上海市松江区2016届高考数学一模试卷(文科)(解析版)
2016年上海市高考文科数学试卷及参考答案与试题解析
2016年上海市高考文科数学试卷及参考答案与试题解析一、填空题(本大题共14题,每小题4分,共56分).1.(4分)设x∈R,则不等式|x-3|<1的解集为.2.(4分)设z=,其中i为虚数单位,则z的虚部等于.3.(4分)已知平行直线l1:2x+y-1=0,l2:2x+y+1=0,则l1,l2的距离.4.(4分)某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76.则这组数据的中位数是(米).5.(4分)若函数f(x)=4sinx+acosx的最大值为5,则常数a=.6.(4分)已知点(3,9)在函数f(x)=1+a x的图象上,则f(x)的反函数f-1(x)=.7.(4分)若x,y满足,则x-2y的最大值为.8.(4分)方程3sinx=1+cos2x在区间[0,2π]上的解为.9.(4分)在(-)n的二项式中,所有的二项式系数之和为256,则常数项等于.10.(4分)已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.11.(4分)某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为.12.(4分)如图,已知点O(0,0),A(1,0),B(0,-1),P是曲线y=上一个动点,则•的取值范围是.13.(4分)设a>0,b>0.若关于x,y的方程组无解,则a+b的取值范围是.14.(4分)无穷数列{an }由k个不同的数组成,Sn为{an}的前n项和,若对任意n∈N*,Sn∈{2,3},则k的最大值为.二、选择题(本大题共有4题,满分20分,每题有且只有一个正确答案,选对得5分,否则一脸得零分).15.(5分)设a∈R,则“a>1”是“a2>1”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件16.(5分)如图,在正方体ABCD-A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是( )A.直线AA1B.直线A1B1C.直线A1D1D.直线B1C117.(5分)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x-)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为( )A.1B.2C.3D.418.(5分)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函数,则f(x)、g(x)、h(x)均是增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是( )A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题三、简答题:本大题共5题,满分74分19.(12分)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为,长为,其中B1与C在平面AA1O1O的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小.20.(14分)有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分别为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F的坐标为(1,0),如图(1)求菜地内的分界线C的方程;(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的经验值为.设M是C上纵坐标为1的点,请计算以EH为一边,另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于S1面积的“经验值”.21.(14分)双曲线x 2-=1(b >0)的左、右焦点分别为F 1、F 2,直线l 过F 2且与双曲线交于A 、B 两点. (1)若l 的倾斜角为,△F 1AB 是等边三角形,求双曲线的渐近线方程;(2)设b =,若l 的斜率存在,且|AB|=4,求l 的斜率.22.(16分)对于无穷数列{a n }与{b n },记A ={x|x =a n ,n ∈N *},B ={x|x =b n ,n ∈N *},若同时满足条件:①{a n },{b n }均单调递增;②A ∩B =∅且A ∪B =N *,则称{a n }与{b n }是无穷互补数列. (1)若a n =2n -1,b n =4n -2,判断{a n }与{b n }是否为无穷互补数列,并说明理由; (2)若a n =2n 且{a n }与{b n }是无穷互补数列,求数量{b n }的前16项的和;(3)若{a n }与{b n }是无穷互补数列,{a n }为等差数列且a 16=36,求{a n }与{b n }的通项公式. 23.(18分)已知a ∈R,函数f(x)=log 2(+a). (1)当a =1时,解不等式f(x)>1;(2)若关于x 的方程f(x)+log 2(x 2)=0的解集中恰有一个元素,求a 的值;(3)设a >0,若对任意t ∈[,1],函数f(x)在区间[t,t +1]上的最大值与最小值的差不超过1,求a 的取值范围.2016年上海市高考数学试卷(文科) 参考答案与试题解析一、填空题(本大题共14题,每小题4分,共56分).1.(4分)设x ∈R,则不等式|x -3|<1的解集为 (2,4) .【分析】由含绝对值的性质得-1<x -3<1,由此能求出不等式|x -3|<1的解集. 【解答】解:∵x ∈R,不等式|x -3|<1, ∴-1<x -3<1, 解得2<x <4.∴不等式|x -3|<1的解集为(2,4). 故答案为:(2,4). 【点评】本题考查含绝对值不等式的解法,是基础题,解题时要认真审题,注意含绝对值不等式的性质的合理运用.2.(4分)设z =,其中i 为虚数单位,则z 的虚部等于 -3 . 【分析】利用复数的运算法则即可得出.【解答】解:z ===-3i +2,则z 的虚部为-3. 故答案为:-3.【点评】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.3.(4分)已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2的距离 .【分析】直接利用平行线之间的距离公式求解即可.【解答】解:平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2的距离:=.故答案为:.【点评】本题考查平行线之间的距离公式的应用,考查计算能力.4.(4分)某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76.则这组数据的中位数是 1.76 (米).【分析】将数据从小到大进行重新排列,根据中位数的定义进行求解即可.【解答】解:将5位同学的身高按照从小到大进行排列为1.69,1.72,1.76,1.78,1.80. 则位于中间的数为1.76,即中位数为1.76, 故答案为:1.76【点评】本题主要考查中位数的求解,根据中位数的定义,将数据从小到大进行排列是解决本题的关键.5.(4分)若函数f(x)=4sinx +acosx 的最大值为5,则常数a = ±3 . 【分析】利用辅助角公式化简函数f(x)的解析式,再利用正弦函数的最大值为5,求得a 的值.【解答】解:由于函数f(x)=4sinx+acosx=sin(x+θ),其中,cosθ=,sinθ=,故f(x)的最大值为=5,∴a=±3,故答案为:±3.【点评】本题主要考查辅助角公式,正弦函数的值域,属于基础题.(x-1)(x 6.(4分)已知点(3,9)在函数f(x)=1+a x的图象上,则f(x)的反函数f-1(x)=log2>1) .【分析】由于点(3,9)在函数f(x)=1+a x的图象上,可得9=1+a3,解得a=2.可得f(x)=1(y-1),(y>1).把x与y互换即可得出f(x)的反函数f-1(x). +2x,由1+2x=y,解得x=log2【解答】解:∵点(3,9)在函数f(x)=1+a x的图象上,∴9=1+a3,解得a=2.(y-1),(y>1).∴f(x)=1+2x,由1+2x=y,解得x=log2把x与y互换可得:f(x)的反函数f-1(x)=log(x-1).2(x-1),(x>1).故答案为:log2【点评】本题考查了反函数的求法、指数函数与对数函数的互化,考查了推理能力与计算能力,属于中档题.7.(4分)若x,y满足,则x-2y的最大值为-2 .【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.【解答】解:画出可行域(如图),设z=x-2y⇒y=x-z,由图可知,当直线l经过点A(0,1)时,z最大,且最大值为z=0-2×1=-2.max故答案为:-2.【点评】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.8.(4分)方程3sinx=1+cos2x在区间[0,2π]上的解为或.【分析】利用二倍角公式化简方程为正弦函数的形式,然后求解即可.【解答】解:方程3sinx=1+cos2x,可得3sinx=2-2sin2x,即2sin2x+3sinx-2=0.可得sinx=-2,(舍去)sinx=,x∈[0,2π]解得x=或.故答案为:或.【点评】本题考查三角方程的解法,恒等变换的应用,考查计算能力.9.(4分)在(-)n的二项式中,所有的二项式系数之和为256,则常数项等于112 . 【分析】根据展开式中所有二项式系数的和等于2n=256,求得 n=8.在展开式的通项公式中,令x的幂指数等于0,求得r的值,即可求得展开式中的常数项.【解答】解:∵在(-)n的二项式中,所有的二项式系数之和为256,∴2n=256,解得n=8,==,∴(-)8中,Tr+1∴当=0,即r=2时,常数项为T=(-2)2=112.3故答案为:112.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.10.(4分)已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.【分析】可设△ABC的三边分别为a=3,b=5,c=7,运用余弦定理可得cosC,由同角的平方关系可得sinC,再由正弦定理可得该三角形的外接圆半径为,代入计算即可得到所求值. 【解答】解:可设△ABC的三边分别为a=3,b=5,c=7,由余弦定理可得,cosC===-,可得sinC===,可得该三角形的外接圆半径为==.故答案为:.【点评】本题考查三角形的外接圆的半径的求法,注意运用正弦定理和余弦定理,考查运算能力,属于基础题.11.(4分)某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为.【分析】利用分步乘法求出两同学总的选法种数,再求出选法相同的选法种数,利用古典概型概率计算公式得答案.【解答】解:甲同学从四种水果中选两种,选法种数为,乙同学的选法种数为,则两同学的选法种数为种.两同学相同的选法种数为.由古典概型概率计算公式可得:甲、乙两同学各自所选的两种水果相同的概率为.故答案为:.【点评】本题考查古典概型概率计算公式的应用,考查了组合及组合数公式,是基础题. 12.(4分)如图,已知点O(0,0),A(1,0),B(0,-1),P是曲线y=上一个动点,则•的取值范围是[-1,] .【分析】设出=(x,y),得到•=x+,令x=cosθ,根据三角函数的性质得到•=sinθ+cosθ=sin(θ+),从而求出•的范围即可.【解答】解:设=(x,y),则=(x,),由A(1,0),B(0,-1),得:=(1,1),∴•=x+,令x=cosθ,θ∈[0,π],则•=sinθ+cosθ=sin(θ+),θ∈[0,π],故•的范围是[-,1,],故答案为:[-1,].【点评】本题考查了向量的运算性质,考查三角函数问题,是一道基础题.13.(4分)设a>0,b>0.若关于x,y的方程组无解,则a+b的取值范围是(2,+∞) .【分析】根据方程组无解可知两直线平行,利用斜率得出a,b的关系,再使用基本不等式得出答案.【解答】解:∵关于x,y的方程组无解,∴直线ax+y-1=0与直线x+by-1=0平行,∴-a=-,且.即a=且b≠1.∵a>0,b>0.∴a+b=b+>2.故答案为:(2,+∞).【点评】本题考查了直线平行与斜率的关系,基本不等式的应用,属于基础题.14.(4分)无穷数列{an }由k个不同的数组成,Sn为{an}的前n项和,若对任意n∈N*,Sn∈{2,3},则k的最大值为 4 .【分析】对任意n∈N*,Sn∈{2,3},列举出n=1,2,3,4的情况,归纳可得n>4后都为0或1或-1,则k的最大个数为4.【解答】解:对任意n∈N*,Sn∈{2,3},可得当n=1时,a1=S1=2或3;若n=2,由S2∈{2,3},可得数列的前两项为2,0;或2,1;或3,0;或3,-1;若n=3,由S3∈{2,3},可得数列的前三项为2,0,0;或2,0,1;或2,1,0;或2,1,-1;或3,0,0;或3,0,-1;或3,1,0;或3,1,-1;若n=4,由S3∈{2,3},可得数列的前四项为2,0,0,0;或2,0,0,1;或2,0,1,0;或2,0,1,-1;或2,1,0,0;或2,1,0,-1;或2,1,-1,0;或2,1,-1,1;或3,0,0,0;或3,0,0,-1;或3,0,-1,0;或3,0,-1,1;或3,-1,0,0;或3,-1,0,1;或3,-1,1,0;或3,-1,1,-1;…即有n>4后一项都为0或1或-1,则k的最大个数为4,不同的四个数均为2,0,1,-1,或3,0,1,-1.故答案为:4.【点评】本题考查数列与集合的关系,考查分类讨论思想方法,注意运用归纳思想,属于中档题.二、选择题(本大题共有4题,满分20分,每题有且只有一个正确答案,选对得5分,否则一脸得零分).15.(5分)设a∈R,则“a>1”是“a2>1”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【分析】根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.【解答】解:由a2>1得a>1或a<-1,即“a>1”是“a2>1”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的关系结合充分条件和必要条件的定义是解决本题的关键,比较基础.16.(5分)如图,在正方体ABCD-A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是( )A.直线AA1B.直线A1B1C.直线A1D1D.直线B1C1【分析】根据异面直线的定义便可判断选项A,B,C的直线都和直线EF异面,而由图形即可看出直线B1C1和直线相交,从而便可得出正确选项.【解答】解:根据异面直线的概念可看出直线AA1,A1B1,A1D1都和直线EF为异面直线;B 1C1和EF在同一平面内,且这两直线不平行;∴直线B1C1和直线EF相交,即选项D正确.故选:D.【点评】考查异面直线的概念及判断,平行直线和相交直线的概念及判断,并熟悉正方体的图形形状.17.(5分)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x-)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为( )A.1B.2C.3D.4【分析】根据三角函数恒成立,则对应的图象完全相同.【解答】解:∵对于任意实数x都有sin(3x-)=sin(ax+b),则函数的周期相同,若a=3,此时sin(3x-)=sin(3x+b),此时b=-+2π=,若a=-3,则方程等价为sin(3x-)=sin(-3x+b)=-sin(3x-b)=sin(3x-b+π), 则-=-b+π,则b=,综上满足条件的有序实数组(a,b)为(3,),(-3,),共有2组,故选:B.【点评】本题主要考查三角函数的图象和性质,结合三角函数恒成立,利用三角函数的性质,结合三角函数的诱导公式进行转化是解决本题的关键.18.(5分)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函数,则f(x)、g(x)、h(x)均是增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是( )A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题【分析】①举反例说明命题不成立;②根据定义得f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),由此得出:g(x)=g(x+T),h(x)=h(x+T),f(x)=f(x+T),即可判断出真假.【解答】解:对于①,举反例说明:f(x)=2x,g(x)=-x,h(x)=3x;f(x)+g(x)=x,f(x)+h(x)=5x,g(x)+h(x)=2x都是定义域R上的增函数,但g(x)=-x不是增函数,所以①是假命题;对于②,根据周期函数的定义,f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),前两式作差可得:g(x)-h(x)=g(x+T)-h(x+T),结合第三式可得:g(x)=g(x+T),h(x)=h(x+T),同理可得:f(x)=f(x+T),所以②是真命题.故选:D.【点评】本题考查了函数的单调性与周期性、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题目.三、简答题:本大题共5题,满分74分19.(12分)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为,长为,其中B1与C在平面AA1O1O的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小.【分析】(1)直接利用圆柱的体积公式,侧面积公式求解即可.(2)设点B1在下底面圆周的射影为B,连结BB1,即可求解所求角的大小.【解答】解:(1)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,圆柱的体积为:π•12•1=π.侧面积为:2π•1=2π.(2)设点B1在下底面圆周的射影为B,连结BB1,OB,则OB∥O1B,∴∠AOB=,异面直线O1B1与OC所成的角的大小就是∠COB,大小为:-=.【点评】本题考查几何体的体积侧面积的求法,考查两直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.(14分)有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分别为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F的坐标为(1,0),如图(1)求菜地内的分界线C的方程;(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的经验值为.设M是C上纵坐标为1的点,请计算以EH为一边,另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于S1面积的“经验值”.【分析】(1)设分界线上任意一点为(x,y),根据条件建立方程关系进行求解即可.(2)设M(x0,y),则y=1,分别求出对应矩形面积,五边形FOMGH的面积,进行比较即可.【解答】解:(1)设分界线上任意一点为(x,y),由题意得|x+1|=,得y=2,(0≤x≤1),(2)设M(x0,y),则y=1,∴x==,∴设所表述的矩形面积为S3,则S3=2×(+1)=2×=,设五边形EMOGH的面积为S4,则S4=S3-S△OMP+S△MGN=-××1+=,S 1-S3==,S4-S1=-=<,∴五边形EMOGH的面积更接近S1的面积.【点评】本题主要考查圆锥曲线的轨迹问题,考查学生的运算能力,综合性较强,难度较大.21.(14分)双曲线x2-=1(b>0)的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.(1)若l的倾斜角为,△F1AB是等边三角形,求双曲线的渐近线方程;(2)设b=,若l的斜率存在,且|AB|=4,求l的斜率.【分析】(1)由题意求出A点纵坐标,由△F1AB是等边三角形,可得tan∠AF1F2=tan=,从而求得b值,则双曲线的渐近线方程可求;(2)写出直线l的方程y-0=k(x-2),即y=kx-2k,与双曲线方程联立,利用弦长公式列式求得k值.【解答】解:(1)若l的倾斜角为,△F1AB是等边三角形,把x=c=代入双曲线的方程可得点A的纵坐标为b2,由tan∠AF1F2=tan==,求得b2=2,b=,故双曲线的渐近线方程为y=±bx=±x,即双曲线的渐近线方程为y=±x.(2)设b=,则双曲线为 x2-=1,F2(2,0),若l的斜率存在,设l的斜率为k,则l的方程为y-0=k(x-2),即y=kx-2k,联立,可得(3-k2)x2+4k2x-4k2-3=0,由直线与双曲线有两个交点,则3-k2≠0,即k.△=36(1+k2)>0.x 1+x2=,x1•x2=.∵|AB|=•|x1-x2|=•=•=4,化简可得,5k4+42k2-27=0,解得k2=, 求得k=.∴l 的斜率为.【点评】本题考查直线与圆锥曲线位置关系的应用,考查了双曲线的简单性质,考查弦长公式的应用,体现了“设而不求”的解题思想方法,是中档题.22.(16分)对于无穷数列{a n }与{b n },记A ={x|x =a n ,n ∈N *},B ={x|x =b n ,n ∈N *},若同时满足条件:①{a n },{b n }均单调递增;②A ∩B =∅且A ∪B =N *,则称{a n }与{b n }是无穷互补数列. (1)若a n =2n -1,b n =4n -2,判断{a n }与{b n }是否为无穷互补数列,并说明理由; (2)若a n =2n 且{a n }与{b n }是无穷互补数列,求数量{b n }的前16项的和;(3)若{a n }与{b n }是无穷互补数列,{a n }为等差数列且a 16=36,求{a n }与{b n }的通项公式. 【分析】(1){a n }与{b n }不是无穷互补数列.由4∉A,4∉B,4∉A ∪B =N *,即可判断;(2)由a n =2n ,可得a 4=16,a 5=32,再由新定义可得b 16=16+4=20,运用等差数列的求和公式,计算即可得到所求和;(3)运用等差数列的通项公式,结合首项大于等于1,可得d =1或2,讨论d =1,2求得通项公式,结合新定义,即可得到所求数列的通项公式. 【解答】解:(1){a n }与{b n }不是无穷互补数列. 理由:由a n =2n -1,b n =4n -2,可得4∉A,4∉B,即有4∉A ∪B =N *,即有{a n }与{b n }不是无穷互补数列; (2)由a n =2n ,可得a 4=16,a 5=32,由{a n }与{b n }是无穷互补数列,可得b 16=16+4=20, 即有数列{b n }的前16项的和为(1+2+3+…+20)-(2+4+8+16)=×20-30=180;(3)设{a n }为公差为d(d 为正整数)的等差数列且a 16=36,则a 1+15d =36, 由a 1=36-15d ≥1,可得d =1或2,若d =1,则a 1=21,a n =n +20,b n =n(1≤n ≤20), 与{a n }与{b n }是无穷互补数列矛盾,舍去; 若d =2,则a 1=6,a n =2n +4,b n =.综上可得,a n =2n +4,b n =.【点评】本题考查新定义的理解和运用,考查等差数列的通项公式和求和公式的运用,考查运算和推理能力,属于中档题.23.(18分)已知a ∈R,函数f(x)=log 2(+a). (1)当a =1时,解不等式f(x)>1;(2)若关于x 的方程f(x)+log 2(x 2)=0的解集中恰有一个元素,求a 的值;(3)设a >0,若对任意t ∈[,1],函数f(x)在区间[t,t +1]上的最大值与最小值的差不超过1,求a 的取值范围.【分析】(1)当a =1时,不等式f(x)>1化为:>1,因此2,解出并且验证即可得出.(2)方程f(x)+log2(x2)=0即log2(+a)+log2(x2)=0,(+a)x2=1,化为:ax2+x-1=0,对a分类讨论解出即可得出.(3)a>0,对任意t∈[,1],函数f(x)在区间[t,t+1]上单调递减,由题意可得-≤1,因此≤2,化为:a≥=g(t),t∈[,1],利用导数研究函数的单调性即可得出.【解答】解:(1)当a=1时,不等式f(x)>1化为:>1,∴2,化为:,解得0<x<1,经过验证满足条件,因此不等式的解集为:(0,1).(2)方程f(x)+log2(x2)=0即log2(+a)+log2(x2)=0,∴(+a)x2=1,化为:ax2+x-1=0,若a=0,化为x-1=0,解得x=1,经过验证满足:关于x的方程f(x)+log2(x2)=0的解集中恰有一个元素1.若a≠0,令△=1+4a=0,解得a=,解得x=2.经过验证满足:关于x的方程f(x)+log2(x2)=0的解集中恰有一个元素1.综上可得:a=0或-.(3)a>0,对任意t∈[,1],函数f(x)在区间[t,t+1]上单调递减,∴-≤1,∴≤2,化为:a≥=g(t),t∈[,1],g′(t)===≤<0,∴g(t)在t∈[,1]上单调递减,∴t=时,g(t)取得最大值,=.∴.∴a的取值范围是.【点评】本题考查了对数函数的运算法则单调性、不等式的解法、利用导数研究函数的单调性极值与最值,考查了分类讨论方法、推理能力与计算能力,属于难题.。
2016年高考文科数学上海卷-答案
以12()log (1)f x x -=-.【提示】先将点(3,9)代入函数)(1xf x a =+求出a 值,再将x 与y 互换转化成反函数.【考点】反函数的概念,反函数的求解 7.【答案】2-【解析】由不等式组画出可行域如图中阴影部分所示,令2z x y =-,当直线1122y x z =-经过点(0,1)P 时,z 取得最大值2-.【提示】根据约束条件,画出相应的封闭区域,通过平移找到最优解. 【考点】线性规划 8.【答案】π5π,66【解析】化简3sin 1cos2x x =+得:23sin 22sin x x =-,所以22sin 3sin 20x x +-=,解得1sin 2x =或sin 2x =-(舍去),又[0,2π]x ∈,所以π5π66x =或. 【提示】先通过化简得到角的某种三角函数值,再结合角的范围求解. 【考点】三角方程 9.【答案】112【解析】由二项式定理得:所有项的二项式系数之和为2n ,即2256n =,所以8n =,又二项展开式的通项为()8483331882(2)rr rr r r r T C x C x x --+⎛⎫ ⎪⎝⎭=-=-,令84033r -=,所以2r =,所以3112T =,即常数项为112. 【提示】先根据二项展开式的通项,确定二项式系数或确定二项展开式中的指定项,再综合运用二项展开式的系数的性质求解. 【考点】二项式定理 10.【答案】733【解析】由已知可设357a b c ===,,,∴2221cos =22a b c C ab +-=-,∴3sin 2C =,∴732sin 3c R C ==. OxyP。
(精校版)2016年上海市高考数学(文)试题含答案
2016年高考上海数学试卷(文史类)考生注意:1.本试卷共4页,23道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.设x ∈R ,则不等式31x -<的解集为_______.2.设32iiz +=,其中i 为虚数单位,则z 的虚部等于______.3.已知平行直线1210l x y +-=:,2210l x y ++=:,则1l 与2l 的距离是_____.4.某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76,则这组数据的中位数是______(米).5.若函数()4sin cos f x x a x =+的最大值为5,则常数a =______.6.已知点(3,9)在函数()1xf x a =+的图像上,则()f x 的反函数1()fx -=______.7.若,x y 满足0,0,1,x y y x ≥⎧⎪≥⎨⎪≥+⎩则2x y -的最大值为_______.8.方程3sin 1cos 2x x =+在区间[]0,2π上的解为_____.9.在2)n x的二项展开式中,所有项的二项式系数之和为256,则常数项等于____.10.已知△ABC 的三边长分别为3,5,7,则该三角形的外接圆半径等于____.11.某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______.12.如图,已知点O (0,0),A (1.0),B (0,−1),P是曲线y =OP BA ×uu u r uu r的取值范围是.13.设a >0,b >0.若关于x ,y 的方程组1,1ax y x by ì+=ïïíï+=ïî无解,则a b +的取值范围是.14.无穷数列{a n }由k 个不同的数组成,S n 为{a n }的前n 项和.若对任意的*n ÎN ,{23}n S Î,则k 的最大值为.二、选择题(本大题共4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.设a ÎR ,则“a >1”是“a 2>1”的()(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)既非充分也非必要条件16.如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是()(A)直线AA 1(B)直线A 1B 1(C)直线A 1D 1(D)直线B 1C 117.设a ÎR ,[0,2π]b Î.若对任意实数x 都有πsin(3)3x ax b -+,则满足条件的有序实数对(a ,b )的对数为()(A)1(B)2(C)3(D)418.设f (x )、g (x )、h(x )是定义域为R 的三个函数.对于命题:①若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是增函数,则f (x )、g (x )、h(x )均是增函数;②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是以T 为周期的函数,则f (x )、g (x )、h(x )均是以T 为周期的函数,下列判断正确的是()(A)①和②均为真命题(B)①和②均为假命题(C)①为真命题,②为假命题(D)①为假命题,②为真命题三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图, AC 长为56π, 11A B 长为3π,其中B 1与C 在平面AA 1O 1O 的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O 1B 1与OC 所成的角的大小.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.有一块正方形菜地EFGH ,EH 所在直线是一条小河,收获的蔬菜可送到F 点或河边运走.于是,菜地分为两个区域S 1和S 2,其中S 1中的蔬菜运到河边较近,S 2中的蔬菜运到F 点较近,而菜地内S 1和S 2的分界线C 上的点到河边与到F 点的距离相等.现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为(1,0),如图(1)求菜地内的分界线C 的方程;(2)菜农从蔬菜运量估计出S 1面积是S 2面积的两倍,由此得到S 1面积的“经验值”为8.设M 是C 上纵坐标为1的点,请计算以EH 为一边、另有一边过点M 的矩形的面积,及五边形EOMGH 的面积,并判别哪一个更接近于S 1面积的“经验值”.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.双曲线2221(0)y x b b-=>的左、右焦点分别为F 1、F 2,直线l 过F 2且与双曲线交于A 、B 两点.(1)若l 的倾斜角为2π,1F AB △是等边三角形,求双曲线的渐近线方程;(2)设3,b =若l 的斜率存在,且|AB |=4,求l 的斜率.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.对于无穷数列{n a }与{n b },记A ={x |x =a ,*N n ∈},B ={x |x =n b ,*N n ∈},若同时满足条件:①{n a },{n b }均单调递增;②A B ⋂=∅且*N A B = ,则称{n a }与{n b }是无穷互补数列.(1)若n a =21n -,n b =42n -,判断{n a }与{n b }是否为无穷互补数列,并说明理由;(2)若n a =2n且{n a }与{n b }是无穷互补数列,求数列{n b }的前16项的和;(3)若{n a }与{n b }是无穷互补数列,{n a }为等差数列且16a =36,求{n a }与{n b }得通项公式.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分已知a ∈R ,函数()f x =21log ()a x+.(1)当1a =时,解不等式()f x >1;(2)若关于x 的方程()f x +22log ()x =0的解集中恰有一个元素,求a 的值;(3)设a >0,若对任意t ∈1[,1]2,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.参考答案1.)4,2(2.3-3.5524.76.15.3±6.)1(log 2-x 7.2-8.65,6ππ9.11210.33711.1612.⎡-⎣13.()2,+∞14.415.A 16.D 17.B 18.D 19.解:(1)由题意可知,圆柱的母线长1l =,底面半径1r =.圆柱的体积22V 11r l πππ==⨯⨯=,圆柱的侧面积22112S rl πππ==⨯⨯=.(2)设过点1B 的母线与下底面交于点B ,则11//O B OB ,所以C ∠OB 或其补角为11O B 与C O 所成的角.由 11A B 长为π,可知111π∠AOB =∠A O B =,由 C A 长为56π,可知5C 6π∠AO =,C C 2π∠OB =∠AO -∠AOB =,所以异面直线11O B 与C O 所成的角的大小为2π.20.解:(1)因为C 上的点到直线EH 与到点F 的距离相等,所以C 是以F 为焦点、以EH 为准线的抛物线在正方形FG E H 内的部分,其方程为24y x =(02y <<).(2)依题意,点M 的坐标为1,14⎛⎫⎪⎝⎭.所求的矩形面积为5,而所求的五边形面积为11.矩形面积与“经验值”之差的绝对值为581236-=,而五边形面积与“经验值”之差的绝对值为118143-=,所以五边形面积更接近于1S 面积的“经验值”.21.解:(1)设(),x y A A A .由题意,()2F ,0c,c =,()22241y b c b A =-=,因为1F ∆AB是等边三角形,所以2c A =,即()24413b b +=,解得22b =.故双曲线的渐近线方程为y =.(2)由已知,()2F 2,0.设()11,x y A ,()22,x y B ,直线:l ()2y k x =-.由()22132y x y k x ⎧-=⎪⎨⎪=-⎩,得()222234430k x k x k --++=.因为l 与双曲线交于两点,所以230k -≠,且()23610k ∆=+>.由212243k x x k +=-,2122433k x x k +=-,得()()()2212223613k x x k +-=-,故()21226143k x k +AB ==-==-,解得235k=,故l 的斜率为5±.22.解:(1)因为4∉A ,4∉B ,所以4∉A B ,从而{}n a 与{}n b 不是无穷互补数列.(2)因为416a =,所以1616420b =+=.数列{}n b 的前16项的和为()()23412202222++⋅⋅⋅+-+++()512020221802+⨯--=.(3)设{}n a 的公差为d ,d *∈N ,则1611536a a d =+=.由136151a d =-≥,得1d =或2.若1d =,则121a =,20n a n =+,与“{}n a 与{}n b 是无穷互补数列”矛盾;若2d =,则16a =,24n a n =+,,525,5n n n b n n ≤⎧=⎨->⎩.综上,24n a n =+,,525,5n n n b n n ≤⎧=⎨->⎩.23.解:(1)由21log 11x ⎛⎫+> ⎪⎝⎭,得112x +>,解得()0,1x ∈.(2)()2221log log 0a x x ⎛⎫++=⎪⎝⎭有且仅有一解,等价于211a x x ⎛⎫+= ⎪⎝⎭有且仅有一解,等价于210ax x +-=有且仅有一解.当0a =时,1x =,符合题意;当0a ≠时,140a ∆=+=,14a =-.综上,0a =或14-.(3)当120x x <<时,1211a a x x +>+,221211log log a a x x ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭,所以()f x 在()0,+∞上单调递减.函数()f x 在区间[],1t t +上的最大值与最小值分别为()f t ,()1f t +.()()22111log log 11f t f t a a t t ⎛⎫⎛⎫-+=+-+≤ ⎪ ⎪+⎝⎭⎝⎭即()2110at a t ++-≥,对任意1,12t ⎡⎤∈⎢⎥⎣⎦成立.因为0a >,所以函数()211y at a t =++-在区间1,12⎡⎤⎢⎥⎣⎦上单调递增,12t =时,y有最小值3142a -,由31042a -≥,得23a ≥.故a 的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭.。
2016年上海市高考数学试卷(文科)
2016年上海市高考数学试卷(文科)一、填空题(本大题共14题,每小题4分,共56分).1.(4分)(2016•上海)设x∈R,则不等式|x﹣3|<1的解集为.2.(4分)(2016•上海)设z=,其中i为虚数单位,则z的虚部等于.3.(4分)(2016•上海)已知平行直线l1:2x+y﹣1=0,l2:2x+y+1=0,则l1,l2的距离.4.(4分)(2016•上海)某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76.则这组数据的中位数是(米).5.(4分)(2016•上海)若函数f(x)=4sinx+acosx的最大值为5,则常数a=.6.(4分)(2016•上海)已知点(3,9)在函数f(x)=1+a x的图象上,则f(x)的反函数f﹣1(x)=.7.(4分)(2016•上海)若x,y满足,则x﹣2y的最大值为.8.(4分)(2016•上海)方程3sinx=1+cos2x在区间[0,2π]上的解为.9.(4分)(2016•上海)在(﹣)n的二项式中,所有的二项式系数之和为256,则常数项等于.10.(4分)(2016•上海)已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.11.(4分)(2016•上海)某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为.12.(4分)(2016•上海)如图,已知点O(0,0),A(1,0),B(0,﹣1),P是曲线y=上一个动点,则•的取值范围是.13.(4分)(2016•上海)设a>0,b>0.若关于x,y的方程组无解,则a+b的取值范围是.14.(4分)(2016•上海)无穷数列{a n}由k个不同的数组成,S n为{a n}的前n项和,若对任意n∈N*,S n∈{2,3},则k的最大值为.二、选择题(本大题共有4题,满分20分,每题有且只有一个正确答案,选对得5分,否则一脸得零分).15.(5分)(2016•上海)设a∈R,则“a>1”是“a2>1”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分也非必要条件16.(5分)(2016•上海)如图,在正方体ABCD﹣A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是()A.直线AA1 B.直线A1B1C.直线A1D1D.直线B1C117.(5分)(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.418.(5分)(2016•上海)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函数,则f(x)、g(x)、h(x)均是增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题三、简答题:本大题共5题,满分74分19.(12分)(2016•上海)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为,长为,其中B1与C在平面AA1O1O的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小.20.(14分)(2016•上海)有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分别为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F的坐标为(1,0),如图(1)求菜地内的分界线C的方程;(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的经验值为.设M是C上纵坐标为1的点,请计算以EH为一边,另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于S1面积的“经验值”.21.(14分)(2016•上海)双曲线x2﹣=1(b>0)的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.(1)若l的倾斜角为,△F1AB是等边三角形,求双曲线的渐近线方程;(2)设b=,若l的斜率存在,且|AB|=4,求l的斜率.22.(16分)(2016•上海)对于无穷数列{a n}与{b n},记A={x|x=a n,n∈N*},B={x|x=b n,n∈N*},若同时满足条件:①{a n},{b n}均单调递增;②A∩B=∅且A∪B=N*,则称{a n}与{b n}是无穷互补数列.(1)若a n=2n﹣1,b n=4n﹣2,判断{a n}与{b n}是否为无穷互补数列,并说明理由;(2)若a n=2n且{a n}与{b n}是无穷互补数列,求数量{b n}的前16项的和;(3)若{a n}与{b n}是无穷互补数列,{a n}为等差数列且a16=36,求{a n}与{b n}的通项公式.23.(18分)(2016•上海)已知a∈R,函数f(x)=log2(+a).(1)当a=1时,解不等式f(x)>1;(2)若关于x的方程f(x)+log2(x2)=0的解集中恰有一个元素,求a的值;(3)设a>0,若对任意t∈[,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.2016年上海市高考数学试卷(文科)参考答案与试题解析一、填空题(本大题共14题,每小题4分,共56分).1.(4分)(2016•上海)设x∈R,则不等式|x﹣3|<1的解集为(2,4).解:∵x∈R,不等式|x﹣3|<1,∴﹣1<x﹣3<1,解得2<x<4.∴不等式|x﹣3|<1的解集为(2,4).故答案为:(2,4).2.(4分)(2016•上海)设z=,其中i为虚数单位,则z的虚部等于﹣3.解:z===﹣3i+2,则z的虚部为﹣3.故答案为:﹣3.3.(4分)(2016•上海)已知平行直线l1:2x+y﹣1=0,l2:2x+y+1=0,则l1,l2的距离.解:平行直线l1:2x+y﹣1=0,l2:2x+y+1=0,则l1,l2的距离:=.故答案为:.4.(4分)(2016•上海)某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76.则这组数据的中位数是 1.76(米).解:将5位同学的身高按照从小到大进行排列为1.69,1.72,1.76,1.78,1.80.则位于中间的数为1.76,即中位数为1.76,故答案为:1.765.(4分)(2016•上海)若函数f(x)=4sinx+acosx的最大值为5,则常数a=±3.解:由于函数f(x)=4sinx+acosx=sin(x+θ),其中,cosθ=,sinθ=,故f(x)的最大值为=5,∴a=±3,故答案为:±3.6.(4分)(2016•上海)已知点(3,9)在函数f(x)=1+a x的图象上,则f(x)的反函数f﹣1(x)=log2(x﹣1)(x>1).解:∵点(3,9)在函数f(x)=1+a x的图象上,∴9=1+a3,解得a=2.∴f(x)=1+2x,由1+2x=y,解得x=log2(y﹣1),(y>1).把x与y互换可得:f(x)的反函数f﹣1(x)=log2(x﹣1).故答案为:log2(x﹣1),(x>1).7.(4分)(2016•上海)若x,y满足,则x﹣2y的最大值为﹣2.解:画出可行域(如图),设z=x﹣2y⇒y=x﹣z,由图可知,当直线l经过点A(0,1)时,z最大,且最大值为z max=0﹣2×1=﹣2.故答案为:﹣2.8.(4分)(2016•上海)方程3sinx=1+cos2x在区间[0,2π]上的解为或.解:方程3sinx=1+cos2x,可得3sinx=2﹣2sin2x,即2sin2x+3sinx﹣2=0.可得sinx=﹣2,(舍去)sinx=,x∈[0,2π]解得x=或.故答案为:或.9.(4分)(2016•上海)在(﹣)n的二项式中,所有的二项式系数之和为256,则常数项等于112.解:∵在(﹣)n的二项式中,所有的二项式系数之和为256,∴2n=256,解得n=8,∴(﹣)8中,T r+1==,∴当=0,即r=2时,常数项为T3=(﹣2)2=112.故答案为:112.10.(4分)(2016•上海)已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.解:可设△ABC的三边分别为a=3,b=5,c=7,由余弦定理可得,cosC===﹣,可得sinC===,可得该三角形的外接圆半径为==.故答案为:.11.(4分)(2016•上海)某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为.解:甲同学从四种水果中选两种,选法种数为,乙同学的选法种数为,则两同学的选法种数为种.两同学相同的选法种数为.由古典概型概率计算公式可得:甲、乙两同学各自所选的两种水果相同的概率为.故答案为:.12.(4分)(2016•上海)如图,已知点O(0,0),A(1,0),B(0,﹣1),P是曲线y=上一个动点,则•的取值范围是[﹣,].解:设=(x,y),则=(x,),由A(1,0),B(0,﹣1),得:=(1,1),∴•=x+,令x=sinθ,则•=sinθ+cosθ=sin(θ+),故•的范围是[﹣,],故答案为:[﹣,].13.(4分)(2016•上海)设a>0,b>0.若关于x,y的方程组无解,则a+b的取值范围是(2,+∞).解:∵关于x,y的方程组无解,∴直线ax+y﹣1=0与直线x+by﹣1=0平行,∴﹣a=﹣,且.即a=且b≠1.∵a>0,b>0.∴a+b=b+>2.故答案为:(2,+∞).14.(4分)(2016•上海)无穷数列{a n}由k个不同的数组成,S n为{a n}的前n项和,若对任意n∈N*,S n∈{2,3},则k的最大值为4.解:对任意n∈N*,S n∈{2,3},可得当n=1时,a1=S1=2或3;若n=2,由S2∈{2,3},可得数列的前两项为2,0;或2,1;或3,0;或3,﹣1;若n=3,由S3∈{2,3},可得数列的前三项为2,0,0;或2,0,1;或2,1,0;或2,1,﹣1;或3,0,0;或3,0,﹣1;或3,1,0;或3,1,﹣1;若n=4,由S3∈{2,3},可得数列的前四项为2,0,0,0;或2,0,0,1;或2,0,1,0;或2,0,1,﹣1;或2,1,0,0;或2,1,0,﹣1;或2,1,﹣1,0;或2,1,﹣1,1;或3,0,0,0;或3,0,0,﹣1;或3,0,﹣1,0;或3,0,﹣1,1;或3,﹣1,0,0;或3,﹣1,0,1;或3,﹣1,1,0;或3,﹣1,1,﹣1;…即有n>4后一项都为0或1或﹣1,则k的最大个数为4,不同的四个数均为2,0,1,﹣1,或3,0,1,﹣1.故答案为:4.二、选择题(本大题共有4题,满分20分,每题有且只有一个正确答案,选对得5分,否则一脸得零分).15.(5分)(2016•上海)设a∈R,则“a>1”是“a2>1”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分也非必要条件解:由a2>1得a>1或a<﹣1,即“a>1”是“a2>1”的充分不必要条件,故选:A.16.(5分)(2016•上海)如图,在正方体ABCD﹣A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是()A.直线AA1 B.直线A1B1C.直线A1D1D.直线B1C1解:根据异面直线的概念可看出直线AA1,A1B1,A1D1都和直线EF为异面直线;B1C1和EF在同一平面内,且这两直线不平行;∴直线B1C1和直线EF相交,即选项D正确.故选:D.17.(5分)(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.4解:∵对于任意实数x都有sin(3x﹣)=sin(ax+b),则函数的周期相同,若a=3,此时sin(3x﹣)=sin(3x+b),此时b=﹣+2π=,若a=﹣3,则方程等价为sin(3x﹣)=sin(﹣3x+b)=﹣sin(3x﹣b)=sin(3x﹣b+π),则﹣﹣b+π,则b=,综上满足条件的有序实数组(a,b)为(3,),(﹣3,),共有2组,故选:B.18.(5分)(2016•上海)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函数,则f(x)、g(x)、h(x)均是增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题解:对于①,举反例说明:f(x)=2x,g(x)=﹣x,h(x)=3x;f(x)+g(x)=x,f(x)+h(x)=5x,g(x)+h(x)=2x都是定义域R上的增函数,但g (x)=﹣x不是增函数,所以①是假命题;对于②,∵f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),前两式作差可得:g(x)﹣h(x)=g(x+T)﹣h(x+T),结合第三式可得:g(x)=g(x+T),h(x)=h(x+T),同理可得:f(x)=f(x+T),所以②是真命题.故选:D.·三、简答题:本大题共5题,满分74分19.(12分)(2016•上海)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为,长为,其中B1与C在平面AA1O1O的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小.解:(1)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,圆柱的体积为:π•12•1=π.侧面积为:2π•1=2π.(2)设点B1在下底面圆周的射影为B,连结BB1,OB,则OB∥O1B,∴∠AOB=,异面直线O1B1与OC所成的角的大小就是∠COB,大小为:﹣=.20.(14分)(2016•上海)有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分别为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F的坐标为(1,0),如图(1)求菜地内的分界线C的方程;(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的经验值为.设M是C上纵坐标为1的点,请计算以EH为一边,另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于S1面积的“经验值”.解:(1)设分界线上任意一点为(x,y),由题意得|x+1|=,得y=2,(0≤x≤1),(2)设M(x0,y0),则y0=1,∴x0==,∴设所表述的矩形面积为S3,则S3=2×(+1)=2×=,设五边形EMOGH的面积为S4,则S4=S3﹣S△OMP+S△MGN=﹣××1+=,S1﹣S3==,S4﹣S1=﹣=<,∴五边形EMOGH的面积更接近S1的面积.21.(14分)(2016•上海)双曲线x2﹣=1(b>0)的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.(1)若l的倾斜角为,△F1AB是等边三角形,求双曲线的渐近线方程;(2)设b=,若l的斜率存在,且|AB|=4,求l的斜率.解:(1)若l的倾斜角为,△F1AB是等边三角形,把x=c=代入双曲线的方程可得点A的纵坐标为b2,由tan∠AF1F2=tan==,求得b2=2,b=,故双曲线的渐近线方程为y=±bx=±x,即双曲线的渐近线方程为y=±x.(2)设b=,则双曲线为x2﹣=1,F2(2,0),若l的斜率存在,设l的斜率为k,则l的方程为y﹣0=k(x﹣2),即y=kx﹣2k,联立,可得(3﹣k2)x2+4k2x﹣4k2﹣3=0,由直线与双曲线有两个交点,则3﹣k2≠0,即k.△=36(1+k2)>0.x1+x2=,x1•x2=.∵|AB|=•|x1﹣x2|=•=•=4,化简可得,5k4+42k2﹣27=0,解得k2=,求得k=.∴l的斜率为.22.(16分)(2016•上海)对于无穷数列{a n}与{b n},记A={x|x=a n,n∈N*},B={x|x=b n,n∈N*},若同时满足条件:①{a n},{b n}均单调递增;②A∩B=∅且A∪B=N*,则称{a n}与{b n}是无穷互补数列.(1)若a n=2n﹣1,b n=4n﹣2,判断{a n}与{b n}是否为无穷互补数列,并说明理由;(2)若a n=2n且{a n}与{b n}是无穷互补数列,求数量{b n}的前16项的和;(3)若{a n}与{b n}是无穷互补数列,{a n}为等差数列且a16=36,求{a n}与{b n}的通项公式.解:(1){a n}与{b n}不是无穷互补数列.理由:由a n=2n﹣1,b n=4n﹣2,可得4∉A,4∉B,即有4∉A∪B=N*,即有{a n}与{b n}不是无穷互补数列;(2)由a n=2n,可得a4=16,a5=32,由{a n}与{b n}是无穷互补数列,可得b16=16+4=20,即有数列{b n}的前16项的和为(1+2+3+…+20)﹣(2+4+8+16)=×20﹣30=180;(3)设{a n}为公差为d(d为正整数)的等差数列且a16=36,则a1+15d=36,由a1=36﹣15d≥1,可得d=1或2,若d=1,则a1=21,a n=n+20,b n=n(1≤n≤20),与{a n}与{b n}是无穷互补数列矛盾,舍去;若d=2,则a1=6,a n=2n+4,b n=.综上可得,a n=2n+4,b n=.23.(18分)(2016•上海)已知a∈R,函数f(x)=log2(+a).(1)当a=1时,解不等式f(x)>1;(2)若关于x的方程f(x)+log2(x2)=0的解集中恰有一个元素,求a的值;(3)设a>0,若对任意t∈[,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.解:(1)当a=1时,不等式f(x)>1化为:>1,∴2,化为:,解得0<x<1,经过验证满足条件,因此不等式的解集为:(0,1).(2)方程f(x)+log2(x2)=0即log2(+a)+log2(x2)=0,∴(+a)x2=1,化为:ax2+x﹣1=0,若a=0,化为x﹣1=0,解得x=1,经过验证满足:关于x的方程f(x)+log2(x2)=0的解集中恰有一个元素1.若a≠0,令△=1+4a=0,解得a=,解得x=2.经过验证满足:关于x的方程f(x)+log2(x2)=0的解集中恰有一个元素1.综上可得:a=0或﹣.(3)a>0,对任意t∈[,1],函数f(x)在区间[t,t+1]上单调递减,∴﹣≤1,∴≤2,化为:a≥=g(t),t∈[,1],g′(t)===≤<0,∴g(t)在t∈[,1]上单调递减,∴t=时,g(t)取得最大值,=.∴.∴a的取值范围是.。
松江区2016年高三数学文科一模试卷(含答案)
A 2A 3OA 4A 1松江区2015学年度第一学期高三期末考试数学(文科)试卷(满分150分,完卷时间120分钟) 2016.1一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.已知全集{}1,2,3,4U =,A 是U 的子集,满足{}}{1,2,32A = ,{}1,2,3A U = ,则集合A = ▲ .2.若复数1z ai =+(i 是虚数单位)的模不大于2,则实数a 的取值范围是 ▲ . 3.行列式cos 20sin 20︒︒ sin 40cos 40︒︒的值是 ▲ .4.若幂函数()x f的图像过点2,2⎛⎫⎪ ⎪⎝⎭,则()12f -= ▲ . 5.若等比数列{}n a 满足135a a +=,且公比2q =,则35a a += ▲ .6.若圆柱的底面直径和高都与球的直径相等,圆柱、球的表面积分别记为1S 、2,S 则有12:S S = ▲ .7.如图所示的程序框图,输出的结果是 ▲ . 8.将函数)32sin(π+=x y 图像上的所有点向右平移6π个单位,再将图像上所有点的横坐标缩短到原来的21倍(纵坐标不变),则所得图像的函数解析式为 ▲ . 9.一只口袋内装有大小相同的5只球,其中3只白球, 2只黑球,从中一次性随机摸出2只球,则恰好有1只是白球的概率为 ▲ (结果用数值表示).10.在ABC ∆中,内角A 、B 、C 所对的边分别是a 、b 、c . 已知14b c a -=,2sin 3sin B C =,则cos A =▲ .11.若7(13)x -展开式的第4项为280,则()2lim nn x x x→∞+++= ▲ .12.已知抛物线2:4C y x =的准线为l ,过(1,0)M 且斜率为k 的直线与l 相交于点A ,与抛物线C 的一个交点为B .若2AM MB =,则 k = ▲ .13.已知正六边形126A A A 内接于圆O ,点P 为圆O 上一点,向量OP 与i OA的夹角为i θ(1,2,,6i = ),若将126,,,θθθ 从小到大重新排列后恰好组成等差数列,第7题图则该等差数列的第3项为 ▲ .14.已知函数()f x ,对任意的[0,)x ∈+∞,恒有(2)()f x f x +=成立, 且当[0,2)x ∈时,()2f x x =-.则方程1()f x x n=在区间[0,2)n (其中*n N ∈)上所有根的和为 ▲ . 二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.已知双曲线2215x y m -=的右焦点与抛物线212y x =的焦点相同,则此双曲线的渐近线方程为.A 2y x =±.B 5y x =± .C 3y x =± .D5y x =± 16.设,a b R ∈,则“a b >”是“a b >”的.A 充分而不必要条件 .B 必要而不充分条件.C 充要条件 .D 既不充分也不必要条件17. 在正方体1111ABCD A B C D -中,E 、F 分别是棱AB 、1AA 的中点,M 、N 分别是线段1D E 与1C F 上的点,则与平面ABCD 平行的直线MN 有.A 0条 .B 1条 .C 2条 .D 无数条18. 在一个有穷数列每相邻两项之间添加一项,使其等于两相邻项的和,我们把这样的操作叫做该数列的一次“H 扩展”. 已知数列1,2. 第一次“H 扩展”后得到1,3,2;第二次“H 扩展”后得到1,4,3,5,2. 那么第10次“H 扩展”后得到的数列的项数为.A 1023 .B 1025 .C 513 .D 511三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分 如图,在三棱锥ABC P -中,⊥PA 平面ABC ,AB AC ⊥,4==BC AP ,︒=∠30ABC ,E D 、分别是AP BC 、的中点. (1)求三棱锥ABC P -的体积;(2)若异面直线AB 与ED 所成的角为θ,求θtan 的值.F E D 1C 1B 1A 1CB A DE PA BCD20.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分已知函数2()2sin cos f x x x x =-+ (1)当[0,]2x π∈时,求函数 f (x )的值域;(2)求函数 y = f (x )的图像与直线 y =1相邻两个交点间的最短距离.21. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 在一次水下考古活动中,潜水员需潜入水深为30米的水底进行作业.其用氧量包含以下三个方面:①下潜时,平均速度为每分钟x 2x 升;②水底作业需x 米,每分钟用氧量为0.2升;设潜水员在此次考古活动中的总用氧量为y 升. (1)将y 表示为x 的函数;(1)若[4,8]x ∈,求总用氧量y 的取值范围.22.(本题满分16分,第1小题3分,第2小题中5分、第2小题8分)在平面直角坐标系xOy 中,O 为坐标原点,C 、D 两点的坐标为(1,0),(1,0)C D -, 曲线E 上的动点P 满足PC PD +=E 上的点A 、B 满足OA OB ⊥. (1)求曲线E 的方程;(2)若点A 在第一象限,且OA =,求点A 的坐标; (3)求证:原点到直线AB 的距离为定值.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.对于数列{}n a ,称122311()()1k k k P a a a a a a a k -=-+-++-- (其中2,k k N ≥∈)为数列{}n a 的前k 项“波动均值”.若对任意的2,k k N ≥∈,都有1()()k k P a P a +<,则称数列{}n a 为“趋稳数列”. (1)若数列1,x ,2为“趋稳数列”,求x 的取值范围;(2)已知等差数列{}n a 的公差为d ,且10,0a d >>,其前n 项和记为n S ,试计算:()()()2323nn n n n C P S C P S C P S +++ (2,n n N ≥∈); (3)若各项均为正数的等比数列{}n b 的公比(0,1)q ∈,求证:{}n b 是“趋稳数列”.松江区2015学年度第一学期高三期末考试数学(文科)试卷参考答案 2016.1一.填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. {}2,4. 2. ]3,3[-. 3.12. 4.14. 5. 20. 6. 3:2. 7. 15. 8. sin 4x . 9. 0.6. 10. 14-.11. 25-. 12. ±. 13. 512π. 14. 2n .二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.A . 16.B . 17.D . 18.B . 19.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分 解: (1)由已知得,,32,2==AB AC ……………………2分所以 ,体积33831==∆--PA S V ABC ABC P ……………………5分 (2)取AC 中点F ,连接EF DF ,,则DF AB //,所以EDF ∠就 是异面直线AB 与ED 所成的角θ. ……………………8分 由已知,52,32,2=====PC AB AD EA AC ,EF DF EF AB ⊥∴⊥, . ……………………10分在EFD Rt ∆中,5,3==EF DF , 所以,315tan =θ. ……………………12分 20.(满分14分)本题有3小题,第1小题7分,第2小题3分,第,3小题4分. 解:(1)()f x 22sin cos x x x =-sin 222sin(2)3x x x π==-……………………4分当[0,]2x π∈时,22[,]333x πππ-∈-,所以()f x 的值域为[……7分(2)()2sin(2)13f x x π=-= ∴1sin(2)32x π-=,……………………9分 2236x k πππ-=+或52236x k πππ-=+,k Z ∈ ……………………12分∴当()1f x =时,两交点的最短距离为3π……………………14分 21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分解:(1)下潜所需时间为30x 分钟;返回所需时间为60x分钟 …………2分 ∴213060100.30.290y x x x =⋅+⨯+⋅ …………5分 1233x y x=++ (0)x > …………6分(2)1243x x +≥=,当且仅当123x x =,即6x =时取等号. …8分 因为[4,8]x ∈,所以1233x y x=++在[4,6]上单调递减,在[6,8]上单调递增所以6x =时,y 取最小值7 …………11分又4x =时,173y =;8x =时,176y =, …………13分所以y 的取值范围是1[7,7]3. …………14分22.(本题满分16分,第1小题3分,第2小题中5分、第2小题8分)解(1)由2CD =,2PC PD +=>知,曲线E 是以C 、D为焦点,长轴圆, ……………… 1分设其方程为22221x y a b+=,则有1a c ==,∴曲线E 的方程为22132x y +=……………… 3分(2)设直线OA 的方程为(0)y kx k =>,则直线OB 的方程为1(0)y x k k=-> 由则22236x y y kx ⎧+=⎨=⎩得222236x k x +=,解得212623x k =+.………………4分同理,由则222361x y y x k ⎧+=⎪⎨=-⎪⎩解得2222623k x k =+. ………………5分由OA =知2243OA OB =, 即222226164(1)3(1)2323k k k k k +⋅=+⋅++………………6分 解得26k =,因点A在第一象限,故k = ………………7分此时点A 的坐标为 ………………8分 (3)设11(,)A x y ,22(,)B x y ,当直线AB 平行于坐标轴时,由OA OB ⊥知A 、B 两点之一为y x =±与椭圆的交点,由22236x y y x ⎧+=⎨=±⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩此时原点到直线AB的距离为d =…10分 当直线AB 不平行于坐标轴时,设直线AB 的方程x my b =+,由22236x y x my b ⎧+=⎨=+⎩ 得222(23)4260m y bmy b +++-= ………………12分 由12120x x y y +=得1212()()0my b my b y y +++=即221212(1)()0m y y mb y y b ++++=因 2121222426,2323bm b y y y y m m -+=-=++ ………………14分 代入得 2222222264(1)02323b b m m b m m -+-+=++ 即2256(1)b m =+……15分 原点到直线AB的距离d ===………………16分23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 解:(1)由题意1212x x x -+-->,即12x x ->-………………2分解得32x > ………………4分 (2)122311()()1k k k P S S S S S S S k -=-+-++-- 231()1n a a a k =+++- ………………5分 ∵10,0a d >> ∴1(1)0n a a n d =+->, ………………6分∴2311()()12k n k P S a a a a d k =+++=+- ………………7分 ∴()()()2323nn n n n C P S C P S C P S +++231()nn n n a C C C =+++ 23(23)2n n nn d C C nC ++++ ………………8分 1(21)n a n =--+121111()2n n n n d nC nC nC ----+++ ………………9分1(21)n a n =--+(21)2nnd - …………………10分(3)由已知,设111(0)n n b b q b -=>,因10b >且01q <<,故对任意的2,*k k N ≥∈,都有1k k b b -> …………………11分 ∴对122311()()1k k k P b b b b b b b k -=-+-++--221122311(1)()(1)11k k k b q b b b b b b q q q k k ---=-+-++-=++++--2111(1)()(1)k k b q P b q q q k-+-=++++ , …………………13分 因01q <<∴1(1)i k q q i k -><- ∴11k q->,1k q q->,21k q q->, ,21k k qq -->,∴2211(1)k k q q qk q--++++>-…………………15分∴22221(1)(1)(1)k k k k q q qk q q q q ---++++>-+++++∴22221(1)(1)1k k k q q q q q q q k k---+++++++++>- ∴2222111(1)(1)(1)(1)1k k k b q q q q b q q q q q k k----++++-+++++>- 即对任意的2,*k k N ≥∈,都有1()()k k P b P b +>,故{}n b 是“趋稳数列”………18分。
2016年高考上海文科数学试题及答案(word解析版)
2016年普通高等学校招生全国统一考试(上海卷)数学(文科)第Ⅰ卷(选择题 共50分)一、填空题(本大题共14小题,共56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. (1)【2016年上海,文1,4分】设x ∈R ,则不等式31x -<的解集为 . 【答案】()2,4【解析】∵x ∈R ,不等式31x -<,∴131x -<-<,解得24x <<.∴不等式31x -<解集为()2,4. 【点评】本题考查含绝对值不等式的解法,是基础题,解题时要认真审题,注意含绝对值不等式的性质的合理运用.(2)【2016年上海,文2,4分】设32iiz +=,其中i 为虚数单位,则z 的虚部等于 .【答案】3-【解析】()i 32i 32i 3i 2i i iz -++===-+-⋅,则z 的虚部为3-. 【点评】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题. (3)【2016年上海,文3,4分】已知平行直线1:210l x y +-=,2:210l x y ++=,则1l 与2l 的距离是 . 【答案】255【解析】平行直线1:210l x y +-=,2:210l x y ++=,则1l 与2l 的距离:221125521+=+. 【点评】本题考查平行线之间的距离公式的应用,考查计算能力. (4)【2016年上海,文4,4分】某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76,则这组数据的中位数是 (米). 【答案】1.76【解析】将5位同学的身高按照从小到大进行排列为1.69,1.72,1.76,1.78,1.80.则位于中间的数为1.76,即中位数为1.76.【点评】本题主要考查中位数的求解,根据中位数的定义,将数据从小到大进行排列是解决本题的关键. (5)【2016年上海,文5,4分】若函数()4sin cos f x x a x =+的最大值为5,则常数a = . 【答案】3±【解析】由于函数()()24sin cos 16sin f x x a x a x θ=+=++,其中,24cos 16aθ=+,2sin 16a aθ=+s ,故()f x 的最大值为2165a +=,∴3a =±.【点评】本题主要考查辅助角公式,正弦函数的值域,属于基础题. (6)【2016年上海,文6,4分】已知点()3,9在函数()1x f x a =+的图像上,则()f x 的反函数()1f x -= . 【答案】()()2log 11x x ->【解析】将点()3,9带入函数()1x f x a =+的解析式得2a =,所以()12x f x =+,用y 表示x 得()2log 1x y =-,所以()()12log 1f x x -=-.【点评】本题考查了反函数的求法、指数函数与对数函数的互化,考查了推理能力与计算能力,属于中档题.(7)【2016年上海,文7,4分】若,x y 满足0,0,1,x y y x ≥⎧⎪≥⎨⎪≥+⎩则2x y -的最大值为 .【答案】2-【解析】画出可行域(如图),设11222z x y y x z =-⇒=-,由图可知,当直线l 经过点()0,1A 时,z 最大,且最大值为max 212z =-⨯=-.【点评】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.(8)【2016年上海,文8,4分】方程3sin 1cos2x x =+在区间[]0,2π上的解为 .【答案】566ππ或【解析】化简3sin 1cos2x x =+得:23sin 22sin x x =-,所以22sin 3sin 20x x +-=,解得1sin 2x =或sin 2x =-(舍 去),所以在区间[]0,2π上的解为566ππ或.【点评】本题考查三角方程的解法,恒等变换的应用,考查计算能力.(9)【2016年上海,文9,4分】在32nx x ⎛⎫- ⎪⎝⎭的二项式中,所有项的二项式系数之和为256,则常数项等于 .【答案】112【解析】由二项式定理得:二项式所有项的二项系数之和为2n ,由题意得2256n =,所以8n =,二项式的通项为8483331882()()(2)r r rr r r r T C x C x x --+=-=-,求常数项则令84033r -=,所以2r =,所以3112T =.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.(10)【2016年上海,文10,4分】已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于 .【答案】733【解析】利用余弦定理可求得最大边7所对应角的余弦值为22235712352+-=-⨯⨯,所以此角的正弦值为32,由正弦定理得7232R =,所以733R =.【点评】本题考查三角形的外接圆的半径的求法,注意运用正弦定理和余弦定理,考查运算能力,属于基础题. (11)【2016年上海,文11,4分】某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为 . 【答案】16【解析】甲同学从四种水果中选两种,选法种数为24C ,乙同学的选法种数为24C ,则两同学的选法种数为2244C C ⋅种.两同学相同的选法种数为24C .由古典概型概率计算公式可得:甲、乙两同学各自所选的两种水果相同的概率为2244224416C C C C ==⋅. 【点评】本题考查古典概型概率计算公式的应用,考查了组合及组合数公式,是基础题.(12)【2016年上海,文12,4分】如图,已知点()0,0O ,()1,0A ,()0,1B -,P 是曲线21yx 上一个动点,则OP BA 的取值范围是 .【答案】2,2⎡⎤-⎣⎦【解析】设(),OP x y =,则()2,1OP x x =-,由()1,0A ,()0,1B -,得:()1,1BA =,∴21OP BAxx ,令sin x θ=,则sin cos 2sin4OP BA,OP BA 的范围是2,2⎡⎤-⎣⎦.【点评】本题考查了向量的运算性质,考查三角函数问题,是一道基础题.(13)【2016年上海,文13,4分】设0,0a b >>,若关于,x y 的方程组11ax y x by +=⎧⎨+=⎩无解,则a b +的取值范围是 .【答案】()2,+∞【解析】解法1:将方程组中的(1)式化简得1y ax =-,代入(2)式整理得(1)1ab x b -=-,方程组无解应该满足10ab -=且10b -≠,所以1ab =且1b ≠,所以由基本不等式得22a b ab +>=.解法2:∵关于x ,y 的方程11ax y x by +=⎧⎨+=⎩组无解,∴直线1ax y +=与1x by +=平行,∵0a >,0b >,∴1111a b =≠,即1a ≠,1b ≠,且1ab =,则1b a=,则1a b a a +=+,则设()()101f a a a a a =+>≠且,则函数的导数()222111a f a a a -'=-=,当01a <<时,()2210a f a a-'=<,此时函数为减函数,此时()()12f a f >=,当1a >时,()2210a f a a-'=>,此时函数为增函数,()()12f a f >=,综上()2f a >,即a b +的取值范围是()2,+∞. 【点评】本题主要考查直线平行的应用以及构造函数,求函数的导数,利用导数和函数单调性之间的关系进行求解是解决本题的关键.(14)【2016年上海,文14,4分】无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意n N *∈,{}2,3n S ∈,则k 的最大值为 .【答案】4【解析】解法1:要满足数列中的条件,涉及最多的项的数列可以为2,1,1,0,0,0,-⋅⋅⋅,所以最多由4个不同的数组成.解法2:对任意*n N ∈,{}23n S ∈,,可得当1n =时,112a S ==或3;若2n =,由{}223S ∈,,可得数 列的前两项为2,0;或2,1;或3,0;或3,1-;若3n =,由{}323S ∈,,可得数列的前三项为2,0, 0;或2,0,1;或2,1,0;或2,1,1-;或3,0,0;或3,0,1-;或3,1,0;或3,1,1-;若4n =,由{}423S ∈,,可得数列的前四项为2,0,0,0;或2,0,0,1;或2,0,1,0;或2,0,1,1-;或2,1,0,0;或2,1,0,1-;或2,1,1-,0;或2,1,1-,1;或3,0,0,0;或3,0,0,1-;或3,0,1-,0;或3,0,1-,1;或3,1-,0,0;或3,1-,0,1;或3,1-,1, 0;或3,1-,1,1-;…即有4n >后一项都为0或1或1-,则k 的最大个数为4,不同的四个数均为 2,0,1,1-,或3,0,1,1-.故答案为:4.【点评】本题考查数列与集合的关系,考查分类讨论思想方法,注意运用归纳思想,属于中档题.二、选择题(本大题共有4题,满分20分)考生应在答题纸相应编号位置填涂,每题只有一个正确选项,选对得5分,否则一律得零分. (15)【2016年上海,文15,5分】设a R ∈,则“1a >”是“21a >”的( )(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 【答案】A【解析】2211,111a a a a a >⇒>>⇒><-或,所以是充分非必要条件,故选A . 【点评】本题主要考查充分条件和必要条件的判断,利用不等式的关系结合充分条件和必要条件的定义是解决本题的关键,比较基础. (16)【2016年上海,文16,5分】如图,在正方体1111ABCD A B C D -中,E 、F 分别为BC 、1BB的中点,则下列直线中与直线EF 相交的是( )(A )直线1AA (B )直线11A B (C )直线11A D (D )直线11B C 【答案】D【解析】根据异面直线的概念可看出直线1AA ,11A B ,11A D 都和直线EF 为异面直线;11B C 和EF 在同一平面内,且这两直线不平行;∴直线11B C 和直线EF 相交,故选D .【点评】考查异面直线的概念及判断,平行直线和相交直线的概念及判断,并熟悉正方体的图形形状.(17)【2016年上海,文17,5分】设a R ,[0,2π]b .若对任意实数x 都有πsin 3=sin 3x ax b ,则满足条件的有序实数对(),a b 的对数为( ) (A )1 (B )2 (C )3 (D )4 【答案】B【解析】∵对于任意实数x 都有πsin 3=sin 3x ax b ,则函数的周期相同,若3a =,此时πsin 3=sin 3x3x b ,此时5233b πππ=-+=,若3a =-,则方程等价为πsin 3=sin 33x x bsin 3sin 3x b x b,则03b ππ--+=,则23b π=,综上满足条件的有序实数组(),a b 为53,3π⎛⎫ ⎪⎝⎭,23,3π⎛⎫- ⎪⎝⎭,共有2组,故选B .【点评】本题主要考查三角函数的图象和性质,结合三角函数恒成立,利用三角函数的性质,结合三角函数的诱导公式进行转化是解决本题的关键.(18)【2016年上海,文18,5分】设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( )(A )①和②均为真命题 (B )①和②均为假命题(C )①为真命题,②为假命题 (D )①为假命题,②为真命题 【答案】D【解析】解法1:因为[()g(x)][()(x)][g()(x)]()2f x f x h x h f x +++-+=必为周期为π的函数,所以②正确;增函数减增函数不一定为增函数,因此①不一定,故选D .解法2:①不成立.可举反例:()2,13,1x x f x x x ≤⎧=⎨-+>⎩.()23,03,012,1x x g x x x x x +≤⎧⎪=-+<<⎨⎪≥⎩,(),02,0x x h x x x -≤⎧=⎨>⎩.②∵()()()()f x g x f x T g x T +=+++,()()()()f x h x f x T h x T +=+++()()()()h x g x h x T g x T +=+++,前两式作差可得:()()()()g x h x g x T h x T -=+-+,结合第三式可得:()()g x g x T =+,()()h x h x T =+,同理可得:()()f x f x T =+,因此②正确,故选D .【点评】本题考查了函数的单调性与周期性、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题目. 三、解答题(本题共5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. (19)【2016年上海,文19,12分】将边长为1的正方形11AA O O (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC 长为56π,11A B 长为3π,其中1B 与C 在平面11AA O O 的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O 1B 1与OC 所成的角的大小. 解:(1)由题意可知,圆柱的母线长1l =,底面半径1r =.圆柱的体积22V 11r l πππ==⨯⨯=,圆柱的侧面积22112S rl πππ==⨯⨯=.(2)设过点1B 的母线与下底面交于点B ,则11//O B OB ,所以COB ∠或其补角为11O B 与OC所成的角.由11A B 长为3π,可知1113AOB AO B π∠=∠=,由AC 长为56π,可知56AOC π∠=, 2COB AOC AOB π∠=∠-∠=,所以异面直线11O B 与OC 所成的角的大小为2π. 【点评】本题考查几何体的体积侧面积的求法,考查两直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.(20)【2016年上海,文20,14分】有一块正方形菜地EFGH ,EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。
[上海卷]2016年上海卷文科数学(全解析)
下,三个函数必为周期为T 的函数,所以②正确;增函数减增函数不一定为增函数,因此①不一定.
三、解答题:本大题共 5 小题,共 74 分,解答须写出必要的文字说明、证明过程或演算步骤.
19.(本小题满分 14 分)
将边长为1的正方形 AA1O1O (及其内部)绕的 OO1 旋转一周形成圆柱,
如图,
» AC
66
2
为 p 或 5p . 66
9.
在
æ ç
3
è
x-
2 x
n
ö ÷ ø
的二项式中,所有项的二项式系数之和为
256
,则常数项等于_______.
( ) ( ) 【解析】112 ;由题意得 2n = 256 ,所以 n = 8 ,故Tr+1 = C8r
3
x
8-r
æ çè
-
2 x
r
ö ÷ ø
=
-2
r
C8r
的中位数是1.75 与1.77 的平均数,显然为1.76 .
5. 若函数 f ( x) = 4 sin x + a cos x 的最大值为 5 ,则常数 a = ______.
【解析】 ±3 ;依题意可得 16 + a2 = 5 ,解得 a = ±3 .
6. 已知点 (3, 9) 在函数 f ( x) = 1+ ax 的图像上,则 f ( x) 的反函数 f -1 ( x) = ___________.
【解析】 (2, 4) ;由题意得 -1 < x - 3 < 1 ,解得 2 < x < 4 .
2. 设 z = 3 + 2i ,其中 i 为虚数单位,则 Im z = _______. i
2016年普通高等学校招生全国统一考试(上海卷)数学试题 (文科)解析版
2016年普通高等学校招生全国统一考试上海 数学试卷(文史类)一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1、设x ∈R ,则不等式31x -<的解集为_______.【答案】(2,4)【解析】试题分析:由题意得:131x -<-<,即24x <<,故解集为(2,4)考点:绝对值不等式的基本解法.【名师点睛】解绝对值不等式,关键是去掉绝对值符号,进一步求解,本题也可利用两边平方的方法 .本题较为容易.2、设ii Z 23+=,期中i 为虚数单位,则Im z =____________. 【答案】3-【解析】试题分析:i(32i)23i z =-+=-,故Im 3z =-考点:1.复数的运算;2.复数的概念.【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时运算与概念、复数的几何意义综合考查,也是考生必定得分的题目之一.3、已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离_______________.【解析】试题分析:利用两平行线间距离公式得d ===考点:两平行线间距离公式.【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即,x y 的系数应该分别相同,本题较为容易,主要考查考生的基本运算能力.4、某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).【答案】1.76【解析】试题分析:将这6位同学的身高按照从矮到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.考点:中位数的概念.【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.5、若函数()4sin cos f x x a x =+的最大值为5,则常数a =______.【答案】3±【解析】试题分析:)sin(16)(2ϕ++=x a x f ,其中4tan a =ϕ,故函数)(x f 的最大值为216a +,由已知,5162=+a ,解得3±=a . 考点:三角函数sin()y A x ωϕ=+ 的图象和性质.【名师点睛】三角函数性质研究问题,基本思路是通过化简 ,得到sin()y A x ωϕ=+,结合角的范围求解.. 本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.6、已知点(3,9)在函数x a x f +=1)(的图像上,则________)()(1=-x f x f 的反函数.【答案】2log (x 1)-【解析】试题分析:将点39(,)带入函数()x f x 1a =+的解析式得a 2=,所以()x f x 12=+,用y 表示x 得2x log (y 1)=-,所以()12log (f x x 1)-=-.考点:1.反函数的概念;2.指数函数的图象和性质.【名师点睛】指数函数与对数函数互为反函数,求反函数的基本步骤是:一解、二换、三注..本题较为容易.7、若,x y 满足0,0,1,x y y x ≥⎧⎪≥⎨⎪≥+⎩则2x y -的最大值为_______.【答案】2-【解析】试题分析:由不等式组画出可行域,如图,令y x z 2-=,当直线z x y 2121-=经过点)1,0(P时,z 取得最大值,且为2-.考点:简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题,是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间距离等,考查考生的绘图、用图能力,以及应用数学解决实际问题的能力.8.方程3sin 1cos 2x x =+在区间[]π2,0上的解为___________ . 【答案】566ππ或 【解析】试题分析:3sinx 1cos 2x =+,即23sinx 22sin x =-,所以22sin x 3sinx 20+-=,解得1sinx 2=或sinx 2=-(舍去),所以在区间[]π2,0上的解为566ππ或. 考点:1.二倍角公式;2.已知三角函数值求角. 【名师点睛】已知三角函数值求角,基本思路是通过化简 ,得到角的某种三角函数值,结合角的范围求解.. 本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.9、在nx x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________. 【答案】112【解析】试题分析:因为二项式所有项的二项系数之和为n 2,所以n 2256=,所以n 8=,二项式展开式的通项为84r r 8rr r r 33r 1882T C ()(2)C x x--+=-=-,令84r 033-=,得r 2=,所以3T 112=. 考点:1.二项式定理;2.二项展开式的系数.。
2016年高考上海卷文数试题解析(正式版)(解析版).doc.pdf
2016年普通高等学校招生全国统一考试上海数学试卷(文史类)一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.考点:主要考查两平行线间距离公式.4、某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米)【答案】1.76【解析】试题分析:将这6位同学的身高按照从矮到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.考点:主要考查了中位数的概念.【解析】试题分析:考点:正弦、余弦定理.11、某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______.【答案】1/6【解析】试题分析:考点:方程组的思想以及基本不等式的应用.【答案】4考点:充要条件16.如图,在正方体ABCD−A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是()(A)直线AA1(B)直线A1B1(C)直线A1D1(D)直线B1C1【答案】D【解析】试题分析:不一定为增函数,因此①不一定.选D.函数性质考点:1.抽象函数;2.函数的单调性;3.函数的周期性.三、解答题(74分)19.(本题满分12分)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,AC 长为5π/6 ,A1B1长为π/3,其中B1与C在平面AA1O1O的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小.考点:1.几何体的体积;2.空间的角.20.(本题满分14分)有一块正方形菜地EFGH,EH所在直线是一条小河,收货的蔬菜可送到F点或河边运走。
于是,菜地分为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F的坐标为(1,0),如图求菜地内的分界线C的方程菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的“经验值”为8/3。
2016年上海市高考数学试卷(文科)(含解析版)
2016年上海市高考数学试卷(文科)一、填空题(本大题共14题,每小题4分,共56分).1.(4分)设xGR,则不等式x-3<1的解集为.2.(4分)设z=」+Ni,其中i为虚数单位,则z的虚部等于.i3.(4分)已知平行直线li:2x+y-1=0,l2:2x+y+l=0,则I”E的距离.4.(4分)某次体检,5位同学的身高(单位:米)分别为1.72, 1.78, 1.80, 1.69,1.76.则这组数据的中位数是(米).5.(4分)若函数f(x)=4sinx+acosx的最大值为5,则常数a=.6.(4分)已知点(3,9)在函数f(x)=l+a x的图象上,贝J f(x)的反函数厂】(X)=.7.(4分)若x,y满足<y》0,则x-2y的最大值为・、y》x+l8.(4分)方程3sinx=l+cos2x在区间[0,2n]±的解为.9.(4分)在(扳-Z)口的二项式中,所有的二项式系数之和为256,则常数项等于•10.(4分)已知AABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.11.(4分)某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为.12.(4分)如图,已知点O(0,0),A(1,0),B(0,-1),P是曲线y=^1_x2上一个动点,则&•商的取值范围是13.(4分)设a>0,b>0.若关于x,y的方程组ax+y=lx+by=l无解,则a+b的取值范围是14.(4分)无穷数列{an}由k个不同的数组成,Sn为{an}的前n项和,若对任意nGN*,S n e{2,3),则k的最大值为.二、选择题(本大题共有4题,满分20分,每题有且只有一个正确答案,选对得5分,否则一脸得零分).15.(5分)设aGR,则"3>1"是“a?〉]”的()A.充分非必要条件B.必要非充分条件C,充要条件 D.既非充分也非必要条件16.(5分)如图,在正方体ABCD-AiBiCiDi中,E、F分别为BC、BBi的中点,则下列直线中与直线EF相交的是()B,直线AiBi C,直线Ad D,直线BiCi17.(5分)设ac R,be[0,2n),若对任意实数x都有sin(3x-―)=sin(ax+b),3则满足条件的有序实数对(a,b)的对数为()A.1B.2C.3D.418.(5分)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①若f(x)+g(X)、f(x)+h(X)、g(x)+h(x)均是增函数,则f(X)、g(X)、h(x)均是增函数;②若f(x)+g(x)、f(x)+h(X)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是()A.①和②均为真命题C.①为真命题,②为假命题B.①和②均为假命题D.①为假命题,②为真命题三、简答题:本大题共5题,满分74分19.(12分)将边长为1的正方形AAiOiO(及其内部)绕001旋转一周形成圆柱,如图,亦长为匹,云史长为2L,其中Bi与C在平面AA10Q的同侧.6113(1)求圆柱的体积与侧面积;(2)求异面直线0出1与0C所成的角的大小.20.(14分)有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分别为两个区域&和S2,其中&中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内&和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点。
2016年上海市松江区高考一模数学试卷(文科)【解析版】
2016年上海市松江区高考数学一模试卷(文科)一.填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)已知全集U={1,2,3,4},A是U的子集,满足A∩{1,2,3}={2},A∪{1,2,3}=U,则集合A=.2.(4分)若复数z=1+ai(i是虚数单位)的模不大于2,则实数a的取值范围是.3.(4分)行列式的值是.4.(4分)若幂函数f(x)的图象过点,则f﹣1(2)=.5.(4分)若等比数列{a n}满足a1+a3=5,且公比q=2,则a3+a5=.6.(4分)若圆柱的底面直径和高都与球的直径相等圆柱、球的表面积分别记为S1、S2,则有S1:S2=.7.(4分)如图所示的程序框图,输出的结果是.8.(4分)将函数的图象上的所有点向右平移个单位,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),则所得的图象的函数解析式为.9.(4分)一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次性随机摸出2只球,则恰好有1只是白球的概率为.10.(4分)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b﹣c=a,2sin B=3sin C,则cos A的值为.11.(4分)若(1﹣3x)7展开式的第4项为280,则=.12.(4分)已知抛物线C:y2=4x的准线为l,过M(1,0)且斜率为k的直线与l相交于点A,与抛物线C的一个交点为B.若,则k=.13.(4分)已知正六边形A1A2…A6内接于圆O,点P为圆O上一点,向量与的夹角为θi(i=1,2,…,6),若将θ1,θ2,…,θ6从小到大重新排列后恰好组成等差数列,则该等差数列的第3项为.14.(4分)已知函数f(x),对任意的x∈[0,+∞),恒有f(x+2)=f(x)成立,且当x∈[0,2)时,f(x)=2﹣x.则方程在区间[0,2n)(其中n∈N*)上所有根的和为.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)已知双曲线的右焦点与抛物线y2=12x的焦点相同,则此双曲线的渐近线方程为()A.B.C.D.16.(5分)设a,b∈R,则“|a|>b”是“a>b”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件17.(5分)已知点E、F分别是正方体ABCD﹣A1B1C1D1的棱AB、AA1的中点,点M、N分别是线段D1E与C1F上的点,则满足与平面ABCD平行的直线MN有()A.0条B.1条C.2条D.无数条18.(5分)在一个有穷数列每相邻两项之间添加一项,使其等于两相邻项的和,我们把这样的操作叫做该数列的一次“H扩展”.已知数列1,2.第一次“H 扩展”后得到1,3,2;第二次“H扩展”后得到1,4,3,5,2.那么第10次“H扩展”后得到的数列的项数为()A.1023B.1025C.513D.511三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,在三棱锥P﹣ABC中,P A⊥平面ABC,AC⊥AB,AP=BC =4,∠ABC=30°,D、E分别是BC、AP的中点,(1)求三棱锥P﹣ABC的体积;(2)若异面直线AB与ED所成角的大小为θ,求tanθ的值.20.(14分)已知函数.(1)当时,求函数f(x)的值域;(2)求函数y=f(x)的图象与直线y=1相邻两个交点间的最短距离.21.(14分)在一次水下考古活动中,潜水员需潜入水深为30米的水底进行作业.其用氧量包含以下三个方面:①下潜时,平均速度为每分钟x米,每分钟的用氧量为升;②水底作业需要10分钟,每分钟的用氧量为0.3升;③返回水面时,速度为每分钟米,每分钟用氧量为0.2升;设潜水员在此次考古活动中的总用氧量为y升.(1)将y表示为x的函数;(1)若x∈[4,8],求总用氧量y的取值范围.22.(16分)在平面直角坐标系xOy中,O为坐标原点,C、D两点的坐标为C (﹣1,0),D(1,0),曲线E上的动点P满足.又曲线E 上的点A、B满足OA⊥OB.(1)求曲线E的方程;(2)若点A在第一象限,且,求点A的坐标;(3)求证:原点到直线AB的距离为定值.23.(18分)对于数列{a n},称P(a k)=(其中k≥2,k∈N)为数列{a n}的前k项“波动均值”.若对任意的k≥2,k∈N,都有P(a k+1)<P(a k),则称数列{a n}为“趋稳数列”.(1)若数列1,x,2为“趋稳数列”,求x的取值范围;(2)已知等差数列{a n}的公差为d,且a1>0,d>0,其前n项和记为S n,试计算:∁n2P(S2)+∁n3P(S3)+…+∁n n P(S n)(n≥2,n∈N);(3)若各项均为正数的等比数列{b n}的公比q∈(0,1),求证:{b n}是“趋稳数列”.2016年上海市松江区高考数学一模试卷(文科)参考答案与试题解析一.填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)已知全集U={1,2,3,4},A是U的子集,满足A∩{1,2,3}={2},A∪{1,2,3}=U,则集合A={2,4}.【解答】解:∵全集U={1,2,3,4},A是U的子集,满足A∩{1,2,3}={2},A∪{1,2,3}=U,∴A={2,4},故答案为:{2,4}.2.(4分)若复数z=1+ai(i是虚数单位)的模不大于2,则实数a的取值范围是[].【解答】解:复数z=1+ai(i是虚数单位)的模不大于2,即:1+a2≤4即a2≤3可得a∈故答案为:3.(4分)行列式的值是.【解答】解:=cos20°cos40°﹣sin20°sin40°=cos(20°+40°)=cos60°=.故答案为:.4.(4分)若幂函数f(x)的图象过点,则f﹣1(2)=.【解答】解:∵幂函数f(x)的图象过点,∴f(2)=2α=,解得,α=﹣,故f(x)=,∴f﹣1(x)=,∴f﹣1(2)==;故答案为:.5.(4分)若等比数列{a n}满足a1+a3=5,且公比q=2,则a3+a5=20.【解答】解:a3+a5=q2(a1+a3)=22×5=20,故答案为:20.6.(4分)若圆柱的底面直径和高都与球的直径相等圆柱、球的表面积分别记为S1、S2,则有S1:S2=3:2.【解答】解:由题意可得:圆柱的底面直径和高都与球的直径相等,设球的半径为1,所以等边圆柱的表面积为:S1=6π,球的表面积为:S2=4π.所以圆柱的表面积与球的表面积之比为S1:S2=3:2.故答案为:3:2.7.(4分)如图所示的程序框图,输出的结果是15.【解答】解:当a=1时,满足进行循环的条件,执行循环体后b=3,a=2;当a=2时,满足进行循环的条件,执行循环体后b=7,a=3;当a=3时,满足进行循环的条件,执行循环体后b=15,a=4;当a=4时,不满足进行循环的条件,故输出的结果为:15.故答案为:158.(4分)将函数的图象上的所有点向右平移个单位,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),则所得的图象的函数解析式为y=sin4x.【解答】解:将函数的图象上的所有点向右平移个单位,得到函数=sin2x,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),则所得的图象的函数解析式为y=sin4x.故答案为:y=sin4x.9.(4分)一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次性随机摸出2只球,则恰好有1只是白球的概率为.【解答】解:从中一次性随机摸出2只球,基本事件总数n=,恰好有1只是白球的基本事件个数m=,∴恰好有1只是白球的概率P==.故答案为:.10.(4分)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b﹣c=a,2sin B=3sin C,则cos A的值为﹣.【解答】解:在△ABC中,∵b﹣c=a①,2sin B=3sin C,∴2b=3c②,∴由①②可得a=2c,b=.再由余弦定理可得cos A===﹣,故答案为:﹣.11.(4分)若(1﹣3x)7展开式的第4项为280,则=.【解答】解:∵(1﹣3x)7展开式的第4项为280,∴T4=•(﹣3x)3=﹣27×35x3=280;∴x3=﹣,解得x=﹣;∴====﹣.故答案为:﹣.12.(4分)已知抛物线C:y2=4x的准线为l,过M(1,0)且斜率为k的直线与l相交于点A,与抛物线C的一个交点为B.若,则k=.【解答】解:由题意,M到准线的距离为2,∵,∴B的横坐标为2,代入抛物线C:y2=4x,可得y=±2,∴B的坐标为(2,±2),∴k==故答案为:.13.(4分)已知正六边形A1A2…A6内接于圆O,点P为圆O上一点,向量与的夹角为θi(i=1,2,…,6),若将θ1,θ2,…,θ6从小到大重新排列后恰好组成等差数列,则该等差数列的第3项为.【解答】解:设组成等差数列的前三项为:θ1,θ2,θ3,如图,,则:;θ1,θ2,θ3成等差数列;∴2θ2=θ1+θ3;即;∴;;即该等差数列的第三项为.故答案为:.14.(4分)已知函数f(x),对任意的x∈[0,+∞),恒有f(x+2)=f(x)成立,且当x∈[0,2)时,f(x)=2﹣x.则方程在区间[0,2n)(其中n∈N*)上所有根的和为n2.【解答】解:∵f(x+2)=f(x)成立,∴f(x)是一个以2为周期的函数,当x∈[0,2)时,f(x)=2﹣x;当x∈[2,4)时,f(x)=f(x﹣2)=2﹣(x﹣2)=4﹣x;当x∈[4,6)时,f(x)=f(x﹣2)=4﹣(x﹣2)=6﹣x;…当x∈[2n﹣2,2n),f(x)=2n﹣x,记g(x)=x,由图可知,f(x)=g(x)在区间[2i﹣2,2i)(i=1,2,3,…,n)各有一解,分别记为:x1,x2,x3,…,x n,下面考察x1与x n的数量关系,令2﹣x=x,解得x1=;再令2n﹣x=x,解得x n=,所以,x1+x n=+=2n(+)=2n,同理,x2+x n﹣1=2n,x3+x n﹣2=2n,…,因此,x1+x2+x3+…+x n=•2n=n2,故答案为:n2.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)已知双曲线的右焦点与抛物线y2=12x的焦点相同,则此双曲线的渐近线方程为()A.B.C.D.【解答】解:∵抛物线y2=12x的焦点为(3,0),∴双曲线的一个焦点为(3,0),即c=3.双曲线可得∴m+5=9,∴m=4,∴双曲线的渐近线方程为:.故选:A.16.(5分)设a,b∈R,则“|a|>b”是“a>b”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解答】解:“|a|>b”⇒a>b或﹣a>b,∴“a>b”⇒“|a|>b”,∵|a|≥a,∴|a|>b.反之不成立,例如取a=﹣3,b=2,虽然|a|>b,但是﹣3>2不成立.∴“|a|>b”是“a>b”的必要不充分条件.故选:B.17.(5分)已知点E、F分别是正方体ABCD﹣A1B1C1D1的棱AB、AA1的中点,点M、N分别是线段D1E与C1F上的点,则满足与平面ABCD平行的直线MN有()A.0条B.1条C.2条D.无数条【解答】解:取BB1的中点H,连接FH,则FH∥C1D,连接HE,在D1E上任取一点M,过M在面D1HE中,作MG平行于HO,其中O为线段D1E的中点,交D1H于G,再过G作GN∥FH,交C1F于N,连接MN,O在平面ABCD的正投影为K,连接KB,则OH∥KB,由于GM∥HO,HO∥KB,KB⊂平面ABCD,GM⊄平面ABCD,所以GM∥平面ABCD,同理由NG∥FH,可推得NG∥平面ABCD,由面面平行的判定定理得,平面MNG∥平面ABCD,则MN∥平面ABCD.由于M为D1E上任一点,故这样的直线MN有无数条.故选:D.18.(5分)在一个有穷数列每相邻两项之间添加一项,使其等于两相邻项的和,我们把这样的操作叫做该数列的一次“H扩展”.已知数列1,2.第一次“H 扩展”后得到1,3,2;第二次“H扩展”后得到1,4,3,5,2.那么第10次“H扩展”后得到的数列的项数为()A.1023B.1025C.513D.511【解答】解:设第n次“H扩展”后得到的数列的项数为a n,则第n+1次“H扩展”后得到的数列的项数为a n+1=2a n﹣1,∴=2,又∵a1﹣1=3﹣1=2,∴{a n﹣1}是以2为首项,2为公比的等比数列,∴a n﹣1=2•2n﹣1,∴a n=2n+1,∴a10=210+1=1025;故选:B.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,在三棱锥P﹣ABC中,P A⊥平面ABC,AC⊥AB,AP=BC =4,∠ABC=30°,D、E分别是BC、AP的中点,(1)求三棱锥P﹣ABC的体积;(2)若异面直线AB与ED所成角的大小为θ,求tanθ的值.【解答】解:(1)三棱锥P﹣ABC中,∵P A⊥平面ABC,AC⊥AB,AP=BC=4,∠ABC=30°,D、E分别是BC、AP 的中点,∴AC=2,AB=2,…(2分)=•P A=.…(5分)所以,体积V P﹣ABC(2)取AC中点F,连接DF,EF,则AB∥DF,所以∠EDF就是异面直线AB与ED所成的角θ.…(7分)由已知,AC=EA=AD=2,AB=2,PC=2,∵AB⊥EF,∴DF⊥EF.…(10分)在Rt△EFD中,DF=,EF=,所以,tanθ=.…(12分)20.(14分)已知函数.(1)当时,求函数f(x)的值域;(2)求函数y=f(x)的图象与直线y=1相邻两个交点间的最短距离.【解答】解:(1)f(x)==,当时,,所以f(x)的值域为.(2)令,∴,故或,k∈Z,∴当函数y=f(x)的图象和直线y=1时的两交点的最短距离为.21.(14分)在一次水下考古活动中,潜水员需潜入水深为30米的水底进行作业.其用氧量包含以下三个方面:①下潜时,平均速度为每分钟x米,每分钟的用氧量为升;②水底作业需要10分钟,每分钟的用氧量为0.3升;③返回水面时,速度为每分钟米,每分钟用氧量为0.2升;设潜水员在此次考古活动中的总用氧量为y升.(1)将y表示为x的函数;(1)若x∈[4,8],求总用氧量y的取值范围.【解答】解:(1)依题意,下潜所需时间为分钟;返回所需时间为分钟,∴,整理得:(x>0);(2)由基本不等式可知,当且仅当即x=6时取等号,因为x∈[4,8],所以在[4,6]上单调递减、在[6,8]上单调递增,所以当x=6时,y取最小值7,又因为当x=4时;当x=8时,所以y的取值范围是:.22.(16分)在平面直角坐标系xOy中,O为坐标原点,C、D两点的坐标为C(﹣1,0),D(1,0),曲线E上的动点P满足.又曲线E 上的点A、B满足OA⊥OB.(1)求曲线E的方程;(2)若点A在第一象限,且,求点A的坐标;(3)求证:原点到直线AB的距离为定值.【解答】(1)解:由|CD|=2,知,曲线E是以C、D为焦点,长轴的椭圆,(1分)设其方程为,则有,∴曲线E的方程为(3分)(2)解:设直线OA的方程为y=kx(k>0),则直线OB的方程为由得2x2+3k2x2=6,解得(4分)同理,由则解得.(5分)由知4|OA|2=3|OB|2,即(6分)解得k2=6,因点A在第一象限,故,(7分)此时点A的坐标为(8分)(3)证明:设A(x1,y1),B(x2,y2),当直线AB平行于坐标轴时,由OA⊥OB知A、B两点之一为y=±x与椭圆的交点,由解得此时原点到直线AB的距离为(10分)当直线AB不平行于坐标轴时,设直线AB的方程x=my+b,由得(2m2+3)y2+4bmy+2b2﹣6=0(12分)由x1x2+y1y2=0得(my1+b)(my2+b)+y1y2=0即因(14分)代入得即5b2=6(m2+1)(15分)原点到直线AB的距离(16分)23.(18分)对于数列{a n},称P(a k)=(其中k≥2,k∈N)为数列{a n}的前k项“波动均值”.若对任意的k≥2,k∈N,都有P(a k+1)<P(a k),则称数列{a n}为“趋稳数列”.(1)若数列1,x,2为“趋稳数列”,求x的取值范围;(2)已知等差数列{a n}的公差为d,且a1>0,d>0,其前n项和记为S n,试计算:∁n2P(S2)+∁n3P(S3)+…+∁n n P(S n)(n≥2,n∈N);(3)若各项均为正数的等比数列{b n}的公比q∈(0,1),求证:{b n}是“趋稳数列”.【解答】解:(1)由题意,,即|1﹣x|>|x﹣2|;解得,.(2)=,∵a1>0,d>0,∴a n=a1+(n﹣1)d>0,∴;∴===;(3)证明:由已知,设,>b k,因b1>0且0<q<1,故对任意的k≥2,k∈N*,都有b k﹣1∴对=,因0<q<1,∴q i>q k﹣1(i<k﹣1);∴1>q k﹣1,q>q k﹣1,q2>q k﹣1,…,q k﹣2>q k﹣1,∴1+q+q2+…+q k﹣2>(k﹣1)q k﹣1,∴k(1+q+q2+…+q k﹣2)>(k﹣1)(1+q+q2+…+q k﹣2+q k﹣1)∴∴,即对任意的k≥2,k∈N*,都有P(b k)>P(b k+1),故{b n}是“趋稳数列”.。
2016年高考文科数学上海卷
数学试卷 第1页(共6页)数学试卷 第2页(共6页)数学试卷 第3页(共6页)绝密★启用前2016年普通高等学校招生全国统一考试(上海卷)数学(文史类)考生注意:1. 本试卷共6页,23道试题,满分150分.考试时间120分钟.2. 本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3. 答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 设x ∈R ,则不等式31x -<的解集为_______.2. 设32iiz +=,其中i 为虚数单位,则z 的虚部等于_______.3. 已知平行直线1210l x y +-=:,2210l x y ++=:,则1l 与2l 的距离是_______.4. 某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76,则这组数据的中位数是_______(米).5. 若函数()4sin cos f x x a x =+的最大值为5,则常数a =_______.6. 已知点3,9()在函数()1x f x a =+的图象上,则()f x 的反函数1()f x -=_______.7. 若x ,y 满足0,0,1,x y y x ⎧⎪⎨⎪+⎩≥≥≥则2x y -的最大值为_______.8. 方程3sin 1cos2x x =+在区间[]0,2π上的解为_______.9.在2)n x的二项展开式中,所有项的二项式系数之和为256,则常数项等于_______.10. 已知ABC △的三边长分别为3,5,7,则该三角形的外接圆半径等于_______. 11. 某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为_______.12. 如图,已知点()0,0O ,()1.0A ,1(0,)B -,P是曲线y OP BA 的取值范围是 .13. 设0a >,0b >.若关于x ,y 的方程组1,1,ax y x by +=⎧⎨+=⎩无解,则a b +的取值范围是 . 14. 无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意的*n ∈N ,{23}n S ∈,则k 的最大值为 .二、选择题(本大题共4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 设a ∈R ,则“1a >”是“21a >”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件16. 如图,在正方体1111ABCD A B C D -中,E ,F 分别为BC ,1BB的中点,则下列直线中与直线EF 相交的是( )A. 直线1AAB. 直线11A BC. 直线11A DD. 直线11B C17. 设a ∈R ,[0,2π)b ∈.若对任意实数x 都有πsin(3)=3x -sin()ax b +,则满足条件的有序实数对(),a b 的对数为( )A. 1B. 2C. 3D. 418. 设()f x ,()g x ,()h x 是定义域为R 的三个函数.对于命题:①若()()f x g x +,()()f x h x +,()()g x h x +均是增函数,则()f x ,()g x ,()h x 均是增函数;②若()()f x g x +,()f x +()h x ,()g x +()h x 均是以T 为周期的函数,则()f x ,()g x ,()h x 均是以T 为周期的函数,下列判断正确的是( )A. ①和②均为真命题B. ①和②均为假命题C. ①为真命题,②为假命题D. ①为假命题,②为真命题三、解答题(本大题共有5小题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.将边长为1的正方形11AAO O (及其内部)绕1OO 旋转一周形成圆柱,如图,AC 长为56π,11A B 长为3π,其中1B 与C 在平面11AAO O 的同侧.(Ⅰ)求圆柱的体积与侧面积;(Ⅱ)求异面直线11O B 与OC 所成的角的大小.-----------在-------------------此-------------------卷-------------------上-------------------答-------------------题-------------------无-------------------效------------姓名________________ 准考证号_____________数学试卷 第4页(共6页)数学试卷 第5页(共6页)数学试卷 第6页(共6页)20. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.有一块正方形菜地EFGH ,EH 所在直线是一条小河.收获的蔬菜可送到F 点或河边运走.于是,菜地分为两个区域1S 和2S ,其中1S 中的蔬菜运到河边较近,2S 中的蔬菜运到F 点较近,而菜地内1S 和2S 的分界线C 上的点到河边与到F 点的距离相等.现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为10(,),如图.(Ⅰ)求菜地内的分界线C 的方程;(Ⅱ)菜农从蔬菜运量估计出1S 面积是2S 面积的两倍,由此得到1S 面积的“经验值”为83.设M 是C 上纵坐标为1的点,请计算以EH 为一边、另有一边过点M 的矩形的面积,及五边形EOMGH 的面积,并判别哪一个更接近于1S 面积的“经验值”.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.双曲线2221(0)y x b b-=>的左、右焦点分别为1F ,2F ,直线l 过2F 且与双曲线交于A ,B 两点.(Ⅰ)若l 的倾斜角为2π,1F AB △是等边三角形,求双曲线的渐近线方程;(Ⅱ)设b 若l 的斜率存在,且||4AB =,求l 的斜率.22. (本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.对于无穷数列{}n a 与{}n b ,记*{|=}n A xx a n =∈N ,,*{|=}n B x x b n =∈N ,,若同时满足条件:①{}n a ,{}n b 均单调递增;②A B =∅且*A B =N ,则称{}n a 与{}n b 是无穷互补数列.(Ⅰ)若=21n a n -,=42n b n -,判断{}n a 与{}n b 是否为无穷互补数列,并说明理由; (Ⅱ)若2nn a =且{}n a 与{}n b 是无穷互补数列,求数列{}n b 的前16项的和; (III )若{}n a 与{}n b 是无穷互补数列,{}n a 为等差数列且16=36a ,求{}n a 与{}n b 的通项公式.23. (本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知a ∈R ,函数21()log ()f x a x=+.(Ⅰ)当1a =时,解不等式()1f x >;(Ⅱ)若关于x 的方程22()log )0(f x x +=的解集中恰有一个元素,求a 的值;(III )设0a >,若对任意1,12t ⎡⎤∈⎢⎥⎣⎦,函数()f x 在区间[],1t t +上的最大值与最小值的差不超过1,求a 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年上海市松江区高考数学一模试卷(文科)一.填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.已知全集U={1,2,3,4},A是U的子集,满足A∩{1,2,3}={2},A∪{1,2,3}=U,则集合A=.2.若复数z=1+ai(i是虚数单位)的模不大于2,则实数a的取值范围是.3.行列式的值是.4.若幂函数f(x)的图象过点,则f﹣1(2)=.5.若等比数列{a n}满足a1+a3=5,且公比q=2,则a3+a5=.6.若圆柱的底面直径和高都与球的直径相等圆柱、球的表面积分别记为S1、S2,则有S1:S2=.7.如图所示的程序框图,输出的结果是.8.将函数的图象上的所有点向右平移个单位,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),则所得的图象的函数解析式为.9.一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次性随机摸出2只球,则恰好有1只是白球的概率为.10.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b﹣c=a,2sinB=3sinC,则cosA 的值为.11.若(1﹣3x)7展开式的第4项为280,则=.12.已知抛物线C:y2=4x的准线为l,过M(1,0)且斜率为k的直线与l相交于点A,与抛物线C的一个交点为B.若,则k=.13.已知正六边形A1A2…A6内接于圆O,点P为圆O上一点,向量与的夹角为θi(i=1,2,…,6),若将θ1,θ2,…,θ6从小到大重新排列后恰好组成等差数列,则该等差数列的第3项为.14.已知函数f(x),对任意的x∈[0,+∞),恒有f(x+2)=f(x)成立,且当x∈[0,2)时,f(x)=2﹣x.则方程在区间[0,2n)(其中n∈N*)上所有根的和为.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.已知双曲线的右焦点与抛物线y2=12x的焦点相同,则此双曲线的渐近线方程为()A.B.C.D.16.设a,b∈R,则“|a|>b”是“a>b”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件17.已知点E、F分别是正方体ABCD﹣A1B1C1D1的棱AB、AA1的中点,点M、N分别是线段D1E 与C1F上的点,则满足与平面ABCD平行的直线MN有()A.0条B.1条C.2条D.无数条18.在一个有穷数列每相邻两项之间添加一项,使其等于两相邻项的和,我们把这样的操作叫做该数列的一次“H扩展”.已知数列1,2.第一次“H扩展”后得到1,3,2;第二次“H扩展”后得到1,4,3,5,2.那么第10次“H扩展”后得到的数列的项数为()A.1023 B.1025 C.513 D.511三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.如图,在三棱锥P﹣ABC中,PA⊥平面ABC,AC⊥AB,AP=BC=4,∠ABC=30°,D、E分别是BC、AP的中点,(1)求三棱锥P﹣ABC的体积;(2)若异面直线AB与ED所成角的大小为θ,求tanθ的值.20.已知函数.(1)当时,求函数f(x)的值域;(2)求函数y=f(x)的图象与直线y=1相邻两个交点间的最短距离.21.在一次水下考古活动中,潜水员需潜入水深为30米的水底进行作业.其用氧量包含以下三个方面:①下潜时,平均速度为每分钟x米,每分钟的用氧量为升;②水底作业需要10分钟,每分钟的用氧量为0.3升;③返回水面时,速度为每分钟米,每分钟用氧量为0.2升;设潜水员在此次考古活动中的总用氧量为y升.(1)将y表示为x的函数;(1)若x∈[4,8],求总用氧量y的取值范围.22.在平面直角坐标系xOy中,O为坐标原点,C、D两点的坐标为C(﹣1,0),D(1,0),曲线E上的动点P满足.又曲线E上的点A、B满足OA⊥OB.(1)求曲线E的方程;(2)若点A在第一象限,且,求点A的坐标;(3)求证:原点到直线AB的距离为定值.23.对于数列{a n},称P(a k)=(其中k≥2,k∈N)为数列{a n}的前k项“波动均值”.若对任意的k≥2,k∈N,都有P(a k+1)<P(a k),则称数列{a n}为“趋稳数列”.(1)若数列1,x,2为“趋稳数列”,求x的取值范围;(2)已知等差数列{a n}的公差为d,且a1>0,d>0,其前n项和记为S n,试计算:C n2P(S2)+C n3P (S3)+…+C n n P(S n)(n≥2,n∈N);(3)若各项均为正数的等比数列{b n}的公比q∈(0,1),求证:{b n}是“趋稳数列”.2016年上海市松江区高考数学一模试卷(文科)参考答案与试题解析一.填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.已知全集U={1,2,3,4},A是U的子集,满足A∩{1,2,3}={2},A∪{1,2,3}=U,则集合A={2,4}.【考点】并集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】全集U和其子集A、B都是用列举法给出的,且都含有几个元素,直接运用交、并的概念即可解答【解答】解:∵全集U={1,2,3,4},A是U的子集,满足A∩{1,2,3}={2},A∪{1,2,3}=U,∴A={2,4},故答案为:{2,4}.【点评】本题考查了交、并混合运算,是概念题.2.若复数z=1+ai(i是虚数单位)的模不大于2,则实数a的取值范围是[].【考点】复数的基本概念;复数代数形式的混合运算.【专题】计算题.【分析】由于复数的模不大于2,可得不等式,然后求解即可.【解答】解:复数z=1+ai(i是虚数单位)的模不大于2,即:1+a2≤4即a2≤3可得a∈故答案为:【点评】本题考查复数的基本概念,复数代数形式的混合运算,是基础题.3.行列式的值是.【考点】二阶行列式的定义.【专题】计算题;方程思想;综合法;矩阵和变换.【分析】利用二阶行列式展开法则和余弦函数加法定理能求出结果.【解答】解:=cos20°cos40°﹣sin20°sin40°=cos(20°+40°)=cos60°=.故答案为:.【点评】本题考查二阶行列式的值的求法,是基础题,解题时要认真审题,注意余弦函数加法定理的合理运用.4.若幂函数f(x)的图象过点,则f﹣1(2)=.【考点】反函数;幂函数的概念、解析式、定义域、值域.【专题】计算题;函数的性质及应用.【分析】由题意知f(2)=2α=,从而可得f(x)=,f﹣1(x)=,从而解得.【解答】解:∵幂函数f(x)的图象过点,∴f(2)=2α=,解得,α=﹣,故f(x)=,∴f﹣1(x)=,∴f﹣1(2)==;故答案为:.【点评】本题考查了幂函数的应用及反函数的应用.5.若等比数列{a n}满足a1+a3=5,且公比q=2,则a3+a5=20.【考点】等比数列的通项公式.【专题】转化思想;等差数列与等比数列.【分析】利用等比数列的通项公式及其性质即可得出.【解答】解:a3+a5=q2(a1+a3)=22×5=20,故答案为:20.【点评】本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.6.若圆柱的底面直径和高都与球的直径相等圆柱、球的表面积分别记为S1、S2,则有S1:S2=3:2.【考点】旋转体(圆柱、圆锥、圆台).【专题】计算题;空间位置关系与距离.【分析】根据圆柱的底面直径和高都与球的直径相等,设为球的半径为1,结合圆柱的表面积的公式以及球的表面积即可得到答案.【解答】解:由题意可得:圆柱的底面直径和高都与球的直径相等,设球的半径为1,所以等边圆柱的表面积为:S1=6π,球的表面积为:S2=4π.所以圆柱的表面积与球的表面积之比为S1:S2=3:2.故答案为:3:2.【点评】本题考查几何体的表面积,考查计算能力,特殊值法,在解题中有是有独到功效,是基础题.7.如图所示的程序框图,输出的结果是15.【考点】程序框图.【专题】操作型;算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量b的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当a=1时,满足进行循环的条件,执行循环体后b=3,a=2;当a=2时,满足进行循环的条件,执行循环体后b=7,a=3;当a=3时,满足进行循环的条件,执行循环体后b=15,a=4;当a=4时,不满足进行循环的条件,故输出的结果为:15.故答案为:15【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.8.将函数的图象上的所有点向右平移个单位,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),则所得的图象的函数解析式为y=sin4x.【考点】函数y=Asin(ωx+φ)的图象变换.【专题】阅读型.【分析】按照左加右减的原则,求出函数所有点向右平移个单位的解析式,然后求出将图象上所有点的横坐标变为原来的倍时的解析式即可.【解答】解:将函数的图象上的所有点向右平移个单位,得到函数=sin2x,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),则所得的图象的函数解析式为y=sin4x.故答案为:y=sin4x.【点评】本题是基础题,考查函数的图象的平移与伸缩变换,注意x的系数与函数平移的方向,易错题.9.一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次性随机摸出2只球,则恰好有1只是白球的概率为.【考点】相互独立事件的概率乘法公式.【专题】概率与统计.【分析】从中一次性随机摸出2只球,基本事件总数n=,恰好有1只是白球的基本事件个数m=,由此能求出恰好有1只是白球的概率.【解答】解:从中一次性随机摸出2只球,基本事件总数n=,恰好有1只是白球的基本事件个数m=,∴恰好有1只是白球的概率P==.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要注意等可能事件概率计算公式的合理运用.10.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b﹣c=a,2sinB=3sinC,则cosA的值为﹣.【考点】余弦定理;正弦定理.【专题】解三角形.【分析】由条件利用正弦定理求得a=2c,b=,再由余弦定理求得cosA=的值.【解答】解:在△ABC中,∵b﹣c= a ①,2sinB=3sinC,∴2b=3c ②,∴由①②可得a=2c,b=.再由余弦定理可得cosA===﹣,故答案为:﹣.【点评】本题主要考查正弦定理、余弦定理的应用,属于中档题.11.若(1﹣3x)7展开式的第4项为280,则=.【考点】二项式系数的性质;极限及其运算.【专题】对应思想;转化法;二项式定理.【分析】根据二项式展开式的第4项求出x的值,再利用等比数列的前n项和求极限.【解答】解:∵(1﹣3x)7展开式的第4项为280,∴T4=•(﹣3x)3=﹣27×35x3=280;∴x3=﹣,解得x=﹣;∴====﹣.故答案为:﹣.【点评】本题考查了二项式展开式的应用问题,也考查了等比数列前n项和的应用问题,是基础题目.12.已知抛物线C:y2=4x的准线为l,过M(1,0)且斜率为k的直线与l相交于点A,与抛物线C的一个交点为B.若,则k=.【考点】抛物线的简单性质.【专题】计算题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】求出B的坐标,即可求出直线的斜率.【解答】解:由题意,M到准线的距离为2,∵,∴B的横坐标为2,代入抛物线C:y2=4x,可得y=±2,∴B的坐标为(2,±2),∴k==故答案为:.【点评】本题考查抛物线的方程与性质,考查学生的计算能力,比较基础.13.已知正六边形A1A2…A6内接于圆O,点P为圆O上一点,向量与的夹角为θi(i=1,2,…,6),若将θ1,θ2,…,θ6从小到大重新排列后恰好组成等差数列,则该等差数列的第3项为.【考点】向量在几何中的应用.【专题】计算题;数形结合;综合法;等差数列与等比数列;平面向量及应用.【分析】可假设该等差数列的前三项分别为θ1,θ2,θ3,然后画出图形,通过图形便可看出,根据该数列为等差数列便可求出θ1,从而求出θ3,即得出该等差数列的第三项的值.【解答】解:设组成等差数列的前三项为:θ1,θ2,θ3,如图,,则:;θ1,θ2,θ3成等差数列;∴2θ2=θ1+θ3;即;∴;;即该等差数列的第三项为.故答案为:.【点评】考查对圆内接正六边形的认识,数形结合解题的方法,等差数列的概念,及等差中项的概念.14.已知函数f(x),对任意的x∈[0,+∞),恒有f(x+2)=f(x)成立,且当x∈[0,2)时,f(x)=2﹣x.则方程在区间[0,2n)(其中n∈N*)上所有根的和为n2.【考点】抽象函数及其应用.【专题】规律型;数形结合法;转化法;函数的性质及应用.【分析】先根据问题的条件可以分析出:当x∈[2n﹣2,2n),f(x)=2n﹣x,再结合函数的图象得出x1+x n=+=2n(+)=2n,从而可以求出所有根之和.【解答】解:∵f(x+2)=f(x)成立,∴f(x)是一个以2为周期的函数,当x∈[0,2)时,f(x)=2﹣x;当x∈[2,4)时,f(x)=f(x﹣2)=2﹣(x﹣2)=4﹣x;当x∈[4,6)时,f(x)=f(x﹣2)=4﹣(x﹣2)=6﹣x;…当x∈[2n﹣2,2n),f(x)=2n﹣x,记g(x)=x,由图可知,f(x)=g(x)在区间[2i﹣2,2i)(i=1,2,3,…,n)各有一解,分别记为:x1,x2,x3,…,x n,下面考察x1与x n的数量关系,令2﹣x=x,解得x1=;再令2n﹣x=x,解得x n=,所以,x1+x n=+=2n(+)=2n,同理,x2+x n﹣1=2n,x3+x n﹣2=2n,…,因此,x1+x2+x3+…+x n=•2n=n2,故答案为:n2.【点评】本题主要考查了抽象函数及其应用,涉及函数的周期性,解析式,图象交点,以及方程根之间数量关系的分析与确立,体现了数形结合的解题思想,属于难题.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.已知双曲线的右焦点与抛物线y2=12x的焦点相同,则此双曲线的渐近线方程为()A.B.C.D.【考点】圆锥曲线的综合;双曲线的简单性质.【专题】计算题;数形结合;综合法;圆锥曲线的定义、性质与方程.【分析】由已知条件求出双曲线的一个焦点为(3,0),可得m+5=9,求出m=4,由此能求出双曲线的渐近线方程.【解答】解:∵抛物线y2=12x的焦点为(3,0),∴双曲线的一个焦点为(3,0),即c=3.双曲线可得∴m+5=9,∴m=4,∴双曲线的渐近线方程为:.故选:A.【点评】本题主要考查圆锥曲线的基本元素之间的关系问题,同时双曲线、椭圆的相应知识也进行了综合性考查.16.设a,b∈R,则“|a|>b”是“a>b”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】转化思想;不等式的解法及应用;简易逻辑.【分析】“|a|>b”⇒a>b或﹣a>b.“a>b”⇒“|a|>b”,正确,由于|a|≥a,可得|a|>b.反之不成立,例如取a=﹣3,b=2,虽然|a|>b,但是﹣3>2不成立.【解答】解:“|a|>b”⇒a>b或﹣a>b,∴“a>b”⇒“|a|>b”,∵|a|≥a,∴|a|>b.反之不成立,例如取a=﹣3,b=2,虽然|a|>b,但是﹣3>2不成立.∴“|a|>b”是“a>b”的必要不充分条件.故选:B.【点评】本题考查了绝对值不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.17.已知点E、F分别是正方体ABCD﹣A1B1C1D1的棱AB、AA1的中点,点M、N分别是线段D1E 与C1F上的点,则满足与平面ABCD平行的直线MN有()A.0条B.1条C.2条D.无数条【考点】空间中直线与平面之间的位置关系.【专题】空间位置关系与距离.【分析】取BB1的中点H,连接FH,在D1E上任取一点M,过M在面D1HE中,作MG平行于HO,其中O为线段D1E的中点,交D1H于G,再过G作GN∥FH,交C1F于N,连接MN,根据线面平行的判定定理,得到GM∥平面ABCD,NG∥平面ABCD,再根据面面平行的判断定理得到平面MNG∥平面ABCD,由面面平行的性质得到则MN∥平面ABCD,由于M是任意的,故MN 有无数条.【解答】解:取BB1的中点H,连接FH,则FH∥C1D,连接HE,在D1E上任取一点M,过M在面D1HE中,作MG平行于HO,其中O为线段D1E的中点,交D1H于G,再过G作GN∥FH,交C1F于N,连接MN,O在平面ABCD的正投影为K,连接KB,则OH∥KB,由于GM∥HO,HO∥KB,KB⊂平面ABCD,GM⊄平面ABCD,所以GM∥平面ABCD,同理由NG∥FH,可推得NG∥平面ABCD,由面面平行的判定定理得,平面MNG∥平面ABCD,则MN∥平面ABCD.由于M为D1E上任一点,故这样的直线MN有无数条.故选:D.【点评】本题考查空间直线与平面的位置关系,主要是直线与平面平行的判断和面面平行的判定与性质,考查空间想象能力和简单推理能力.18.在一个有穷数列每相邻两项之间添加一项,使其等于两相邻项的和,我们把这样的操作叫做该数列的一次“H扩展”.已知数列1,2.第一次“H扩展”后得到1,3,2;第二次“H扩展”后得到1,4,3,5,2.那么第10次“H扩展”后得到的数列的项数为()A.1023 B.1025 C.513 D.511【考点】数列的函数特性.【专题】计算题;等差数列与等比数列.【分析】化简可得=2,从而可得{a n﹣1}是以2为首项,2为公比的等比数列,从而解得.【解答】解:设第n次“H扩展”后得到的数列的项数为a n,则第n+1次“H扩展”后得到的数列的项数为a n+1=2a n﹣1,∴=2,又∵a1﹣1=3﹣1=2,∴{a n﹣1}是以2为首项,2为公比的等比数列,∴a n﹣1=2•2n﹣1,∴a n=2n+1,∴a10=210+1=1025;故选B.【点评】本题考查了等比数列的性质的判断与应用,关键在于构造等比数列.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.如图,在三棱锥P﹣ABC中,PA⊥平面ABC,AC⊥AB,AP=BC=4,∠ABC=30°,D、E分别是BC、AP的中点,(1)求三棱锥P﹣ABC的体积;(2)若异面直线AB与ED所成角的大小为θ,求tanθ的值.【考点】异面直线及其所成的角;棱柱、棱锥、棱台的体积.【专题】计算题;空间角.【分析】(1)三棱锥P﹣ABC中,由PA⊥平面ABC,AC⊥AB,AP=BC=4,∠ABC=30°,D、E 分别是BC、AP的中点,知AC=2,AB=2,由此能求出三棱锥P﹣ABC的体积.(2)取AC中点F,连接DF,EF,则AB∥DF,所以∠EDF就是异面直线AB与ED所成的角θ,由此能求出tanθ.【解答】解:(1)三棱锥P﹣ABC中,∵PA⊥平面ABC,AC⊥AB,AP=BC=4,∠ABC=30°,D、E分别是BC、AP的中点,∴AC=2,AB=2,…=•PA=.…所以,体积V P﹣ABC(2)取AC中点F,连接DF,EF,则AB∥DF,所以∠EDF就是异面直线AB与ED所成的角θ.…由已知,AC=EA=AD=2,AB=2,PC=2,∵AB⊥EF,∴DF⊥EF.…在Rt△EFD中,DF=,EF=,所以,tanθ=.…【点评】本题考查三棱锥的体积的求法,考查异面直线所成角的正切值的求法,解题时要认真审题,注意等价转化思想的合理运用.20.已知函数.(1)当时,求函数f(x)的值域;(2)求函数y=f(x)的图象与直线y=1相邻两个交点间的最短距离.【考点】三角函数的最值;三角函数中的恒等变换应用.【专题】转化思想;综合法;三角函数的图像与性质.【分析】(1)由条件利用正弦函数的定义域和值域求得函数f(x)的值域.(2)令,求得x的值,可得结论.【解答】解:(1)f(x)==,当时,,所以f(x)的值域为.(2)令,∴,故或,k∈Z,∴当函数y=f(x)的图象和直线y=1时的两交点的最短距离为.【点评】本题主要考查正弦函数的定义域和值域,函数的零点与方程的根的关系,属于基础题.21.在一次水下考古活动中,潜水员需潜入水深为30米的水底进行作业.其用氧量包含以下三个方面:①下潜时,平均速度为每分钟x米,每分钟的用氧量为升;②水底作业需要10分钟,每分钟的用氧量为0.3升;③返回水面时,速度为每分钟米,每分钟用氧量为0.2升;设潜水员在此次考古活动中的总用氧量为y升.(1)将y表示为x的函数;(1)若x∈[4,8],求总用氧量y的取值范围.【考点】函数模型的选择与应用.【专题】应用题;函数思想;综合法;函数的性质及应用.【分析】(1)通过速度、时间与路程之间的关系可知下潜所需时间为分钟、返回所需时间为分钟,进而列式可得结论;(2)通过基本不等式可知及x∈[4,8]可知在[4,6]上单调递减、在[6,8]上单调递增,比较当x=4、8时的取值情况即得结论.【解答】解:(1)依题意,下潜所需时间为分钟;返回所需时间为分钟,∴,整理得:(x>0);(2)由基本不等式可知,当且仅当即x=6时取等号,因为x∈[4,8],所以在[4,6]上单调递减、在[6,8]上单调递增,所以当x=6时,y取最小值7,又因为当x=4时;当x=8时,所以y的取值范围是:.【点评】本题考查函数模型的选择与应用,考查运算求解能力,注意解题方法的积累,属于中档题.22.在平面直角坐标系xOy中,O为坐标原点,C、D两点的坐标为C(﹣1,0),D(1,0),曲线E上的动点P满足.又曲线E上的点A、B满足OA⊥OB.(1)求曲线E的方程;(2)若点A在第一象限,且,求点A的坐标;(3)求证:原点到直线AB的距离为定值.【考点】轨迹方程.【专题】综合题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】(1)由|CD|=2,知,曲线E是以C、D为焦点,长轴的椭圆,即可求曲线E的方程;(2)设直线OA的方程为y=kx(k>0),则直线OB的方程为,与椭圆方程联立,由知4|OA|2=3|OB|2,即可求点A的坐标;(3)分类讨论,设直线AB的方程x=my+b,与椭圆方程联立,求出原点到直线AB的距离,即可证明原点到直线AB的距离为定值.【解答】(1)解:由|CD|=2,知,曲线E是以C、D为焦点,长轴的椭圆,设其方程为,则有,∴曲线E的方程为(2)解:设直线OA的方程为y=kx(k>0),则直线OB的方程为由得2x2+3k2x2=6,解得同理,由则解得.由知4|OA|2=3|OB|2,即解得k2=6,因点A在第一象限,故,此时点A的坐标为(3)证明:设A(x1,y1),B(x2,y2),当直线AB平行于坐标轴时,由OA⊥OB知A、B两点之一为y=±x与椭圆的交点,由解得此时原点到直线AB的距离为当直线AB不平行于坐标轴时,设直线AB的方程x=my+b,由得(2m2+3)y2+4bmy+2b2﹣6=0由x1x2+y1y2=0得(my1+b)(my2+b)+y1y2=0即因代入得即5b2=6(m2+1)原点到直线AB的距离【点评】本题考查椭圆的定义与方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,属于中档题.23.对于数列{a n},称P(a k)=(其中k≥2,k∈N)为数列{a n}的前k项“波动均值”.若对任意的k≥2,k∈N,都有P(a k+1)<P(a k),则称数列{a n}为“趋稳数列”.(1)若数列1,x,2为“趋稳数列”,求x的取值范围;(2)已知等差数列{a n}的公差为d,且a1>0,d>0,其前n项和记为S n,试计算:C n2P(S2)+C n3P (S3)+…+C n n P(S n)(n≥2,n∈N);(3)若各项均为正数的等比数列{b n}的公比q∈(0,1),求证:{b n}是“趋稳数列”.【考点】数列的应用.【专题】计算题;证明题;阅读型;等差数列与等比数列;二项式定理;不等式.【分析】(1)由题意,从而解绝对值不等式即可;(2)由a1>0,d>0可化简为;从而得到=,从而解得.(3),从而判断大小以去绝对值号,化简可得,从而化为k(1+q+q2+…+q k﹣2)>(k﹣1)(1+q+q2+…+q k﹣2+q k﹣1),从而证明.【解答】解:(1)由题意,,即|1﹣x|>|x﹣2|;解得,.(2)=,∵a1>0,d>0,∴a n=a1+(n﹣1)d>0,∴;∴===;(3)证明:由已知,设,>b k,因b1>0且0<q<1,故对任意的k≥2,k∈N*,都有b k﹣1∴对=,因0<q<1,∴q i>q k﹣1(i<k﹣1);∴1>q k﹣1,q>q k﹣1,q2>q k﹣1,…,q k﹣2>q k﹣1,∴1+q+q2+…+q k﹣2>(k﹣1)q k﹣1,∴k(1+q+q2+…+q k﹣2)>(k﹣1)(1+q+q2+…+q k﹣2+q k﹣1)∴∴,即对任意的k≥2,k∈N*,都有P(b k)>P(b k+1),故{b n}是“趋稳数列”.【点评】本题考查了等比数列与等差数列的应用及二项式定理的应用,同时考查了学生的化简运算能力.。