the drive shaft so as to enable the drive source element connection, the drive source element connection, and an engine start process of cranking the internal combustion engine by the first or second motor, if an engine start condition for starting the internal combustion engine is established, when the transmission mechanism couples both the first and second motors to the drive shaft and at least one of the first and second motors outputs power in a state in which the drive source element connection is released and the internal combustion engine is stopped.[0016]According to this hybrid vehicle, the internal combustion engine can be started by more properly outputting a demanded power to the drive shaft if the engine start condition is established when, in a state in which the drive source element connection is released, the internal combustion engine is stopped, and power from at least one of the first and second motors is transmitted to the drive shaft at a predetermined fixed speed ratio by the transmission mechanism. Therefore, this hybrid vehicle can well improve the fuel consumption and the drive performance by appropriately switching a state of running in which power from at least one of the first and second motors is transmitted to the drive shaft at a predetermined fixed speed ratio and a state of running in which power is output to the drive shaft with an operation of the internal combustion engine.5 10 15 20 25 30 35 40 45 50 55[0017]The present invention is directed to a method of controlling a power output apparatus including: a drive shaft; an internal combustion engine; a first motor and a second motor capable of inputting and outputting power respectively; an accumulator capable of sending and receiving power to and from each of the first and second motors; a power distribution and integration mechanism having a first element connected to a rotating shaft of the first motor; a second element connected to a rotating shaft of the second motor; a third element connected to an engine shaft of the internal combustion engine, the power distribution and integration mechanism being configured so that these three elements can be differentially rotated with respect to each other; a connection/d isconnection device capable of performing a drive source element connection being any one of a connection between said first motor and the first element, a connection between the second motor and the second element, and a connection between the internal combustion engine and the third element, the connection/d isconnection device capable of performing a release of the drive source element con-nection; a transmission mechanism capable of selectively coupling one or both of the rotating shaft of the first motor and the rotating shaft of the second motor to the drive shaft, and transmitting power from the first motor and power from the second motor to the drive shaft at a predetermined speed ratio respectively. The control method includes steps of: (a) transferring power from one of the first and second motors to the other, if an engine start condition for starting the internal combustion engine is established when the transmission mechanism couples both the first and second motors to the drive shaft and at least one of the first and second motors outputs power in a state in which the drive source element connection is released and the internal combustion engine is stopped; (b) releasing the coupling between one of the first and second motors and the drive shaft by the transmission mechanism; (c) adjusting a rotation speed of one of the first and second motors released from the coupling to the drive shaft so as to enable the drive source element connection; (d) executing the drive source element connection; and (e) starting the internal combustion engine with cranking by the first or second motor.[0018]According to this method, the internal combustion engine can be started by more properly outputting a demanded power to the drive shaft if the engine start condition is established while in a state in which the drive source element connection is released, the internal combustion engine is stopped, and power from at least one of the first and second motors is being transmitted to the drive shaft at a predetermined fixed speed ratio by the transmission mechanism. [0019]Moreover, in the method of controlling the power output apparatus in accordance with the present invention, the torque command to the first and second motors may be set so that power based on the power demand required for the drive shaft is outputted during the execution of the steps (a) to (e).[0020]Further, the step (a) may be a process of decreasing power from one of the first and second motors and increases power from the other one of the first and second motors so that at a time when a predetermined transfer time has elapsed since its start, power outputted from one of the first and second motors becomes a value of 0 and power outputted from the other of the first and second motors becomes a value based on the power demand and a target speed ratio which is a speed ratio of the transmission mechanism after a coupling between one of the first and second motors and the drive shaft is released. In this case, the step (a) may be a process of setting a torque command to the first and second motors based on power outputted from the first and second motors, the power demand and the target speed ratio so that power based on a power demand is always outputted to the drive shaft during an execution of the power transfer process and the power transfer is completed within the transfer time. In addition, the step (a) may be a process of setting a torque command to the first and second motors based on power outputted from the first and second motors at the start time of the step (a), the power demand at the start time and the target speed ratio so that the power transfer is completed within the transfer time.[0021]In addition, the step (c) may synchronize a rotation speed of the first or second motor which is released from a coupling to the drive shaft with a rotation speed of the first or second element under the drive source element connection based on a rotation speed of the second or first motor which is coupled to the drive shaft.Brief Description of the Drawings[0022]Figure 1 is a schematic configuration view of a hybrid vehicle 20 in accordance with an embodiment of the present invention;Figure 2 is an explanatory drawing illustrating a relationship of a rotation speed and a torque of major elements ofa power distribution and integration mechanism 40 and a transmission 60 when the speed ratio of the transmission60 is changed according to the speed change of the vehicle when the hybrid vehicle 20 of the present embodimentruns with an operation of an engine 22;Figure 3 is an explanatory drawing similar to Figure 2;Figure 4 is an explanatory drawing similar to Figure 2;Figure 5 is an explanatory drawing similar to Figure 2;Figure 6 is an explanatory drawing similar to Figure 2;5 10 15 20 25 30 35 40 45 50 55Figure 7 is an explanatory drawing similar to Figure 2;Figure 8 is an explanatory drawing similar to Figure 2;Figure 9 is an explanatory drawing showing an example of an alignment chart representing a relationship of a rotation speed and a torque between an individual element of the power distribution and integration mechanism 40 and an individual element of a reduction gear mechanism 50 when a motor MG1 functions as a generator and a motor MG2 functions as a motor;Figure 10 is an explanatory drawing showing an example of an alignment chart representing a relationship of a rotation speed and a torque between an individual element of the power distribution and integration mechanism 40 and an individual element of the reduction gear mechanism 50 when the motor MG2 functions as a generator and the motor MG1 functions as a motor;Figure 11 is an explanatory drawing for explaining a motor drive mode in the hybrid vehicle 20 of the present embodiment;Figure 12 is a flowchart showing an example of a 2-m otor drive time drive control routine executed by a hybrid ECU70 when a 2-m otor drive mode is selected in the hybrid vehicle 20 of the present embodiment;Figure 13 is a flowchart showing an example of a torque transfer routine executed by the hybrid ECU 70 of the present embodiment;Figure 14 is a flowchart showing an example of a motor synchronization control routine executed by the hybrid ECU70 of the present embodiment;Figure 15 is an explanatory drawing for explaining an operation when the motor synchronization control routine is executed;Figure 16 is a flowchart showing an example of an engine start time drive control routine executed by the hybrid ECU 70 of the present embodiment;Figure 17 is a flowchart showing an example of a variation of the torque transfer routine;Figure 18 is a schematic configuration view showing another transmission 100 which can be applied to the hybrid vehicle 20 of the present embodiment; andFigure 19 is a schematic configuration view of a hybrid vehicle 20A which is a variation of the present embodiment. Best Mode for Carrying Out the Invention[0023]Hereinafter, the best mode for carrying out the invention will be described with reference to embodiments. [0024]Figure 1 is a schematic configuration view of a hybrid vehicle 20 in accordance with a present embodiment of the present invention. The hybrid vehicle 20 shown in the same figure is configured as a rear-w heel-d rive vehicle, and includes an engine 22 arranged in a vehicle front portion; a power distribution and integration mechanism (differential rotation mechanism) 40 connected to a crankshaft 26 which is an output shaft of the engine 22; a generatable motor MG1 connected to the power distribution and integration mechanism 40; a generatable motor MG2 arranged coaxially with the motor MG1 and connected to the power distribution and integration mechanism 40 through a reduction gear mechanism 50; a transmission 60 capable of transmitting power from the power distribution and integration mechanism 40 to a drive shaft 67 with a change in speed ratio; and a hybrid electronic control unit (hereinafter referred to as "hybrid ECU") 70 for controlling the entire hybrid vehicle 20 and the like.[0025]The engine 22 is an internal combustion engine which outputs power by receiving a supply of a hydrocarbona-ceous fuel such as gasoline and a diesel oil, and receives control of a fuel injection amount, an ignition timing, an intake air amount, and the like from an engine electronic control unit (hereinafter referred to as "engine ECU") 24. The engine ECU 24 receives signals from various kinds of sensors which are provided with respect to the engine 22 and detect an operating state of the engine 22. Moreover, the engine ECU 24 communicates with the hybrid ECU 70, controls the operation of the engine 22 based on control signals from the hybrid ECU 70 and signals from the above sensors, and outputs data about the operating state of the engine 22 to the hybrid ECU 70 as needed.[0026]Each of the motor MG1 and the motor MG2 is configured as a known synchronous generator/m otor which can operate not only as a generator, but also as a motor; and supplies and receives electric power to and from a battery 35 which is a secondary battery through inverters 31 and 32. Power lines 39 connecting the inverters 31 and 32 and the battery 35 are configured as a positive electrode bus line and a negative electrode bus line shared by the individual inverters 31 and 32; and are configured such that the power generated by one of the motors MG1 and MG2 can be consumed by the other motor. Therefore, the battery 35 is charged with electric power generated by one of the motors MG1 and MG2 and is discharged due to electric power shortage. If the electric power consumption and generation is balanced between the motors MG1 and MG2, the battery 35 is assumed to be neither charged nor discharged. Both the motors MG1 and MG2 are drive-c ontrolled by a motor electronic control unit (hereinafter referred to as "motor ECU")30. The motor ECU 30 receives a signal necessary for drive-c ontrolling the motors MG1 and MG2, for example, a signal from rotational position detection sensors 33 and 34 for detecting a rotational position of a rotor of motors MG1 and MG2; and a phase current which is detected by a current sensor (not shown) and is applied to the motors MG1 and。

相关文档
最新文档