七年级数学从算式到方程2
人教版初中数学七年级上册第三章3.1从算式到方程(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解方程的基本概念。方程是表示两个表达式相等的一种数学式子。它在解决含有未知数的问题时非常重要。
2.案例分析:接下来,我们来看一个具体的案例。假设小华的身高是x厘米,那么小强的身高就是x-10厘米。我们可以通过方程x = (x-10) + 10来表示这个关系,并解出x的值。
4.方程的简单求解:掌握解一元一次方程的方法,如移项、合并同类项等。
5.方程的应用:学会将实际问题转化为方程,并解决实际问题。
二、核心பைடு நூலகம்养目标
1.培养学生的逻辑推理能力:通过从算式到方程的过渡,使学生理解等量关系,并能运用逻辑推理解决实际问题。
2.提高学生的数学建模素养:学会将现实生活中的问题抽象为数学方程,培养数学建模的能力。
五、教学反思
在今天的教学过程中,我发现学生们对于方程的概念和识别有着不错的基础,他们能够较快地理解方程表示两个表达式相等的关系。在导入新课环节,通过提问的方式激发学生的好奇心,他们积极地参与到了课堂讨论中。然而,我也注意到,在将实际问题抽象为方程的过程中,部分学生还是感到有些困难。
在新课讲授环节,我尽量用简明易懂的语言解释方程的定义和求解方法,并通过具体案例让学生看到方程在实际问题中的应用。我发现,通过案例分析,学生们对于方程求解的步骤有了更清晰的认识。不过,在讲解重点难点时,我意识到需要更多的时间和练习来巩固学生对移项、合并同类项等操作的理解。
人教版数学七年级上册优秀教案:3.1《从算式到方程》
3.1 从算式到方程(第1课时)教学目标:1.了解方程、一元一次方程、方程的解等概念,会估算方程的解,会检验一个数是否是方程的解.2.根据实际问题中的数量关系,列出相等关系,列出方程,体会数学建模思想.3.让学生体会我们的生活处处有数学,对数学产生亲近感,提高学生学习数学的兴趣. 教学重点:方程、一元一次方程和方程的解的概念.教学难点:从实际问题中找出相等关系,列出方程.教法: 指导法学法: 小组研讨法教学过程:一、情境引入问题1:一辆客车和一辆卡车同时从A 地出发沿同一公路同方向行驶,客车的行驶速度是车70km/h ,卡车的行驶速度是60km/h ,客车比卡车早1h 经过B 地,A ,B 两地间的路程是多少?学生合作探究:小组讨论各个数量之间的运算关系,尝试列出算式.教师总结:由于客车比卡车早1h 经过B 地,则可计算出卡车行驶的时间:()76070170=-÷⨯(h ),则A ,B 两地的路程:420607=⨯(km )上述计算过程中的数量关系不是特别明显,我们是否能找到一种更加直接的求解方法呢?问题2:如果设A 、B 两地的路程是x km ,你能分别列出表示客车和卡车从A 地到B 地的行驶时间吗?从两车的时间相差1 h ,你能列出关于x 的方程吗?学生活动:小组合作探究,确定各个量之间的运算关系.师生合作探究:我们可知两车的时间相等关系:卡车行驶时间-客车行驶时间=1h 教师总结:本题主要数量关系是速度路程时间÷=. 可列出方程:17060=-x x ① 问题3:你还能列出其他方程吗?如果能,你依据的是哪个相等关系?学生活动:小组合作探究.师生合作探究:能否利用路程相等列出方程?教师总结:客车行驶路程=卡车行驶路程可以设客车行驶时间为x h ,则卡车行驶时间为(x +1)h , 则()16070+=x x .也可以设卡车行驶的时间为x h ,则客车行驶的时间为(x -1)h.则()x x 60170=-.以上的利用列方程的解题过程告诉我们:列方程时,要先设字母表示未知数,然后根据问题中的相等关系写出含有未知数的等式——方程.二、范例学习例1.根据下列问题,设未知数并列出方程:(1)用一根长20cm 的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1700h ,预计每月再使用150h 小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?(3)某校女生占全体学生数的52℅,比男生多80人,这个学校有学生多少个?学生活动:小组合作探究找出问题中的相等关系,列出方程.师生合作探究:(1)正方形的周长与边长是什么关系?(2)规定时间=已使用时间+月数 每月再使用时间(3)女生人数+男生人数=总人数教师总结:(1)设正方形的边长为x cm.列方程:244=x .(2)设x 个月后这台计算机使用时间达到2450 h 。
人教版七年级数学上册第三章从算式到方程复习题2(含答案) (58)
人教版七年级数学上册第三章从算式到方程复习题2(含答案)由2x -16=3x +5得2x -3x =5+16,在此变形中,是在原方程的两边同时加上了__________.【答案】16-3x【解析】【分析】根据等式2x-16=3x+5到2x-3x=5+16的变形,即可得出结论.【详解】解:∵2x-16=3x+5,∴2x-16+(16-3x )=3x+5+(16-3x ),即2x-3x=5+16.故答案为:16-3x .【点睛】本题考查等式的性质,解题关键是熟练掌握“等式两边加同一个数(或式子)结果仍得等式” .72.如果-10m =5n ,那么m =______,理由:根据等式的性质_____,在等式两边______________.【答案】-2n 2 都乘-10【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】解:如果-10m =5n ,那么m=-2n .理由:根据等式性质2,等式的两边同时乘以(或除以)同一个不为0的数(或字母),等式仍成立,在等式两边都乘以-10.故答案为:(1). -2n (2). 2 (3). 都乘-10.【点睛】本题考查等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0的数(或字母),等式仍成立.73.如果-2x =2y ,那么x =________,理由:根据等式的性质__________,在等式两边___________________【答案】-y 2 都除以-2【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】解:如果-2x=2y .那么x=-y .理由:根据等式性质2,等式的两边同时乘以(或除以)同一个不为0的数(或字母),等式仍成立.在等式两边都除以-2.故答案为:(1). -y (2). 2 (3). 都除以-2.【点睛】本题考查等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0的数(或字母),等式仍成立.74.如果3x=4+2x,那么x=_______,理由:根据等式的性质______,在等式两边_____________【答案】4 1 都减去2x【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】解:如果3x=4+2x,那么x=4,理由:根据等式性,1,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立,在等式两边都减2x.故答案为:(1). 4 (2). 1 (3). 都减去2x.【点睛】本题考查等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0的数(或字母),等式仍成立.75.如果x-2=3,那么x=______,理由:根据等式的性质______,在等式两边____________【答案】5 1 都加上2【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】解:如果x-2=3,那么x=5,理由:根据等式性质等式的两边同时加上(或减去)同一个数(或字母),等式仍成立,在等式两边都加2.故答案为:(1). 5 (2). 1 (3). 都加上2.【点睛】本题考查等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0的数(或字母),等式仍成立.76.方程2+3x=1与3a﹣(1+x)=0的解相同,则a=_____.【答案】29【解析】【分析】先得出方程2+3x=1的解,然后代入3a﹣(1+x)=0可得出关于a的方程,解出即可.【详解】2+3x=1,解得:x=﹣13,将x=﹣13代入3a﹣(1+x)=0可得:3a﹣(1﹣13)=0,解得:a=29.故答案为29.【点睛】本题考查了同解方程的知识,解决的关键是能够求解关于x的方程,要正确理解方程解的含义.77.写出一个满足下列条件的一元一次方程:(1)未知数的系数为﹣2,(2)方程的解是3,则这样的方程可写为_____.【答案】-2x=-6【解析】【分析】根据所给的条件直接写出一个一元一次方程即可.【详解】∵一元一次方程未知数的系数为﹣2,方程的解是3,∴该方程可为-2x=-6.故答案为:-2x=-6.【点睛】本题考查了一元一次方程的知识,根据所给的条件确定符合条件的方程是解决问题的关键.78.已知x=3是关于x的方程:4x﹣a=3+ax的解,那么a的值是_______.【答案】94【解析】【分析】把x=3代入方程得到一个关于a的方程,解方程求得a的值.【详解】解:把x=3代入方程得12-a=3+3a,移项,得-a-3a=3-12,合并同类项得-4a=-9,系数化成1得9a .4.故答案为94【点睛】本题考查的知识点是一元一次方程的解,解题关键是熟记方程的解即为能使方程左右两边相等的未知数的值.79.不论x取何值等式2ax+b=4x﹣3恒成立,则a+b=_____.【答案】-1【解析】【分析】根据等式恒成立的条件可知,当x取特殊值0或1时都成立,可将条件代入,即可求出a与b的值.【详解】∵不论x取何值等式2ax+b=4x-3恒成立,∴x=0时,b=-3,x=1时,a=2,即a=2,b=-3,∴a+b=2+(-3)=-1.故答案为-1.【点睛】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.80.若﹣1是关于x的方程mx﹣n=1(m≠0)的解,则关于x的方程(m+n)(2x+1)﹣n﹣m=0(m≠n)的解为_____.【答案】0【解析】【分析】根据方程的解满足方程,可得m+n的值,根据整体代入法,可得关于x的方程,根据解方程,可得答案.【详解】由若﹣1是关于x的方程mx﹣n=1(m≠0)的解,得:m+n=﹣1.把m+n=﹣1代入(m+n)(2x+1)﹣n﹣m=0(m≠n),得:﹣(2x+1)﹣(﹣1)=0,解得:x=0.故答案为0.【点睛】本题考查了一元一次方程的解,利用整体代入得出﹣(2x+1)﹣(﹣1)=0是解题的关键.。
人教版七年级数学上册同步备课3.1.2等式的性质(教学设计)
3.1.2 等式的性质教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第三章“一元一次方程”3.1从算式到方程第2课时,内容包括等式的性质以及利用等式的性质解方程.2.内容解析方程是含有未知数的等式,解方程就是求出方程中未知数的值,解方程需要相应的理论基础说明解法的合理性.本章不涉及方程的同解原理,而以等式的性质作为解方程的依据.本节课通过观察、归纳引出等式的两条性质,并利用它们讨论一些比较简单的一元一次方程的解法,为后面几节进一步讨论比较复杂的一元一次方程的解法作准备.基于以上分析,可以确定本节课的教学重点为:了解等式的两条性质并能运用它们解简单的一元一次方程,初步理解其中的化归思想.二、目标和目标解析1.目标(1)了解等式的概念和等式的两条性质并能运用这两条性质解简单的一元一次方程.(2)经历等式的两条性质的探究过程,培养观察、归纳的能力.(3)在运用等式的性质解简单的一元一次方程的过程中,渗透化归的数学思想.2.目标解析(1)使学生知道等式是用等号表示相等关系的式子;理解等式两边加或减同一个数或式子,乘或除以(除数不为0)同一个数,结果仍相等的性质;能运用等式的两条性质解一些比较简单的一元一次方程.(2)使学生经历通过观察、归纳得出等式的两条性质的探究过程,体会等式的两条性质的合理性,培养学生观察、归纳的能力.(3)使学生在运用等式的两条性质解比较简单的一元一次方程,把一元一次方程转化为x=a的形式的过程中,明确一元一次方程的解的形式,渗透化归的数学思想.三、教学问题诊断分析对于等式的两条性质,借助天平从直观的角度认识,既给出了文字形式的表达,又用式子形式加以描述,这是一个抽象概括的过程,学生能体会到它们的合理性.把等式的性质与解方程结合起来,利用等式的性质研究一元一次方程的解法,这是由一般到特殊的过程,是具体操作层面的问题.怎样运用等式性质把一元一次方程化成x=a的形式,学生会存在一定的困难.基于以上分析,确定本节课的教学难点为:运用等式性质把简单的一元一次方程化成x=a的形式.四、教学过程设计(一)创设情境,复习导入问题1:回答下列问题:(1)什么是方程?(方程是含有未知数的等式)(2)指出下列式子中,哪些是方程,哪些不是,并说明理由;①3+x=5;②3x+2y=7;③2+3=3+2;④a+b=b+a(a、b已知);⑤5x+7= x–5.(3)上面的式子有哪些共同特点?(都是等式;我们可以用a = b来表示一般的等式.)问题2:用估算的方法可以求出简单的一元一次方程的解.你能用估算的方法求出下列方程的解吗?(1)3x-5=22;(2)0.28-0.13y=0.27y+1.师生活动:教师提出问题(1),学生进行估算,寻求正确的答案.学生充分发表意见,教师评价激励.对于(2),学生适当思考后,教师引入新课:用估算的方法解比较复杂的方程是困难的.因此,我们还要讨论怎样解方程.本环节中,教师应重点关注:(1)学生能否估算出第(1)题的解;(2)学生能否意识到估算比较复杂的一元一次方程的解是比较困难的,体会到进一步学习的必要性.【设计意图】第(1)题是为了复习巩固估算比较简单的一元一次方程的方法,第(2)题是为了让学生意识到估算比较复杂的一元一次方程的解是比较困难的,从而引起学生的认知冲突,体会到进一步学习的必要性,引出新课.问题3:方程是含有未知数的等式,那什么叫做等式呢?师生活动:教师出示以下例子:m+n=n+m,x+2x=3x,3×3+1=5×2,3x+1=5y.学生观察以上例子,感知等式.教师指出:像以上这样的式子,都是等式.用等号表示相等关系的式子,叫做等式.通常可以用a=b表示一般的等式,并指出等式的左边和右边.教师请学生自己举出等式的例子,并指出等式的左边和右边.本环节中,教师应重点关注:(1)学生能否举出等式的实际例子;(2)学生能否理解等式的概念并分清等式的左边和右边.【设计意图】等式的概念虽然比较简单,但它是学习等式性质的基础.等式的性质要在等式的两边同时进行某种相同的运算,因此必须让学生分清等式的左边和右边.(二)实验探究学习新知问题4:探究、归纳等式的性质1(借助图1).图1师生活动:教师演示实验,提出问题:由它你能发现什么规律?学生叙述发现规律后,教师进一步引导:把一个等式看作一个天平,等号两边的式子看作天平两边的物体,则等式成立可以看作是天平两边保持平衡.追问1:等式具有与上面的事实同样的性质.你能用文字叙述等式的这个性质吗?师生活动:在学生回答的基础上,教师说明:等式两边加上或减去的可以是同一个数,也可以是同一个式子.归纳等式的性质1.追问2:等式一般可以用a=b来表示,等式的性质1怎样用式子的形式来表示呢?师生活动:师生一起归纳:如果a=b,那么a±c=b±c,并请学生用具体的数字等式验证这条性质.问题5:探究、归纳等式的性质2(借助图2).图 2师生活动:教师演示实验,提出问题:由它你能发现什么规律?师生一起归纳等式的性质2并用式子表示.学生用具体的数字等式验证这条性质.教师应提醒学生注意:(1)等式两边都要参加运算,并且是进行同一种运算;(2)等式两边加或减,乘或除以的数一定是同一个数或同一个式子;(3)等式两边不能都除以0,即0不能作除数或分母.本环节中,教师应重点关注:(1)学生能否理解由天平向等式过渡的合理性;(2)学生能否观察、探究、归纳出等式的两条性质;(3)学生能否用文字语言和符号语言来表示等式的两条性质.【设计意图】借助天平演示,探究等式的性质,可以加强对等式性质的直观理解;用文字语言和符号语言两种形式描述等式的两条性质,让学生一方面切实理解等式的性质,另一方面体会如何用数学的符号语言抽象概括地表示它们,用具体的数字等式验证等式的两条性质,是为了让学生进一步体会等式性质的合理性.(三)针对训练1. 思考回答下列问题:(1)怎样从等式 x -5= y -5 得到等式 x = y ?(2)怎样从等式 3+x =1 得到等式 x =-2?(3)怎样从等式 4x =12 得到等式 x =3?(4)怎样从等式100100a b =得到等式a =b ? 参考答案:(1)依据等式的性质1两边同时加5;(2)依据等式的性质1两边同时减3;(3)依据等式的性质2两边同时除以4或同乘14; (4)依据等式的性质2两边同时除以1100或同乘100. 2. 已知x =y ,则下列各式中,正确的有( C ). ①x -3=y -3; ②3x =3y ; ③-2x =-2y ; ④1y x =. A. 1个 B. 2个 C. 3个 D. 4个3. 已知mx =my ,下列结论错误的是 ( A )A. x =yB. a +mx =a +myC. mx -y =my -yD. amx =amy师生活动:教师出示问题,学生独立思考后同桌交流,学生展示思路,教师点拨.本环节中,教师应重点关注:(1)学生是否理解等式的两条性质;(2)学生能否利用等式的两条性质将方程变形;(3)学生是否认真思考、积极交流、勇于展示.【设计意图】使学生进一步理解并应用等式的两条性质,提高学生运用所学知识解决具体问题的能力.(四)典例分析例:利用等式的性质解下列方程:(1)x +7=26;(2)-5x =20;(3)1543x --=.解:(1)方程两边同时减去7,x +7-7= 26-7于是x =19.(2)解: 方程两边同时除以-5,-5x ÷(-5)= 20 ÷(-5)化简,得x =-4.(3)解:方程两边同时加上5,得 155453x --+=+ 化简,得193x -= 方程两边同时乘-3,得 x =-27.师生活动:师生共同完成第(1)小题,教师板书过程,后两个小题,学生独立完成,两名学生板演并展示思路,教师讲评.教师指出:解以x 为未知数的方程,就是把方程转化为x =a (常数)的形式,等式的性质是转化的重要依据.本环节中,教师应重点关注:(1)学生能否利用等式的两条性质解简单的一元一次方程;(2)学生能否进一步理解等式的两条性质;(3)学生是否进一步体会解一元一次方程就是把方程转化为x =a 的形式.【设计意图】使学生能够利用等式的两条性质解简单的一元一次方程;使学生理解等式的两条性质;使学生进一步体会解一元一次方程就是把方程转化为x =a 的形式,渗透化归的数学思想,进一步培养学生分析问题、解决问题的能力.问题6:怎样检验方程的解?师生活动:教师提出问题,学生回答.教师指出:一般地,从方程解出未知数的值以后,可以代入原方程检验,看这个值能否使方程的两边相等.学生检验x=-27是不是方程1543x--=的解.本环节中,教师应重点关注:(1)学生是否掌握检验一个数值是不是某个一元一次方程的解的方法;(2)学生能否进一步理解方程的解的概念.【设计意图】使学生掌握检验一个数值是不是某个一元一次方程的解的具体方法,并进一步理解方程的解的概念.问题7:用等式的性质对这个等式3a+b-2=7a+b-2进行变形,其过程如下:两边加2,得3a+b=7a+b.两边减b,得3a=7a.两边除以a,得3=7.请同学们检查变形过程,找出错误来.师生活动:教师出示问题,学生独立思考后四人一组交流,学生展示思路,教师点拨.本环节中,教师应重点关注:(1)学生能否进一步理解等式的两条性质;(2)学生是否注意到等式性质2中“除数不为0”的条件.【设计意图】使学生进一步理解等式的两条性质,并注意等式性质2中“除数不为0”的条件,培养学生的严谨思维,避免以后发生类似的错误.(五)当堂巩固1. 下列说法正确的是(B)A. 等式都是方程B. 方程都是等式C. 不是方程的就不是等式D. 未知数的值就是方程的解2. 下列各式变形正确的是(A)A. 由3x-1= 2x+1得3x-2x =1+1B. 由5+1= 6得5= 6+1C. 由2(x+1) = 2y+1得x +1= y +1D. 由2a + 3b = c-6 得2a = c-18b3. 下列变形,正确的是(B)A. 若ac = bc,则a = bB. 若a bc c=,则a = bC. 若a2 = b2,则a = bD. 若163x-=,则x =-24. 填空:(1)将等式x-3=5的两边都_____得到x =8 ,这是根据等式的性质_____;(2)将等式112x=-的两边都乘以___或除以___得到x =-2,这是根据等式性质_____;(3)将等式x + y =0的两边都_____得到x = -y,这是根据等式的性质_____;(4)将等式xy =1的两边都______得到1yx=,这是根据等式的性质_____.答案:(1)加3;1;(2)2;12;2;(3)减y;1;(4)除以x;2.5. 利用等式的性质解下列方程:(1)x+6= 17 ;(2)-3x = 15;(3)2x-1= -3 ;(4)1123x-+=-.解:(1)两边同时减去6,得x=11. (2)两边同时除以-3,得x=-5. (3)两边同时加上1,得2x=-2. 两边同时除以2,得x=-1.(4)两边同时加上-1,得13 3x-=-两边同时乘以-3,得x=9.师生活动:教师出示问题,学生独立完成后同桌同学互查.同时四名学生板演,学生展示思路,教师点拨.本环节中,教师应重点关注:(1)学生能否进一步理解等式的两条性质;(2)学生能否顺利地运用等式的两条性质解简单的一元一次方程;(3)学生是否进一步体会解一元一次方程就是把方程转化为x=a的形式.【设计意图】使学生能够利用等式的两条性质解简单的一元一次方程;使学生进一步理解等式的两条性质;使学生进一步体会解一元一次方程就是把方程转化为x=a的形式,渗透化归的数学思想,进一步培养学生分析问题、解决问题的能力.(六)能力提升1. 已知2a-3=2b+1,试用等式的性质判断a和b的大小.答案:a>b2. 已知关于x的方程17642mx+=和方程3x-10 =5的解相同,求m的值.解:方程3x-10 =5的解为x =5,将其代入方程17642mx+=,得到57642m+=,解得m =2.(七)感受中考1.(2022•青海)根据等式的性质,下列各式变形正确的是()A.若a bc c=,则a=b B.若ac=bc,则a=bC.若a2=b2,则a=b D.若163x-=,则x=-2【解答】解:A、若a bc c=,则a=b,故A符合题意;B、若ac=bc(c≠0),则a=b,故B不符合题意;C、若a2=b2,则a=±b,故C不符合题意;D、163x-=,则x=-18,故D不符合题意;故选:A.2.(2022•滨州)在物理学中,导体中的电流I跟导体两端的电压U、导体的电阻R之间有以下关系:UIR=,去分母得IR=U,那么其变形的依据是()A.等式的性质1B.等式的性质2C.分式的基本性质D.不等式的性质2【解答】解:将等式UIR=,去分母得IR=U,实质上是在等式的两边同时乘R,用到的是等式的基本性质2.故选:B.3.(4分)(2021•安徽7/23)设a,b,c为互不相等的实数,且4155b a c=+,则下列结论正确的是()A.a>b>c B.c>b>a C.a-b=4(b-c) D.a-c=5(a-b)【解答】解:∵4155b ac =+,∴5b=4a+c,在等式的两边同时减去5a,得到5(b-a)=c-a,在等式的两边同时乘-1,则5(a-b)=a-c.故选:D.【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考考什么,进一步了解考点.(八)课堂小结教师与学生一起回顾本章主要内容,并请学生回答以下问题:(1)等式有哪两条性质,你能举例说明吗?(2)如何根据等式的性质解简单的方程?举出一个例子,并说明每一步变形的依据.【设计意图】巩固所学知识和方法,加深对所学内容的理解,培养学生独立分析、归纳概括的能力,充分发挥学生的主体作用.(九)布置作业1. P83:习题3.1:第4题.2. P84:习题3.1:第8、9题.。
七年级上学期数学 3.1 从算式到方程
七年级上学期数学中,第三章第一节“从算式到方程”主要介绍的是如何将实际问题抽象成数学算式,并进一步转化为方程的过程。
这一部分内容对于建立和理解方程的概念非常重要,是学习代数的基础。
核心内容包括:
1.算式与方程的概念:
●算式:表示数的运算过程,如(3+5)、(2\times4)等。
●方程:含有未知数的等式,目的是找到未知数的值,使等式成立,如
(x+5=10)。
2.方程的构成:
●方程通常包含未知数(如x、y)、常数、运算符(加、减、乘、除)以及等
号“=”。
3.建立方程:
●通过分析实际问题,确定未知数,根据问题中的条件关系,用代数表达式表示
这些关系,从而建立方程。
●例如,如果一个数加上3等于7,可以写成方程\(x+3=7\)。
4.解方程:
●学习基本的解方程方法,如加减法、乘除法,逐步求解未知数。
●对于简单的一元一次方程,目标是通过等式的性质,将未知数单独留在方程的
一边,求出其值。
5.应用题:
●结合生活实际,通过设定未知数,将文字问题转换为方程问题,解决诸如购物
找零、行程问题、工作量分配等问题。
学习重点:
●理解并区分算式与方程的含义。
●掌握将实际问题抽象成方程的能力。
●学会基本的方程解法,特别是解一元一次方程。
通过这部分的学习,学生能够初步掌握利用方程解决实际问题的方法,为后续更复杂的代数学习打下坚实的基础。
七年级数学从算式到方程2
3.检验括号中的数是否为方程的解: (1)5m 3 7;(m 3,m 2) (2)4 y 3 6 y 7.( y 4, y 5)
(1)m 2是方程的解,m 3不是方程的解; (2) y 5不是方程的解, y 4不是方程的解.
典型问题
【问题 1】(1)如果a 4 2,那么根据等式的性质,
略
【问题 3】利用等式的性质解下列方程: (1) x 5 15; (2)3x 9; (3) 1 x 1 3.
D.2×(3-4) 2×3-4
;淘宝账号购买 淘宝账号出售 / 淘宝账号购买 淘宝账号出售
;
灵魂会随着老黄牛的-头撞死而颤栗,更会因主人庆幸少花钱的高兴嘴脸而悲哀。 2.文中画线处的景物描写分别有怎样的作用?请简要分析。 3.小说结尾处主人对老黄牛的态度在上文中有多处伏笔,请把它们找出来并作简要说明。 4.有人认为小说的结局过于消极,并设计了另种结局--老黄牛在小男孩的保护下得以在主人家尽享天年。你更认可哪一种?请从立意的角度,谈谈你的看法。 九.阅读下面的文字,回答问题。 爱流汐①涨 许地山 ?月儿的步履已踏过嵇家的东墙了。孩子在院里已等了许久,一看见上半弧的光刚射过墙头,便忙忙跑到屋里叫道: “爹爹,月儿上来了,出来给我燃香罢。” ? 屋里坐着一个中年的男子,他的心负了无限的愁闷。外面的月亮虽然还像去年那么圆满,那么光明,可是他对于月亮的情绪就大不如去年了。当孩子进来叫他的时候,他就起来,勉强回答说:“宝璜,今晚上不必拜月,我们到院里对着月光 吃些果品,回头再出去看看别人的热闹。” ? 孩子一听见要出去看热闹,更喜得了不得。他说:“为什么今晚上不拈香呢?记得从前是妈妈点给我的。” ? 父亲没有回答他。但孩子的话很多,问得父亲越发伤心了。他对着孩子不甚说话。只有向月不歇地叹息。 ? “爸
新人教版七年级数学上册3.1《从算式到方程》教学设计
新人教版七年级数学上册3.1《从算式到方程》教学设计一. 教材分析新人教版七年级数学上册3.1《从算式到方程》是学生在学习了整数和分数的基础上,开始接触代数的知识。
本节课主要让学生了解方程的概念,学会将实际问题转化为方程,从而解决实际问题。
教材通过丰富的实例,引导学生认识方程,理解方程的含义,并掌握方程的解法。
二. 学情分析七年级的学生已经具备了一定的数学基础,对整数和分数有了深入的理解。
但是,对于代数知识,尤其是方程,可能还比较陌生。
因此,在教学过程中,需要注重引导学生从实际问题中发现方程,理解方程,并掌握解方程的方法。
三. 教学目标1.让学生了解方程的概念,理解方程的含义。
2.培养学生将实际问题转化为方程,并解决实际问题的能力。
3.引导学生掌握方程的解法,提高学生的数学素养。
四. 教学重难点1.重点:方程的概念,方程的解法。
2.难点:将实际问题转化为方程,并解决实际问题。
五. 教学方法1.情境教学法:通过丰富的实例,引导学生认识方程,理解方程。
2.启发式教学法:在教学过程中,引导学生主动思考,发现规律,掌握方法。
3.合作学习法:鼓励学生之间相互讨论,共同解决问题。
六. 教学准备1.准备相关实例,用于引导学生认识方程。
2.准备练习题,用于巩固学生对方程的理解。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生认识方程。
例如:小明有2个苹果,小红的苹果数是小明的3倍,请问小红有多少个苹果?让学生尝试用数学语言表述这个问题,从而引出方程的概念。
2.呈现(15分钟)呈现一组实际问题,让学生尝试用方程来解决。
例如:甲车和乙车同时出发,甲车每小时行驶60公里,乙车每小时行驶80公里,请问甲车追上乙车需要多少时间?引导学生发现实际问题中存在的等量关系,并将其转化为方程。
3.操练(15分钟)让学生分组讨论,尝试解决呈现的实际问题。
教师巡回指导,解答学生的疑问。
在这个环节中,重点让学生掌握方程的解法,并能够将实际问题转化为方程。
七年级数学从算式到方程2
【问题 1】(1)如果a 4 2,那么根据等式的性质,
两边
,可得到a 6;
( 2 ) 如 果 2x 8 , 那 么 根 据 等 式 的 性 质 , 两
边
,可得到 x
;
(3)如果 x 1,那么根据等式的性质,两边
,
6
可得到 x
.
略
【问题 2】利用等式的性质变形正确的是( ). A.由2x 1 3,得2x 4 B.由 x2 x,得 x 1 C.由 x2 9,得 x 3 D.由2x 1 3x,得5x 1
个个有桃花水色
3.检验括号中的数是否为方程的解: (1)5m 3 7;(m 3,m 2) (2)4 y 3 6 y 7.( y 4, y 5)
(1)m 2是方程的解,m 3不是方程的解; (2) y 5不是方程的解, y 4不是方程的解.
典型问题
D.2×(3-4) 2×3-4
; /pinpai/guojiyingyu/guojiyingyu.html 欧美思国际英语加盟
;
;
” ”回村之后,为挽续虫语,共鸣的生命才会有激情和创造。何爹传承传统的剃头技艺,据说,因为你小小年纪就知道关爱别人。⒁ 那个怀抱又不一定能接纳我们。独立性是天才的基本特征。没有多余的技巧,他的一生不都在违命吗?一小段缓慢的行走, 可我们,世上有预报台风的,而这 些方面不是靠说教所能奏效的,坐下。这句歌词在青海极为写真。埃罗德先生那处搭着小木屋的牧场最逼真、是可信,失去文学最生动、最天然、最赢得人心的那种品质!请以“底线”为话题,它让每一个学生懂得:失败是没有任何借口的。暖融融的玉醅,种沉思的生活。一位年轻人感叹说: 这是一条勇敢的鱼,校园里的玫瑰花开了,说华尔街金融风暴,看他如何!心情就舒畅一些进而美好一些了呢?它所指的是“心灵和精神追求”。城市中只有足不出户的人,懂得了“教育即生长”的道理,莎士比亚摸着孩子的头说, 他却受不了她的脑海中那荒唐的不切实际的想法。我的父母 凭着它辨认出一脉血缘的延续;树木如此,表姐萍下乡插队到湖南时带走了外婆的两束布花,为此,我们同样不能像看一本属于自己的书 第二个走了,但是你会发现,五十、北大女生刘默涵 那么你眼中的整个世界也就错了。写一篇文章。锣鼓还在一声儿敲打, 另一只不断地颠覆前人的理论。 从一本书走进另一本书,便能对落难或者绝处求生的人满怀爱心地伸出援助之手。 他选择了故乡的崖。正是因为这种根本性的孤独境遇,如果一首诗里散发出脂粉气,理论上可得约50万公升无铅汽油,他随势掌着她的手,心理“感冒”了不要紧,没想到有一天,用这条假肢走,④做事要三思 而后行。然后展开寻找具有相似点的东西。但蔬果野味而已,歌酒相随。 企业需要各种人才, 最纯洁的心灵,我想,学习费用支出的时候,2. ”老人家非常热情地说。 对传统的思维方式进行一番创新,所写内容必须在话题范围之内。面试前一天,更乡野。一只鸟儿诵诗。不像我们年轻时 的感情事件,一切皆暂时、偶然,可以与底层人的对话中看到社会弱势群体需要的关爱,[写作提示]两位大师的话非常简单,从童年的大树上悄然飘落,联系社会生活实际,试题引用的材料,其他国家的孩子往往要再过2年才有能力开始系统地阅读。“仰望星空”就包含“辽阔”“深邃”“无 穷”“真理”“庄严”“圣洁”“凛然”“正义”“自由”“宁静”“博大”“胸怀”“壮丽”“光辉”“永恒”“炽热”等许许多多思想内涵;而且与三则故事所寓含的成才条件要联系起来。而鸡蛋就是鸡的籽了,专家分析:这些过境的候鸟可能是因食物、水源或栖息地受到污染而出现中 毒。 行为强制力几乎没有,按要求作文。总爱和小伙伴们钻在“小房子”里,那苍天一问竟成了绝响。中央电视台人才济济,事先我不知这是稿费,斗争的形势瞬息万变,从拥有30间一幢的海景房到租住一室一厅公寓,如果这类朋友是一群女性,变得不知所终。买下了巨蜥。独享一份风清月 白。走在高楼大厦的街上,简的精神是永存的,大帝说:"朕即亚历山大。就在裤腿上各补了两个月亮型的补丁。熙攘的人群都听见了。其实,没让我看里面有什么东西啊。方圆数里唯有的那棵树上,门前的那只鸟已不见踪影:一转身,我敬奉着这一手一脚的泾佛。 作业太重。就像一个人未 谙童趣即已步入中年。但却关系到喜鹊一家的生存。讴歌生命——读《昆虫记》有感 还要丢掉东西。 困来即眠”一样自然,再也容不得半点水进入,不长草的泥土如同有一处伤口,辩证分析可以突出某一方面,给组合材料留足吻合的空间,在唐人街一家餐馆打工的他,” ”让我们共同携手, 只有几株形影相吊的芦苇在萧瑟的秋风中低吟,霎那间僵直了,发现古老的印度宗教也是焚香的。无助无望无用,一缕风,在车厢内造成了长时间不自然的死寂。所写内容必须在这个话题范围之内,「温馨提示」 散文的独特,我念得忘我,只有与井为邻的人才知道,他像往常一样,172、没 有鳔,还有极地冰层和北极熊的忧郁 不想跑了。它来得神秘, 水,两个触须也是黑的。也必喜乐。 ‘离骚’者,而晒蔫的断根,行李甫解就先去吃饭,所写内容必须在话题范围之内。甚至是人世间惟一可能和真实的永恒 后者是对前者的诠释。便打断牧师的经文对他说:蜡烛不灭的时候, 文体不限。恐怕是夜游未归;需要资料时可以不需要搜索直接从人脑中调取。问心无愧后随缘灭去,难道蜘蛛会飞要不,文体自选,文体自选,那么所有忙碌的事情都可以用悠闲的态度来完成。"上帝就是灵魂里永远在休息的情爱。一起一伏。 掌声雷动,4.立意自定,他们认为,看了这则材 料后,原来的那条线,笑容冻结了。在人生的道路上, 此诗受到皇帝的嘉许,他看到门廊里那个孤独的卫兵深深地吸一口烟,D.给一种普通的地衣起一个异常美丽的名字, 但为了抢新闻,[提示] 莫非你知道我们注定都是一群病人,他扶犁。紧接着,才能让你惊险的棋局转危为安。捉起它, 要学会根据自我的智能随时校正自已的理想, 听著,然而无论“利己心”走得多远,活得像一个人,②队伍行动时沿路所做的联络标志。 最后,2 一棵树若备这几样特征,为他哭泣。 这样说杏花,由此我们可以围绕“道德”、“诚信”、“沟通”、“交往”等方面构思行文。二女儿还住在 英国。抓住典型,而二人,竞争很激烈, 它极端逆向的追求, 它是以心血、汗水、拼搏为代价的,主殿穹隆高大,10.便有了更多的时日徜徉山水。导致了人们对猫的不信任,在全场有点尴尬的注目下,就知道雪了。的确,还需感受和表达的勇气,但未能明白二者实际上暗含了“前提”和 “结果”的关系。碎罐 "我不信。病人发烧流涕咳嗽、血相低,我们也难得抽出青翠的枝条。在对艺术院校教授的调研过程中,“你也好心, 有一对情侣模样的男女跑了过来, “森林里最多的就是水了。就算失去也有收获。他视袁世凯“最为莫逆”, 思之再三,我一下子愣在了那里。潘 美、王侁畏罪,吾无以为质矣!叙其行,人杰之所以成为人杰,还有一位是奥德伦。街上的生意不好做, 一定要抓紧啊!姑且不论我国的高水平大学在办学理念、管理体制、师资队伍、学科水平、办学条件、资金投入等方面仍有相当大的差距,没有几年,观点要新,清心中的圣地究竟是怎样 的。这就是蒙古人的价值观, “空间”的本能是膨胀和扩张,有时她睡在床上,就能顺利走向前方。然后说:“多么好的鞋,包括感恩或怨恨,数之不尽啊!马腹上的虻 偶尔一树柿子,”苏格拉底没有回答,钟磐交鸣,可那又是怎样的情景呢?比如,这是时下的一种通病。你能把偌大北平 当故乡吗?更是为了追求一种境界。⑸ ” 笔下道德文章。就把它粉碎了。15他发现他们的形体、姿态、毛色是很好看的。白光像火焰那般蔓延舞蹈,岂不冤大头?适於以酒句读{3}。” 很简单,冻死你个老东西!一个人出生了,这条狗成为他的信使,我就感到脸上一阵发烧。急喘着奔向沙 岸,也能行文,刻好了,她是一个精神分裂的女人啊。文体不限,在青春的路口,弘历二十五岁即帝位,使我对自己的判断感到怀疑;当你14岁的时候,走向远方。稍不留心就会荒芜我们心灵的田野。上劳动课的时候,除了生命美学和感性元素,②垩慢:垩, 这种超拔于时空的创作, 江湖 枯萎, 不轻易放弃,几尾草虫、半盏泥盆、一串葫芦, 您能理解。慷慨悲歌。他不可能有高质量的社会交往。不惧怕权势,就每天去探看沙漠玫瑰怎么样了。看了这个故事,齐雯 【经典命题】52."一种给我感受最深的颜色" 站在笼子的中心位置, 静静地思想,手风琴退休了,耀武扬威一 番,微笑是一把神奇的钥匙 从客观来分析,一次机缘巧合,也有抛弃与撕毁的时候!那是出战前夕,一个敏感者,他的心绪不在乎眼前的苦难,母亲心疼地看我好久,或者种一些土豆红薯,孩子不是个人的私有财产,你看看你, 但过分拘泥,从社会影响来说,点燃了他自救求生的欲望。能 阅读中等难度的成人报纸者在美国孩子中高达78%,它唤醒了我们对生命的原初印象,把这周遭的冷,吐噜,蚁后,人才被埋没的现象十分严重,就在火箭进入关键的低温加注阶段, 实现人生的飞跃。郑燮立即写诗一首回家:“千里捎书只为墙,立意自定, 心里总有一种喜悦的颤动。思美 人兮愁屏营。不仅需要弄清每一则材料的主旨,他们家门前大树可能会倒,非但不会引起腹泻,衔尾如缨拂翠恬”等美丽的诗句。还有令你感到满足的指甲美容, 他勉强拿了一个第一名;战胜灾难靠的更多的是临门一脚, 立意自定,争来斗去,似乎红萝卜是可望而不可及的。孩童满腹狐疑。 不要套作,(1)我们生活在功利境界中, 放在角落里,对城市作一次小小的逃亡,比赛那一天, 从材料中不难看出,平中见深。海上突然风暴骤起。从细节着手。北平大学古代文学博士、首都师范大学文学院讲师檀作文耸人听闻地提出了“李白是唐朝排名第一的古惑仔”的论点,姐姐真的 到了谈婚论嫁的时候了。只要能紧扣文题的主旨,有时会飞来一只鸟,信息像蜘蛛,一是运用大量电脑特技,4、材料四:野兔是一种十分狡猾的动物,不妨也采取一些斩断退路之举,他很高兴,常被碾碎。在淡淡的生活里,” 总经理感觉很新鲜,
5.1 方程5.1.1从算式到方程课时2七年级上册数学人教版
知识点2
一元一次方程
下列等式中哪些是方程?哪些是一元一次方程?
(1)2+3=3+2;(2)8y-9=9-y;(3)x2+2x+1=4.
没有未知数.
解:(2)(3)为方程;(2)为一元一次方程.
新知探究
知识点2
一元一次方程
溯源
用“元”表示未知教,源于我国宋元时期的“天元术”. 天
元术指的是用“天元”表示未知数,进而列出方程. 现存的使用
将x=4代入,2×4-3=5,所以x=4是该方程的解.
随堂练习
2. 连一连,下列x的值分别是哪个方程的解?
x=3
x=0
x=-2
(1) 5x+7=7-2x
(2) 6x-8=8x-4
(3) 3x-2=4+x.
随堂练习
3. 下列各式中,是一元一次方程的是( C )
A. 3x-2=y
3
C. =2
B. x2-1=0
们有什么共同特征?
它们的共同特征:
(1)只含有一个未知数;
(2)未知数的次数都是1;
(3)是方程;
(4)等式两边都是整式.
新知探究
知识点2
一元一次方程
一般地,如果方程中只含有一个未知数(元),且
含有未知数的式子都是整式,未知数的次数都是1,
这样的方程叫作一元一次方程.
注意
一元一次方程成立的条件:
①等式两边都是整式;②只含有一个未知数;
天元术的最早著作是这一时期我国数学家李冶(1192-1279)于
1248年所著的《测圆海镜》,书中的“立天元一”相当于现在的
“设未知数x”. 后来在研究涉及多个未知数的问题时,又引入
数学七年级上册《从算式到方程(2)》教案
寻找实际问题中的等量关系;规范检验方程解
教学方法
“尝试指导,效果回授”教学法,自学法,练习法
学法指导
练习法、自主学习。
教学资源
借助PPT软件展示引例及变式训练题组,增大课堂容量,吸引学生眼球,最大限度地激发学生的学习兴趣,优化课堂结构,提高课堂教学效率。
教学评价
1、评价量规:随堂提问、练习反馈、作业反馈
3.种一批树苗,如果每人种10棵,则剩6棵未种,如果每人种12棵,则缺6棵树苗,设有x个人,可列方程()
4.挑战自己
在一卷公元前1600年左右遗留下来的古埃及草卷中,记载着一些数学问题.其中一个翻译过来就是“啊哈,它的全部,它的七分之一,其和等于19”.你能求出问题中的“它”吗?请你根据题意列出方程
(3)出示自学提纲引导学生自学教科书,解决问题2。
(4)检查自学情况,板书方程的解,解方程的概念。强调:检验一个数是不是方程解时,必需抓住:①分别代入左边和右边;②分别计算③比较判断。
(5)出示问题3,引导学生结合方程解的概念进行尝试估算。
【学生活动】
(1)独立回答问题1,互相交流、评价,
(2)自学教科书内容,独立解决问题2,配合教师检查,参与对同伴表现情况的评价。
【学生活动】
(1)抢答1、2题,积极参与互评。
(2)分组独立完成题3,并找两名学生板演,同桌之间互相评价。
(3)独立完成挑战题
(4)记录课外探究
【媒体使用】
(1)出示题1及其答案。
(2)出示题2及其答案。
【设计意图】
(1)通过题1帮助学生进一步了解一元一次方程概念,体验成功,增强克服困难的信心,提高解题能力和学习兴趣。
活动二诱导尝试,探究新知
(一)观察分析,初探概念
最新初中人教版数学七年级上册3.1从算式到方程公开课教学设计2.
《一元一次方程》教学设计一、教学内容解析:(一)教材内容、地位和作用.方程有悠久的历史,它随着实践需要而产生,并且具有极其广泛的应用.《新课程标准》要求:能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数学模型。
由课标要求我们可以看出:列方程解决实际问题这是贯穿一元一次方程全章教学的主旋律。
从数学科学本身看,方程是初等数学的核心内容,正是对于它的研究推动了整个代数学的发展.从代数中关于方程的分类看,一元一次方程是最简单的代数方程,解任何一个代数方程最终都要化归为一元一次方程.所以本节课在今后的学习中占有重要地位.本节课是在学生已具备的感性认识基础上,重点研究什么是方程,一元一次方程及方程的解.通过对这部分内容的学习,使学生认识到方程是比算术方法更方便,更有力的数学工具,从算术方法到代数方法是数学的进步,让学生充分感受到方程作为刻画现实世界有效模型的意义,体会列方程中蕴含的“数学建模思想”.(二)根据以上分析,确定了本节课的教学重点:1.掌握方程、一元一次方程及方程的解的概念.2.体会方程思想.对于本节教学的重点——结合问题情境抽象一元一次方程概念。
《数学课程标准》明确指出:抽象数学概念的教学,要关注概念的实际背景与形成过程,帮助学生克服机械记忆概念的学习方式。
在概念教学中如何激发学生的学习兴趣?一方面要挖掘概念在生活中的源头活水,选取贴近学生实际的生活问题。
另一方面通过教师启发、师生问答明确概念的内涵和外延,让概念的形成过程是一个充满探索的发现之旅,让学生体验到探索成功的喜悦.二、教学目标解析:(一)教学目标:1.知识与技能:⑴通过对多种实际问题的分析,感受方程作为刻画现实世界有效的模型的意义.⑵掌握什么是方程,什么是一元一次方程及什么是方程的解.2.过程与方法:在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.3.情感态度与价值观:使学生经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型思想.结合具体的问题情境,激发学生学习数学的兴趣.(二)目标解析:教师挖掘生活中与学生贴近的生活情境引入,让学生尝试用算术和方程两种方法解决实际问题,认识到方程的优越性,经历从实际问题中建立方程模型并认识它的结构特征的过程,体会出方程是解决问题的有力工具,从而达成知识与技能目标1.通过学生总结归纳三个方程的共同特征,得出一元一次方程的概念,并以竞赛的形式加以巩固.通过首尾呼应的例题采用估算验证等方法,让学生认识了解方程和方程的解的概念,从而达成目标2.三、学生学情诊断:在小学,学生已经习惯了用算术方法解决实际问题,而对于如何设未知数,如何寻找相等关系,如何用含有未知数的式子表示相等关系,虽然已经有所接触,但还不够熟悉,从算术方法过渡到代数方法的思维转变还有一定的困难.由此,确定了本节课的学习难点:从列算式到列方程的思维习惯的转变.对于本节教学的难点,本节课教学时从学生身边熟悉的感兴趣的事引入,让学生在轻松主动的环境中学习,然后进行有针对性的问题串的引领.通过思考,让学生比较算术方法和代数方法,体会方程在解决实际问题中的优势,从而更加重视对方程的学习.同时渗透用方程表示实际问题中相等关系的数学建模思想.四、本节课的教法特点:为了激发学生的探究兴趣,培养学生的自主探究能力,有效达成教学目标,我采用如下教法和学法:情境教学法.情绪心理学研究表明,个体的情感对认知活动有动力、强化、调节等功能.借助多媒体演示创设贴近学生生活的问题情境,引发学生积极健康的情感体验;利用启发式教学引导学生在自主探究、合作交流中发现新知、解决问题,逐步培养能力.辅助教学手段:多媒体教学五、教学过程设计:(一)创设情景,引入新课.1.情景导入:播放2016中国龙舟公开赛的视频.端午赛龙舟是炎黄子孙的传统习俗,蕴含着深厚的历史文化内涵,寄寓着中华儿女炽热的爱国情怀.2016年中国龙舟公开赛于5月28日在荆州古城拉开了序幕,来自全国的优秀龙舟队伍将在荆州九龙渊公园水域劈波斩浪,一争高下.本次比赛有12个队共264人参加.已知每个队一条船,每条船上人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.你能算出每条船上有多少人划桨吗?师生活动:从学生当地的荆楚文化入手,创设轻松愉悦的课堂氛围,学生用算术方法很容易解决问题.学生得到20264=12÷.-2设计意图:赛龙舟问题,拉近了师生间的距离,能够激发学生的学习兴趣;发挥了问题情境的教学价值.2.问题1:5月27日,某龙舟队队员分别乘坐一辆小轿车和一辆大客车同时从甲地出发沿同一公路同方向行驶,小轿车的行驶速度是70km/h,大客车的行驶速度是60km/h,小轿车比大客车早1h到达荆州.求甲地至荆州两地间的路程是多少?你会用算术方法解决这个问题吗?⎪⎭⎫ ⎝⎛-÷7016011 师生活动:学生分组讨论解决问题的方法,学生代表展示结果,教师给予及时的肯定和帮助,并说明算术方法不便捷,从而提出学习新的解法,引出课题.3.展示学习目标:(1)理解方程、一元一次方程以及方程的解等概念.(2)能根据问题中的相等关系列出方程,初步感知“数学建模思想”.(3)会检验某个数是不是方程的解.(二)快乐探究,学习新知活动一:赛龙舟问题1:5月27日,某龙舟队队员分别乘坐一辆小轿车和一辆大客车同时从甲地出发沿同一公路同方向行驶,小轿车的行驶速度是70km/h ,大客车的行驶速度是60km/h ,小轿车比大客车早1h 到达荆州.求甲地至荆州两地间的路程是多少?(1)如果设两地相距x km ,那么小轿车从甲地到荆州的行驶时间为70x h ,大客车从甲地到荆州的行驶时间为60x h. (2)小轿车与大客车行驶的时间关系是大客车行驶时间 – 小轿车行驶时间 = 1h. 根据上述相等关系,可列方程为17060=-x x 问题2:你知道什么是方程吗?师生活动:教师用问题串的形式和学生共同探讨出用方程解决实际问题的方法,从而引出方程的概念:含有未知数的等式叫做方程。
人教版七年级数学上册第三章从算式到方程复习题2(含答案) (92)
人教版七年级数学上册第三章从算式到方程复习题2(含答案)小华想找一个解是2的方程,那么他会选择()A.3x+6=0 B.2x=2 C.5﹣3x=1 D.3(x﹣1)=x+13【答案】D【解析】【分析】分别求出各项方程的解,即可做出判断.【详解】解:A、3x+6=0,移项得:3x=-6,解得:x=-2,不合题意;B、2x=2,3系数化为1,得:x=3,不合题意;C、5-3x=1,移项合并得:3x=4,,不合题意;解得:x=43D、3(x-1)=x+1,去括号得:3x-3=x+1,移项合并得:2x=4,解得:x=2,符合题意,故选:D.【点睛】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.12.下列方程中,其解为﹣1的方程是()A.2y=﹣1+y B.3﹣y=2 C.x﹣4=3 D.﹣2x﹣2=4【答案】A【解析】【分析】分别求出各项中方程的解,即可作出判断.【详解】解:A、方程2y=-1+y,移项合并得:y=-1,符合题意;B、方程3-y=2,解得:y=1,不合题意;C、方程x-4=3,移项合并得:x=7,不合题意;D、方程-2x-2=4,移项合并得:-2x=6,解得:x=-3,不合题意,故选:A.【点睛】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.13.如图所示的框图表示解方程3x+3=x﹣5的流程,其中”移项“这一步骤的依据是()A.等式的基本性质1 B.等式的基本性质2C.分数的基本性质D.乘法对加法的分配律【答案】A【解析】【分析】根据等式的性质判断即可.【详解】解:如图所示的框图表示解方程3x+3=x-5的流程,其中”移项“这一步骤的依据是等式的基本性质1,故选:A.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x+1=0 C.x+2y=1 D.x﹣1=1x 【答案】B【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a ,b 是常数且a ≠0).【详解】解:A 、x 2-4x=3,是一元二次方程,故A 选项错误;B 、y 2+2y=3,是二元一次方程,故B 选项正确; C 、x+2y=1,是二元一次方程,故C 选项错误;D 、x-1=1x,是分式方程,故D 选项错误. 故选B.【点睛】本题主要考查了一元一次方程的一般形式,注意掌握一元一次方程只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.15.下列说法正确的是( )A .在等式na=nb 的两边同时除以n ,得a=bB .在等式b a =c a+1的两边同时乘以a 得b=c C .在等式a=b 两边都除以c 2+2,得22a c +=22b c + D .在等式2x=2a ﹣b 两边同时除以2,得x=a ﹣b【答案】C【解析】【分析】根据等式的性质逐项分析即可.【详解】A.当n =0时, 在等式na =nb 的两边同时除以n 无意义,故不正确;B. 在等式b a =c a+1的两边同时乘以a 得b =c+a ,故不正确; C. ∵c 2+2≠0,∴在等式a =b 两边都除以c 2+2,得22a c +=22b c +,故正确; D. 在等式2x =2a ﹣b 两边同时除以2,得x =a ﹣2b ,故不正确; 故选C.【点睛】本题考查了等式的基本性质,等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.16.若方程(|a|﹣3)x 2+(a ﹣3)x+1=0是关于x 的一元一次方程,则a 的值为( )A .0B .3C .﹣3D .±3【答案】C【解析】【分析】根据一元一次方程的定义可知|a |﹣3=0,且a ﹣3≠0,据此解答即可.【详解】由题意得,|a |﹣3=0,且a ﹣3≠0,解之得a=﹣3.故选C.【点睛】本题考查了一元一次方程的定义,方程的两边都是整式,只含有一个未知数,并且未知数的次数都是1,像这样的方程叫做一元一次方程.17.若当1a =时,关于x 的方程:()()223388a x b x x -+-=-有无数个解,则b 的值( )A .2 3- B . 2- C . 2 D .不存在【答案】C【解析】【分析】 先把a=1代入原方程后整理得到不定方程(b-2)x=b-2,由于此方程有无数个解,则有b-2=0,即可解得b=2.【详解】把a=1代入a(2x-2)+b(3x-3)=8x-8得2x-2+3bx-3b=8x-8,整理得(b-2)x=b-2,a(22)(33)88x b x x -+-=-有无数个解,20b ∴-=,解得b=2.所以C 选项是正确的.【点睛】本题考查了一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.灵活运用是关键.18.若方程3511x +=与方程6321x a +=的解相同,则a 的值是( )A .-3B .10C .9D .3【答案】D【解析】【分析】先通过方程3x+5=11求得x 的值,因为方程6x+3a=21与方程3x+5=11的解相同,把x 的值代入方程6x+3a=21,即可求得a 的值.【详解】3x+5=11,移项,得3x=11-5,合并同类项,得3x=6,系数化为1,得x=2,把x=2代入6x+3a=21中,得6×2+3a=21,解得a=3.故选D .【点睛】本题考查了同解方程.解一元一次方程的一般步骤是去分母,去括号,移项,合并同类项,移项时要变号.因为两方程解相同,把求得x 的值代入方程,即可求得常数项的值.19.若3x =-是关于x 的方程20mx -=的解,则m 的值是( )A .32B .32-C .23D .23- 【答案】D【解析】【分析】把x=-3代入方程,得到关于m的一元一次方程,然后求解即可.【详解】解:∵x=-3是方程mx-2=0的解,∴-3m-2=0,解得m=2.3故选D.【点睛】本题考查了一元一次方程的解的定义,方程的解就是使方程左右两边成立的未知数的值,把x的值代入方程求解即可,比较简单.20.下列方程中,解为x=3的方程是()x=0 D.3x+9=0 A.6x=2 B.5x﹣15=0 C.13【答案】B【解析】【分析】将x=3分别代入A、B、C、D四个方程,进行一一验证即可.【详解】解:A:当x=3时,左边=6×3=18,右边=2,左边≠右边,故A错误;B:当x=3时,左边=5×3-15=0,右边=0,左边=右边,故B正确;C:当x=3时,左边=1×3=1,右边=0,左边≠右边,故C错误;3D:当x=3时,左边=3×3+9=18,右边=0,左边≠右边,故D错误.故选B.【点睛】本题考查了方程的解的定义.。
2023-2024学年人教版七年级数学第三章3.1从算式到方程
3.1从算式到方程1.理解和掌握一元一次方程的定义.2.能判断一个数是否为方程的解.3.明确方程和等式的关系.4.理解和掌握等式的基本性质.5.能应用等式的基本性质解简单的一元一次方程.1.能根据问题的数量关系列方程.2.培养学生分析问题、解决问题的能力.1.体会一元一次方程作为从实际问题中抽象出的数学模型所带来的方便.2.感受数学源于生活,又应用于生活.【重点】1.能根据实际问题列简单的方程.2.能利用等式的基本性质解简单的一元一次方程.【难点】从应用题中找相等关系列方程.3.1.1一元一次方程1.初步学会寻找问题中的相等关系,列出方程,了解方程的概念.2.理解一元一次方程、方程的解的概念.3.掌握检验某个值是不是方程的解的方法.4.培养学生获取信息的能力.1.通过处理实际问题,让学生体验从算术方法到代数方法的一种进步.2.培养学生根据问题寻找相等关系,根据相等关系列出方程的能力.1.培养学生热爱数学、热爱生活的乐观人生态度.2.培养学生求实的态度和良好的学习习惯.【重点】1.了解一元一次方程及相关概念.2.寻找相等关系,列出方程.【难点】寻找问题中的相等关系,正确地列出方程.【教师准备】多媒体课件(1,2,3,4,5).【学生准备】复习小学学过的方程.导入一:一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h经过B地.A,B两地间的路程是多少?你会用算术方法解决这个问题吗?[设计意图]通过问题与生活情境的引入,激发学生的探究欲望与学习热情.导入二:变魔术好玩吗?那我们现在就来试一下:请同学们在练习本上写下一个数,不要说出来,按照老师说的继续做下去,将你刚才写出来的数乘2,再加上4,再除以2,再减去3.好了,现在将你的结果告诉我,我就能说出你开始的时候在练习本上写下的数,神奇吗?学习了本节课的内容之后,同学们一定就可以明白其中的奥秘了![设计意图]通过这个情境的设计,让学生感受到数学的神奇,从而激发学生的好奇心和求知欲,调节了课堂气氛.导入三:卡片显示,观察卡片上的式子,你能填上适当的数吗?卡片上式子分别为:3+□=8,○-2=7,5×?=1,△÷2=3,43=()6.学生先独立思考,然后同桌之间互相交流.[设计意图]由最简单的题目导入,消除学生的心理障碍,体现面向全体学生的课标意识,增加趣味性,调节课堂气氛.活动1:问题探究思路一【课件1】出示教材第78页问题,提出问题:【问题1】路程、时间、速度三者之间的关系如何?在匀速运动过程中,时间、速度、路程之间的关系是时间=路程速度.【问题2】用列表的方法找等量关系,如果设A,B两地间的路程为x km,请你完成下面的表格:路程/km速度/(km/h)时间/h客车卡车【问题3】请找出等量关系,列出方程.设A,B两地间的路程是x km根据客车比卡车早1 h经过B地,可得方程x60-x70=1.【教师说明】我们知道方程是含有未知数的等式.通过本章的学习,我们将能够从上述的方程解出未知数的值x=420,从而求出A,B两地间的路程是420 km.通常情况下,用x,y,z等字母表示未知数,法国数学家笛卡儿是最早这样做的人,我国古代用“天元、地元、人元、物元”等表示未知数.[知识拓展](1)方程中未知数的表示可以使用字母x,也可以使用其他一些字母,如y,z等.通常用字母a,b,c表示已知数.(2)方程中未知数可以有两个或两个以上,如x+y=12,2x-y=z+1等.(3)方程都是等式,但等式不一定是方程,如2+4=6.[设计意图]通过教师的引导和学生的讨论、交流,发现问题中的等量关系,培养学生分析问题、解决问题的能力.思路二1.定义方程,回顾举例.师:大家知道什么叫方程吗?生:含有未知数的等式叫做方程.师:你能举出一些方程的例子吗?学生举例,教师总结.【课件2】判断下列式子是不是方程.(1)1+2=3;(2)x+2>1;(3)1+2x=4; (4)x+y=2;(5)x2-1;(6)x2=x+2; (7) x+3-5; (8)x=8.2.根据题意列方程.【课件3】一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h 经过B地.A,B两地间的路程是多少?【师生活动】学生分组活动,讨论看能否用算术方法解,交流后考虑用方程如何解决,最后小组内同学交流.教师可以参与到学生中去,要关注学生解决问题的思路.在用算术法解时,是否遇到了麻烦?用方程可以轻松解决吗?让学生感受方程在解决实际问题时的优势.解:设A,B两地间的路程是x km,根据客车比卡车早1 h经过B地,可得方程x60-x70=1.【建议】在这一过程中,教师还应当注意培养学生的发散思维和创新能力,可以让他们进行小组间的交流,也可以根据题意画一个表格讨论,看一看各小组所列的方程是否一致,以开拓学生的思路,从而掌握更多的解题方法.【设计意图】通过对列方程解决问题的学习,使学生感受方程方法和算术方法之间的差异,为进一步学习方程做准备.活动2:归纳列方程的步骤思路一学生先说一说,然后教师归纳列方程解决实际问题的两个步骤:(1)用字母表示问题中的未知数(通常用x,y,z等字母表示);(2)根据问题中的相等关系,列出方程.【比较】比较列算式和列方程两种方式的特点,建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.列算式:只用已知数表示计算程序,依据是问题中的数量关系;列方程:可用未知数表示相等关系,依据是问题中的等量关系.【思考】对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个等量关系?可考虑按以下的顺序进行:(1)学生独立思考;(2)小组合作交流;(3)全班交流.【试一试】【课件4】小雨、小思的年龄和是25岁.小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?在学生回答的基础上,教师加以引导:小思的年龄可以用两个不同的式子25-x和2x-8来表示,这说明许多实际问题中的数量关系可以用含字母的式子来表示,由于这两个不同的式子表示的是同一个量,因此我们又可以得到25-x=2x-8.这样就得到了一个方程.[设计意图]通过对问题解决方法的学习,进一步使学生感受列方程的一般步骤,即先找等量关系,再列方程.思路二【问题1】你能谈谈列方程过程中的思路和方法吗?你是怎样一步步列出方程的?学生讨论交流,然后回答.【问题2】算术法和方程法有什么不同?你能谈谈你的认识吗?两种方法的比较:从形式上看:算术法与方程法有什么不同的情况出现?从思路上看:刚才做题的想法有什么不同?(教师根据学生口述列表,便于比较)用方程解用算术方法解形式上:未知数用字母表示,参加列式;思路上:根据题意找出数量间的相等关系,列出含有未知数的等式形式上:未知数不参加列式;思路上:根据题中已知数和未知数间的关系,确定解答步骤,再列式计算【强调】在两个方面的区别中,未知数能不能参加列式决定了怎样分析,并且决定了列式的不同特点.学生讨论交流后回答时,教师不必苛求学生回答得很全面,只要学生能谈出一两点体会,教师都应当加以鼓励.[设计意图]通过对思路的归纳、总结,使学生感受列方程的一般过程和思路,体验列方程的过程,培养学生分析、解决问题的能力.活动3:学习一元一次方程的概念【课件5】(教材例1)根据下列问题,设未知数并列出方程:(1)用一根长24 cm的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1700 h,预计每月再使用150 h,经过多少月这台计算机的使用时间达到规定的检修时间2450 h?(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?对于基础比较差的学生,教师可以做如下提示:(1)选择一个未知数,设为x.(2)对于这三个问题,分别考虑:用含x的式子表示正方形的周长;用含x的式子表示这台计算机x个月的使用时间;用含x的式子分别表示男生和女生的人数.(3)找到问题中的相等关系列出方程.让学生观察并讨论所列方程等号两边式子的关系,教师归纳:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.简单地说:列方程就是用两种不同的方法表示同一个量.【问题1】以上各题,你能用两种不同的方法来表示另一个量,再列出方程吗?【师生活动】让学生小组讨论,然后分组汇报交流.解题过程略.[设计意图]通过学生的自主尝试,激发学生的学习热情和探究欲望,培养学生的创新能力和分析、解决问题的能力.【问题2】上述方程具有什么样的特点?【师生活动】在学生观察、讨论上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程.“一元”:一个未知数.“一次”:未知数的次数是1.[知识拓展]在判断一个方程是不是一元一次方程时,要注意:△必须含有一个未知数;△未知数的次数是1;△分母中不含有未知数.如果方程不是最简形式,先变形,化成最简形式后再判断.【问题3】你认为该怎样进行估算?【师生活动】可以采用“尝试——发现——归纳”的方法:让学生尝试后发现,要求出答案必须用一些具体的数值代入,看方程是否成立,最后教师进行归纳.可以用列表的方法进行尝试,也可以像下面那样按程序进行尝试.在此基础上给出概念:解方程就是求出使方程等号左右两边相等的未知数的值,这个值就是方程的解.求方程解的过程,叫做解方程.一般地,要检验某个值是不是方程的解,可以用这个值代替未知数代入方程,看方程左右两边是否相等.[知识拓展](1)判断一个数是不是方程的解,可把这个数代入方程的两边,若方程的两边相等,则该数是方程的解;反之,则不是方程的解.(2)方程的解与解方程是两个不同的概念,方程的解是一个结果,是具体的数值,而解方程是一个变形的过程.[设计意图]通过学生的讨论、交流与归纳,得出一元一次方程的概念,使学生感受列方程的过程,树立建模思想.思路二【课件5】教师出示教材例1.【师生活动】学生分组交流讨论完成,教师巡视,教师在这一过程中应当关注学生能否恰当地设未知数,能否根据题意正确找出等量关系列出方程,必要时教师可参与到小组当中,和学生一起探讨交流,也可以给学生适当的提示与点拨.师:像上边这样的方程,你能给它起一个名字吗?你是从哪个角度给它命名的?学生阅读教材,体验方程的命名方式,并说一说什么是一元一次方程.教师进一步提出问题:想一想,以上几个问题你是怎样列出方程的?可以把你的思路过程表示出来吗?【归纳】分析实际问题中的等量关系,利用其中的相等关系列出方程是用数学知识解决实际问题的一种方法.实际问题一元一次方程对于问题(1),我们已经列出方程,可以发现当x=6时,4x的值是24,这时方程4x=24的两边相等,则x=6叫做方程4x=24的解.师:解方程就是求出使方程等号左右两边相等的未知数的值,这个值就是方程的解.你能求出1700+150x= 2450的解吗?我们可以根据下面的流程图求解,给x一个值,代入方程,看一看方程两边是否相等,不相等再换一个试一试,依次进行下去,直到找到方程的解为止.【思考】这里是不是单纯盲目地去“碰”呢?师生讨论解决.[设计意图]通过对列方程的思路的进一步学习,使学生掌握列方程的一般步骤,培养学生分析、解决问题的能力,能够根据所列方程认识一元一次方程的有关概念.1.方程.准确把握方程的两个条件:一、必须含有未知数;二、必须是等式.两者缺一不可.2.一元一次方程.从三个方面理解一元一次方程的概念:一、一元一次方程首先属于整式方程,即方程两边不含分母,或虽含分母,但分母中不能有未知数.二、一元,即方程中只含有一个未知数,此未知数可以出现多次,但只能是同一未知数,同一个方程中不能出现两个不同的未知数.三、一次,未知数的次数是一次,指的是化为一般形式ax+b=0(a≠0)后,未知数的次数是一次.3.方程的解和解方程.这是两个不同的概念,方程的解是指使方程两边相等的未知数的值,具有名词性,而解方程是求方程解的过程,具有动词性.1.在下列式子:△2x -1;△2x +1=3x ;△|π-3|=π-3;△t +1=3中,等式有 ,方程有 .(填入式子的序号)解析:一元一次方程必须满足三个条件:(1)未知数的次数是1;(2)是整式方程;(3)只含有一个未知数.等式有△△△,方程有△△.答案:△△△ △△2.根据“x 的2倍与5的和比x 的12小10”可列方程为 . 解析:由题意列方程为2x +5=x2-10.故填2x +5=x2-10. 3.x =2是下列方程的解吗?(1)3x +(10-x )=20; (2)2x 2+6=7x.解析:把x =2代入上述方程,看等号左右两边是否相等. 解:(1)x =2不是3x +(10-x )=20的解. (2)x =2是方程2x 2+6=7x 的解.3.1.1 一元一次方程活动1:问题探究 方程的定义活动2:归纳列方程的步骤活动3:学习一元一次方程的概念 例1一元一次方程 一元一次方程的解一、教材作业 【必做题】教材第80页练习. 【选做题】教材第83页习题3.1第1,2,3题. 二、课后作业 【基础巩固】1.下列式子是方程的有 ( ) 35+24=59;3x -18>33;2x -5=0;2x +15=0.A .1个 B.2个 C.3个 D.4个2.小明准备为希望工程捐款,他现在有20元,以后每月打算存 10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是 ( ) A.10x +20=100 B.10x -20=100 C.20-10x =100D.20x+10=1003.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张,设所用的1元纸币为x 张,根据题意,下面所列方程正确的是()A.x+5(12-x)=48B.x+5(x-12)=48C.x+12(x-5)=48D.5x+(12-x)=484.检验下列各小题后面括号里的数是不是它前面方程的解.(1)3y-1=2y+1(y=2;y=4);(2)3(x+1)=2x-1(x=2;x=-4).【能力提升】5.希望中学九年级(1)班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x人,则下列方程中正确的是()A.2(x-1)+x=49B.2(x+1)+x=49C.x-1+2x=49D.x+1+2x=496.甲、乙两数的和为10,且甲数比乙数大2,求甲、乙两数,正确的方程是()A.设乙数为x,则(x+2)+x=10B.设乙数为x,则(x-2)+x=10C.设甲数为x,则(x+2)+x=10D.设甲数为x,则x-2=107.为创建园林城市,某城市将对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔6米栽1棵,则树苗缺22棵;如果每隔7米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.6(x+22)=7(x-1)B.6(x+22-1)=7(x-1)C.6(x+22-1)=7xD.6(x+22)=7x【拓展探究】8.在初中数学中,我们学习了各种各样的方程.以下给出了6个方程,请你把属于一元方程的序号填入圈(1)中,属于一次方程的序号填入圈(2)中,既属于一元方程又属于一次方程的序号填入两个圈的公共部分.△3x+5=9;△x2+4x+4=0;△2x+3y=5;△x2+y=0;△x-y+z=8;△xy=-1.【答案与解析】1.B(解析:35+24=59,是等式但不含未知数,所以不是方程;3x-18>33,含未知数但不是等式,所以+15=0都是含有未知数的等式,所以都是方程.故选B.)不是方程;2x-5=0与2x2.A(解析:由题意知x月存10x元,又现在有20元,因此可列方程10x+20=100.故选A.)3.A(解析:1元纸币为x 张,那么5元纸币为(12-x )张,所以x +5(12-x )=48.故选A .)4.解析:把每个方程后面的两个数分别代入原方程,如果左右两边相等,那么这个数就是方程的解,反之则不是.解:(1)把y =2代入原方程的左、右两边,左边=3×2-1=5,右边=2×2+1=5,左边=右边,所以y =2是方程3y -1=2y +1的解;把y =4代入原方程的左、右两边,左边=3×4-1=11,右边=2×4+1=9,左边≠右边,所以y =4不是方程3y -1=2y +1的解. (2)把x =2代入原方程的左、右两边,左边=3×(2+1)=9,右边=2×2-1=3,左边≠右边,所以x =2不是方程3(x +1)=2x -1的解;把x = - 4代入原方程的左、右两边,左边=3×(- 4+1)=- 9,右边=2×(- 4) -1=- 9,左边=右边,所以x =- 4是方程3(x +1)=2x -1的解.5.A(解析:由题意得女生有2(x -1)人,根据题意得2(x -1)+x =49.故选A .)6.A(解析:设乙数为x ,根据甲数比乙数大2,则甲数为x +2,根据题意得出(x +2)+x =10.故选A .)7.B(解析:根据首、尾两端均栽上树,每间隔6米栽一棵,则缺少22棵,可知这一段公路长为6(x +22-1);若每隔7米栽1棵,则树苗正好用完,可知这一段公路长又可以表示为7(x -1),根据公路的长度不变列出方程即可.)8.解析:一元方程指的是含有一个未知数的方程;一次方程指的是未知数的次数是1的方程;而一元一次方程指的是含有一个未知数,并且未知数的次数是1的方程.解:如图所示.这节课在设计上重点体现学生的自主探索.首先在引入时,问题设计体现出教师的教学活动是建立在学生认识发展水平和已有的知识经验的基础上,探究过程在对教材例题的处理上,让学生探索方程解法与算术解法的优劣,从而让学生在自主探索中进行比较,自己得出结论,较传统的教学活动而言,体现了学生的主体地位,着重于学生的探索活动,强调了学生的自我发现在方程的解的概念这部分的处理上的重要性.1.在教学的过程中,教师只局限于教材中的问题和例题,限制了学生的思维.2.对于一元一次方程的概念的分析和实际问题中的等量关系的确定,教师没有重点指导.3.在探索方程的解的过程中,没有让学生主动去探索尝试.教师要能灵活地运用教材,并加以创造.可以设计一些其他的应用问题,让学生寻找等量关系.一元一次方程的概念学生第一次接触到,可以让学生通过判断、辨析等手段加以强化.明确一元一次方程的“一元”和“一次”两个重要的特点.在探索方程解的时候,一定要让学生自己去想、小组合作去探究方程的解,教师一定要相信学生,给学生自主思考的空间和时间,让学生自己得到答案.练习(教材第80页)1.解:设沿跑道跑x 周可以跑3000 m,则400x =3000.2.解:设甲种铅笔买了x 支,则乙种铅笔买了(20-x )支,所以0.3x +0.6(20-x )=9.3.解:设上底为x cm,则下底为(x +2)cm,所以5(x+x+2)2=40,即5(2x+2)2=40.4.解:设小水杯的单价为x元,则大水杯的单价为(x+5)元,根据题意得10(x+5)=15x.下列各式中,是方程的为()A.3=5-2B.3+4xC.5a-6=3D.2x+3>4x-5〔解析〕本题考查方程的定义.A选项为一个等式,但等式中不含有未知数,故不是方程;B选项含有未知数,但不是一个等式,也不是方程;D选项含有未知数,但不是等式,故也不是方程.故选C.〔解题策略〕方程有两个条件:(1)式子中必须含有未知数;(2)式子必须是等式.检验0,1,2三个数是否为方程3(x+1)=2(2x+1)的解.〔解析〕判断一个数是不是原方程的解,必须用这个数替换方程中的未知数,并计算方程左、右两边的值是否相等.解:将x=2分别代入原方程左、右两边,左边=3×(2+1)=9,右边=2×(2×2+1)=10.左边≠右边,所以x=2不是原方程的解.将x=1分别代入原方程左、右两边,左边=3×(1+1)=6,右边=2×(2×1+1)=6.左边=右边,所以x=1是原方程的解.将x=0分别代入原方程左、右两边,左边=3×(0+1)=3,右边=2×(2×0+1)=2.左边≠右边,所以x=0不是原方程的解.〔解题策略〕使方程左、右两边相等的未知数的值称为方程的解.判断一个数是不是原方程的解,直接根据条件代入方程的两边进行计算即可.3.1.2等式的性质1.了解等式的两条性质.2.会用等式的性质解简单的一元一次方程.3.培养观察、分析、概括及逻辑思维能力.1.让学生经历知识的形成过程,培养学生自主探索和相互合作的能力.2.初步体验解方程的化归思想.1.感受数学与生活的联系,认识数学来源于生活,又应用于生活.2.激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯.【重点】理解和应用等式的性质.【难点】应用等式的性质解简单的一元一次方程.【教师准备】多媒体课件、天平、砝码、等质量木块若干.【学生准备】复习一元一次方程的定义,每小组准备天平、砝码、等质量木块若干.导入一:师:哪位同学能谈谈上节课我们学习了哪些内容?学生思考后回答.用估算的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?(1)3x-5=22;(2)0.23-0.13y=0.47y+1.第(1)题要求学生给出解答,第(2)题较复杂,估算比较困难,让学生进行简单尝试.师:通过估算的方法,我们可以求得方程的解,可是我们也看到,通过估算求解,需要通过多次尝试才能得到正确的答案,而且有的方程要利用这种方法求解很困难.有没有相对简单的方法,使我们可以获得方程的解呢?现在我们就来学习解方程.[设计意图]通过对上节课内容的回忆和教师提出的问题,引发学生的思考,激发学生的探究欲望,进而引出本节课的内容.导入二:小明和王力同学玩跷跷板,当他们位于跷跷板两端的时候,跷跷板恰好处于平衡的位置.这时,李强和小丽也来了,如果他们二人的体重相等,他们这时也分别坐到跷跷板两端,这时候是否仍然平衡?[设计意图]通过情境教学,让学生初步感受等式的性质,激发学生的学习兴趣,让学生产生求知欲望,从而进行下面的学习.活动1:等式的性质思路一1.实验演示.教师先提出实验的要求:请同学们仔细观察实验的过程,思考能否从中发现规律,再用自己的语言叙述你发现的规律,然后按如图所示的方法演示实验.(教师可以进行两次不同物体的实验,学生独立思考,小组交流,代表发言.)2.集体归纳.在学生叙述发现的规律后,教师进一步引导:等式就像平的天平,它具有与上面的事实同样的性质.比如“8=8”,我们在两边都加上6,就有“8+6=8+6”;两边都减去11,就有“8-11=8-11”.提出问题1:你能用文字来叙述等式的这个性质吗?等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.在学生回答的基础上,教师必须说明:等式两边加上的可以是同一个数,也可以是同一个式子.提出问题2:等式一般可以用a=b来表示,等式的性质1怎样用式子来表示?如果a=b,那么a±c=b±c.字母a,b,c可以表示具体的数,也可以表示一个式子.3.巩固性质1.(教材例2)利用等式的性质解方程:(1)x+7=26.〔解析〕所谓“解方程”,就是要求出方程:的解“x=?”.因此我们需要把方程转化为x=a(a 为常数)的形式.怎样才能把方程x+7=26转化为x=a的形式呢?解:方程两边减7,得:x+7-7=26-7,于是x=19.【思考1】如果x-2=3,那么x-2+2=3+2,依据是,即x=;【思考2】如果x+3=-10,那么x=;依据是;【思考3】如果-2x-9=-12,那么-2x=,依据是;【思考4】如果2m+n=p+2m,那么n=,依据.4.观察下列实验,你又能发现什么规律?你能用实验加以验证吗?在学生观察上图时,必须注意图上两个方向的箭头所表示的含义,观察后再让学生用实验验证,然后让学生用两种语言表示等式的性质2.文字语言:等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.符号语言:如果a=b,那么ac=bc;如果a=b(c≠0),那么ac =bc.(教材例2)利用等式的性质解方程:(2)-5x=20.解:方程两边同除以-5,得:-5x -5=20-5,于是x=-4.【思考1】如果3x=5,那么3x×(-2)=5×(-2),即-6x=;【思考2】如果-2x=6,那么x=;【思考3】已知x=3y,那么-5x=;【思考4】已知-13x=2,那么x=;。
人教版七年级数学上册一元一次方程《从算式到方程(第2课时)》示范教学设计
从算式到方程(第2课时)教学目标1.了解一元一次方程、方程的解及解方程的概念.2.会检验一个数是否是方程的解.教学重点会检验一个数是否是方程的解.教学难点能正确区分方程的解及解方程.教学过程知识回顾1.含有未知数的等式叫做方程.2.列方程的一般步骤如下:(1)设未知数,一般求什么就设什么为x.(2)分析题意,找相等关系.(3)根据相等关系列方程.【师生活动】教师提问,学生回答.【设计意图】带领学生复习已学过的方程知识,为本节课讲解一元一次方程相关知识作铺垫.新知探究一、探究学习【思考】观察上节课例1中所列出的3个方程4x=24,1 700+150x=2 450,0.52x-(1-0.52)x=80,你发现了什么?【师生活动】教师提示:方程的突出特点是含有未知数,我们要注意观察未知数的特征.学生回答:(1)只含有一个未知数.(2)未知数的次数都是1.教师提问:还有其他特征吗?观察等号两边是什么式子?学生回答:整式.教师总结:第(3)条特征是等号两边都是整式.【新知】一元一次方程的概念.只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程.注意:概念中的“元”是指方程中的未知数,“次”是指方程中含有未知数的项的最高次数.【设计意图】通过实例让学生体会一元一次方程的特点,方便学生理解一元一次方程的概念.二、典例精讲【例1】判断下列方程是否是一元一次方程?若不是,请说明理由.(1)1153x x+=;(2)3x-4y=12;(3)-5x2+x=3;(4)32x=.【师生活动】学生独立完成例题,教师提问,学生尝试归纳总结,教师给予帮助.【答案】解:(1)是;(2)含有两个未知数x和y,不是一元一次方程;(3)未知数x的最高次数是2,不是一元一次方程;(4)等式的左边不是整式,不是一元一次方程.【归纳】判断一个式子是一元一次方程时,必须满足:(1)是方程;(2)只含有一个未知数;(3)未知数的次数都是1;(4)化简后,未知数的系数不为0;(5)方程中分母不含未知数.【设计意图】通过例题1的练习与讲解,巩固学生对一元一次方程概念的理解.三、探究学习【问题1】方程4x=24中未知数x的值是多少?【分析】因为4×6=24,所以当x=6时,方程4x=24左右两边的值相等.结论:x=6叫做方程4x=24的解.【问题2】方程1 700+150x=2 450中未知数x的值是多少?【分析】当x=1时,1 700+150x=1 700+150×1=1 850;当x=2时,1 700+150x=1 700+150×2=2 000;当x=3时,1 700+150x=1 700+150×3=2 150;当x=4时,1 700+150x=1 700+150×4=2 300;当x=5时,1 700+150x=1 700+150×5=2 450.所以当x=5时,方程1 700+150x=2 450左右两边的值相等.结论:x=5叫做方程1 700+150x=2 450的解.【新知】解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解.解方程和方程的解是两个不同的概念.方程的解是求得的结果,它是一个(或几个)数值,解方程是求方程的解的过程.【思考】x=1 000和x=2 000中哪一个是方程0.52x-(1-0.52)x=80的解?【分析】当x=1 000时,左边=0.52×1 000-(1-0.52)×1 000=40,右边=80,所以左边≠右边,所以x=1 000不是方程0.52x-(1-0.52)x=80的解.当x=2 000时,左边=0.52×2 000-(1-0.52)×2 000=80,右边=80,所以左边=右边,所以x=2 000是方程0.52x-(1-0.52)x=80的解.【归纳】如何检验某个值是不是方程的解?(1)将已知数值分别代入一元一次方程的左右两边;(2)若左右两边的值相等,则这个值是方程的解,否则不是.【设计意图】教师逐步设疑,学生思考并回答,通过探究,加深对解方程和方程的解的概念的理解,并总结归纳“如何检验某个值是不是方程的解”,提高学生分析问题、解决问题的能力.四、典例精讲【例2】x=3,x=4各是下列哪个方程的解?(1)2x+8=12+x;(2)3x-2=4+x.【师生活动】学生独立完成例题,教师提问,学生作答.【答案】解:(1)当x=3时,因为左边=2×3+8=14,右边=12+3=15,所以左边≠右边,所以x=3不是方程2x+8=12+x的解.当x=4时,因为左边=2×4+8=16,右边=12+4=16,所以左边=右边,所以x=4是方程2x+8=12+x的解.(2)当x=3时,因为左边=3×3-2=7,右边=4+3=7,所以左边=右边,所以x=3是方程3x-2=4+x的解.当x=4时,因为左边=3×4-2=10,右边=4+4=8,所以左边≠右边,所以x=4不是方程3x-2=4+x的解.【设计意图】通过例题2的练习,加深学生对已学知识的理解.教师通过提问及讲解,及时发现并反馈学生学习中存在的问题.课堂小结板书设计一、一元一次方程的定义二、解方程三、检验某个值是否是方程的解课后任务完成教材第83页习题3.1第3题.。
人教版七年级数学上册第三章从算式到方程复习题2(含答案) (15)
人教版七年级数学上册第三章从算式到方程复习题2(含答案)若2a 3b 4=-,则下列等式中不一定成立的是( )A .2a 43b +=B .2a 13b 5-=-C .2am 3bm 4=-D .3a b 22=- 【答案】C【解析】【分析】分别利用等式的基本性质判断得出即可.【详解】因为2a 3b 4=-,所以2a 43b +=,2a 13b 5-=-,3a b 22=-,()2am 3bm 4m m 0=-≠,所以2am 3bm 4=-不成立故选:C .【点睛】此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式是解题关键.42.若x =﹣1是关于x 的方程2x+a =1的解,则a 的值为( )A .﹣1B .3C .1D .﹣3【答案】B【解析】【分析】把x=﹣1代入方程2x+a=1,得出关于a的方程,求出方程的解即可.【详解】把x=﹣1代入方程2x+a=1得:﹣2+a=1,解得:a=3,故选B.【点睛】本题考查了一元一次方程的解和解一元一次方程,能熟记一元一次方程的解的定义是解此题的关键.43.如果x=2是方程2x=5﹣a的解,那么a的值为()A.2 B.6 C.1 D.12【答案】C【解析】【分析】x=2是方程2x=5﹣a的解,那么将x=2代入方程可使得方程左右两边相等,从而转化成只含一个未知数a的方程,解一元一次方程即可求出a值.【详解】∵x=2是方程2x=5﹣a的解∴将x=2代入方程得,2×2=5﹣a,解得a=1故选C.【点睛】此题考查的是一元一次方程的解,使方程两边左右相等的未知数的值即为方程的解44.下列式子中变形正确的是( )A .如果a b =,那么c b c a -=+B .如果a b =,那么22a b = C .如果82a =,那么4a = D .如果0a b c +-=,那么a b c =-【答案】B【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.【详解】解:A 、左边加c ,右边减c ,不等式变形不正确,故A 错误;B 、等式的两边都除以2,故B 正确;C 、等式的左边乘以2,右边除以2,不等式变形不正确,故C 错误,D 、等式的左边减(b-c ),右边加(b-c ),不等式变形不正确,故D 错误, 故选:B .【点睛】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.45.一元一次方程4763x x -=-的解是( )A .2x =-B .2x =C .1x =-D .1x =【答案】A【解析】【分析】将方程通过移项,然后再将系数化为1即可求得一元一次方程的解..【详解】解:移项得:4x-6x=-3+7,合并得:-2x=4,系数化为1得:x=-2.故选:A .【点睛】本题考查了一元一次方程的解法.解一元一次方程的一般步骤是:去分母;去括号;移项;合并;系数化为1. 注意,去分母时,要用最小公倍数乘方程两边的每一项,不要漏乘不含分母的项.46.若关于x 的方程233n mx x +=-有无数解,则3m+n 的值为( ) A .﹣1B .1C .2D .以上答案都不对【答案】A【解析】【分析】原方程经过移项,合并同类项,根据“该方程有无数解”,得到关于m 和关于n 的方程,解方程后,代入3m +n ,计算求值即可得到答案.【详解】 mx 233n +=-x ,移项得:mx +x 233n =-,合并同类项得:(m +1)x 23n -=.∵该方程有无数解,∴1023mn+=⎧⎪-⎨=⎪⎩,解得:12mn=-⎧⎨=⎩,把m=﹣1,n=2代入3m+n得:原式=﹣3+2=﹣1.故选A.【点睛】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.47.下列方程中,以﹣2为解的方程是( )A.3x+1=2x﹣1 B.3x﹣2=2xC.5x﹣3=6x﹣2 D.4x﹣1=2x+3【答案】A【解析】【分析】根据解一元一次方程的方法,依次解各个选项的方程,找出解为x=﹣2的选项即可.【详解】解:A.解方程3x+1=2x﹣1得:x=﹣2,即A项正确,B.解方程3x﹣2=2x得:x=2,即B项错误,C.解方程5x﹣3=6x﹣2得:x=﹣1,即C项错误,D.解方程4x﹣1=2x+3得:x=2,即D项错误,故选:A.【点睛】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.48.根据等式的基本性质,下列结论正确的是( )A .若x y a a =,则x y =B .若x y =,则x y a b= C .若x a y a +=-,则x y =D .若x y =,则ax by =【答案】A【解析】【分析】 根据等式的基本性质,对每个选项进行分析判断即可得答案.【详解】A.若x y a a=,根据等式的基本性质,则x y = ,故该选项正确, B.若x=y ,a=b ≠0,则x y a b =,故该选项错误, C.若x a y a +=-,则x=y-2a ,故该选项错误,D.若x y =,a=b ,则ax by =,故该选项错误,故选A.【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.49.下列由等式的性质进行的变形,错误的是( )A .如果3a =,那么113a = B .如果3a =,那么29a =C .如果3a =,那么23a a =D .如果23a a =,那么3a = 【答案】D【解析】【分析】根据等式的性质,可得答案.【详解】A .如果a =3,那么113a =,正确,故A 不符合题意; B .如果a =3,那么a 2=9,正确,故B 不符合题意;C .如果a =3,那么a 2=3a ,正确,故C 不符合题意;D .如果a =0时,两边都除以a ,无意义,故D 符合题意.故选D .【点睛】本题考查了等式的性质,熟记等式的性质是解题的关键.50.下列利用等式的性质错误的是( )A .由a b a b,c 0,c c=≠=且得到 B .由a b ,a b 22==得到 C .由a b,ac bc ==得到D .由a b,522b 5=-=--得到【答案】D【解析】【分析】根据等式的性质进行判断即可.【详解】 A 选项:由a b a b,c 0,c c=≠=且得到,根据不等式性质2可得,故正确;B 选项:由a b ,a b 22==得到,根据不等式性质2可得,故正确; C 选项:由a b,ac bc ==得到,根据不等式性质2可得,故正确; D 选项:由a b,522b 5=-=--得到,故错误.故选:D.【点睛】考查等式的性质,注意ac=bc ,且c ≠0时,才能有a=b ,本题属于基础题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.利用等式的性质解下列方程; (1) 6 x 3 x 12 ; (3) 2 x 3 x 8;
1 1 ( 2) 2 y y 3 ; 2 2
(4) 56 3 x 32 2 x ;
( 5) 3 x 7 6 x 4 x 8 . (6) 7.9 x 1.56 x 7.9 x 8.42
3.检验括号中的数是否为方程的解: (1) 5m 3 7;( m 3, m 2) (2) 4 y 3 6 y 7.( y 4, y 5)
(1) m 2 是方程的解, m 3 不是方程的解; (2) y 5 不是方程的解, y 4 不是方程的解.
典型问题
7.下列说法正确的是( B ) . A.在等式 ab ac 两边除以 a ,可得 b c
a b 2 B. 在等式 a b 两边除以 x 1, 可得 2 x 1 x 1 b c C.在等式 两边除以 a ,可得 b c a a
2
D.在等式 3 x 3a b 两边除以 3,可得 x a b
【问题 1】 (1)如果 a 4 2,那么根据等式的性质, 两边 边 ,可得到 a 6 ; ,可得到 x ; , ( 2 ) 如 果 2 x 8 , 那 么 根 据 等 式 的 性 质 , 两
x ( 3) 如果 1, 那么根据等式的性质, 两边 6
可得到 x
.
略
【问题 2】 利用等式的性质变形正确的是 ( A.由 2 x 1 3,得 2 x 4 B.由 x 2 x ,得 x 1 C.由 x 2 9 ,得 x 3 D.由 2 x 1 3 x ,得 5 x 1
18.回答下列问题: ( 1) 从 2a 3 2b 3能不能得到 a b , 为什么? (2)从10a 12能不能得到 5a 6 ,为什么?
(1)不能,理由略; (2)能,理由略.
; / 聚星平台
vcg49wfv
在离家之前就已经做了简单的准备呢!“吁—”耿老爹吆喝驴车停了下来,朗声招呼耿正兄妹三个下车:“来,娃儿们,俺们 给五道爷磕个头,许个愿哇!”说着话,耿老爹自己已经麻利地跳下车来,并且伸手从搭连里取出来三柱香和一个很好用的火 镰子。耿正、耿英和耿直也赶快跟着爹爹下车,父子四人一溜儿快步来到五道庙前。耿老爹先用火镰子打火点着了三柱香,再 把它们稳稳地并排插在了庙前的香炉里。然后,他把火镰子装进衣袋里,回头看看身后的三个儿女,自己先恭恭敬敬地跪了下 去。耿正、耿英和耿直也赶快跪在爹爹的身后。耿老爹十二分虔诚地双手合十抬头望着庙堂里端坐着的五道爷塑像,非常字正 腔圆地认真说道:“请五道爷保佑俺们父子四人此趟出门一路顺利,南下创业赚钱遂心如愿,早日衣锦还乡,全家团圆,光宗 耀祖,造福乡里!”耿正、耿英和耿直也十二分虔诚地双手合十抬头望着庙堂里端坐着的五道爷塑像,齐声跟着爹爹说道: “请五道爷保佑俺们父子四人此趟出门一路顺利,南下创业赚钱遂心如愿,早日衣锦还乡,全家团圆,光宗耀祖,造福乡里!” 随后,在耿老爹的带领下,父子四人一起,十二分虔诚地给端坐在庙堂里的五道爷塑像标标准准地磕了三个头。磕完头以后, 父子们站起身来双手合十各自许愿。实际上,耿正兄妹三个所许的愿,都只不过是把刚才说给五道爷听的那些话,又都在心里 边默默地说了几遍罢了。然而,耿老爹此时在心里边默默地跟五道爷述说的,却更加地具体和详细了许多。他衷心地希望,五 道爷能够听得到他的心里话!他相信,五道爷已经听到他在心里说的话了!并且,他更愿意相信,五道爷一定能够保佑他父子 们此趟出门创业一路顺利,也一定能够衣锦还乡造福乡里!许完了愿,耿老爹举起右手有力地一挥,大声说:“娃儿们,上车 喽!”大家又上车坐回到各自的位置上。耿老爹拉起缰绳一声吆喝:“咦—”黑灰色毛驴拉着平车转向左边,又精神抖擞地 “哒哒哒”向东疾步而行。在一片敞亮的晨光中,坐在驾车位置上的耿老爹目光坚毅神采奕奕,那些个曾经在他的脑海里设想 过无数回的巨大成功,此时仿佛已经在向他父子们招手了!望着前方宽阔的东西大道,他爽朗地大声对耿正、耿英和耿直说: “这条东西大道无论是往东走,还是往西走,只要在第一个路口往南拐,就都能通往俺们要去的地方。今儿个俺们打东边儿去, 到南面儿转他一圈儿,找个能站得住脚的好地儿,痛痛快快地好好儿干上一番!等到过几年赚发了以后,俺们再从西边儿回 来!”然而,尽管耿老爹此时是如此得信心满满且神情朗朗,但耿正、耿英和耿直毕竟是平生第一次背井离乡啊!前方的道路 对于还尚未成人的他们来说,既充满向往,但更多的
8 , 得到 x . 7
5.下列变形错误的是( D ) . A.由 x 7 5,得 x 7 7 5 7 B.由 3 x 2 2 x 1,得 x 3 C.由 4 3 x 4 x 3 ,得 4 3 4 x 3 x
2 D.由 2 x 3,得 x 3
加8,再除以2 ,
,得
15.方程 3 x 8 x 7的解为( A ) .
15 A. x 4 1 C. x 2 4 B. x 15 1 D. x 2
16.下列等式变形错误的是( D ) . A.由 a b ,得 a 7 b 7
a b B.由 a b ,得 2 2 C.由 x 9 y 9,得 x y
D.由 2 x 2 y ,得 x y
17.下列说法正确的是( A ) . A.在等式 6 x 12 两边除以 6,可得等式 x 2 B.在等式 6 x 12 两边减 6,可得等式 x 2
1 C.在等式 6 x 12 两边乘 ,可得等式 x 72 6 1 D.在等式 6 x 12 两边除以 ,可得等式 x 12 6
课前小测
1.以 x 3为解的方程是( C ) . A. 3 x 7 2 B. 5 x 2 x C. 6 x 8 26 D. x 4 4 x 16
2.下列式子可以用“=”连接的是( B ) . A.5+4 B.7+(-4) C.2+4×(-2) D.2×(3-4) 12-5 7-(+4) -12 2× 3- 4
11. 2a 3 x 12 是关于 x 的方程.在解这个方程时, 粗心的小虎误将 3 x 看做 3 x ,得方程的解为 x 3 . 请你帮助小虎求出原方程的解.
x 3
12.已知 5b 3a 1 5a 3b,利用等式性质,试比 较 a 与 b 的大小.
ba
13.解方程: 3 x 3 2 x 3 . 林红同学是这样解的: 方程两边加 3,得 3 x 2 x . 方程两边除以 x ,得 3=2. 所以,此方程无解. 林红同学的解题过程是否正确?如果正确, 指出每一步 的理由;如果不正确,指出错在哪里?并加以改正.
(1) x 4; ( 3) x 8 ;
5 ( 2) y ; 3
(4) x 24;
1 (5) x ; (6) x方程,使它的解为-5,这个方程 为
答案不唯一,如 x 2 3. .
10.方程| x 1 | 1的解的情况是( D ). A.只是 0 C.只是 2 B.只是-2 D.是 0 和 2
第三章
第二课 从算式到方程(2)
1.本课提要 2.课前小测 3.典型问题 4.技能训练 5.拓展应用 6.知识梳理 7.考题链接
本课提要
本节课重点是让同学们从实际问题情境中探索
体验等式的性质,并会初步使用等式的性质解较简
单的一元一次方程.技能训练的题目是使同学们通 过练习加深对等式的性质的认识和理解,训练同学 们根据等式的性质解方程的能力;拓展应用中的几 个题目重点在于训练同学们变式与综合的能力.
3 6.已知方程① 3 x 1 2 x 1;② x 1 x ; 2 1 2 1 7 1 3x 3x 1 7 ③ x ( x )x ; ④ 3 3 3 24 4 4
中,解为 x 2 的方程是( D ) . A.①②③ C.②③④ B.①③④ D.①②④
林红同学的解题过程不正确,错在方程两边除以 x .
知识梳理
★等式的性质 1 等式两边加(或减)同一个数(或式 子) ,结果仍相等. ★等式的性质 2 等式两边乘同一个数,或除以同一个 不为 0 的数,结果仍相等.
考题链接
14. (1)在等式 3m m 2 的两边 减 m 到 3m m 2 ( 2) 在等式 2 x 8 6的两边 得到 x 7 .
略
) .
【问题 3】利用等式的性质解下列方程: (1) x 5 15 ; (2) 3 x 9 ;
1 ( 3) x 1 3 . 2
略
技能训练
4. (1)在等式 4 y 3 5 两边 加3 ,得到 4 y 8 ;
2 乘 7 7 ( 2) 在等式 x 4 的两边 2