第2章 电路的分析方法1

合集下载

电工技术第2章 电路的分析方法

电工技术第2章  电路的分析方法
应如何处理?
• 解:原电流表最大量程只有100μA ,用它直接测量 1100μA的电流显然是不行的,必须并联一个电阻进行分 流以扩大量程,如图2-4所示。
Ig
rg
If
Rf
I
+
U
_
• 3.电阻混联电路的等效变换
• 实际应用的电路大多包含串联电路和并联电路,既有电阻 的串联又有电阻的并联的电路叫电阻的混联电路,如图25 a)所示。
U2
U
R
R3
U3
b
b
• (2)串联电路的分压作用 • 在图2-1 a)的电阻串联电路中,流过各电阻的电流
相等,因此各电阻上的电压分别为
(3)串联电路的应用 1)利用小电阻的串联来获得较大阻值的电阻。 2)利用串联电阻构成分压器,可使一个电源供给几种不同的 电压,或从信号源中取出一定数值的信号电压。 3)利用串联电阻的方法,限制和调节电路中电流的大小。 4)利用串联电阻来扩大电压表的量程,以便测量较高的电压 等。


b
b
2.2.2 电压源与电流源的等效变换
• 电源是向电路提供电能或电信号的装置,常见的 电源有发电机、蓄电池、稳压电源和各种信号源 等。
• 电源的电路模型有两种表示形式:一种是以电压 的形式来表示,称为电压源;另一种是以电流的 形式来表示,称为电流源。
• 1.电压源
• 电压源就是能向外电路提供电压的电源装置,图2-1线
框内电路表示一直流电压源的模型。假如用U表示电
源端电压,I表示负载电流,则由图2-1电路可得出如
下关系 •
U = US - RSI
(2-1)
• 此方程称为电压源的外特性方程。
• 由此方程可作出电压源的外特性曲线,如图2-2所示

第2章 第1、2节 电路的分析方法

第2章  第1、2节 电路的分析方法

第二节 电压源和电流源
六、几种特殊情况
+
E1 E2
+ +
-
-
-
E
Is1 IS2
Is
+
+
R
R
E
-
-
E
Is
Is
第二节 电压源和电流源
六、几种特殊情况
+ Is E
+
Is
+
E
Is
-
-
E
-
第二节 电压源和电流源
七、例题 P18 例2 —4
八、作业
1、P31
2 —7
第二节 电压源和电流源
2、有两个直流电压源并联向负载电阻RL=9Ω供 、有两个直流电压源并联向负载电阻R =9Ω 电,如图示。E =120V, =2Ω 电,如图示。E1=120V,R01=2Ω,E2=240V, 240V, R02=2Ω。求负载RL上流过的电流IL。 =2Ω。求负载R + E1 R01 + R02 IL E2 R L
第二节 电压源和电流源
2、理想电压源 2)特点 流过外电路的电流是由外电路决定。 3)理想电压源的电路符号及伏安特性
+ E - 0
I U
R
U
E
U=E I
第二节 电压源和电流源
理想电压源的伏安特性表明:负载电阻发 生变化时,负载电流发生变化,但端电压 始终保持不变。
第二节 电压源和电流源
3、实际电压源 理想电压源是不存在的,任何电源都有内阻。实 际电压源可视为由一个理想电压源和一个内阻串 联而成。 1)符号
第二节 电压源和电流源
四、电流源的并联
a R01 R02 R03 R0 b

[工学]第2章 电路的基本分析方法

[工学]第2章 电路的基本分析方法

I2 I2 I2
U1 U1 U1
R1 I S E I2 R1 R2 R1 R2
I2
E R1 R2
R1 I2 IS R1 R2
R1 R2 U 1 IS R1 R2
R1 U 1 E R1 R2
R1 R1 R2 U1 US IS R1 R2 R1 R2
电路的基本分析方法
结论: 1. 当电压源等效变换为电流源时,电流源的电激流应等于电压源 的源电压US除以电压源的内电阻Rou;
2. 当电流源等效变换为电压源时,电压源的源电压应等于电流源 的电激流IS与其内电阻R0的乘积;
3. 等效前后两电源的电压和电流的参考方向(极性)应保持一致, 内电阻应相等。
I5
电压方程:取网孔I和网孔II
d
I : I1R1 I 2 R2 I 5 R5 E
II : I 4 R4 I 6 R6 I5 R5 0
联立5个方程求解
第2章
电路的基本分析方法
2.3 结点电压法
结点电压的概念 任选电路中某一结点为零电位参考点(用 表示) 结点电压是指该结点与参考点之间的电压 参考方向从该结点指向参考结点。 图中C为参考结点,则“UA‖―UB‖为A、B结点电压
E E Ro 0
(不存在)
例如:理想电压源短路电流I无穷大 理想电流源短路电流I=IS
第2章
电路的基本分析方法
注意
(2)与恒压源并联的元件,对外电路可看成断路 。 (3)与恒流源串联的元件,对外电路可看成短路。
I
I
+
10V -
U
2
Is
U
2
不影响对外电路的作用,I、U不变 但会影响电源内部的电压或电流

第2章 电路的分析方法

第2章 电路的分析方法

第2章 电路的分析方法电路分析是指在已知电路结构和元件参数的条件下,讨论激励和响应之间的关系。

电路分析虽然可以用欧姆定律和基尔霍夫定律,但由于电路形式各异,在某些电路应用时有些美中不足。

本章主要介绍线性电路中的一些重要定理,如叠加定理、戴维南定理以及诺顿定理等。

2.1 叠加原理叠加原理是线性电路的一个重要定理,它反映了线性电路的一个基本性质:叠加性。

应用叠加原理可以使某些电路的分析计算大为简化。

所谓叠加原理就是当线性电路中有几个电源共同作用时,各某支路的电流或电压等于电路中各电源单独作用时,在该支路产生的电流或电压的代数和。

叠加原理也称独立作用原理。

所谓单独作用,是指除该电源外其它各电源都不作用于电路(除源)。

对不作用于电路的电源的处理办法是:恒压源予以短路,恒流源予以开路。

对实际电源的内阻应保留。

叠加(求代数和)时以原电路的电流(或电压)的参考方向为准,若各个独立电源分别单独作用时的电流(或电压)的参考方向与原电路的电流(或电压)的参考方向一致则取正号,相反则取负号。

例2-1-1 图2-1(a )所示电路中,已知R 1 = 100Ω,R 2 = 100Ω,U S = 20V , I S = 1A 。

试用叠加原理求支路电流I 1和I 2。

解:根据原电路画出各个独立电源单独作用的电路,并标出各电路中各支路电流的参考方向,如图2-1-1(b )和(c )。

UI 2UI 2′R I 2 ″(a )原电路 (b )U S 单独作用电路 (c )I S 单独作用电路图2-1 例2-1-1插图按各电源单独作用时的电路图分别求出每条支路的电流值。

由图(b )恒压源U S 单独作用时 1212200.1A 100100S U I I R R ''====++由图(c )恒流源V S 单独作用时120.5A I I ''''== 根据电路中电流的参考方向,一致取正,相反取负的原则,求出各独立电源在支路中单作用时电流(或电压)的代数和。

第二章(1)电路基本分析方法

第二章(1)电路基本分析方法

I3
U s1
R1
R2
I2

U s3
R3

1
3
2

2.1.1 电路图与拓扑图

R2
① R3
R4
R5

R6 ④
U s1
R1
实际电路图

2
4

5

3
6

1
对应的线图
线图是由点(节点)和线段(支路)组成,反映实际 电路的结构(支路与节点之间的连接关系)。
有向图
如果线图各支路规定了一个方向(用 箭头表示,一般取与电路图中支路电流 方向一致),则称为有向图。
回路2:I3×R3+US3-I4×R4+I2×R2=0
回路3:I4×R4+I6×R6-I5×R5=0
网孔回路电压方程必为独立方程。
网孔回路电压方程数=b(支路数)-n(节点数)+1
解出支路电流
4>. 由n­1个节点电流方程和b­n+1个网孔电压方程(共b
个方程)可解出b个支路电流变量。
R3
I 3
U s3
第二章(1) 电路基本分析方法
本章内容
1.网络图论初步 2.支路电流法 3.网孔电流法 4.回路电流法 5.节点电压法
2.1 网络图论的概念
图的概念:对于一个由集中参数元件组成的电网络,
若用线段表示支路,用黑圆点表示节点,由此得到一
个由线条和点所组成的图形,称此图为原电网络的拓
扑图,简称为图。
I1 ①
- I1 + I2 - I3 =0
I1 -10+3× I2 =0 3×I2 +2× I3 -13=0
解得: I1 =1A, I2 =3A, I3 =2A

第2章(1) 电路分析的等效变换法

第2章(1) 电路分析的等效变换法
总功率
p=Gequ2 = (G1+ G2+ …+Gn ) u2
=G1u2+G2u2+ +Gnu2
=p1+ p2++ pn 表明
(1) 电阻并连时,各电阻消耗的功率与电阻大小成反比 (2) 等效电阻消耗的功率等于各并联电阻消耗功率的总和
三. 电阻的串并联 电路中有电阻的串联,又有电阻的并联,
这种连接方式称电阻的串并联。
:电流放大倍数
(2) 电压控制电流源 ( VCCS )
i1 +
u1 _ gu 1
i2 +
u2 _
i2 gu1
g: 转移电导
(3) 电压控制电压源 ( VCVS )
i1 + u1 _ + -
i2 +
u2 u1
: 电压放大倍数
u1 u2
_
(4) 电流控制电压源 ( CCVS )
变Y
由三式两两相乘后再相加,再分别除以三式中的每一个, 可得Y型型的变换条件:
简记方法:

Y电阻两两乘积之和 Y不相邻电阻
Y变
特例:若三个电阻相等(对称),则有
R = 3R Y
外大内小
R12 R1
R31
R2 R23
R3

桥 T 电路 1k 1k 1k 1k R
1/3k
B
i
+ u -
等效 C
i
+ u -
对A电路中的电流、电压和功率而言,满足
B A C A
(1)电路等效变换的条件
两电路具有相同的VCR 未变化的外电路A中 的电压、电流和功率 化简电路,方便计算

电工技术第2章

电工技术第2章

跳转到第一页
第2章 电路分析方法
假设有电压源 U S 2 单独 作用,则 U S 1 0 即把电压源 U S1 短路,则电路 变成了图2-17c,由此电路图可得
I '' US 2 R1 R1 * U R1R R1 R R1 R2 R1 R R2 R S 2 R1 R1 R
A和C节点间的互导 :G13 G31 0 将上述分析结果代入3个独立节点的节点电压方程的一般 形式,则有如下方程组
U S1 1 1 1 ( R R )U a R U b R I S 2 2 1 1 U b U S 2 1 1 1 U b ( )U c I S R3 R4 R3
电压源与电流源对外电路等效的条件为:
U s I s Ro

Us Is Ro
跳转到第一页
且两种电源模型的内阻相等。
第2章 电路分析方法
在进行电源的等效变换时要注意: (1)电源的等效变换只是对外电路而言的,至于对 电源内部,则是不等效的。例如当外电路开路时,电压 源I=0,内电阻R0 不损耗功率,而电流源内部仍有电流 , 内 阻 R0 有 功 率 损 耗 。 当 外 电 路 短 路 时 , 电 压 源 I=ISC=US/R0,内电阻R0损耗功率,而电流源内部,内阻 R0上无电流通过,不损耗功率。 (2)在进行等效变换时,两种电路模型的极性必须 一致,即电流源流出电流的一端与电压源的正极性端相 对应。 (3)理想电压源和理想电流源之间不能进行等效 变换。因为对理想电压源(R0=0),其短路电流IS为无 穷大,对理想电流源(R0=∞),其空载电压UOC为无 穷大,这都是不可能的。
跳转到第一页
第2章 电路分析方法

电路分析第2章 电路分析方法1

电路分析第2章 电路分析方法1

i2 G3 4
结论: 结论: 1. 自电导×节点电压 + 互电导×相邻节点电压 = 该节点 自电导× 互电导× 的电流源电流代数和。流进为正,流出为负。 的电流源电流代数和。流进为正,流出为负。 2. 自电导均为正值,互电导均为负值。 自电导均为正值,互电导均为负值。 3.适用于平面电路和非平面电路。 适用于平面电路和非平面电路。 适用于平面电路和非平面电路
( R1 + R3 ) I1 − R3 I3 = U S1 − U 0 ( R4 + R5 + R6 ) I2 − R6 I3 = U 0 − R3 I1 − R6 I2 + ( R2 + R3 + R6 ) I3 = U S2 I S = I 2 − I1
辅助方程
10
[例4] 电路如图示,已知 S=5V,R1=R2=R4=R5=1Ω, 例 电路如图示,已知U , Ω R3=2Ω,µ=2。 求U1=? Ω 。 R5 +µU2– [解] 列网孔方程时,可先将受控源 解 列网孔方程时,
应用KVL列回路电压方程 列回路电压方程 应用 R2iB+R5(iA+iB)+R6(iB+iC) − uS2 =0
+
R1iA+R5(iA+iB)+R4(iA−iC) + uS4 − uS1=0 R3iC− uS3 − uS4+R4(iC−iA)+R6(iB+iC) =0
uS3

R3
i3
(R1+R4+R5)iA+R5iB−R4iC = uS1 − uS4 R11iA+R12iB+R13iC=uS11 R21iA+R22iB+R23iC=uS22 R5iA+ (R2+R5+R6)iB+R6iC = uS2 −R4iA+R6iB+(R3+R4+R6)iC= uS3+uS4 R31iA+R32iB+R33iC=uS33

第2章 电路基本定律和分析方法(1)

第2章 电路基本定律和分析方法(1)

b
d
支路中含有恒流源
所选回路中包含恒流源支路,而 恒流源两端的电压未知,可以设 定其电压,此时 3 个网孔要列 3 个 KVL方程。
解:(1) 应用KCL列节点电流方程
I+3
对节点 a: I1 + I2 –I3 = – 7 (2) 应用KVL列回路电压方程
UX

对回路1:12I1 – 6I2 = 42
I1 I1' I1'' P1 I12 R1 (I1 I1)2 R1 I12 R1 I1 2 R1 P1 P1' P1''
应用叠加定理要注意的问题:
④ 解题时要标明各支路电流、电压的参考方向。若分电流、 分电压与原电路中电流、电压的参考方向相反时,叠加时 相应项前要带负号。
⑤ 应用叠加定理时可把电源分组求解,即每个分电路中的 电源个数可以 不止一个。
例2: 求图示电路中的电流 I。已知R1 = R3 = 2, R2= 5, R4 = 8,
R5 =14, E1= 8V, E2 = 5V, IS= 3A。
I R4
I’ R4
I’’ R4
R1
+
R3 IS
E1 –
R5
R2
R1
+ =+
E2 –
E1 –
R3 R5
R2
R1
++
E2 –
+ E1

R3 IS R5
注意:
1. 列方程前标注回路循行方向。 2. 应用 U = 0列方程时,项前符号的确定:
如果规定电位降取正号,则电位升就取负号。
例 :图中若 U1= – 2 V,U2 = 8 V,U3 = 5 V,U5 = – 3 V, R4 = 2 ,求电阻 R4 两端的电压及流过它的电流。

第2章 电路的分析方法

第2章 电路的分析方法

此方法特别适合结点少支路多的电路。 方法特别适合结点少支路多的电路。
28

用结点电压 法求图示电路 中的电流I。
1)选择参考结点, 选择参考结点,标 出结点电压与支路电流 的正方向。 的正方向。 2)列结点电压方程组
1 1 1 1 28 + )U 1 − U 2 = ( + 10 40 20 20 10 1 1 1 − U 1 + ( + )U 2 = 5 20 20 30
1 r1 r2 2 r3 3
Y-∆
等效变换 R12 2
1 R31 R23 3
当 r1 = r2 = r3 =r , R12 = R23 =R31 =R 时:
1 r= R 3
8
4、实际电源模型间的等效互换
一个实际电源既可用电压源与电阻串联 一个实际电源既可用电压源与电阻串联的电 电压源与电阻串联的电 路模型来表示, 路模型来表示,也可用电流源与电阻并联 也可用电流源与电阻并联的电路 电流源与电阻并联的电路 ' 模型来表示。 模型来表示。即 I I a a RO ' Uab + Uab ' RO US IS b b 等效互换的条件: 等效互换的条件:对外的电压电流相等。 对外的电压电流相等。 即: '
3)求I
U1 − U 2 I= = −2.2 A 20
29
解得 U1=40V , U2=84V

电路如图所 示,求电路结点 2的电位V2。 分析 V1=2V
I2
I1
解:
1 3 1 1 + V2 − V1 = − + 0.5 3 3 3 4
解得: 解得: 验证: 验证: V2=2/7 V=0.29V

《电工电子技术基础》第2章 电路的基本分析方法

《电工电子技术基础》第2章 电路的基本分析方法
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——电源等效变换
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——电源等效变换
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——电源等效变换
如图2.2.11所示,计算电路中流过2 Ω电阻的电流I。
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——叠加定理
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——叠加定理
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——叠加定理
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法——戴维宁定理
2.5 戴维宁定理
复杂电路中有时只需要计算其中某一条支路的响应,此时可 以将这条支路划出,而把其余部分看作一个有源二端网络。 有源二端网络 具有两个出线端的内含独立电源的电路 无源二端网络 不含独立电源的二端网络
回路,网孔的数目就等于总的独立回路数。
I1
I3
I2 I II
III
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——支路电流法
4.选取独立结点电流方程和独立回路电压方程组成联列方程组。
I1
I3
I1+I2 - I3=0 R1I1 - R2I2=US1 - US2
I2 I II
R2I2+R3I3=US2
III
5.方程总数等于支路总数,也就是所要求的变量数,方程组
有唯一的解。解方程组,可得到各支路电流I1、I2和I3。
I1
US1(R2 R3 ) R1R2 R2 R3
US2 R3 R3R1

电路理论 第2章

电路理论 第2章

I1
R1 + US R2 I2 R3 I3
US-激励 ; I1, I2, I3 -响应 I=KUS (K是结构系数)
1 如: I 1 = U S = K 1U S R1 + R2 R3
7

第 2 章
求电流IL R1 + US – + US′ R2 R3 R4 R5 IL’ =1A RL
解: 用齐性原理 设 IL′ =1A K = US / US′ US ′ IL= K IL′
(也不存在)
18
(3) 注意转换前后 US(或E )与 IS 的方向。
第 2 章
a RS
a
E
+ US b
IS
RS b
a RS E US + b IS RS
a
b
19

第 2 章
求电流I 3Ω 6V + − 2A 4Ω
2Ω 6Ω 4Ω + − 4V I 1Ω
2Ω 2A 6Ω 4Ω + − 4V I 1Ω
-
8V +
5A
-
8V
+ + 5V
3V +
-
13
三、戴维南电路与诺顿电路等效互换
第 2 章
I RS
+ -
I U RL
(A)
RS IS
诺顿电路
US
U
RL
(B)
戴维南电路
U = U S − IRS
I = I S − U / RS
U = I S RS − IRS
令US=ISRS (或IS=US/RS),则图A、B对外电路(RL)言是等效的
推广:理想(受控)电流源与二端网络N的串联电路 I N gU2 U N IS U IS U I I

02分电阻电路的分析方法-(1)

02分电阻电路的分析方法-(1)

02分电阻电路的分析方法-(1)电阻电路的分析方法一、是非题1.图示三个网络a、b端的等效电阻相等。

2.当星形联接的三个电阻等效变换为三角形联接时,其三个引出端的电流和两两引出端的电压是不改变的。

3.对外电路来说,与理想电压源并联的任何二端元件都可代之以开路。

4.如二端网络的伏安特性为U=-20-5I,则图示支路与之等效。

5.两个电压值都为U S的直流电压源,同极性端并联时,可等效为一个电压源,其电压值仍为U S。

6.左下图示电路中,如100V电压源供出100W功率,则元件A吸收功率20W。

7.对右上图示电路,如果改变电阻R1,使电流I1变小,则I2必增大。

二、单项选择题2.在左下图示电路中,当开关S由闭合变为断开时,灯泡将(A)变亮(B)变暗(C)熄灭3.右上图示电路中电流I为(A)趋于无限(B)12A(C)6A(D)9A4.当标明“100Ω,4W”和“100Ω,25W”的两个电阻串联时,允许所加的最大电压是(A)40V (B)70V (C)140V5.电路如左下图所示,已知电压源电压U S=230V,内阻R S=1Ω。

为使输出电压为220V、功率为100W的灯泡正常发光,则应并联(A)22盏灯 (B)11盏灯 (C)33盏灯6.对右上图示电路,节点1的节点方程为(A)6U1-U2=6 (B)6U1=6 (C)5U1=6 (D)6U1-2U2=27.左下图示二端网络的电压、电流关系为(A)u=10-5i(B)u=10+5i(C)u=5i-10(D)u=-5i-108.右上图示电路中的电流I为(A)0.25A (B)0.5A (C) A (D)0.75A9.左下图示电路的输入电阻R ab(A)大于10Ω(B)等于10Ω(C)小于10Ω的正电阻(D)为一负电阻10.右上图示二端网络的输入电阻为(A)3Ω (B)6Ω (C)5Ω (D)-3Ω11.图示为电路的一部分,已知U ab=30V,则受控源发出的功率为(A)40W(B)60W(C)-40W(D)-60W12.若图1所示二端网络N的伏安关系如图2所示,则N可等效为13.图示电路中,增大G1将导制()。

第二章 电路的基本分析方法1

第二章 电路的基本分析方法1

第二章电路的基本分析方法一、填空题:1. 有两个电阻,当它们串联起来的总电阻为10Ω,当他们并联起来的总电阻为2.4Ω。

这两个电阻的阻值分别为_ _4Ω ___和__6Ω。

= 1 Ω。

2. 下图所示的电路,A、B之间的等效电阻RAB= 3 Ω。

3. 下图所示的电路,A、B之间的等效电阻RABA2ΩB4. 下图所示电路,每个电阻的阻值均为30Ω,电路的等效电阻R= 60ABΩ。

5.下图所示电路中的A、B两点间的等效电阻为___12KΩ________.若图中所示的电流I=6mA,则流经6K电阻的电流为__2mA _____;图中所示方向的电压U为____12V____.此6K电阻消耗的功率为__24mW_________。

AU6. 下图所示电路中,ab 两端的等效电阻为 12Ω,cd 两端的等效电阻为 4Ω 。

abcd6Ω5Ω15Ω5Ω7.下图所示电路a 、b 间的等效电阻Rab 为 4 Ω。

8. 下图所示电路中,ab 两点间的电压abU 为 10 V 。

+_++_10V4V 24V a b9. 下图所示电路中,已知 U S =3V , I S = 3 A 时,支路电流I 才等于2A 。

_+Ω1ΩsI 3I10. 某二端网络为理想电压源和理想电流源并联电路,则其等效电路为 理想电压源 。

11.已知一个有源二端网络的开路电压为20V ,其短路电流为5A ,则该有源二端网络外接 4 Ω电阻时,负载得到的功率最大,最大功率为 25W 。

12.应用叠加定理分析线性电路时,对暂不起作用的电源的处理, 电流 源应看作开路, 电压 源应看作短路。

13.用叠加定理分析下图电路时,当电流源单独作用时的I 1= 1A ,当电压源单独作用时的I 1= 1A ,当电压源、电流源共同时的I 1= 2A 。

+_Ω6I 13A9V 3Ω14.下图所示的电路中,(a )图中Uab 与I 的关系表达式为 Uab= 3I ,(b) 图中Uab 与I 的关系表达式为 Uab=3I+10 ,(c) 图中Uab 与I 的关系表达式为 Uab=6(I+2)-10 ,(d )图中Uab 与I 的关系表达式为 Uab=6(I+2)-10 。

第2章 电路的分析方法1.电路的连接2.电压源和电流源3.支路电...

第2章 电路的分析方法1.电路的连接2.电压源和电流源3.支路电...

U U R1 U 1 R1 I R1 R1 U R R1 R2 R1 R2 两个电阻串联时的分压公式:
R1 U1 U R1 R2
I + U – + U1 R1 – + U2 R 2 –
R2 U2 U R1 R2
I + U – R
8
第2章
电路的分析方法
例 2-1 有一个电表的表头,其内阻R g=5kΩ,允许 通过的最大电流(这时表头指针偏转到满刻度) I g =200μA. 。问直接用这个表头可以测多大的电压? 如果要求用来测量 10V以下(包括 10V)的电压, 则应串入多大的电阻?
4
第2章
电路的分析方法
电阻的串联和并联
一、电阻的串联:
Req R1 R2 Rn Rk
k 1 n
二、电阻的并联:
n 1 1 1 1 1 Req R1 R2 Rn k 1 Rk
5
第2章
电路的分析方法
2.1 电阻的连接
在电阻电路中,电阻的连接形式多种多样,其中最简 单的连接方式是串联和并联 2.1.1 电阻的串联 几个电阻依次首尾相接,中间没有节点,不产生分支 电路,这种连接方式叫串联,其重要特点是在电源作 用下,串联电路中的电流是处处相等的。 1.串联电阻的等效化简 对于多个串联电阻来说,可以用一个等效电阻R来代 替,该等效电阻R可以用KVL很容易计算出来,等效 电阻的值等于串联电路中各电阻之和
R
+ U I I1 R1 R2 I2 + U 11
第2章
电路的分析方法
I
R1 R 2 R1 R 2
R
图 2-3 并联电阻的等效简化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总目录 章目录 返回 上一页 下一页
2.2 电阻星形联结与三角形联结的等效变换
Ia a Ra Ia a Rab RbcRca b
Ib
Ic b
Rc c
等效变换
Ib Ic
Rb
c
将Y形联接等效变换为形联结时 若 Ra=Rb=Rc=RY 时,有Rab=Rbc=Rca= R = 3RY; 将形联接等效变换为Y形联结时 若 Rab=Rbc=Rca=R 时,有Ra=Rb=Rc=RY =R/3
(c) b
理想电流源两端的电压
U IS U R2 I S RI R2 I S 1 6V 2 2V 10V
总目录 章目录 返回 上一页 下一页
(3)由计算可知,本例中理想电压源与理想电流源 都是电源,发出的功率分别是:
PU 1 = U1 IU 1 = 10×6 = 60W PIS = U IS IS = 10×2 = 20W 各个电阻所消耗的功率分别是:
2
4
I
1 4A
1A
总目录 章目录 返回
上一页 下一页
解:
2 2
2
4
I 1
+ 8V -
4
I
1A
2
1
4A
1A
I 2A
I
1A 4
1
3A
2 1
4
2 I 3A 2A 21
总目录 章目录 返回 上一页 下一页
例3: 电路如图。U1=10V,IS=2A,R1=1Ω, R2=2Ω,R3=5 Ω ,R=1 Ω。(1) 求电阻R中的电流I; (2)计算理想电压源U1中的电流IU1和理想电流源IS两端 的电压UIS;(3)分析功率平衡。
总目录 章目录 返回 上一页 下一页
2.1.2 电阻的并联
I + I1 U – I2
特点: (1)各电阻联接在两个公共的结点之间; (2)各电阻两端的电压相同;
R1 R2 (3)等效电阻的倒数等于各电阻倒数之和; 1 1 1 R R1 R2 (4)并联电阻上电流的分配与电阻成反比。 I 两电阻并联时的分流公式: R
总目录 章目录 返回
c
电阻Y形联结
上一页 下一页
2.2 电阻星形联结与三角形联结的等效变换
Ia a Ra Rc
C
Ia 等效变换 Ib Ic b
a Rab RbcRca
Ib
Ic b
Rb
C
电阻Y形联结
电阻形联结
等效变换的条件: 对应端流入或流出的电流(Ia、Ib、Ic)一一相等, 对应端间的电压(Uab、Ubc、Uca)也一一相等。
总目录 章目录 返回 上一页 下一页
2.3.2 电流源
电流源是由电流 IS 和内阻 R0 并联的电源的 电路模型。
U0=ISR0 U
电流源
理 想 电 流 源
I
+
IS
R0
U R0 U -
RL
电流源模型
由上图电路可得: U I O I IS IS R0 若 R0 = 电流源的外特性 理想电流源 : I IS 若 R0 >>RL ,I IS ,可近似认为是理想电流源。
注意事项: ① 电压源和电流源的等效关系只对外电路而言, 对电源内部则是不等效的。 例:当RL= 时,电压源的内阻 R0 中不损耗功率, 而电流源的内阻 R0 中则损耗功率。 ② 等效变换时,两电源的参考方向要一一对应。 a a + a a – E E – IS R0 + IS R0 R0 R0 b b b b ③ 理想电压源与理想电流源之间无等效关系。 ④ 任何一个电动势 E 和某个电阻 R 串联的电路, 都可化为一个电流为 IS 和这个电阻并联的电路。
总目录 章目录 返回 上一页 下一页
例1: 求下列各电路的等效电源 2 +
a
2 3 (b) a 5A 3 (b)
a + U

+ U 3 5V – (a) 解:
2 + 5V – (a) + U
5A
b
a
+ 2 U + 5V2V b (c) + U (c)
总目录 章目录 返回
+
a
+
总目录 章目录 返回 上一页 下一页
例1: 对图示电路求总电阻R12
1
2 R12 1 2 D 0.8
C
2
1
R12
1 2 1 0.8 R12 2.4 1.4 1 1
0.4
0.4
2 2 1
1
2.684 2
由图: R12=2.68
总目录 章目录 返回 上一页 下一页
1
I
2.1 电阻串并联联接的等效变换
特点: + + 1)各电阻一个接一个地顺序相联; U1 R1 2)各电阻中通过同一电流; – U + 3)等效电阻等于各电阻之和; U2 R 2 R =R1+R2 – – 4)串联电阻上电压的分配与电阻成正比。 两电阻串联时的分压公式: I R1 R2 U1 U U2 U + R1 R2 R1 R2 U R 应用: 降压、限流、调节电压等。 –
a
U
b
b
+ 5V –
b
上一页 下一页
例2: 试用电压源与电流源等效变换的方法 计算2电阻中的电流。
1
2A 3 + 6V – 6 + 12V – (a) 1 2
解:
I 2A 3 2A

1 1 2V
6 (b)
由图(d)可得
– 2 I 4A (c) 2
8 2 I A 1A 2 2 2
PR = RI 2 = 1 ×6 2 = 36W
2 PR1 = R1 I R1 = 1 × 4 2 = 16W (- )
PR 2 = R2 I S 2 = 2 ×22 = 8W PR 3 = R3 I R 3 2 = 5 ×22 = 20W 两者平衡: (60+20)W=(36+16+8+20)W 80W=80W
2 2V 2 2 + 8V – (d)
+
+
总目录 章目录 返回
+ 2 2V 2
I

I
上一页 下一页
试用电压源与电流源等效变换的方法计算图示 例3: 电路中1 电阻中的电流。 2
+ 6V 3 2A 6 + 4V 4 1 I
解:统一电源形式
2 2
3
2A 2A
6
1A
4
1 I
+ U –
应用: 分流、调节电流等。
R2 I1 I R1 R2
R1 I2 I R1 R2
总目录 章目录 返回 上一页 下一页
2.2 电阻星形联结与三角形联结的等换
A C D A
RO
C B D
RO
B
Ia a Ra
Ia
a
Ib
Ic b
Rc
Y-等效变换
Rb
c
Ib Ic
Rab RbcRca b 电阻形联结
第2章 电路的分析方法
本章要求: 1. 掌握支路电流法、叠加原理和戴维宁定理等 电路的基本分析方法。 2. 了解实际电源的两种模型及其等效变换。 3. 了解非线性电阻元件的伏安特性及静态电阻、 动态电阻的概念,以及简单非线性电阻电路 的图解分析法。
总目录 章目录 返回
上一页 下一页
2.1.1 电阻的串联
Rb Rc Rbc //( Rab Rba ) 件 Ra Rc Rca //( Rab Rbc )
据此可推出两者的关系
总目录 章目录 返回 上一页 下一页
2.2 电阻星形联结与三角形联结的等效变换
Ia
a
Ra
Ia
a
Rab RbcRca b
等效变换
Rc
Ib
Ic
Rab Rbc Rca
总目录 章目录 返回 上一页 下一页
理想电流源(恒流源) I IS
+ U _ RL
O
U
特点: (1) 内阻R0 = ; (2) 输出电流是一定值,恒等于电流 IS ; (3) 恒流源两端的电压 U 由外电路决定。
IS 外特性曲线
I
例1: IS = 10 A,接上RL 后,恒流源对外输出电流。 设 当 RL= 1 时, I = 10A ,U = 10 V 当 RL = 10 时, I = 10A ,U = 100V 电流恒定,电压随负载变化。
IR1
IU1 R3
Байду номын сангаас
(c) b (b) b 解:(1)由电源的性质及电源的等效变换可得: I1 I S 10 2 U 1 10 A 6A I1 A 10A I 2 2 R1 1
总目录 章目录 返回 上一页 下一页
+ IS _ I U _ 1 R2 S U _ b (a)
总目录 章目录 返回 上一页 下一页
理想电压源(恒压源) I + E _ + U _ E RL O
U
I
外特性曲线 特点: (1) 内阻R0 = 0 (2) 输出电压是一定值,恒等于电动势。 对直流电压,有 U E。 (3) 恒压源中的电流由外电路决定。 例1: E = 10 V,接上RL 后,恒压源对外输出电流。 设 电压恒定,电 当 RL= 1 时, U = 10 V,I = 10A 当 RL = 10 时, U = 10 V,I = 1A 流随负载变化
总目录 章目录 返回 上一页 下一页
2.4 支路电流法
支路电流法:以支路电流为未知量、应用基尔霍夫 定律(KCL、KVL)列方程组求解。 I1 I2 a
相关文档
最新文档