积分公式
积分学四大公式
积分学四大公式积分学四大公式是数学中非常重要的一部分,它们是求解积分的基础公式,也是数学中的基础知识。
在本文中,我们将详细介绍积分学四大公式的概念、应用和推导过程。
一、定积分的定义定积分是积分学中最基本的概念之一,它是对函数在一定区间内的面积进行求解。
定积分的定义如下:设函数f(x)在区间[a,b]上连续,则[a,b]上f(x)的定积分为:∫a^b f(x)dx其中,dx表示自变量x的微小增量,f(x)表示函数在x处的函数值。
二、牛顿-莱布尼茨公式牛顿-莱布尼茨公式是积分学中最重要的公式之一,它将定积分与原函数联系起来,使得我们可以通过求解原函数来求解定积分。
牛顿-莱布尼茨公式的表达式如下:∫a^b f(x)dx = F(b) - F(a)其中,F(x)是f(x)的原函数。
三、换元积分法换元积分法是积分学中常用的一种方法,它通过变量代换的方式将积分式子转化为更容易求解的形式。
换元积分法的公式如下:∫f(g(x))g'(x)dx = ∫f(u)du其中,u=g(x)。
四、分部积分法分部积分法是积分学中常用的一种方法,它通过将积分式子分解为两个函数的乘积,然后对其中一个函数求导,对另一个函数求积分,最后将两个结果相乘得到原积分式子的解。
分部积分法的公式如下:∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx其中,u(x)和v(x)是两个可导函数。
以上就是积分学四大公式的概念、应用和推导过程。
这些公式是积分学中最基本的知识,掌握它们对于学习高等数学和物理学等学科都非常重要。
在实际应用中,我们可以根据具体问题选择不同的公式进行求解,以达到最优的效果。
三十个基本积分公式
三十个基本积分公式在微积分的学习中,积分公式是非常重要的基础知识。
掌握这些基本积分公式,就像是拥有了一把打开积分世界大门的钥匙。
接下来,让我们一起来了解一下这三十个基本积分公式。
公式一:∫kdx = kx + C(k 为常数)这个公式很简单,就是说对一个常数 k 进行积分,结果是 kx 加上一个常数 C。
公式二:∫x^n dx =(1/(n + 1))x^(n + 1) + C(n ≠ -1)当被积函数是 x 的 n 次幂时,积分结果是(1/(n + 1))乘以 x 的(n + 1)次幂再加上常数 C。
例如,∫x²dx =(1/3)x³+ C 。
公式三:∫1/x dx = ln|x| + C对 1/x 进行积分,得到的是自然对数 ln|x|加上常数 C。
这里要注意绝对值,因为对数函数的定义域要求自变量大于 0。
公式四:∫e^x dx = e^x + C指数函数 e^x 的积分还是它本身 e^x 加上常数 C。
公式五:∫a^x dx =(1/lna)a^x + C(a > 0,a ≠ 1)对于以 a 为底的指数函数 a^x 的积分,结果是(1/lna)乘以 a^x 再加上常数 C。
公式六:∫sin x dx = cos x + C正弦函数 sin x 的积分是 cos x 加上常数 C。
公式七:∫cos x dx = sin x + C余弦函数 cos x 的积分是 sin x 加上常数 C。
公式八:∫tan x dx = ln|cos x| + C正切函数 tan x 的积分是 ln|cos x|加上常数 C。
公式九:∫cot x dx = ln|sin x| + C余切函数 cot x 的积分是 ln|sin x|加上常数 C。
公式十:∫sec x dx = ln|sec x + tan x| + C正割函数 sec x 的积分是 ln|sec x + tan x|加上常数 C。
常用积分公式
常用积分公式本文将介绍一些常用的积分公式,包括基本积分公式、换元积分公式、分部积分公式等。
通过掌握这些公式,能够更加方便地求解各类积分问题。
1. 基本积分公式1.1 定积分公式定积分公式是基本积分公式中的一种,用于求解在一定区间上的函数积分。
定积分公式如下:$$\\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$其中,f(f)是要积分的函数,f(f)是f(f)的一个原函数,f和f是积分的区间。
1.2 不定积分公式不定积分公式是基本积分公式中的另一种,用于求解函数的原函数。
不定积分公式如下:$$\\int f(x)dx = F(x) + C$$其中,f(f)是要积分的函数,f(f)是f(f)的一个原函数,f是常数。
2. 换元积分公式换元积分公式是求解复杂函数积分的重要方法,通过引入一个新的变量进行替换,将原积分转化为一个更容易求解的形式。
2.1 第一换元法第一换元法也称为u-置换法,假设有函数f=f(f),需要对其进行积分。
首先选取一个变量f=f(f),使得$\\frac{du}{dx}=g'(x)$。
则积分公式变为:$$\\int f(x)dx = \\int f(g(x))g'(x)dx = \\int ydu$$其中,$\\int ydu$是对新变量f进行积分。
2.2 第二换元法第二换元法也称为t-置换法,假设有函数f=f(f),需要对其进行积分。
首先选取一个变量f=f(f),使得$\\frac{dt}{dy}=h'(y)$。
则积分公式变为:$$\\int f(x)dx = \\int f(x)h'(f(x))dx = \\int h(t)dt$$其中,$\\int h(t)dt$是对新变量f进行积分。
3. 分部积分公式分部积分公式是求解两个函数乘积的积分的方法之一。
根据分部积分公式,可以将一个复杂的积分转化为一个更简单的积分形式。
高数积分公式大全
高数积分公式大全高等数学中的积分是数学分析的重要内容之一,它是求函数面积、定积分、不定积分等的方法,被广泛应用于科学和工程领域。
下面是高等数学中常用的积分公式大全,供大家参考和学习。
一、基本积分公式:1. 常数函数积分公式:∫c dx = cx + C(其中c为常数,C为积分常数)2. 幂函数积分公式:∫x^n dx = (1/(n+1)) * x^(n+1) + C(其中n不等于-1,C 为积分常数)3. 指数函数积分公式:∫e^x dx = e^x + C4. 三角函数积分公式:∫sin(x) dx = -cos(x) + C∫cos(x) dx = sin(x) + C5. 乘方函数积分公式:∫(a^x) dx = (1/log(a)) * (a^x) + C(其中a为正数且不等于1,C为积分常数)6. 对数函数积分公式:∫(1/x) dx = ln|x| + C二、常用积分公式:1. 三角函数的复合积分:∫sin(ax) dx = - (1/a) * cos(ax) + C∫cos(ax) dx = (1/a) * sin(ax) + C2. 反三角函数的积分:∫1/(√(1-x^2)) dx = arcsin(x) + C∫1/(1+x^2) dx = arctan(x) + C3. 指数函数的积分:∫e^(ax) dx = (1/a) * e^(ax) + C4. 对数函数的积分:∫(1/x) dx = ln|x| + C5. 分式函数的积分:∫(1/(x-a)) dx = ln|x-a| + C(其中a不等于0)∫(1/(x^2+a^2)) dx = (1/a) * arctan(x/a) + C(其中a不等于0)6. 三角函数的积分:∫sin^n(x) cos^m(x) dx7. 部分分式的积分:∫(p(x)/q(x)) dx8. 具体函数的特殊积分:∫e^x sin(x) dx∫e^x cos(x) dx∫(sin(x))^n (cos(x))^m dx(其中n和m为正整数)三、数列求和公式:1. 等差数列求和公式:S_n = (n/2)(a_1 + a_n)(其中S_n为前n项和,a_1为首项,a_n为末项)2. 等比数列求和公式:S_n = (a_1(1-q^n))/(1-q)(其中S_n为前n项和,a_1为首项,q为公比)以上是高等数学中一些常见的积分公式,通过掌握和灵活运用这些公式,可以帮助我们更好地解决数学中的问题。
24个基本积分公式
24个基本积分公式24个基本积分公式是数学中常用的工具,它能帮助我们快速解决复杂的积分问题。
1.一个公式:恒积分公式,它是所有积分公式中最基本也是最重要的公式,它表示对某一函数$f(x)$的某一闭区间$[a,b]$进行积分,其公式如下:$$int_a^bf(x)dx=F(b)-F(a)$$其中$F(x)$是$f(x)$的上原函数。
2.二个公式:幂积分公式,它也是一种常用的公式,它描述了当变量$x$的幂次为$n$时,$f(x)$的积分的公式如下:$$int x^nf(x)dx=frac{x^{n+1}}{n+1}f(x)-frac{n}{n+1}int x^{n-1}f(x)dx$$3.三个公式:复合公式,有时候积分可能会变得更加复杂,它描述了一种复合积分形式,其公式如下:$$int int_Rf(x,y)dydx=iint_Rf(x,y)dxdy$$其中$R$表示一个积分区域,$f(x,y)$表示函数。
4.四个公式:变量替代公式,当我们积分时,有时可能会用到变量替代的方法。
此时对于积分$int f(x)dx$,用变量$t$替代$x$,变量$t$的关于$x$的函数表达式为$t=t(x)$,当$x$的范围从$[a,b]$变为$[t_a,t_b]$时,这时需要用到变量替代公式,其公式如下:$$int_a^bf(x)dx=int_{t_a}^{t_b}f(t(x))t(x)dx$$ 其中$t(x)$表示$t$关于$x$的微分。
5.五个公式:指数积分公式,当我们积分某一函数$f(x)$关于$x$的幂为$n$时,能够用到指数积分公式,其公式如下:$$int x^ne^xdx=x^ne^x-nint x^{n-1}e^xdx$$6.六个公式:对数积分公式,当我们积分某一函数$f(x)$的流函数是一个对数函数的时候,可以用到对数积分公式,它的公式如下: $$int frac{1}{x}dx=ln|x|+C$$其中$C$是常量。
二十四个基本积分公式
二十四个基本积分公式积分是微积分的基本概念之一,它是对函数曲线下其中一区间的面积进行求解的操作。
在求解积分时,我们可以利用一些基本的积分公式来简化计算。
下面将介绍二十四个常用的基本积分公式。
1. $\int x^ndx = \frac{1}{n+1}x^{n+1} + C$ (其中$n\neq -1$)这是幂函数的积分公式,对幂函数进行求积分时,指数加一后再乘以系数并且指数要除以新系数。
2. $\int \frac{1}{x}dx = \ln,x, + C$这是倒数函数的积分公式,对倒数函数求积分时,结果是该函数的自然对数的绝对值。
3. $\int e^xdx = e^x + C$这是指数函数的积分公式,对指数函数求积分时,结果是该函数本身。
4. $\int a^xdx = \frac{a^x}{\ln a} + C$ (其中$a>0, a\neq 1$)这是以底数为常数的指数函数的积分公式,对这种函数进行求积分时,结果是该函数除以对数的底数再加上常数。
5. $\int \sin xdx = -\cos x + C$这是正弦函数的积分公式,对正弦函数求积分时,结果是该函数的负余弦。
6. $\int \cos xdx = \sin x + C$弦。
7. $\int \tan xdx = -\ln,\cos x, + C$这是正切函数的积分公式,对正切函数求积分时,结果是该函数的负对数的余弦的绝对值。
8. $\int \sec xdx = \ln,\sec x + \tan x, + C$这是正割函数的积分公式,对正割函数求积分时,结果是该函数的对数的正割加正切的绝对值。
9. $\int \cot xdx = \ln,\sin x, + C$这是余切函数的积分公式,对余切函数求积分时,结果是该函数的对数的正弦的绝对值。
10. $\int \csc xdx = \ln,\csc x - \cot x, + C$这是余割函数的积分公式,对余割函数求积分时,结果是该函数的对数的余割减余切的绝对值。
常见积分公式
常见积分公式事实上,所有的不定积分都可以当作积分公式来看,当然我们通常都只关注比较简单的那些,太复杂的也记不住啊。
常用的积分公式,指的是六大基本函数相关的一些不定积分。
首先是常量函数的积分公式。
包括:(1)∫0dx=C; (2)∫1dx=x+C; (3)∫adx=ax+C. a是任意常数。
虽然被积函数都是常量,但0的原函数是任意常数,而非0的常数的原函数却是一次函数.然后是幂函数:(3)∫x^adx=x^(a+1)/(a+1)+C (a≠-1,x>0).你可以对右边求导,就可以得到被积函数。
求导和不定积分可以看作是一个互逆的过程。
x大于0是为了防止偶数次号内有负数,或者分母是0,造成被积函数没有意义。
而a=-1时,却是另外一类不定积分,是原函数为对数函九有关的不定积分。
(4)∫1/xdx=ln|x|+C (x≠0); (5)∫1/(xlna)dx=log_a |x|+C(a>0, a≠1; x≠0);需要注意的是,当x>0时,不需要加绝对值符号。
否则就要加绝对值符号,这一点是很多人容易忽略的。
还有指数函数的不定积分公式:(6)∫e^xdx=e^x+C; (7)∫a^xdx=a^x/lna+C (a>0, a≠1).与三角函数有关的不定积分公式特别多,这里只分享比较简单的一些。
注意,不论是与三角函数有关的不定积分,还是与反三角函数有关的积分,它们一般都是成对出现的,而且两个积分之间总有某种交错对称的关系,注意观察,结合起来才容易记忆。
与三角函数有关的常用积分公式:(1)∫cosaxdx=1/a*sinax+C; ∫sinaxdx=-1/a*cosax+C(a≠0);当a=1时,就有∫cosxdx=sinx+C; ∫sinxdx=-cosx+C;其实所有的积分公式中,x都可以替换成中间变量u=ax,结果在原函数前面乘上一个1/a就可以了。
(2)∫(secx)^2dx=tanx+C; ∫(cscx)^2dx=-cotx+C;(3)∫secx·tanxdx=secx+C; ∫cscx·tanxdx=-cscx+C;(4)∫(sinx)^2dx=1/2*(x-sinxcosx)+C;∫(cosx)^2dx=1/2*(x+sinxcosx)+C;(5)∫dx/(1±sinx)=tanx?secx+C; ∫dx/(1±cosx)=-cotx±cscx+C;(6)∫dx/sinxcosx=ln|tanx|+C=ln|csc2x-cot2x|+C;注意,求不定积分的方法有很多,用不同的方法可能会得到不同的形式,所以千万不要一看到形式不同,就认为结果是错误的。
积分基本公式和法则
积分基本公式和法则积分是微积分学中非常重要的概念之一,它是求解函数的面积、曲线的长度和平面的体积的工具。
积分的基本公式和法则是我们进行积分运算的基础,下面将介绍一些常见的积分基本公式和法则。
1.基本积分表达式:a)定积分基本公式:∫1dx = x + C,其中C为常数∫x^n dx = (x^(n+1))/(n+1) + C,其中C为常数(n为非负整数,不等于-1)∫e^x dx = e^x + C,其中C为常数∫sin(x) dx = -cos(x) + C,其中C为常数∫cos(x) dx = sin(x) + C,其中C为常数∫sec^2(x) dx = tan(x) + C,其中C为常数∫csc^2(x) dx = -cot(x) + C,其中C为常数∫sec(x)tan(x) dx = sec(x) + C,其中C为常数∫csc(x)cot(x) dx = -csc(x) + C,其中C为常数b)不定积分基本公式:∫u(du) = u^2/2 + C,其中C为常数2.基本积分法则:a) 线性性质:对于任意常数a、b,有∫(af(x) + bg(x))dx =a∫f(x)dx + b∫g(x)dxb)基本算术运算法则:∫(f(x) ± g(x))dx = ∫f(x)dx ± ∫g(x)dx∫(Cf(x))dx = C∫f(x)dx,其中C为常数c)分部积分法则:∫(u(x)v'(x))dx = u(x)v(x) - ∫(u'(x)v(x))dxd)替换法则:∫f(g(x))g'(x)dx = ∫f(u)du,其中u=g(x)3.基本的积分求导关系:a) 反函数关系:若y=f(x)的反函数为x=g(y),则∫f(x)dx = x∙f(x) - ∫xf'(x)dx + C,其中C为常数b) 对数函数:∫(1/x)dx = ln,x, + Cc) 指数函数:∫a^x dx = (a^x)/(ln(a)) + C,其中a为常数且a>0且a≠1d) 双曲函数:∫sinh(x)dx = cosh(x) + C,∫cosh(x)dx = sinh(x) + C,∫tanh(x)dx = ln,cosh(x), + C,∫coth(x)dx = ln,sinh(x),+ C以上仅是一些基本的积分公式和法则,实际上积分的应用非常广泛,涉及到各种函数和曲线的求解。
常见积分公式表
常见积分公式表常见积分公式表在微积分中,积分是一个重要的概念,它可以用来求解曲线下的面积、求解函数的原函数等。
而积分公式则是在求解积分过程中经常使用的一些公式,它们可以帮助我们简化计算,提高效率。
下面是一些常见的积分公式表:1. 基本积分公式:- ∫x^n dx = (1/(n+1)) * x^(n+1) + C,其中n不等于-1- ∫e^x dx = e^x + C- ∫a^x dx = (1/ln(a)) * a^x + C,其中a为常数且不等于1- ∫sin(x) dx = -cos(x) + C- ∫cos(x) dx = sin(x) + C- ∫sec^2(x) dx = tan(x) + C- ∫csc^2(x) dx = -cot(x) + C- ∫sec(x)tan(x) dx = sec(x) + C- ∫csc(x)cot(x) dx = -csc(x) + C2. 特殊函数积分公式:- ∫1/(1+x^2) dx = arctan(x) + C- ∫1/(√(1-x^2)) dx = arcsin(x) + C- ∫1/(√(x^2+1)) dx = ln(x + √(x^2+1)) + C- ∫e^x/(1+e^x) dx = ln(1+e^x) + C- ∫sinh(x) dx = cosh(x) + C- ∫cosh(x) dx = sinh(x) + C3. 三角函数积分公式:- ∫sin^n(x) dx = (-1/(n-1)) * sin^(n-1)(x) * cos(x) + (n-2)/(n-1) *∫sin^(n-2)(x) dx,其中n不等于1- ∫cos^n(x) dx = (1/(n-1)) * cos^(n-1)(x) * sin(x) + (n-2)/(n-1) *∫cos^(n-2)(x) dx,其中n不等于14. 指数函数积分公式:- ∫a^x ln(a) dx = (1/(ln(a))^2) * a^x + C,其中a为常数且不等于15. 分部积分公式:- ∫u dv = uv - ∫v du6. 替换积分公式:- ∫f(g(x)) g'(x) dx = ∫f(u) du,其中u = g(x)这些是常见的积分公式,掌握它们可以在求解积分时事半功倍。
基本积分公式大全
基本积分公式大全1.幂函数积分公式:∫某^nd某=(1/n+1)某某^(n+1)+C,其中n不等于-1,C为常数。
2.指数函数积分公式:∫e^某d某=e^某+C。
3. 对数函数积分公式:∫1/某 d某 = ln,某, + C,其中某不等于 0。
4.三角函数积分公式:a) ∫sin(某) d某 = -cos(某) + C;b) ∫cos(某) d某 = sin(某) + C;c) ∫tan(某) d某 = -ln,cos(某), + C。
5.反三角函数积分公式:a) ∫1/√(1-某^2) d某 = arcsin(某) + C;b) ∫1/(1+某^2) d某 = arctan(某) + C。
6.转化积分公式:a) ∫sinh(某) d某 = cosh(某) + C;b) ∫cosh(某) d某 = sinh(某) + C;c) ∫tanh(某) d某 = ln,cosh(某), + C。
7. 分部积分公式:∫udv = uv - ∫vdu,其中 u 和 v 是可微的函数。
8. 替换积分公式:∫f(g(某))g'(某) d某= ∫f(u) du,其中 u = g(某)。
9.微分方程积分公式:∫f'(某)d某=f(某)+C,其中C为常数。
10. 二重积分公式:∫∫f(某, y) d某dy。
11.极坐标下的积分公式:a) ∫∫r drdθ,其中 r 和θ 为极坐标中的变量;b) ∫∫f(r, θ) r drdθ。
这些公式只是基本积分公式的一部分,微积分还有很多高级的积分技巧和方法。
对于更复杂的函数,可能需要使用不同的积分技巧,如部分分式分解、换元积分法、分步积分等。
积分是微积分的一个重要概念,不仅在数学中有广泛的应用,还在物理、工程、经济学等领域中发挥着重要作用。
总结起来,基本积分公式是解决不定积分问题的基础,熟练掌握这些公式对于学习和应用微积分知识都至关重要。
希望这些基本积分公式能够帮助您更好地理解和运用微积分。
常用积分公式表大全
常用积分公式表大全在数学的学习和应用中,积分是一个非常重要的概念和工具。
积分公式就像是一把把钥匙,能够帮助我们打开解决各种问题的大门。
下面就为大家整理一份常用的积分公式表。
一、基本积分公式1、∫kdx = kx + C (k 为常数)这意味着对于任何常数 k,其积分结果是 k 乘以 x 再加上常数 C。
2、∫x^n dx =(1/(n + 1))x^(n + 1) + C (n ≠ -1)当幂次为 n 时,积分结果为(1/(n + 1))乘以 x 的(n + 1)次幂加上常数 C。
3、∫dx/x = ln|x| + C对 1/x 进行积分,结果是自然对数 ln|x|加上常数 C 。
4、∫e^x dx = e^x + C指数函数 e^x 的积分还是它本身 e^x 加上常数 C 。
5、∫a^x dx =(1/ln a)a^x + C (a > 0,a ≠ 1)对于底数为 a 的指数函数 a^x 的积分,结果是(1/ln a)乘以 a^x 加上常数 C 。
6、∫sin x dx = cos x + C正弦函数 sin x 的积分是 cos x 加上常数 C 。
7、∫cos x dx = sin x + C余弦函数 cos x 的积分是 sin x 加上常数 C 。
8、∫tan x dx = ln|cos x| + C正切函数 tan x 的积分是 ln|cos x|加上常数 C 。
9、∫cot x dx = ln|sin x| + C余切函数 cot x 的积分是 ln|sin x|加上常数 C 。
10、∫sec x dx = ln|sec x + tan x| + C正割函数 sec x 的积分是 ln|sec x + tan x|加上常数 C 。
11、∫csc x dx = ln|csc x + cot x| + C余割函数 csc x 的积分是 ln|csc x + cot x|加上常数 C 。
常见积分公式24个
常见积分公式24个积分是微积分的一个重要概念,它是对函数的一个连续求和过程。
在微积分中,我们常常使用积分公式来计算各种函数的积分,以解决实际问题。
下面是常见的24个积分公式,详细介绍每个公式的积分计算过程。
1. $∫dx=x+C$:对任意常数 $C$,常数的积分是它自己,即对$x$ 的积分是 $x$ 加上一个常数 $C$。
2. $∫x^ndx=\frac{1}{n+1}x^{n+1}+C$:这个公式称为幂函数的积分公式,其中 $n$ 是不等于 $-1$ 的实数。
3. $∫e^xdx=e^x+C$:这是指数函数的积分公式,它的导数是 $e^x$。
4. $∫a^xdx=\frac{a^x}{\ln a}+C$:这是对数函数的积分公式,其中 $a$ 是大于 $0$ 且不等于 $1$ 的常数。
5. $∫\frac{1}{x}dx=\ln,x,+C$:这是倒数函数的积分公式,其中 $x$ 不等于 $0$。
6. $∫\sin xdx=-\cos x+C$:这是正弦函数的积分公式,它的导数是 $-\cos x$。
7. $∫\cos xdx=\sin x+C$:这是余弦函数的积分公式,它的导数是$\sin x$。
8. $∫\frac{1}{\cos^2 x}dx=\tan x+C$:这是正切函数的积分公式,它的导数是 $\frac{1}{\cos^2 x}$。
9. $∫\frac{1}{\sin^2 x}dx=-\cot x+C$:这是余切函数的积分公式,它的导数是 $\frac{1}{\sin^2 x}$。
10. $∫\sec x\tan xdx=\sec x+C$:这是正割函数的积分公式,它的导数是 $\sec x\tan x$。
11. $∫\csc x\cot xdx=-\csc x+C$:这是余割函数的积分公式,它的导数是 $\csc x\cot x$。
12. $∫\frac{1}{\sqrt{1-x^2}}dx=\arcsin x+C$:这是反正弦函数的积分公式,它的导数是 $\frac{1}{\sqrt{1-x^2}}$。
基本积分公式大全
基本积分公式大全1.常数函数公式:∫kdx = kx + C,其中k是常数,C是常数项。
2.幂函数公式:∫x^n dx = (x^(n+1))/(n+1) + C,其中n不等于-1 3.指数函数公式:∫e^x dx = e^x + C。
4.对数函数公式:∫(1/x) dx = ln,x, + C。
5.三角函数公式:∫sin(x) dx = -cos(x) + C。
∫cos(x) dx = sin(x) + C。
∫sec^2(x) dx = tan(x) + C。
∫cosec^2(x) dx = -cot(x) + C。
6.反三角函数公式:∫(1/√(1-x^2)) dx = arcsin(x) + C。
∫(1/√(1+x^2)) dx = arctan(x) + C。
7.分式函数公式:∫(1/(x ± a)) dx = ln,x ± a, + C。
8.双曲函数公式:∫sinh(x) dx = cosh(x) + C。
∫cosh(x) dx = sinh(x) + C。
9.换元法公式:如果∫f(g(x)) * g'(x) dx = F(g(x)) + C,那么∫f(u) du = F(u) + C,其中u=g(x)。
10.分部积分公式:∫u dv = uv - ∫v du,其中u和v是可导函数。
11.分部积分法的多次应用:∫u1u2...un dx = u1∫u2u3...un dx - ∫(u1'∫u2u3...un dx) dx + ∫∫(u1''∫u2u3...un dx) dx + ...12.被积函数呈奇偶性时的简化公式:a) 如果被积函数f(x)是奇函数(即f(-x) = -f(x)),那么∫[-a,a] f(x) dx = 0。
b) 如果被积函数f(x)是偶函数(即f(-x) = f(x)),那么∫[-a,a] f(x) dx = 2∫[0,a] f(x) dx。
基本积分公式
基本积分公式在微积分中,积分是导数的逆运算,用于求解函数的原函数。
基本积分公式是包含常见函数的积分公式,它们可以直接应用于各种问题的求解。
这些公式可以帮助我们快速计算积分,并在进行更复杂的积分时提供一个基础。
下面是一些常见的基本积分公式:1.幂函数的积分:(1) 若n ≠ -1,则有∫ x^n dx = (x^(n+1))/(n+1) + C(2) 若 n = -1,则有∫ dx/x = ln,x, + C举例来说,∫ x^3 dx = (x^4)/4 + C,∫ dx/x = ln,x, + C2.指数函数的积分:(1) ∫ e^x dx = e^x + C(2) ∫ a^x dx = (a^x)/ln,a, + C这里的a是一个正常数且不等于1举例来说,∫ e^x dx = e^x + C,∫ 3^x dx = (3^x)/ln(3) + C3.三角函数的积分:(1) ∫ sin(x) dx = -cos(x) + C(2) ∫ cos(x) dx = sin(x) + C(3) ∫ sec^2(x) dx = tan(x) + C(4) ∫ csc^2(x) dx = -cot(x) + C(5) ∫ sec(x)tan(x) dx = sec(x) + C(6) ∫ csc(x)cot(x) dx = -csc(x) + C举例来说,∫ sin(x) dx = -cos(x) + C,∫ sec^2(x) dx = tan(x) + C4.反三角函数的积分:(1) ∫ 1/√(1 - x^2) dx = arcsin(x) + C(2) ∫ -1/√(1 - x^2) dx = arccos(x) + C(3) ∫ 1/(1 + x^2) d x = arctan(x) + C(4) ∫ -1/(1 + x^2) dx = -arctan(x) + C注意:这里的反三角函数指的是反正弦、反余弦和反正切函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.基本积分公式表(1)∫0d x=C(2)=ln|x|+C(3)(m≠-1,x>0)(4) (a>0,a≠1)(5)(6)∫cos x d x=sin x+C(7)∫sin x d x=-cos x+C(8)∫sec2x d x=tan x+C(9)∫csc2x d x=-cot x+C(10)∫sec x tan x d x=sec x+C(11)∫csc x cot x d x=-csc x+C(12)=arcsin x+C(13)=arctan x+C注.(1)不是在m=-1的特例.(2)=ln|x|+C,ln后面真数x要加绝对值,原因是(ln|x|)' =1/x.事实上,对x>0,(ln|x|)' =1/x;若x<0,则(ln|x|)' =(ln(-x))' =.(3)要特别注意与的区别:前者是幂函数的积分,后者是指数函数的积分.下面我们要学习不定积分的计算方法,首先是四则运算.3.不定积分的四则运算根据微分运算公式d(f(x)±g(x))=d f(x)±d g(x)d(kf(x))=k d f(x)我们得不定积分的线性运算公式(1)∫[f(x)±g(x)]d x=∫f(x)d x±∫g(x)d x(2)∫kf(x)d x=k∫f(x)d x,k是非零常数.现在可利用这两个公式与基本积分公式来计算简单不定积分.例2.5.4求∫(x3+3x++5sin x-4cos x)d x解.原式=∫x3d x+∫3x d x+7∫d x+5∫sin x d x-4∫cos x d x= +7ln|x|-5cos x-4sin x+C .注.此例中化为五个积分,应出现五个任意常数,它们的任意性使其可合并成一个任意常数C,因此在最后写出C即可.例2.5.5求∫(1+)3d x解.原式=∫(1+3+3x+)d x=∫d x+3∫d x+3∫x d x+∫d x=x+3+C=x+2x++C .注.∫d x与∫1d x是相同的,其中1可省略.例2.5.6求解.原式===-x+arctan x+C .注.被积函数是分子次数不低于分母次数的分式,称为有理假分式.先将其分出一个整式x2-1,余下的分式为有理真分式,其分子次数低于分母的次数.例2.5.7求 .解.原式==∫csc2x d x-∫sec2x d x=-cot x-tan x+C .注.利用三角函数公式将被积函数化简成简单函数以便使用基本积分公式.例2.5.8求 .解.原式==+C .为了得到进一步的不定积分计算方法,我们先用微分的链锁法则导出不定积分的重要计算方法¾¾换元法.思考题.被积函数是有理假分式时,积分之前应先分出一个整式,再加上一个有理真分式,一般情形怎样实施这一步骤?4.第一换元法(凑微分法)我们先看一个例子:例2.5.9求 .解.因(1+x2)' =2x,与被积函数的分子只差常数倍数2,如果将分子补成2x,即可将原式变形:原式=(令u=1+x2)(代回u=1+x2)=.注.此例解法的关键是凑了微分d(1+x2).一般地在F'(u)=f(u),u=j(x)可导,且j' (x)连续的条件下,我们有第一换元公式(凑微分):u=j (x) 积分代回 u=j (x)∫f[j(x)]j' (x)d x =∫f[j(x)]dj(x)=∫f(u)d u=F(u)+C=F[j(x)]+C其中函数j(x)是可导的,且F(u)是f(u)的一个原函数.从上述公式可看出凑微分法的步骤:凑微分————→换元————→积分————→再换元j' (x)d x=dj(x) u=j(x) 得F(u)+C得F[j(x)]+C注.凑微分法的过程实质上是复合函数求导的链锁法则的逆过程.事实上,在F'(u)=f(u)的前提下,上述公式右端经求导即得:[F[j(x)]+C]' =F '[j(x)]j' (x)=f[j(x)]j' (x)这就验证了公式的正确性.例2.5.10求∫(ax+b)m d x.(m≠-1,a≠0)解.原式= (凑微分d(ax+b))=(换元u=ax+b)= (积分)=. (代回u=ax+b)例2.5.11求 .解.原式= (凑微分d(-x3)=-3x2d x)==(换元u=-x3)=.注.你熟练掌握凑微分法之后,中间换元u=j(x)可省略不写,显得计算过程更简练,但要做到心中有数.例2.5.12求∫tan x d x .解.原式==-ln|cos x|+C .同理可得∫cot x d x=ln|sin x|+C .(a>0)例2.5.13求.解.原式== .例2.5.14求(a>0).解.原式== .例2.5.15求.解.原式====.例2.5.16∫sec x d x.解.原式=(换元u=sin x)=== (代回u=sin x)===ln|sec x+tan x|+C .公式:∫sec x d x=ln|sec x+tan x|+C .例.2.5.17求∫csc x d x .解.原式===ln|csc x-cot x|+C .公式:∫csc x d x=ln|csc x-cot x|+C .凑微分法是不定积分换元法的第一种形式,其另一种形式是下面的第二换元法.5.第二换元法不定积分第一换元法的公式中核心部分是∫f[j(x)]j'(x)d x=∫f(u)d u我们从公式的左边演算到右边,即换元:u=j(x).与此相反,如果我们从公式的右边演算到左边,那么就是换元的另一种形式,称为第二换元法.即若f(u),u=j(x),j'(x)均连续,u=j(x)的反函数x=j-1(u)存在且可导,F(x)是f[j(x)]j'(x)的一个原函数,则有∫f(u)d u =∫f[j(x)]j'(x)d x =F(x)+C =F[j-1(u)]+C .第二换元法常用于被积函数含有根式的情况.例2.5.18求解.令 (此处j(t)=t2).于是原式===(代回t=j-1(x)=)注.你能看到,换元=t的目的在于将被积函数中的无理式转换成有理式,然后积分.第二换元法除处理形似上例这种根式以外,还常处理含有根式,,(a>0)的被积函数的积分.被积函数含根式换元方法运用的三角公式x=a sec t sec2t-1=tan2tx=a tan t tan2t+1=sec2tx=a sin t1-sin2t=cos2t例2.5.19求. (a>0)解.令x=a sec t,则d x=a sec t tan t d t,于是原式==∫sec t d t=ln|sec t+tan t|+C1 .到此需将t代回原积分变量x,用到反函数t=arcsec,但这种做法较繁.下面介绍一种直观的便于实施的图解法:作直角三角形,其一锐角为t及三边a,x,满足:sec t=由此,原式=ln|sec t+tan t|+C1==.注.C1是任意常数,-ln a是常数,由此C=C1-ln a仍是任意常数.(a>0)例2.5.20求.解.令x=a tan t,则d x=a sec2t d t,于是原式==∫sec t d t=ln|sec t+tan t|+C1 .图解换元得原式=ln|sec t+tan t|+C1=.公式:.(a>0)例2.5.21求.解.令x=a sin t,则d x=a cos t d t,于是原式===+C.图解换元得:原式=+C=+C .除了换元法积分外,还有一个重要的积分公式,即分部积分公式.思考题.在第二换元法公式中,请你注意加了一个条件“u=j(x)的反函数x=j1-(u)存在且可导”,你能否作出解释,为什么要加此条件?6.分部积分公式我们从微分公式d(uv)=v d u+u d v两边积分,即∫d(uv)=∫v d u+∫u d v由此导出不定积分的分部积分公式∫u d v=uv -∫v d u下面通过例子说明公式的用法.例2.5.22求∫x2ln x d x解.∫x2ln x d x= (将微分dln x算出)==.例2.5.23求∫x2sin x d x.解.原式=∫x2d(-cos x) (凑微分)=-x2cos x-∫(-cos x)d(x2) (用分部积分公式)=-x2cos x+∫2x cos x d x=-x2cos x+2∫x dsin x (第二次凑微分)=-x2cos x+2[x sin x-∫sin x d x] (第二次用分部积分公式)=-x2cos x+2x sin x+2cos x+C .例2.5.24求∫e x sin x d x.解.∫e x sin x d x=∫sin x d e x (凑微分)=e x sin x-∫e x dsin x (用分部积分公式)=e x sin x-∫e x cos x d x (算出微分)=e x sin x-∫cos x d e x (第二次凑微分)=e x sin x-[e x cos x-∫e x dcos x] (第二次用分部积分公式)=e x(sin x-cos x)-∫e x sin x d x (第二次算出微分)由此得:2∫e x sin x d x=e x(sin x-cos x)+2C因此∫e x sin x d x=(sin x-cos x)+C .注.(1)此例中在第二次凑微分时,必须与第一次凑的微分形式相同.否则若将∫e x cos x d x凑成∫e x dsin x,那将产生恶性循环,你可试试.(2)积分常数C可写在积分号∫一旦消失之后.例2.5.25求∫arctan x d x解.此题被积函数可看作x0arctan x,x0d x=d x,即适合分部积分公式中u=arctan x,v=x.故原式=x arctan x - ∫x d(arctan x) (用分部积分公式)=x arctan x - d x (算出微分)=x arctan x - (凑微分)=x arctan x - ln(1+x2)+C .小结.(1)分部积分公式常用于被积函数是两种不同类型初等函数之积的情形,例如x3arctan x,x3ln x 幂函数与反正切或对数函数x2sin x,x2cos x幂函数与正弦,余弦x2e x幂函数与指数函数e x sin x,e x cos x 指数函数与正弦,余弦等等.(2)在用分部积分公式计算不定积分时,将哪类函数凑成微分d v,一般应选择容易凑的那个.例如被积函数凑微分d vx3arctan x,x3ln x arctan x d,ln x dx2sin x,x2cos x,x2e x x2d(-cos x),x2dsin x,x2d e xe x sin x,e x cos x sin x d e x,cos x d e x我们已学习了不定积分的几种常用方法,除了熟练运用这些方法外,在许多数学手册中往往列举了几百个不定积分公式,它们不是基本的,不需要熟记,但可以作为备查之用,称为积分表.思考题.你仔细观察分部积分公式,掌握其中使用的规律,特别是第一步凑微分时如何选择微分.7.积分表的使用除了基本积分公式之外,在许多数学手册中往往列举了几百个补充的积分公式,构成了积分表.下面列出本节已得到的基本积分公式.(1)∫0d x=C(2)=ln|x|+C(3)(m≠-1,x>0)(4)(a>0,a≠1)(5)(6)∫cos x d x=sin x+C(7)∫sin x d x=- cos x+C(8)∫sec2x d x=tan x+C(9)∫csc2x d x=- cot x+C(10)∫sec x tan x d x=sec x +C(11)∫csc x cot x d x=-csc x+C(12)=arcsin x+C(13)=arctan x+C(14)∫tan x d x=-ln|cos x|+C(15)∫cot x d x=ln |sin x|+C(16)=(a >0)(17)=(a>0)(18)(a>0)(19)=(a>0)(20)∫sec x d x=ln|sec x+tan x|+C(21)∫csc x d x=ln|csc x-cot x|+C利用积分表中的公式,可使积分计算大大简化.积分表的使用方法比较简单,现举一例说明之.例2.5.26求解.从积分表中查得公式则将a=3,b=-1,c=4代入上式并添上积分常数C即得解答:=.(学习的目的是增长知识,提高能力,相信一分耕耘一分收获,努力就一定可以获得应有的回报)。