大学物理实验讲义实验09示波器原理和使用
示波器的原理与使用实验报告
示波器的原理与使用实验报告示波器是一种常见的电子测量仪器,用于观察和分析电信号的波形。
它在电子工程、通信工程、物理实验等领域有着广泛的应用。
本文将介绍示波器的原理和使用方法,并结合实验报告,详细说明示波器的操作步骤和注意事项。
一、示波器的原理示波器的原理基于电压-时间的图形显示原理,通过将电压信号转换为电流信号,再通过电流信号驱动示波器的竖直偏转系统,使得电压信号的波形能够在示波器屏幕上显示出来。
同时,示波器的水平偏转系统可以控制波形的时间轴,从而实现对信号频率和时间关系的观测。
二、示波器的使用方法1. 准备工作在使用示波器之前,需要先将电压信号输入示波器。
可以通过信号发生器、电源等设备提供电压信号,或者直接将待测电路的信号接入示波器的输入端口。
2. 示波器的调节示波器的调节主要包括垂直和水平调节。
垂直调节用于调整信号的幅度,通过调节示波器的增益和偏移量来使波形在屏幕上适当显示。
水平调节用于调整信号的时间轴,通过调节示波器的时间基准和扫描速率来控制波形的水平位置和宽度。
3. 观察波形调节好示波器后,可以开始观察波形。
示波器屏幕上显示的波形可以是正弦波、方波、脉冲波等不同形式的信号。
通过观察波形的峰值、周期、频率等参数,可以对电路或信号进行分析和判断。
4. 测量信号示波器不仅可以观察波形,还可以进行一些基本的信号测量。
例如,可以通过示波器的游标功能测量信号的幅度、频率、周期等参数。
此外,示波器还可以进行波形的存储和回放,方便后续的数据分析和处理。
三、实验报告为了更好地理解示波器的原理和使用方法,我们进行了一次实验。
实验的目的是观察不同频率下的正弦波信号,并学习如何使用示波器进行测量和分析。
实验步骤:1. 连接电路首先,我们将信号发生器的输出端口与示波器的输入端口相连,确保信号能够正确地输入示波器。
2. 调节示波器根据实验要求,我们调节示波器的增益和偏移量,使得波形在屏幕上适当显示。
同时,调节示波器的时间基准和扫描速率,使得波形的时间轴能够清晰可见。
大学物理实验示波器的原理与使用 ppt课件
2020/4/5
郑州工业应用技术学院大学物理实验中心
大学物理实验---示波器的原理与使用
二、实验原理 1.示波器的基本结构: (1)示波管(CRT)(2)放大 与衰减系统(3)扫描同步系统(4)电源系统四个部分
2020/4/5
郑州工业应用技术学院大学物理实验中心
大学物理实验---示波器的原理与使用
二、实验原理
2. 示波器显示波形的原理
如果只在水平偏转板X上加 上扫描电压,而竖直偏转板Y上不 加电压,电子束在水平方向上来 回运动而形成一条水平亮线,如 果只在竖直偏转板Y上加上交变电 压,而X偏转板上不加偏压,电子 束在竖直方向上动而形成一条亮 线。
2020/4/5
郑州工业应用技术学院大学物理实验中心
G:控制栅二极、实验原A理1:第一阳极 A2:第二阳极 (1)示波管(CRT)
K:阴极
Y:竖直偏转板
X:水平 U 偏转板
Y
F:灯丝
G:对应亮度旋钮
2020/4/5
荧光屏
Y Uy
G A1 A2共同完成聚焦
郑州工业应用技术学院大学物理实验中心
大学物理实验---示波器的原理与使用
二、实验原理
(2)放大和衰减系统 为了适应被测信号幅值的范围(从最小幅值到最大 幅值),对小信号进行放大,对大信号进行衰减,用于 对不同大小的输入信号进行适当的缩放,使其幅度适合 于观测。
2020/4/5
郑州工业应用技术学院大学物理实验中心
大学物理实验---示波器的原理与使用
二、实验原理
4. 利用李萨如图测正弦电压的频率基本原理 如果给示波器的X轴和Y轴都输入正弦电压,当这 两个正弦电压的频率相等或成简单的整数比时,则屏 上将呈现特殊形状的图形,这种图形称为李萨如(法 国数学家)图形。
大学物理实验--示波器的原理与使用
数据记录与处理 1. 测量校正信号的电压频率 将实验数据记录下表
校正 信号
标准值
频率 1 KHz 电压VP-P 2 VP-P
偏转
扫描
因数 格数(div) 速率
(V/格)
(T/div)
格数 (div)
实测值
—— ——
——
——
四、实验内容与步骤
3. 测量正弦电压波信号电压、频率 (1)正弦信号输入 ,调节【TIME/DIV】、【VOLTS/DIV】,使 波形显示适中.(数值方向占2/3,水平方向1~2个完整波形) (2)测量电压、频率,即垂直衰减分度*格数,即扫描速率分度* 格数
VOLTS/DIV: 偏转因数,指 示垂直方向每 格的偏转电压 值
ADD:显示两个通道信 号幅度的代数和或差
微调旋钮, 校正位置 CAL
CH1: 被测信号输入端口
选择触发信号耦合方 式:AC/DC GND
(4)触发区
触发旋钮,扫面信 号与被测信号同步
电平(LEVEL): 调节被测信号在某 一电平触发扫描, 稳定信号
G:控制栅二极、实验原理 A1:第一阳极 A2:第二阳极
(1)示波管(CRT)
K:阴极
Y:竖直偏转板
X:水平 U 偏转板
Y
F:灯丝 G:对应亮度旋钮
荧光屏
Y Uy
G A1 A2共同完成聚焦
二、实验原理
(2)放大和衰减系统 为了适应被测信号幅值的范围(从最小幅值到最大幅值),对小信 号进行放大,对大信号进行衰减,用于对不同大小的输入信号进行适当 的缩放,使其幅度适合于观测。
如果只在水平偏转板X上加上扫描电压, 而竖直偏转板Y上不加电压,电子束在水平 方向上来回运动而形成一条水平亮线,如果 只在竖直偏转板Y上加上交变电压,而X偏转 板上不加偏压,电子束在竖直方向上动而形 成一条亮线。
示波器原理与使用
示波器原理与使用
示波器是一种用来观测、测量电信号的仪器。
它能够将电信号转换为对应的图形波形,并将其显示在示波器的屏幕上。
示波器的基本原理是利用电子束在示波管内偏转,从而在屏幕上显示电信号的波形。
其中,电子束的运动是由垂直和水平偏转系统控制的。
垂直偏转系统负责控制电子束在屏幕上的垂直位置,从而显示电信号的振幅。
水平偏转系统则控制电子束的水平位置,表示时间。
示波器的使用通常包括以下几个步骤:
1. 连接电源和信号源:将示波器与电源和待测电路连接。
确保电源电压和信号源频率符合示波器的规格要求。
2. 调整示波器参数:根据需要,设置示波器的垂直灵敏度、水平扫描速度等参数,以确保波形可见且适合观测。
3. 观察波形:打开示波器的电源,将待测信号输入示波器。
在屏幕上可以看到电信号的波形。
根据需要,可以调整显示的时间和垂直位置。
4. 测量信号参数:示波器还可以提供一些测量功能,如测量波形的频率、幅值、周期等。
可以根据需要使用相应的测量功能。
5. 记录和分析数据:如果需要记录和分析波形数据,可以将示波器与计算机或存储设备连接,并使用相应的软件进行数据处
理。
总之,示波器是一种重要的测试工具,能够帮助工程师观测和测量电信号,用于故障排查、信号分析等工作。
正确使用示波器,可以提高工作效率,确保电路和设备的正常运行。
示波器原理与使用实验报告
实验报告:示波器原理与使用一、实验目的1. 理解示波器的原理及使用方法。
2. 学习观察模拟信号的波形。
3. 掌握示波器的正确操作。
二、实验原理示波器是一种常用的电子测量仪器,可以显示电信号的变化过程。
其基本原理是利用电子束在垂直方向上扫描,以实现信号的实时显示。
当信号通过一个耦合电路进入示波器后,电子束会受到调制,形成可识别的波形。
然后,这些波形会在荧光屏上显示出来。
三、实验步骤1. 准备实验:连接示波器、信号源、被测电路等设备。
确认设备正常工作,如电源、调节旋钮等。
2. 调整示波器的垂直和水平偏转:调整垂直偏转旋钮,使荧光屏上的光点上下移动;调整水平偏转旋钮,使光点左右移动。
3. 调整扫描速度:根据信号频率,调整扫描速度,使波形稳定显示。
4. 调整信号幅度:通过调整信号源的幅度,使波形在合适的位置显示。
5. 观察并记录实验结果:观察并记录不同信号源的波形,记录信号频率、幅度等参数。
6. 关闭设备,整理实验数据。
四、实验结果与分析在本次实验中,我们使用了不同频率和幅度的正弦波信号作为输入,观察了示波器上显示的波形。
实验结果表明,示波器能够清晰地显示出输入信号的波形,并且可以方便地调整信号幅度和扫描速度。
此外,我们还发现示波器的灵敏度和稳定性都非常出色,可以满足各种实验需求。
五、实验总结通过本次实验,我们深入了解了示波器的原理与使用方法。
在实际操作过程中,我们学会了如何调整示波器的垂直和水平偏转、扫描速度以及信号幅度等参数。
通过观察不同信号源的波形,我们进一步理解了电信号的变化过程。
此外,我们还认识到示波器在电子测量领域的重要地位,为后续的实验和科研工作打下了坚实的基础。
在未来的实验中,我们可以继续探索示波器的其他功能和应用场景。
例如,通过接入不同的电路元件,观察不同类型信号的波形;或者利用示波器进行频率响应分析、相位差测量等复杂实验。
总之,示波器作为一种重要的电子测量仪器,将在我们的科研工作中发挥越来越重要的作用。
示波器的原理和使用实验报告
示波器的原理和使用实验报告示波器是一种用来显示电信号波形的仪器,是电子测量仪器中的重要设备之一。
它可以将电压随时间变化的波形显示在示波器的屏幕上,通过观察波形的形状和幅度来判断电路中的各种故障和参数。
本实验将介绍示波器的原理和使用方法,并进行相应的实验报告。
一、示波器的原理。
示波器的原理主要包括示波器的工作原理和示波器的基本组成部分。
1. 示波器的工作原理。
示波器的工作原理是利用电子束在示波管内移动的方式,将电压信号转换成屏幕上的波形。
当电压变化时,电子束的位置也随之变化,从而在示波管屏幕上形成相应的波形。
这种原理使得示波器能够直观地显示电压信号的波形,便于工程师进行观察和分析。
2. 示波器的基本组成部分。
示波器的基本组成部分包括示波管、水平和垂直放大器、触发电路和扫描电路等。
其中,示波管是示波器的核心部件,它能够将电压信号转换成可见的波形;水平和垂直放大器则负责调节波形的幅度和时间;触发电路用于控制波形的稳定显示;扫描电路则负责控制电子束在示波管屏幕上的移动。
二、示波器的使用方法。
示波器的使用方法主要包括示波器的基本操作和示波器的应用技巧。
1. 示波器的基本操作。
示波器的基本操作包括开机、调节水平和垂直放大器、设置触发电路和选择扫描方式等。
在使用示波器时,首先需要将电压信号输入示波器,然后通过调节水平和垂直放大器来调整波形的幅度和时间;接着设置触发电路和选择合适的扫描方式,最终就可以在示波器屏幕上观察到电压信号的波形。
2. 示波器的应用技巧。
示波器的应用技巧主要包括观察波形的稳定性、调节触发电路的灵敏度和选择合适的扫描方式等。
在观察波形时,需要注意波形的稳定性,避免出现抖动或失真的情况;同时,调节触发电路的灵敏度能够使波形显示更加清晰;选择合适的扫描方式则可以更好地显示不同频率的波形。
三、实验报告。
在实验中,我们使用示波器对不同的电路进行了测试,并记录下相应的实验报告。
通过实验,我们发现示波器能够准确地显示电压信号的波形,并且能够帮助我们快速地分析电路中的问题和参数。
示波器的原理与使用实验报告
示波器的原理与使用实验报告示波器是一种用于显示电信号波形的仪器,它可以帮助工程师和技术人员观察和分析各种电信号的特性。
本实验将介绍示波器的原理和使用方法,并通过实验报告展示示波器在不同情况下的应用效果。
首先,让我们来了解一下示波器的基本原理。
示波器的核心部分是示波管,它能够将电信号转换成可视的波形。
当电信号输入到示波器中时,示波器会对信号进行放大和垂直偏移,然后通过水平扫描来显示波形。
通过调节示波器的各种参数,我们可以清晰地观察到电信号的幅值、频率、相位等特性。
在实际使用示波器时,我们首先需要连接待测信号到示波器的输入端,并根据信号的特性来选择合适的测量范围和耦合方式。
接下来,我们可以通过调节示波器的触发方式和触发电平来稳定地显示波形。
此外,示波器还可以通过设置时间基准和垂直灵敏度来调整波形的水平和垂直位置,以便更清晰地观察信号的特性。
在本次实验中,我们将分别对正弦波、方波和脉冲波进行测量和观察。
首先,我们将输入一个正弦波信号,并通过调节示波器的垂直灵敏度和时间基准来观察波形的变化。
然后,我们将输入一个方波信号,并通过调节触发方式和触发电平来稳定地显示波形。
最后,我们将输入一个脉冲波信号,并通过设置测量范围和耦合方式来观察波形的特性。
通过本次实验,我们可以更加深入地了解示波器的原理和使用方法,掌握如何正确地观察和分析各种电信号的波形特性。
同时,我们也可以通过实验报告来展示示波器在不同情况下的应用效果,为工程师和技术人员提供参考和借鉴。
总之,示波器作为一种重要的电子测量仪器,具有广泛的应用价值。
通过深入学习示波器的原理和使用方法,并通过实验来验证和应用所学知识,我们可以更好地掌握示波器的使用技巧,提高工程实践能力,为电子技术领域的发展贡献自己的力量。
《示波器的的原理和使用》物理实验报告
《示波器的的原理和使用》物理实验报告
实验名称: 示波器的原理和使用
实验目的: 通过实验了解示波器的原理和使用方法,掌握使用示波器进行波形显示和测量的技巧。
实验器材: 示波器、函数发生器、电缆、示波器探头。
实验原理: 示波器是一种用来显示电压信号波形的仪器,它能够将电信号转化为可视化的波形。
示波器主要由电子幕管、信号放大器、时间基准及触发电路等组成。
实验步骤:
1. 将函数发生器的输出端与示波器的输入端连接,使用电缆将二者连接起来。
2. 打开函数发生器和示波器,调节函数发生器的频率和幅度。
3. 选择适当的示波器探头,将其连接到示波器的输入端。
4. 调节示波器的触发电路,使波形稳定显示在屏幕上。
5. 调节示波器的水平和垂直缩放,使波形在屏幕上合适地显示出来。
6. 调节示波器的时间基准,选择适当的时间刻度,以观察波形的时间特性。
7. 进行测量,利用示波器测量波形的峰峰值、频率、周期等参数。
实验结果与分析: 使用示波器观察到的波形应与函数发生器输出的波形相一致。
根据示波器上的刻度,可以测量波形的峰峰值、频率和周期等参数。
正弦波的峰峰值即为波峰与波谷之间的电压差值,频率则是波形循环的次数,周期是一个完整循环所用的时间。
实验结论: 示波器是一种重要的电子测试仪器,能够将电压信号转化为可视化的波形,方便观察和测量。
通过本次实验,我学习了示波器的原理和使用方法,掌握了使用示波器进行波形显示和测量的技巧。
示波器的原理和使用实验报告
示波器的原理和使用实验报告示波器的原理和使用实验一. 示波器简介示波器是能在屏幕上以图形方式显示、观测被测信号的瞬时值轨迹变化情况的仪器。
它是一种最常用的电子测量/电工测量仪器。
二. 示波器的基本组成电子示波器由示波管、垂直偏转系统、水平偏转系统和主机等部分组成。
(1)示波管示波管是一种特殊的电子管,是示波器一个重要组成部分。
示波管由电子枪、偏转系统和荧光屏3个部分组成。
(2)垂直偏转系统垂直偏转系统包括垂直衰减器和垂直放大器。
它将垂直输人信号衰减或放大到一定幅度,输出推挽信号,加到示波管的垂直偏转板,使电子射线的垂直偏转距离正比于被测信号的瞬时值。
由于示波管的偏转灵敏度甚低,所以一般的被测信号电压都要先经过垂直放大电路的放大,再加到示波管的垂直偏转板上,以得到垂直方向的适当大小的形。
(3)水平偏转系统水平偏转系统从外触发输人端经触发电路、扫描电路、水平放大器到示波管的水平偏转板。
触发电路将被测信号或外触发输人信号置换成触发脉冲启动扫描电路。
由于示波管水平方向的偏转灵敏度也很低,所以接入示波管水平偏转板的电压(锯齿波电压或其它电压)也要先经过水平放大电路的放大以后,再加到示波管的水平偏转板上,以得到水平方向适当大小的形。
(4)电源供给电路电源由高压电源和低压电源两部分组成,供给示波管及各组成部分所需要的直流电压和灯丝电压。
消隐与增辉电路用来传送和放大增辉和消隐信号。
三. 示波器的工作原理示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点,在被测信号的作用下,电子束在屏面上描绘出被测信号的瞬时值的变化曲线,便于人们研究各种电现象的变化过程。
假设示波管的加速电压为U1,偏转电压为U2,偏转点击长为L,极板间距为d,偏转电极右端到荧光屏的距离为L 1,电子的质量为m ,带电量为e。
首先,在加速场中,电场力对电子做功W=eU1。
根据功能定理,电子在加速场中获得了。
接着电子以初速进入偏转电场,在电场力的作用下做a=eU2/md 的类平抛运动,经过时间t=L/v,电子飞离偏转电场。
大学物理实验报告示波器的使用
大学物理实验报告示波器的使用引言示波器是一种常用于实验室、工程领域的仪器,用于观察电信号波形的仪器。
在物理实验中,示波器常常被用来测量和显示电压、电流和频率等物理量,能够直观地观察到波形的变化。
本实验将重点介绍示波器的基本原理、操作方法和使用技巧。
一、基本原理示波器主要由示波管、水平和垂直系统以及触发系统组成。
1. 示波管示波管是示波器核心部件,通过控制电子束的运动和偏转,将电信号转化为可视化的波形。
示波管属于真空管,内部有阴极、阳极和偏转板等元件。
当加上适当的电压后,阴极会发射出电子,通过偏转板的控制,电子束会在荧光屏上形成一条亮线。
2. 水平和垂直系统水平和垂直系统分别用于控制示波器的水平和垂直方向上的偏转。
水平系统负责控制时间轴的水平位置和扫描速率,而垂直系统则负责控制信号的垂直放大倍数和偏移量。
3. 触发系统触发系统用于控制示波器何时开始显示电信号。
通过触发电路的设置,可以使示波器在信号达到一定条件时进行显示,以确保波形的稳定性和重复性。
二、操作方法使用示波器需要注意以下几个关键步骤:1. 连接测试电路首先需要将待测信号的电路正确连接到示波器的输入端口。
一般示波器会有不同的通道,根据需要选择合适的通道连接测试电路。
2. 调节垂直和水平控制根据待测信号的幅值范围,调节垂直控制旋钮,使信号的波形适当放大或缩小。
同时,根据信号的频率和时间跨度,调节水平控制旋钮,使波形在示波器的屏幕上完整显示。
3. 设置触发条件根据需要,设置触发条件以确保信号的稳定显示。
可以设置触发电平、触发边沿和触发源等参数,使示波器在信号满足设定条件时开始显示。
4. 观察和分析波形将示波器的时间基准和垂直基准调整到合适的位置后,即可观察到待测信号的波形。
可以通过改变时间和垂直基准的位置,观察不同的波形细节,并对信号进行分析和测量。
三、使用技巧在实际操作示波器时,还有一些常用的技巧可以提高使用效果:1. 选择合适的探头示波器通常配备了多种类型的探头,如10:1和1:1的差分探头、高阻抗探头等。
《示波器的的原理和使用》物理实验报告实验报告
示例波器的原理和使用实验背景示波器是一种测量电信号的仪器,广泛应用于电子领域。
本实验旨在通过学习示波器的原理和使用,了解其相关知识和操作。
实验原理示波器主要作用是测量电信号的波形和电压,它利用可移动的电子束和屏幕上的磷光点来描绘电信号波形。
示波器内部结构示波器主要由以下部分构成: * 垂直放大器 * 水平放大器 * 触发器 * 示波管 *高压电源 * 控制电路在示波管中,电子束被发射和加速,然后纵向和横向偏转,最后打在屏幕上形成波形图案。
示波器使用方法1.连接电源:将示波器电源插头插入接口,连接电源。
2.连接电缆:将待测电路信号通过测试夹或接线头连接到示波器前面板上对应的输入接口。
3.调整垂直幅度:通过旋转垂直幅度旋钮,将信号波形调整到适当的大小。
4.调整水平幅度:通过旋转水平幅度旋钮,将波形移动到适合比例的水平位置。
5.调整触发边沿:通过旋转触发电路旋钮,将波形垂直划分为两个部分,并选择所需的部分触发边沿。
6.观察波形:打开示波器开关,并观察波形图案。
实验设备•示波器•信号源•信号线实验步骤1.将示波器电源插头插入接口,接通电源。
2.将信号源通过信号线连接到示波器的输入接口。
3.调节垂直和水平放大倍数,观察信号波形。
4.调整触发电路,使波形在触发位置稳定显示。
5.更换不同的信号源,观察波形变化。
6.关闭示波器开关、拔掉信号线及电源线,清扫实验现场。
实验注意事项1.操作前请仔细阅读说明书。
2.不要超过示波器的额定测量范围。
3.注意接线的正确性。
4.使用过程中注意安全,避免电击。
实验结果和分析根据实验结果,可清楚地观察和测量到待测电路的信号波形,理解和验证示波器的原理。
通过调整放大倍数和触发电路等参数,进一步优化波形显示效果。
实验心得通过本实验,我加深了对示波器原理和使用方法的理解,同时也掌握了一定的操作技巧和注意事项,对今后在实际工作中使用示波器有一定的帮助。
示波器的原理和使用实验报告
示波器的原理和使用实验报告示波器是一种广泛应用于电子、通讯、医疗等领域的电子测量仪器,它可以显示电压信号的波形,并通过波形来分析电路的性能和工作状态。
本实验旨在通过对示波器的原理和使用进行深入了解,以便更好地应用示波器进行电路测试和分析。
一、示波器的原理。
1.示波器的基本原理。
示波器的基本原理是利用电子束在示波管内的偏转来显示电压信号的波形。
当电压信号作用于示波器的输入端口时,示波器将信号转换为电子束的偏转,从而在示波管屏幕上显示出对应的波形。
通过调节示波器的各种参数,可以更清晰地显示出波形的细节,如频率、幅值、相位等。
2.示波器的工作原理。
示波器的工作原理主要包括信号输入、垂直放大、水平放大、触发、显示等过程。
当电压信号进入示波器后,首先经过垂直放大电路放大信号幅值,然后经过水平放大电路控制波形在屏幕上的水平长度,触发电路用于控制波形的稳定显示,最终在示波管屏幕上显示出完整的波形。
二、示波器的使用。
1.示波器的基本操作。
示波器的基本操作包括设置触发模式、调节垂直灵敏度、选择耦合方式、调节水平扫描等。
在使用示波器时,首先需要根据被测信号的特点选择合适的触发模式,然后调节垂直灵敏度和耦合方式以确保波形的清晰显示,最后调节水平扫描以获得合适的时间分辨率。
2.示波器的高级功能。
除了基本操作外,示波器还具有许多高级功能,如自动测量、存储回放、频谱分析等。
这些功能可以帮助用户更方便地对信号进行分析和测量,提高工作效率和测试精度。
三、实验报告。
在本次实验中,我们通过对示波器的原理和使用进行学习和实践,掌握了示波器的基本工作原理和操作方法。
通过实际操作,我们成功地显示了不同频率、幅值的正弦波和方波信号,并对波形进行了详细的分析和测量。
同时,我们还利用示波器进行了频率测量、相位测量等实验,取得了良好的实验结果。
综上所述,示波器作为一种重要的电子测量仪器,在电子技术和通讯领域有着广泛的应用。
通过深入了解示波器的原理和使用,我们可以更好地应用示波器进行电路测试和分析,为工程实践提供有力支持。
示波器的原理和使用 实验报告
示波器的原理和使用实验报告示波器的原理和使用实验报告一、引言示波器是电子工程中常用的一种仪器,用于观测电信号的波形和测量信号的各种参数。
本实验旨在探究示波器的原理和使用方法,以提高我们对电信号的理解和实验技能。
二、示波器的原理示波器的原理基于电信号的变化通过垂直和水平的偏转来显示波形。
其核心部分是垂直放大器和水平放大器。
1. 垂直放大器垂直放大器用于放大电信号的幅度,使其可以在示波器屏幕上显示出来。
示波器通常具有多个垂直通道,每个通道都有自己的放大倍数和输入阻抗。
放大倍数可以通过示波器的控制面板进行调节,以适应不同幅度的信号。
输入阻抗则决定了示波器对待测电路的负载影响。
2. 水平放大器水平放大器控制示波器屏幕上波形的水平位置和宽度。
通过调节水平放大倍数和扫描速率,可以改变波形的展示方式。
示波器通常具有内部或外部的触发功能,可以根据信号的特定条件来确定波形的起始位置。
三、示波器的使用方法示波器的使用方法包括信号连接、调节示波器参数和观测波形。
1. 信号连接首先,将待测信号的输出端与示波器的输入端相连。
示波器的输入端通常有不同的接头类型,如BNC接头和探头接头。
根据实际情况选择合适的接头,并确保连接牢固。
2. 调节示波器参数在连接信号后,需要调节示波器的参数以获得清晰的波形。
首先,选择合适的垂直通道和输入阻抗。
然后,通过调节垂直和水平放大倍数,使波形适应屏幕的显示范围。
最后,设置触发条件,确保波形的起始位置和稳定性。
3. 观测波形一旦示波器参数调整完毕,就可以观察到待测信号的波形了。
示波器屏幕上显示的波形可以是连续的或单次的,取决于触发设置。
通过仔细观察波形的形状、周期和幅度,可以分析信号的特征和性质。
四、实验结果与讨论在本次实验中,我们使用示波器观测了不同频率和幅度的正弦波信号。
通过调节示波器的参数,我们成功地观察到了清晰的波形,并测量了波形的频率和幅度。
实验结果表明,示波器的使用方法相对简单,只需连接信号并调节参数即可。
示波器的原理和使用实验报告
示波器的原理和使用实验报告示波器的原理和使用实验报告引言:示波器是一种广泛应用于电子领域的仪器,它能够将电信号转化为可视化的波形图,帮助工程师分析和测量电路中的各种参数。
本文将介绍示波器的基本原理以及实际使用中的一些注意事项。
一、示波器的基本原理示波器基于示波管的工作原理,通过控制电子束在荧光屏上划过的轨迹,将电信号转化为可见的波形图。
其基本原理如下:1. 示波管:示波管是示波器的核心部件,它由电子枪、偏转板和荧光屏组成。
电子枪发射出的电子束被偏转板控制,从而在荧光屏上形成可见的波形。
2. 水平和垂直偏转系统:示波器的水平和垂直偏转系统用于控制电子束在荧光屏上的位置和移动速度。
水平偏转系统控制波形的时间轴,垂直偏转系统控制波形的幅度。
3. 触发系统:示波器的触发系统用于控制示波器在何时开始扫描电信号并显示波形。
触发系统可以根据用户设置的触发条件,如信号的上升沿或下降沿,来触发示波器的扫描。
二、示波器的使用实验为了更好地理解示波器的原理和使用方法,我们进行了以下实验:1. 连接电路:首先,我们将待测电路与示波器正确连接。
示波器的输入端通常有两个,一个是地端(GND),另一个是待测信号的输入端。
我们需要将地端与电路的地线连接,将待测信号的输入端与电路的输出端连接。
2. 调节垂直和水平控制:接下来,我们需要调节示波器的垂直和水平控制,以便正确显示波形。
垂直控制用于调节波形的幅度,通常可以通过旋钮或按钮来实现。
水平控制用于调节波形的时间轴,也可以通过旋钮或按钮来实现。
3. 设置触发条件:在进行测量之前,我们需要设置触发条件,以确保示波器能够正确地扫描并显示波形。
触发条件可以根据信号的上升沿、下降沿或其他特定条件来设置。
我们需要根据实际情况选择适当的触发条件。
4. 扫描并观察波形:设置好触发条件后,我们可以开始扫描并观察波形了。
示波器会根据触发条件自动扫描电信号,并在荧光屏上显示波形。
我们可以通过调节垂直和水平控制来观察波形的幅度和时间轴。
示波器原理及使用实验报告
示波器原理及使用实验报告示波器原理及使用实验报告引言:示波器是一种广泛应用于电子领域的仪器,用于显示电信号的波形。
它可以帮助工程师们分析和测量电路中的各种信号,从而更好地理解电路的工作原理和性能。
本篇文章将介绍示波器的原理和使用方法,并结合实验报告,展示其在实际应用中的效果。
一、示波器的原理示波器的原理可以简单概括为:将电信号转换为可视化的波形。
具体来说,示波器通过以下几个步骤实现这一功能:1. 输入信号采集:示波器通过探头将待测电路的信号输入到示波器的输入端。
探头通常具有不同的衰减比例,以适应不同电压范围的测量。
2. 信号放大:示波器将输入信号放大到适合显示的范围。
这个过程通常由示波器内部的放大器完成。
3. 信号转换:示波器将放大后的信号转换为可视化的波形。
这一步骤通常由示波器的屏幕和扫描电子束来完成。
4. 波形显示:示波器的屏幕上会显示出电信号的波形。
波形的形状、幅度和频率等参数可以帮助工程师们分析信号的特性。
二、示波器的使用方法示波器是一种复杂的仪器,使用时需要掌握一些基本的操作方法。
下面将介绍示波器的使用步骤:1. 连接示波器:首先,将示波器的探头连接到待测电路的信号源上。
确保探头的接地夹具连接到电路的地线上,以保证测量的准确性。
2. 调整示波器:打开示波器,并调整其各个参数,如时间基准、垂直灵敏度、触发电平等。
这些参数的设置将影响到信号的显示效果,因此需要根据具体的测量需求进行调整。
3. 触发信号:示波器需要一个触发信号来确定何时开始扫描并显示波形。
可以通过调整触发电平和触发边沿来选择合适的触发条件。
4. 观察波形:当示波器设置好并触发信号后,屏幕上将显示出电信号的波形。
可以通过调整时间基准和垂直灵敏度来放大或缩小波形,以更清晰地观察信号的细节。
三、示波器的应用实验为了验证示波器的使用效果,我们进行了一系列实验。
以下是其中的一些实验结果:1. 测量直流电压:我们首先将示波器的探头连接到一个直流电源上,并设置示波器的时间基准和垂直灵敏度。
大学物理实验讲义实验09 示波器原理和使用
实验5 示波器原理和使用示波器是利用示波管内电子射线的偏转,在荧光屏上显示出电信号波形的仪器。
用它能直接观察电信号的波形,也能测定电信号的幅度、周期、频率和相位,凡能转化为电压信号的其它电学量(电流、电功率、阻抗等)和非电学量(温度、位移、速度、压力、声强、光强、磁场等),其随时间的变化都能用示波器来观测。
由于电子射线的惯性小,示波器扫描发生器的频率较高(可达几百兆赫),Y轴和X轴放大器的增益很大,输入阻抗高,所以示波器特别适合于观测瞬时变化的过程,并可测量微伏级的电压,而对被测试系统的影响很小。
因此示波器是一种应用广泛的综合性电信号测试仪器。
示波器按用途和特点可以分为:通用示波器。
它是根据波形显示基本原理而构成的示波器。
取样示波器,它是先将高频信号取样,变为波形与原始信号相似的低频信号,再应用基本原理显示波形的示波器。
与通用示波器相比,取样示波器具有频带极宽的优点。
记忆与存储示波器。
这两种示波器均有存储信号的功能,前者是采用记忆示波管,后者是采用数字存储器来存储信息。
专用示波器。
为满足特殊需要而设计的示波器,如电视示波器、高压示波器等。
智能示波器。
这种示波器内采用了微处理器,具有自动操作、数字化处理、存储及显示等功能。
它是当前发展起来的新型示波器。
也是示波器发展的方向。
本实验以SS—7802型通用示波器为例,说明示波器的原理和使用方法,并介绍GFG —8016G型数字式函数信号发生器的使用方法。
【实验目的】1.了解示波器显示图象的原理。
2.较熟练地掌握示波器的调整和使用方法。
3.掌握函数信号发生器的使用方法。
4.学习用示波器观察电信号的波形,测量电信号的电压幅度和频率。
【仪器用具】SS—7802型示波器(或DS-5000型存储示波器)、GFG—8016G型数字式函数信号发生器(或SPF05A型数字合成函数信号发生器)。
【实验原理】1.示波器的基本结构和工作原理示波器内部结构复杂,型号很多,但从功能上看,大致可分为示波管、电压放大装置(包括Y轴放大和X轴放大两部分)、扫描与整步装置和电源四个部分。
(大学物理实验)示波器原理
• 5.调节合适的电压衰减(改变Y轴幅度)和扫描时 间(改变X轴的周期数)。(电压衰减旋钮,扫 描时间调节旋钮)
微调频率时按 压左右键出现 三角形光标移 到小数点最后 一位旋转旋钮 微调即可
切割线与李萨如图相交的交点数。 • 公式Nx/Ny=Fy/Fx(Fx=50Hz)
触发信 号频率
多余显示的斜线可以 按压CH1来消除
X-Y模式
X-Y模 式时 X轴幅度调节
X轴输入 (50Hz)
X-Y模式时 Y轴幅度调节
XX轴轴切切割割线线与与李李萨萨如如图图相相交交的的交交点点数数N=x Nx
YY轴轴 切切割割 线与 李线萨与 如李图萨 相交 的如交图 点相数交 Ny 的交
点数
=Ny
观察李萨如图步骤:
1.选择X-Y模式。
2.开通1,2通道。(CH1为X输入,CH2为Y 输入)
3.调节X,Y轴位移,调节X,Y轴衰减。
4.确认X轴信号为50Hz。
5.微调Y输入的频率,使李萨如图形转的最慢 即可。
注:要求作出1/1 2/1 3/1 3/2(Nx/Ny)四个李萨如图。 • Nx是水平切割线与李萨如图相交的交点数,Ny是垂直
调频率时输入数字并跟上单位即可
电源开关
背景灯(不许 开)
保持键(不许 开)
交流2V 档(是 量程不 是倍率)
+654564++++++++++++++++++
大学物理实验示波器的原理和使用 实验报告
大学物理实验示波器的原理和使用实验报告实验名称示波器的原理与使用实验目的与要求:1.了解示波器的工作原理。
2.学会使用示波器观察各种信号波形电压副值以及频率。
3.学会使用示波器观察李萨如图并测频率。
主要仪器设备:YB4320G 双踪示波器,EE1641B型函数信号发生器实验原理和内容:1.示波器的组成部分示波器主要由示波管、放大和衰减系统、触发扫描系统和电源四部分组成,其中示波管是核心部分。
示波管的基本结构如下图所示,主要由电子枪、偏转系统和荧光屏三个部分组成,由外部玻璃外壳密封在真空环境中。
电子枪的作用是释放并加速电子束。
其中第一阳极称为聚焦阳极,第二阳极称为加速阳极。
通过调节两者的共同作用,可以使电子束打到荧光屏上产生明亮清晰的圆点。
偏转系统由X、Y两对偏转板组成,通过在板上加电压来使电子束偏转,从而对应地改变屏上亮点的位置。
荧光屏上涂有荧光粉,电子打上去时能够发光形成光斑。
不同荧光粉的发光颜色与余辉时间都不同。
放大和衰减系统用于对不同大小的输入信号进行适当的缩放,使其幅度适合于观测。
扫描系统的作用是产生锯齿波扫描电压,使电子束在其作用下匀速地在荧光屏周期性地自左向右运动,这一过程称为扫描。
扫描开始的时间由触发系统控制。
2.示波器的显示波形的原理如果只在竖直偏转板加上交变电压而X偏转板上五点也是,电子束在竖直方向上来回运动而形成一条亮线。
如果在Y偏转板和X偏转板上同时分别加载正弦电压和锯齿波电压,电子受水平竖直两个方向的合理作用下,进行正弦震荡和水平扫描的合成运动,在两电压周期相等时,荧光屏上能够显示出完整周期的正弦电压波形。
3.扫描同步为了完整地显示外界输入信号的周期波形,需要调节扫描周期使其与外界信号周期相同或成合适的关系。
当某些因素改变致使周期发生变化时,使用扫描同步功能,能够使扫描起点自动跟踪外界信号变化,从而稳定地显示波形。
步骤与操作方法:1.示波器测量信号的电压和频率对于一个稳定显示的正弦电压波形, 电压和频率可以由以下方法读出ha U p p ⨯=-1)(-⨯=l b f, 其中a 为垂直偏转因数(电压偏转因数)(从示波器面板的衰减器开关上可以直接读出)单位为V/div 或mV/div ; h 为输入信号的峰-峰高度, 单位div ; b 为扫描时间系数, 从主扫描时间系数选择开关上可以直接读出, 单位s/div 、ms/div 或μs/div ; l 为输入信号的单个周期宽度, 单位div 。
示波器原理与使用实验报告
示波器原理与使用实验报告示波器原理与使用实验报告引言:示波器是一种用于观察和测量电信号波形的仪器。
它广泛应用于电子、通信、计算机等领域。
本实验旨在通过实践操作示波器,了解其原理和使用方法,并通过实验结果对电信号进行分析和测量。
一、示波器原理示波器的工作原理基于电信号的振幅、频率和相位等特性。
当电信号进入示波器时,示波器会将信号转换为可视化的波形图。
示波器主要由以下几个部分组成:1. 输入部分:示波器的输入部分通常由探头和信号输入接口组成。
探头用于将待测信号连接到示波器的输入接口,它能够保证信号的准确传输和采集。
2. 垂直放大器:示波器的垂直放大器用于放大输入信号的幅度,使其能够在屏幕上显示出来。
垂直放大器通常具有可调的增益和偏移控制,以便用户能够调整波形的大小和位置。
3. 水平放大器:示波器的水平放大器用于调整波形在屏幕上的水平位置和宽度。
通过调整水平放大器,用户可以改变波形的时间尺度,以便更好地观察信号的变化。
4. 触发电路:示波器的触发电路用于确定波形在屏幕上的起始位置。
触发电路可以根据用户设置的触发条件,如信号的上升沿或下降沿,来确定波形的触发位置。
5. 显示部分:示波器的显示部分通常由阴极射线管(CRT)或液晶显示屏组成。
它能够将放大后的信号转换为可视化的波形图,并显示在屏幕上供用户观察和分析。
二、示波器的使用方法1. 连接示波器:首先,将待测信号通过探头连接到示波器的信号输入接口。
确保连接正确并稳定。
2. 调整垂直放大器:根据待测信号的幅度范围,调整垂直放大器的增益,使波形在屏幕上适当放大,但不超出显示范围。
3. 调整水平放大器:根据待测信号的时间变化范围,调整水平放大器的控制,使波形在屏幕上适当展示,并能够观察到信号的变化。
4. 设置触发条件:根据信号的特点,设置触发条件,如触发电平、触发沿等。
确保波形在屏幕上能够稳定显示。
5. 分析和测量波形:观察屏幕上的波形,并进行分析和测量。
示波器通常提供多种测量功能,如峰值、频率、周期等,可以帮助用户更好地了解信号的特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验5 示波器原理和使用示波器是利用示波管内电子射线的偏转,在荧光屏上显示出电信号波形的仪器。
用它能直接观察电信号的波形,也能测定电信号的幅度、周期、频率和相位,凡能转化为电压信号的其它电学量(电流、电功率、阻抗等)和非电学量(温度、位移、速度、压力、声强、光强、磁场等),其随时间的变化都能用示波器来观测。
由于电子射线的惯性小,示波器扫描发生器的频率较高(可达几百兆赫),Y轴和X轴放大器的增益很大,输入阻抗高,所以示波器特别适合于观测瞬时变化的过程,并可测量微伏级的电压,而对被测试系统的影响很小。
因此示波器是一种应用广泛的综合性电信号测试仪器。
示波器按用途和特点可以分为:通用示波器。
它是根据波形显示基本原理而构成的示波器。
取样示波器,它是先将高频信号取样,变为波形与原始信号相似的低频信号,再应用基本原理显示波形的示波器。
与通用示波器相比,取样示波器具有频带极宽的优点。
记忆与存储示波器。
这两种示波器均有存储信号的功能,前者是采用记忆示波管,后者是采用数字存储器来存储信息。
专用示波器。
为满足特殊需要而设计的示波器,如电视示波器、高压示波器等。
智能示波器。
这种示波器内采用了微处理器,具有自动操作、数字化处理、存储及显示等功能。
它是当前发展起来的新型示波器。
也是示波器发展的方向。
本实验以SS—7802型通用示波器为例,说明示波器的原理和使用方法,并介绍GFG —8016G型数字式函数信号发生器的使用方法。
【实验目的】1.了解示波器显示图象的原理。
2.较熟练地掌握示波器的调整和使用方法。
3.掌握函数信号发生器的使用方法。
4.学习用示波器观察电信号的波形,测量电信号的电压幅度和频率。
【仪器用具】SS—7802型示波器(或DS-5000型存储示波器)、GFG—8016G型数字式函数信号发生器(或SPF05A型数字合成函数信号发生器)。
【实验原理】1.示波器的基本结构和工作原理示波器内部结构复杂,型号很多,但从功能上看,大致可分为示波管、电压放大装置(包括Y轴放大和X轴放大两部分)、扫描与整步装置和电源四个部分。
如图5-1所示。
(1)示波管:它包括电子枪、偏转板和荧光屏三部分。
图5-1 示波器结构方框图示波管是示波器的核心,它的构造如图5-2所示,左端为一电子枪,电子枪又包括旁热式阴极、加热阴极的灯丝、控制栅极和第一、第二阳极等,阴极经灯丝加热后发出一束电子,电子被第一和第二阳极电场加速及聚焦后,形成一束很细的高速电子流打在右端的荧光屏上,屏上的荧光物图5-2 示波管的构造发光形成一亮点。
调节第一阳极电压(即调“聚焦”旋钮)和调节第二阳极电压 ( 即调“辅助聚焦”旋钮)可达到聚焦的目的,使荧光屏上出现清晰的图象。
在电子枪和荧光屏之间装有两对相互垂直的平行板,称为偏转板。
如果板上加有电压,则电子束经过偏转板时受正电极吸引,受负电极排斥,从而使电子束在荧光屏上的亮点位置也跟着改变,所以偏转板是用来控制亮点位置的。
两对偏转板中,横方向的一对称为X 轴偏转板(或叫水平偏转板),纵方向的一对称为Y 轴偏转板(或叫垂直偏转板)。
在一定范围内,亮点的位移与偏转板上所加电压成正比,调节“X 轴移位”和“Y 轴移位”旋钮可以改变亮点的位置。
由于控制栅极的电位低于阴极,调节栅极电位可控制穿过栅极的电子数,即控制了电子流的强度。
荧光屏上亮点的亮度决定于射到屏上电子的数目和能量(由加速阳极的电压决定),从而调节栅极电位(即调“辉度”旋钮)可以改变亮点的亮度。
(2)电压放大装置(包括Y 轴放大和X 轴放大两部分)示波器的输入分为Y 轴、X 轴两个通道,输入信号电压经输入端的衰减器衰减后,送到电压放大器放大。
放大后的信号电压最终加到示波器的Y 轴偏转板或X 轴偏转板上,亮点随信号电压的变化沿左右或上下作直线运动,形成一条水平或垂直亮线。
调节“Y 轴增益”或“X 轴增益”旋钮,可以控制输入信号的放大幅度(注意只是将显示比例放大或缩小,而不能改变信号电压本身的幅值大小)。
在示波器的Y 轴和X 轴输入端还设置有衰减器,如果信号电压过大,可利用Y 轴(或X 轴)衰减器使信号电压变小,以适应电压放大器的要求。
这些都是通过“V/cm ”偏转灵敏度选择开关实现。
(3)扫描与整步装置这是示波器的关键部分。
它主要由锯齿波电压发生器(即扫描电压发生器)构成。
图5-3 锯齿波波形图如果在X 轴偏转板上加上锯齿形电压,如图5-3(a )所示,锯齿形电压的特点是:电压从负开始(0t t =)随时间成正比地增加到正(10t t t <<),然后又突然返回负(1t t =)。
再从此开始与时间成正比地增加(21t t t <<)……,如此重复,这时,荧光屏上的亮点从左(0t t =)匀速地向右运动(10t t t <<),到右端后马上回到左端(1t t =),然后再从左端匀速地向右运动(21t t t <<)……, 不断重复前述过程。
亮点只在水平方向运动,我们在荧光屏上看到的便是一条水平线,如图5-3(b )所示。
如果在Y 轴偏转板上加上正弦电压,如图5-4(a )所示,而X 轴偏转板上不加任何电压,则亮点的运动是在纵方向作正弦式振荡,在横方向不动,我们看到的是一条垂直的亮线,如图5-4(b )所示。
图5-4 正弦波波形图如果在Y轴偏转板上加上正弦电压,在X轴偏转板上加上锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,我们看到的将是亮点的合成位移,即正弦图形。
用示波器观察波形的原理可用图5-5来说明。
简谐振动可用一个作匀速圆周运动的质点在某方向上的投影来代表,这个圆称为简谐振动的参考圆。
在Y轴偏转板上加上正弦电压时,可以用参考点在垂直方向投影的运动来代表。
我们假定信号电压与扫描电压的周期相同,起始点也相同,都是从零开始的,我们把这两个电压的周期分成八等份,分别用1,2,3……,8表示。
从图5-5看到,当时间从0到1时,X轴偏转板上的锯齿形电压使亮点从原点0向右移,而Y轴偏转板上的交流电压正好是正半周,它要亮点向上移,合成的结果电子束就打在荧光屏的“1”位置上。
当时间到达2时,亮点就打在“2”位置上……,因为两对偏转板上所加的电压是连续不断的,所以亮点的移动也是连续不断的,结果绘出如图5-5中从“0”到“8”的一条正弦曲线。
当锯齿形电压从最大突然跳回零时,亮点立即从“8”突然跳回到“0”,这时Y轴偏转板上的交流电压也正好回到第二个周期的零点上,因此在第二个周期中画出的曲线正好和第一个周期的完全重合。
这样不断重复,所以我们可以在荧光屏上看见一条稳定的正弦曲线。
图5-5 示波器显示波形原理图上面讨论的是在扫描电压的周期X T 与信号电压的周期Y T 相等时,荧光屏上可以稳定的显示出一个波长的信号波形。
如果扫描电压的周期X T 是信号电压的周期Y T 的两倍(即Y X T T 2=),则在荧光屏上可以看到两个波长的信号波形,同理,若Y X nT T =,则荧光屏上将显示出n 个波长的信号波形。
即Y X nT T ==n 1,2,3,…… (5-1)由于周期和频率具有互为倒数的关系,因此上式也可以表示为X Y nf f ==n 1,2,3,…… (5-2) (5-2)式中,Y f 为加在Y 轴偏转板上的信号电压的频率,X f 为加在X 轴偏转板上的扫描电压的频率。
如上所述,为了在荧光屏上观察到稳定的波形,必须使扫描电压的周期X T 与信号电压的周期Y T 相等或成整数倍关系,否则稍有偏差,所显示的波形就会向左或向右移动。
例如,当Y T <X T <2Y T 时,第一次扫描显示的波形如图5-6中0~4所示,而第二次扫描显示的波形如图5-6中4‘~8所示。
两次扫描显示的波形不相重合,其结果是好象波形在不断地向左移动。
同理,当X T <Y T <2X T 时,显示的波形会不断向右移动。
而实际上,由于产生Y f 和X f 的振荡源是互相独立的振荡源,它们之间的频率比不会自然满足简单整数比,所以示波器中的锯齿形扫描电压的频率必须可调。
除了人工调节之外,在示波器内部还加装了自动频率跟踪的装置,称为“整步”。
在人工调节到接近满足(5-2)式的条件时,再加入“整步”的作用,扫描电压的周期就能准确地等于待测电压周期的整数倍,从而获得稳定的波形。
图5-6 T 2y x y T T <<时波形向左移动如果所加信号Y f 为三角波(或方波)电压的频率,X f 为扫描电压的频率,则可在荧光屏上观察到三角波(或方波)信号的波形。
(4)电源部分电源部分的作用是将市电220V 的交流电压转变为各个数值不等的直流电压,以满足示波器各部分电路工作的需要。
2. 示波器的基本测量方法(1)如何测量电信号的电压幅度对于待测电信号,可测出其在荧光屏的Y 轴上的波形幅度大小,从而测出它的电压幅度。
示波器设有Y 轴灵敏度选档旋钮,Y 轴灵敏度可用U K 来表示,其单位是 V/cm 。
U K 表示在荧光屏Y 轴上,使亮点偏移1cm 距离所需输入的信号电压幅值,显然,U K 值是Y 轴上的电压分度值。
因此,对于一个被显示的信号,只要从荧光屏的刻度板上量出其双振幅PP A (即波形在Y 轴方向上的最低点到最高点的距离),则可测出其电压峰峰值PP U ,即PP U PP A K U ⋅= (5-3)对于正弦信号,其电压有效值U 与PP U 的关系为PP U U 221=(5-4)为了提高示波器的输入阻抗、减小输入电容,常用分压比为10:1的低电容衰减探头将信号输入至示波器的Y 通道。
由于探头对信号电压具有10倍的衰减,因此使用衰减探头时,(5-3)式应改写为PP U PP A K U ⋅=10 (5-5) (2)如何测量电信号的周期和频率 ① 利用时基因数测量周期和频率对于待测电信号,可测出其在荧光屏的X 轴上的波长大小,从而测出它的周期和频率。
示波器设有扫描速度选档旋钮,扫描速度可用t v 来表示,t v 表征示波器展开被测信号波形的能力,它的定义是:单位时间内亮点在荧光屏上X 轴方向移动的距离,其单位为cm/s 。
扫描速度的倒数tt v K 1=称为时基因数,它的定义是:亮点在X 轴方向移动一个单位距离所需的时间,其单位为s/cm (或为ms/cm 、μs/cm )。
虽然扫描速度和时基因数是两个不同的概念,但是在实用上常习惯地将时基因数作为示波器扫描速度的标称而不加区别。
显然,t K 是X 轴上的时间分度值。
因此,对于一个被显示的信号,只要从荧光屏的刻度板上量出其波长λ,则其周期T 为λ⋅=t K T (5-6)该信号的频率为λ⋅==t K T f 11 (5-7) ② 利用李萨如图形测量正弦信号的频率如果在示波器的Y 轴和X 轴偏转板上都加上正弦信号电压,那么荧光屏上亮点的运动将是两个互相垂直的振动的合成。