一次函数综合复习提高题及答案(汇编)

合集下载

中考数学复习《一次函数》专项提升训练题-附带答案

中考数学复习《一次函数》专项提升训练题-附带答案

中考数学复习《一次函数》专项提升训练题-附带答案学校:班级:姓名:考号:一、选择题1.下列各点在直线y=−2x+6上的是()A.(−1,4)B.(2,10)C.(3,0)D.(−3,0)2.将一次函数y=2x−1的图象沿y轴向上平移4个单位长度,所得直线的解析式为()A.y=2x−5B.y=2x−3C.y=2x+3D.y=2x+43.关于y是x的一次函数y=kx+b2+1(其中k<0,b为任意实数)的图象可能是()A.B.C.D.4.已知一次函数y=−2x+4,那么下列结论正确的是()A.y的值随x的值增大而增大B.图象经过第一、二、三象限C.图象必经过点(1,2)D.当x<2时5.若点A(x1,−1),B(x2,−2),C(x3,3)在一次函数y=−2x+m(m是常数)的图象上,则x1,x2,x3的大小关系是()A.x1>x2>x3B.x2>x1>x3C.x1>x3>x2D.x3>x2>x16.如图,函数y=mx和y=kx+b的图象相交于点P(1,m),则不等式−b≤kx−b≤mx的解集为()A.0≤x≤1B.−1≤x≤0C.−1≤x≤1D.−m≤x≤m7.已知一次函数y=32x+m和y=−12x+n的图象都经过点A(−2,0),且与y轴分别交于B、C两点,那么△ABC的面积是()A .2B .3C .4D .68.小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中.如图是两人离家的距离y (米)与小明出发的时间x (分)之间的函数图象.下列结论中不正确的是( )A .公园离小明家1600米B .小明出发253分钟后与爸爸第一次相遇C .小明与爸爸第二次相遇时,离家的距离是960米D .小明在公园停留的时间为5分钟二、填空题9.若函数y =(m −1)x |m|−5是一次函数,则m 的值为 .10.一次函数y=(2m ﹣6)x+4中,y 随x 的增大而减小,则m 的取值范围是 .11.弹簧的自然长度为5cm ,在弹簧的弹性限度内,所挂的物体的质量x 每增加1kg ,弹簧的长度y 增加0.5cm ,则y 与x 之间的函数关系式是 .12.如图所示,直线y =kx +b 经过点(−2,0),则关于x 的不等式kx +b >0的解集为 .13.函数y =ax +b 和y =−x +2的图像如图所示,两图像交于点P(−1,m),则二元一次方程组:{y −ax =b y +x =2的解是 .三、解答题14.已知一次函数y=k(x+2)(k≠0).(1)求证:点(−2,0)在该函数图象上;(2)若该函数图象向上平移2个单位后过点(1,−2),求k的值;(3)若该函数图象与y轴的交点在x轴和直线y=−2之间,求k的取值范围.15.为丰富学生的业余生活,学校准备购进甲、乙两种畅销图书.经调查,甲种图书的总费用y(元)与购进本数x之间的函数关系如图所示,乙种图书每本20元.(1)直接写出当0≤x≤100和x>100时,y与x的函数关系式;(2)现学校准备购买300本图书,且两种图书均不少于80本,该如何购买,才能使总费用最少?最少的总费用为多少元?x+m的图象交于点P(n,−2).16.如图,函数y=−2x+3与y=−12(1)求出m,n的值;x+m≤−2x+3的解集;(2)观察图象,写出−12.(3)设△BOC和△ABP的面积分别为S1、S2,求S1S217.A、B两个码头之间航程为24千米,甲、乙两轮船同时出发,甲轮船从A码头顺流匀速航行到B码头后,立即逆流匀速航行返回到A码头,乙轮船从B码头逆流匀速航行到A码头后停止,两轮船在静水中速度均为10千米/时,水流速度不变,两轮船距A码头的航程y(千米)与各自的航行时间x(时)之间的函数图象如图所示.(顺流速度=静水速度+水流速度:逆流速度=静水速度-水流速度)(1)水流速度为千米/时;a值为;(2)求甲轮船从B码头向A码头返回过程中y与x之间的函数关系式;(3)当乙轮船到达A码头时,求甲轮船距A码头的航程.x−6的图象与坐标轴交于点A,B,BC平分∠OBA交x轴与点C,CD⊥AB垂足为18.如图1,一次函数y=34D.(1)求点A,B的坐标;(2)求CD所在直线的解析式;(3)如图2,点E是线段OB上的一点,点F是线段BC上的一点,求EF+OF的最小值.参考答案1.【答案】C2.【答案】C3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】C8.【答案】C9.【答案】-110.【答案】m <311.【答案】y=5+0.5x12.【答案】x >−213.【答案】{x =−1y =314.【答案】(1)证明:当x =−2时y =k(x +2)=k(−2+2)=0 ∴点(−2,0)在y =k(x +2)图象上.(2)解:一次函数y =k(x +2)图象向上平移2个单位得y =k(x +2)+2.将(1,−2)代入得:−2=k(1+2)+2解得k =−43.(3)解:由题意得:该函数图象与y 轴的交点为(0,2k)∵该交点在x 轴和直线y =−2之间∴−2<2k <0∴−1<k <0.15.【答案】(1)解:由图可知:y ={25x(0≤x ≤100)19x +600(x >100)(2)解:设总费用为w 元.根据题意,得80≤x ≤220.当80≤x ≤100时w =25x +20(300−x)=5x +6000.∵k =5>0,w 随x 的增大而增大,∴当x =80时,总费用最少w 最小=5×80+6000=6400元.当100<x ≤220时w =19x +600+20(300−x)=−x +6600.∵k =−1<0,w 随x 的增大而减小,∴当x =220时,总费用最少w 最小=−220+6600=6380元<6400元.∴此时乙种图书为300−220=80本.∴应购买甲种图书220本,乙种图书80本,才能使总费用最少,最少总费用为6380元.16.【答案】(1)解:将点P(n ,−2)代入函数y =−2x +3得:−2n +3=−2 解得n =52∴P(52,−2) 将点P(52,−2)代入函数y =−12x +m 得:−12×52+m =−2解得m =−34.(2)解:不等式−12x +m ≤−2x +3表示的是函数y =−12x +m 的图象位于函数y =−2x +3的图象下方(含交点)则由函数图象可知,−12x +m ≤−2x +3的解集为x ≤52. .(3)解:对于函数y =−12x −34当x =0时y =−34,则OB =34当y =0时−12x −34=0,解得x =−32,则OC =32∴S 1=12×34×32=916 对于函数y =−2x +3当x =0时y =3,则OA =3∴AB =OA +OB =154 ∵P(52,−2) ∴S 2=12×154×52=7516 ∴S 1S 2=9167516=325.17.【答案】(1)2;2(2)解:设甲轮船从B 码头向A 码头返回过程中y 与x 之间的函数关系式为y =kx +b 由图象可得,甲轮船从B 码头向A 码头返回需要3小时∴点(2,24),(5,0)在该函数图象上∴{2k +b =245k +b =0,解得{k =−8b =40即甲轮船从B 码头向A 码头返回过程中y 与x 之间的函数关系式为y =−8x +40;(3)解:由(2)知,当x =3时即当乙轮船到达A 码头时,甲轮船距A 码头的航程为16千米.18.【答案】(1)解:由一次函数y=34x−6的图象与坐标轴交于点A,B 另y=0,则x=8,即A(8,0);另x=0,则y=-6,即B(0,-6).(2)解:根据题意,如图,延长DC交y轴于点G,设CD=m∵BC平分∠OBA,OC⊥OB,CD⊥BD∴OC=CD=m∵OA=8,OB=6∴AB=√62+82=10∴12AB•CD=12AC•OB∵AC=8−m∴12×10m=12×(8−m)×6∴m=3∴点C的坐标为(3,0);∵CD⊥AB∴∠BDG=∠AOB=∠90°又∵OB=BD,∠ABO=∠GBD∴△AOB≌△GBD(ASA)∴BG=AB=10,OG=BG-OB=4即G(0,4)∴设直线CD的解析式为y=kx+4把点C(3,0)代入,则k=−43∴直线CD的解析式为y=−43x+4;(3)解:根据题意,作点E关于直线BC的对称点E′,则EF=FE′,如图:∵BC是角平分线∴点E′恰好落在直线AB上∴EF+OF=E′F+OF≥OE′∴EF+OF的最小值就是OE′的最小值当OE′⊥AB时,OE′为最小值;∵12AB•OE′=12OA•OB∴12×10×OE′=12×8×6∴OE′=245∴EF+OF的最小值为245.。

中考数学总复习《一次函数》专项提升练习(附答案)

中考数学总复习《一次函数》专项提升练习(附答案)

中考数学总复习《一次函数》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列关系中,是正比例关系的是()A.当路程s一定时速度v与时间t B.圆的面积S与圆的半径RC.正方体的体积V与棱长a D.正方形的周长C与它的一边长a2.对于正比例函数y=mx,当x增大时y随x增大而增大,则m的取值范围是()A.m<0 B.m≤0 C.m>0 D.m≥03.直线y=kx+b经过一、二、四象限,则k、b应满足()A.k>0,b<0 B.k>0,b>0 C.k<0,b<0 D.k<0,b>04.若正比例函数y=kx的图象经过第二、四象限,且过点A(2m,1)和B(2,m),则k的值为()A.﹣12B.﹣2 C.﹣1 D.15.如图,一次函数y=mx+n与y=mnx(m≠0,n≠0)在同一坐标系内的图象可能是()A.B.C.D.6.一次函数y=(a-7)x+a的图像不经过第三象限;且关于x的分式方程22−x =3−axx−2有整数解,则满足条件的整数a的和为()A.18 B.17 C.12 D.117.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习,图中l1,l2分别表示甲、乙两人前往目的地所走的路程s(千米)随时间t(分)变化的函数图象,以下说法:①甲比乙提前12分到达;②甲的平均速度为15千米/时;③甲乙相遇时乙走了6千米;④乙出发6分钟后追上甲.其中正确的有()A.4个B.3个C.2个D.1个8.春节假期,小星一家从家出发驾车前往某景点旅游,在行驶过程中,汽车离景点的路程y(km)与所有时间x(h)之间的函数关系的图象如图所示,下列说法正确的是()A.小星家离景点的路程为50kmB.小星从家出发第1小时的平均速度为75km/hC.小星从家出发2小时离景点的路程为125kmD.小星从家到景点的时间共用了3h二、填空题9.如果P(2,m),A (1, 1), B (4, 0)三点在同一直线上,则m的值为.10.若一次函数y=(3a﹣2)x+6随着x的增大而增大,则a的取值范围是.x+1与x轴,y轴分别相交于A,B两点,若将直线AB绕点A旋转45°与y轴交于11.如图,直线y=−12点C,则点C的坐标为.12.如图,已知一次函数y1=x+b与一次函数y2=mx﹣n的图象相交于点P(﹣2,1),则关于不等式x+b ≥mx﹣n的解集为.13.对于点P(a,b),点Q(c,d),如果a﹣b=c﹣d,那么点P与点Q就叫作等差点.例如:点P(4,2),点Q(﹣1,﹣3),因4﹣2=1﹣(﹣3)=2,则点P与点Q就是等差点.如图在矩形GHMN中,点H (2,3),点N(﹣2,﹣3),MN⊥y轴,HM⊥x轴,点P是直线y=x+b上的任意一点(点P不在矩形的边上),若矩形GHMN的边上存在两个点与点P是等差点,则b的取值范围为.三、解答题14.在等式y=kx+b中,当x=1时y=1;当x=3时y=7.(1)求k,b的值;(2)当x=m+1时求m的值.15.某教学网站开设了有关人工智能的课程并策划了A,B两种网上学习的月收费方式:收费方式月使用费/元包时上网时间/h 超时费/(元/h)A 70 25 6B 100 50 8设小明每月上网学习人工智能课程的时间为xh,方案A,B的收费金额分别为y A元、y B元.(1)当x≥50时分别求出y A,y B与x之间的函数关系式;(2)若小明3月份上该网站学习的时间为60h,则他选择哪种方式上网学习合算?16.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点A(−1,0)且与函数y=2x的图象交于点B(1,m).(1)求m的值及一次函数y=kx+b(k≠0)的表达式;(2)当x>1时对于x的每一个值,函数y=−x+n的值小于一次函数y=kx+b(k≠0)的值,直接写出n的取值范围.17.如图,直线l1:y=k1x+6与直线l2:y=k2x+b相交于点A(−3,3),l1交y轴于点B,l2交y轴负半轴于点C,且OB=2OC.(1)求直线l1和l2的解析式;(2)若D是直线l1上一点,且△BCD的面积是9,求点D的坐标.18.本次初二模拟考试后,学校决定购买两种笔记本对模拟考试中的成绩优异、进步显著的同学进行奖励.计划购买甲、乙两种型号的笔记本共60本,已知甲型笔记本的单价为15元/本,而购买乙型笔记本所需总费用y(元)与购买数量x(本)之间存在如图所示的数量关系.(1)求y与x的函数关系式;,请设计购买方案,使购买总费用最(2)若计划购买一种笔记本的数量不超过40本,但不少于总数的15低,并求出最低费.答案1.D 2.C 3.D 4.A 5.C 6.D 7.B 8.D 9.23 10.a > 2311.(0,6)或(0,−23) 12.x ≥﹣2 13.﹣5<b <514.(1)解:∵在等式y =kx +b 中,当x =1时y =1;当x =3时y =7∴{k +b =13k +b =7解得:{k =3b =−2;(2)解:由(1)可得:y =3x −2 ∵当x =m +1时y =4m +3∴3(m +1)−2=4m +3解得:m =−2.15.(1)解:当x ≥50时y A =6x −80.y B =8x −300;(2)解:选择B 方式上网学习合算.(1)当x ≥50时y A 与x 之间的函数关系式为y A =70+(x −25)×6=6x −80y B 与x 之间的函数关系式为y B =100+(x −50)×8=8x −300;(2)当x =60时y A =6×60−80=280 y B =8×60−300=180∵y A >y B ,故选择B 方式上网学习合算. 16.(1)解:由题意得:{−k +b =0k +b =m m =2解得:{k =1b =1m =2∴一次函数y =kx +b(k ≠0)的表达式为:y =x +1; (2)n ≤317.(1)代入点A(−3,3),则−3k +6=3 ∴直线l 1的解析式为y =x +6 令x =0,则y =6 ∴B(0,6). ∵OB =2OC ,∴C(0,−3).将点A(−3,3),C(0,−3)代入y =k 2x +b . 得直线l 2的解析式为y =−2x −3; (2)设点D 到y 轴的距离为m 则12×9×m =9 ∴m =2. ∴D(2,8)或D(−2,4).18.(1)解:当0≤x ≤20时设y 与x 的函数关系式为y =k 1x 根据函数图象可知经过(20,160) 则20k 1=160 解得k 1=8即当0≤x ≤20时y 与x 的函数关系式为y =8x 当x ≥20时设y 与x 的函数关系式为y =k 2x +b ∵经过点(20,160)和(40,280)∴{20k 2+b =16040k 2+b =280∴{k 2=6b =40即当x >20时y 与x 的函数关系式为y =6x +40 综上所述,y 与x 的函数关系式为y ={8x(0≤x ≤20)6x +40(x >20)(2)解:设购买乙种型号笔记本x 本,但不少于总数的15 则{x ≤40x ≥15×60解得12≤x ≤40 设总费用为w 元 ①当12≤x ≤20时∵k=−7<0,w随x的增大而减小x max=20时w最小值为−7×20+900=760②当20<x≤40时由k=−9<0,w随x的增大而减小x max=40时w最小值为−9×40+940=580综上所述,x=40时w取得最小值,最小值为580则购买甲种型号笔记本的为60−x=60−40=20(个)答:当购买甲种型号笔记本20个,乙种型号笔记本40个时费用最低,最低费用为580元。

中考数学复习《一次函数》专项提升训练题-附答案

中考数学复习《一次函数》专项提升训练题-附答案

中考数学复习《一次函数》专项提升训练题-附答案学校:班级:姓名:考号:一、选择题1.把一次函数的图象向上平移4个单位长度,得到图象表达式是()A.B.C.D.2.小红骑自行车到离家为千米书店买书,行驶了分钟后,遇到一个同学因说话停留分钟,继续骑了分钟到书店.图中的哪一个图象能大致描述她去书店过程中离书店的距离千米与所用时间分之间的关系()A.B.C.D.3.已知直线与x轴的交点在,之间(包括A,B两点),则a的取值范围是()A.B.C.D.4.已知一次函数的图像经过点,且当时,则该函数图象所经过的象限为()A.一、二、三B.二、三、四C.一、三、四D.一、二、四5.已知正比例函数的图象上两点、且,则下列不等式中一定成立的是()A.B.C.D.6.已知一次函数的图象与的图象交于点.则对于不等式,下列说法正确的是()A.当时B.当时C.当且时D.当且时7.如图,已知直线与轴、轴分别交于点和点,是线段上一点,若将沿折叠,点恰好落在x轴上的点处,则直线所对应的函数表达式是()A. B. C. D.8.如图,正方形、正方形、正方形的顶点、与和、与、分别在一次函数的图像和轴上,若正比例函数则过点,则的值是()A.B.C.D.二、填空题9.与直线垂直且过点的直线解析式是.10.已知一次函数的图象经过点,则不等式的解是. 11.已知为整数,且一次函数的图像不经过第二象限,则= .12.某家庭电话月租费为10元,若市内通话费平均每次为0.2元,则该家庭一个月的话费y(元)与通话次数x(次)之间的关系式是.13.如图,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点B的坐标为(4,3),点D为对角线OB上一点.若OA=OD,则点D到x轴的距离为.三、解答题14.已知是一次函数.(1)求m的值;(2)若,求对应y的取值范围.15.某花农培育甲种樱花 3 株,乙种樱花 2 株,共需要成本 1700 元,乙种樱花 2 株,共需成本 1500 元.(1)求甲、乙两种樱花每株成本分别为多少元?(2)据市场调研,1 株甲种樱花售价为 160 元,1 株乙种樱花售价为 840 元.该花农决定在成本不超过 29000 元的前提下培育甲、乙两种樱花,那么要使总利润不少于 5000 元,花农有哪几种具体的培育方案?(3)求出选何种方案成本最少?16.如图,一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象解决下列问题:(1)求慢车和快车的速度;(2)求线段所表示的y与x之间的函数关系式,并写出自变量x的取值范围.17.为提升学生的文学素养,培养学生的阅读兴趣,某校准备购进A,B两种图书.经调查,购进A 种图书费用y元与购进A种图书本数x之间的函数关系如图所示,B种图书每本20元.(1)当和时,求y与x之间的函数关系式;(2)现学校准备购进300本图书,其中购进A种图书x本,设购进两种图书的总费用为w元.①当时,求出w与x间的函数表达式;②若购进A种图书不少于60本,且不超过B种图书本数的2倍,那么应该怎样分配购买A,B两种图书才能使总费用最少?最少总费用多少元?18.如图,在平面直角坐标系中,直线与轴交于点,直线与轴、轴分别交于点和点,且与直线交于点.(1)求直线的解析式;(2)若点为线段BC上一个动点,过点作轴,垂足为,且与直线交于点,当时,求点的坐标;(3)若在平面上存在点,使得以点A,C,D,H为顶点的四边形是平行四边形,请直接写出点的坐标.参考答案:1.A2.D3.D4.D5.C6.D7.B8.B9.10.11.-3或-212.13.14.(1)解:因为是一次函数,所以且,解得(2)解:由(1)可知,该一次函数的表达式为,因为,所以随的增大而减小.当时;当时,所以当时,.15.(1)解:设甲、乙两种樱花每株成本分别为 x则:解得:故甲种樱花每株成本为 100 元,乙种樱花每株成本为 700元。

一次函数提高篇(含答案)

一次函数提高篇(含答案)

一、选择题:1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为()(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()(A)一象限(B)二象限(C)三象限(D)四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是()(A)4 (B)6 (C)8 (D)164.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为()(A)y1>y2(B)y1=y2(C)y1<y2(D)不能确定7.一次函数y=kx+2经过点(1,1),那么这个一次函数()(A)y随x的增大而增大(B)y随x的增大而减小(C)图像经过原点(D)图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.要得到y=-32x-4的图像,可把直线y=-32x().(A)向左平移4个单位(B)向右平移4个单位(C)向上平移4个单位(D)向下平移4个单位10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为()(A)m>-14(B)m>5 (C)m=-14(D)m=511.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是().(A)k<13(B)13<k<1 (C)k>1 (D)k>1或k<13二、填空题2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m的取值范围是________. 7.y=23x与y=-2x+3的图像的交点在第_________象限.三、解答题3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳实行观察研究,发现它们能够根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:第一档第二档第三档第四档凳高x(cm) 37.0 40.0 42.0 45.0桌高y(cm) 70.0 74.8 78.0 82.8(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.11.某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金乙型收割机的租金A地 1800元/台 1600元/台B地 1600元/台 1200元/台(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.答案:1.B 2.B 3.A 4.A5.B 提示:由方程组y bx ay ax b=+⎧⎨=+⎩的解知两直线的交点为(1,a+b),•而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,故图C不对;图D•中交点纵坐标是大于a,小于b的数,不等于a+b,故图D不对;故选B.6.B 提示:∵直线y=kx+b经过一、二、四象限,∴0,kb<⎧⎨>⎩对于直线y=bx+k,∵0,kb<⎧⎨>⎩∴图像不经过第二象限,故应选B.7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2,∵k=-1<0,∴y随x的增大而减小,故B准确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C错误.∵k<0,b=•2>0,∴其图像经过第二象限,故D错误.8.C 9.D 提示:根据y=kx+b的图像之间的关系可知,将y=-32x•的图像向下平移4个单位就可得到y=-32x-4的图像.10.C 提示:∵函数y=(m-5)x+(4m+1)x中的y与x成正比例,∴5,50,1410,,4m m m m ≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即 ∴m=-14,故应选C .11.B 12.C 13.B 提示:∵a b b c c ac a b+++===p , ∴①若a+b+c ≠0,则p=()()()a b b c c a a b c+++++++=2;②若a+b+c=0,则p=a b cc c+-==-1, ∴当p=2时,y=px+q 过第一、二、三象限; 当p=-1时,y=px+p 过第二、三、四象限, 综上所述,y=px+p 一定过第二、三象限.14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p 2+4│q │>0, ||0k b p k b q k b +=-⎫⎪=-⇒⎬⎪≠⎭k ·b<0,一次函数y=kx+b 中,y 随x 的增大而减小000k k b <⎫⇒<⇒⇒⎬>⎭一次函数的图像一定经过一、二、四象限,选A . 二、1.-5≤y ≤19 2.2<m<3 3.如y=-x+1等.4.m ≥0.提示:应将y=-2x+m 的图像的可能情况考虑周全. 5.(13,3)或(53,-3).提示:∵点P 到x 轴的距离等于3,∴点P 的纵坐标为3或-3 当y=3时,x=13;当y=-3时,x=53;∴点P 的坐标为(13,3)或(53,-3).提示:“点P 到x 轴的距离等于3”就是点P 的纵坐标的绝对值为3,故点P 的纵坐标应有两种情况.6.y=x-6.提示:设所求一次函数的解析式为y=kx+b . ∵直线y=kx+b 与y=x+1平行,∴k=1,∴y=x+b .将P (8,2)代入,得2=8+b ,b=-6,∴所求解析式为y=x-6.7.解方程组9 2, ,8 33 23,,4xy xy x y⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩得∴两函数的交点坐标为(98,34),在第一象限.8.222()aq bpbp aq--. 9.y=2x+7或y=-2x+3 10.1004200911.据题意,有t=25080160⨯k,∴k=325t.所以,B、C两个城市间每天的电话通话次数为T BC=k×2801003253205642t t⨯=⨯=.三、1.(1)由题意得:20244a b ab b+==-⎧⎧⎨⎨==⎩⎩解得∴这个一镒函数的解析式为:y=-2x+4(•函数图象略).(2)∵y=-2x+4,-4≤y≤4,∴-4≤-2x+4≤4,∴0≤x≤4.2.(1)∵z与x成正比例,∴设z=kx(k≠0)为常数,则y=p+kx.将x=2,y=1;x=3,y=-1分别代入y=p+kx,得2131k pk p+=⎧⎨+=-⎩解得k=-2,p=5,∴y与x之间的函数关系是y=-2x+5;(2)∵1≤x≤4,把x1=1,x2=4分别代入y=-2x+5,得y1=3,y2=-3.∴当1≤x≤4时,-3≤y≤3.另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.3.(1)设一次函数为y=kx+b,将表中的数据任取两取,不防取(37.0,70.0)和(42.0,78.0)代入,得2131k pk p+=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4.∵77≠80.4,∴不配套.4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.(2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30),代入得:y=15x-15,(2≤x≤3).当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米.(3)设过E、F两点的直线解析式为y=k2x+b2,由E(4,30),F(6,0),代入得y=-15x+90,(4≤x≤6)过A、B两点的直线解析式为y=k3x,∵B(1,15),∴y=15x.(0≤x≤1),•分别令y=12,得x=265(小时),x=45(小时).答:小明出发小时265或45小时距家12千米.5.设正比例函数y=kx,一次函数y=ax+b,∵点B在第三象限,横坐标为-2,设B(-2,y B),其中y B<0,∵S△AOB=6,∴12AO·│y B│=6,∴y B=-2,把点B(-2,-2)代入正比例函数y=kx,•得k=1.把点A(-6,0)、B(-2,-2)代入y=ax+b,得1 062 223a b aa bb⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩解得∴y=x,y=-12x-3即所求.6.延长BC交x轴于D,作DE⊥y轴,BE⊥x轴,交于E.先证△AOC≌△DOC,∴OD=OA=•1,CA=CD,∴= 5.7.当x≥1,y≥1时,y=-x+3;当x≥1,y<1时,y=x-1;当x<1,y≥1时,y=x+1;当x<•1,y<1时,y=-x+1.,面积为2.8.∵点A、B分别是直线y=3与x轴和y轴交点,∴A(-3,0),B(0,2),∵点C坐标(1,0)由勾股定理得BC=3,AB=11,设点D的坐标为(x,0).(1)当点D在C点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴BC CDAB BD=,∴23112x=+①∴22321112x xx-+=+,∴8x2-22x+5=0,∴x1=52,x2=14,经检验:x1=52,x2=14,都是方程①的根,∵x=14,不合题意,∴舍去,∴x=52,∴D•点坐标为(52,0).设图象过B、D两点的一次函数解析式为y=kx+b,222522b kk bb⎧⎧==-⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为y=-225x+2.(2)若点D在点C左侧则x<1,可证△ABC∽△ADB,∴AD BDAB CB=22113x+=②∴8x2-18x-5=0,∴x1=-14,x2=52,经检验x1=14,x2=52,都是方程②的根.∵x2=52不合题意舍去,∴x1=-14,∴D点坐标为(-14,0),∴图象过B、D(-14,0)两点的一次函数解析式为22,综上所述,满足题意的一次函数为y=-225x+2或y=42x+2.9.直线y=12x-3与x轴交于点A(6,0),与y轴交于点B(0,-3),∴OA=6,OB=3,∵OA⊥OB,CD⊥AB,∴∠ODC=∠OAB,∴cot∠ODC=cot∠OAB,即OD OAOC OB=,∴OD=463OC OAOB⨯==8.∴点D的坐标为(0,8),设过CD的直线解析式为y=kx+8,将C(4,0)代入0=4k+8,解得k=-2.∴直线CD:y=-2x+8,由2213524285xy xy x y⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩解得∴点E的坐标为(225,-45).10.把x=0,y=0分别代入y=43x+4得0,3,4;0.x xy y==-⎧⎧⎨⎨==⎩⎩∴A、B两点的坐标分别为(-3,0),(0,4)•.•∵OA=3,OB=4,∴AB=5,BQ=4-k,QP=k+1.当QQ′⊥AB于Q′(如图),当QQ′=QP时,⊙Q与直线AB相切.由Rt△BQQ′∽Rt△BAO,得`BQ QQ BQ QPBA AO BA AO==即.∴4153k k-+=,∴k=78.∴当k=78时,⊙Q与直线AB相切.11.(1)y=200x+74000,10≤x≤30(2)三种方案,依次为x=28,29,30的情况.12.设稿费为x元,∵x>7104>400,∴x-f(x)=x-x(1-20%)20%(1-30%)=x-x·45·15·710x=111125x=7104.∴x=7104×111125=8000(元).答:这笔稿费是8000元.13.(1)设预计购买甲、乙商品的单价分别为a元和b元,则原计划是:ax+by=1500,①.由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:(a+1.5)(x-10)+(b+1)y=1529,②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:(a+1)(x-5)+(b+1)y=1563.5,③.由①,②,③得:1.51044,568.5.x y ax y a+-=⎧⎨+-=⎩④-⑤×2并化简,得x+2y=186.(2)依题意有:205<2x+y<210及x+2y=186,得54<y<5523.因为y是整数,得y=55,从而得x=76.14.设每月用水量为xm3,支付水费为y元.则y=8,08(),c x ab x ac x a+≤≤⎧⎨+-+≥⎩由题意知:0<c≤5,∴0<8+c≤13.从表中可知,第二、三月份的水费均大于13元,故用水量15m3、22m3均大于最低限量am3,将x=15,x=22分别代入②式,得198(15)338(22)b a cb a c=+-+⎧⎨=+-+⎩解得b=2,2a=c+19,⑤.再分析一月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9-a)+c,即2a=c+17,⑥.⑥与⑤矛盾.故9≤a,则一月份的付款方式应选①式,则8+c=9,∴c=1代入⑤式得,a=10.综上得a=10,b=2,c=1. (http://)15.(1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.又010,010, 01828,59, x xx x≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200(5≤x≤9,x是整数).由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;•当x=5时,W取到最大值13200元.(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是W=200x+800(10-x)+300y+700(10-y)+•400(19-x-y)+500(x+y-10)=-500x-300y-17200.又010,010, 010,010, 0188,1018, x xy yx y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且010,010,018.xyx y≤≤⎧⎪≤≤⎨⎪≤+≤⎩(x,y为整数).W=-200x-300(x+y)+17200≥-200×10-300×18+17200=9800.当x=•10,y=8时,W=9800.所以,W的最小值为9800.又W=-200x-300(x+y)+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W的最大值为14200.。

一次函数经典提高题(含答案)

一次函数经典提高题(含答案)

n dg s14一次函数经典练习题过关测试一、选择题:1.已知y 与x+3成正比例,并且x=1时,y=8,那么y 与x 之间的函数关系式为( )(A )y=8x (B )y=2x+6(C )y=8x+6 (D )y=5x+32.若直线y=kx+b 经过一、二、四象限,则直线y=bx+k 不经过( )(A )一象限(B )二象限(C )三象限(D )四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是( )(A )4 (B )6 (C )8 (D )164.若甲、乙两弹簧的长度y (cm )与所挂物体质量x (kg )之间的函数解析式分别为y=k 1x+a 1和y=k 2x+a 2,如图,所挂物体质量均为2kg 时,甲弹簧长为y 1,乙弹簧长为y 2,则y 1与y 2的大小关系为( )(A )y 1>y 2 (B )y 1=y 2(C )y 1<y 2(D )不能确定5.设b>a ,将一次函数y=bx+a 与y=ax+b 的图象画在同一平面直角坐标系内, 则有一组a ,b 的取值,使得下列4个图中的一个为正确的是( )6.若直线y=kx+b 经过一、二、四象限,则直线y=bx+k 不经过第( )象限.(A )一 (B )二 (C )三 (D )四 7.一次函数y=kx+2经过点(1,1),那么这个一次函数( )(A )y 随x 的增大而增大 (B )y 随x 的增大而减小(C )图像经过原点 (D )图像不经过第二象限8.无论m 为何实数,直线y=x+2m 与y=-x+4的交点不可能在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限9.要得到y=-x-4的图像,可把直线y=-x ( ).3232(A )向左平移4个单位(B )向右平移4个单位(C )向上平移4个单位(D )向下平移4个单位10.若函数y=(m-5)x+(4m+1)x 2(m 为常数)中的y 与x 成正比例,则m 的值为( )(A )m>-(B )m>5 (C )m=- (D )m=5141411.若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( ).(A )k<(B )<k<1 (C )k>1(D )k>1或k<13131312.过点P (-1,3)直线,使它与两坐标轴围成的三角形面积为5, 这样的直线可以作( )(A )4条(B )3条 (C )2条 (D )1条 13.已知abc≠0,而且=p ,那么直线y=px+p 一定通过( )a b b c c ac a b+++==(A )第一、二象限 (B )第二、三象限(C )第三、四象限 (D )第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a 的取值范围是( )(A )-4<a<0 (B )0<a<2(C )-4<a<2且a≠0 (D )-4<a<215.在直角坐标系中,已知A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )(A )1个(B )2个 (C )3个 (D )4个16.一次函数y=ax+b (a 为整数)的图象过点(98,19),交x 轴于(p ,0),交y 轴于( 0,q ),若p 为质数,q 为正整数,那么满足条件的一次函数的个数为( )(A )0 (B )1 (C )2 (D )无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数.当直线y=x-3与y=kx+k 的交点为整点时,k 的值可以取( )(A )2个 (B )4个 (C )6个 (D )8个18.(2005年全国初中数学联赛初赛试题)在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数,当直线y=x-3与y=kx+k 的交点为整点时,k 的值可以取( )(A )2个(B )4个 (C )6个 (D )8个19.甲、乙二人在如图所示的斜坡AB 上作往返跑训练.已知:甲上山的速度是a 米/分,下山的速度是b 米/分,(a<b );乙上山的速度是a 米/分,下山的速度是2b 米/分.如果甲、乙二人同时从点A 出发,12时间为t (分),离开点A 的路程为S (米), 那么下面图象中,大致表示甲、乙二人从点A出发后的时间t(分)与离开点A 的路程S (米) 之间的函数关系的是( )20.若k 、b 是一元二次方程x 2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b 中,y 随x 的增大而减小,则一次函数的图像一定经过( )(A )第1、2、4象限 (B )第1、2、3象限(C )第2、3、4象限 (D )第1、3、4象限二、填空题1.已知一次函数y=-6x+1,当-3≤x≤1时,y 的取值范围是________.2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m 的取值范围是________.3.某一次函数的图像经过点(-1,2),且函数y 的值随x 的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.已知直线y=-2x+m 不经过第三象限,则m 的取值范围是_________.5.函数y=-3x+2的图像上存在点P ,使得P 到x 轴的距离等于3, 则点P 的坐标为__________.6.过点P (8,2)且与直线y=x+1平行的一次函数解析式为_________.7.y=x 与y=-2x+3的图像的交点在第_________象限.238.某公司规定一个退休职工每年可获得一份退休金, 金额与他工作的年数的算术平方根成正比例,如果他多工作a 年,他的退休金比原有的多p 元,如果他多工作b 年(b≠a),他的退休金比原来的多q 元,那么他每年的退休金是(以a 、b 、p 、 q )表示______元.9.若一次函数y=kx+b ,当-3≤x≤1时,对应的y 值为1≤y≤9, 则一次函数的解析式为________.三、解答题1.已知一次函数y=ax+b 的图象经过点A (2,0)与B (0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y 的值在-4≤y≤4范围内,求相应的y 的值在什么范围内.2.已知y=p+z ,这里p 是一个常数,z 与x 成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y 与x 之间的函数关系式;(2)如果x 的取值范围是1≤x≤4,求y 的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的. 小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:第一档第二档第三档第四档凳高x (cm ) 37.040.042.045.0桌高y (cm )70.0 74.8 78.0 82.8(1)小明经过对数据探究,发现:桌高y 是凳高x 的一次函数,请你求出这个一次函数的关系式;(不要求写出x 的取值范围);(2)小明回家后, 测量了家里的写字台和凳子,写字台的高度为77cm ,凳子的高度为43.5cm ,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,下图表示他离家的距离y (千米)与所用的时间x (小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3) 求小明出发多长时间距家12千米?5.已知一次函数的图象,交x 轴于A (-6,0),交正比例函数的图象于点B ,且点B 在第三象限,它的横坐标为-2,△AOB 的面积为6平方单位, 求正比例函数和一次函数的解析式.he i r8.在直角坐标系x0y 中,一次函数的图象与x 轴,y 轴,分别交于A 、B 两点, 点C 坐标为(1,0),点D 在x 轴上,且∠BCD=∠ABD,求图象经过B 、D 两点的一次函数的解析式.9.已知:如图一次函数y=x-3的图象与x 轴、y 轴分别交于A 、B 两点,过点C (4,0)作AB 的垂线12交AB 于点E ,交y 轴于点D ,求点D 、E 的坐标.11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A 、B 两地收割小麦,其中30 台派往A 地,20台派往B 地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金乙型收割机的租金A 地 1800元/台 1600元/台B 地1600元/台1200元/台(1)设派往A 地x 台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y (元),请用x 表示y ,并注明x 的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元, 说明有多少种分派方案,并将各种方案写出.15.A 市、B 市和C 市有某种机器10台、10台、8台, 现在决定把这些机器支援给D 市18台,E 市10.已知:从A 市调运一台机器到D 市、E 市的运费为200元和800元;从B 市调运一台机器到D 市、E 市的运费为300元和700元;从C 市调运一台机器到D 市、E 市的运费为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器调运完毕后,求总运费W (元)关于x (台)的函数关系式,并求W 的最大值和最小值.(2)设从A 市调x 台到D 市,B 市调y 台到D 市,当28台机器调运完毕后,用x 、y 表示总运费W (元),并求W 的最大值和最小值.答案:1.B 2.B 3.A 4.A 5.B 提示:由方程组 的解知两直线的交点为(1,a+b ),y bx ay ax b =+⎧⎨=+⎩而图A 中交点横坐标是负数,故图A 不对;图C 中交点横坐标是2≠1,故图C 不对;图D 中交点纵坐标是大于a ,小于b 的数,不等于a+b ,故图D 不对;故选B .6.B 提示:∵直线y=kx+b 经过一、二、四象限,∴ 对于直线y=bx+k ,0,k b <⎧⎨>⎩∵ ∴图像不经过第二象限,故应选B .0,0k b <⎧⎨>⎩7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2,∵k=-1<0,∴y 随x 的增大而减小,故B 正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C 错误.∵k<0,b= 2>0,∴其图像经过第二象限,故D 错误.8.C 9.D 提示:根据y=kx+b 的图像之间的关系可知,将y=-x 的图像向下平移4个单位就可得到y=-x-4的图像.323210.C 提示:∵函数y=(m-5)x+(4m+1)x 中的y 与x 成正比例,∴ ∴m=-,故应选C .5,50,1410,,4m m m m ≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即1411.B 12.C 13.B 提示:∵=p ,a b b c c ac a b+++==∴①若a+b+c≠0,则p==2;()()()a b b c c a a b c+++++++②若a+b+c=0,则p==-1,a b cc c+-=∴当p=2时,y=px+q 过第一、二、三象限;当p=-1时,y=px+p 过第二、三、四象限,综上所述,y=px+p 一定过第二、三象限.14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p 2+4│q│>0, k·b<0,||0k b p k b q k b +=-⎫⎪=-⇒⎬⎪≠⎭A A 一次函数y=kx+b 中,y 随x 的增大而减小一次函数的图像一定经过一、二、四000k k b <⎫⇒<⇒⇒⎬>⎭象限,选A .二、1.-5≤y≤19 2.2<m<3 3.如y=-x+1等.4.m≥0.提示:应将y=-2x+m 的图像的可能情况考虑周全.5.(,3)或(,-3).提示:∵点P 到x 轴的距离等于3,∴点P 的纵坐标为3或-31353当y=3时,x=;当y=-3时,x=;∴点P 的坐标为(,3)或(,-3).13531353提示:“点P 到x 轴的距离等于3”就是点P 的纵坐标的绝对值为3,故点P 的纵坐标应有两种情况.6.y=x-6.提示:设所求一次函数的解析式为y=kx+b .∵直线y=kx+b 与y=x+1平行,∴k=1,∴y=x+b.将P (8,2)代入,得2=8+b ,b=-6,∴所求解析式为y=x-6.7.解方程组 92,,83323,,4x y x y x y ⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩即∴两函数的交点坐标为(,),在第一象限.98348.. 9.y=2x+7或y=-2x+3 10.222()aq bp bp aq --10042009三、1.(1)由题意得: 20244a b a b b +==-⎧⎧⎨⎨==⎩⎩即即∴这个一镒函数的解析式为:y=-2x+4( 函数图象略). (2)∵y=-2x+4,-4≤y≤4, ∴-4≤-2x+4≤4,∴0≤x≤4.2.(1)∵z 与x 成正比例,∴设z=kx (k≠0)为常数,则y=p+kx .将x=2,y=1;x=3,y=-1分别代入y=p+kx ,得 解得k=-2,p=5,2131k p k p +=⎧⎨+=-⎩∴y 与x 之间的函数关系是y=-2x+5;(2)∵1≤x≤4,把x 1=1,x 2=4分别代入y=-2x+5,得y 1=3,y 2=-3.∴当1≤x≤4时,-3≤y≤3.另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.3.(1)设一次函数为y=kx+b ,将表中的数据任取两取,不防取(37.0,70.0)和(42.0,78.0)代入,得2131k p k p +=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4.∵77≠80.4,∴不配套.4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米. (2)设直线CD 的解析式为y=k 1x+b 1,由C (2,15)、D (3,30),代入得:y=15x-15,(2≤x≤3).当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米.(3)设过E 、F 两点的直线解析式为y=k 2x+b 2,由E (4,30),F (6,0),代入得y=-15x+90,(4≤x≤6)过A 、B 两点的直线解析式为y=k 3x ,∵B(1,15),∴y=15x.(0≤x≤1),分别令y=12,得x=(小时),x=(小时).26545答:小明出发小时或小时距家12千米.265455.设正比例函数y=kx ,一次函数y=ax+b ,∵点B 在第三象限,横坐标为-2,设B (-2,y B ),其中y B <0,∵S △AOB =6,∴AO·│y B │=6,12∴y B =-2,把点B (-2,-2)代入正比例函数y=kx , 得k=1.把点A (-6,0)、B (-2,-2)代入y=ax+b ,得 1062223a ba ab b ⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩即即∴y=x,y=-x-3即所求.128.∵点A 、B 分别是直线与x 轴和y 轴交点,∴A(-3,0),B (0),∵点C 坐标(1,0)由勾股定理得,设点D 的坐标为(x ,0).(1)当点D 在C 点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴①BC CD AB BD ==∴,∴8x 2-22x+5=0,22321112x x x -+=+∴x 1=,x 2=,经检验:x 1=,x 2=,都是方程①的根,52145214∵x=,不合题意,∴舍去,∴x=,∴D 点坐标为(,0).145252dAl l t he rb 设图象过B 、D 两点的一次函数解析式为y=kx+b ,502b k k b b ⎧⎧==⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为.(2)若点D 在点C 左侧则x<1,可证△ABC∽△ADB,∴ ②AD BD AB CB == ∴8x 2-18x-5=0,∴x 1=-,x 2=,经检验x 1=,x 2=,都是方程②的根.14521452∵x 2=不合题意舍去,∴x 1=-,∴D 点坐标为(-,0),521414∴图象过B 、D (-,0)两点的一次函数解析式为,14综上所述,满足题意的一次函数为或.9.直线y=x-3与x 轴交于点A (6,0),与y 轴交于点B (0,-3),12∴OA=6,OB=3,∵OA⊥OB,CD⊥AB,∴∠ODC=∠OAB,∴cot∠ODC=cot∠OAB,即,OD OAOC OB=∴OD==8.∴点D 的坐标为(0,8),463OC OA OB ⨯=A 设过CD 的直线解析式为y=kx+8,将C (4,0)代入0=4k+8,解得k=-2.∴直线CD :y=-2x+8,由 2213524285x y x y x y ⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩即即∴点E 的坐标为(,-).2254511.(1)y=200x+74000,10≤x≤30(2)三种方案,依次为x=28,29,30的情况.15.(1)由题设知,A 市、B 市、C 市发往D 市的机器台数分x ,x ,18-2x ,发往E 市的机器台数分别为10-x ,10-x ,2x-10.于是W=200x+300x+400(18-2x )+800(10-x )+700(10-x )+500(2x-10)=-800x+17200.又 010,010,01828,59,x x x x ≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200(5≤x≤9,x 是整数).由上式可知,W 是随着x 的增加而减少的,所以当x=9时,W 取到最小值10000元; 当x=5时,W 取到最大值13200元.(2)由题设知,A 市、B 市、C 市发往D 市的机器台数分别为x ,y ,18-x-y ,发往E 市的机器台数分别是10-x ,10-y ,x+y-10,于是W=200x+800(10-x )+300y+700(10-y )+ 400(19-x-y )+500(x+y-10)=-500x-300y-17200.又010,010,010,010,0188,1018,x x y y x y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且(x ,y 为整数).010,010,018.x y x y ≤≤⎧⎪≤≤⎨⎪≤+≤⎩W=-200x-300(x+y )+17200≥-200×10-300×18+17200=9800.当x= 10,y=8时,W=9800.所以,W 的最小值为9800.又W=-200x-300(x+y )+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W 的最大值为14200.。

一次函数综合复习提高题及答案(汇编)

一次函数综合复习提高题及答案(汇编)

⼀次函数综合复习提⾼题及答案(汇编)⼋年级数学下册⼀次函数综合复习题1.积)注⽔,下⾯图中能⼤致表⽰⽔的深度h和时间t之间关系的图象是( )2.⼀次函数y=-2x+1的图象不经过() A.第⼀象限 B.第⼆象限 C.第三象限 D.第四象限3.已知点M (1,a )和点N (2,b )是⼀次函数y=﹣2x+1图象上的两点,则a 与b 的⼤⼩关系是() A . a >b B . a=b C. a <b D .以上都不对4.下图中表⽰⼀次函数y=mx+n 与正⽐例函数y=mnx(m ,n 是常数)图像的是( ).5.已知⼀次函数y=kx +b 中y 随x 的增⼤⽽减⼩,且kb <0,则直线y=kx+b 的图象经过( ) A.第⼀⼆三象限 B.第⼀三四象限 C.第⼀⼆四象限 D.第⼆三四象限6.已知⼀次函数y=-2x+1通过平移后得到直线y=-2x+7,则下列说法正确的是( )A.向左平移3个单位B.向右平移3个单位C.向上平移7个单位D.向下平移6个单位 7.直线y=x-1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三⾓形,则满⾜条件的三⾓形最多有()A. 5个B.6个C.7个D.8个8.当直线y=x+2?上的点在直线y=3x-2上相应点的上⽅时,则()A. x <0B.x <2C.x >0D.x >29.如图,⼀次函数y=kx +b 的图象与y 轴交于点(0,1),则关于x 的不等式kx +b >1的解集是( )A .x >0B .x <0C .x >1D .x <110.A ,B 两点在⼀次函数图象上的位置如图,两点的坐标分别为A(x +a ,y +b),B(x ,y),下列结论正确的是( )A.a >0B.a <0C.B=0D.ab <011.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x ≥ax+4的解集为()A.23≥x B.x ≤3 C.23≤x D.x ≥3 12.如图,直线y=﹣x+m 与y=nx+4n (n ≠0)的交点的横坐标为﹣2,则关于x 的不等式﹣x+m >nx+4n >0的整数解为()A .﹣1B .﹣5C .﹣4D .﹣313.把直线y=﹣x+3向上平移m 个单位后,与直线y=2x+4的交点在第⼀象限,则m的取值范围是()A .1<m <7B .3<m <4C .m >1D .m <414.在平⾯直⾓坐标系中,线段AB 的端点A(-2,4),B(4,2),直线y=kx-2与线段AB 有交点,则k 的值不可能是()A.5B.-5C.-2D.315.如图,在平⾯直⾓坐标系中,直线y=23x-23与矩形ABCO 的边OC 、BC 分别交于点E 、F ,已知OA=3,OC=4,则△CEF 的⾯积是()A .6B .3C .12D .4316.某仓库调拨⼀批物资,调进物资共⽤8⼩时.掉进物资4⼩时后同时开始调出物资(调进与调出物资的速度均保持不变).该仓库库存物资w(吨)与时间t(⼩时)之间的函数关系如图所⽰,则这批物资从开始调进到全部调出所需要的时间是( ) A.8.4⼩时 B.8.6⼩时 C.8.8⼩时 D.9⼩时17.如图,已知A 点坐标为(5,0),直线y=x+b(b>0)与y 轴交于点B ,连接AB ,若∠a=750,则b 的值为( )A.3B.5C.335 D.553 18.如图1,在Rt △ABC 中,∠ACB=900,点P 以每秒1cm 的速度从点A 出发,沿折线AC →CB 运动,到点B 停⽌.过点P 作PD ⊥AB 于点D,PD 的长y(cm)与点P 的运动时间x(秒)的函数图象如图2所⽰.当点P 运动5秒时,PD 的长是() A.1.2cm B.1.5cmC.1.8cmD.2cm19.如图,已知直线过点A (0,1)作y 轴的垂线交直线l 于点B,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为()A.(0,64)B.(0,128)C.(0,256)D.(0,512)20.如图,在平⾯直⾓坐标系中,直线l:y=33x+1交x 轴于点A,交y 轴于点B ,点A 1、A 2、A 3,…在x 轴上,点B 1、B 2、B 3,…在直线l 上.若△OB 1A 1,△A 1B 2A 2,△A 2B 3A 3,…均为等边三⾓形,则△A 5B 6A 6的周长是( )A .243B .483C .963D .192321.函数1+=x xy 中的⾃变量x 的取值范围是 22.已知函数2)5(442-+-=--m x m y m m若它是⼀次函数,则m= ;y随x 的增⼤⽽ .23.已知⼀次函数y=(k+3)x+2k-10,y 随x 的增⼤⽽增⼤,且图象不经过第⼆象限,则k 的取值范围为 .24.已知A(x 1,y 1),B(x 2,y 2)是⼀次函数y=kx+3(k<0)图象上的两个不同的点,若t=(x 1-x 2)(y 1-y 2), 则t 0.25.已知直线y=kx -6与两坐标轴所围成的三⾓形⾯积等于12,则直线的表达式为26.如图,已知⼀条直线经过点A (0,2)、点B (1,0),将这条直线向左平移与x 轴、y 轴分别交与点C 、点D .若DB=DC ,则直线CD 的函数解析式为.27.如图,点A 的坐标为(-2,0),点B 在直线y =x -4上运动,当线段AB 最短时,点B 的坐标是___________。

中考数学总复习《行程问题(一次函数实际综合应用)》专项提升训练(带答案)

中考数学总复习《行程问题(一次函数实际综合应用)》专项提升训练(带答案)

中考数学总复习《行程问题(一次函数实际综合应用)》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________1.李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s关于t的函数表达式;(3)当货车显示加油提醒后,问行驶时间t在怎样的范围内货车应进站加油?2.一辆快车从甲地出发驶向乙地,在到达乙地后,立即按原路原速返回到甲地,快车出发一段时间后一辆慢车从甲地驶向乙地,中途因故停车1h后,继续按原速驶向乙地,两车距甲地4的路程kmy与慢车行驶时间()h x之间的函数图象如图所示,请结合图象解答下列问题:(1)甲乙两地相距______km,快车行驶的速度是______ km/h,图中括号内的数值是______ ;(2)求快车从乙地返回甲地的过程中,y与x的函数解析式;(3)慢车出发多长时间,两车相距120km3.甲、乙两地之间是一条直路,王明跑步从甲地往乙地,陈星骑自行车从乙地往甲地,两人同时出发,陈星先到达目的地,设两人的在行进过程中保持匀速,两人之间的距离()km y 与运动时间()h x 的函数关系大致如图所示,请你根据图形进行探究:(1)王明和陈星的速度分别是多少?(2)请写出线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围. 4.某次无人机展演活动中,Ⅰ号无人机从海拔10m 处出发,以12m/min 的速度匀速上升,Ⅱ号无人机从海拔30m 处同时出发,以()m/min a 的速度匀速上升,经过5min 两架无人机位于同一海拔高度()m b .无人机海拔高度()m y 与时间()min x 的关系如图.两架无人机都上升了15min .(1)求b 的值及Ⅱ号无人机海拔高度()m y 与时间()min x 的关系式; (2)问无人机上升了多少时间,两无人机高度相差32m .5.现有A 、B 两种品牌的共享电动车,收费y (元)与骑行时间(min)x 之间的函数关系如图所示,其中A 品牌收费方式对应1y ,B 品牌的收费方式对应2y .(1)直接写出A 品牌收费方式对应的函数关系式为 .(2)如果小致每天早上需要骑共享电动车去上班,已知两种品牌共享电动车的平均行驶速度均为30km /h ,小致家到学校的距离为6km ,那么小致选择 (填“A 品牌”或“B 品牌”)的共享电动车更省钱.(3)求出两种收费相差0.5元时x 的值.6.如图,小李和小赵相约去农庄游玩.小李从甲小区骑电动车出发,同时小赵从乙小区开车出发,途中去超市购物,购物后仍按原速继续驶向农庄,甲乙小区、超市和农庄之间的路程如图①所示,图②中线段OD 、BC 分别表示小李、小赵行驶中离甲小区的路程()km s 与出发时间t (分)之间的函数图象(或部分图象).根据图象回答问题:(1)分别求出线段OD 、BC 的函数表达式;(2)请补全小赵离甲小区的路程为()km s 与出发时间t (分)的函数图象,并写出小赵在超市购物,用时______分钟.7.甲、乙两人同时开车从A 地出发,沿同一条道路去B 地,途中都以两种不同的速度1V 与212()V V V >行驶.甲前一半路程以速度1V 匀速行驶,后一半路程以速度2V 匀速行驶;乙前一半时间以速度匀速2V 行驶,后一半时间用以速度1V 匀速行驶.(1)设甲乙两人从A 地到B 地的平均速度分别为V 甲和V 乙,则V =甲___________;___________(V =乙用含1V 、2V 的式子表示).2(1)当04t<≤时,求2v关于t的函数关系式;(2)求图中a的值;(3)小明每次踢球都能使球的速度瞬间增加6m/s,球运动方向不变,当小明带球跑完200m,写出小明踢球次数共有____次,并简要说明理由.10.已知甲、乙、丙三地依次在同一直线上,乙地离甲地260km,丙地离乙地160km.一艘游轮从甲地出发,途经乙地前往丙地.当游轮到达乙地时,一艘货轮沿着同样的线路从甲地出发前往丙地.已知游轮的速度为20km/h,离开甲地的时间记为t(单位:h),两艘轮船离甲地的距离y(单位:km)关于t的图象如图所示(游轮在停靠前后的行驶速度不变).货轮比游轮早2.6h到达丙地.根据相关信息,解答下列问题:(1)填表:游轮离开甲地的时间/h 6 13 16 22 24游轮离甲地的距离/km120 260(2)填空:①游轮在乙地停靠的时长为_______h;②货轮从甲地到丙地所用的时长为_______h,行驶的速度为_______km/h;③游轮从乙地出发时,两艘轮船的距离为_______km.13.我国已取得脱贫攻坚的全面胜利,国家已进入乡村振兴实施阶段,现代物流的高速发展,为乡村振兴的实施提供了良好条件.某物流公司的汽车在市区行驶20km后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶1h到达目的地,汽车行驶的时间x(单位:h)与行驶的路程y(单位:km)之间的关系如图所示.请结合图象,回答下列问题:(1)汽车在乡村道路上行驶的平均速度是______ km/h;(2)求汽车在高速路上行驶的路程y与行驶的时间x之间的函数关系式,并写出自变量x的取值范围;(3)当该物流车行驶到距离出发地120km时,请问该车再过1.5小时能不动达目的地,如果能,写出计算过程;如果不能,直接写出1.5小时后该车离目的地还有多远?14.甲、乙两车分别从相距15km的大连北站和大连广播电视中心同时匀速相向而行.甲车出发10min后,由于交通管制,停止了2min,再出发时速度比原来减少15km/h,并安全到达终点.甲、乙两车距大连北站的路程y(单位:km)与两车行驶时间x(单位:h)的图象如图所示.(1)填空: a______;(2)求乙车距大连北站的路程y与两车行驶时间x的函数解析式,并直接写出自变量x的取值范围;(3)求甲、乙两车相遇时,乙车距大连北站的路程.15.随着疫情的消失,三年的管控使人们的消费和旅游在2023年的“五一”假期得以全面释放.小明和小军分别骑车和驾车从本村出发,沿同一条公路去东门外生态公园游玩.小明骑一段时间后,小军驾车出发,结果半路遭遇堵车,当小明迫上小军后,小军坐小明的自行车一起去生态公园(小军泊车时间忽略不计),如图是小明、小军两人在去生态公园过程中经过的路程()my与小明出发时间()s x之间的函数图像.请结合图像回答:(1)村与公园的距离为______ ,小明骑车速度是______ m/s.(2)小军在离开村多少公里处遭遇堵车?从小军遇到堵车到追上小明用了多长时间?(3)直接写出两人何时相距520m?16.甲、乙两地相距320km,A,B两辆货车同时分别从甲、乙两地相向而行,货车A先出发,一个小时后,货车B也出发,若它们都保持匀速行驶,货车A、货车B距乙地的距离()y km与时x h之间的关系如图所示.间()(1)求货车B距乙地的距离y与时间x的关系式;(2)求货车B到甲地后,货车A还需多长时间到达乙地.参考答案:1.(1)工厂离目的地的路程为880千米 (2)s 关于t 的函数表达式:()80880011s t t =-+≤≤ (3)t 的取值范围是254t ≤≤1522.(1)400,100,7(2)快车从乙地返回甲地的过程中,y 与x 的函数解析式为100400y x =-+ (3)慢车出发1小时或103小时或143小时,两车相距120km3.(1)王明跑步的速度为8km/h ,陈星的速度为16km/h . (2)()24241 1.5y x x =-≤≤ 4.(1)70 830y x =+(2)无人机上升了13min ,两无人机高度相差32m . 5.(1)10.2y x =(2)小明选择A 品牌的共享电动车更省钱 (3)两种收费相差0.5元时,x 的值为15或25;6.(1)线段OD 的函数表达式为()0.5020y x x =≤≤;线段BC 函数表达式为()81218y x x =-≤≤; (2)小赵在超市购物,用时10min . 7.(1)12121222VV V V V V ++,(2)乙(3)①1210050300V V S ===,,,②3.5小时 8.(1)20a = 140b =; (2)2020y x =+甲1550y x =+乙;(3)飞行1分钟或者11分钟时,两架航模飞行高度相差25米。

一次函数综合复习提高题及答案(推荐文档)

一次函数综合复习提高题及答案(推荐文档)

2016年八年级数学下册一次函数综合复习题1.如图是某蓄水池的横断面示意图,分深水区和浅水区,如果向这个蓄水池中以固定的水流量(单位时间注水的体积)注水,下面图中能大致表示水的深度h和时间t之间关系的图象是( )2.一次函数y=-2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A. a>b B. a=b C. a<b D.以上都不对4.下图中表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数)图像的是( ).5.已知一次函数y=kx+b中y随x的增大而减小,且kb<0,则直线y=kx+b的图象经过( )A.第一二三象限B.第一三四象限C.第一二四象限D.第二三四象限6.已知一次函数y=-2x+1通过平移后得到直线y=-2x+7,则下列说法正确的是( )A.向左平移3个单位B.向右平移3个单位C.向上平移7个单位D.向下平移6个单位7.直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的三角形最多有()A. 5个B.6个C.7个D.8个8.当直线y=x+2•上的点在直线y=3x-2上相应点的上方时,则()A. x<0B.x<2C.x>0D.x>29.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是( )A.x>0 B.x<0 C.x>1 D.x<110.A,B两点在一次函数图象上的位置如图,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是( )A.a>0B.a<0C.B=0D.ab<011.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x ≥ax+4的解集为( )A.23≥x B.x ≤3 C.23≤x D.x ≥3 12.如图,直线y=﹣x+m 与y=nx+4n (n ≠0)的交点的横坐标为﹣2,则关于x 的不等式﹣x+m >nx+4n>0的整数解为( )A . ﹣1B . ﹣5C . ﹣4D . ﹣3 13.把直线y=﹣x+3向上平移m 个单位后,与直线y=2x+4的交点在第一象限,则m 的取值范围是( ) A .1<m <7 B .3<m <4 C .m >1 D .m <414.在平面直角坐标系中,线段AB 的端点A(-2,4),B(4,2),直线y=kx-2与线段AB 有交点,则k 的值不可能是( )A.5B.-5C.-2D.3 15.如图,在平面直角坐标系中,直线y=23x-23与矩形ABCO 的边OC 、BC 分别交于点E 、F ,已知OA=3,OC=4,则△CEF 的面积是( )A .6B .3C .12D .4316.某仓库调拨一批物资,调进物资共用8小时.掉进物资4小时后同时开始调出物资(调进与调出物资的速度均保持不变).该仓库库存物资w(吨)与时间t(小时)之间的函数关系如图所示,则这批物资从开始调进到全部调出所需要的时间是( )A.8.4小时B.8.6小时C.8.8小时D.9小时17.如图,已知A 点坐标为(5,0),直线y=x+b(b>0)与y 轴交于点B ,连接AB ,若∠a=750,则b 的值为( )A.3B.5C.335 D.553 18.如图1,在Rt △ABC 中,∠ACB=900,点P 以每秒1cm 的速度从点A 出发,沿折线AC →CB 运动,到点B停止.过点P 作PD ⊥AB 于点D,PD 的长y(cm)与点P 的运动时间x(秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )A.1.2cmB.1.5cmC.1.8cmD.2cm19.如图,已知直线x,过点A (0,1)作y 轴的垂线交直线l 于点B,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为( )A.(0,64)B.(0,128)C.(0,256)D.(0,512)20.如图,在平面直角坐标系中,直线l:y=33x+1交x 轴于点A,交y 轴于点B ,点A 1、A 2、A 3,…在x 轴上,点B 1、B 2、B 3,…在直线l 上.若△OB 1A 1,△A 1B 2A 2,△A 2B 3A 3,…均为等边三角形,则△A 5B 6A 6的周长是( )A .243B .483C .963D .192321.函数1+=x xy 中的自变量x 的取值范围是 22.已知函数2)5(442-+-=--m x m y m m若它是一次函数,则m= ;y 随x 的增大而 .23.已知一次函数y=(k+3)x+2k-10,y 随x 的增大而增大,且图象不经过第二象限,则k 的取值范围为 .24.已知A(x 1,y 1),B(x 2,y 2)是一次函数y=kx+3(k<0)图象上的两个不同的点,若t=(x 1-x 2)(y 1-y 2), 则t 0.25.已知直线y=kx -6与两坐标轴所围成的三角形面积等于12,则直线的表达式为26.如图,已知一条直线经过点A (0,2)、点B (1,0),将这条直线向左平移与x 轴、y 轴分别交与点C 、点D .若DB=DC ,则直线CD 的函数解析式为 .27.如图,点A 的坐标为(-2,0),点B 在直线y =x -4上运动,当线段AB 最短时,点B 的坐标是___________。

中考数学总复习《一次函数》专项提升练习题(附答案)

中考数学总复习《一次函数》专项提升练习题(附答案)

中考数学总复习《一次函数》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________命题点1一次函数的图象与性质 1(2022株洲)在平面直角坐标系中,一次函数y=5x+1的图象与y 轴的交点的坐标为( )A.(0,-1)B.(-15,0) C.(15,0) D.(0,1) 2(2022凉山州)一次函数y=3x+b (b ≥0)的图象一定不经过 ( )A.第一象限B.第二象限C.第三象限 D .第四象限3(2022广安)在平面直角坐标系中,将函数y=3x+2的图象向下平移3个单位长度,所得的函数的解析式是( )A.y=3x+5B.y=3x-5C.y=3x+1D.y=3x-1 4(2022邵阳)在直角坐标系中,已知点A (32,m ),点B (√72,n )是直线y=kx+b (k<0)上的两点,则m ,n 的大小关系是( )A .m<nB .m>nC .m ≥nD .m ≤n5(2022抚顺)如图,在同一平面直角坐标系中,一次函数y=k 1x+b 1与y=k 2x+b 2的图象分别为直线l 1和直线l 2,下列结论正确的是( )A.k 1·k 2<0B.k 1+k 2<0C.b 1-b 2<0D.b 1·b 2<06(2022河南)请写出一个y 随x 的增大而增大的一次函数的表达式: . 7(2022德阳)如图,已知点A (-2,3),B (2,1),直线y=kx+k 经过点P (-1,0).试探究:直线与线段AB 有交点时k 的变化情况,猜想k 的取值范围是 .8(2022北京)在平面直角坐标系xOy 中,函数y=kx+b (k ≠0)的图象过点(4,3),(-2,0),且与y 轴交于点A.(1)求该函数的解析式及点A 的坐标;(2)当x>0时,对于x 的每一个值,函数y=x+n 的值大于函数y=kx+b (k ≠0)的值,直接写出n 的取值范围.命题点2一次函数与方程、不等式结合9(2022陕西)在同一平面直角坐标系中,直线y=-x+4与y=2x+m 相交于点P (3,n ),则关于x ,y 的方程组{x +y -4=0,2x -y +m =0的解为 ( )A.{x =−1,y =5B.{x =1,y =3C.{x =3,y =1D.{x =9,y =−5 10(2022鄂州)数形结合是解决数学问题常用的思想方法.如图,一次函数y=kx+b (k ,b 为常数,且k<0)的图象与直线y=13x 都经过点A (3,1),当kx+b<13x 时,根据图象可知,x 的取值范围是( )A.x>3B.x<3C.x<1D.x>111(2021嘉兴)已知点P (a ,b )在直线y=-3x-4上,且2a-5b ≤0,则下列不等式一定成立的是( )A.a b ≤52B.a b ≥52C.b a ≥25D.b a ≤25命题点3一次函数的实际应用 角度1行程问题12(2021陕西)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1 min 后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”“猫”距起点的距离y (m)与时间x (min)之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是m/min;(2)求AB的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.13(2022湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/时,轿车行驶的速度是60千米/时.(1)轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式.(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.角度2方案选取问题14(2021宁波)某通讯公司就手机流量套餐推出三种方案,如下表:A方案B方案C方案每月基本费用/元20 56 266每月免费使用流1 024 m无限量/兆超出后每兆收费/n n元A,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.(1)请直接写出m,n的值.(2)在A方案中,当每月使用的流量不少于1 024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?角度3最值问题15(2022云南)某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍,怎样购买,才能使总费用W最少?并求出最少费用.16(2022福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰, 问可购买绿萝和吊兰分别多少盆.(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.17(2022南充)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种商品,它们的进价和售价如下表.用15 000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价-进价)种类真丝衬衣真丝围巾进价/(元/件) a80售价/(元/件) 300 100(1)求真丝衬衣进价a的值.(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?角度4其他问题18(2022哈尔滨)一辆汽车油箱中剩余的油量y(L)与已行驶的路程x(km)的对应关系如图所示,如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35 L时,那么该汽车已行驶的路程为()A.150 kmB.165 kmC.125 kmD.350 km19(2022吉林)李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快,在一段时间内,水温y(℃)与加热时间x(s)之间近似满足一次函数关系,根据记录的数据,画函数图象如图所示.(1)加热前水温是℃.(2)求乙壶中水温y关于加热时间x的函数解析式.(3)当甲壶中水温刚达到80 ℃时,乙壶中水温是℃.20(2022绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:时),y表示水位高度(单位:米).x0 0.5 1 1.5 2y 1 1.5 2 2.5 3为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选(k≠0).择:y=kx+b(k≠0),y=ax2+bx+c(a≠0),y=kx(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x.命题点4一次函数与几何知识的综合21(2022泸州)如图,在平面直角坐标系xOy 中,矩形OABC 的顶点B 的坐标为(10,4),四边形ABEF 是菱形,且tan ∠ABE=43.若直线l 把矩形OABC 和菱形ABEF 组成的图形的面积分成相等的两部分,则直线l 的解析式为( )A.y=3xB.y=-34x+152 C.y=-2x+11 D .y=-2x+1222(2021扬州)如图,一次函数y=x+√2的图象与x 轴、y 轴分别交于点A ,B ,把直线AB 绕点B 顺时针旋转30°交x 轴于点C ,则线段AC 长为( )A .√6+√2B .3√2C .2+√3D .√3+√223(2021成都)如图,在平面直角坐标系xOy 中,直线y=√33x+2√33与☉O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为 .分类训练7 一次函数1.D 【解析】 当x=0时,y=5x+1=1,故该一次函数图象与y 轴的交点坐标为(0,1).2.D3.D4.A 【解析】 对于一次函数y=kx+b ,∵k<0,∴y 随x 的增大而减小.又∵32>√72,∴m<n.5.D 【解析】 由题图可得k 1>k 2>0,b 1>0>b 2,∴k 1·k 2>0,k 1+k 2>0,b 1-b 2>0,b 1·b 2<0,故选D .6.y=2x+3(答案不唯一)7.k ≤-3或k ≥13 【解析】 当直线y=kx+k 经过点A (-2,3)时,-2k+k=3,解得k=-3;当直线y=kx+k 经过点B (2,1)时,2k+k=1,解得k=13.分析可知,当直线与线段AB 有交点时,k ≤-3或k ≥13.8.【参考答案】 (1)把(4,3),(-2,0)分别代入y=kx+b 得{4k +b =3,-2k +b =0,解得{k =12,b =1,∴该函数的解析式为y=12x+1. 对于y=12x+1,当x=0时,y=1∴A (0,1). (2)n ≥1.解法提示:函数y=12x+1的图象如图所示,易知当直线y=x+n 与y 轴的交点与点A 重合或在点A 上方时符合题意,故n ≥1.9.C 【解析】 把(3,n )代入y=-x+4,可知n=1,故关于x ,y 的方程组{x +y -4=0,2x -y +m =0的解为{x =3,y =1.故选C .10.A11.D 【解析】 ∵点P (a ,b )在直线y=-3x-4上,∴-3a-4=b.又∵2a-5b ≤0,∴2a-5(-3a-4)≤0,解得a ≤-2017.易得a=b+4-3,∴b ≥-817.易知当b=0时,ab 无意义,故A,B 错误.∵2a-5b ≤0,∴2a -5b a≥0,即2-5·b a≥0,∴b a ≤25.故选D .12.【参考答案】 (1)1解法提示:由题图可知,“鼠”的平均速度为30÷6=5(m/min) “猫”的平均速度为30÷(6-1)=6(m/min)故“猫”的平均速度与“鼠”的平均速度的差是6-5=1(m/min).(2)设AB 的函数表达式为y=kx+b (k ≠0),则{30=7k +b ,18=10k +b ,解得{k =−4,b =58,∴y=-4x+58.(3)令y=0,则-4x+58=0,∴x=14.5. 14.5-1=13.5(min)∴“猫”从起点出发到返回至起点所用的时间为13.5 min .13.【参考答案】 (1)设轿车行驶的时间为x 小时,则大巴行驶的时间为(x+1)小时. 根据题意,得60x=40(x+1) 解得x=2则60x=60×2=120.答:轿车出发2小时后追上大巴,此时两车与学校相距120千米. (2)∵轿车追上大巴时,大巴行驶了3小时∴点B 的坐标是(3,120).由题意,得点A 的坐标为(1,0).设AB 所在直线的解析式为s=kt+b则{3k +b =120,k +b =0,解得{k =60,b =−60,∴AB 所在直线的解析式为s=60t-60.(3)由题意,得40(a+1.5)=60×1.5解得a=34 ∴a 的值为34.14.【参考答案】 (1)m=3 072,n=0.3.(2)设函数关系式为y=kx+b (k ≠0)把(1 024,20),(1 144,56)代入y=kx+b得{20=1024k +b ,56=1144k +b ,解得{k =0.3,b =−287.2, ∴y 关于x 的函数表达式为y=0.3x-287.2(x ≥1 024).(注:x 的取值范围对考生不作要求)(3)3 072+(266-56)÷0.3=3 772(兆).由题中图象得,当每月使用的流量超过3 772兆时,选择C 方案最划算.15.【参考答案】 (1)设每桶甲消毒液的价格为x 元,每桶乙消毒液的价格为y 元根据题意,得{9x +6y =615,8x +12y =780,解得{x =45,y =35.答:每桶甲消毒液、每桶乙消毒液的价格分别是45元、35元.(2)由题意,得W=45a+35(30-a )=10a+1 050. 根据题意,得{a ≥30−a +5,a ≤2(30−a ),解得17.5≤a ≤20 ∴a 的取值范围是17.5≤a ≤20,且a 是正整数.∵10>0,∴W 随a 的增大而增大∴当a=18时,W 的值最小,最小值为1 230此时30-a=12.答:当购买甲消毒液18桶、乙消毒液12桶时,总费用最少,最少费用是1 230元.16.【参考答案】 (1)设购买绿萝x 盆,吊兰y 盆.根据题意,得{x +y =46,9x +6y =390,解得{x =38,y =8.因为38>2×8,所以答案符合题意.答:可购买绿萝38盆,吊兰8盆.(2)设购买绿萝m盆,吊兰(46-m)盆,购买两种绿植的总费用为W元则W=9m+6(46-m)=3m+276.根据题意,得m≥2(46-m),解得m≥923.因为3>0,所以W随m的增大而增大.又m为整数,所以m取最小值31时,W的值最小.当m=31时,W=3×31+276=369.答:购买两种绿植总费用的最小值为369元.17.【参考答案】(1)根据题意,得50a+25×80=15 000.解得a=260.(2)设购进真丝衬衣x件,销售利润为y元,则购进真丝围巾(300-x)件.根据题意得y=(300-260)x+(100-80)(300-x)化简得y=20x+6 000.∵300-x≥2x,x≥0,∴0≤x≤100.∵20>0,∴y随x的增大而增大∴当x=100时,y有最大值,为20×100+6 000=8 000.故购进真丝衬衣100件,真丝围巾200件时,获得的利润最大,最大利润为8 000元.(3)设余下围巾每件降价m元,根据题意得100×40+100×20+100×(20-m)≥8 000×90%解得m≤8故余下围巾每件最多降价8元.18.A【解析】设y与x的函数关系式为y=kx+b,将(0,50),(500,0)分别代入,得{b=50,500k+b=0,解得{b=50,k=−110,故y=-110x+50.当y=35时,-110x+50=35,解得x=150.故选A.一题多解500÷50=10(km/L),故该汽车每行驶10 km耗油1 L.由题可知汽车已耗油50-35=15(L),故该汽车已行驶的路程为15×10=150(km).19.【参考答案】(1)20(2)由甲壶比乙壶加热速度快,可知乙壶中水温y关于加热时间x的函数图象经过点(0,20),(160,80).设乙壶中水温y关于加热时间x的函数解析式为y=kx+b将(0,20),(160,80)分别代入得{b =20,160k +b =80,解得{k =38,b =20,故乙壶中水温y 关于加热时间x 的函数解析式为y=38x+20.(3)65解法提示:由甲壶中水温y 关于加热时间x 的函数图象经过点(0,20),(80,60) 易求得甲壶中水温y 关于加热时间x 的函数解析式为y=12x+20.令12x+20=80,解得x=120 将x=120代入y=38x+20中,得y=38×120+20=65.故当甲壶中水温刚达到80 ℃时,乙壶中水温是65 ℃.20. 【参考答案】 (1)画图略.选择y=kx+b ,将(0,1),(1,2)代入得{b =1,k +b =2,解得{k =1,b =1, ∴y=x+1(0≤x ≤5).(2)当y=5时,x+1=5∴x=4.答:当水位高度达到5米时,进水用时x 为4小时.21.D 【解析】 连接OB ,AC 交于点M ,连接AE ,BF 交于点N ,则直线MN 为符合条件的直线l ,如图.∵四边形OABC 是矩形,∴OM=BM.∵点B 的坐标为(10,4),∴M (5,2),AB=10,BC=4.∵四边形ABEF 为菱形,∴BE=AB=10.过点E 作EG ⊥AB 于点G.在Rt △BEG 中,∵tan ∠ABE=43,∴EG BG =43.设EG=4k ,则BG=3k ,∴BE=√EG 2+BG 2=5k ,∴5k=10,∴k=2,∴EG=8,BG=6,∴AG=4,∴E (4,12).又∵A (0,4),点N 为AE 的中点,∴N (2,8).设直线l 的解析式为y=ax+b ,则{5a +b =2,2a +b =8,解得{a =−2,b =12,∴直线l 的解析式为y=-2x+12.22.A 【解析】 当x=0时,y=√2;当y=0时,x=-√2.∴A (-√2,0),B (0,√2),∴OA=OB ,∴△OAB 为等腰直角三角形,∴∠ABO=∠BAO=45°,AB=√(√2)2+(√2)2=2.如图(1),过点C 作CD ⊥AB ,垂足为点D ,∵∠CAD=∠OAB=45°,∴△ACD 为等腰直角三角形.设CD=AD=m ,∴AC=√AD 2+CD 2=√2m.由旋转可知∠ABC=30°,∴BC=2CD=2m.在Rt △BCO 中,BC 2=OC 2+OB 2,即(2m )2=(√2+√2m )2+(√2)2,解得m=1+√3(负值不合题意,已舍去),∴AC=√2m=√2(√3+1)=√6+√2.故选A .图(1) 一题多解当x=0时,y=√2.当y=0时,x=-√2.∴A (-√2,0),B (0,√2),∴OA=OB ,∴△OAB 为等腰直角三角形,∴∠ABO=∠BAO=45°.由旋转可知,∠ABC=30°,∴∠BCO=15°.如图(2),作线段BC 的垂直平分线,交OC 于点E ,连接BE ,则BE =CE ,∴∠EBC=∠ECB=15°,∴∠BEO=30°,∴BE=2BO=2√2,OE=√3OB=√6,∴AC=CE+OE-OA=2√2+√6-√2=√6+√2.图(2)23.2√3 【解析】 如图,设☉O 与x 轴的另一个交点为点C ,AB 交y 轴于点D ,连接BC.对于y=√33x+2√33,当x=0时,y=2√33,当y=0时,x=-2,∴A (-2,0),D (0,2√33),∴AC=4,tan ∠OAD=OD OA =2√332=√33,∴∠OAD=30°.∵AC 为☉O 的直径,∴∠ABC=90°,∴AB=AC cos 30°=4×√32=2√3.。

(完整版)《一次函数》综合提高题及答案

(完整版)《一次函数》综合提高题及答案

2018 年八年级数学下册一次函数综合复习题知识点复习对于两个变量x,y, 若 x 发生改变 , 与其对应的y 也随之改变 , 且,那函数与变量么 y 叫做 x 的函数 .分析式:形状一条经过 ( ) 的直线正比率函数图象性质k>0 时 , ;k<0 时 , .象限散布增减性k>0 时 , ;k<0 时 , .分析式:形状一条经过 (),() 的直线k>0,b>0 时 , 图象经过象限;一次函数图象性质k>0,b>0 时 , 图象经过象限;象限散布k>0,b>0 时 , 图象经过象限;k>0,b>0 时 , 图象经过象限;增减性k>0 时 , ;k<0 时 , .两条直线地点关系l 1//l 2 时: ;l 1⊥l 2 时: . (k1,k 2的关系)(1) 直线上下平移:与有关 , ;直线左右平移:与有关 ,.直线 y=kx+b 图象平移(2) 已知平移后的分析式 , 求平移前的分析式, 平移方向;(3) 已知直线分析式 , 平移坐标系后对应的分析式, 平移方向。

对于 x 轴对称后的分析式 : ;直线 y=kx+b 图象对称对于 y 轴对称后的分析式 : .一次函数与方程组关系方程组的解在座标系中即为两条直线的.(1)y=0,y>0,y<0 ;(2)y 1=y2,y 1<y2,y 1>y2;一次函数与不等式关系一次函数分析式求法法1. 如图是某蓄水池的横断面表示图, 分深水区和浅水区, 假如向这个蓄水池中以固定的水流量( 单位 时间灌水的体积 ) 灌水,下边图中能大概表示水的深度 h 和时间 t 之间关系的图象是 ( )2. 一次函数 y=-2x+1 的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知点 M ( 1,a )和点 N ( 2,b )是一次函数 y=﹣ 2x+1 图象上的两点, 则 a 与 b 的大小关系是 ()A . a >bB . a=bC . a < bD . 以上都不对 4. 以下图中表示一次函数y=mx+n 与正比率函数 y=mnx(m , n 是常数 ) 图像的是 ().5. 已知一次函数 y=kx +b 中 y 随 x 的增大而减小,且 kb < 0, 则直线 y=kx+b 的图象经过 ()A. 第一二三象限B. 第一三四象限C. 第一二四象限D. 第二三四象限6. 已知一次函数 y=-2x+1 经过平移后获取直线 y=-2x+7, 则以下说法正确的选项是 ( )A. 向左平移 3 个单位B.向右平移 3 个单位 C. 向上平移 7 个单位 D. 向下平移 6 个单位7. 直线 y=x-1 与坐标轴交于 A 、B 两点,点 C 在座标轴上,△ ABC 为等腰三角形,则知足条件的三角形最多有()A.5 个B.6 个C.7 个D.8 个8. 当直线 y=x+2? 上的点在直线 y=3x-2 上相应点的上方时,则()A. x < 0B.x <2 > 0 D.x >29. 如图 , 一次函数y=kx + b 的图象与 y 轴交于点 (0,1), 则对于 x 的不等式 kx +b > 1 的解集是 () A . x > 0 B .x < 0 C . x >1 D .x < 110.A , B 两点在一次函数图象上的地点如图, 两点的坐标分别为A(x + a ,y + b) ,B(x ,y) ,以下结论正确的选项是 ()A.a > 0< 0C.B=0< 011. 如图,函数y=2x 和 y=ax+4 的图象订交于点A(m, 3),则不等式2x≥ ax+4 的解集为()3≤ 3 C. x 3≥ 32 212.如图,直线 y=﹣x+m与 y=nx+4n( n≠ 0)的交点的横坐标为﹣ 2,则对于 x 的不等式﹣ x+m> nx+4n> 0 的整数解为()A.﹣1B.﹣5C.﹣4D.﹣313. 把直线 y=﹣ x+3 向上平移 m个单位后,与直线 y=2x+4 的交点在第一象限,则 m的取值范围是()A. 1< m< 7 B. 3< m< 4 C. m> 1 D. m< 414. 在平面直角坐标系中,线段AB 的端点 A(-2 , 4),B(4 , 2), 直线 y=kx-2 与线段 AB 有交点,则 k 的值不行能是()15. 如图 , 在平面直角坐标系中,直线 y= 2x-2与矩形 ABCO的边 OC、BC分别交于点 E、F,已知OA=3,3 3OC=4,则△ CEF的面积是()A.6B .3 C .12 D .4316. 某库房调拨一批物质, 调进物质共用资的速度均保持不变). 该库房库存物质从开始调进到所有调出所需要的时间是A.8.4 小时小时8 小时 . 掉进物质 4 小时后同时开始调出物质w(吨 ) 与时间 t( 小时 ) 之间的函数关系以下图()小时小时( 调进与调出物 ,则这批物质17. 如图,已知 A 点坐标为( 5,0),直线 y=x+b(b>0) 与 y 轴交于点 B,连结 AB,若∠ a=75 , 则 b 的值为( )B. 5C. 5 3D. 3 53 518. 如图 1, 在 Rt△ ABC中 , ∠ ACB=900, 点 P 以每秒 1cm的速度从点A 出发 , 沿折线 AC→ CB运动 , 到点 B 停止 . 过点 P作 PD⊥AB 于点 D,PD 的长 y(cm) 与点 P 的运动时间x( 秒 ) 的函数图象如图 2 所示 . 当点 P 运动 5 秒时 ,PD 的长是()19. 如图 , 已知直线 l:y= 3x, 过点 A(0,1 )作 y 轴的垂线交直线l 于点 B, 过点 B 作直线 l 的垂线交3B ,过点 B 作直线 l 的垂线交 y 轴于点 A ;;按此y 轴于点 A ;过点 A 作 y 轴的垂线交直线于点1 1 1 12 作法持续下去,则点A4 的坐标为()A. ( 0,64 )B. ( 0,128 )C. ( 0,256 )D.(0,512)20. 如图 , 在平面直角坐标系中, 直线 l:y=3x+1交x轴于点A,交y轴于点B,点A1、A2、A3,在x 3轴上,点 B1、 B2、B3,在直线 l 上 . 若△ OB1A1,△ A1B2A2,△ A2B3A3,均为等边三角形 , 则△ A5B6A6的周长是 ( )A.243B.483C.963D.192 321. 函数 y x 中的自变量 x 的取值范围是x 122. 已知函数 y ( m 5) x m2 4m 4 m 2 若它是一次函数,则m=;y 随 x 的增大而.23. 已知一次函数y=(k+3)x+2k-10,y 随 x 的增大而增大 , 且图象不经过第二象限 , 则 k 的取值范围为.24. 已知A(x 1,y 1),B(x 2,y 2)是一次函数y=kx+3(k<0) 图象上的两个不一样的, 若 t=(x 1-x 2)(y 1-y 2 ),点则t 0.25. 已知直线y=kx - 6 与两坐标轴所围成的三角形面积等于12, 则直线的表达式为26.如图,已知一条直线经过点 A ( 0, 2)、点 B ( 1, 0),将这条直线向左平移与x 轴、 y 轴分别交与点 C、点 D.若 DB=DC ,则直线 CD 的函数分析式为.27. 如图,点 A 的坐标为(-2,0),点 B 在直线 y= x- 4 上运动,当线段AB最短时,点 B 的坐标是 ___________。

2022-2023学年人教版中考数学复习《一次函数综合解答题》专题提升训练(附答案)

2022-2023学年人教版中考数学复习《一次函数综合解答题》专题提升训练(附答案)

2022-2023学年人教版中考数学复习《一次函数综合解答题》专题提升训练(附答案)1.直线y=kx﹣2与坐标轴所围图形的面积为3,点A(3,m)是直线y=kx﹣2上一点.(1)求点A的坐标;(2)点P在y轴上,且∠P AO=30°,直接写出点P坐标.2.在平面直角坐标系xOy中,一次函数y=kx+4(k<0)交x轴于点A,交y轴于点B.已知△ABO为等腰直角三角形.(1)请直接写出k的值为;(2)将一次函数y=kx+4(k≠0)中,直线y=﹣1下方的部分沿直线y=﹣1翻折,其余部分保持不变,得到的新图象记为图象G.已知在x轴有一动点P(n,0),过点P作x轴的垂线,交于点M,交图象G于点N.当点M在点N上方时,且MN<2,求n的取值范围;(3)记图象G交x轴于另一点C,点D为图象G上一点,点E为图象G的对称轴上一点.当以A,C,D,E为顶点的四边形为平行四边形时,则点D的坐标为.3.对于平面上A、B两点,给出如下定义:以点A为中心,B为其中一个顶点的正方形称为点A、B的“领域”.(1)已知点A的坐标为(﹣1,1),点B的坐标为(3,3),顶点A、B的“领域”的面积为.(2)若点A、B的“领域”的正方形的边与坐标轴平行或垂直,回答下列问题:①已知点A的坐标为(2,0),若点A、B的“领域”的面积为16,点B在x轴上方,求B点坐标;②已知点A的坐标为(2,m),若在直线l:y=﹣3x+2上存在点B,点A、B的“领域”的面积不超过16,直接写出m的取值范围.4.如图,一次函数y=x+3的图象分别与y轴,x轴交于点A,B,点P从点B出发,沿射线BA以每秒1个单位的速度运动,设点P的运动时间为t秒.(1)点P在运动过程中,若某一时刻,△OP A的面积为3,求此时P的坐标;(2)在整个运动过程中,当t为何值时,△AOP为等腰三角形?请直接写出t的值.5.在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”,(1)已知点A(2,0),B(0,2),则以AB为边的“坐标菱形”的面积为;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD解析式.6.在平面直角坐标系xOy中,点P和图形W的“中点形”的定义如下:对于图形W上的任意一点Q,连接PQ,取PQ的中点,由所有这些中点所组成的图形,叫做点P和图形W的“中点形”.已知C(﹣2,2),D(1,2),E(1,0),F(﹣2,0).(1)若点O和线段CD的“中点形”为图形G,则在点H1(﹣1,1),H2(0,1),H3(2,1)中,在图形G上的点是;(2)已知点A(2,0),请通过画图说明点A和四边形CDEF的“中点形”是否为四边形?若是,写出四边形各顶点的坐标;若不是,说明理由;(3)点B为直线y=2x上一点,记点B和四边形CDEF的中点形为图形M,若图形M 与四边形CDEF有公共点,直接写出点B的横坐标b的取值范围.7.如图,在平面直角坐标系xOy中,已知点A(1,2),B(3,2),连接AB.若对于平面内一点P,线段AB上都存在点Q,使得PQ≤1,则称点P是线段AB的“临近点”.(1)在点C(0,2),D(2,),E(4,1)中,线段AB的“临近点”是;(2)若点M(m,n)在直线y=﹣x+2上,且是线段AB的“临近点”,求m的取值范围;(3)若直线y=﹣x+b上存在线段AB的“临近点”,求b的取值范围.8.在平面直角坐标系xOy中,点P和图形W的中间点的定义如下:Q是图形W上一点,若M为线段PQ的中点,则称M为点P和图形W的中间点.C(﹣2,3),D(1,3),E(1,0),F(﹣2,0)(1)点A(2,0),①点A和原点的中间点的坐标为;②求点A和线段CD的中间点的横坐标m的取值范围;(2)点B为直线y=2x上一点,在四边形CDEF的边上存在点B和四边形CDEF的中间点,直接写出点B的横坐标n的取值范围.9.在平面直角坐标系xOy中,对于直线l及点P给出如下定义:过点P作y轴的垂线交直线l于点Q,若PQ≤1,则称点P为直线l的关联点,当PQ=1时,称点P为直线l的最佳关联点,当点P与点Q重合时,记PQ=0.例如,点P(1,2)是直线y=x的最佳关联点.根据阅读材料,解决下列问题.如图,在平面直角坐标系xOy中,已知直线l1:y=﹣x+3,l2:y=2x+b.(1)已知点A(0,4),B(,1),C(2,3),上述各点是直线l1的关联点是;(2)若点D(﹣1,m)是直线l1的最佳关联点,则m的值是;(3)在(1)的条件下,点E在x轴的正半轴上,以OA、OE为边作正方形AOEF.若直线l2与正方形AOEF相交,且交点中至少有一个是直线l1的关联点,则b的取值范围是.10.对于平面直角坐标系xOy中的任意一点P(x,y),给出如下定义:记a=x+y,b=﹣y,将点M(a,b)与N(b,a)称为点P的一对“相伴点”.例如:点P(2,3)的一对“相伴点”是点(5,﹣3)与(﹣3,5).(1)点Q(4,﹣1)的一对“相伴点”的坐标是与;(2)若点A(8,y)的一对“相伴点”重合,则y的值为;(3)若点B的一个“相伴点”的坐标为(﹣1,7),求点B的坐标;(4)如图,直线l经过点(0,﹣3)且平行于x轴.若点C是直线l上的一个动点,点M与N是点C的一对“相伴点”,在图中画出所有符合条件的点M,N组成的图形.11.在平面直角坐标系xOy中,对于点P与▱ABCD,给出如下的定义:将过点P的直线记为l P,若直线l P与▱ABCD有且只有两个公共点,则称这两个公共点之间的距离为直线l P与▱ABCD的“穿越距离”,记作d(l P,▱ABCD).例如,已知过点O的直线l O:y=x与▱HIJK,其中H(﹣2,﹣1),I(1,﹣1),J(2,1),K(﹣1,1),如图1所示,则d(l O,▱HIJK)=2.请解决下面的问题:已知▱ABCD,其中A(1,2),B(3,2),C(t,4),D(t﹣2,4).(1)当t=3时,已知M(2,3),l M为过点M的直线y=kx+b.①当k=0时,d(l M,▱ABCD)=;当k=1时,d(l M,▱ABCD)=;②若d(l M,▱ABCD)=,结合图象,求k的值;(2)已知N(﹣1,0),l N为过点N的直线,若d(l N,▱ABCD)有最大值,且最大值为2,直接写出t的取值范围.12.数学课上,李老师提出问题:如图1,在正方形ABCD中,点E是边BC的中点,∠AEF =90°,且EF交正方形外角的平分线CF于点F.求证:AE=EF.经过思考,小聪展示了一种正确的解题思路.取AB的中点H,连接HE,则△BHE为等腰直角三角形,这时只需证△AHE与△ECF全等即可.在此基础上,同学们进行了进一步的探究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(不含点B,C)的任意一点”,其他条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程,如果不正确,请说明理由;(2)小华提出:如图3,如果点E是边BC延长线上的任意一点,其他条件不变,那么结论“AE=EF”是否成立?(填“是”或“否”);(3)小丽提出:如图4,在平面直角坐标系xOy中,点O与点B重合,正方形的边长为1,当E为BC边上(不含点B,C)的某一点时,点F恰好落在直线y=﹣2x+3上,请直接写出此时点E的坐标.13.定义:在平面直角坐标系中,对于任意P(x1,y1),Q(x2,y2),若点M(x,y)满足x=3(x1+x2),y=3(y1+y2),则称点M是点P,Q的“美妙点”.例如:点P(1,2),Q(﹣2,1),当点M(x,y)满足x=3×(1﹣2)=﹣3,y=3×(2+1)=9时,则点M(﹣3,9)是点P,Q的“美妙点”.(1)已知点A(﹣1,3),B(3,3),C(2,﹣2),请说明其中一点是另外两点的“美妙点”;(2)如图,已知点D是直线y=x+3上的一点.点E(3,0),点M(x,y)是点D、E的“美妙点”.①求y与x的函数关系式;②若直线DM与x轴相交于点F,当△MEF是以EF为直角边的直角三角形时,求点D的坐标.14.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为,即P'(3,6)(1)①点P(1,2)的“2属派生点”P′的坐标为;②若点P的“k属派生点”P′的坐标为(4,4),请写出一个符合条件的点P的坐标;(2)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且OP=2PP′,则k 的值;(3)如图,点Q的坐标为(0,4),点A在函数的图象上,且点A是点B的“−1属派生点”,当线段BQ最短时,求A点坐标.15.在平面直角坐标系xOy 中,若P ,Q 为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.图1为点P ,Q 的“相关矩形”的示意图.已知点A 的坐标为(1,2).(1)如图2,点B 的坐标为(b ,0).①若b =﹣2,则点A ,B 的“相关矩形”的面积是 ;②若点A ,B 的“相关矩形”的面积是8,则b 的值为 .(2)如图3,点C 在直线y =﹣1上,若点A ,C 的“相关矩形”是正方形,求直线AC 的表达式.16.已知函数y =,请结合学习函数的经验,探究它的相关性质:(1)自变量x 的取值范围是 ;(2)x 与y 的几组对应值如下表,请补全表格:x… ﹣2.5 ﹣2 ﹣1.5 ﹣1 ﹣0.5 ﹣0.2 0.2 0.5 1 1.5 2 2.5 … y … 5.85 3.5 1.58 0 ﹣1.75 ﹣4.965.04 m n 2.92 4.56.65 …其中m = ,n = .(3)图中画出了函数的一部分图象,请根据表中数据,用描点法补全函数图象;(4)请写出这个函数的一条性质:;(5)结合图象,直接写出方程的所有实数根:.17.在平面直角坐标系xOy中,图形G的投影矩形定义如下:矩形的两组对边分别平行于x轴,y轴,图形G的顶点在矩形的边上或内部,且矩形的面积最小.设矩形的较长的边与较短的边的比为k,我们称常数k为图形G的投影比.如图1,矩形ABCD为△DEF 的投影矩形,其投影k=.(1)如图2,若点A(1,3),B(3,5),则△OAB投影比的值为;(2)已知点C(4,0),在函数y=﹣2x+4(其中x>0)的图象上有一点D,若△OCD 的投影比k=2,求点D的坐标;(3)已知点E(3,2),点F(3,4),在直线y=x+1上有一动点P,若△PEF的投影比k<2,则点P的横坐标m的取值范围是(直接写出答案).18.在平面直角坐标系xOy中,对任意两点A(x A,y B)与B(x B,y B)的“识别距离”,给出如下定义:若|x A﹣x B|≥|y A﹣y B|,则点A(x A,y A)与B(x B,y B)的“识别距离”D AB =|x A﹣x B|;若|x A﹣x B|<|y A﹣y B|,则A(x A,y A)与B(x B,y B)的“识别距离”D AB=|y A ﹣y B|;即D AB=max{|x A﹣x B|,|y A﹣y B|}.已知点A(1,0),点B(﹣1,4),(1)A、B两点之间的识别距离D AB=.(2)在图1中的平面直角坐标系中描出到点A的识别距离为2的点.(3)如图2,点C,点D,和点E分别是直线m,直线n,和直线p上的点,若点C、D、E到点A的识别距离最小,求出C、D、E的坐标.19.如图1,A、C是平面内的两个定点,∠BAC=20°,点P为射线AB上一动点,过点P 作PC的垂线交直线AC于点D.设∠APC的度数为x°,∠PDC的度数为y°.小明对x与y之间满足的等量关系进行了探究.下面是小明的探究过程,请补充完整:(1)如图1,当x=40°时,依题意补全图形;(2)在图2中,按照下表中x的值进行取点、画图、计算,分别得到了y与x的几组对应值,补全表格;x°406080100y°(3)在平面直角坐标系xOy中,①描出表中各组数值所对应的点(x,y);②通过研究①中点构成的图象,当y=50时,x的值为;(4)用含x的代数式表示y为:.20.有这样一个问题:探究函数y=的图象与性质.小华根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是;(2)如表是y与x的几组对应值.m的值为;x﹣2﹣﹣1﹣1234…y0﹣m﹣1…(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的一条性质:.(5)结合函数图象估计﹣x﹣4=0的解的个数为个.参考答案1.解:(1)直线y=kx﹣2,当x=0,则y=﹣2,当y=0,则x=,∴直线y=kx﹣2与坐标轴的交点坐标为(0,﹣2)和(,0),∵直线y=kx﹣2与坐标轴所围图形的面积为3,∴×|2|×||=3,解得k=±,∴直线的解析式为y=x﹣2或y=﹣x﹣2,把点A(3,m)代入y=x﹣2,得m=0,∴A(3,0),把点A(3,m)代入y=﹣x﹣2,得m=﹣4,∴A(3,0),∴点A的坐标为(3,0)或(3,﹣4);(2)①当点A的坐标为(3,0)时,如图,在Rt△POA中,∠P AO=30',∠POA=90°,OA=3,∴OP=,∴点P(0,)或点P(0.﹣);②当点A的坐标是(3,﹣4)时,如图,作PB⊥AO于B,AC⊥y轴于点C,则∠PBO=∠ACO=90°,AC=3.OC=4,AO==5,设PB=3a(a>0),∵∠POB=∠AOC,∴△PBO∽△ACO,∴,∴,∴PO=5a,∴PC=PO+OC=5a+4,∵∠P AO=30°,∴P A=2PB=6a,∵AC2+PC2=P A2,∴32+(5a+4)2=(6a)2,解得a=(负值不合题意,舍去),∴OP=,∴点P(0,);③当点A的坐标是(3,﹣4)时,如图,作PB⊥AO于B,AC⊥y轴于点C,则∠PBO=∠ACO=90°,AC=3.OC=4,AO==5,设PB=3a(a>0),∵∠POB=∠AOC,∴△PBO∽△ACO,∴,∴,∴PO=5a,∴PC=OC﹣PO=4﹣5a,∵∠P AO=30°,∴P A=2PB=6a,∵AC2+PC2=P A2,∴32+(4﹣5a)2=(6a)2,解得a=(负值不合题意,舍去),∴OP=,∴点P(0,).综上所述,点P的坐标为(0,)或(0,)或(0,).2.(1)对于一次函数y=kx+4(k<0),令x=0,则y=4,故点B(0,4),则OB=4,∵△ABO为等腰直角三角形,故OA=OB=4,故点A(4,0),将点A的坐标代入y=kx+4并解得k=﹣1,故答案为﹣1;(2)设图象的翻折点为R,当y=﹣1时,则﹣x+4=﹣1,解得x=5,即点R(5,﹣1),图象的对称轴为x=5,①当点P在对称轴左侧时,则图象G的解析式为:y=﹣x+4,∴点N在直线y=﹣x+4上运动.当M,N重合时,此时n有最小值为,当MN=2时,此时n有最大值,则根据题意有:,∴解得,∴;②当点P在对称轴右侧时,则图象G的解析式为:y=x﹣6,∴点N在直线y=x﹣6上运动.当MN=2时,此时n有最小值,则根据题意有:,∴解得n=12,当M,N重合时,此时n有最大值为16,∴12<n<16,综上,或12<n<16;(3)则设直线RC的表达式为y=x+b,将点R的坐标代入上式并解得:b=﹣6,故直线RC的表达式为y=x﹣6,令y=0,即x﹣6=0,解得x=6,故点C(6,0),①当AC是边时,当点D在点E的左侧时,则ED=AC=6﹣4=2,故点D的横坐标为5﹣2=3,当x=3时,y=﹣x+4=1,故点D(3,1),此时,点E(5,1),符合条件;当点E在点E的右侧时,同理可得,点D(7,1);②当AC是对角线时,如上图,则点D(5,﹣1),而点E(5,1),AD=CD=AE=EC=,故符合条件,故点D(5,﹣1);综上,点D的坐标为(5,﹣1)或(3,1)或(7,1),故答案为:(5,﹣1)或(3,1)或(7,1).3.解:(1)∵点A的坐标为(﹣1,1),点B的坐标为(3,3),∴AB==2,由题意可知,AB是正方形对角线的一半,∴正方形的边长为2,∴正方形的面积为40,∴顶点A、B的“领域”的面积为40;故答案为40;(2)①如图,∵点A、B的“领域”的正方形的边与坐标轴平行或垂直,∴AB与x轴的所成锐角为45°,当点B在A左侧,设B(2﹣a,a),∴AB==a,∵点A、B的“领域”的面积为16,∴16=,∴a=2,∴点B(0,2),当点B在点A右侧,设B'(2+a,a)∴AB'=a,∵点A、B的“领域”的面积为16,∴16=,∴a=2,∴点B(4,2),综上所述:B(4,2)或B(0,2);②如图2,过点B作BM⊥AM,∵点A、B的“领域”的正方形的边与坐标轴平行或垂直,∴AB与直线x=2的所成锐角为45°,∴BM=AM,设点B(a,﹣3a+2),∴AM=|m+3a﹣2|,BM=|2﹣a|∴AB=|2﹣a|,∵点A、B的“领域”的面积不超过16,∴≤16∴0≤a≤4,∵BM=AM,∴|m+3a﹣2|=|2﹣a|∴m=4﹣4a,或m=﹣2a,∴﹣12≤m≤4,或﹣8≤m≤0,综上所述:﹣12≤m≤4.4.解:(1)当x=0时,y=3,当y=0时,x=4,则A(0,3),B(4,0),∴AO=3,BO=4,设点P的坐标为(m,﹣m+3),∵△OP A的面积为3,∴×3×|m|=3,解得:m=±2,∴点P的坐标为(﹣2,)或(2,).(2)由题意可知BP=t,AP=5﹣t,当△AOP为等腰三角形时,有AP=AO、AP=OP和AO=OP三种情况.①当AP=AO时,则有5﹣t=3,解得t=2;或t﹣5=3,解得t=8;②当AP=OP时,过P作PM⊥AO,垂足为M,如图1,则M为AO中点,故P为AB中点,此时t=;③当AO=OP时,过O作ON⊥AB,垂足为N,如图2,则NP=AN=AP=(5﹣t),∵S△AOB=∴ON=,∵OB2=ON2+NB2,∴16=+(t+﹣)2,∴t=综上可知当t的值为2、8、和时,△AOP为等腰三角形.5.解:(1)如图1∵点A(2,0),B(0,2),∴OA=2,OB=2,在Rt△AOB中,由勾股定理得:AB===4,∵四边形ABCD是菱形,∴OA=OC=2,OB=OD=2∴AC=4,BD=4∴以AB为边的“坐标菱形”的面积==8,故答案为:8;(2)如图2,∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°,过点C作CE⊥DE于E,∴D(4,5)或(﹣2,5),设直线CD解析式为y=kx+b,由题意可得或解得:或∴直线CD的表达式为:y=x+1或y=﹣x+3;6.解:(1)∵点C的坐标为(﹣2,2),点D的坐标为(1,2),∴线段OC的中点坐标为(﹣1,1),线段OD的中点坐标为(,1).∵﹣1=﹣1,﹣1<0<,∴点H1(﹣1,1),H2(0,1)在图形G上.故答案为:H1,H2.(2)∵C(﹣2,2),D(1,2),E(1,0),F(﹣2,0),A(2,0),∴线段AC的中点坐标为(0,1),线段AD的中点坐标为(,1),线段AE的中点坐标为(,0),线段AF的中点坐标为(0,0).依照题意,画出图形,如图1所示.∴点A和四边形CDEF的“中点形”是四边形,各定点的坐标分别为:(0,1),(,1),(,0),(0,0).(3)∵点B在直线y=2x上,且点B的横坐标为b,∴点B的坐标为(b,2b).∵C(﹣2,2),D(1,2),E(1,0),F(﹣2,0),A(2,0),∴线段BC的中点坐标为(b﹣1,b+1),线段BD的中点坐标为(b+,b+1),线段BE的中点坐标为(b+,b),线段BF的中点坐标为(b﹣1,b).依照题意,画出图形,如图2所示.∵图形M与四边形CDEF有公共点,∴或,解得:﹣1≤b≤0或1≤b≤2.7.解:(1)C(0,2),D(2,)是线段AB的“临近点”.理由是:∵点P到直线AB的距离≤1,A、B的纵坐标都是2,∴AB∥x轴,2﹣1=1,2+1=3,∴当横坐标1≤x≤3纵坐标1≤y≤3范围内时,该点是线段AB的“临近点”,∵D(2,),∴D(2,)是线段AB的“临近点”;∵C(0,2),A(1,2),∴AC=2﹣1=1,∴C(0,2)是线段AB的“临近点”.故答案为:C和D.(2)如图,设y=﹣x+2与y轴交于M,与A2B2交于N,易知M(0,2),∴m≥0,易知N的纵坐标为1,代入y=﹣x+2,可求横坐标为,∴m≤∴0≤m≤.(3)当直线y=﹣x+b与半圆A相切时,b=2﹣.当直线y=﹣x+b与半圆B相切时,b=2+.∴2﹣.8.解:(1)①∵点A的坐标为(2,0),∴点A和原点的中间点的坐标为(,),即(1,0).故答案为:(1,0).②如图1,点A和线段CD的中间点所组成的图形是线段C′D′.由题意可知:点C′为线段AC的中点,点D′为线段AD的中点.∵点A的坐标为(2,0),点C的坐标为(﹣2,3),点D的坐标为(1,3),∴点C′的坐标为(0,),点D′的坐标为(,),∴点A和线段CD的中间点的横坐标m的取值范围为0≤m≤.(2)∵点B的横坐标为n,∴点B的坐标为(n,2n).当点B和四边形CDEF的中间点在边EF上时,有,解得:﹣≤n≤0;当点B和四边形CDEF的中间点在边DE上时,有,解得:1≤n≤3.综上所述:点B的横坐标n的取值范围为﹣≤n≤0或1≤n≤3.9.解:(1)如图1,将点A(0,4)的纵坐标分别代入直线l1:y=﹣x+3,得:x=﹣1∴过点A垂直于y轴的直线与l1的交点横坐标是﹣1,0﹣(﹣1)=1,∴点A是直线l1的关联点;将点B(,1)的纵坐标分别代入直线l1:y=﹣x+3,得:x=2,∴2﹣=<1,∴点B是直线l1的关联点;将点C(2,3)的纵坐标分别代入直线l1:y=﹣x+3,得:x=0,∴过点A垂直于y轴的直线与l1的交点横坐标是0,2﹣0=2>1,∴点C不是直线l1的关联点;故答案为:A,B;(2)将点D的纵坐标分别代入直线l1:y=﹣x+3,得:x=3﹣m,∴过点D垂直于y轴的直线与l1的交点横坐标是3﹣m,∵点D(﹣1,m)是直线l1的最佳关联点,∴丨3﹣m﹣(﹣1)丨=丨4﹣m丨=1,解得:m=3或5,故答案为:3或5;(3)如图2,由图可得,直线l2的位置l3与l4之间或l5与l6之间时,符合要求,直线与l3正方形AOEF相交于A(0,4)时,b=4,直线l4与正方形AOEF相交于A(0,2)时,b=2,直线l5与正方形AOEF相交于F(4,4)时,b=﹣4,直线l6与正方形AOEF相交于E(4,0)时,b=﹣8,∴b的取值范围为2≤b≤4或﹣8≤b≤﹣4.故答案为:2≤b≤4或﹣8≤b≤﹣4.10.解:(1)∵Q(4,﹣1),∴a=4+(﹣1)=3,b﹣(﹣1)=1,∴点Q(4,﹣1)的一对“相伴点”的坐标是(1,3)与(3,1),故答案为:(1,3),(3,1);(2)∵点A(8,y),∴a=8+y,b=﹣y,∴点A(8,y)的一对“相伴点”的坐标是(8+y,﹣y)和(﹣y,8+y),∵点A(8,y)的一对“相伴点”重合,∴8+y=﹣y,∴y=﹣4,故答案为:﹣4;(3)设点B(x,y),∵点B的一个“相伴点”的坐标为(﹣1,7),∴或,∴或,∴B(6,﹣7)或(6,1);(4)设点C(m,﹣3),∴a=m﹣3,b=3,∴点C的一对“相伴点”的坐标是M(m﹣3,3)与N(3,m﹣3),当点C的一个“相伴点”的坐标是M(m﹣3,3),∴点M在直线m:y=3上,当点C的一个“相伴点”的坐标是N(3,m﹣3),∴点N在直线n:x=3上,即点M,N组成的图形是两条互相垂直的直线m与直线n,如图所示,11.解:(1)当t=3时,A(1,2),B(3,2),C(3,4),D(1,4),∴此时四边形ABCD为正方形,如图1所示,∵直线l M过点M(2,3),∴3=2k+b,即b=3﹣2k,∴①当k=0时,直线l M为y=3,由图知,此时d(l M,▱ABCD)=2,故答案为:2,当k=1时,直线l M为y=x+1,由图知,此时d(l M,▱ABCD)=2,故答案为:2,②由①知,直线l M为y=kx+3﹣2k,如图1②,设直线l M与AD交于点F,与BC交于点G,∴F(1,﹣k+3),G(3,k+3),过F作FH⊥BC于H,则FH=2,∵FG=,∴GH==1,∴k+3﹣(﹣k+3)=1,∴k=,由正方形的对称性可知,k=﹣也符合题意,故k的值为±;如图1③,设直线l M与CD交于点P,与AB交于点Q,∴P(,4),Q(,2),过Q作QN⊥CD于N,则QN=2,∵PQ=,∴PN==1,∴﹣=1,解得k=2,由正方形的对称性可知,k=﹣2也符合题意,故k的值为±2;综上,k的值为或±2;(2)如图2,设直线l N与CD边的交点为P,作PH⊥AB交AB延长线于H,由题知PB=,PH=2,∴BH==4,即P点坐标为(7,4),由题知P点在CD上,且不能与C点重合,∴7<t≤7+2,即7<t≤9.12.解:(1)仍然成立,如图2,在AB上截取BH=BE,连接HE,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°=∠BCD,∵CF平分∠DCG,∴∠DCF=45°,∴∠ECF=135°,∵BH=BE,AB=BC,∴∠BHE=∠BEH=45°,AH=CE,∴∠AHE=∠ECF=135°,∵AE⊥EF,∴∠AEB+∠FEC=90°,∵∠AEB+∠BAE=90°,∴∠FEC=∠BAE,∴△AHE≌△ECF(ASA),∴AE=EF;(2)如图3,在BA的延长线上取一点N,使AN=CE,连接NE.∵AB=BC,AN=CE,∴BN=BE,∴∠N=∠FCE=45°,∵四边形ABCD是正方形,∴AD∥BE,∴∠DAE=∠BEA,∴∠NAE=∠CEF,在△ANE和△ECF中,,∴△ANE≌△ECF(ASA)∴AE=EF,故答案是:是;(3)如图4,在BA上截取BH=BE,连接HE,过点F作FM⊥x轴于M,设点E(a,0),∴BE=a=BH,∴HE=a,由(1)可得△AHE≌△ECF,∴CF=HE=a,∵CF平分∠DCM,∴∠DCF=∠FCM=45°,∵FM⊥CM,∴∠CFM=∠FCM=45°,∴CM=FM==a,∴BM=1+a,∴点F(1+a,a),∵点F恰好落在直线y=﹣2x+3上,∴a=﹣2(1+a)+3,∴a=,∴点E(,0).13.解:(1)∵A(﹣1,3),B(3,3),C(2,﹣2),3×(﹣1+2)=3,3×(3﹣2)=3,∴点B是A、C的“美妙点”;(2)设点D(m,m+3),①∵M是点D、E的“美妙点”.∴x=3(3+m)=9+3m,y=3(0+m+3)=m+9,∴m=x﹣3,∴y=(x﹣3)+9=x+;②由①得,点M(9+3m,m+9),如图1,当∠MEF为直角时,则点M(3,6),∴9+3m=3,解得:m=﹣2;∴点D(﹣2,2);当∠MFE是直角时,如图2,则9+3m=m,解得:m=﹣,∴点D(﹣,);综上,点D(﹣2,2)或(﹣,).14.解:(1)①由题意得:1+=2,2×1+2=4,则点P'的坐标为P'(2,4),故答案为:(2,4);②设点P的坐标为P(a,b),由题意得:,可得4k=4,即k=1,∴a+b=4,当a=1时,b=4﹣a=3,此时点P的坐标为P(1,3),故答案为:(1,3)(答案不唯一);(2)由题意,设点P的坐标为P(c,0),且c>0则点P'的坐标为P′(c+,kc+0),即P'(c,kc),∴OP=c,PP'=|kc|=|k|c,∵OP=2PP',∴c=2|k|c,即2|k|=1,解得k=±,故答案为:±;(3)设点B的坐标为B(x,y),则点A的坐标为A(x﹣y,﹣x+y),∵点A在函数y=x+2+2的图象上,∴−x+y=(x−y)+2+2,整理得:y=x+2,则点B在直线y=x+2上,如图,过点Q作直线y=x+2的垂线,垂足为点B,则此时线段BQ最短,设直线y=x+2与x轴交于点C,与y轴交于点D,则C(﹣2,0),D(0,2),∴OC=OD,∴∠ODC=∠OCD=45°,DQ=2,∴∠BDQ=45°,∴BD=,过点B作BH⊥y轴于H,∴BH=DH=1,∴OH=3,∴B(1,3),∴点A的坐标为A(﹣2,2).15.解:(1)①如图:∵b=﹣2,∴点B的坐标为(﹣2,0),∵点A的坐标为(1,2),∴由矩形的性质可得:点A,B的“相关矩形”的面积=(1+2)×2=6,故答案为:6;②如图:由矩形的性质可得:点A,B的“相关矩形”的面积=|b﹣1|×2=8,∴|b﹣1|=4,∴b=5或b=﹣3,故答案为:5或﹣3;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3,∵点C在直线y=﹣1上,点A,C的“相关矩形”AGCH是正方形,∴正方形AGCH的边长为3,当点C在直线x=1右侧时,如图:∴CG=AG=3,∴C(4,﹣1),设直线AC的表达式为:y=kx+b,则,解得:,∴直线AC的表达式为:y=﹣x+3,当点C在直线x=1左侧时,如图:∴CG=AG=3,∴C(﹣2,﹣1),设直线AC的表达式为:y=k′x+b',则,解得:,∴直线AC的表达式为:y=x+1,综上所述,直线AC的表达式为:y=﹣x+3或y=x+1;16.解:(1)x≠0.故答案为:x≠0.(2)x=0.5时,m=0.25+2=2.25,x=1时,n=1+1=2,故答案为:2.25,1.(3)函数图象如图所示:(4)当x<0时,y随x的增大而减小.(5)观察图象可知方程的所有实数根为x=﹣0.5或1或1.8.故答案为:x=﹣0.5或1或1.8.17.解:(1)过点B分别作x轴、y轴的垂线,垂足为D、C,如答图1.则矩形ODBC为△OAB的投影矩形,∵B(3,5),∴BD=5,OC=3,∴△OAB的投影比k的值为.故答案为:.(2)∵点D在直线y=﹣2x+4上,∴设点D坐标为(m,﹣2m+4),m>0,分以下两种情况:①当0≤m≤2时,如答图2.作投影矩形OCQP,∵OC>QC,∴投影比k=,得m=1.故点D坐标为(1,2);②当2<m≤4时,如答图3.作投影矩形OCMN,∵OC>ON,∴投影比k=,得m=3.故点D坐标为(3,﹣2);③当m>4时,如答图4.作投影矩形OEDF,∵OE=m,OF=2m﹣4,∴OF>OE,∴投影比k=,解此方程无解.∴当m>4时,满足条件的点D不存在.综上所述,点D坐标为(1,2)或(3,﹣2).(3)令y=x+1中y=2,解得x=1.设点P坐标为(m,m+1).①当m≤1时,作投影矩形P AFB,如答图5所示.∵P A=3﹣m,F A=4﹣(m+1)=3﹣m,∴△PEF的投影比k=<2.∴m≤1符合题意;②当1<m<2时,作投影矩形CEFD,如答图6所示.∵EF=4﹣2=2,EC=3﹣m,EF>EC,∴△PEF的投影比k=,∵1<m<2,∴1<k<2.∴当1<m<2时符合题意;③当2<m<3时,作投影矩形GEFH,如答图7所示.∵EF=4﹣2=2,EG=3﹣m,EF>EG,∴△PEF的投影比k=,∵2<m<3,∴k>2,不符合题意;④当m>3时,作投影矩形EIPJ,如答图8所示.∵PI=m+1﹣2=m﹣1,EI=m﹣3,m﹣1>m﹣3,∴△PEF的投影比k=,当m>3时,k<2.符合题意.综上所述,点P的横坐标m的取值范围是m<2或m>3.故答案为:m<2或m>3.18.解:(1)∵==2,==4,∴<,∴D AB=max{|x A﹣x B|,|y A﹣y B|}==4.故答案为:4.(2)如图1,四边形EFGH边上的所有点均为到点A的识别距离为2的点.(3)【解法1】如图2,点C在直线m上,CQ⊥OA于Q,取点C与点A的“识别距离”的最小值时,根据运算定义:若|x A﹣x B|≥|y A﹣y B|,则点A(x A,y A)与B(x B,y B)的“识别距离”D AB=|x A﹣x B|;此时,|x A﹣x B|=|y A﹣y B|,即AQ=CQ,直线m经过原点O,设直线m解析式为y=kx,∵直线m经过(1,1),∴k=1∴直线m解析式为y=x,设点C(x C,y C),则y C=x C,根据识别距离的定义,得:1﹣x C=x C,解得:x C=,∴y C=,∴C(,);如图3,点D在直线n上,DQ⊥OA于Q,取点D与点A的“识别距离”的最小值时,根据运算定义:若|x A﹣x B|≥|y A﹣y B|,则点A(x A,y A)与B(x B,y B)的“识别距离”D AB=|x A﹣x B|;此时,|x A﹣x B|=|y A﹣y B|,即AQ=DQ,直线n经过(﹣2,1),(0,2),可求得直线n解析式为y=x+2,设D(x D,+2),则:1﹣x D=+2解得:x D=,∴y D=,∴D(,);如图4,直线p经过(1,﹣3),(2,﹣1),运用待定系数法可得:直线p解析式为:y =2x﹣5,设点E(x E,2x E﹣5),则:x E﹣1=0﹣(2x E﹣5),解得:x E=2,∴E(2,﹣1).综上所述,C(,),D(,),E(2,﹣1).【解法2】如图2,∵直线m经过(0,0),(1,1),∴直线m上的点横坐标=纵坐标,∵点C在直线m上,∴C(a,a),∴|a﹣1|=|a﹣0|,∴a﹣1=a或a﹣1=﹣a,解得:a=,∴C(,);如图3,∵直线n经过(0,2),(2,3),∴直线n上的点变化规律为横坐标±2,纵坐标±1,∴D(0+b,2+b),∴|b﹣1|=|2+b﹣0|,∴b﹣1=2+b或b﹣1=﹣(2+b),解得:b=6(舍去)或b=﹣,∴D(,);如图4,直线p经过(1,﹣3),(2,﹣1),∴直线n上的点变化规律为横坐标±1,纵坐标±2,∴E(1+k,﹣3+2k),∴|1+k﹣1|=|﹣3+2k﹣0|,∴k=2k﹣3或k=3﹣2k,解得:k=3(舍去)或k=1,∴E(2,﹣1);综上所述,C(,),D(,),E(2,﹣1).19.解:(1)依题意补全的图形如图1:(2)当x=40°时,即∠APC=40°,从图1看∠APD=90°,∠P AD=∠BAC=20°,∴∠PCD=∠P AD+∠APC=60°,则∠PDC=90°﹣60°=30°=y,同理可得:x=60时,y=10,x=80时,y=10,x=100时,y=30,故答案为:30,10,10,30;(3)①描点连线绘出函数图象如下(图2):②从图上看,当y=50时,x=20或120,故答案为20或120;(4)当x>70时,从图象看,函数为一次函数,设函数的表达式为y=kx+b,将(70,0)、(80,10)代入上式并解得,故函数的表达式为y=x﹣70;当x<70时,同理可得:函数的表达式为y=﹣x+70,故答案为:y=.20.解:(1)由题意得:x+2≥0且x≠0,解得x≥﹣2且x≠0,故答案为x≥﹣2且x≠0;1(2)当x=﹣1时,y===﹣1=m,故答案为﹣1;(3)描点连线绘出如下函数图象:(4)从图象看,在每个象限内,函数y随x增大而减小,故答案为在每个象限内,函数y随x增大而减小(答案不唯一);(5)在(3)的基础上,画出y=x+4的图象,从图象看,两个函数有1个交点,故答案为1.。

中考一次函数提高练习题(附详解)

中考一次函数提高练习题(附详解)

中考复习一次函数提高练习题(附详解)1.东坡商贸公司购进某种水果的成本为20元/kg ,经过市场调研发现,这种水果在未来48天的销售单价p (元/kg )与时间t (天)之间的函数关系式为:130(14)4148(2548)2t t t p t t t ⎧+≤≤⎪⎪=⎨⎪-+<≤⎪⎩,为整数,为整数,且其日销售量y (kg )与时间t (天)的关系如下表:(1)已知y 与t 之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg 水果就捐赠n 元利润(n <9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求n 的取值范围.2.如图,在平面直角坐标系中,直线l所在的直线的解析式为y=x,点B坐标为(10,0)过B做BC⊥直线l,垂足为C,点P从原点出发沿x轴方向向点B运动,速度为1单位/s,同时点Q从点B出发沿B→C→原点方向运动,速度为2个单位/s,当一个动点到达终点时,另一个动点也随之停止运动.(1)OC= ,BC= ;(2)当t=5(s)时,试在直线PQ上确定一点M,使△BCM的周长最小,并求出该最小值;(3)设点P的运动时间为t(s),△PBQ的面积为y,当△PBQ存在时,求y与t的函数关系式,并写出自变量t的取值范围.3.如图,以O为原点的直角坐标系中,A点的坐标为(0,1),直线x=1交x轴于点B.点为线段AB 上一动点,作直线PC⊥PO,交直线x=1于点C.过P点作直线MN平行于x轴,交y轴于点M,交直线x=1于点N.记AP=x,△PBC的面积为S.(1)当点C在第一象限时,求证:△OPM≌△PCN;(2)当点P在线段AB上移动时,点C也随之在直线x=1上移动,求出S与x之间的函数关系式,并写出自变量的取值范围;(3)当点P在线段AB上移动时,△PBC是否可能成为等腰三角形?如果可能,直接写出所有能使△PBC 成为等腰三角形的x的值;如果不可能,请说明理由.4.如图①,已知直线132y x分别交x轴,y轴于点A,点B.点P是射线..AO上的一个动点.把线段PO绕点P逆时针...旋转90°得到的对应线段为PO’,再延长PO’到C使CO’ = PO’ , 连结AC,设点P坐标为(m,0),△APC 的面积为S.(1)直接写出OA和OB的长,OA的长是, OB的长是;(2)当点P在线段..OA上(不含端点)时,求S关于m的函数表达式;(3)当以A,P,C为顶点的三角形和△AOB相似时,求出所有满足条件的m的值;(4)如图②,当点P关于OC的对称点P’落在直线AB上时,m的值是.5.甲、乙两人从少年宫出发,沿相同的路分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒;(2)乙跑步的速度是多少?乙在途中等候甲用了多长时间?(3)甲出发多长时间第一次与乙相遇?此时乙跑了多少米?6.已知到直线l 的距离等于a 的所有点的集合是与直线l 平行且距离为a 的两条直线l 1、l 2(图①).(1)在图②的平面直角坐标系中,画出到直线22y x =+的距离为1的所有点的集合的图形,并写出该图形与y 轴交点的坐标;(2)试探讨在以坐标原点O 为圆心,r 为半径的圆上,到直线2y x =+1的点的个数与r 的关系;(3)如图③,若以坐标原点O 为圆心,2为半径的圆上有两个点到直线y x b =+的距离为1,则 b 的取值范围为____________________________________________.7.为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/时;当车流密度为20辆/千米时,车流速度为80千米/时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求彩虹桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使彩虹桥上车流速度大于40千米/时且小于60千米/时,应控制彩虹桥上的车流密度在什么范围内?(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.B,8.(12分)如图,梯形OABC中,OA在x轴上,CB∥OA,∠OAB=90°,O为坐标原点,(4,4)BC ,动点Q从点O出发,以每秒1个单位的速度沿线段OA运动,到点A停止,过点Q作QP⊥2x轴交OC或CB于点P,以PQ为一边向右作正方形PQRS,设运动时间为t(秒),正方形PQRS与梯形OABC重叠面积为S(平方单位).(1)求tan∠AOC.(2)求S与t的函数关系式.(3)求(2)中的S的最大值.(4)连接AC,AC的中点为M,请直接写出在正方形PQRS变化过程中,t为何值时,△PMS为等腰三角形.9.理数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:思路一如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,323+23(23)(23)-+-=23-.思路二利用科普书上的和(差)角正切公式:tan(α±β)=tan tan1tan tanαβαβ±.假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)=tan60tan451tan60tan45-+=3113-+23思路三在顶角为30°的等腰三角形中,作腰上的高也可以…思路四…请解决下列问题(上述思路仅供参考).(1)类比:求出tan75°的值;(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;(3)拓展:如图3,直线112y x=-与双曲线4yx=交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.10.(15分)如图,二次函数2122y x =-+与x 轴交于A 、B 两点,与y 轴交于C 点,点P 从A 点出发,以1个单位每秒的速度向点B 运动,点Q 同时从C 点出发,以相同的速度向y 轴正方向运动,运动时间为t 秒,点P 到达B 点时,点Q 同时停止运动,设PQ 交直线AC 于点G ,(1)求直线AC 的解析式;(2)设△PQC 的面积为S ,求S 关于t 的函数解析式;(3)在y 轴上找一点M ,使△MAC 和△MBC 都是等腰三角形,直接写出所有满足条件的M 点的坐标;(4)过点P 作PE ⊥AC ,垂足为E ,当P 点运动时,线段EG 的长度是否发生改变,请说明理由,参考答案1.(1)y=120-2t ,60;(2)在第10天的销售利润最大,最大利润为1250元;(3)7≤n <9.试题解析:(1)依题意,设y=kt+b ,将(10,100),(20,80)代入y=kt+b ,得:100=108020k bk b +⎧⎨=+⎩,解得:2120k b =-⎧⎨=⎩ ,∴日销售量y (kg )与时间t (天)的关系 y=120-2t .当t=30时,y=120-60=60.答:在第30天的日销售量为60千克.(2)设日销售利润为W 元,则W=(p-20)y .当1≤t ≤24时,W=(t+30-20)(120-t )=2101200t t -++ =2(10)1250t --+ 当t=10时,W 最大=1250.当25≤t ≤48时,W=(-t+48-20)(120-2t )=21165760t t -+ =2(58)4t -- 由二次函数的图像及性质知:当t=25时,W 最大=1085.∵1250>1085,∴在第10天的销售利润最大,最大利润为1250元.(3)依题意,得:W=(t+30-20-n )(120-2t )= 22(5)1200t n t n -+++- ,其对称轴为y=2n+10,要使W 随t 的增大而增大,由二次函数的图像及性质知:2n+10≥24,解得n ≥7. 又∵n <0,∴7≤n <9.考点:一次函数的应用;二次函数的最值;最值问题;分段函数;二次函数的应用.2.(1)8,6;(2)16;(3)y=.解:(1)∵直线l 所在的直线的解析式为y=x ,BC ⊥直线l , ∴=.又∵OB=10,BC=3x ,OC=4x , ∴(3x )2+(4x )2=102, 解得x=2,x=﹣2(舍), OC=4x=8,BC=3x=6, 故答案为:8,6; (2)如图1:,PQ 是OC 的垂直平分线,OB 交PQ 于P 即M 点与P 点重合,M 与P 点重合时△BCM 的周长最小, 周长最小为=BM+PM+BC=OB+BC=10+6=16;(3)①当0<t≤3时,过Q 作QH ⊥OB 垂足为H ,如图2:,PB=10﹣t,BQ=2t,HQ=2t•sinB=2t•cos∠COB=2t×=t, y=PB•QH=(10﹣t)t=﹣t2+8t;②当3<t<5时,过Q作QH⊥OB垂足为H,如图3:,PB=10﹣t,OQ=OC+BC﹣2t=14﹣2t,QH=OQ•sin∠QOH=(14﹣2t)=(14﹣2t)=﹣t,y=PB•QH=(10﹣t)(﹣t)=t2﹣t+42,综上所述y=.3.(1)见解析;(2)S=x2﹣x+(<x<).(3)点P的坐标为(0,1)或(,1﹣).证明:(1)如图,∵OM∥BN,MN∥OB,∠AOB=90°∴四边形OBNM为矩形∴MN=OB=1,∠PMO=∠CNP=90°∵OA=OB,∴∠1=∠3=45°∵MN∥OB∴∠2=∠3=45°∴∠1=∠2=45°,∴AM=PM ∴OM=OA﹣AM=1﹣AM,PN=MN﹣PM=1﹣PM∴OM=PN ∵∠OPC=90°,∴∠4+∠5=90°,又∵∠4+∠6=90°,∴∠5=∠6 ∴△OPM≌△PCN(2)解:①点C在第一象限时,∵AM=PM=APsin45°=x ∴OM=PN=1﹣x,∵△OPM≌△PCN ∴CN=PM=x,∴BC=OM﹣CN=1﹣x﹣x=1﹣x,∴S=S△PBC=BC•PN=×(1﹣x)•(1﹣x)=x2﹣x+(0≤x<).②如图1,点C在第四象限时,∵AM=PM=APsin45°=x ∴OM=PN=1﹣x,∵△OPM≌△PCN ∴CN=PM=x,∴BC=CN﹣OM=x﹣(1﹣x)=x﹣1,∴S=S△PBC=BC•PN=×(1﹣x)•(x﹣1)=x2﹣x+(<x<).(3)解:△PBC可能成为等腰三角形①当P与A重合时,PC=BC=1,此时P(0,1)②如图,当点C在第四象限,且PB=CB时有BN=PN=1﹣x ∴BC=PB=PN=﹣x ∴NC=BN+BC=1﹣x+﹣x由(2)知:NC=PM=x ∴1﹣x+﹣x=x 整理得(+1)x=+1 ∴x=1∴PM=x=,BN=1﹣x=1﹣,∴P(,1﹣)由题意可知PC=PB不成立∴使△PBC为等腰三角形的点P的坐标为(0,1)或(,1﹣).4.(1)6,3;(2)26s m m;(3)当以A,P,C为顶点的三角形和△AOB相似时,m=1.2或m=3或 m=-2;(4)30 11.试题解析:(1)直线132y x 分别交x 轴,y 轴于点的坐标分别为A (6,0),B (0,3),所以OA=6,OB=3;(2)∵点P 坐标为(m ,0),∴AP=6-m ,PC=2m ,∴12APCSAP PC =1(6)22m m =26m m ,即26s m m ;(3)当0≤ m<6时,如图①,若△APC ∽△AOB ,则有AP PC AO OB ,即6263mm,解得m=1.2,如图③,若△CPA ∽△AOB ,则有PCAP AO OB ,即2663m m,解得m=3;当m<0时,如图④,若△APC ∽△AOB ,则有AP PC AO OB =,即6263m m--=,解得m=-2, 图④如图⑤,若△CPA ∽△AOB ,则有PC AP AO OB =,即2663m m --=,m 的值不存在, 图⑤综上所述,当以A ,P ,C 为顶点的三角形和△AOB 相似时,m=1.2或m=3或 m=-2.(4)连接PP ′,过点P ′作P ′E ⊥AO ,易得PD=255m ,PP ′=455m ,由PDO PEP ∽得,85PEm ,35OE m ,在Rt △PEP ′中,由勾股定理得,P ′E=45m ,所以点P ′(35m ,45m ),代入直线132yx 得,m=3011.5.(1)900,1.5米/秒;(2)100秒.(3)甲出发250秒和乙第一次相遇,此时乙跑了375米. 试题解析:(1)根据图象可以得到:甲共跑了900米,用了600秒,则速度是:900÷600=1.5米/秒; (2)甲跑500秒时的路程是:500×1.5=750米,则CD 段的长是900-750=150米,时间是:560-500=60秒,则速度是:150÷60=2.5米/秒;甲跑150米用的时间是:150÷1.5=100秒,则甲比乙早出发100秒.乙跑750米用的时间是:750÷2.5=300秒,则乙在途中等候甲用的时间是:500-300-100=100秒. (3)甲每秒跑1.5米,则甲的路程与时间的函数关系式是:y=1.5x ,乙晚跑100秒,且每秒跑2.5米,则AB 段的函数解析式是:y=2.5(x-100), 根据题意得:1.5x=2.5(x-100),解得:x=250秒. 乙的路程是:2.5×(250-100)=375(米).答:甲出发250秒和乙第一次相遇,此时乙跑了375米. 考点:一次函数的应用.6.(1)(02,(0,32;(2)当0<r <1时,0个;当r=1时,1个;当1<r <3时,2个;当 r=3时,3个;当3<r 时,4个;(3232b <<322b -<<-试题解析:解:(1)如图,2y x =+x=0时,y=22B 的坐标是(0,2,令y=0,0=x+22x=22-,则A 的坐标是(22-,0).则OA=OB=2,即△ABC 是等腰直角三角形,过B 作BC ⊥l 1于点C ,则BC=1.则△BCD 是等腰直角三角形,BC=CD=1,则2D 的坐标是(0,32,同理,E 的坐标是(0,2.则与y 轴交点的坐标为(020,32;(2)在等腰直角△AOB 中,22OA OB +22(2)(2)+=2. 过O 作OF ⊥AB 于点F .则OF=12AB=1. 当0<r <1时,0个; 当r=1时,1个; 当1<r <3时,2个; 当 r=3时,3个; 当3<r 时,4个.(3)OM 是第一、三象限的角平分线,当OM=2﹣1=1时,则l3与y 轴的交点G ,G 的坐标是(02,即2同理当ON=3时,b=32当直线在原点O 下方时,b=2b=﹣32232b <<或322b -<<-时,2为半径的圆上只有两个点到直线y=x+b 的距离为1.故答案为:232b <<或322b -<<-.7.(1)48千米/时;(2)应控制大桥上的车流密度在70<x <120范围内;(3)y 取得最大值是每小时4840.试题解析:(1)设车流速度v 与车流密度x 的函数关系式为v kx b =+,由题意,得:80200220k bk b =+⎧⎨=+⎩,解得:2588k b ⎧=-⎪⎨⎪=⎩,∴当20≤x≤220时,2885v x =-+,当x=100时,v=2100885-⨯+=48(千米/时); (2)由题意,得:288405288605x x ⎧-+>⎪⎪⎨⎪-+<⎪⎩,解得:70<x <120,∴应控制大桥上的车流密度在70<x <120范围内;(3)设车流量y与x之间的关系式为y=vx ,当20≤x≤220时,2(88)5y x x =-+=22(110)48405x --+,∴当x=110时,y 最大=4840,∵4840>1600,∴当车流密度是110辆/千米,车流量y 取得最大值是每小时4840辆.考点:1.二次函数的应用;2.二次函数的最值;3.最值问题;4.综合题;5.压轴题.8.(1)2;(2)当034≤≤x 时, S=4t 2;当234≤≤x 时,S =22t -8t +;当42≤≤x 时,S = -4t+16; 试题解析:解:(1)过C 作CD ⊥x 轴于D ,则OD=2,CD=4,所以tan ∠AOC=2;(2)解:当运动到R 与A 重合时,此时OQ =t,AQ = PQ = 4-t , ∴24tan =-==∠t t OQ PQ AOC 解得:t=34, 当034≤≤x 时, S=2PQ =(2 OQ )2 =(2t )2 =4t 2; 当234≤≤x 时,S =PQ·AQ = 2t·(4-t ) =22t -8t +; 当42≤≤x 时,S = 4 AQ = 4(4-t ) = -4t+16;(3)解:当034≤≤x 时,t=34时,964=最大t ,当234≤≤x 时,t = 2, 8=最大t , 当 42≤≤x 时, t = 2, 8=最大t , 综上,t =2时,S 最大=8.(4)9132131-=t ;232=t ;=3t 132-. 9.(1)2+(2)60;(3)能相交,P (﹣1,﹣4)或(43,3). 试题解析:(1)方法一:如图1,在Rt △ABC 中,∠C=90°,∠ABC=30°,延长CB 至点D ,使BD=BA ,连接AD .设AC=1,则BD=BA=2,.tan ∠DAC=tan75°=DC AC =DB BC AC+=2+方法二:tan75°=tan(45°+30°)=tan 45tan 301tan 45tan 30+-=1+=2+ (2)如图2,在Rt △ABC 中,=sin ∠BAC=301602BC AC ==,即∠BAC=30°.∵∠DAC=45°,∴∠DAB=45°+30°=75°.在Rt △ABD 中,tan ∠DAB=DBAB,∴DB=AB•tan∠DAB=2+=90,∴DC=DB ﹣BC=9030-=60. 答:这座电视塔CD 的高度为(60)米;(3)①若直线AB 绕点C 逆时针旋转45°后,与双曲线相交于点P ,如图3.过点C 作CD ∥x 轴,过点P 作PE ⊥CD 于E ,过点A 作AF ⊥CD 于F .解方程组:1124y x y x ⎧=-⎪⎪⎨⎪=⎪⎩,得:41x y =⎧⎨=⎩或22x y =-⎧⎨=-⎩,∴点A (4,1),点B (﹣2,﹣2).对于112y x =-,当x=0时,y=﹣1,则C (0,﹣1),OC=1,∴CF=4,AF=1﹣(﹣1)=2,∴tan ∠ACF=2142AF CF ==,∴tan ∠PCE=tan (∠ACP+∠ACF )=tan (45°+∠ACF )=tan 45tan 1tan 45tan ACF ACF +∠-∠=112112+-=3,即PE CE =3.设点P 的坐标为(a ,b ),则有:413ab b a =⎧⎪+⎨=⎪⎩,解得:14a b =-⎧⎨=-⎩或433a b ⎧=⎪⎨⎪=⎩,∴点P 的坐标为(﹣1,﹣4)或(43,3); ②若直线AB 绕点C 顺时针旋转45°后,与x 轴相交于点G ,如图4.由①可知∠ACP=45°,P (43,3),则CP ⊥CG .过点P 作PH ⊥y 轴于H ,则∠GOC=∠CHP=90°,∠GCO=90°﹣∠HCP=∠CPH ,∴△GOC ∽△CHP ,∴GO OC CH HF =.∵CH=3﹣(﹣1)=4,PH=43,OC=1,∴134443GO ==,∴GO=3,G (﹣3,0).设直线CG 的解析式为y kx b =+,则有:301k b b -+=⎧⎨=-⎩,解得:131k b ⎧=-⎪⎨⎪=-⎩,∴直线CG 的解析式为113y x =--.联立:1134y x y x ⎧=--⎪⎪⎨⎪=⎪⎩,消去y ,得:4113x x =--,整理得:23120x x ++=,∵△=234112390-⨯⨯=-<,∴方程没有实数根,∴点P 不存在.综上所述:直线AB 绕点C 旋转45°后,能与双曲线相交,交点P 的坐标为(﹣1,﹣4)或(43,3).考点:1.反比例函数综合题;2.解一元二次方程-公式法;3.反比例函数与一次函数的交点问题;4.相似三角形的判定与性质;5.锐角三角函数的定义;6.阅读型;7.探究型;8.压轴题.10.(1)2y x =+;(2)221(02)21(24)2t t t s t t t ⎧-+<<⎪⎪=⎨⎪-<≤⎪⎩ ;(3)一共四个点,(0,222+),(0,0),(0,222-),(0,-2);(4)当P 点运动时,线段EG 的长度不发生改变,为定值2.试题解析:(1)y=-x 2+2,x=0时,y=2,y=0时,x=±2,∴A (-2,0),B (2,0),C (0,2), 设直线AC 的解析式是y=kx+b ,代入得:,解得:k=1,b=2,即直线AC的解析式是y=x+2;(2)当0<t<2时, OP=(2-t),QC=t,∴△PQC的面积为:S=(2-t)t=-t2+t,当2<t≤4时, OP=(t-2),QC=t,∴△PQC的面积为:S=(t-2)t=t2-t,∴;(3)当AC=CM=BC时,M的坐标是:(0,),(0,-2);当AM=BM=CM时,M的坐标是:(0,0),(0,);一共四个点,(0,),(0,0),(0,),(0,-2);(4)当0<t<2时,过G作GH⊥y轴,垂足为H.由AP=t,可得AE=.∵GH∥OP ∴即=,解得GH=,所以GC=GH=.于是,GE=AC-AE-GC==.即GE的长度不变.当2<t≤4时,过G作GH⊥y轴,垂足为H.由AP=t,可得AE=.由即=,∴GH(2+t)=t(t-2)-(t-2)GH,∴GH(2+t)+(t-2)GH=t(t-2),∴2tGH=t(t-2),解得GH=,所以GC=GH=.于是,GE=AC-AE+GC=2-t+=,即GE的长度不变.综合得:当P点运动时,线段EG的长度不发生改变,为定值.。

(完整)一次函数综合提高练习题(附详解)

(完整)一次函数综合提高练习题(附详解)
∵k=-10<0
∴w随m的增大而减小
当m=80时,w有最大值为1200
5.(1)这批赈灾物资运往甲、乙两县的数量分别是180吨、100吨.(2)见解析;(3)该公司承担运送这批赈灾物资的总费用最多是60390元.
【解析】解:(1)设这批赈灾物资运往乙县的数量是a吨,则运往甲县的数量是(2a﹣20)吨,
解得:x=﹣1,
∵0<x<4,
∴x=﹣1不合题意,
故△OAP的面积不能够达到30.
考点:一次函数的性质;一次函数图象上点的坐标特征.
7.(1)A种树每棵100元,B种树每棵80元;(2)当购买A种树木75棵,B种树木25棵时,所需费用最少,最少为8550元.
试题解析:(1)设A种树每棵x元,B种树每棵y元,依题意得: , 解得 .
(1)求A种,B种树木每棵各多少元?
(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.
8.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y,图中的折线表示y与x之间的函数关系.
则a+2a﹣20=100+100+80,
a=100,
2a﹣20=2×100﹣20=180,
答:这批赈灾物资运往甲、乙两县的数量分别是180吨、100吨.
(2)根据题意得: ,
解①得:x>40,
解②得:x≤45,
∴不等式组的解集为:40<x≤45,
整数解为:41、42、43、44、45;
则A、B两地的赈灾物资运往甲、乙两县的方案有五种;

一次函数综合复习提高题及答案(推荐文档)

一次函数综合复习提高题及答案(推荐文档)

2021年八年级数学下册一次函数综合复习题1.如图是某蓄水池的横断面示意图, 分深水区和浅水区, 如果向这个蓄水池中以固定的水流量时间注水的体积〕注水,下面图中能大致表示水的深度h和时间t之间关系的图象是〔5 .一次函数y=kx + b中y随x的增大而减小,且kb <0,那么直线y=kx+b的图象经过〔〕A.第一二三象限B.第一三四象限C.第一二四象限D.第二三四象限6 .一次函数y=-2x+1通过平移后得到直线y=-2x+7,那么以下说法正确的选项是〔〕A.向左平移3个单位B. 向右平移3个单位C.向上平移7个单位D.向下平移6个单位7 .直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ ABE等腰三角形,那么满足条件的三角形最多有〔〕A. 5 个B.6个C.7个D.8个8 .当直线y=x+2?上的点在直线y=3x-2上相应点的上方时,那么〔〕A. x <0B.x <2C.x >0D.x >29 .如图,一次函数y=kx+b的图象与y轴交于点〔0,1〕,那么关于x的不等式kx + b>1的解集是〔〕A. x>0 B , x<0 C , x>1 D . xv 1 〔单位〕2 .一次函数y=-2x+1的图象不经过〔〕A.第一象限B.第二象限C.第三象限D.第四象限3 .点M 1, a〕和点N〔2, b〕是一次函数y= - 2x+1图象上的两点,那么a与b的大小关系是〔A. a >bB.4.以下图中表示一次函数a=b C . a v b D.y=mx+n与正比例函数以上都不对y=mnx〔m, n是常数〕图像的是〔10.A, B两点在一次函数图象上的位置如图正确的选项是〔〕A.a >0B.a <0 ,两点的坐标分别为A〔x + a, y + b〕, B〔x , y〕,以下结论C.B=0D.ab <011 .如图,函数y=2x 和y=ax+4的图象相交于点 A 〔m, 3〕,那么不等式2x>ax+4的解集为〔〕12 .如图,直线y= - x+m^j y=nx+4n 〔 nw 0〕的交点的横坐标为- 2,那么关于x 的不等式-x+m>nx+4nA. - 1 B . - 5 C. - 4 D. - 313 .把直线y= - x+3向上平移m 个单位后,与直线y=2x+4的交点在第一象限,那么m 的取值范围是〔〕A. 1V m< 7B. 3V m< 4C. m> 1D. m< 414 .在平面直角坐标系中,线段 AB 的端点A 〔-2 , 4〕,B 〔4 , 2〕,直线y=kx-2与线段AB 有交点,那么k 的值不可能是〔 〕A.5B.-5C.-2D.315 .如图,在平面直角坐标系中, 直线y=-x- 2与矩形ABCM 边OC BC 分别交于点E 、F,OA=333OC=4那么△ CEF 的面积是〔 〕-4 A. 6 B . 3 C . 12 D .-3,调进物资共用8小时.掉进物资4小时后同时开始调出物资〔调进与调出物2 2>3>0的整数解为〔16.某仓库调拨一批物资w〔吨〕与时间t〔小时〕之间的函数关系如下图,那么这批物资资的速度均保持不变〕.该仓库库存物资从开始调进到全部调出所需要的时间是小时()C.8.8 小时D.9 小时A.8.4 小时B.8.618.如图1,在Rt^ABC 中,/ACB=9C 0,点P 以每秒1cm 的速度从点A 出发,沿折线AOCB 运动,到点B 停止.过点P 作PD!AB 于点D,PD 的长y 〔cm 〕与点P 的运动时间x 〔秒〕的函数图象如图2所示.当点P 运动5秒时,PD 的长是〔 〕A. 24 V3 B . 4873 C , 96 <3 D . 192 北5, 0〕,直线y=x+b 〔b>0〕与y 轴交于点B,连接AB,假设/ a=750,贝U b 的C.1.8cmD.2cm19.如图,直线l:y= W3x,过点A 〔0,1 〕作y 轴的垂线交直线 y 轴于点A;过点A I 作y 轴的垂线交直线于点 B,过点B I 作直线 l 于点B,过点B 作直线l 的垂线交 l 的垂线交y 轴于点急;…;按此作法继续下去,那么点 A 的坐标为〔 〕 (0,128) C. (0,256 ) D. (0,512)」@x+1交x 轴于点A,交y 轴于点B,点A 、A 2、A,…在x3轴上,点 B I 、R 、B 3,…在直线 l 上.假设△OBA, △ARAa, △A 2BA 3,…均为等边三角形 ,那么4A5B 6A 5 的周长是〔〕17.如图,A 点坐标为〔 值为〔〕A.1.2cmB.1.5cmA. (0,64)B. 20.如图,在平面直角坐标系中,直线l:y=21 .函数y =7工中的自变量x 的取值范围是 x 1222 .函数y =(m _5)x m 4m 工+m_2假设它是一次函数,那么 m= ;y 随x 的增大而.23 .一次函数y=(k+3)x+2k-10,y 随x 的增大而增大,且图象不经过第二象限,那么k 的取值范围 为 ^24 .A(x i ,y i ),B(x 2,y 2)是一次函数y=kx+3(k<0)图象上的两个不同的点 ,假设t=(x i -x 2)(y i -y 2), 那么t 0.25 .直线y=kx-6与两坐标轴所围成的三角形面积等于12,那么直线的表达式为26 .如图,一条直线经过点 A (0, 2)、点B (1, 0),将这条直线向左平移与 x 轴、y 轴分别交与点C 、点D.假设DB=DC ,那么直线CD 的函数解析式为 .27 .如图,点A 的坐标为(一2, 0),点B 在直线y = x —4上运动,当线段 AB 最短时,点B 的坐标28.直线 y=kx+b ( k > 0)与 y=mx+n ( m< 0)相交于点(- 积为4,那么b-n 等于.2, 0),且两直线与y 轴围城的三角形面29.如图,经过点 B (-2, 0)的直线y=kx+b 与直线y=4x+2相交于点A(—1, -2),那么不等式DO30 .一次函数y=kx+b ,当1WxW4时,3<y<6,那么b的值是.331 .过点〔-1, 7〕的一条直线与x轴,y轴分别相交于点A, B,且与直线y=_-x+1平行.那么在线2段AB上,横、纵坐标都是整数的点的坐标是 .32 .两个一次函数y1 =x+3, y2 =-2x+1 .假设无论x取何彳K, y总取y1,y2中的最小值,那么y的最大值为 .33 .甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500 m,先到终点的人原地休息.已知甲先出发2 s.在跑步过程中,甲、乙两人的距离y〔m〕与乙出发的时间t〔s〕之间的关系如下图, 给出以下结论:①a=8;②b=92;③c=123.其中正确的选项是/,米/V34 .直线y=;〔n±Dx+'〔n为正整数〕与坐标轴围成的三角形的面积为S n,n 2 n 2贝U Si +S2+S3+ …+4016=.35 .y-2与2x+3成正比例,当x=1时,y=12,求y与x的函数关系式.36 .一个有进水管与出水管的容器, 从某时刻开始的3分内只进水不出水, 在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y 〔单位:升〕与时间x 〔单位:分〕之间的关系如下图.当容器内的水量大于5升时,求时间x的取值范围.37 .某花农要将规格相同的800件水仙花运往A, B, C三地销售,要求运往C地的件数是运往A地件数白3倍,各地的运费如下表所示:〔1〕设运往A地的水仙花x 〔件〕,总运费为y 〔元〕,试写出y与x的函数关系式;〔2〕假设总运费不超过12000元,最多可运往A地的水仙花多少件?38.某商场方案购进A, B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:〔1〕假设商场预计进货款为3500元,那么这两种台灯各购进多少盏?〔2〕假设商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?39.小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.以下图是小文与家的距离y (米)关于时间x (分钟)的函数图象.请你根据图象中给出的信息,解答以下问题:(1)小文走了多远才返回家拿书?(2)求线段AB所在直线的函数解析式;(3)当x=8分钟时,求小文与家的距离.♦p侏)40 .小明用的练习本可在甲、乙两个商店内买到.两个商店的标价都是每个练习本1元.甲商店的优惠条件是:购置10本以上,从第11本开始按标价的70砧;乙商店的优惠条件是:从第1本开始就按标价的85砧.(1)分别写出甲乙两个商店中,收款y(元)与购置本数x(本)之间的函数关系式,并写出它们的取值范围;(2)小明如何选择适宜的商店去购置练习本?请根据所学的知识给他建议^41 .某商店欲购进甲、乙两种商品,甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求这两种商品的进价.(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?42.1号探测气球从海拔5 m处出发,以1 m/min的速度上升.与此同时,2号探测气球从海拔15 m 处出发,以0.5 m/min的速度上升.两个气球都匀速上升了50 min.设气球上升时间为x min (0WxW 50).(1)根据题意,填写下表:(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度? 如果不能,请说明理由.(3)当30WxW50时,两个气球所在的位置的海拔最多相差多少米?43.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段 OA 表示货 车离甲地距离y 〔千米〕与时间x 〔小时〕之间的函数关系;折线 BCD 表示轿车离甲地距离 y 〔千米〕 〔小时〕之间的函数关系.请根据图象解答以下问题: 轿车到达乙地后,货车距乙地多少千米 ? 求线段CD 对应的函数解析式; 轿车到达乙地后,马上沿原路以 CD 段速度返回,求轿车从甲地出发后多长时间再与货车相遇 44.某文具商店销售功能相同的两种品牌的计算器 ,购置2个A 品牌和3个B 品牌的计算器共需156 元;购置3个A 品牌和1个B 品牌的计算器共需122元. 〔1〕求这两种品牌计算器的单价;〔2〕学校开学前夕,该商店对这两种计算器开展了促销活动,具体方法如下 :A 品牌计算器按原价的八折销售,B 品牌计算器5个以上超出局部按原价的七折销售.设购置个x 个A 品牌的计算器需要y 1元,购置x 个B 品牌的计算器需要 y 2元,分别求出y 1、y 2关于x 的函数关系式; 〔3〕小明准备联系一局部同学集体购置同一品牌的计算器,假设购置计算器的数量超过 5个,购置哪种品牌的计算器更合算?请说明理由.与x (1) (2)(3)45.A市和B市分别库存某种机器12台和6台,现决定支援给C市10台和D市8台.?从A市调运一台机器到C市和D市的运费分别为400元和800元;从B市调运一台机器到C市和D市的运费分别为300元和500元.(1)设B市运往C市机器x台,总运费为y元,?求总运费y关于x的函数关系式.(2)假设要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?46.如图,等腰直角^ ABC的边长与正方形MNPQ勺边长均为12cm,AC与MN在同一条直线上,开始时,A点与M点重合,让△ ABC向右运动,最后A点与N点重合.(1)试写出重叠局部面积S(cm2)与MA的长度x(cm)之间的函数解析式;(2)当MA=4cm^,重叠局部的面积是多少?(3)当MA勺长度是多少时,等腰直角^ ABC与正方形重叠局部以外的四边形BCMD勺面积与重叠局部的面积的笔直为5:4 ?47.为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购置商品房的政策性方案.根据这个购房方案:(1)假设某三口之家欲购置120平方米的商品房,求其应缴纳的房款;(2)设该家庭购置商品房的人均面积为x平方米,缴纳房款y万元,t#求出y关于x的函数关系式;⑶假设该家庭购置商品房的人均面积为50平方米,缴纳房款为y万元,且57<y<60时,求m的取值范围.48.一次函数y=kx+b的图象经过点A (2, 0)与B (0, 4).(1)a=; b= . 图象经过第象限;(2)当-2 w x w 4时,对应的函数值y取值范围为 ;(3)假设点P在此直线上,当S、OB=2S A OAE B^求点P的坐标;(4)当点P在线段AB上运动时,设点P的横坐标为t, 4OAP的面积为S,请找出S与t的函数关系式,并写出自变量t的取值范围.49.如图,矩形ABCD&坐标系中,A(1 , 1),C(5 , 3),P在BC上从B点出发,沿着BC-CD-DA运动, 到A点停止运动,P点运动速度为1个单位/秒.设运动时间为t, 4ABP的面积为S.(1)找出$与耳秒)的函数关系式,并找出t的取值范围;(2)当4ABP的面积为3时,求此时点P的坐标;(3)连接OP,当直线O叶分矢I形ABCD勺周长时,求点P的坐标;(4)连接OP,当直线O叶分矢I形ABCD勺面积时,求点P的坐标;⑸ 当点P在BC上时,将^ AB啪AP翻折,当B点落在CD上时,求此时点P的坐标.4■一一50.如图,在平面直角坐标系中, A(a , 0), B(0 , b),且a、b满足(a —2)2+u%7Z4(1)求直线AB的解析式;(2)假设点C为直线y=mx上一点,且^ ABC是以AB为底的等腰直角三角形,求m值;答案详解1 .[答案t¥解]C.2 .[答案t¥解]由于k<0,b>0,所以图象经过一二四象限,所以不经过第三象限.C.3 .[答案t¥解]..2=-2v0,,y随x的增大而减小,: 1<2, a>b.应选A.4 .[答案t^解]C.5 .[答案t¥解]由于k<0,kb<0,所以b>0.所以图象经过一二四象限.C.6 .[答案t¥解]图象y=-2〔x+m〕+1=-2x=7,m=-3,所以直线应向右平移3个单位.选A.7 .[答案t¥解]C.8 .[答案详解]当x+2=3x-2 时,2x=4,x=2,所以x<2.B.9 .[答案t¥解]B.10 .[答案t¥解]由图象可知:A的横坐标、纵坐标均小于B的横坐标、纵坐标,所以a<0,b<0,所以选B.11 .[答案t^解]将点A 〔m, 3〕代入y=2x得,2m=3,解得,m=W .••点A的坐标为〔售,3〕,2 2,由图可知,不等式2xmx+4的解集为x空.应选A. 212 .[答案t¥解],「直线y= - x+m与y=nx+4n 〔nwo〕的交点的横坐标为- 2,「•关于x的不等式-x+m> nx+4n >0的解集为xv-2,,关于x的不等式-x+m> nx+4n> 0的整数解为-3,应选D.m -1 2m -^10 __ ..13 .[答案详解]当-x+3+m=2x+4 时,3x=m-1, x= ----- , y= ------------ ,由于x>0,y>0,所以m>1.选择C.3 314 .[答案t^解]当y=kx-2经过A点时,k=-3;当y=kx-2讲过B点时,k=1.所以kW3或kN.所以选择C.15 .[答案t^解]当y=0时,-x- -=0,解得=1, 点E的坐标是〔1, 0〕,即OE=1. 3 3OC=4, EC=OC —OE=4 —1=3,点F 的横坐标是4,「. y= - X4- -=2,即CF=2 3 3ACEF 的面积=• CE ・ CF = X3X2=3.应选B.16 .[答案t^解]调进物资的速度是60 + 4=15 〔吨/时〕,当在第4小时时,库存物资应该有60吨,在第8小时时库存20吨,所以调出速度是60-20+15父4=25 =25 〔吨/时〕4所以剩余的20吨完全调出需要20+25=0.8 〔小时〕.故这批物资从开始调进到全部调出需要的时间是8+0.8=8.8 〔小时〕.应选:B.17 .[答案t^解]:直浅的解析式是产x+b1.\OB=OC=b j 那么上BCA 二45、Xvza^75fl =zBCA+zBAC=45°+zBAC(?b»5S») , /^BAC=30°;而点A 的坐标是(5,0 ) f ,'QA =5,在Rt- BAO 中 f zBAC=30° p 0A=5 r .-.tanzBAO= —=5Jj即:丁」-故三三是:3所以AB=5.所以PD 最大=—,所以图象经过(3, — ),(7,5 5••• OB=2, OA I =4, OA 2=16,得出人4的坐标是(0, 256).应选 C. 20 .[答案t 解]iSESMff : F .S^I : y=¥x+点A 「SEyJA 于点B 3A (一在 o ) r B (0 f 1).二 tanZBAO 二%二立•「2BAO=30,OA 3,「工OB [A ]为等边三角形「「"BiOAi=/OBiAi=60、「.OBi=OA=^ f zABiO=30°. 「zAE 1Al=90、「AA L Z".同理 r AA 2=22^3- f A 2B 2=273 ; AAm=2*君 r A 2B 2=22^ ; AA4=24^/3 f A4B4=23^ ;AA 6 = 26V3,A 6B 6 = 25^=32^.「.JA5B 6A6的局长是3x32自二96后,应选C.21 .[答案t¥解]根据题意得:x>0且X+1WQ 解得x>0,且xw-1.22 .[答案详解]m 2-4m-4=1,m 2-4m-5=0.(m-5)(m+1)=0,m=5 或 m=-1,由于 m-5w 0,所以 m=-1.减小. 23 .[答案t¥解]由于k+3>0,所以k>-3,由于2k-10割所以k 名所以-34莅.24 .[答案t¥解]由于k<0,所以y 随x 的增大而减小,当X I <X 2时,y 1>y 2,所以(x i -x 2)(y 1-y 2)<0.所以t<0.2 .3 32洞,所以期=12,所以k=±2 ,所以y =±2x —6.26 .[答案详解]y=-2x-2; DB=DC,OD=OD 推出直角 △ DOB 和△ DOC 全等;推出 OB=OC ;推出 C (-1,0);带入 A 、B 坐标,求出 AB 直线y=-2x+2,所以CD 直线y=-2x+b ;带入C (-1,0),解出CD 直线y=-2x-2 27 .[答案t ^解]当线段AB 最短时:AB ,直线,••. AB 直线的斜率k=-1AB 直线方程:y-0=-1 X (x+2) 即 y=-x-2OA 318.[答案t ^解]由图2可知,AC=3, BC=4 , 0).设直线 y=kx+b, ,123k +b =—12 5 , -4k , k = -- ,b = 7k b =0 21 3 21 一,y=—x+ —,当 x=5 时,y=1.2.所以选 A. 5 5 5 19.[答案t ¥解]二.点A 的坐标是(0, 1) OA=1. 点 B 在直线 y=[x 上, OA 3=64 ,OA 4=256,25.[答案t¥解]由于y=x-4 和 y=-x-2 交点 B 坐标:两方程相加: 2y=-6,y=-3「♦ x=y+4=-3+4=1B 坐标(1,-3) 28 .[答案t ^解]如图,直线y=kx+b (k>0)与y 轴交于B 点,那么OB=bi,直线 尸mx+n (m<0)与yi ii轴父于 C,贝 U OC=b-n, .「△ABC 的面积为 4,OA?OB+」OA OC =4 2 x2 b+2 x2x(_n) = 4 2'22'解得:b - n=4. 故答案为4.・••在线段AB 上,横、纵坐标都是整数的点的坐标是( 1, 4) , (3, 1).故答案为(1,4),( 3, 1).2 2 . 77 32 .[答案1解]当x+3=-2x+1时,3x = -2,x= --,所以当x = -一时,y= -,所以y 的取大值为一.3 3 3333 .[答案t ^解]甲跑8m 用了 2s,速度为8/2 = 4m/s;乙跑500m 用了 100s,速度为500/100 = 5m/s 乙追上甲用了 a = 8/(5-4) = 8s;甲用 500/4 = 125s 跑到终点,c=125s,b=500m.b = 100*5 - 102*4 = 92 m 所以正确的选项是(1)(2)(3)............. ............ b 234 .[答案t ^解]由于S^ = 2k ,29 .[答案t ^解]由图象可知,此时-2<x<-1. 30 .[答案t ^解]当k>0时,此函数是增函数,二.当 1双W4时,当x=1时,y=3;当x=4时,y=6,k +b =3 后力/日,解得\ 4k +b =61=1 b =2b=2;当k<0时,此函数是减函数,当 1板W4时,39・6, 当x=1时,y=6;当x=4时,y=3,k +b =6 〜日 ,解得J 4k +b =3k =Tb =—7b=-7.故答案为:2或-7.31 .[答案力羊解]二.过点(—1, 7) 3....................的一条直线与直线 y = -2 x +1平行,设直线 AB 为y= - x+ b; 把(-1, 7) 代入 y= — x+b;7=+b,解得:b=U, ••.直线AB 的解析式为令y=0,得:x=—,0 V x< 32 11 的整数为:1、2、3;把x 等于1、 2、3分别代入解析式得 4、Z 、1;2所以S 二二巴3二J- (n 2)2 (n 2) (n 2)235 .[答案详解]解:设 y-2=k(2x+3),将 x=1,y=12 代入得:12-2=5k,k=2,所以 y-2=2(2x+3),y=4x+8. 36 .[答案t¥解]①0W xv 3 时,设 y=mx ,贝U 3m=15,解得 m=5 ,所以,y=5x ,② 3WxW 12 时,设 y=kx+b ,5,解得3,所以 y="x+20. 3b -20 3当 y=5 时,由 5x=5 得,x=1 , x=9, 所以,当容器内的水量大于 5升时,时间x 的取值范围是1vx<9.37.[答案t ^解](1)由运往A 地的水仙花x (件),那么运往 C 地3x 件,运往B 地(80-4x)件,由题意得 y=20x+10 (80-4x) +45x, y=25x+8000 (2) 「yw 12000,25x+8000< 12000,解得:x<160,总运费不超过12000元,最多可运往 A 地的水仙花160件. 38 .[答案t¥解](1)设商场应购进 A 型台灯x 盏,那么B 型台灯为(100-x)盏, 根据题意得,30x+50 (100-x) =3500, 解得 x=75, 100- x =100 - 75=25.答:应购进 A 型台灯75盏,B 型台灯25盏; (2)设商场销售完这批台灯可获利y 元,那么 y =(45 -30 )x +(75-50 /00-x )=15x +2000 —20x =—5x + 2000. •「B 型台灯的进货数量不超过 A 型台灯数量的3倍,「• 100-xW3x,解得x>25o ••・ k=-5V0,x=25 时,y 取得最大值,为- 5X25+2000=1875 (元).答:商场购进 A 型台灯25盏,B 型台灯75盏,销售完这批台灯时获利最多,此时利润为 1875元.39 .[答案t¥解](1) 200 米; (2) y=200x-1000; (3) 600 米41.[答案t ^解]1 _ x= — yx=40(1)设甲商品的进价为 x 元,乙商品的进价为 y 元,由题意,得x 2,解得:1.答:商品的进价为 40元,乙商品的进价为 80元.(2)设购进甲种商品 m 件,那么购进乙种商品(100- m)件,由题意,得40m 80 100 -m -671040m 80 100 -m 三6810 .「m 为整数,,m=30 31 , 32..•.有三种进货方案: 方案1,甲种商品30件,乙商品70件; 方案2,甲种商品31件,乙商品69件; 方案3,甲种商品32件,乙商品68件.2(n - 1) 2(n 1)(n - 2) 2 n 1 n - 2 111 111 1 1 ( ) ( )... ( ------ 2 3 2 3 4 2 20211 1 1 一2021)=2 (2 1 504 一2021)= 2021 •.・函数图象经过点(3, 15) , (12, 0) ,「 3k b =1512k +b =0 3 .. 129- <m <32A .4 4设禾I 」润为 W^,由题意,得 W =40m+50(100 —m )=—10m+5000, ••• k=- 10<0,「. W 随m 的增大而减小.「. m=30时,W 最大=4700. 42 .[答案t ^解] (1) 35, x+5;20,0.5x+15(2)两个气球能位于同一高度 .根据题意,x+5=0.5x+15,解得x=20.有x+5=25. 答:此时,气球上升了 20 min,都位于海拔25 m 的高度.(3)当30WxW50时,由题意,可知 1号气球所在位置的海拔始终高于 2号气球,设两个气球在同一时刻所在位置的海拔相差 y m ,即y= (x+5) - (0.5x+15) =0.5x-10.0.5>0, y 随x 的增大而增大...当x=50时,y 取得最大值15.答:两个气球所在位置的海拔最多相差 15 m.43 .[答案t ^解](1)根据圄象信息:货车的速度7送=变=601千米儆).5,轿车到达乙地的时间为货车出发后4.5小时r「轿车到达乙地时,货车行驶的路程为:45x60=270 (千米). 此时,货车距乙地的路程为:300 - 270=30 (干米八 答:轿车到达乙地后,货车距乙地30千米.(2)设CD 段国数解析式为片kx+b(k*O) (25<x<4,5). VC (2.5 r 80) , D (4.5 , 300)遇图象上,」"k-b = SO ;k = ll .\ 4.5k+ b -300 1 J ^b--195-MD 段函数解析式:y=110x -195 ( Z5<x<4.5 ); (3 )设轿车从甲地出发K 小时后再与货车相遇r7货车=6阡米的r %1.( ^时)'A 110(X -4,5) +60 4 300 ,解得.4.68 (小时).答:轿车从甲地出发约4.68小时后再与货车相遇.44 .[答案t ^解](1)设A 品牌计算机的单价为x 元,B 品牌计算机的单价为y 元,那么由题意可知:(2)由题意可知:y1 =0.8M30x ,即 y1 =24x .当 0 <x W5时,y 2 =32x ;当 xA5时,y2=32><5+32(x -5p<0.7,即 y2 =22.4x +48.(3)当购置数量超过 5个时,y 2 =22.4x +48.①当 y1 <y 2 时,24X <22.4X +48 ,解得 x<30,即当购置数量超过 5个而缺乏30个时,购置A 品牌的计算机更合算;2x 3y =1563x y =122x =30,解得4y =32A, B 两种品牌计算机的单价分别为30元,32元.②当y1 = y2时,24x =22.4x +48 ,解得x =30 ,即当购置数量为30个时,购置两种品牌的计算机花费相同;③当y1> y2时,24X > 22.4x +48 ,解得x > 30 ,即当购置数量超过30个时,购置B品牌的计算机更合算.45 .[答案t^解](1)设A市运往C市机器x台(应该是这样吧).那A运往D为(12-X)台.B运往C (10-X)台.B 运往D (X-4)台. Y=400X+800 (12-X) +300 (10-X) +500 (X-4 ) =-200X+10600 (4<X<10)(2)假设要求总运费不超过9000元,即9000>-200X+10600.X >8.,「4WXW 10.,X为8、9、10.有3种调运方案.(3)由Y=-200X+10600可知,丫随X的增大而减小.,当X=10时.Y最小.即Y=-200 X 10+10600=8600.47 .[答案t^解](1)由题意,得三口之家应缴购房款为:0.3 X 90+0.5 X 30=42 (万元).(2)由题意,得①当0WxW30 时,y=0.3 x 3x=0.9x ;②当30<x<m 时,y=0.9 X 30+0.5 X3X ( x — 30) =1.5x — 18;③当x>m时,y=0.3 x 30+0.5 x 3 ( m- 30) +0.7 X3X ( x - m) =2.1x — 18 — 0.6m;y =0.9x(0 <x <30 )41.5x -18(30< x <m ) (45 <m <60 }2.1x -18 -0.6m(x>m )(3)由题意,得①当50<m< 60 时,y=1.5 X 50- 18=57 (舍).②当45Wm< 50 时,y=2.1 X50 0.6m - 18=87- 0.6m,••• 57<y<60, 57<87-0.6m<60,,45Wm< 50.综合①②得45< m< 50.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下册一次函数综合复习题1.积)注水,下面图中能大致表示水的深度h和时间t之间关系的图象是( )2.一次函数y=-2x+1的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x+1图象上的两点,则a 与b 的大小关系是( ) A . a >b B . a=b C . a <b D . 以上都不对4.下图中表示一次函数y=mx+n 与正比例函数y=mnx(m ,n 是常数)图像的是( ).5.已知一次函数y=kx +b 中y 随x 的增大而减小,且kb <0,则直线y=kx+b 的图象经过( ) A.第一二三象限 B.第一三四象限 C.第一二四象限 D.第二三四象限6.已知一次函数y=-2x+1通过平移后得到直线y=-2x+7,则下列说法正确的是( )A.向左平移3个单位B.向右平移3个单位C.向上平移7个单位D.向下平移6个单位 7.直线y=x-1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的三角形最多有( )A. 5个B.6个C.7个D.8个8.当直线y=x+2•上的点在直线y=3x-2上相应点的上方时,则( )A. x <0B.x <2C.x >0D.x >29.如图,一次函数y=kx +b 的图象与y 轴交于点(0,1),则关于x 的不等式kx +b >1的解集是( )A .x >0B .x <0C .x >1D .x <110.A ,B 两点在一次函数图象上的位置如图,两点的坐标分别为A(x +a ,y +b),B(x ,y),下列结论正确的是( )A.a >0B.a <0C.B=0D.ab <011.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x ≥ax+4的解集为( )A.23≥x B.x ≤3 C.23≤x D.x ≥3 12.如图,直线y=﹣x+m 与y=nx+4n (n ≠0)的交点的横坐标为﹣2,则关于x 的不等式﹣x+m >nx+4n >0的整数解为( )A . ﹣1B . ﹣5C . ﹣4D . ﹣313.把直线y=﹣x+3向上平移m 个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是( )A .1<m <7B .3<m <4C .m >1D .m <414.在平面直角坐标系中,线段AB 的端点A(-2,4),B(4,2),直线y=kx-2与线段AB 有交点,则k 的值不可能是( )A.5B.-5C.-2D.315.如图,在平面直角坐标系中,直线y=23x-23与矩形ABCO 的边OC 、BC 分别交于点E 、F ,已知OA=3,OC=4,则△CEF 的面积是( )A .6B .3C .12D .4316.某仓库调拨一批物资,调进物资共用8小时.掉进物资4小时后同时开始调出物资(调进与调出物资的速度均保持不变).该仓库库存物资w(吨)与时间t(小时)之间的函数关系如图所示,则这批物资从开始调进到全部调出所需要的时间是( ) A.8.4小时 B.8.6小时 C.8.8小时 D.9小时17.如图,已知A 点坐标为(5,0),直线y=x+b(b>0)与y 轴交于点B ,连接AB ,若∠a=750,则b 的值为( )A.3B.5C.335 D.553 18.如图1,在Rt △ABC 中,∠ACB=900,点P 以每秒1cm 的速度从点A 出发,沿折线AC →CB 运动,到点B 停止.过点P 作PD ⊥AB 于点D,PD 的长y(cm)与点P 的运动时间x(秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( ) A.1.2cm B.1.5cmC.1.8cmD.2cm19.如图,已知直线过点A (0,1)作y 轴的垂线交直线l 于点B,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为( )A.(0,64)B.(0,128)C.(0,256)D.(0,512)20.如图,在平面直角坐标系中,直线l:y=33x+1交x 轴于点A,交y 轴于点B ,点A 1、A 2、A 3,…在x 轴上,点B 1、B 2、B 3,…在直线l 上.若△OB 1A 1,△A 1B 2A 2,△A 2B 3A 3,…均为等边三角形,则△A 5B 6A 6的周长是( )A .243B .483C .963D .192321.函数1+=x xy 中的自变量x 的取值范围是 22.已知函数2)5(442-+-=--m x m y m m若它是一次函数,则m= ;y随x 的增大而 .23.已知一次函数y=(k+3)x+2k-10,y 随x 的增大而增大,且图象不经过第二象限,则k 的取值范围为 .24.已知A(x 1,y 1),B(x 2,y 2)是一次函数y=kx+3(k<0)图象上的两个不同的点,若t=(x 1-x 2)(y 1-y 2), 则t 0.25.已知直线y=kx -6与两坐标轴所围成的三角形面积等于12,则直线的表达式为26.如图,已知一条直线经过点A (0,2)、点B (1,0),将这条直线向左平移与x 轴、y 轴分别交与点C 、点D .若DB=DC ,则直线CD 的函数解析式为 .27.如图,点A 的坐标为(-2,0),点B 在直线y =x -4上运动,当线段AB 最短时,点B 的坐标是___________。

28.直线y=kx+b (k >0)与y=mx+n (m <0)相交于点(﹣2,0),且两直线与y 轴围城的三角形面积为4,那么b ﹣n 等于 .29.如图,经过点B (-2,0)的直线y kx b =+与直线y 4x 2=+相交于点A (-1,-2),则不等式4x 2<kx b<0++的解集为 .30.一次函数y=kx+b ,当1≤x ≤4时,3≤y ≤6,则b 的值是 .31.过点(﹣1,7)的一条直线与x 轴,y 轴分别相交于点A ,B ,且与直线123+-=x y 平行.则在线段AB 上,横、纵坐标都是整数的点的坐标是 . 32.已知两个一次函数31+=x y ,122+-=x y .若无论x 取何值,y 总取y 1,y 2中的最小值,则y 的最大值为 .33.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500 m ,先到终点的人原地休息.已知甲先出发2 s .在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是34.已知直线212)1(++++-=n x n n y (n 为正整数)与坐标轴围成的三角形的面积为S n , 则S 1+S 2+S 3+…+S 2016=____________.35.已知y-2与2x+3成正比例,当x=1时,y=12,求y 与x 的函数关系式.36.一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图所示.当容器内的水量大于5升时,求时间x 的取值范围.37.某花农要将规格相同的800件水仙花运往A ,B ,C 三地销售,要求运往C 地的件数是运往A 地件数的3倍,各地的运费如下表所示:(1)设运往A 地的水仙花x (件),总运费为y (元),试写出y 与x 的函数关系式;(2)若总运费不超过12000元,最多可运往A 地的水仙花多少件?38.某商场计划购进A ,B 两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B 型台灯的进货数量不超过A 型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?39.已知小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离y(米)关于时间x(分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:(1)小文走了多远才返回家拿书?(2)求线段AB所在直线的函数解析式;(3)当x=8分钟时,求小文与家的距离.40.小明用的练习本可在甲、乙两个商店内买到.已知两个商店的标价都是每个练习本1元.甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖;乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)分别写出甲乙两个商店中,收款y(元)与购买本数x(本)之间的函数关系式,并写出它们的取值范围;(2)小明如何选择合适的商店去购买练习本?请根据所学的知识给他建议.41.某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求这两种商品的进价.(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?42.1号探测气球从海拔5 m处出发,以1 m/min的速度上升.与此同时,2号探测气球从海拔15 m处出发,以0.5 m/min 的速度上升.两个气球都匀速上升了50 min.设气球上升时间为x min(0≤x≤50).(1(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由.(3)当30≤x≤50时,两个气球所在的位置的海拔最多相差多少米?43.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y (千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式;(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇.44.某文具商店销售功能相同的两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A 品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售.设购买个x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由。

相关文档
最新文档