武珞路中学学年度下学期七年级数学期中模拟试卷
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.9的算术平方根是()A .-3B .3C .3±D .192.下列图形中,能将其中一个图形平移得到另一个图形的是 ( )A .B .C .D . 3.在平面直角坐标系中,点(-1,-3)位于( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题是假命题的是( )A .三角形三个内角的和等于180︒B .对顶角相等C .在同一平面内,垂直于同一条直线的两条直线互相平行D .两条直线被第三条直线所截,同位角相等5.如图,C 为AOB ∠的边OA 上一点,过点C 作//CD OB 交AOB ∠的平分线OE 于点F ,作CH OB ⊥交BO 的延长线于点H ,若EFD α∠=,现有以下结论:①COF α∠=;②1802AOH α∠=︒-;③CH CD ⊥;④290OCH α∠=-︒.结论正确的个数是( )A .1个B .2个C .3个D .4个6.如图,下列各数中,数轴上点A 表示的可能是( )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根 7.如图,//AB CD ,//BC DE ,若140CDE ∠=︒,则B 的度数是( )A .40°B .60°C .140°D .160°8.一只青蛙在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)0,11,()()1,)0(1→→→→……,每次跳一个单位长度,则第2021次跳到点( )A.(6,45)B.(5,44)C.(4,45)D.(3,44)二、填空题9.4的算术平方根为_______;10.若点P(a,b)关于y轴的对称点是P1 ,而点P1关于x轴的对称点是P2 ,若点P2的坐标为(-3,4),则a=_____,b=______11.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,若△ABC的面积为15,DE=3,AB=6,则AC的长是 _______12.如图,直线AB∥CD,OA⊥OB,若∠1=140°,则∠2=_____度.13.如图,将一条对边互相平行的长方形纸带进行两次折叠,折痕分别为AB、CD,若CD BE,且156//∠=︒,则2∠=_____.=-,若14.定义一种新运算“”规则如下:对于两个有理数a,b,a b ab b()()x-=-,则x=______52115.若点P(a+3,2a+4)在y轴上,则点P到x轴的距离为________.16.如图,一个点在第一象限及x轴、y轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],那么第42秒时质点所在位置的坐标是______.三、解答题17.计算:(1)20183(1)128-+--(2)20319()(2018)1252π---+-- 18.求下列各式中x 的值.(1)4x 2﹣25=0;(2)(2x ﹣1)3=﹣64.19.如图,已知∠1=∠2,∠B =∠C ,可推得AB ∥CD .理由如下:∵∠1=∠2(已知),且∠l =∠CGD ( )∴∠2=∠CGD∴.CE ∥BF ( )∴∠ =∠BFD ( )又∵∠B =∠C (已知)∴ ,∴AB ∥CD ( )20.如图, 在平面直角坐标系xOy 中,三角形ABC 三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC 向上平移 3 个单位长度,再向左平移1个单位长度得到三角形A B C ''',点A 、B 、C 的对应点分别为A B C '''、、.(1)在图中画出平移后的三角形A B C ''';(2)写出点A '的坐标;(3)三角形ABC 的面积为 .21.已知某正数的两个不同的平方根是3a ﹣14和a +2;b +11的立方根为﹣3;c 是6的整数部分;(1)求a +b +c 的值;(2)求3a ﹣b +c 的平方根.22.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形.(1)则大正方形的边长是 ;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为4:3,且面积为2360cm ?23.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠= n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的概念可直接进行求解.【详解】±=,解:∵()239∴9的算术平方根是3;故选B.【点睛】本题主要考查算术平方根,熟练掌握求一个数的算术平方根是解题的关键.2.A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形由轴对称得到,不属于平移得到,不属于平移解析:A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形由轴对称得到,不属于平移得到,不属于平移得到;C、图形由旋转变换得到,不符合平移的性质,不属于平移得到;D、图形的大小发生变化,不属于平移得到;故选:A.【点睛】本题考查平移的基本性质,平移不改变图形的形状、大小和方向.掌握平移的性质是解题的关键.3.C【分析】根据平面直角坐标系中象限内点的特征判断即可;【详解】∵10-<,30-<,∴点(-1,-3)位于第三象限;故选C .【点睛】本题主要考查了平面直角坐标系中象限内点的特征,准确分析判断是解题的关键. 4.D【分析】根据三角形内角和定理,对顶角的性质,平行线的判定和性质逐一判断即可.【详解】解:A 、三角形三个内角的和等于180°,故此说法正确,是真命题;B 、对顶角相等,故此说法正确,是真命题;C 、在同一平面内,垂直于同一条直线的两条直线互相平行两条,故此说法正确,是真命题;D 、两条平行直线被第三条直线所截,同位角相等,故此说法错误,是假命题.故选D.【点睛】本题主要考查了命题的真假,解题的关键在于能够熟练掌握相关知识进行判断求解. 5.D【分析】根据平行线的性质可得EOB EFD α∠=∠=,结合角平分线的定义可判断①;再由平角的定义可判断②;由平行线的性质可判断③;由余角及补角的定义可判断④.【详解】解://CD OB ,EFD α∠=,EOB EFD α∴∠=∠=, OE 平分AOB ∠,COF EOB α∴∠=∠=,故①正确;2AOB α∠=,180AOB AOH ∠+∠=︒,1802AOH α∴∠=︒-,故②正确;//CD OB ,CH OB ⊥,CH CD ∴⊥,故③正确;90HCO HOC ∴∠+∠=︒,180AOB HOC ∠+∠=︒,290OCH α∴∠=-︒,故④正确.正确为①②③④,故选:D .【点睛】本题主要考查平行线的性质,角平分线的定义,垂直的定义,灵活运用平行线的性质是解题的关键.6.C【详解】解:由题意可知4的算术平方根是2,4的算术平方根是2<,8的立方根是2,故根据数轴可知,故选C7.A【分析】根据平行线的性质求出∠C,再根据平行线的性质求出∠B即可.【详解】解:∵BC∥DE,∠CDE=140°,∴∠C=180°-140°=40°,∵AB∥CD,∴∠B=40°,故选:A.【点睛】本题考查了平行线的性质的应用,注意:平行线的性质有①两直线平行,内错角相等,②两直线平行,同位角相等,③两直线平行,同旁内角互补.8.D【分析】根据青蛙运动的速度确定:(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次解析:D【分析】根据青蛙运动的速度确定:(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次,到(0,6)是第48(6×8)次,依此类推,到(0,45)是第2025次,后退4次可得2021次所对应的坐标.【详解】解:青蛙运动的速度是每秒运动一个单位长度,(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次,到(0,6)第48(6×8)次,依此类推,到(0,45)是第2025次.2025-1-3=2021,故第2021次时青蛙所在位置的坐标是(3,44).【点睛】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.二、填空题9.【分析】先求出的值,然后再化简求值即可.【详解】解:∵,∴2的算术平方根是,∴的算术平方根是.故答案为.【点睛】本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答【分析】【详解】解:∵2,∴2,∴..【点睛】本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答本题的关10.a=3 b=-4【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-解析:a=3 b=-4【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P2,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4),点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4),【点睛】此题考查关于x 轴、y 轴对称的点的坐标,难度不大11.4【分析】过点D 作DF ⊥AC,则由AD 是△ABC 的角平分线,DF ⊥AC , DE ⊥AB ,可以得到DE=DF,可由三角形的面积的,,进而解得AC 的长.【详解】过点D 作DF ⊥AC∵AD 是△AB解析:4【分析】过点D 作DF ⊥AC,则由AD 是△ABC 的角平分线,DF ⊥AC , DE ⊥AB ,可以得到DE=DF,可由三角形的面积的ADB ADC ABC S S S ∆∆∆+=,⨯+⨯=11AB DE AC DF 1522,进而解得AC 的长.【详解】过点D 作DF ⊥AC∵AD 是△ABC 的角平分线,DF ⊥AC , DE ⊥AB ,∴DE=DF,又三角形的面积的ADB ADC ABC S S S ∆∆∆+=,即⨯+⨯=11AB DE AC DF 1522, 解得AC=4【点睛】主要考查了角平分线的性质,三角形的面积,掌握角平分线的性质及三角形的面积是解题的关键.12.50【分析】先根据垂直的定义得出∠O=90°,再由三角形外角的性质得出∠3=∠1﹣∠O=50°,然后根据平行线的性质可求∠2.【详解】∵OA ⊥OB ,∴∠O=90°,∵∠1=∠3+∠O=1解析:50【分析】先根据垂直的定义得出∠O=90°,再由三角形外角的性质得出∠3=∠1﹣∠O=50°,然后根据平行线的性质可求∠2.【详解】∵OA⊥OB,∴∠O=90°,∵∠1=∠3+∠O=140°,∴∠3=∠1﹣∠O=140°﹣90°=50°,∵AB∥CD,∴∠2=∠3=50°,故答案为:50.【点睛】此题主要考查三角形外角的性质以及平行线的性质,熟练掌握,即可解题.13.68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,解析:68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,∴∠4=∠3=∠1=56°,由折叠可得,∠DCF=∠5,∵CD∥BE,∴∠DCF=∠4=56°,∴∠5=56°,∴∠2=180°-∠DCF-∠5=180°-56°-56°=68°,故答案为:68°.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握:两直线平行,同位角相等;两直线平行,内错角相等.14.【分析】根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答.【详解】解:由题意得:(5x-x)⊙(−2)=−1,∴-2(5x-x)-(-2)=-1,∴-8x+2=-1,解之得解析:38【分析】根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答.【详解】解:由题意得:(5x-x)⊙(−2)=−1,∴-2(5x-x)-(-2)=-1,∴-8x+2=-1,解之得:38x ,故答案为38.【点睛】本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键.15.2【分析】点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可.【详解】∵点P(a+3,2a+4)在y轴上∴a+3=0,解得:a=-3∴P(0,-2)∴点P到x轴的距离解析:2【分析】点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可.【详解】∵点P(a+3,2a+4)在y轴上∴a+3=0,解得:a=-3∴P(0,-2)∴点P到x轴的距离为:2故答案为:2【点睛】本题考查坐标点与坐标轴的关系,注意,点到坐标轴的距离一定是非负的.16.(6,6)【分析】根据质点移动的各点的坐标与时间的关系,找出规律即可解答.【详解】由题意可知质点移动的速度是1个单位长度╱秒,到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,解析:(6,6)【分析】根据质点移动的各点的坐标与时间的关系,找出规律即可解答.【详解】由题意可知质点移动的速度是1个单位长度╱秒,到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒,从(0,3)到(3,0)有六个单位长度,则到(3,0)时用了9+6=15秒,以此类推到(4,0)用了16秒,到(0,4)用了16+8=24秒,到(0,5)用了25秒,到(5,0)用了25+10=35秒,故第42秒时质点到达的位置为(6,6),故答案为:(6,6).【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规律进而得出第42秒时质点所在位置的坐标是解题关键.三、解答题17.(1);(2)-5.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)直接利用算术平方根以及立方根的定义化简得出答案.【详解】(1)=1+-2=(2)=3-4+解析:(12;(2)-5.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)直接利用算术平方根以及立方根的定义化简得出答案.【详解】(1)2018(1)1-+1-22(2201()(2018)2π--+-=3-4+1-5=-5【点睛】此题主要考查了实数运算,正确化简各数是解题关键.18.(1)x =;(2)x =.【分析】(1)利用平方根的定义求解;(2)利用立方根的定义求解.【详解】解:(1)4x2﹣25=0,4x2=25,x2=,x=;(2)(2x﹣1)3=﹣64解析:(1)x=52±;(2)x=32-.【分析】(1)利用平方根的定义求解;(2)利用立方根的定义求解.【详解】解:(1)4x2﹣25=0,4x2=25,x2=254,x=52±;(2)(2x﹣1)3=﹣64,2x﹣1=﹣4,2x=﹣3,x=32 -.【点睛】本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键.19.见解析【分析】首先确定∠1=∠CGD是对顶角,利用等量代换,求得∠2=∠CGD,则可根据:同位角相等,两直线平行,证得:CE∥BF,又由两直线平行,同位角相等,证得角相等,易得:∠BFD=∠B,解析:见解析【分析】首先确定∠1=∠CGD是对顶角,利用等量代换,求得∠2=∠CGD,则可根据:同位角相等,两直线平行,证得:CE∥BF,又由两直线平行,同位角相等,证得角相等,易得:∠BFD=∠B,则利用内错角相等,两直线平行,即可证得:AB∥C D.【详解】解:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换),∴CE∥BF(同位角相等,两直线平行),∴∠C=∠BFD(两直线平行,同位角相等),又∵∠B =∠C (已知),∴∠BFD =∠B (等量代换),∴AB ∥CD (内错角相等,两直线平行).【点睛】本题主要考查了平行线的判定与性质.注意数形结合思想的应用是解答此题的关键. 20.(1)见解析;(2);(3)【分析】(1)根据平移规律确定,,的坐标,再连线即为平移后的三角形;(2)根据平移规律写出的坐标即可;(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面解析:(1)见解析;(2)()3,1-;(3)7【分析】(1)根据平移规律确定A ',B ',C '的坐标,再连线即为平移后的三角形A B C '''; (2)根据平移规律写出A '的坐标即可;(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面积即可.【详解】(1)如图所示,三角形A B C '''即为所求;(2)若把三角形ABC 向上平移 3 个单位长度,再向左平移1个单位长度得到三角形A B C ''',点A '的坐标为(-3,1);(3)三角形ABC 的面积为:4×5-12×2×4-12×1×3-12×3×5=7.【点睛】本题主要考查了图形的平移,以及三角形在坐标轴上的计算,切割法的运用,掌握平移规律和运用切割法求面积是解题的关键. 21.(1)-33;(2)(1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据可得c的值;(2)分别将a,b,c的值代入3a-b+c,可±解析:(1)-33;(2)7【分析】(1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据23<<可得c的值;(2)分别将a,b,c的值代入3a-b+c,可解答.【详解】解:(1)∵某正数的两个平方根分别是3a-14和a+2,∴(3a-14)+(a+2)=0,∴a=3,又∵b+11的立方根为-3,∴b+11=(-3)3=-27,∴b=-38,<<,又∵469∴23<,又∵c的整数部分,∴c=2;∴a+b+c=3+(-38)+2=-33;(2)当a=3,b=-38,c=2时,3a-b+c=3×3-(-38)+2=49,∴3a-b+c的平方根是±7.【点睛】本题主要考查了立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.22.(1);(2)无法裁出这样的长方形.【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小解析:(1)20;(2)无法裁出这样的长方形.【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为4x cm,宽为3x cm,根据题意列出方程,解方程比较4x与20的大小即可.解:(1)由题意得,大正方形的面积为200+200=400cm 2,∴cm ;()2根据题意设长方形长为4x cm ,宽为3x cm ,由题:43360x x ⋅= 则230x =0xx ∴=∴长为43020>∴无法裁出这样的长方形.【点睛】本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键. 23.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n =3.【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ; (2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒, ∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒ ∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒; ∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒; (3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.。
2011年武珞路七(下)期中数学试卷
4321E D C B ANMHG FEDCBAFEO D C B A武珞路中学2010—2011学年度下学期七年级数学期中测试卷(命题人:陈志翔 审核人:彭毅)一、选择题(3分×10=30分)1.下面四个图形中,∠1与∠2是对顶角的是 ( )2.如图,点E 在BC 的延长线上,则下列条件中,能判定AD ∥BC 的是 ( ) A 、∠1=∠2 B 、∠B=∠DCE C 、∠3=∠4 D 、∠D+∠DAB=180°3.如图,DE∥BC,EF∥AB,则图中与∠B 一定相等的角共有(不含∠B) ( ) A .1个 B .2个 C .3个 D .4个4.如图,小手盖住的点的坐标可能是 ( ) A ( 6,-4) B (5,2) C (-3,-6) D (-3,4)5.在平面直角坐标系中, 点(3, 5)可以看作是点(1, 2) ( ) A. 先向左平移2个单位, 再向上平移3个单位后得到的 B. 先向右平移2个单位, 再向下平移3个单位后得到的 C. 先向右平移2个单位, 再向上平移3个单位后得到的 D. 先向左平移2个单位, 再向下平移3个单位后得到的 6.以下列各组长度的线段为边,能构成三角形的是( )A .6,5,11B .6,8,15C .10,6,5D .8,4,37.用一批完全相同的多边形地砖铺地面,不能进行镶嵌的是 ( ) A 、正三角形 B 、正方形 C 、正八边形 D 、正六边形 8.下列语句不是命题的是( )A .两直线平行,内错角相等B .点到直线的距离C .若|a |=|b |,则a=bD .在同一平面内的两条直线一定是相交的9.如图,D 、E 分别是AB 、AC 上一点。
BE 、CD 相交于F ,∠ACD=30°,∠ABE=20°,∠BDC+∠BEC=170°则∠A 等于 ( ) A .50° B .85° C .70° D .60°10. 如图,△ABC 的三条角平分线交于O 点(∠ACB >90°),AO 交BC于D ,作AE ⊥BC 交BC 的延长线于点E,交OC 的延长线于点F 。
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.14的算术平方根为() A .116 B .12± C .12 D .12- 2.下列现象属于平移的是()A .投篮时的篮球运动B .随风飘动的树叶在空中的运动C .刹车时汽车在地面上的滑动D .冷水加热过程中小气泡变成大气泡3.点()5,4A --在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题是真命题的是( )A .两条直线被第三条直线所截,同位角相等B .互补的两个角一定是邻补角C .在同一平面内,垂直于同一条直线的两条直线互相平行D .相等的角是对顶角5.如图,直线a ,b 被直线c ,d 所截,若12∠=∠,3125∠=︒,则4∠的度数是( )A .65︒B .60︒C .55︒D .75︒6.下列结论正确的是( )A .64的平方根是4±B .18-没有立方根C .立方根等于本身的数是0D .332727-=-7.一把直尺和一块直角三角尺(含30°、60°角)如图所示摆放,直尺的一边与三角尺的两直角边BC 、AC 分别交于点D 、点E ,直尺的另一边过A 点且与三角尺的直角边BC 交于点F ,若∠CAF =42°,则∠CDE 度数为( )A .62°B .48°C .58°D .72°8.如图,在平面直角坐标系中,()1,1A ,()1,1B -,()1,2C --,()1,2D -,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A B C D A →→→→⋅⋅⋅的规律绕在四边形ABCD 的边上,则细线另--端所在位置的点的坐标是( )A .()1,1-B .()0,1C .()1,1D .()0,2-二、填空题9.若21(2)30x y z -+-+-=,则x+y+z=________.10.若过点()()3,7,5M a N --、的直线与x 轴平行,则点M 关于y 轴的对称点的坐标是_________.11.已知100AOB ∠=︒,射线OC 在同一平面内绕点O 旋转,射线,OE OF 分别是AOC ∠和COB ∠的角平分线.则EOF ∠的度数为______________.12.如图,点D 、E 分别在AB 、BC 上,DE ∥AC ,AF ∥BC ,∠1=70°,则∠2=_____°.13.如图,将长方形ABCD 沿DE 折叠,使点C 落在边AB 上的点F 处,若45EFB ∠=︒,则DEC ∠=________°14.a ※b 是新规定的这样一种运算法则:a ※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x ,则x 的值是_____.15.在平面直角坐标系中,点P 的坐标为()22,1a ---,则点P 在第________象限.16.如图,点A (0,1),点1A (2,0),点2A (3,2),点3A (5,1)…,按照这样的规律下去,点1000A 的坐标为 _____.三、解答题17.(1)已知2(1)4x -=,求x 的值;(2)计算:23112(2)8--+-. 18.求下列各式中的x 值:(1)()3101250x ++=(2)()22360x --=19.阅读下列推理过程,在括号中填写理由.已知:如图,点D 、E 分别是线段AB 、BC 上的点,AE 平分BAC ∠,BED C ∠=∠,//DF AE ,交BC 于点F .求证:DF 平分BDE ∠.证明:AE ∵平分BAC ∠(已知)12∠∠∴=( )BED C ∠=∠(已知)//AC DE ∴( )13∠∠∴=( )23∴∠=∠(等量代换)//DF AE ( )25∴∠=∠( )34∠=∠( )45∴∠=∠( )DF ∴平分BDE ∠( )20.已知()0,1A ,()2,0B ,()4,3C .(1)在如图所示的直角坐标系中描上各点,画出三角形ABC ;(2)将ABC 向下平移2个单位长度,再向左平移2个单位长度得到三角形111A B C ,画出平移后的图形并写出1A 、1B 、1C 的坐标.21.已知21a -的平方根是3,31a b ±+-的立方根是2,c -是46的整数部分,求2a b c ++的算术平方根.22.如图用两个边长为18cm 的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为3:2,且面积为30cm 2?请说明理由.23.已知:直线AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,作射线EG 平分∠BEF 交CD 于G ,过点F 作FH ⊥MN 交EG 于H .(1)当点H 在线段EG 上时,如图1①当∠BEG =36︒时,则∠HFG = .②猜想并证明:∠BEG 与∠HFG 之间的数量关系.(2)当点H 在线段EG 的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG 与∠HFG 之间的数量关系.【参考答案】一、选择题1.C解析:C【分析】根据算术平方根的定义求解.【详解】解:因为211 24⎛⎫=⎪⎝⎭,所以14的算术平方根为12.故选C.【点睛】本题主要考查算术平方根的定义,解决本题的关键是要熟练掌握算术平方根的定义. 2.C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象;B解析:C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象;B. 随风飘动的树叶在空中的运动,在空中不是沿直线运动,此选项不是平移现象;C. 刹车时汽车在地面上的滑动,此选项是平移现象;D. 冷水加热过程中小气泡变成大气泡,大小发生了变化,此选项不是平移现象. 故选:C .【点睛】本题考查的知识点是平移的概念,掌握平移的性质是解此题的关键.3.C【分析】根据平面直角坐标系象限的符合特点可直接进行排除选项.【详解】解:在平面直角坐标系中,第一象限的符合为“+、+”,第二象限的符合为“-、+”;第三象限的符合为“-、-”,第四象限的符合为“+、-”,由此可得点()5,4A --在第三象限; 故选C .【点睛】本题主要考查平面直角坐标系中象限的符合特点,熟练掌握平面直角坐标系中象限的符合特点是解题的关键.4.C【分析】根据平行线的性质、邻补角和对顶角的概念以及平行线的判定定理判断即可.【详解】解:A 、两条平行的直线被第三条直线所截,同位角相等,原命题错误,是假命题,不符合题意;B 、互补的两个角不一定是邻补角,原命题错误,是假命题,不符合题意;C 、在同一平面内,垂直于同一条直线的两条直线互相平行,原命题正确,是真命题,符合题意;D 、相等的角不一定是对顶角,原命题错误,是假命题,不符合题意;故选:C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫假命题,判断命题的真假关键是要熟悉课本中的性质定理.5.C【分析】首先证明a ∥b ,推出∠4=∠5,求出∠5即可.【详解】解:∵∠1=∠2,∴a ∥b ,∴∠4=∠5,∵∠5=180°﹣∠3=55°,∴∠4=55°,故选:C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.6.D【分析】根据平方根与立方根的性质逐项判断即可得.【详解】A648±±,此项错误;=,8的平方根是84B311--,此项错误;82C、立方根等于本身的数有0,1,1-,此项错误;D、33-=---,273,2733273-=-27故选:D.【点睛】本题考查了平方根与立方根的性质,掌握理解平方根与立方根的性质是解题关键.7.B【分析】先根据平行线的性质求出∠CED,再根据三角形的内角和等于180°即可求出∠CDE.【详解】解:∵DE∥AF,∠CAF=42°,∴∠CED=∠CAF=42°,∵∠DCE=90°,∠CDE+∠CED+∠DCE=180°,∴∠CDE=180°-∠CED-∠DCE=180°-42°-90°=48°,故选:B.【点睛】本题主要考查了平行线的性质以及三角形内角和等于180°,熟练掌握平行线的性质:两直线平行,同位角相等是解决问题的关键.8.B【分析】先求出四边形ABCD的周长为10,得到2021÷10的余数为1,由此即可解决问题.【详解】解:∵A (1,1),B (-1,1),C (-1,-2),D (1,-2),∴四边形ABCD 的解析:B【分析】先求出四边形ABCD 的周长为10,得到2021÷10的余数为1,由此即可解决问题.【详解】解:∵A (1,1),B (-1,1),C (-1,-2),D (1,-2),∴四边形ABCD 的周长为10,2021÷10的余数为1,又∵AB =2,∴细线另一端所在位置的点在A 处左面1个单位的位置,坐标为(0,1).故选:B .【点睛】本题考查规律型:点的坐标,解题的关键是理解题意,求出四边形ABCD 的周长,属于中考常考题型.二、填空题9.6【分析】根据非负数的性质列出方程求出x 、y 、z 的值,代入所求代数式计算即可.【详解】解:∵∴x-1=0,y-2=0,z-3=0,∴x=1,y=2,z=3.∴x+y+z=1+2+3=6解析:6【分析】根据非负数的性质列出方程求出x 、y 、z 的值,代入所求代数式计算即可.【详解】解:∵21(2)0x y -+-=∴x-1=0,y-2=0,z-3=0,∴x=1,y=2,z=3.∴x+y+z=1+2+3=6.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.【分析】根据MN 与x 轴平行可以求得M 点坐标,进一步可以求得点M 关于y 轴的对称点的坐标.【详解】解:∵MN 与x 轴平行,∴两点纵坐标相同,∴a=-5,即M 为(-3,-5) ∴点M 关于y 轴的对解析:()3,5-【分析】根据MN 与x 轴平行可以求得M 点坐标,进一步可以求得点M 关于y 轴的对称点的坐标.【详解】解:∵MN 与x 轴平行,∴两点纵坐标相同,∴a=-5,即M 为(-3,-5)∴点M 关于y 轴的对称点的坐标为:(3,-5)故答案为(3,-5).【点睛】本题考查图形及图形变化的坐标表示,熟练掌握各种图形及图形变化的坐标特征是解题关键.11.50°【分析】分射线OC 在∠AOB 的内部和射线OC 在∠AOB 的外部,分别画出图形,结合根据角平分线定义求解.【详解】解:若射线OC 在∠AOB 的内部,∵OE ,OF 分别是∠AOC 和∠COB 的解析:50°【分析】分射线OC 在∠AOB 的内部和射线OC 在∠AOB 的外部,分别画出图形,结合根据角平分线定义求解.【详解】解:若射线OC 在∠AOB 的内部,∵OE ,OF 分别是∠AOC 和∠COB 的角平分线,∴∠EOC =12∠AOC ,∠FOC =12∠BOC ,∴∠EOF =∠EOC +∠FOC =12∠AOC +12∠BOC =50°;若射线OC 在∠AOB 的外部,①射线OE,OF只有1个在∠AOB外面,如图,∠EOF=∠FOC-∠COE=12∠BOC-12∠AOC=12(∠BOC-∠AOC)=12∠AOB=50°;②射线OE,OF都在∠AOB外面,如图,∠EOF=∠EOC+∠COF=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12(360°-∠AOB)=130°;综上:∠EOF的度数为50°或130°,故答案为:50°或130°.【点睛】本题考查的是角的计算,角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.注意分类思想的运用.12.70【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【详解】∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答解析:70【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【详解】∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答案为70.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.13.5【分析】根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DEC、∠FED三者相加为180°,求出∠BEF的度数即可.【详解】解:∵△DFE是由△DCE折叠得到的,∴∠DEC=∠FE解析:5【分析】根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DE C、∠FED三者相加为180°,求出∠BEF的度数即可.【详解】解:∵△DFE是由△DCE折叠得到的,∴∠DEC=∠FED,又∵∠EFB=45°,∠B=90°,∴∠BEF=45°,∴∠DEC=1(180°-45°)=67.5°.2故答案为:67.5.【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键.14.4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.15.三【分析】先判断出点P 的纵坐标的符号,再根据各象限内点的符号特征判断点P 所在象限即可.【详解】解:∵a2为非负数,∴-a2-1为负数,∴点P 的符号为(-,-)∴点P 在第三象限.故答案解析:三【分析】先判断出点P 的纵坐标的符号,再根据各象限内点的符号特征判断点P 所在象限即可.【详解】解:∵a 2为非负数,∴-a 2-1为负数,∴点P 的符号为(-,-)∴点P 在第三象限.故答案为:三.【点睛】本题考查了点的坐标.解题的关键是掌握象限内的点的符号特点,注意a 2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.(1500,501).【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可.【详解】观察图形可得,点(2,0),点(5,1),(8,2),…,(3n ﹣1,n ﹣1), 点解析:(1500,501).【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可.【详解】观察图形可得,点1A (2,0),点3A (5,1),5A (8,2),…,21n A (3n ﹣1,n ﹣1),点2A (3,2),4A (6,3),6A (9,4),…,2n A (3n ,n +1),∵1000是偶数,且1000=2n ,∴n =500,∴1000A (1500,501),故答案为:(1500,501).【点睛】本题考查了图形与坐标,分类思想,通过发现特殊点的坐标与序号的关系,运用特殊与一般的思想探索规律是解题的关键.三、解答题17.(1)x=3或x=-1;(2)【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:∵;∴∴x=3或x=-1(2)原式=,【解析:(1)x=3或x=-1;(212【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:∵()214x -=;∴12x -=±∴x=3或x=-1(2)原式1122-+ 12=, 【点睛】本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键. 18.(1)x=-15;(2)x=8或x=-4【分析】(1)利用直接开立方法求得x 的值;(3)利用直接开平方法求得x 的值.【详解】解:(1),∴,∴,解得:x=-15;(2),∴,∴解析:(1)x =-15;(2)x =8或x =-4【分析】(1)利用直接开立方法求得x 的值;(3)利用直接开平方法求得x 的值.【详解】解:(1)()3101250x ++=,∴()310125x +=-, ∴105x +=-,解得:x =-15;(2)()22360x --=,∴()2236x -=, ∴26x -=±,解得:x =8或x =-4.【点睛】本题考查了立方根和平方根.正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.19.见解析【分析】根据平行线的性质,角平分线的定义填写理由即可.【详解】证明:平分(已知)(角平分线的定义)(已知)(同位角相等,两直线平行)(两直线平行,内错角相等)(等量代换)(解析:见解析【分析】根据平行线的性质,角平分线的定义填写理由即可.【详解】证明:AE ∵平分BAC ∠(已知)12∠∠∴=(角平分线的定义)BED C ∠=∠(已知)//AC DE ∴(同位角相等,两直线平行)13∠∠∴=(两直线平行,内错角相等)23∴∠=∠(等量代换)//DF AE (已知)25∴∠=∠(两直线平行,同位角相等)34∠=∠(两直线平行,内错角相等)45∴∠=∠(等量代换)DF ∴平分BDE ∠(角平分线的定义)【点睛】本题考查了角平分线的定义,平行线的性质与判定,掌握平行线的性质与判定是解题的关键.20.(1)见解析;(2)见解析,,,【分析】(1)依据A (0,1),B (2,0),C (4,3),即可画出△ABC ;(2)依据△ABC 向左平移2个单位后再向下平移2个单位,即可得到△A1B1C1,进解析:(1)见解析;(2)见解析,()12,1A --,()10,2B -,()12,1C【分析】(1)依据A (0,1),B (2,0),C (4,3),即可画出△ABC ;(2)依据△ABC 向左平移2个单位后再向下平移2个单位,即可得到△A 1B 1C 1,进而得到点A 1,B 1,C 1的坐标.【详解】解:(1)如图,三角形ABC 即为所画,(2)如图, 111A B C ∆即为所画,1A 、1B 、1C 的坐标 :()12,1A --,()10,2B -,()12,1C【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 21.【分析】首先根据平方根与立方根的概念可得2a−1与a +3b−1的值,进而可得a 、b 的值;接着估计的大小,可得c 的值;进而可得a +2b +c ,根据算术平方根的求法可得答案.【详解】解:根据题意, 3【分析】首先根据平方根与立方根的概念可得2a −1与a +3b −1的值,进而可得a 、b 的值;接着估46c 的值;进而可得a +2b +c ,根据算术平方根的求法可得答案.【详解】解:根据题意,可得2a−1=9,a+3b−1=-8;解得:a=5,b=-4;又∵67,可得c=6;∴a+2b+c=3;∴a+2b+c【点睛】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,“夹逼法”是估算的一般方法,也是常用方法.22.不能截得长宽之比为,且面积为cm2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.【详解】解:不能,因为大正方形纸解析:不能截得长宽之比为3:2,且面积为30cm2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.【详解】解:不能,2+2=36(cm2),所以大正方形的边长为6cm,设截出的长方形的长为3b cm,宽为2b cm,则6b2=30,所以b所以3b所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片.【点睛】本题考查了算术平方根,理解算术平方根的意义是正确解答的关键.23.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.解析:(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.(2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可.【详解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案为:18°.②结论:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如图2中,结论:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
2020-2021学年湖北省武汉市武昌区武珞路中学七年级(下)期中数学试卷(学生版+解析版)
2020-2021学年湖北省武汉市武昌区武珞路中学七年级(下)期中数学试卷一、选择题(每小题3分,共10小题)1.(3分)如图所示,1∠和2∠是对顶角的图形是( )A .B .C .D .2.(3分)下列实数中,无理数是( ) A .17B .7C .0.1010010001D .93.(3分)在平面直角坐标系中,在第三象限的点是( ) A .(3,5)-B .(1,2)-C .(2,3)--D .(1,1)4.(3分)下列现象中,( )是平移. A .“天问”探测器绕火星运动 B .篮球在空中飞行 C .电梯的上下移动D .将一张纸对折5.(3分)如图,12∠=∠,3112∠=︒,则4∠等于( )A .62︒B .68︒C .78︒D .112︒6.(3分)一个正方形的面积扩大为原来9倍,它的周长变为原来的( )倍. A .2B .3C .9D .127.(3分)如图,货船A 与港口B 相距35海里,我们用有序数对(南偏西40︒,35海里)来描述货船B 相对港口A 的位置,那么港口A 相对货船B 的位置可描述为( )A .(南偏西50︒,35海里)B .(北偏西40︒,35海里)C .(北偏东50︒,35海里)D .(北偏东40︒,35海里)8.(3分)已知415m +的算术平方根是3,26n -的立方根是2-,则64(n m -= ) A .2B .2±C .4D .4±9.(3分)下列命题:①同旁内角互补;②过一点有且只有一条直线与已知直线平行;③实数与数轴上的点一一对应;④2(4)4-=-;⑤负数有立方根,没有平方根.其中是真命题的个数是( ) A .1个 B .2个C .3个D .4个10.(3分)已知122119311242T =++==,22211497123366T =++==,23221113131()341212T =++==,22111(1)n T n n ⋯=+++,其中n 为正整数.设123n n S T T T T =+++⋯+,则2021S 值是( )A .202120212022B .202120222022C .120212021D .120222021二、填空题(每小题3分,共6小题) 11.(3分)36的平方根是 .12.(3分)如图,要把河中的水引到农田P 处,想要挖的水渠最短,我们可以过点P 作PQ 垂直河边l ,垂足为点Q ,然后沿PQ 开挖水渠,其依据是 .13.(3分)在平面直角坐标系中,点(5,3)P 到y 轴的距离是 .14.(3分)如图,直线AB 和CD 相交于O 点,OM AB ⊥,:1:3BOD COM ∠∠=,则AOD ∠的度数为 度.15.(3分)如图a ,已知长方形纸带ABCD ,将纸带沿EF 折叠后,点C 、D 分别落在H 、G 的位置,再沿BC 折叠成图b ,若72DEF ∠=︒,则GMN ∠= ︒.16.(3分)平面直角坐标系中,点(,)M x y ,(2,3)N x ky y kx --,7MN OM =,当点M 在y 轴正半轴上时,k = . 三、解答题(共8个小题) 17.(8分)计算: (13258(23(31)|32|+. 18.(8分)解方程: (1)3254x =; (2)2(1)81x -=.19.(8分)某正数的两个不同的平方根分别是12m -和34m -,求这个数的立方根. 20.(8分)如图,180DEH EHG ∠+∠=︒,12∠=∠,C A ∠=∠,求证:AEH F ∠=∠. 证明:180DEH EHG ∠+∠=︒, //ED ∴ ( ).1(C ∴∠=∠ ).2∠= (两直线平行,内错角相等). 12∠=∠,C ∠= , A ∴∠= .//(AB DF ∴ ).(AEH F ∴∠=∠ ).21.(8分)在平面直角坐标系中,三角形ABC 的三个顶点分别是(2,0)A -,(0,5)B . (1)在所给的网格图中,画出这个平面直角坐标系;(2)将三角形ABC 平移得到三角形111A B C ,顶点A 、B 、C 分别对应顶点1A 、1B 、1C ,此时点1(3,7)B .①画出平移后的三角形111A B C ,点1C 的坐标为 .②请你描述三角形ABC 经过怎样的平移后得到三角形111A B C ? ③四边形11BB C C 的面积为 (直接写出).22.(10分)列方程解应用题小丽给了小明一张长方形的纸片,告诉他,纸片的长宽之比为3:2,纸片面积为2294cm . (1)请你帮小明求出纸片的周长.(2)小明想利用这张纸片裁出一张面积为217cm 的完整圆形纸片,他能够裁出想要的圆形纸片吗?请说明理由.(π取3.14)23.(10分)如图,AB AK ⊥,点A 在直线MN 上,AB 、AK 分别与直线EF 交于点B 、C ,90MAB KCF ∠+∠=︒.(1)求证://EF MN ;(2)如图2,NAB ∠与ECK ∠的角平分线交于点G ,求G ∠的度数;(3)如图3,在MAB ∠内作射线AQ ,使2MAQ QAB ∠=∠,以点C 为端点作射线CP ,交直线AQ 于点T ,当60CTA ∠=︒时,直接写出FCP ∠与ACP ∠的关系式.24.(12分)如图,平面直角坐标系中,(,0)A a ,(0,)B b ,(0,)C c ,4|2|0a b ++-=,1()2c a b =-.(1)求ABC ∆的面积;(2)如图2,点A 以每秒m 个单位的速度向下运动至A ',与此同时,点Q 从原点出发,以每秒2个单位的速度沿x 轴向右运动至Q ',3秒后,A '、C 、Q '在同一直线上,求m 的值; (3)如图3,点D 在线段AB 上,将点D 向右平移4个单位长度至E 点,若ACE ∆的面积等于14,求点D 坐标.2020-2021学年湖北省武汉市武昌区武珞路中学七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共10小题)1.(3分)如图所示,1∠和2∠是对顶角的图形是( )A .B .C .D .【解答】解:根据对顶角的意义,一个角的两条边分别是另一个角两边的反向延长线,这两个角是对顶角,只有图B 中的1∠和2∠是对顶角, 故选:B .2.(3分)下列实数中,无理数是( ) A .17B 7C .0.1010010001D 9【解答】解:A 、17是分数,属于有理数,故本选项不合题意; B 、7是无理数,故本选项符合题意;C 、0.1010010001是有限小数,属于有理数,故本选项不合题意;D 93,是整数,属于有理数,故本选项不合题意;故选:B .3.(3分)在平面直角坐标系中,在第三象限的点是( ) A .(3,5)-B .(1,2)-C .(2,3)--D .(1,1)【解答】解:A 、(3,5)-在第二象限,不符合题意;B 、(1,2)-在第四象限,不符合题意;C 、(2,3)--在第三象限,符合题意;D 、(1,1)在第一象限,不符合题意,故选:C.4.(3分)下列现象中,()是平移.A.“天问”探测器绕火星运动B.篮球在空中飞行C.电梯的上下移动D.将一张纸对折【解答】解:A.“天问”探测器绕火星运动不是平移;B.篮球在空中飞行不是平移;C.电梯的上下移动是平移;D.将一张纸对折不是平移;故选:C.5.(3分)如图,12∠等于()∠=∠,3112∠=︒,则4A.62︒B.68︒C.78︒D.112︒【解答】解:如图,∠=∠,2ABC12∠=∠,1ABC∴∠=∠,a b∴,//∴∠=∠=︒,DEF3112∴∠=︒-︒=︒,418011268故选:B.6.(3分)一个正方形的面积扩大为原来9倍,它的周长变为原来的()倍.A.2B.3C.9D.12【解答】解:一个正方形的面积扩大为原来9倍,∴它的边长扩大为原来的93=倍, ∴它的周长变为原来的3倍.故选:B .7.(3分)如图,货船A 与港口B 相距35海里,我们用有序数对(南偏西40︒,35海里)来描述货船B 相对港口A 的位置,那么港口A 相对货船B 的位置可描述为( )A .(南偏西50︒,35海里)B .(北偏西40︒,35海里)C .(北偏东50︒,35海里)D .(北偏东40︒,35海里)【解答】解:由题意知港口A 相对货船B 的位置可描述为(北偏东40︒,35海里), 故选:D .8.(3分)已知415m +的算术平方根是3,26n -的立方根是2-64(n m -= ) A .2B .2±C .4D .4±【解答】解:415m +的算术平方根是3, 4159m ∴+=,解得 1.5m =-,26n -的立方根是2-, 268n ∴-=-,解得53n =, ∴641064n m -+=.故选:C .9.(3分)下列命题:①同旁内角互补;②过一点有且只有一条直线与已知直线平行;③实数与数轴上的点一一对应;④2(4)4-=-;⑤负数有立方根,没有平方根.其中是真命题的个数是( ) A .1个B .2个C .3个D .4个【解答】解:①两直线平行,同旁内角互补,故本小题说法是假命题; ②过直线外一点有且只有一条直线与已知直线平行,故本小题说法是假命题; ③实数与数轴上的点一一对应,本小题说法是真命题;4=,故本小题说法是假命题;⑤负数有立方根,没有平方根,本小题说法是真命题; 故选:B .10.(3分)已知132T ==,276T ==,31312T =,n T ⋯=,其中n 为正整数.设123n n S T T T T =+++⋯+,则2021S 值是( )A .202120212022B .202120222022C .120212021D .120222021【解答】解:由1T 、2T 、3T ⋯的规律可得, 1311(1)22T ==+-, 27111()623T ==+-, 313111()1234T ==+-, ⋯⋯2021202120221111()2021202220212022T ⨯+==+-⨯,所以20211232021S T T T T =+++⋯+11111111(1)1()1()1()2233420212022=+-++-++-+⋯++-1111111(1111)(1)2233420212022=+++⋯++-+-+-+⋯+- 12021(1)2022=+- 202120212022=+ 202120212022=, 故选:A .二、填空题(每小题3分,共6小题) 11.(3分)36的平方根是 6± .【解答】解:36的平方根是6±,故答案为:6±.12.(3分)如图,要把河中的水引到农田P处,想要挖的水渠最短,我们可以过点P作PQ 垂直河边l,垂足为点Q,然后沿PQ开挖水渠,其依据是垂线段最短.【解答】解:要把河中的水引到农田P处,想要挖的水渠最短,我们可以过点P作PQ垂直河边l,垂足为点Q,然后沿PQ开挖水渠,这样做依据的几何学原理是垂线段最短,故答案为:垂线段最短.13.(3分)在平面直角坐标系中,点(5,3)P到y轴的距离是5.【解答】解:点(5,3)=,P到y轴的距离是|5|5故答案为:5.14.(3分)如图,直线AB和CD相交于O点,OM AB∠∠∠=,则AOD⊥,:1:3BOD COM的度数为157.5度.【解答】解:OM AB⊥,90∴∠=︒,BOM∴∠+∠=︒,BOD COM90∠∠=,BOD COM:1:3BOD∴∠=︒,22.5∠=︒,AOB180AOD AOB BOD∴∠=∠-∠=︒.157.5故答案为:157.5.15.(3分)如图a,已知长方形纸带ABCD,将纸带沿EF折叠后,点C、D分别落在H、∠=72︒.∠=︒,则GMNG的位置,再沿BC折叠成图b,若72DEF【解答】解://AD CB ,180EFC DEF ∴∠+∠=︒,EFB DEF ∠=∠,即18072108EFC ∠=︒-︒=︒,72EFB ∠=︒, 1087236BFH ∴∠=︒-︒=︒. 90H D ∠=∠=︒,180903654HMF ∴∠=︒-︒-︒=︒.由折叠可得:54NMF HMF ∠=∠=︒, 72GMN ∴∠=︒.故答案为:72.16.(3分)平面直角坐标系中,点(,)M x y ,(2,3)N x ky y kx --,7MN OM =,当点M 在y 轴正半轴上时,k = 72± .【解答】解:M 在y 轴正半轴上. 0x ∴=,0y >.OM y ∴=,(2,)N ky y -. |2|MN ky ∴=. |2|7ky y ∴=. 72k ∴=±. 故答案为:72±.三、解答题(共8个小题) 17.(8分)计算: (13258(23(31)|32|+. 【解答】解:(1)原式52=-3=;(2)原式32= 5=.18.(8分)解方程: (1)3254x =; (2)2(1)81x -=.【解答】解:(1)3254x =; 327x ∴=, 3x ∴=;(2)2(1)81x -=, 19x ∴-=±, 10x ∴=或8x =-.19.(8分)某正数的两个不同的平方根分别是12m -和34m -,求这个数的立方根. 【解答】解:根据题意得:12340m m -+-=, 解得:4m =,∴这个正数是2(412)64-=,4=.20.(8分)如图,180DEH EHG ∠+∠=︒,12∠=∠,C A ∠=∠,求证:AEH F ∠=∠. 证明:180DEH EHG ∠+∠=︒, //ED ∴ AC ( ).1(C ∴∠=∠ ).2∠= (两直线平行,内错角相等). 12∠=∠,C ∠= , A ∴∠= .//(AB DF ∴ ). (AEH F ∴∠=∠ ).【解答】证明:180DEH EHG ∠+∠=︒, //ED AC ∴(同旁内角互补,两直线平行). 1C ∴∠=∠(两直线平行,同位角相等). 2DGC ∠=∠(两直线平行,内错角相等). 12∠=∠,C A ∠=∠,A DGC ∴∠=∠.//AB DF ∴(同位角相等,两直线平行). AEH F ∴∠=∠(两直线平行,内错角相等). 故答案为:AC ;同旁内角互补,两直线平行;两直线平行,同位角相等;DGC ∠;1∠;A ∠,DGC ∠,同位角相等,两直线平行;两直线平行,内错角相等.21.(8分)在平面直角坐标系中,三角形ABC 的三个顶点分别是(2,0)A -,(0,5)B . (1)在所给的网格图中,画出这个平面直角坐标系;(2)将三角形ABC 平移得到三角形111A B C ,顶点A 、B 、C 分别对应顶点1A 、1B 、1C ,此时点1(3,7)B .①画出平移后的三角形111A B C ,点1C 的坐标为 (3,2) . ②请你描述三角形ABC 经过怎样的平移后得到三角形111A B C ? ③四边形11BB C C 的面积为 (直接写出).【解答】解:(1)如图,平面直角坐标系如图所示. (2)①如图,形111A B C 即为所,点1C 的坐标为(3,2), 故答案为:(3,2).②ABC ∆向右平移3个单位,再向上平移2个单位得到△111A B C .③四边形11BB C C 的面积11562232331522=⨯-⨯⨯⨯-⨯⨯⨯=.故答案为15.22.(10分)列方程解应用题小丽给了小明一张长方形的纸片,告诉他,纸片的长宽之比为3:2,纸片面积为2294cm . (1)请你帮小明求出纸片的周长.(2)小明想利用这张纸片裁出一张面积为217cm 的完整圆形纸片,他能够裁出想要的圆形纸片吗?请说明理由.(π取3.14) 【解答】解:(1)32294x x ⋅=, 26294x =, 249x =, 7x =,∴长方形的长33721x =⨯=(厘米),长方形的宽22714x =⨯=(厘米), ∴小明求出纸片的周长(2114)270=+⨯=(厘米).(2)设圆形纸片的半径为r ,217r π=,2 5.41r ≈, 2.34r ≈, 2 4.6814r =<,能够裁出想要的圆形纸片.23.(10分)如图,AB AK ⊥,点A 在直线MN 上,AB 、AK 分别与直线EF 交于点B 、C ,90MAB KCF ∠+∠=︒.(1)求证://EF MN ;(2)如图2,NAB ∠与ECK ∠的角平分线交于点G ,求G ∠的度数;(3)如图3,在MAB ∠内作射线AQ ,使2MAQ QAB ∠=∠,以点C 为端点作射线CP ,交直线AQ 于点T ,当60CTA ∠=︒时,直接写出FCP ∠与ACP ∠的关系式.【解答】(1)证明:如图1中,AB AK ⊥,90BAC ∴∠=︒, 90MAB CAN ∴∠+∠=︒, 90MAB KCF ∠+∠=︒, CAN KCF ∴∠=∠, //EF MN ∴.(2)解:如图2中,NAB ∠与ECK ∠的角平分线交于点G ,∴可以假设GCK GCB x ∠=∠=,GAC y ∠=,则90GAD GAN y ∠=∠=︒-,902CAN y ∴∠=︒-, //EF MN ,902KCF CAN y ∴∠=∠=︒-, 9022180y x ∴︒-+=︒, 45x y ∴-=︒,G GCK GAC x y ∠=∠-∠=-, 45G ∴∠=︒.(3)如图31-中,当点T 在QA 的延长线上时,设QAB x ∠=,则2MAQ x ∠=,设MN 交CP 于J .//EF MN ,260FCP AJC TAJ ATC x ∴∠=∠=∠+∠=+︒,180602(903)30ACP x x x ∴∠=︒-︒--︒-=︒+, 2FCP ACP ∴∠=∠,如图32-中,当点T 在AQ 上时,设QAB x ∠=,则2MAQ x ∠=,18060(90)30ACP x x ∠=︒-︒-︒+=︒-,30(180903)1204FCP ACP ACF x x x ∴∠=∠+∠=︒-+︒-︒-=︒-,903ACF x ∴∠=︒+,309031202FCP ACP ACF x x x ∠=∠+∠=︒-+︒+=︒+, 2180FCP ACP ∴∠+∠=︒.综上所述,2FCP ACP ∠=∠或2180FCP ACP ∠+∠=︒.24.(12分)如图,平面直角坐标系中,(,0)A a ,(0,)B b ,(0,)C c 4|2|0a b ++-=,1()2c a b =-.(1)求ABC ∆的面积;(2)如图2,点A 以每秒m 个单位的速度向下运动至A ',与此同时,点Q 从原点出发,以每秒2个单位的速度沿x 轴向右运动至Q ',3秒后,A '、C 、Q '在同一直线上,求m 的值; (3)如图3,点D 在线段AB 上,将点D 向右平移4个单位长度至E 点,若ACE ∆的面积等于14,求点D 坐标.【解答】解:(1)4|2|0a b ++-=40a +,|2|0b -,∴40a +.,|2|0b -=,4a ∴=-,2b =,1()32c a b ∴=-=-,(4,0)A ∴-,(0,2)B ,(3,0)C -, 5BC ∴=,4OA =,11541022ABC S BC OA ∆∴=⨯⨯=⨯⨯=;(2)由题意知:236OQ '=⨯=,3AA m '=, A Q ACQ OAA CO SSS ''''=+梯形,∴11110363(33)4222m m ⨯⨯=⨯⨯+⨯+⨯, 53m ∴=.(3)连接OD ,OE ,设(,)D m n ,AOB AOD DOB S S S ∆∆∆=+,∴1114242()222n m ⨯⨯=⨯⨯+⨯⨯-, 24m n ∴=-,点D 向右平移4个单位长度得到E 点, (2,)E n n ∴,AOC AOE COE ACE S S S S ∆∆∆∆++=,∴1114343214222n n ⨯⨯+⨯⨯+⨯⨯=, 85n ∴=, 4245m n ∴=-=-,4(5D ∴-,8)5.。
完整版七年级数学下册期中考试试卷及答案 - 百度文库
完整版七年级数学下册期中考试试卷及答案 - 百度文库 一、选择题 1.4的平方根是()A .2B .2±C .2D .2±2.下列图中的“笑脸”,是由上面教师寄语中的图像平移得到的是( )A .B .C .D . 3.在平面直角坐标系中有四个点()2,3A ,()2,3B -,()2,3C --,()2,3D -.其中在第一象限的点是( ).A .AB .BC .CD .D4.下列命题是假命题的是( )A .同位角相等,两直线平行B .三角形的一个外角等于与它不相邻的两个内角的和C .平行于同一条直线的两条直线平行D .平面内,到一个角两边距离相等的点在这个角的平分线上5.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD ,若//CD BE ,若1∠=α,则2∠的度数是( )A .3αB .1803α︒-C .4αD .1804︒-α 6.下列计算正确的是( ) A .93=± B .382-= C .2(7)5= D .222= 7.两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,DE 与AC 交于点M ,若//BC EF ,则DMC ∠的大小为( )A .95°B .105°C .115°D .125°8.如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2021次,点P 依次落在点P 1、P 2、P 3……P 2021的位置,由图可知P 1(1,1),P 2(2,0),P 3(2,0),P 4(3,1),则P 2021的坐标( )A .(2020,0)B .(2020,1)C .(2021,0)D .(2021,1)二、填空题9.若()2320a b -++=,则a b +=______.10.小明从镜子里看到对面电子钟的像如图所示,那么实际时间是_______.11.如图,BD 、CE 为△ABC 的两条角平分线,则图中∠1、∠2、∠A 之间的关系为___________.12.如图,BD 平分∠ABC ,ED ∥BC ,∠1=25°,则∠2=_____°,∠3=______°.13.如图,将一张长方形纸片沿EF 折叠后,点C ,D 分别落在C ',D 的位置,若65EFB ∠=︒,则AED '∠的度数为______.14.已知,a b 为两个连续的整数,且 15a b <<,则a b +=_______ 15.若点P (3,1)m m +-在x 轴上,则点P 的坐标为____.16.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (4,0),沿长方形BCDE 的边作环绕运动.物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以4个单位秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是___.三、解答题17.计算:(1)|﹣2|+(﹣3)2﹣4; (2)23252+-;(3)220183|3|27(4)(1)-+---+-.18.求下列各式中x 的值(1)2280x -=(2)()352125x -=-19.如图,C 、E 分别在AB 、DF 上,小华想知道∠ACE 和∠DEC 是否互补,但是他又没有带量角器,只带了一副三角尺,于是他想了这样一个办法:首先连接CF ,再找出CF 的中点O ,然后连接EO 并延长EO 和直线AB 相交于点B ,经过测量,他发现EO =BO ,因此他得出结论:∠ACE 和∠DEC 互补.请将小华的想法补充完整:∵CF 和BE 交于点O .∴COB EOF ∠=∠;( )而O 是CF 的中点,那么CO FO =,又已知EO BO =,∴COB FOE △≌△( ),∴BC EF =,(全等三角形对应边相等)∴BCO F ∠=∠,( )∴//AB DF ,( )∴ACE ∠和DEC ∠互补.( )20.在图所示的平面直角坐标系中表示下面各点:()0,3A ;()3,5B -;()3,5C --;()3,5D ;()5,7E ;(1)A 点到原点O 的距离是________;(2)将点B 向x 轴的负方向平移6个单位,则它与点________重合;(3)连接BD ,则直线BD 与y 轴是什么关系?(4)点E 分别到x 、y 轴的距离是多少?21.阅读下面文字,然后回答问题.给出定义:一个实数的整数部分是不大于这个数的最大数,这个实数的小数部分为这个数与它的整数部分的差的绝对值.例如:2.4的整数部分为2,小数部分为2.420.4-=2的整数部分为121表示;再如,﹣2.6的整数部分为﹣3,小数部分为()2.630.4---=2x y =+,其中x 是整数,且01y <<,那么1x =,21y =.(17a b +,其中a 是整数,且01b <<,那么a =______,b =_______; (2)如果7c d -+,其中c 是整数,且01d <<,那么c =______,d =______; (3)已知37m n =+,其中m 是整数,且01n <<,求m n -的值;(4)在上述条件下,求()a m a b d ++的立方根.22.(1)如图1,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______cm ;(2)若一个圆的面积与一个正方形的面积都是22πcm ,设圆的周长为C 圆.正方形的周长为C 正,则C 圆______C 正(填“=”,或“<”,或“>”)(3)如图2,若正方形的面积为2900cm ,李明同学想沿这块正方形边的方向裁出一块面积为2740cm 的长方形纸片,使它的长和宽之比为5:4,他能裁出吗?请说明理由?23.综合与实践背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.已知:AM∥CN,点B为平面内一点,AB⊥BC于B.问题解决:(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC=.【参考答案】一、选择题1.D解析:D【分析】依据平方根的定义、算术平方根的定义进行解答即可.【详解】解:∵42=,∴42故选D.【点睛】本题主要考查的是算术平方根、平方根的定义,熟练掌握相关概念是解题的关键.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.解:A 、B 、C 都不是由平移得到的,D 是由平移得到的.故选:D .【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都不是由平移得到的,D 是由平移得到的.故选:D .【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.A【分析】根据各象限内点的坐标特征解答即可.【详解】解:(2,3)A 在第一象限;(2,3)B -在第二象限;(2,3)C --在第三象限;(2,3)D -在第四象限;故选:A .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.4.D【分析】利用平行线的判定、三角形的外角的性质、角平分线的判定等知识分别判断后即可确定正确的选项.【详解】解:A 、同位角相等,两直线平行,正确,是真命题,不符合题意;B 、三角形的一个外角等于与它不相邻的两个内角的和,正确,是真命题,不符合题意;C 、平行于同一条直线的两条直线平行,正确,是真命题,不符合题意;D 、角的内部,到一个角两边距离相等的点在这个角的平分线上,故原命题错误,是假命题,符合题意;故选:D .考查了命题与定理的知识,解题的关键是了解平行线的判定、三角形的外角的性质、角平分线的判定等知识,难度不大.5.D【分析】由折叠的性质可知∠1=∠BAG,2∠BDC+∠2=180°,根据BE∥AG,得到∠CFB=∠CAG=2∠1,从而根据平行线的性质得到∠CDB=2∠1,则∠2=180°-4∠1.【详解】解:由题意得:AG∥BE∥CD,CF∥BD,∴∠CFB=∠CAG,∠CFB+∠DBF=180°,∠DBF+∠CDB=180°∴∠CFB=∠CDB∴∠CAG=∠CDB由折叠的性质得∠1=∠BAG,2∠BDC+∠2=180°∴∠CAG=∠CDB=∠1+∠BAG=2α∴∠2=180°-2∠BDC=180°-4α故选D.【点睛】本题主要考查了平行线的性质与折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.6.D【分析】根据算术平方根、立方根、二次根式的乘法逐项判断即可得.【详解】A93=,此项错误;B382-=-,此项错误;C、2=≠7(7)5D222==,此项正确;4故选:D.【点睛】本题考查了算术平方根、立方根、二次根式的乘法,熟练掌握算术平方根与立方根是解题关键.7.B根据BC ∥EF ,∠E =45°可以得到∠EDC =∠E =45°,然后根据C =30°,∠C +∠MDC +∠DMC =180°,即可求解.【详解】解:∵BC ∥EF ,∠E =45°∴∠EDC =∠E =45°,∵∠C =30°,∠C +∠MDC +∠DMC =180°,∴∠DMC =180°-∠C -∠MDC =105°,故选B.【点睛】本题主要考查了三角形的内角和定理,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.8.D【分析】观察规律可知,每4次翻折为一个循环,若的余数为0,则;若的余数为1,则;若的余数为2,则;若的余数为3,则;由此进行判断是在第505次循环完成后再翻折一次,那么横坐标即为.【详解】解析:D【分析】观察规律可知,每4次翻折为一个循环,若4n 的余数为0,则1n x n =-;若4n 的余数为1,则n x n =;若4n 的余数为2,则n x n =;若4n 的余数为3,则1n x n =-;由此进行判断2021P 是在第505次循环完成后再翻折一次,那么横坐标即为20212021x =.【详解】解:由题意得:P 1(1,1),P 2(2,0),P 3(2,0),P 4(3,1)P 5(5,1),P 6(6,0),P 7(6,0),P 8(7,1),……由此可以得出规律:每4次翻折为一个循环,若4n 的余数为0,则1n x n =-,n P (n -1,1);若4n 的余数为1,则n x n =,n P (n ,1);若4n 的余数为2,则n x n =,n P (n ,0);若4n 的余数为3,则1n x n =-,n P (n -1,0); ∵2021÷4=505余1,∴横坐标即为20212021x=,2021P(2021,1),故选D.【点睛】本题主要考查了坐标的规律,解题的关键在于能够准确地根据图形找到坐标的规律进行求解.二、填空题9.1【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,a-3=0,b+2=0,解得a=3,b= -2,所以3+(-2)=1.故答案为1.解析:1【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,a-3=0,b+2=0,解得a=3,b= -2,所以a b+=3+(-2)=1.故答案为1.【点睛】本题考查平方数非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.10.21:05.【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所解析:21:05.【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所以此时实际时刻为21:05.故答案为21:05【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.11.∠1+∠2-∠A=90°【分析】先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系.【详解】∵BD、C解析:∠1+∠2-32∠A=90°【分析】先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系.【详解】∵BD、CE为△ABC的两条角平分线,∴∠ABD=12∠ABC,∠ACE=12∠ACB,∵∠1=∠ACE+∠A,∠2=∠ABD+∠A ∴∠1+∠2=∠ACE+∠A+∠ABD+∠A=1 2∠ABC+12∠ACB+12∠A+32∠A=12(∠ABC+∠ACB+∠A)+32∠A=90°+32∠A故答案为∠1+∠2-32∠A=90°.【点睛】考查了三角形的内角和等于180°、外角与内角关系及角平分线的性质,是基础题.三角形的外角与内角间的关系:三角形的外角与它相邻的内角互补,等于与它不相邻的两个内角的和.12.50【分析】由两直线平行,内错角、同位角分别相等可得出∠2=∠DBC,∠3=∠ABC=∠1+∠DBC,又由BD平分∠ABC得出∠DBC=∠1=25°,利用等价替换法分别求出∠2和∠3即可解析:50由两直线平行,内错角、同位角分别相等可得出∠2=∠DBC,∠3=∠ABC=∠1+∠DBC,又由BD平分∠ABC得出∠DBC=∠1=25°,利用等价替换法分别求出∠2和∠3即可.【详解】解:∵BD平分∠ABC,∴∠DBC=∠1=25°;又∵ED∥BC,∴∠2=∠DBC=25°,∠3=∠ABC=∠1+∠DBC=50°.故答案为:25、50.【点睛】本题考查了平行线的性质:两直线平行,内错角相等,同位角相等,解题过程中采用了等量代换的方法.13.50°【分析】先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论.【详解】解:∵AD∥BC,∠EFB=65°,∴∠DEF=65°,解析:50°【分析】先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论.【详解】解:∵AD∥BC,∠EFB=65°,∴∠DEF=65°,又∵∠DEF=∠D′EF,∴∠D′EF=65°,∴∠AED′=50°.故答案是:50°.【点睛】本题考查的是折叠的性质以及平行线的性质,用到的知识点为:两直线平行,内错角相等.14.7【分析】由无理数的估算,先求出a、b的值,再进行计算即可.【详解】∴,∵、为两个连续的整数,,∴,,∴;故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确解析:7【分析】由无理数的估算,先求出a、b的值,再进行计算即可.【详解】解:∵∴34<,∵a、b为两个连续的整数,a b<,b=,∴3a=,4a b+=+=;∴347故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确求出a、b的值,从而进行解题.15.(4,0).【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】∵点P(m+3,m-1)在x轴上,∴m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P的坐解析:(4,0).【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】∵点P(m+3,m-1)在x轴上,∴m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P 的坐标为(4,0).故答案为:(4,0).【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关键.16.【分析】利用行程问题中的相遇问题,根据矩形的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.【详解】解:矩形的周长为,所以,第一次相遇的时间为秒,此时,解析:(2,2)--【分析】利用行程问题中的相遇问题,根据矩形的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.【详解】解:矩形的周长为2(84)24⨯+=,所以,第一次相遇的时间为24(24)4÷+=秒,此时,甲走过的路程为428⨯=,相遇坐标为(2,2)-,第二次相遇又用时间为428⨯=(秒),甲又走过的路程为8216⨯=,相遇坐标为(2,2)--,∵3824=÷,∴第3次相遇时在点A 处,则以后3的倍数次相遇都在点A 处,∵202136732,∴第2021次相遇地点与第2次相遇地点的相同,∴第2021次相遇地点的坐标为(2,2)--.故填:(2,2)--.【点睛】此题主要考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题,解本题的关键是找出规律每相遇三次,甲乙两物体回到出发点.三、解答题17.(1)9;(2)-;(3)-3.【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式=2+9﹣2=9,(2)原式=(1+3﹣5) =﹣ ,(3)原式=3﹣3﹣4解析:【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式=2+9﹣2=9,(2)原式=(1+3﹣5,(3)原式=3﹣3﹣4+1=﹣3.【点睛】本题考查了实数的运算,熟练掌握相关运算法则是解题关键.18.(1);(2)【分析】(1)先移项,再根据平方根的性质开平方即可得;(2)方程变形后,再根据立方根的性质开立方可得关于x 的方程,解之可得.【详解】解:(1)∴即(2)解得,解析:(1)122,2x x ==-;(2)35x =- 【分析】(1)先移项,再根据平方根的性质开平方即可得;(2)方程变形后,再根据立方根的性质开立方可得关于x 的方程,解之可得.【详解】解:(1)2280x -=22=8x2=4x∴2x =±即122,2x x ==-(2)()352125x -=- 525x -=- 解得,35x =- 【点睛】本题考查了立方根,平方根,解题的关键是熟练掌握平方根与立方根的性质.19.对顶角相等;SAS ;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】由“SAS”可证△COB ≌△FOE ,可得∠BCO=∠F ,可证AB ∥DF ,可得结论.【详解】解析:对顶角相等;SAS ;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】由“SAS ”可证△COB ≌△FOE ,可得∠BCO =∠F ,可证AB ∥DF ,可得结论.【详解】解:∵CF 和BE 相交于点O ,∴∠COB =∠EOF ;(对顶角相等),而O 是CF 的中点,那么CO =FO ,又已知EO =BO ,∴△COB ≌△FOE (SAS ),∴BC =EF ,(全等三角形对应边相等),∴∠BCO =∠F ,(全等三角形的对应角相等),∴AB ∥DF ,(内错角相等,两直线平行),∴∠ACE 和∠DEC 互补.(两直线平行,同旁内角互补),故答案为:对顶角相等;SAS ;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补.【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,掌握全等三角形的判定定理是解题的关键.20.(1)3;(2)C ;(3)平行;(4)7,5【分析】先在平面直角坐标中描点.(1)根据两点的距离公式可得A 点到原点O 的距离;(2)找到点B 向x 轴的负方向平移6个单位的点即为所求;(3)横坐解析:(1)3;(2)C ;(3)平行;(4)7,5【分析】先在平面直角坐标中描点.(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点B向x轴的负方向平移6个单位的点即为所求;(3)横坐标相同的两点所在的直线与y轴平行;(4)点E分别到x、y轴的距离分别等于纵坐标和横坐标的绝对值.【详解】解:(1)∵A(0,3),∴A点到原点O的距离是3;(2)将点B向x轴的负方向平移6个单位,则坐标为(-3,-5),与点C重合;(3)如图,BD与y轴平行;(4)∵E(5,7),∴点E到x轴的距离是7,到y轴的距离是5.【点睛】本题考查了平面内点的坐标的概念、平移时点的坐标变化规律,及坐标轴上两点的距离公式.本题是综合题型,但难度不大.21.(1)2,;(2)﹣3,;(3);(4)3【分析】(1)先估算的大小,再依据定义分别取整数部分和小数部分即可;(2)先估算的大小,再依据定义分别取整数部分和小数部分即可;(3)先估算的大小,解析:(1)272;(2)﹣3,373)774)3【分析】(17(2)先估算7-的大小,再依据定义分别取整数部分和小数部分即可;(3)先估算37的大小,分别求得,m n的值,再代入绝对值中计算即可;(4)根据前三问的结果,代入代数式求值,最后求立方根即可.【详解】(1)∴23<,a b =+,2,2a b ∴==,故答案为:22,;(2)23<32∴-<<-, 7c d -=+,3,(3)3c d ∴=-=-=故答案为:﹣3,3;(3)23<,536∴<+,3m n =+,∴5,352m n ==,∴5m =,2n =,∴)527m n -=-=(4)5,2,2,3m a b d ====∴()2522327a m a b d ++=+⨯+=, 27的立方根为3,即()a m a b d ++的立方根为3.【点睛】本题考查了实数的运算,无理数的估算,绝对值计算,立方根,理解题意是解题的关键. 22.(1);(2)<;(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的解析:(12)<;(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,设大正方形的边长为x cm ,∴22x = , ∴x∴;(2)设圆的半径为r ,∴由题意得22r ππ=, ∴r = ∴=22C r π=圆设正方形的边长为a∵22a π=, ∴a∴=4C a =正∴1C C ===<圆正 故答案为:<;(3)解:不能裁剪出,理由如下:∵正方形的面积为900cm 2,∴正方形的边长为30cm∵长方形纸片的长和宽之比为5:4,∴设长方形纸片的长为5x ,宽为4x ,则54740x x ⋅=,整理得:237x =,∴22(5)252537925900x x ==⨯=>,∴22(5)30x >,∴530x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.23.(1);(2)见解析;(3)105°【分析】(1)通过平行线性质和直角三角形内角关系即可求解.(2)过点B 作BG ∥DM ,根据平行线找角的联系即可求解. (3)利用(2)的结论,结合角平分线性质解析:(1)90A C ∠+∠=︒;(2)见解析;(3)105°【分析】(1)通过平行线性质和直角三角形内角关系即可求解. (2)过点B 作BG ∥DM ,根据平行线找角的联系即可求解. (3)利用(2)的结论,结合角平分线性质即可求解.【详解】解:(1)如图1,设AM 与BC 交于点O ,∵AM ∥CN ,∴∠C =∠AOB ,∵AB ⊥BC ,∴∠ABC =90°,∴∠A +∠AOB =90°,∠A +∠C =90°,故答案为:∠A +∠C =90°;(2)证明:如图2,过点B 作BG ∥DM ,∵BD ⊥AM ,∴DB ⊥BG ,∴∠DBG =90°,∴∠ABD +∠ABG =90°,∵AB ⊥BC ,∴∠CBG +∠ABG =90°,∴∠ABD =∠CBG ,∵AM ∥CN ,∴∠C =∠CBG ,∴∠ABD =∠C ;(3)如图3,过点B 作BG ∥DM ,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案为:105°.【点睛】本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键.。
武珞路中学2018-2019学年七年级下期中数学试卷含答案解析
2018-2019学年湖北省武珞路中学七年级(下)期中数学模拟试卷一、选择题1.在3.14,,,,π,2.01001000100001这六个数中,无理数有()A.1个B.2个C.3个D.4个2.如图,哪一个选项的右边图形可由左边图形平移得到()A.B.C.D.3.计算的结果为()A.3 B.﹣3 C.±3 D.4.54.下列各点中在过点(﹣3,2)和(﹣3,4)的直线上的是()A.(﹣3,0)B.(0,﹣3)C.(3,2) D.(5,4)5.若y轴上的点A到x轴的距离为3,则点A的坐标为()A.(3,0) B.(3,0)或(﹣3,0) C.(0,3) D.(0,3)或(0,﹣3)6.线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(2,9) B.(5,3) C.(1,2) D.(﹣9,﹣4)7.下列各式正确的是()A.|a﹣b|=|b﹣a| B.a>﹣aC.|﹣2|=﹣2D.a2>0(a为任一实数)8.下列命题正确的是()A.三条直线两两相交有三个交点B.在平面内,过一点有且只有一条直线与已知直线平行C.同旁内角互补D.直线外一点与直线上所有点的连线段中,垂线段最短9.如图,将一张长方形纸条折叠,如果∠1=130°,则∠2=()A.100°B.130°C.150°D.80°10.如图,已知四边形ABCD中,AD∥BC,∠A=∠BCD=∠ABD,DE平分∠ADB,下列说法:①AB∥CD;②ED⊥CD;③∠DFC=∠ADC﹣∠DCE;④S△EDF=S△BCF,其中正确的结论是()A.①②③ B.①②④ C.①③④ D.①②③④二、填空题11.点(﹣2,3)在第象限;=;的平方根为.12.若一个数的平方根就是它本身,则这个数是.13.一个圆的面积为2π cm2,则它的周长为cm(用含π的式子表示)14.点A(﹣1,4)向右平移2个单位后,再向上平移1个单位,得A1,则A1点的坐标为.15.如图,直线AB、CD交于点O,EO⊥AB,垂足为O,∠EOC=35°,则∠AOD=度.16.如图,已知A(0,﹣4)、B(3,﹣4),C为第四象限内一点且∠AOC=70°,若∠CAB=20°,则∠OCA=.三、解答题(共72分)17.计算:(1)(2).18.解方程:(1)3(x﹣2)2=27(2)2(x﹣1)3+16=0.19.如图,直线AB、CD相交于O点,∠AOC与∠AOD的度数比为4:5,OE⊥AB,OF平分∠DOB,求∠EOF的度数.20.如图,△ABC中,A(﹣2,1)、B(﹣4,﹣2)、C(﹣1,﹣3),△A′B′C′是△ABC平移之后得到的图象,并且C的对应点C′的坐标为(4,1)(1)A′、B′两点的坐标分别为A′、B′;(2)作出△ABC平移之后的图形△A′B′C′;(3)求△A′B′C′的面积.21.如图,平面直角坐标系中,C(0,5)、D(a,5)(a>0),A、B在x轴上,∠1=∠D,请写出∠ACB和∠BED数量关系以及证明.22.根据下表回答问题:(1)272.25的平方根是(2)=,=,=(3)设的整数部分为a,求﹣4a的立方根.23.如图,平面直角坐标系中,A(﹣3,﹣2)、B(﹣1,﹣4)(1)直接写出:S△OAB=;(2)延长AB交y轴于P点,求P点坐标;(3)Q点在y轴上,以A、B、O、Q为顶点的四边形面积为6,求Q点坐标.24.如图1,在平面直角坐标系中,点A、B、C、D均在坐标轴上,AB∥CD(1)求证:∠ABO+∠CDO=90°;(2)如图2,BM平分∠ABO交x轴于点M,DN平分∠CDO交y轴于点N,求∠BMO+∠OND;(3)如图3,延长CD到Q,使CQ=AB,连AQ交y轴于K,若A(﹣4,0)、B(0,3)、C(0,a)(﹣3<a<0),求的值.2018-2019学年湖北省武珞路中学七年级(下)期中数学模拟试卷参考答案与试题解析一、选择题1.在3.14,,,,π,2.01001000100001这六个数中,无理数有()A.1个B.2个C.3个D.4个【考点】计算器—数的开方.【分析】无理数是指无限不循环小数,包括三方面的数:①含π的,②一些有规律的数,③开方开不尽的数,根据以上内容判断即可.【解答】解:无理数有﹣,π,共2个,故选:B.【点评】本题考查了对无理数的定义的理解和运用,注意:无理数是指无限不循环小数,包括三方面的数:①含π的,②一些有规律的数,③开方开不尽的数.2.如图,哪一个选项的右边图形可由左边图形平移得到()A.B.C.D.【考点】生活中的平移现象.【分析】根据平移的性质作答.【解答】解:观察图形可知C中的图形是平移得到的.故选C.【点评】本题考查图形的平移变换.图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.3.计算的结果为()A.3 B.﹣3 C.±3 D.4.5【考点】算术平方根.【分析】此题只需要根据平方根的定义,对9开平方取正根即可.【解答】解:=3.故选A.【点评】本题考查了算术平方根的运算,比较简单.4.下列各点中在过点(﹣3,2)和(﹣3,4)的直线上的是()A.(﹣3,0)B.(0,﹣3)C.(3,2) D.(5,4)【考点】一次函数图象上点的坐标特征.【分析】先根据两点的坐标得出解析式x=﹣3,再把各个点代入解析式,看看左右两边是否相等即可.【解答】解:根据题意可得解析式为x=﹣3,所以把x=﹣3,y=0代入,符合解析式,故选A.【点评】此题考查函数的点的坐标,关键是根据两点坐标得出解析式,再解答.5.若y轴上的点A到x轴的距离为3,则点A的坐标为()A.(3,0) B.(3,0)或(﹣3,0) C.(0,3) D.(0,3)或(0,﹣3)【考点】点的坐标.【分析】分点在y轴正半轴和负半轴两种情况讨论求解.【解答】解:若点A在y轴正半轴,则A(0,3),若点A在y轴负半轴,则A(0,﹣3),所以,点A的坐标为(0,3)或(0,﹣3).故选D.【点评】本题考查了点的坐标,主要利用了y轴上点的坐标特征,难点在于要分情况讨论.6.线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(2,9) B.(5,3) C.(1,2) D.(﹣9,﹣4)【考点】坐标与图形变化-平移.【专题】动点型.【分析】直接利用平移中点的变化规律求解即可.【解答】解:平移中,对应点的对应坐标的差相等,设D的坐标为(x,y);根据题意:有4﹣(﹣1)=x﹣(﹣4);7﹣4=y﹣(﹣1),解可得:x=1,y=2;故D的坐标为(1,2).故选:C.【点评】本题考查点坐标的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中,对应点的对应坐标的差相等.7.下列各式正确的是()A.|a﹣b|=|b﹣a| B.a>﹣aC.|﹣2|=﹣2D.a2>0(a为任一实数)【考点】实数的性质;绝对值;非负数的性质:偶次方.【分析】根据绝对值的性质,实数的性质,即可解答.【解答】解:A、正确;B、当a=0时,a=﹣a,故错误;C、,故错误;D、当a=0时,a2=0,故错误;故选:A.【点评】本题考查了实数的性质,解决本题的关键是熟记实数的性质.8.下列命题正确的是()A.三条直线两两相交有三个交点B.在平面内,过一点有且只有一条直线与已知直线平行C.同旁内角互补D.直线外一点与直线上所有点的连线段中,垂线段最短【考点】命题与定理.【分析】由于三条直线可相交于同一点,则可对A进行判断;根据在平面内,过直线外一点有且只有一条直线与已知直线平行,则可对B进行判断;根据平行线性质对C进行判断;根据垂线段性质对D进行判断.【解答】解:A、三条直线两两相交有一个或三个交点,所以A选项错误;B、在平面内,过直线外一点有且只有一条直线与已知直线平行,所以B选项错误;C、两直线平行,同旁内角互补,所以C选项错误;D、直线外一点与直线上所有点的连线段中,垂线段最段,所以D选项正确.故选D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.如图,将一张长方形纸条折叠,如果∠1=130°,则∠2=()A.100°B.130°C.150°D.80°【考点】平行线的性质;翻折变换(折叠问题).【专题】计算题.【分析】根据平行线的性质,由c∥d得到∠3=180°﹣∠1=50°,再根据折叠性质得∠3=∠4=50°,然后根据平行线的性质得到∠2=∠3+∠4=100°.【解答】解:如图,∵c∥d,∴∠3+∠1=180°,∴∠3=180°﹣130°=50°,根据折叠性质得∠3=∠4=50°,∵a∥b,∴∠2=∠3+∠4=100°.故选A.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了折叠的性质.10.如图,已知四边形ABCD中,AD∥BC,∠A=∠BCD=∠ABD,DE平分∠ADB,下列说法:①AB∥CD;②ED⊥CD;③∠DFC=∠ADC﹣∠DCE;④S△EDF=S△BCF,其中正确的结论是()A.①②③ B.①②④ C.①③④ D.①②③④【考点】平行线的判定与性质.【分析】①根据平行线性质求出∠ABC=∠ADC,得出平行四边形ABCD,即可推出AB∥CD;②根据等腰三角形性质求出DE⊥AB,然后根据平行线的性质即可推出DE⊥CD;③由∠A=∠ABD,四边形ABCD是平行四边形,可得AD=BD=BC,进而由等边对等角可得:∠BDC=∠BCD,然后由AD∥BC,可得∠ADB=∠DBC,然后由角的和差计算及等量代换可得:∠ADC﹣∠DCE=∠DBC+∠BCF,然后根据外角的性质可得:∠DFC=∠DBC+BCF,进而可得:∠DFC=∠ADC﹣∠DCE;④根据等底等高的三角形面积相等即可推出S△EDF=S△BCF.【解答】解:∵AD∥BC,∴∠A+∠ABC=180°,∠ADC+∠BCD=180°,∵∠A=∠BCD,∴∠ABC=∠ADC,∵∠A=∠BCD,∴四边形ABCD是平行四边形,∴AB∥CD,∵∠A=∠ABD,DE平分∠ADB,∴DE⊥AB,∴DE⊥CD,∵∠A=∠ABD,四边形ABCD是平行四边形,∴AD=BD=BC,∴∠BDC=∠BCD,∵AD∥BC,∴∠ADB=∠DBC,∵∠ADC=∠ADB+∠BDC,∴∠ADC=∠DBC+∠BCD,∴∠ADC﹣∠DCE=∠DBC+∠BCD﹣∠DCE=∠DBC+∠BCF,∵∠DFC=∠DBC+BCF,∴∠DFC=∠ADC﹣∠DCE;∵AB∥CD,∴△BED的边BE上的高和△EBC的边BE上的高相等,∴由三角形面积公式得:S△BED=S△EBC,都减去△EFB的面积得:S△EDF=S△BCF,∴①②③④都正确,故选D.【点评】本题考查了平行四边形的性质和判定,平行线性质,等腰三角形的性质,三角形的面积的应用,关键是推出AB∥CD.二、填空题11.点(﹣2,3)在第二象限;=﹣0.1;的平方根为±.【考点】点的坐标;平方根;立方根.【分析】根据第二象限内的点的横坐标小于零,纵坐标大于零,可得答案;根据开立方运算,可得答案;根据开平方运算,可得答案.【解答】解:点(﹣2,3)在第二象限;=﹣0.1;的平方根为±,故答案为:二,﹣0.1,±.【点评】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.若一个数的平方根就是它本身,则这个数是0.【考点】平方根.【专题】常规题型.【分析】根据平方根的性质进行解答.【解答】解:∵一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根,∴若一个数的平方根就是它本身,则这个数是0.故答案为:0.【点评】本题主要考查了平方根的性质,熟记一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根是解题的关键.13.一个圆的面积为2π cm2,则它的周长为2πcm(用含π的式子表示)【考点】算术平方根.【分析】首先根据圆的面积公式,求出圆的半径是多少;然后根据圆的周长公式,求出这个圆的周长为多少即可.【解答】解:设圆的半径是rcm,则πr2=2π,解得r=,所以它的周长为:2=2π(cm).故答案为:2.【点评】(1)此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.(2)此题还考查了圆的周长和面积的求法,要熟练掌握,解答此题的关键是求出圆的半径是多少.14.点A(﹣1,4)向右平移2个单位后,再向上平移1个单位,得A1,则A1点的坐标为(1,5).【考点】坐标与图形变化-平移.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减进行计算.【解答】解:点A(﹣1,4)向右平移2个单位后,再向上平移1个单位,得A1,则A1点的坐标为(﹣1+2,4+1),即(1,5),故答案为:(1,5).【点评】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.15.如图,直线AB、CD交于点O,EO⊥AB,垂足为O,∠EOC=35°,则∠AOD=125度.【考点】垂线;对顶角、邻补角.【分析】根据图形求得∠COB=∠COE+∠BOE=125°;然后由对顶角相等的性质来求∠AOD的度数.【解答】解:∵EO⊥AB,∴∠EOB=90°.又∵∠COE=35°,∴∠COB=∠COE+∠BOE=125°.∵∠AOD=∠COB(对顶角相等),∴∠AOD=125°,故答案为:125.【点评】本题考查了垂线,对顶角、邻补角等知识点.求∠AOD的度数时,也可以利用邻补角的定义先求得∠BOD=55°,再由邻补角的定义求∠AOD的度数.16.如图,已知A(0,﹣4)、B(3,﹣4),C为第四象限内一点且∠AOC=70°,若∠CAB=20°,则∠OCA=40°.【考点】坐标与图形性质.【专题】数形结合.【分析】如图,过点C作CD∥x轴,先利用A点和B点坐标可判断AB∥x轴,则CD∥AB,于是根据平行线的性质可得∠DCO=∠COX=20°,∠DCA=∠CAB=20°,所以∠OCA=40°.【解答】解:如图,过点C作CD∥x轴,∵∠AOC=70°,∴∠COx=20°,∵A(0,﹣4)、B(3,﹣4),∴AB∥x轴,∴CD∥AB,∴∠DCO=∠COX=20°,∠DCA=∠CAB=20°,∴∠OCA=40°.故答案为40°.【点评】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系.也考查了平行线的性质.三、解答题(共72分)17.计算:(1)(2).【考点】实数的运算.【专题】计算题.【分析】(1)原式利用立方根及平方根定义计算即可得到结果;(2)原式利用绝对值的代数意义,以及立方根定义计算即可得到结果.【解答】解:(1)原式=﹣+1.5=0.25;(2)原式=2﹣2﹣2+﹣4=3﹣8.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解方程:(1)3(x﹣2)2=27(2)2(x﹣1)3+16=0.【考点】立方根;平方根.【分析】根据平方根、立方根的定义,即可解答.【解答】解:(1)3(x﹣2)2=27,∴(x﹣2)2=9,∴x﹣2=±3,∴x=5或﹣1.(2)2(x﹣1)3+16=0.2(x﹣1)3=﹣16,(x﹣1)3=﹣8,x﹣1=﹣2,∴x=﹣1.【点评】本题主要考查了求一个数的立方根、平方根,解题时应先找出所要求的这个数是哪一个数的立方,由开立方和立方是互逆运算,用立方的方法求这个数的立方根,注意一个数的立方根与原数的性质符号相同.19.如图,直线AB、CD相交于O点,∠AOC与∠AOD的度数比为4:5,OE⊥AB,OF平分∠DOB,求∠EOF的度数.【考点】垂线;角的计算;对顶角、邻补角.【专题】计算题.【分析】设∠AOC=4x,则∠AOD=5x,根据邻补角的定义得到∠AOC+∠AOD=180°,即4x+5x=180°,解得x=20°,则∠AOC=4x=80°,利用对顶角相等得∠BOD=80°,由OE⊥AB得到∠BOE=90°,则∠DOE=∠BOE﹣∠BOD=10°,再根据角平分线的定义得到∠DOF=∠BOD=40°,利用∠EOF=∠EOD+∠DOF即可得到∠EOF的度数.【解答】解:设∠AOC=4x,则∠AOD=5x,∵∠AOC+∠AOD=180°,∴4x+5x=180°,解得x=20°,∴∠AOC=4x=80°,∴∠BOD=80°,∵OE⊥AB,∴∠BOE=90°,∴∠DOE=∠BOE﹣∠BOD=10°,又∵OF平分∠DOB,∴∠DOF=∠BOD=40°,∴∠EOF=∠EOD+∠DOF=10°+40°=50°.【点评】本题考查了垂线的性质:两直线垂直,则它们相交所成的角为90°.也考查了对顶角相等以及邻补角的定义.20.如图,△ABC中,A(﹣2,1)、B(﹣4,﹣2)、C(﹣1,﹣3),△A′B′C′是△ABC平移之后得到的图象,并且C的对应点C′的坐标为(4,1)(1)A′、B′两点的坐标分别为A′(3,5)、B′(1,2);(2)作出△ABC平移之后的图形△A′B′C′;(3)求△A′B′C′的面积.【考点】作图-平移变换.【分析】(1)由点C(﹣1,﹣3)与点C′(4,1)是对应点,得出平移规律为:向右平移5个单位,向上平移4个单位,按平移规律即可写出所求的点的坐标;(2)按平移规律作出A、B的对应点A′,B′,顺次连接A′、B′、C′,即可得到△A′B′C′;(3)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积即可求解.【解答】解:(1)∵△A′B′C′是△ABC平移之后得到的图象,并且C(﹣1,﹣3)的对应点C′的坐标为(4,1),∴平移前后对应点的横坐标加5,纵坐标加4,∴△ABC先向右平移5个单位,再向上平移4个单位得到△A′B′C′,∵A(﹣2,1),B(﹣4,﹣2),∴A′(3,5)、B′(1,2);(2)△A′B′C′如图所示;(3)S△A′B′C′=4×3﹣×3×1﹣×3×2﹣×1×4=12﹣1.5﹣3﹣2=5.5.故答案为(3,5),(1,2).【点评】本题考查了作图﹣平移变换,平移的规律,三角形的面积,准确找出对应点的位置是解题的关键,格点中的三角形的面积通常整理为长方形的面积与几个三角形的面积的差.21.如图,平面直角坐标系中,C(0,5)、D(a,5)(a>0),A、B在x轴上,∠1=∠D,请写出∠ACB和∠BED数量关系以及证明.【考点】平行线的判定与性质;坐标与图形性质.【分析】先由C点、D点的纵坐标相等,可得CD∥x轴,即CD∥AB,然后由两直线平行同旁内角互补,可得:∠1+∠ACD=180°,然后根据等量代换可得:∠D+∠ACD=180°,然后根据同旁内角互补两直线平行,可得AC∥DE,然后由两直线平行内错角相等,可得:∠ACB=∠DEC,然后由平角的定义,可得:∠DEC+∠BED=180°,进而可得:∠ACB+∠BED=180°.【解答】解:∠ACB+∠BED=180°.理由:∵C(0,5)、D(a,5)(a>0),∴CD∥x轴,即CD∥AB,∴∠1+∠ACD=180°,∵∠1=∠D,∴∠D+∠ACD=180°,∴AC∥DE,∴∠ACB=∠DEC,∵∠DEC+∠BED=180°,∴∠ACB+∠BED=180°.【点评】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,另外由C点、D点的纵坐标相等,可得CD∥x轴,也是解题的关键.22.根据下表回答问题:(1)272.25的平方根是±16.5(2)=16.1,=167,= 1.62(3)设的整数部分为a,求﹣4a的立方根.【考点】算术平方根;平方根;估算无理数的大小.【专题】规律型.【分析】(1)根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,即可求出结果;(2)根据图表和算术平均数的定义即可得出答案;(3)根据题意先求出a的值,再求出﹣4a的值,然后根据立方根的定义即可得出答案.【解答】解:(1)272.25的平方根是:±16.5;故答案为:±16.5;(2)=16.1;=167;=1.62;故答案为:16.1,167,1.62;(3)∵<,∴16<<17,∴a=16,﹣4a=﹣64,∴﹣4a的立方根为﹣4.【点评】此题考查了算术平均数,掌握算术平方根的定义是本题的关键;算术平方根的概念易与平方根的概念混淆而导致错误.23.如图,平面直角坐标系中,A(﹣3,﹣2)、B(﹣1,﹣4)(1)直接写出:S△OAB=5;(2)延长AB交y轴于P点,求P点坐标;(3)Q点在y轴上,以A、B、O、Q为顶点的四边形面积为6,求Q点坐标.【考点】坐标与图形性质;三角形的面积.【专题】计算题.【分析】(1)延长AB交y轴于P点,如图,利用待定系数法求出直线AB的解析式为y=﹣x﹣5,则得到P(0,﹣5),然后根据三角形面积公式和利用S△OAB=S△AOP﹣S△OBP进行计算即可;(2)由(1)得到P点的坐标;=S△AOB+S△AOQ得到S△AOQ=1,再根(3)分类讨论:当Q在y轴的正半轴上时,利用S四边形ABOQ据三角形面积公式求出OQ.从而得到Q点坐标;当Q在y轴的负半轴上时,利用S四边形ABOQ=S△AOB+S△BOQ得到S△BOQ=1,再根据三角形面积公式求出OQ.从而得到Q点坐标.【解答】解:(1)延长AB交y轴于P点,如图,设直线AB的解析式为y=kx+b,把A(﹣3,﹣2)、B(﹣1,﹣4)代入得,解得.所以直线AB的解析式为y=﹣x﹣5,当x=0时,y=﹣x﹣5=﹣5,则P(0,﹣5),所以S△OAB=S△AOP﹣S△OBP=×5×3﹣×5×1=5.故答案为5;(2)由(1)得到P点的坐标为(0,﹣5);=S△AOB+S△AOQ,(3)当Q在y轴的正半轴上时,∵S四边形ABOQ∴S△AOQ=6﹣5=1,∴×3×OQ=1,解得OQ=.则此时Q点的坐标为(0,);当Q在y轴的负半轴上时,=S△AOB+S△BOQ,∵S四边形ABOQ∴S△BOQ=1,∴S△AOQ=6﹣5=1,∴×1×OQ=1,解得OQ=2,则此时Q点的坐标为(0,﹣2),即Q点坐标为(0,)或(0,﹣2).【点评】本题考查了坐标与图形性质:利用点的坐标求相应线段的长和判断线段与坐标轴的位置关系.也考查了三角形面积公式.第(3)问要分类讨论.24.如图1,在平面直角坐标系中,点A、B、C、D均在坐标轴上,AB∥CD(1)求证:∠ABO+∠CDO=90°;(2)如图2,BM平分∠ABO交x轴于点M,DN平分∠CDO交y轴于点N,求∠BMO+∠OND;(3)如图3,延长CD到Q,使CQ=AB,连AQ交y轴于K,若A(﹣4,0)、B(0,3)、C(0,a)(﹣3<a<0),求的值.【考点】三角形内角和定理;坐标与图形性质;平行线的性质;三角形的外角性质;平移的性质.【分析】(1)根据平行线的判定和性质证明即可;(2)根据左边角的和等于右边角的和解答即可;(3)根据平移性质和三角形面积公式进行解答.【解答】证明:(1)过点O作OE∥AB,∵AB∥CD,∴OE∥CD(平行公理的推论),∴∠ABO=∠BOE,∠CDO=∠DOE,∴∠ABO+∠CDO=∠BOE+∠DOE=∠BOD=90°;第21页(共21页)(2)“猪蹄模型”中左边角的和等于右边角的和,即∠ABM+∠ODN=∠CDN+∠OBM ,设∠ABM=∠OBM=x ,∠ODN=∠CDN=y ,∴x+y=(∠ABO+∠CDO )=45°,∴∠BMO+∠OND=x+y+90°=135°,(3)线段CQ 可看作是由线段AB 平移得到,∵A (﹣4,0)→C (0,a ),∴B (0,3)→D (4,3+a ),设K 点的坐标为(0,y ),S △AOQ =×4×(3+a )=2(3+a ),S △AOK =2y ,S △QOK =2y ,由S △AOQ =S △AOK +S △QOK ,∴2y+2y=2(3+a ),解得y=, ∴BK=3﹣=,OK=,OC=﹣a ,∴=1. 【点评】此题考查三角形的内角和定理,关键是根据三角形的内角和定理和平行线的判定以及性质进行解答.。
(完整版)七年级数学下册期中试卷及答案 - 百度文库
(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.一个有理数的平方等于36,则这个数是()A .6B .6或6-C .36D .6-2.下列车标,可看作图案的某一部分经过平移所形成的是( )A .B .C .D . 3.点()3,5A -在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题:①两条直线相交,若对顶角互补,则这两条直线互相垂直;②两条直线被第三条直线所截,内错角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④经过直线外一点,有且只有一条直线与已知直线平行.其中是真命题的个数是( )A .1B .2C .3D .45.如图,//CD AB ,BC 平分ACD ∠,CF 平分ACG ∠,50BAC ∠=︒,12∠=∠,则下列结论:①CB CF ⊥,②165∠=︒,③24ACE ∠=∠,④324∠=∠.其中正确的是( )A .①②③B .①②④C .②③④D .①②③④ 6.下列说法中正确的是( )①1的平方根是1; ②5是25的算术平方根;③(﹣4)2的平方根是﹣4;④(﹣4)3的立方根是﹣4;⑤0.01是0.1的一个平方根.A .①④B .②④C .②③D .②⑤ 7.如图:AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO =40°,则下列结论:①OF 平分∠BOD ;②∠POE =∠BOF ;③∠BOE =70°;④∠POB =2∠DOF ,其中结论正确的序号是( )A .①②③B .①②④C .①③④D .①②③④ 8.如图,在平面直角坐标系内原点O (0,0)第一次跳动到点A 1(0,1),第二次从点A 1跳动到点A 2(1,2),第三次从点A 2跳动到点A 3(-1,3),第四次从点A 3跳动到点A 4(-1,4),……,按此规律下去,则点A 2021的坐标是( ).A .(673,2021)B .(674,2021)C .(-673,2021)D .(-674,2021)二、填空题9.已知223130x x y -+--=,则x +y=___________10.点(3,0)关于y 轴对称的点的坐标是_______11.如图.已知点C 为两条相互平行的直线,AB ED 之间一动点,ABC ∠和CDE ∠的角平分线相交于F ,若3304BCD BFD ∠=∠+︒,则BCD ∠的度数为________.12.如图,直线a ∥b ,直角三角形的直角顶点在直线b 上,已知∠1=48°,则∠2的度数是___度.13.如图a 是长方形纸带,将纸带沿 EF 折叠成图b ,再沿BF 折叠成图c ,若∠AEF =160°,则图 c 中的∠CFE 的度数是___度.14.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.15.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.16.如图,点A (0,1),点1A (2,0),点2A (3,2),点3A (5,1)…,按照这样的规律下去,点1000A 的坐标为 _____.三、解答题17.计算下列各题: 2213-12 31816 32163125()2-3 18.求下列各式中的x 值 (1)x 2﹣614= (2)12(2x ﹣1)3=﹣4 19.如图,三角形ABC 中,点D ,E 分别是BC ,AC 上的点,且//DE AB ,12∠=∠.(1)求证://EF BC ;(完成以下填空)证明://DE AB (已知)2B ∴∠=∠(______________),又12∠=∠(已知)1B ∠=∠∴(等量代换),//EF BC ∴(_______________).(2)DEF ∠与ACB ∠的平分线交于点G ,CG 交DE 于点H ,①若40DEF ∠=︒,60ACB ∠=︒,则G ∠=_______︒;②已知FEG DCG α∠+∠=,求DEC ∠.(用含α的式子表示)20.已知()0,1A ,()2,0B ,()4,3C .(1)在如图所示的直角坐标系中描上各点,画出三角形ABC ;(2)将ABC 向下平移2个单位长度,再向左平移2个单位长度得到三角形111A B C ,画出平移后的图形并写出1A 、1B 、1C 的坐标.21.阅读下面的文字,解答问题. 22的小数部分我们不可能全部地写出来,但是由于122<<2 1.21,差就是21.根据以上的内容,解答下面的问题:(15___________,小数部分是___________;(2)若设23+x ,小数部分是y ,求x y -的值.22.如图,在3×3的方格中,有一阴影正方形,设每一个小方格的边长为1个单位.请解决下面的问题.(1)阴影正方形的面积是________?(可利用割补法求面积)(2)阴影正方形的边长是________?(3)阴影正方形的边长介于哪两个整数之间?请说明理由.23.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN.(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,①试判断PM与MN的位置关系,并说明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线)(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理)【参考答案】一、选择题1.B解析:B【分析】根据一个数a,如果2a b=,那么a就叫做b的平方根求解即可.【详解】±=,解:∵()2636∴36的平方根为6或-6,故选B.【点睛】本题主要考查了平方根,解题的关键在于能够熟练掌握平方根的定义.2.D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可.【详解】解:A 、不是经过平移所形成的,故此选项错误;B 、不是是经过平移所形成的,故此选项错误;C 、不是经过平解析:D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可.【详解】解:A 、不是经过平移所形成的,故此选项错误;B 、不是是经过平移所形成的,故此选项错误;C 、不是经过平移所形成的,故此选项错误;D 、是经过平移所形成的,故此选项正确;故选:D .【点睛】此题主要考查了利用平移设计图案,关键是掌握平移定义.3.B【分析】根据坐标的特点即可求解.【详解】点()3,5A -在平面直角坐标系中所在的象限是第二象限故选B .【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点.4.C【分析】根据对顶角的性质和垂直的定义判断①;根据内错角相等的判定方法判定②;根据平行线的判定对③进行判断;根据经过直线外一点,有且只有一条直线与已知直线平行判断④即可【详解】解:两条直线相交,若对顶角互补,则这两条直线互相垂直,所以①正确;两条互相平行的直线被第三条直线所截,内错角相等;,所以②错误;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以③正确; 经过直线外一点,有且只有一条直线与已知直线平行,所以④正确.故选:C .本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,熟练掌握相关性质是解题的关键.5.B【分析】 根据角平分线的性质可得12ACB ACD ∠=∠,12ACF ACG ∠=∠,,再利用平角定义可得∠BCF =90°,进而可得①正确;首先计算出∠ACB 的度数,再利用平行线的性质可得∠2的度数,从而可得∠1的度数;利用三角形内角和计算出∠3的度数,然后计算出∠ACE 的度数,可分析出③错误;根据∠3和∠4的度数可得④正确.【详解】解:如图,∵BC 平分∠ACD ,CF 平分∠ACG ,∴1122ACB ACD ACF ACG ∠=∠∠=∠,, ∵∠ACG +∠ACD =180°,∴∠ACF +∠ACB =90°,∴CB ⊥CF ,故①正确,∵CD ∥AB ,∠BAC =50°,∴∠ACG =50°,∴∠ACF =∠4=25°,∴∠ACB =90°-25°=65°,∴∠BCD =65°,∵CD ∥AB ,∴∠2=∠BCD =65°,∵∠1=∠2,∴∠1=65°,故②正确;∵∠BCD =65°,∴∠ACB =65°,∵∠1=∠2=65°,∴∠3=50°,∴∠ACE =15°,∴③∠ACE =2∠4错误;∵∠4=25°,∠3=50°,∴∠3=2∠4,故④正确,【点睛】此题主要考查了平行线的性质,以及角平分线的性质,关键是理清图中角之间的和差关系.6.B【分析】根据平方根,算术平方根,立方根的概念进行分析,从而作出判断.【详解】解:1的平方根是±1,故说法①错误;5是25的算术平方根,故说法②正确;(-4)2的平方根是±4,故说法③错误;(-4)3的立方根是-4,故说法④正确;0.1是0.01的一个平方根,故说法⑤错误;综上,②④正确,故选:B.【点睛】本题考查了算术平方根,平方根,立方根的概念,理解相关定义,注意符号是解题关键.7.A【分析】根据AB∥CD可得∠BOD=∠ABO=40°,利用平角得到∠COB=140°,再根据角平分线的定义得到∠BOE=70°,则③正确;利用OP⊥CD,AB∥CD,∠ABO=40°,可得∠POB=50°,∠BOF=20°,∠FOD=20°,进而可得OF平分∠BOD,则①正确;由∠EOB=70°,∠POB=50°,∠POE=20°,由∠BOF=∠POF-∠POB=20°,进而可得∠POE=∠BOF,则②正确;由②可知∠POB=50°,∠FOD=20°,则④不正确.【详解】③∵AB∥CD,∴∠BOD=∠ABO=40°,∴∠COB=180°-40°=140°,又∵OE平分∠BOC,∴∠BOE=12∠COB=12×140°=70°,故③正确;①∵OP⊥CD,∴∠POD=90°,又∵AB∥CD,∴∠BPO=90°,又∵∠ABO=40°,∴∠POB=90°-40°=50°,∴∠BOF=∠POF-∠POB=70°-50°=20°,∠FOD=40°-20°=20°,∴OF平分∠BOD,故①正确;②∵∠EOB=70°,∠POB=90°-40°=50°,∴∠POE=70°-50°=20°,又∵∠BOF=∠POF-∠POB=70°-50°=20°,∴∠POE=∠BOF,故②正确;④由①可知∠POB=90°-40°=50°,∠FOD=40°-20°=20°,故∠POB≠2∠DOF,故④不正确.故结论正确的是①②③,故选A.【点睛】本题考查了平行线的性质,解题的关键是要注意将垂直、平行、角平分线的定义结合应用,弄清图中线段和角的关系,再进行解答.8.B【分析】根据已知点的坐标寻找规律并应用解答即可.【详解】解:∵A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),∴A5(2,5),A6(-2,6),A7(-2,7),A解析:B【分析】根据已知点的坐标寻找规律并应用解答即可.【详解】解:∵A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),∴A5(2,5),A6(-2,6),A7(-2,7),A8(3,8),∴A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,3n+1)(n为正整数),∵3×674-1=2021,∴n=674,所以A 2021(674,2021).故选B.【点睛】本题主要考查了点的坐标规律,根据已知点坐标找到A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,3n+1)(n为正整数)的规律是解答本题的关键.二、填空题9.-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所以,x+y=2+解析:-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所以,x+y=2+(-3)=-1.故答案为:-1.【点睛】本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.(-3,0)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.【详解】解:点(m,n)关于y轴对称点的坐标(-m,n),所以点(3,0)关于y轴解析:(-3,0)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.【详解】解:点(m,n)关于y轴对称点的坐标(-m,n),所以点(3,0)关于y轴对称的点的坐标为(-3,0).故答案为:(-3,0).【点睛】本题考查平面直角坐标系点的对称性质:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.【分析】由角平分线的定义可得,,又由,得,;设,,则;再根据四边形内角和定理得到,最后根据即可求解.【详解】解:和的角平分线相交于,,,又,,,设,,,在四边形中,,,,解析:120°【分析】由角平分线的定义可得EDA ADC ∠=∠,CBE ABE ∠=∠,又由//AB ED ,得EDF DAB ∠=∠,DFE ABF ∠=∠;设EDF DAB x ∠=∠=,DFE ABF y ∠=∠=,则DFB x y ∠=+;再根据四边形内角和定理得到3602()BCD x y ∠=︒-+,最后根据3304BCD BFD ∠=∠+︒即可求解. 【详解】解:ABC ∠和CDE ∠的角平分线相交于F ,EDA ADC ∴∠=∠,CBE ABE ∠=∠,又//AB ED ,EDF DAB ∴∠=∠,DEF ABF ∠=∠,设EDF DAB x ∠=∠=,DEF ABF y ∠=∠=,BFD EDA ADE x y ∴∠=∠+∠=+,在四边形BCDF 中,FBC x ∠=,ADC y ∠=,BFD x y ∠=+,3602()BCD x y ∴∠=︒-+,0433BCD BFD ∠=∠+︒, 120BFD x y ∴∠=+=︒,3602()120BCD x y ∴∠=︒-+=︒,故答案为:120︒.【点睛】本题考查了平行线的判定和性质,正确的识别图形是解题的关键.12.42【分析】利用平行线的性质,平角的性质解决问题即可.解:∵∠4=90°,∠1=48°,∴∠3=90°-∠1=42°,∵a ∥b ,∴∠2=∠3=42°,故答案为:42.【点解析:42【分析】利用平行线的性质,平角的性质解决问题即可.【详解】解:∵∠4=90°,∠1=48°,∴∠3=90°-∠1=42°,∵a ∥b ,∴∠2=∠3=42°,故答案为:42.【点睛】本题考查了平行线的性质,平角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.120【分析】先根据平行线的性质,设,根据图形折叠的性质得出=,再由三角形外角的性质解得,再由平行线的性质得出∠GFC ,最后根据即可解题.【详解】折叠∴∠DEF ==,∴解析:120【分析】先根据平行线的性质,设20BFE ∠=︒,根据图形折叠的性质得出GEF ∠=20︒,再由三角形外角的性质解得40DGF ∠=︒,再由平行线的性质得出∠GFC =140︒,最后根据CFE GFC BFE ∠=∠-∠即可解题.160∠=︒AEFDEF AEF∴∠=︒-∠=︒-︒=︒180********AD BC//∴∠=∠=︒20BFE DEF折叠∠=20︒,∴∠DEF=GEF∴20+2040DGF∠=︒︒=︒DG FC//∴∠+∠=︒DGF GFC180∴∠=︒-︒=︒18040140GFC∴∠=∠-∠=︒-︒=︒14020120CFE GFC BFE故答案为:120.【点睛】本题考查图形的翻折变换以及平行线的性质,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.14.5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.(0,2)、(﹣4,﹣2).【分析】由点A(a-2,a),及AB⊥x轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案.【详解】解:∵点A(a﹣2,a),A解析:(0,2)、(﹣4,﹣2).【分析】由点A (a-2,a ),及AB ⊥x 轴且AB=2,可得点A 的纵坐标的绝对值,从而可得a 的值,再求得a-2的值即可得出答案.【详解】解:∵点A (a ﹣2,a ),AB ⊥x 轴,AB =2,∴|a|=2,∴a =±2,∴当a =2时,a ﹣2=0;当a =﹣2时,a ﹣2=﹣4.∴点A 的坐标是(0,2)、(﹣4,﹣2).故答案为:(0,2)、(﹣4,﹣2).【点睛】本题考查了平面直角坐标系中的坐标与图形性质,熟练掌握平面直角坐标中的点的坐标特点是解题的关键.16.(1500,501).【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可.【详解】观察图形可得,点(2,0),点(5,1),(8,2),…,(3n ﹣1,n ﹣1), 点解析:(1500,501).【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可.【详解】观察图形可得,点1A (2,0),点3A (5,1),5A (8,2),…,21n A (3n ﹣1,n ﹣1),点2A (3,2),4A (6,3),6A (9,4),…,2n A (3n ,n +1),∵1000是偶数,且1000=2n ,∴n =500,∴1000A (1500,501),故答案为:(1500,501).【点睛】本题考查了图形与坐标,分类思想,通过发现特殊点的坐标与序号的关系,运用特殊与一般的思想探索规律是解题的关键.三、解答题17.(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值. 【详解】解:(1)==5;(2)-× =-×4=-2;(3)-++=-6+5+3=2.【点睛】此题主要解析:(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解12×4=-2;【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质. 18.(1);(2).【分析】(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可.【详解】(1)x2﹣6,移项得:,开方得:x,解得:;(2)(2x﹣1)3=﹣4,变形得:解析:(1)52x=±;(2)12x=-.【分析】(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可.【详解】(1)x 2﹣614=, 移项得:2125644x =+=,开方得:x = 解得:52x =±; (2)12(2x ﹣1)3=﹣4, 变形得:(2x ﹣1)3=﹣8,开立方得:212x -=-,∴2x =﹣1, 解得:12x =-.【点睛】本题考查了立方根及平方根的应用,注意一个正数的平方根有两个,且互为相反数,一个数的立方根只有一个. 19.(1)两直线平行,同位角相等;同位角相等,两直线平行;(2)①;②【分析】(1)根据平行线的判定及性质即可证明;(2)①由已知得,,由(1)知,可得,在中,,由对顶角得,由三角形内角和定理即可解析:(1)两直线平行,同位角相等;同位角相等,两直线平行;(2)①50︒;②1802α︒-【分析】(1)根据平行线的判定及性质即可证明;(2)①由已知得20GEH ∠=︒,30DCH ∠=︒,由(1)知//EF BC ,可得240DEF ∠=∠=︒,在DHC 中,1802DHC DCH ∠=︒-∠-∠,由对顶角得GHE ∠,由三角形内角和定理即可计算出G ∠;②根据条件,可得2FED DCE α∠+∠=,由//EF BC ,得出2FED =∠∠,通过等量代换得22DCE α∠+∠=,由三角形内角和定理即可求出.【详解】解:证明(1)证//EF BC ;证明://DE AB (已知),2B ∴∠=∠(两直线平行,同位角相等),又12∠=∠(已知)1B ∠=∠∴(等量代换),//EF BC ∴(同位角相等,两直线平行),故答案是:两直线平行,同位角相等;同位角相等,两直线平行.(2)①DEF ∠与ACB ∠的平分线交于点G ,CG 交DE 于点H ,且40DEF ∠=︒,60ACB ∠=︒,1202GEH DEF ∴∠=∠=︒, 1302DCH ACB ∠=∠=︒, 由(1)知//EF BC ,240DEF ∴∠=∠=︒,在DHC 中,1802110DHC DCH ∴∠=︒-∠-∠=︒,110GHE DHC ∴∠=∠=︒,18050G GHE GEH ∴∠=︒-∠-∠=︒,故答案是:50︒;②FEG DCG α∠+∠=,2FED DCE α∴∠+∠=,由(1)知//EF BC ,2FED ∴∠=∠,22DCE α∠+∠=,在DCE 中,18021802DEC DCE α∠=︒-∠-∠=︒-,故答案是:1802α︒-.【点睛】本题考查了平行线的判定及性质、角平分线的定义、三角形内角和定理、对顶角,解题的关键是掌握相关定理找到角之间的等量关系,再通过等量代换的思想进行求解. 20.(1)见解析;(2)见解析,,,【分析】(1)依据A (0,1),B (2,0),C (4,3),即可画出△ABC ;(2)依据△ABC 向左平移2个单位后再向下平移2个单位,即可得到△A1B1C1,进解析:(1)见解析;(2)见解析,()12,1A --,()10,2B -,()12,1C【分析】(1)依据A (0,1),B (2,0),C (4,3),即可画出△ABC ;(2)依据△ABC 向左平移2个单位后再向下平移2个单位,即可得到△A 1B 1C 1,进而得到点A 1,B 1,C 1的坐标.【详解】解:(1)如图,三角形ABC 即为所画,(2)如图, 111A B C ∆即为所画,1A 、1B 、1C 的坐标 :()12,1A --,()10,2B -,()12,1C【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 21.(1)2,;(2).【分析】(1)利用求解;(2)由于,则,,然后计算.【详解】解:(1)的整数部分是2,小数部分是;(2),而整数部分是,小数部分是,,,.本题考查了解析:(1)22;(2)4.【分析】(1)利用23<求解;(2)由于12<<,则3x =,231y ==,然后计算x y -.【详解】解:(122;(2)132<<,而2x ,小数部分是y ,3x ∴=,231y ==,3(31)33143x y .【点睛】本题考查了估算无理数的大小,熟悉相关性质是解题得关键.22.(1)5;(2);(3)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解.【详解】(1)阴影正方形的解析:(1)5;(23)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解; (3)根据实数的估算即可求解.【详解】(1)阴影正方形的面积是3×3-4×1212⨯⨯=5 故答案为:5;(2)设阴影正方形的边长为x ,则x 2=5∴x(3)∵∴23<<∴阴影正方形的边长介于2与3两个整数之间.本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法.通过观察可知阴影部分的面积是5个小正方形的面积和.会利用估算的方法比较无理数的大小.23.(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条解析:(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM+∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN;②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决.【详解】解:(1)①PM⊥MN,理由见解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ +∠QMN=90°,∴PM⊥MN;②过点N作NH∥CD,∵AB//CD,∴AB// NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,∴∠MNQ +∠MNH +∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度数为125°;(2)当点M,N分别在射线QC,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,∴∠APM +∠QMN=90°;当点M,N分别在射线QC,线段PQ上时,如图:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ -∠QMN=90°,∴∠APM -∠QMN=90°;当点M,N分别在射线QD,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM -∠QMN=90°;综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.。
武珞路中学学年度下学期期中考试七年级数学试卷带答案
一、选择题(每小题3分,共30分)1、如图,直线AB 、CD 相交于点O ,则∠AOC 的度数是( )A 、60°B 、40°C 、30°D、20°2、如图,点E 在AC 的延长线上,下列条件能判断A B∥CD 的是( )A 、∠3=∠4B 、∠1=∠2 C 、∠D=∠DCE D 、∠D+∠ACD=180° 3、在平面直角坐标系中,点P (23,1a -+)所在的象限是( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 4、已知点A (-3,-1)和点B (2,-1),则下列说法:①线段AB 的长度为5;②线段A B ⊥y 轴;③线段A B ∥x 轴;④点A 、B 到x 轴的距离相等,其中说法正确的有( ) A 、1个 B 、2个 C 、3个 D 、4个 5、通过平移,把A (-2,3)移到点(4,-2),按同样的方式把C (-3,5)移到点D ,则点D 的坐标是( )A 、(6,-2)B 、(3,0)C 、(5,2)D 、(5,0)6、已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( )A 、-1B 、1C 、2D 、37、如图,点O 在直线AB 上,OC 为射线,∠1比∠2的3倍少10°,设∠1、∠2的度数分别为x °、y °,那么下列方程组正确的是( )A 、18010x y x y +=⎧⎨=-⎩B 、180310x y x y +=⎧⎨=-⎩C 、180310x y x y +=⎧⎨=+⎩D 、180310x y x y -=⎧⎨=-⎩8、如图,在△ABC 中,BD 是∠ABC 的平分线,∠A=80°, ∠ABC =60°,那么∠BDC =( ) A 、80° B 、90° C 、100° D 、110° 9、如图,EF 分别是△ABC 的边AB 、BC 上任一点,将△BEF 沿EF 折叠至△DEF ,则∠D 与α、β之间的数量关系是( )10、如图,在△ABC 中,∠B 、∠C 的角平分线交于点F ,分别过B 、C 作BF 、CF 的垂线,交CF 、BF 的延长线于D 、E ,且BD 、EC 交于点G ,则下列结论:①∠D+∠E=∠A ;②∠BFC+∠G=180°;③∠BCA+∠A=2∠ABD ;④∠BF C -∠G=∠A 正确的有( )A 、①②④B 、①③④C 、①②③D 、①②③④二、填空题(每小题3分,共12分)11、如图,直线a ∥b ,∠1=115°,则∠2=12、一个多边形的内角和是外角和的4倍,那么这个多边形 是 边形 13、若22m n xy +-与43m n xy ---为同类项,则2012(3)m n +=14、图1中是一个正方形,将图1中的正方形剪开得到图2,则图2中共有4个正方形;将图2中的一个正方形剪开得到图3,则图3中共有7个正方形;……,如此剪下去,则第10个图形中正方形的个数是三、解答题(本大题共38分,第19、20题各7分,其它各6分) 15、解下列方程组(1)33814x y x y -=⎧⎨-=⎩ (用代入法) (2)34165633x y x y +=⎧⎨-=⎩(用加减法)16、如图,在△ABC 中,(1)画出BC 边上的高AD 和△ABC 的角平分线AE ;(2)若∠B=30°,∠ACB=130°,求∠BAD 和∠EAD 的度数.① ② ① ② 第2题O A1 2BC第7题BADC第8题第9题AF E CGB D第10a b12 第11题图1 图2 图3 图4 第14题 …… AC 第16题每隔2分钟相遇一次;如果同向而行,每隔6分钟相遇一次,已知甲比乙跑得快。
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.16的平方根是()A .4±B .4C .2±D .22.把“笑脸”进行平移,能得到的图形是( )A .B .C .D . 3.在平面直角坐标系中,点()1,0所在的位置是( )A .x 轴B .y 轴C .第一象限D .第四象限 4.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个5.直线12//l l ,125A ∠=︒,85B ∠=︒,115∠=︒,则2∠=( )A .15°B .25°C .35D .20° 6.下列关于立方根的说法中,正确的是( ) A .9-的立方根是3- B .立方根等于它本身的数有1,0,1-C .64-的立方根为4-D .一个数的立方根不是正数就是负数 7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是( )A .15°B .60°C .30°D .75°8.如图,在平面直角坐标系中,一动点从原点O 出发,向右平移3个单位长度到达点1A ,再向上平移6个单位长度到达点2A ,再向左平移9个单位长度到达点3A ,再向下平移12个单位长度到达点4A ,再向右平移15个单位长度到达点5A ……按此规律进行下去,该动点到达的点2021A 的坐标是( )A .(3030,3030)--B .(3030,3033)-C .(3033,3030)-D .(3030,3033)二、填空题9.324-=________.10.已知点P 关于x 轴的对称点为(,1)a -,关于y 轴的对称点为(2,)b -,那么点P 的坐标是________.11.如图,AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,作PE ⊥AB 于点E .若PE =2,则两平行线AD 与BC 间的距离为_____.12.如图所示,直线AB ,BC ,AC 两两相交,交点分别为A ,B ,C ,点D 在直线AB 上,过点D 作DE ∥BC 交直线AC 于点E ,过点E 作EF ∥AB 交直线BC 于点F ,若∠ABC =50°,则∠DEF 的度数___.13.如图,将一条对边互相平行的长方形纸带进行两次折叠,折痕分别为AB 、CD ,若//CD BE ,且156∠=︒,则2∠=_____.14.材料:一般地,n 个相同因数a 相乘:n a a a a a⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 15.若点P (3,1)m m +-在x 轴上,则点P 的坐标为____. 16.如图所示,动点P 在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点(0,1),第二次接着运动到点(1,1),第三次接着运动到点(1,2),…,按这样的运动规律,经过2021次运动后,动点P 的坐标是________.三、解答题17.计算:(1)()4129-⨯()432054⎛⎫-⨯- ⎪⎝⎭18.求下列各式中的x :(1)x 2﹣12149=0. (2)(x ﹣1)3=64.19.已知:AB BC ⊥,AB DE ⊥,垂足分别为B ,D ,12∠=∠,求证:180BEC FGE ∠+∠=︒,请你将证明过程补充完整.证明:∵AB BC ⊥,AB DE ⊥,垂足分别为B ,D (已知).∴90ABC ADE ∠=∠=︒(垂直定义).∴______________∥______________()∴1∠=______________()又∵12∠=∠(已知)∴∠2=(),∴______________∥______________()∴180BEC FGE ∠+∠=︒()20.如图, 在平面直角坐标系xOy 中,三角形ABC 三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC 向上平移 3 个单位长度,再向左平移1个单位长度得到三角形A B C ''',点A 、B 、C 的对应点分别为A B C '''、、.(1)在图中画出平移后的三角形A B C ''';(2)写出点A '的坐标;(3)三角形ABC 的面积为 .21.222﹣12的小数部分,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为4<7<9,即2<7<3,所以7的整数部分为2,小数部分为(7﹣2)请解答:(1)10的整数部分是,小数部分是;(2)如果5的小数部分为a,13的整数部分为b,求a+b﹣5的值.22.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.23.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).【参考答案】一、选择题1.A解析:A【分析】如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作x=±.【详解】解:16的平方根是4±.故选A.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.2.D【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【详解】解:观察图形可知图形进行平移,能得到图形D.故选:D.【点睛】本题考查了图形的平移,图形的平移只改解析:D【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【详解】解:观察图形可知图形进行平移,能得到图形D.故选:D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.3.A【分析】1,0的纵坐标为0,则可判断点(1,0)在x轴上.由于点()【详解】1,0的纵坐标为0,解:点()故在x轴上,故选:A.【点睛】本题考查了点的坐标,解题的关键是记住各象限内的点的坐标特征和坐标轴上点的坐标特点.4.C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.5.A【分析】分别过A、B作直线1l的平行线AD、BC,根据平行线的性质即可完成.【详解】分别过A、B作直线1l∥AD、1l∥BC,如图所示,则AD∥BC∵l∥2l1∴l∥BC2∴∠CBF=∠2∵l∥AD1∴∠EAD=∠1=15゜∴∠DAB=∠EAB-∠EAD=125゜-15゜=110゜∵AD∥BC∴∠DAB+∠ABC=180゜∴∠ABC=180゜-∠DAB=180゜-110゜=70゜∴∠CBF=∠ABF-∠ABC=85゜-70゜=15゜∴∠2=15゜故选:A.【点睛】本题考查了平行线的性质与判定等知识,关键是作两条平行线.6.B【分析】各项利用立方根定义判断即可.【详解】解:A、-9的立方根是39-,故该选项错误;B、立方根等于它本身的数有-1,0,1,故该选项正确;C、648-=-,-8的立方根为-2,故该选项错误;D、0的立方根是0,故该选项错误.故选:B.【点睛】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.7.C【分析】直接利用平行线的性质结合等腰直角三角形的性质得出答案.【详解】解:如图所示:由题意可得:∠1=∠3=15°,则∠2=45°﹣∠3=30°.故选:C.【点睛】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.8.C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0解析:C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,可以看出,9=1532+,15=2732+,21=3932+,得到规律:点A2n+1的横坐标为()32136622n n+++=,其中0n≥的偶数,点A2n+1的纵坐标等于横坐标的相反数+3,2021210101=⨯+,即1010n=,故A2021的横坐标为61010630332⨯+=,A2021的纵坐标为303333030-+=-,∴A2021(3033,-3030),故选:C.【点睛】本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.二、填空题9.6【分析】根据算术平方根、有理数的乘方运算即可得.【详解】故答案为:6.【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.解析:6【分析】根据算术平方根、有理数的乘方运算即可得.【详解】32826-=故答案为:6.【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.10.【分析】根据点坐标关于坐标轴的对称规律即可得.【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴解析:(2,1)【分析】根据点坐标关于坐标轴的对称规律即可得.【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点P关于x轴的对称点为(,1)a-,则点P的纵坐标为1点P关于y轴的对称点为(2,)b-,则点P的横坐标为2则点P的坐标为(2,1)故答案为:(2,1).【点睛】本题考查了点坐标关于坐标轴的对称规律,掌握对称规律是解题关键.11.4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线A解析:4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,∴AP⊥BP,PN⊥BC,∴PM=PE=2,PE=PN=2,∴MN=2+2=4.故答案为4.12.130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵E解析:130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵EF∥AB,∴∠ADE+∠DEF=180°(两直线平行,同旁内角互补),∴∠DEF=180°﹣50°=130°.故答案为:130°.【点睛】本题考查了平行线线段的性质,熟练掌握平行线的性质定理是解题关键.13.68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,解析:68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,∴∠4=∠3=∠1=56°,由折叠可得,∠DCF=∠5,∵CD∥BE,∴∠DCF=∠4=56°,∴∠5=56°,∴∠2=180°-∠DCF-∠5=180°-56°-56°=68°,故答案为:68°.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握:两直线平行,同位角相等;两直线平行,内错角相等.14.3; .【分析】由可求出,由,可分别求出,,继而可计算出结果.【详解】解:(1)由题意可知:,则,(2)由题意可知:,,则,,∴,故答案为:3;.【点睛】本题主解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知:4216=,43=81,则2log 164=,3log 814=, ∴223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.15.(4,0).【分析】根据x 轴上点的纵坐标为0列方程求出m 的值,再求解即可.【详解】∵点P (m+3,m-1)在x 轴上,∴m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P 的坐解析:(4,0).【分析】根据x 轴上点的纵坐标为0列方程求出m 的值,再求解即可.【详解】∵点P (m+3,m-1)在x 轴上,∴m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P 的坐标为(4,0).故答案为:(4,0).【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关键.16.(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四解析:(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四次运动到点(2,2);第五次运动到点(2,3),第六次运动到点(3,3),…,当n 为奇数时,第n 次运动到点(12n -,12n +), 当n 为偶数时,第n 次运动到点(2n ,2n ), 所以经过2021次运动后,动点P 的坐标是(1010,1011),故答案为:(1010,1011).【点睛】本题主要考查了点坐标的变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到每个对应点的坐标.三、解答题17.(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)(2)【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是解析:(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)()412-⨯ (2)()()()434320=-20--20=-1615=-15454⎛⎫-⨯-⨯⨯+ ⎪⎝⎭【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是关键.18.(1);(2)【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1)∵,∴,∴;(2)∵,∴,∴.【点睛】本题主要考查解析:(1)117x=±;(2)5x=【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1)∵21210 49x-=,∴212149x=,∴117x=±;(2)∵()3164x-=,∴14x-=,∴5x=.【点睛】本题主要考查了平方根和立方根,解题的关键在于能够熟练掌握平方根和立方根的求解方法.19.答案见详解.【分析】根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案.【详解】证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己解析:答案见详解.【分析】根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案.【详解】证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己知),∴∠ABC=∠ADE=90°(垂直定义),∴BC∥DE(同位角相等,两直线平行),∴∠1=∠EBC(两直线平行,内错角相等),又∵∠l=∠2 (已知),∴∠2=∠EBC(等量代换),∴BE∥GF(同位角相等,两直线平行),∴∠BEC+∠FGE=180°(两直线平行,同旁内角互补).【点睛】本题主要考查了垂直的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.20.(1)见解析;(2);(3)【分析】(1)根据平移规律确定,,的坐标,再连线即为平移后的三角形;(2)根据平移规律写出的坐标即可;(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面解析:(1)见解析;(2)()3,1-;(3)7【分析】(1)根据平移规律确定A ',B ',C '的坐标,再连线即为平移后的三角形A B C '''; (2)根据平移规律写出A '的坐标即可;(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面积即可.【详解】(1)如图所示,三角形A B C '''即为所求;(2)若把三角形ABC 向上平移 3 个单位长度,再向左平移1个单位长度得到三角形A B C ''',点A '的坐标为(-3,1);(3)三角形ABC 的面积为:4×5-12×2×4-12×1×3-12×3×5=7.【点睛】本题主要考查了图形的平移,以及三角形在坐标轴上的计算,切割法的运用,掌握平移规律和运用切割法求面积是解题的关键. 21.(1)3, ﹣3;(2)1.【分析】(1)根据解答即可;(2)根据2<<3得出a ,根据3<<4得出b ,再把a ,b 的值代入计算即可.【详解】(1)∵,∴的整数部分是3,小数部分是﹣3,解析:(1)3,3;(2)1.【分析】(1)根据34解答即可;(2)根据23得出a,根据34得出b,再把a,b的值代入计算即可.【详解】(1)∵34<<,∴3﹣3,故答案为:3﹣3;(2)∵23,a2,∵34,∴b=3,a+b2+31.【点睛】此题考查无理数的估算,正确掌握数的平方是解题的关键.22.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴a2=400又∵a>0∴a=20又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm,则宽为2x cm∴6x 2=300∴x 2=50又∵x>0∴x=52∴长方形纸片的长为152又∵()2152=450>202即:152>20∴小丽不能用这块纸片裁出符合要求的纸片23.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣11 22 aβ+【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数;②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数.【详解】解:(1)过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案为:∠B;EF;CD;∠D;(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED =∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =30°,∠EDC =12∠ADC =35°,∴∠BED =∠EBA +∠EDC =65°.答:∠BED 的度数为65°;②如图2,过点E 作EF ∥AB ,有∠BEF +∠EBA =180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD , ∴EF ∥CD . ∴∠FED =∠EDC . ∴∠BEF +∠FED =180°﹣∠EBA +∠EDC .即∠BED =180°﹣∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣1122a β+. 答:∠BED 的度数为180°﹣1122a β+. 【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.。
武珞路中学2014-2015学年七年级下期中数学试卷含答案解析
4.下列各点中在过点(﹣3,2)和(﹣3,4)的直线上的是( )
A.(﹣3,0)B.(0,﹣3) C.(3,2) D.(5,4) 5.若 y 轴上的点 A 到 x 轴的距离为 3,则点 A 的坐标为( ) A.(3,0) B.(3,0)或(﹣3,0) C.(0,3) D.D 是由线段 AB 平移得到的.点 A(﹣1,4)的对应点为 C(4,7),则点 B(﹣4,﹣1)的 对应点 D 的坐标为( ) A.(2,9) B.(5,3) C.(1,2) D.(﹣9,﹣4) 7.下列各式正确的是( ) A.|a﹣b|=|b﹣a| B.a>﹣a
2014-2015 学年湖北省武珞路中学七年级(下)期中数学模拟试卷
一、选择题
1.在 3.14, ,
, ,π,2.01001000100001 这六个数中,无理数有( )
A.1 个 B.2 个 C.3 个 D.4 个 2.如图,哪一个选项的右边图形可由左边图形平移得到( )
A.
B.
C.
D.
3.计算 的结果为( ) A.3 B.﹣3 C.±3 D.4.5
第 1 页(共 23 页)
第 5 页(共 23 页)
C.| ﹣2 |= ﹣2 D.a2>0(a 为任一实数)
8.下列命题正确的是( ) A.三条直线两两相交有三个交点 B.在平面内,过一点有且只有一条直线与已知直线平行 C.同旁内角互补 D.直线外一点与直线上所有点的连线段中,垂线段最短 9.如图,将一张长方形纸条折叠,如果∠1=130°,则∠2=( )
2023-2024学年湖北省武汉市武珞路中学中考数学模拟试题含解析
2024年中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列调查中,调查方式选择合理的是( )A .为了解襄阳市初中每天锻炼所用时间,选择全面调查B .为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C .为了解神舟飞船设备零件的质量情况,选择抽样调查D .为了解一批节能灯的使用寿命,选择抽样调查2.如图,在△ABC 中,AB=AC=10,CB=16,分别以AB 、AC 为直径作半圆,则图中阴影部分面积是( )A .50π﹣48B .25π﹣48C .50π﹣24D .3.sin60°的值为( )A 3B 3C 2D .124.在刚过去的2017年,我国整体经济实力跃上了一个新台阶,城镇新增就业1351万人,数据“1351万”用科学记数法表示为( )A .13.51×106B .1.351×107C .1.351×106D .0.1531×1085.某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是( ) 成绩(环)7 8 9 10 次数1 4 3 2A .8、8B .8、8.5C .8、9D .8、10 6.如图,圆弧形拱桥的跨径12AB =米,拱高4CD =米,则拱桥的半径为( )米A .6.5B .9C .13D .157.已知反比例函数2y x -=,下列结论不正确的是( ) A .图象经过点(﹣2,1) B .图象在第二、四象限C .当x <0时,y 随着x 的增大而增大D .当x >﹣1时,y >2 8.点A 、C 为半径是4的圆周上两点,点B 为AC 的中点,以线段BA 、BC 为邻边作菱形ABCD ,顶点D 恰在该圆半径的中点上,则该菱形的边长为( )A .7或22B .7或23C .26或22D .26或239.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为( )A .(1,1)B .(2,1)C .(2,2)D .(3,1)10.4的平方根是( )A .4B .±4C .±2D .2 11.解分式方程12x -﹣3=42x -时,去分母可得( ) A .1﹣3(x ﹣2)=4 B .1﹣3(x ﹣2)=﹣4C .﹣1﹣3(2﹣x )=﹣4D .1﹣3(2﹣x )=4 12.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在今年的春节黄金周中,全国零售和餐饮企业实现销售额约9260亿元,比去年春节黄金周增长10.2%,将9260亿用科学记数法表示为_____________.14.分解因式:mx 2﹣6mx+9m=_____.15.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是_____.16.在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是13,则n =_____. 17.化简1111x x -+-的结果是_______________. 18.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知一次函数12y kx =-的图象与反比例函数()20m y x x=>的图象交于A 点,与x 轴、y 轴交于,C D 两点,过A 作AB 垂直于x 轴于B 点.已知1,2AB BC ==.(1)求一次函数12y kx =-和反比例函数()20m y x x=>的表达式; (2)观察图象:当0x >时,比较12,y y .20.(6分)先化简,再求值:1+÷(1﹣),其中x=2cos30°+tan45°.21.(6分)如图,MN 是一条东西方向的海岸线,在海岸线上的A 处测得一海岛在南偏西32°的方向上,向东走过780米后到达B 处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离.(参考数据:tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)22.(8分)已知P 是O 的直径BA 延长线上的一个动点,∠P 的另一边交O 于点C 、D ,两点位于AB 的上方,AB=6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O 经过点C 、D ,圆心距1OO n =. (1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.23.(8分)先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中a=1+2,b=1﹣2. 24.(10分)如图,在平面直角坐标系中,点 A 和点 C 分别在x 轴和 y 轴的正半轴上,OA=6,OC=4,以 OA ,OC 为邻边作矩形 OABC , 动点 M ,N 以每秒 1 个单位长度的速度分别从点 A 、C 同时出发,其中点 M 沿 AO 向终点 O 运动,点 N 沿 CB 向终点 B 运动,当两个动点运动了 t 秒时,过点 N 作NP ⊥BC ,交 OB 于点 P ,连接 MP .(1)直接写出点 B 的坐标为 ,直线 OB 的函数表达式为 ;(2)记△OMP 的面积为 S ,求 S 与 t 的函数关系式()06t <<;并求 t 为何值时,S 有最大值,并求出最大值.25.(10分)计算: 021( 3.14)()3|12|4cos30.26.(12分) “机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A .非常了解,B .比较了解,C .基本了解,D .不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给信息解答下列问题:(1)本次共调查 名学生;扇形统计图中C 所对应扇形的圆心角度数是 ;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.27.(12分)计算:21|﹣2sin45°38﹣21()2参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、D【解析】A .为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A 不符合题意;B .为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B 不符合题意;C .为了解神舟飞船设备零件的质量情况,选普查,故C 不符合题意;D .为了解一批节能灯的使用寿命,选择抽样调查,故D 符合题意;故选D .2、B【解析】设以AB、AC为直径作半圆交BC于D点,连AD,如图,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴阴影部分面积=半圆AC的面积+半圆AB的面积﹣△ABC的面积,=π•52﹣•16•6,=25π﹣1.故选B.3、B【解析】解:sin60°=32.故选B.4、B【解析】根据科学记数法进行解答.【详解】1315万即13510000,用科学记数法表示为1.351×107.故选择B.【点睛】本题主要考查科学记数法,科学记数法表示数的标准形式是a×10n(1≤│a│<10且n为整数).5、B【解析】根据众数和中位数的概念求解.【详解】由表可知,8环出现次数最多,有4次,所以众数为8环;这10个数据的中位数为第5、6个数据的平均数,即中位数为892=8.5(环),故选:B.【点睛】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6、A【解析】试题分析:根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O.连接OA.根据垂径定理和勾股定理求解.得AD=6设圆的半径是r,根据勾股定理,得r2=36+(r﹣4)2,解得r=6.5考点:垂径定理的应用.7、D【解析】A选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;B选项:因为-2<0,图象在第二、四象限,故本选项正确;C选项:当x<0,且k<0,y随x的增大而增大,故本选项正确;D选项:当x>0时,y<0,故本选项错误.故选D.8、C【解析】过B作直径,连接AC交AO于E,如图①,根据已知条件得到BD=12OB=2,如图②,BD=6,求得OD、OE、DE的长,连接OD,根据勾股定理得到结论.【详解】过B作直径,连接AC交AO于E,∵点B为AC的中点,∴BD⊥AC,如图①,∵点D恰在该圆直径上,D为OB的中点,∴BD=12×4=2,∴OD=OB-BD=2,∵四边形ABCD是菱形,∴DE=12BD=1,∴OE=1+2=3,连接OC,∵CE=2222=43=7OC OE--,在Rt△DEC中,由勾股定理得:DC=2222=(7)1=22CE DE++;如图②,OD=2,BD=4+2=6,DE=12BD=3,OE=3-2=1,由勾股定理得:2222=41=15OC OE--DC=2222++.DE CE=3(15)=26故选C.【点睛】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键.9、B【解析】直接利用已知点坐标建立平面直角坐标系进而得出答案.【详解】解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:∴棋子“炮”的坐标为(2,1),故答案为:B.【点睛】本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键.10、C【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x1=a,则x就是a的平方根,由此即可解决问题.【详解】∵(±1)1=4,∴4的平方根是±1.故选D.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.11、B【解析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.12、C【解析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D选项中,多项式x2-x+2在实数范围内不能因式分解;选项B,A中的等式不成立;选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.故选C.【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、9.26×1011【解析】试题解析: 9260亿=9.26×1011故答案为: 9.26×1011点睛: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.14、m(x﹣3)1.【解析】先把提出来,然后对括号里面的多项式用公式法分解即可。
2018—2019七下武珞路中学期中数学试卷
2018—2019武珞路中学学年度七年级下学期期中测试数学试卷一、选择题(每题3分,共30分)1. 如图,∠1=80°,∠2=80°,∠5=70°,则∠3的大小是( )A .70°B .80°C .100°D .110° 2. 在实数722,7,3π,0.1010010001…,36,32中,无理数有( )个.A .1B .2C .3D .4 3. 下列各式中正确的是( )A .749±=B .4643=C .39-=-D .48=4. 如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( )A .∠3=∠4B .∠1=∠2C .∠D =∠DCE D .∠D +∠ACD =180° 5. 在平面直角坐标系中,点A (-2,1)在( )A .第一象限B .第二象限C .第三象限D .第四象限 6. 下列各组x 、y 的值中,是方程3x +y =5的解的是( )A . ⎩⎨⎧==21y xB . ⎩⎨⎧==12y xC . ⎩⎨⎧=-=21y xD . ⎩⎨⎧=-=12y x 7. 已知点A 在x 轴上方,y 轴右侧,距离x 轴2个单位长度,距离y 轴4个单位长度,则A 点坐标是( )A .(4,2)B . (2,4)C . (-2,4)D .(-4,2)8. 下列命题是真命题的是( )A .无限小数都是无理数B .同旁内角互补C .坐标轴上的点不属于任何象限D .非负数都有两个平方根 9. 在平面直角坐标系中,我们称横、纵坐标均为整数的点为整点,A 、B 、C 、D 分别为x 轴正半轴、y 轴正半轴、x 轴负半轴、y 轴负半轴上的整点、四边形ABCD 为正方形. 若正方形ABCD 内部的整点比正方形ABCD 边上的整点要多37个,那么A 点坐标为( )A .(4,0)B .(5,0)C .(6,0)D .(7,0)10. 如图,三角形ABC 中,∠C =90°,AC =3 cm ,CB =4 cm ,AB =5 cm ,将三角形ABC 沿直线CB 向右平移1 cm 得到三角形DEF ,DF 交AB 于点G ,则下列结论:①S 四边形ACFG =S 四边形BEDG ; ②FG =49cm ; ③43=DE BG ;④点C 到直线DE 的距离为3 cm. 其中正确的结论有( )个A .1B .2C . 3D . 4第9题图 第10题图 第16题图二、填空题(每题3分,共18分)11. 4的平方根是________.12. 若关于x 、y 的二元一次方程2x +ay =7有一个解是⎩⎨⎧==13y x ,则a =________. 13. 2232+-=_________.14. 已知AB ∥x 轴,A (-2,4),AB =5,则B 点坐标为_____________.15. 已知A (1,5),B (4,2),将线段AB 平移至CD ,使得点C 在x 轴上,点D 到y 轴的距离为2,则点D 的坐标为____________________.16. 如图,点A 在y 轴正半轴,点B 在x 轴正半轴,点C 在x 轴负半轴,∠BAO =40°,D 为x 轴上一动点,AE 平分∠BAD ,DF 平分∠ADC ,若∠BAE =α,则∠FDC =________.(用含α的式子表示)三、解答题(共8小题,共72分)17. 求下列各式中x 的值(本题2小题,共8分)(1) x 2=25 (2) 2(x -1)3=5418. 用指定的方法解下列方程组(本题2小题,共8分)(1) ⎩⎨⎧=+-=82332y x x y (代入法) (2)⎩⎨⎧=-=+33651643y x y x (加减法)19. (本题8分)完成下面的证明:如图,BE 平分∠ABD ,DE 平分∠BDC ,且∠α+∠β=90°,求证:AB ∥CD .证明:∵BE 平分∠ABD (______________________________)∴∠ABD =2∠α (______________________________)∵DE 平分∠BDC (已知)∵∠BDC = (______________________________)∴∠ABD +∠BDC =2∠α+2∠β=2(∠α+∠β) (______________________________)∵∠α+∠β=90°(已知)∴∠ABD +∠BDC = (______________________________)∴AB ∥CD (______________________________)20. (本题8分)某同学想用一块面积为400 cm 2的正方形纸片,沿着边的方向裁出一块面积为300 cm 2的长方形纸片,使它的长宽之比为3:2,请你用所学过的知识来说明能否用这块纸片裁出符合要求的纸片.21.(本题8分)一个台球桌的桌面PQRS如图所示,一个球在桌面上的点A滚向桌边PQ,碰着PQ上的点B后便反弹而滚向桌边RS,碰着RS上的点C便反弹而滚向点D. 已知PQ∥RS,AB,BC,CD都是直线,且∠ABC的平分线BN⊥PQ,∠BCD的平分线CM⊥RS.求证:CD∥AB.22.(本题10分)如图,在平面直角坐标系中,A(-1,4),B(1,1),C(-4,-1).(1)三角形ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+5,y0+3),将三角形ABC作同样的平移得到三角形A1B1C1.①画出平移后的三角形A1B1C1,写出A1、B1、C1的坐标;②求三角形ABC的面积;(2)若将线段AB沿水平方向平移一次,竖直方向平移一次,两次平移扫过的图形没有重叠部分. 两次平移后B点的对应点B2的坐标为(1+a,1+b),已知线段AB扫过的面积为20,请直接写出a,b的数量关系:__________________________.23.(本题10分)如图,BN∥CD,点A是直线BN上一点,P是直线AB与直线CD之间一点,连接AP,PC.(1)求证:∠BAP+∠C=∠P;(2)过点C作CM平分∠PCD,过点C作CE⊥CM交∠NAP的角平分线于点E,过点P作PF∥AE交CM于点F,探索∠CFP和∠APC的数量关系,并说明理由;(3)在(2)的条件下,若2∠AEC-∠CPF=240°,Q是直线CD上一点,请直接写出∠PFQ和∠FQD的数量关系.24. (本题12分)在平面直角坐标系中,A (a ,3),B (b ,1),C (3,m )(m <0),031=++-b a .(1) 求a ,b 的值;(2) 若E (1,n )为线段BC 上一点,求m 、n 的数量关系;(3) 若m =-3,D 为平面直角坐标系中一点,AD ∥BC ,三角形ABD 的面积为2,请直接写出点D 的坐标.。
湖北省武汉市武珞路中学2017-2018学年七年级下期中数学试题(无答案)
2017-2018学年度七年级下学期期中测试数学试卷(满分120分,考试时间120分钟)命题人:王立进审核人:彭毅一、选择题(本大题共10小题,每小题3分,共30分)1.64的算术平方根是()A.土8B.8C.-8D.42.点A(2,3)在第(()象限A.一B.二C.三 D 四3.方程组⎪⎩⎪⎨⎧=+=+25-y 9x 7-5y 4x 3的解是( ) A.⎩⎨⎧==25.0-y 2x B.⎩⎨⎧==4y 5.5-x C.⎩⎨⎧==5.0y 1x D.⎩⎨⎧==5.0-y 1-x 4.如图,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是()第4题 第9题A.∠3=∠4B.∠1=∠2C.∠D=∠DCED.∠D+∠ACD=180°5.估算40的值,与它最接近的两个整数是()A.4和5B.5和6C.6和7D.7和86.在平面直角坐标系中,点B 位于y 轴的左侧,到x 轴的距离是4个单位长度,到y 轴的距离是5个单位长度,则点B 的坐标是()A.(-5,4)B.(-4,5)C.(-5,4)或(-5,-4)D.(-4,5)或(-4,-5)7.下列说法正确的是()A.(-4)2的平方根是4B.33-没有意义C.无限小数都是无理数D.一个数的立方根等于它本身,这个数是0,1,-18.四名同学解二元一次方程()()⎩⎨⎧=+=23-y x 4-13-y 5-x 2提出四种不同的解法,其中解法不正确的是() A.由(1)得,23-y 5x =代入(2) B.由(1)得53x 2y +=,代入(2) C.由(2)得3-x 4y =,代入(1) D.由(2)得43-y -x =,代入(1) 9.如图,直线a ∥b,点C 在直线b 上,∠ACB=90°,则()A.∠A=∠1+∠2B.∠2+∠3+∠A=180°C.∠1+∠2=90°D.∠1+∠2+∠3=180°10.如图,在平面直角坐标系中,有若干个横坐标,纵坐标均为整数的点,其顺序按图中“→”方向依次持列:(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)→…根据这个规律,第2018个点的坐标为()A.(8,45)B.(8,44)C.(45,7)D.(45,8)二、填空题(本大题共6小题,每小题3分,共18分)11.计算:327=____________.12.命题:“两个角的和等于平角时,这两个角互为补角”的结论是________.13.如图,直线AB 、CD 相交于点O,EO ⊥AB,垂足为O,∠EOC=35°,则的∠AOD=________.第13题 第15题14.已知点A(4,3),AB ∥x 轴,且AB=4,则点B 的坐标为_________.15.如图,AB ∥CD,交AB 于点G,交CD 于点F,FH 平分∠EFD,交AB 于点H,若∠AGE=40°,则∠BHF=________.16.如图为长方形的纸带,AD ∥BC ,E 、F 分别是边AD 、BC 上一点,∠DEF=α,α为锐角且α≠60°,将纸带沿EF 折叠成如图1,再沿GF 折叠成图2,若GP 平分∠MGF 交直线EF 于点P,则∠GPE=_____________.(用含α的式子表示)三、解答题(本大题8小题,共72分)17.计算(本题8分)(1)()98-5-32+(2)()21-333-2++18.用指定的方法解下列方程组(本题共8分) (1)()代入法⎩⎨⎧=++=9y 5x 73x y (2)()加减法⎩⎨⎧==+33y 6-x 516y 4x 319.填空:完成下面的准理(本题8分)如图,已知DE ⊥BC 于E,FG ⊥BC 于C ,∠1=∠2.求证:EH ∥AC证明:延长HE 、FG 相交于点Q∵DF ⊥BC,FG ⊥BC∴∠DEC=90°,∠FGC=90°( )∴∠DEC=∠FGC ( )∴DE ∥________( )∴∠1=_________( )又∵∠1=∠2∴∠2=________(等量代换)∴EH ∥AC( )21. (本题8分)如图,三角形ABC 中任意一点P ()00y x ,经平移后对应点P 1(3y 5x 00++,),将三角形ABC 作同样的平移得到三角形111C B A .(1)画出平移后的三角形111C B A 写出111C B A 、、的坐标;(2)若以A 、B 、C 、D 为顶点的四边形为平行四边形,直接写出点D 的坐标.21.(本题8分)已知a,b 满足如下两个条件;:①一个正数x 的平方根是2a-3与1-b ;② 0b -22-a 333=+(1)求a 、b 、x ;(2)求x-2ab 的平方根。
初中数学:2022-2023学年湖北省武汉市武昌区武珞路中学七年级(下)期中数学试卷
2022-2023学年湖北省武汉市武昌区武珞路中学七年级(下)期中数学试卷一、选择题(每题3分,共30分)1.(3分)近段时间,以熊猫为原型的2022北京冬奥会吉祥物“冰墩墩”成了全网“顶流”.如图,通过平移如图吉祥物“冰墩墩”可以得到的图形是()A.B.C.D.2.(3分)下列各点中,在第四象限的点是()A.(2,3)B.(﹣2,﹣3)C.(2,﹣3)D.(﹣2,3)3.(3分)在实数,3.1415926,,,,0.1010010001……中,无理数有_____个.()A.2B.3C.4D.54.(3分)方程组的解是()A.B.C.D.5.(3分)下列式子正确的是()A.B.C.D.6.(3分)如图,由AB∥CD可以得到()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠47.(3分)平面直角坐标系中,点A(a,b)在x轴上,点B(m,n)在y轴上,下列结论一定正确的是()A.a=0,m=0B.a=0,n=0C.b=0,m=0D.b=0,n=08.(3分)下列命题是真命题的是()A.数轴上的所有点都表示有理数B.平方根是本身的数为1,0C.0.01是0.1的一个平方根D.9.(3分)实数a,b,c在数轴上对应的点的位置如图所示,则化简得()A.B.C.D.10.(3分)已知∠A与∠B有一组边平行,另一组边相交所成夹角为60°,∠A为锐角,则∠A和∠B的数量关系有_____种.()A.2B.4C.5D.6二、填空题(每题3分,共18分)11.(3分)x﹣3.14的相反数是.12.(3分)已知点O(0,0),B(1,2),点A在y轴正半轴上,且三角形AOB的面积为2,则点A的坐标为.13.(3分)计算=.14.(3分)如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC:∠EOD=2:3,则∠BOD=.15.(3分)正方形ABCD四个顶点的坐标分别是,,,,将线段AB平移之后得到线段EF,点A的对应点为E(m,n),若点E到AD的距离等于点F到AB的距离,则m,n的数量关系为.16.(3分)在平面直角坐标系中,,(n>0),C,连接OB,AC相交于点D,若三角形BCD的面积为2,则n的值为.三、解答题(共8小题,共72分)17.(8分)求下列各式中的x的值.(1)x3=8;(2)(x﹣1)2=9.18.(8分)用指定的方法解下列方程组.(1);(代入法)(2).(加减法)19.(8分)请填空,完成下面的证明.如图,AB∥CD,EF交AB于点P,交CD于点Q,∠EPB+∠DQF=180°,PM平分∠BPE,QN平分∠CQF.求证:PM∥QN.证明:∵∠EPB+∠DQF=180°(已知),∠CQF+∠DQF=180°(),∴∠CQF=(),∵PM平分∠BPE,QN平分∠CQF,∴(),∴∠EPM=,∴∠MPQ=(等角的补角相等),∴PM∥QN().20.(8分)如图,分别把两个面积为800cm2的小正方形沿一条对角线裁成4个小三角形,将这4个小三角形拼成一个大正方形.(1)大正方形的边长是cm;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为1300cm2.21.(8分)已知AB和CD相交于点O,∠C=∠COA,∠D=∠BOD.(1)如图1,求证:AC∥BD;(2)如图2,点E是线段AC上一点,点F是DB延长线上一点,连接EF交CD于点G,若∠CGE+∠BOC=180°,求证:∠F=∠A.22.(10分)如图,三角形ABC内任意一点P(x0,y0),经平移后对应点为P0(x0+5,y0+3),将三角形ABC作同样的平移得到三角形DEF.(1)在图中画出三角形DEF;(2)求四边形ACFD的面积;(3)若点M为AC边上一点,DM=6,则点F到DM的距离为.23.(10分)已知AB∥CD,点P为直线AB上方一点.(1)如图1,求证:∠A=∠P+∠C;(2)如图2,CE平分∠PCD,过点P作CE的平行线交∠P AB的角平分线于点Q,探索∠Q与∠APC之间的关系,并说明理由;(3)在(2)的条件下,若CE经过点A,∠APC+∠PCE=105°,点M是直线PC上一点,请直接写出∠BAM和∠AMC的数量关系.24.(12分)在平面直角坐标系中,A(a,1),B(0,b),C(m,3),.(1)求a,b的值;(2)若点C在直线AB上,求出点C的坐标;(3)过点C作AB的平行线交x轴于点D,交y轴于点E,若CD=2CE,请直接写出m的值.。
七年级下数学期中模拟测试卷(人教版)
第1页 共2页武珞路中学—下学期 七年级数学期中模拟测试卷一、选择题(3分×10=30分)题号 1 2 3 4 5 6 7 8 9 10 答案1、点P (-2,3)在第( )象限A 、一B 、二C 、三D 、四 2、如图1,已知a ∥b ,∠1=60°,则∠2=( )A 、30°B 、120°C 、60°D 、150°3、如图2,点E 在BC 的延长线上,下列四个条件中,不能判定A B ∥CD 的是( ) A 、∠1=∠2 B 、∠B =∠DCE C 、∠3=∠4 D 、∠D +∠DAB =180° 图1 图24、下列三条线段能组成三角形的是( )A 、1、2、3B 、2、3、4C 、2、3、5D 、2、3、65、若点P 在第二象限,且P 点到x 轴的距离为3,到y 轴的距离为2,则P 点坐标为A 、(-3,2)B 、(-2,3)C 、(3,-2)D 、(2,-3) 6、∠1的两边与∠2的两边分别垂直,则∠1与∠2( )A 、相等B 、互余C 、互补D 、相等或互补7、一个多边形除了一个内角外,其余各内角的度数和为2550°,则这个内角的度数为( )A 、30°B 、60°C 、120°D 、150° 8、下列正多边形中,不能铺满地面的是( )A 、正三角形B 、正方形C 、正五边形D 、正六边形 9、下列说法正确的个数是( )①如果两个角相等,那么这两个角是对顶角; ②对顶角的平分线在同一条直线上;③如果两个角有公共顶点,且角平分线互为反向延长线,那么这两个角是对顶角; ④两个有公共顶点的角相等,且一个角的一边是另一个角一边的反向延长线,那么这两个角是对顶角。
A 、1个B 、2个C 、3个D 、4个10、如图3,已知∠A +∠BCD =140°,BO 平分∠ABC ,DO 平分∠ADC ,则∠BOD =( )A 、40°B 、60°C 、70°D 、80° 二、填空题(3分×6=18分) 11、已知A (-4,0)、B (-2,3),则S △AOB = 。
武汉市武珞路中学七年级数学下册期末试卷选择题汇编精选模拟考试试题
一、选择题1.如图,在数轴上表示1,3的对应点分别为A B 、,点B 关于点A 的对称点为C ,则点C 表示的数为( )A .31-B .13-C .23-D .32- 答案:C解析:C【分析】首先根据表示1、3的对应点分别为点A 、点B 可以求出线段AB 的长度,然后根据点B 和点C 关于点A 对称,求出AC 的长度,最后可以计算出点C 的坐标.【详解】解:∵表示1、3的对应点分别为点A 、点B ,∴AB =3−1,∵点B 关于点A 的对称点为点C ,∴CA =AB ,∴点C 的坐标为:1−(3−1)=2−3.故选:C .【点睛】本题考查的知识点为实数与数轴,解决本题的关键是求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离.2.如图,在平面直角坐标系上有点A(1,0),点A 第一次跳动至点()111A -,,第二次点1A 跳动至点()221A ,,第三次点2A 跳动至点()322A ,-,第四次点3A 跳动至点()432A ,,……,依此规律跳动下去,则点2017A 与点2018A 之间的距离是( )A .2017B .2018C .2019D .2020答案:C解析:C【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A 2017与点A 2018的坐标,进而可求出点A 2017与点A 2018之间的距离.【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n 次跳动至点的坐标是(n+1,n ),则第2018次跳动至点的坐标是(1010,1009),第2017次跳动至点A 2017的坐标是(-1009,1009).∵点A 2017与点A 2018的纵坐标相等,∴点A 2017与点A 2018之间的距离=1010-(-1009)=2019,故选C .【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.3.正整数n 小于100,并且满足等式236n n n n ⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中[]x 表示不超过x 的最大整数,例如:[][]1.5122==,,则满足等式的正整数的个数为( )A .2B .3C .12D .16 答案:D解析:D【分析】利用不等式[x ]≤x 即可求出满足条件的n 的值.【详解】 解:若2n ,3n ,6n 有一个不是整数, 则22n n ⎡⎤⎢⎥⎣⎦<或者33n n ⎡⎤⎢⎥⎣⎦<或者66n n ⎡⎤⎢⎥⎣⎦<, ∴][][236236n n n n n n n ⎡⎤++++=⎢⎥⎣⎦<, ∴2n ,3n ,6n 都是整数,即n 是2,3,6的公倍数,且n <100, ∴n 的值为6,12,18,24,......96,共有16个,故选:D .【点睛】本题主要考查不等式以及取整,关键是要正确理解取整的定义,以及[x ]≤x <[x ]+1式子的应用,这个式子在取整中经常用到.4.如图,长方形ABCD 中,AB=6,第一次平移长方形ABCD 沿AB 的方向向右平移5个单位,得到长方形A 1B 1C 1D 1,第2次平移将长方形A 1B 1C 1D 1沿A 1B 1的方向向右平移5个单位,得到长方形A 2B 2C 2D 2…,第n 次平移将长方形A n ﹣1B n ﹣1C n ﹣1D n ﹣1沿A n ﹣1B n ﹣1的方向向右平移5个单位,得到长方形A n B n C n D n (n >2),若AB n 的长度为2016,则n 的值为( )A .400B .401C .402D .403答案:C解析:C【解析】AB=6,第1次平移将矩形ABCD 沿AB 的方向向右平移5个单位,得到矩形1111D C B A ∴11122155111AB AA A A A B =++=++= ,第2次平移将矩形1111D C B A 沿的方向向右平移5个单位,得到矩形2222A B C D …, ∴2AB 的长为:5+5+6=16;计算得出:n=402. ∴1122111125,5,651AA A A A B A B A A ===-=-= , ∵1AB =2×5+1,2AB =3×5=1=16,所以C 选项是正确的.点睛:本题主要考查了平移的性质及一元一次方程的应用,根据平移的性质得出1125,5AA A A ==是解本题的关键.5.如图,直线a ,b 被直线c ,d 所截,若12∠=∠,3125∠=︒,则4∠的度数是( )A .65︒B .60︒C .55︒D .75︒答案:C解析:C【分析】首先证明a ∥b ,推出∠4=∠5,求出∠5即可.【详解】解:∵∠1=∠2,∴a ∥b ,∴∠4=∠5,∵∠5=180°﹣∠3=55°,∴∠4=55°,故选:C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.6.如图,已知正方形ABCD,定点A(1,3),B(1,1),C(3,1),规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位长度”为一次变换,如此这样,连续经过2 017次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2015,2)B.(-2015,-2)C.(-2016,-2)D.(-2016,2)答案:B解析:B【解析】由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2017次这样的变换得到正方形ABCD的对角线交点M的坐标.解答:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2−1,−2),即(1,−2),第2次变换后的点M的对应点的坐标为:(2−2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2−3,−2),即(−1,−2),第n次变换后的点M的对应点的为:当n为奇数时为(2−n,−2),当n为偶数时为(2−n,2),∴连续经过2017次变换后,正方形ABCD的对角线交点M的坐标变为(−2015,−2).故选:B.点睛:本题是一道找规律问题.解题本题的关键在于要通过操作、观察得出操作次数与点的坐标之间的内在联系,并归纳得出符合规律的字母公式.7.如图,在平面直角坐标系中,存在动点P按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2021次运动后,点P的坐标是()A.(2022,1) B.(2021,0) C.(2021,1) D.(2021,2)答案:C解析:C【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,…4个数一个循环,进而可得经过第2021次运动后,动点P的坐标.【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,2,0;4个数一个循环,所以2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).故选:C.【点睛】本题考查了规律型−点的坐标,解决本题的关键是观察点的坐标变化寻找规律.8.按如图所示的程序计算,若开始输入的值为25,则最后输出的y值是()A5B.5C.5 D.5±答案:B解析:B【分析】根据已知进行计算,并判断每一步输出结果即可得到答案.【详解】解:∵25的算术平方根是5,5不是无理数,∴再取5的平方根,而5的平方根为5±,是无理数,∴输出值y =5±,故选:B .【点睛】本题考查实数分类及计算,判断每步计算结果是否为无理数是解题的关键.9.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,依此类推,则第⑦个图形中五角星的个数是( )A .98B .94C .90D .86 答案:A解析:A【分析】学会寻找规律,第①个图2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,那么第n 个图呢,能求出这个即可解得本题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武珞路中学2014~2015学年度下学期七年级数学期中模拟试卷
一、选择题(每小题3分,共30分) 1.在3.14、7
22
、-3、364、π、2.01001000100001这六个数中,无理数有( ) A .1
B .2
C .3
D .4
2.如图,哪一个选项的右边图形可由左边图形平移得到( )
3.计算9的结果为( ) A .3
B .-3
C .±3
D .4.5 4.下列各点中在过点(-3,2)和(-3,4)的直线上的是( ) A .(-3,0) B .(0,-3)
C .(3,2)
D .(5,4)
5.若y 轴上的点P 到x 轴的距离为3,则点P 的坐标为( )
A .(-3,0)
B .(3,0)或(-3,0)
C .(0,3)
D .(0,3)或(0,-3)
6.线段CD 是由线段AB 平移得到的,点A (-1,4)的对应点为C (4,7),则点B (-4,-1)的对应点D 的坐标为( ) A .(2,9)
B .(5,3)
C .(1,2)
D .(-9,-4) 7.下列各式正确的是( ) A .|a -b |=|b -a |
B .a >-a
C .|227-|=227-
D .a 2>0(a 为任一实数)
8.下列命题正确的是( )
A .三条直线两两相交有三个交点
B .在平面内,过一点有且只有一条直线与已知直线平行
C .同旁内角互补
D .直线外一点与直线上所有点的连线段中,垂线段最短
9.如图,将一张长方形纸条折叠,如果∠1=130°,则∠2=( ) A .100°
B .130°
C .150°
D .80°
10.(2013春·江岸期中)如图,已知四边形ABCD 中,AD ∥BC ,∠A =∠BCD =∠ABD ,DE 平分∠ADB ,下列说法:① AB ∥CD ;② ED ⊥CD ;③ ∠DFC =∠ADC -∠DCE ;④ S △EDF =S △
BCF ,其中正确的结论是(
)
A .①②③
B .①②④
C .①③④
D .①②③④
二、填空题(每小题3分,共18分)
11.点(-2,3)在第_______象限;3001.0-=________;9
4
的平方根为_________ 12.一个数的平方根等于它本身,则这个数为_________
13.一个圆的面积为2π cm 2,则它的周长为________cm (用含π的式子表示)
14.点A (-1,4)向右平移2个单位后,再向上平移1个单位,得A 1,则A 1点的坐标为________ 15.如图,直线AB 、CD 交于点O ,EO ⊥AB ,垂足为O ,∠EOC =35°,则∠AOD =______度
16.如图,已知A (0,-4)、B (3,-4),C 为第四象限内一点且∠AOC =70°,若∠CAB =20°,则∠OCA =________ 三、解答题(共72分) 17.(满分10分)计算:(1) 25.264
125
3
+-
(2) 364|23|)13(2-+---
18.(满分10分)解方程:(1) 3(x -2)2=27
(2) 2(x -1)3+16=0
19.(满分7分)如图,直线AB 、CD 相交于O 点∠,AOC 与∠AOD 的度数比为45°,OE ⊥AB ,OF 平分∠DOB ,求∠EOF 的度数
20.(满分8分)如图,△ABC 中,A (-2,1)、B (-4,-2)、C (-1,-3),△A ′B ′C ′是△ABC 平移之后得到的图象,并且C 的对应点C ′的坐标为(4,1) (1) A ′、B ′两点的坐标分别为A ′_________、B ′_________ (2) 作出△ABC 平移之后的图形△A ′B ′C ′ (3) 求△A ′B ′C ′的面积
21.(满分8分)如图,平面直角坐标系中,C (0,5)、D (a ,5)(a >0),A 、B 在x 轴上,∠1=∠D ,请写出∠ACB 与∠BED 的数量关系,并予以证明
22.(满分8分)根据下表回答问题: x 16 16.1 16.2 16.3 16.4 16.5 16.6
16.7
16.8 x 2
256
259.21
262.44
265.69
268.96
272.25
175.56 278.89
282.24
(1) 272.25的平方根是________ (2)
21.259=________,27889=________,6244.2=________
(3) 设270的整数部分为a ,求-4a 的立方根
23.(满分10分)如图,平面直角坐标系中,A (-3,-2)、B (-1,-4) (1) 直接写出:S △OAB =________ (2) 延长AB 交y 轴于P 点,求P 点坐标
(3) Q 点在y 轴上,以A 、B 、O 、Q 为顶点的四边形面积为6,求Q 点坐标
24.(满分12分)如图1,在平面直角坐标系中,点A 、B 、C 、D 均在坐标轴上,AB ∥CD (1) 求证:∠ABO +∠CDO =90°
(2) 如图2,BM 平分∠ABO 交x 轴于点M ,DN 平分∠CDO 交y 轴于点N ,求∠BMO +∠OND (3) 如图3,延长CD 到Q ,使CQ =AB ,连AQ 交y 轴于K ,若A (-4,0)、B (0,3)、C (0,a )(-3<a <0),求
OC
OK
BK 的值
武珞路中学2014~2015学年度下学期七年级数学期中模拟试卷
参考答案
一、选择题(共10小题,每小题3分,共30分)
题号 1 2 3 4 5 6 7 8 9 10 答案
B
C
A
A
D
C
A
D
A
D
二、填空题(共6小题,每小题3分,共18分) 11.二;-0.1;3
2
±
12.0 13.π22 14.(1,5)
15.125°
16.40°
三、解答题(本大题共72分) 17.(1)
4
1
(2) 833- 18.(1) x =5或-1(2) x =-1
19.解:解:设∠AOC =4x ,则∠AOD =5x ∵∠AOC +∠AOD =180° ∴4x +5x =180°,解得x =20° ∴∠AOC =4x =80° ∴∠BOD =80° ∵OE ⊥AB ∴∠BOE =90°
∴∠DOE =∠BOE -∠BOD =10° 又∵OF 平分∠DOB ∴∠DOF =∠BOD =40°
∴∠EOF =∠EOD +∠DOF =10°+40°=50° 20.解:(1) (3,5)、(1,2);(2) 略;(3) 5.5 21.解:∠ACB 与∠BED 互补,理由如下: ∵C 、D 两点的纵坐标相同 ∴CD ∥AB
∴∠1+∠ACD =180°(两直线平行,同旁内角相等) ∵∠1=∠D
∴∠D +∠ACD =180°(等量代换) ∴AC ∥DE (同旁内角互补,两直线平行) ∴∠ACB =∠DEC ∵∠DEC +∠BED =180° ∴∠ACB +∠BED =180° 22.解:(1) ±16.5 (2) 16.1;167;1.62 (3) ∵289270256<< ∴16<270<17 ∴a =16,-4a =-64
∴-4a 的立方根为-4 23.解:(1) S △AOB =5
(2) 设P 点的坐标为(0,y ) S △AOP =21·(-y )·3=-23y S △BOP =
21·(-y )·1=-2
y 由S △AOP =S △AOB +S △BOP ∴5-
2y =-2
3y ,解得y =-5 ∴P 点的坐标为(0,-5) (3) 当Q 在y 轴的正半轴上时 S △AOQ =1,Q 点的坐标为(0,3
2) 当Q 在y 轴的负半轴上时 S △BOQ =1,Q 点的坐标为(0,-2) 24.证明:(1) 过点O 作OE ∥AB ∵AB ∥CD
∴OE ∥CD (平行公理的推论) ∴∠ABO =∠BOE ,∠CDO =∠DOE
∴∠ABO +∠CDO =∠BOE +∠DOE =∠BOD =90° (2) “猪蹄模型”中左边角的和等于右边角的和 设∠ABM =∠OBM =x ,∠ODN =∠CDN =y ∴x +y =
2
1
(∠ABO +∠CDO )=45° ∴∠BMO +∠OND =x +y +90°=135° (3) 线段CQ 可看作是由线段AB 平移得到 ∵A (-4,0)→C (0,a ) ∴B (0,3)→D (4,3+a ) 设K 点的坐标为(0,y ) S △AOQ =
2
1
×4×(3+a )=2(3+a ),S △AOK =2y ,S △QOK =2y 由S △AOQ =S △AOK +S △QOK ∴2y +2y =2(3+a ),解得y =2
3a
+ ∴BK =3-23a +=23a -,OK =2
3a
+,OC =-a ∴
OC
OK
BK -=1。