第9章 梁的平面弯曲

合集下载

材料力学(弯曲)

材料力学(弯曲)

B
F1
FB
A
FA 如果作用在梁的外力和外力偶都在纵向对称平面内, 梁变形后,轴线将在纵向对称平面内弯曲。这种梁的弯曲 平面与外力作用平面相重合的弯曲,称为平面弯曲。 梁变形后的轴线与外 力在同一平面内
二、梁的类型
根据梁的支座反力能否用静力平衡条件完全确定, 可将梁分为静定梁和超静定梁两类。工程中的单跨静 定梁按支座的情况又可分为三种:
二、剪力和弯矩的符 号 1.剪切的符号
剪力的符号规则: 截面外法线顺时针转 90度后与剪力方向一 致时,该剪力为正; 反之为负。
Q+ Q+ Q Q
2.弯矩的符号
弯矩的符号规则: 使分离体弯曲成凹面 向上的弯矩为正;使 分离体弯曲成凹面向 下的弯矩为负。
M+
+

M+ M M
静定梁的形式: 外伸梁 悬臂梁
简支梁
三、载荷的形式:
F
集中力
集中力偶
分布力
M
q(x)
§9-2 梁的内力及计算
一、剪力与弯矩
如图a为一简支梁,并且梁上的所有载荷都在梁的纵向对称 平面内。现在利用截面法分析。用m-m截面假想将梁分为左右 两段,取左段进行分析。由b)图所示,因为有只返利FA作用, 为使左段满足∑Fy=0,截面m-m上必然有与FA反向的内力FQ存 在;同时因为FA对截面m-m的形心C点有一个力矩FAx,为了满 足∑MC=0,截面m-m上也必然存在一个与力矩FAx转向相反的 内力偶矩M。可见,梁弯曲时,横截面上存在着两种内力: F 剪力和弯矩 相切于横截面的内力FQ,称 FA 为剪力,单位为N或kN;
FA FB
M
x
(b)
FQ
C

材料力学第9章--梁挠度和刚度计算

材料力学第9章--梁挠度和刚度计算

qx4
ql 12
x3
C x D 1
1
C 材料力学方程和挠曲线方程
EIq 1 qx3 ql x2 ql3
6
4 24
EIw 1 qx4 ql x3 ql3 x 24 12 24
6 梁的最大挠度:根据对称性
E Iw m a x E Iw |2 l 2 1 4 q 2 l 4 1 q 2 l 2 l 3 q 2 l4 3 2 l 3 5 8 q 4 lE 2 I
第9章 平面弯杆弯 曲 变 形与刚度计算 9.1 挠曲线 挠度和转角 9.2 挠曲线近似微分方程 9.3 积分法求梁的变形 9.4 叠加法求梁的变形 9.5 梁的刚度条件与合理刚度设计 9.6 用变形比较法解简单超静定梁
材料力学第9章--梁挠度和刚度计算
9.1 挠曲线 挠度和转角
1、梁的变形特点
平面假设
1 M z (x)
EI z * 思考:
1、若M常量
2、 若MM(x)
材料力学第9章--梁挠度和刚度计算
9.3 积分法求梁的变形
1、挠曲线方程(弹性曲线)
EIw (x)M (x)
EIw (x)M (x)dxC 1
E Iw (x ) (M (x )d x )d x C 1 x C 2
材料力学第9章--梁挠度和刚度计算
q
小变形(小挠度)
C
挠曲线
P x
w(x)
w(x)
C1
挠曲线:梁弯曲后,梁轴线所成的曲线
挠曲线方程
挠度:梁截面形心在垂直于梁的初始轴线方向的位移 w w(x)
转角:梁截面相对于变形前的位置转过的角度 qtanqdwx
材料力学第9章--梁挠度和刚度计算
dx

梁的弯曲(应力、变形)

梁的弯曲(应力、变形)

2
回顾与比较
内力
应力
F
A
FAy
编辑ppt
T
IP
M
?
?
FS
3
§9-6 梁的弯曲时的应力及强度计算
一、弯曲正应力 Normal stress in bending beam
梁段CD上,只有弯矩,没有剪力--纯弯曲Pure bending
梁段AC和BD上,既有弯矩,又有剪力--剪力弯曲Bending by
transverse force
编辑ppt
4
研究对象:等截面直梁 研究方法:实验——观察——假定
编辑ppt5Leabharlann 实验观察——梁表面变形特征
横线仍是直线,但发生 相对转动,仍与纵线正交
纵线弯成曲线,且梁的 下侧伸长,上侧缩短
以上是外部的情况,内部如何? 想象 —— 梁变形后,其横截面仍为平面,且垂直
x
61.7106Pa61.7MPa
编辑ppt
13
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
M ql /867.5kNm 2
x
2. C 截面最大正应力
120
B
x
180
K
30 C 截面弯矩
z
MC60kN m
FBY
y
C 截面惯性矩
IZ5.83120 5m 4
x 90kN
C max
M C y max IZ
于变形后梁的轴线,只是绕梁上某一轴转过一个角度 透明的梁就好了,我们用计算机模拟 透明的梁
编辑ppt
6
编辑ppt
7
总之 ,由外部去 想象内部 —— 得到

第九章梁的弯曲变形

第九章梁的弯曲变形

a xl
在 x l / 2处
y 0.5l


Fb
(3l 2 4b 2 ) 48 EI
yqx(l32lx2x3) 2E 4 I
A

B


ql3 24EI
x

l 2
ymax


5ql4 384EI
梁的简图
第九章 梁的弯曲变形
挠曲线方程
y6M EI(xllx)2(lx)
yC1
aB
qa4 2EI
yC2


qa4 8EI
3)叠加 y C y C 1 y C 2 2 q E 4a 8 I q E 4a I 5 8 q E 4( a I)
第九章 梁的弯曲变形
例9-5 悬臂梁跨度为 l =2m,截面为矩形,宽b = 100mm,高h =120mm,材料的弹性模量E=210GPa, 梁上载荷如图所示,求自由端A的挠度。
挠曲线方程 y f (x)
第九章 梁的弯曲变形
二、挠度和转角
挠度:截面形心线位 移的垂直分量称为该 截面的挠度,用 y 表 示,一般用 ymax 表示 全梁的最大挠度。
转角:横截面绕中性轴转动产生了角位移,此角
位移称转角,用 表示。小变形时,转角 很小,
则有以下关系:
tanydy
1
(x)

M(x) EI
曲线 y f(x)的曲率
1
(x)
(1yy2)3/2
二阶小量
y (1y2)3/2
M(x) EI
挠曲轴线 近似微分方程
y M(x) EI
第九章 梁的弯曲变形
挠曲轴线 近似微分方程
y

工程力学高斌第九章答案

工程力学高斌第九章答案
2 2
15kN . m
5kN . m
15kN . m
-
Q qa/2 +
-
qa/2 + x
qa/2
M q a 2/8 +
-
x
q a 2/8
5. 设梁的剪力图如图所示,试作弯矩图及载荷图。已知梁上设有作用集中力偶。 (a)
4kN q=1kN/m
3kN
Q
3kN
2kN
3kN
1kN
A
B
1kN
C
D
x
5
3kN 2m 2m 4m
3
2
⎡ 50 × 2003 ⎤ 150 × 503 Iz = ⎢ + 50 × 200 × 53.62 + + 50 × 150 × 71.4 2 ⎥ mm 4 12 ⎣ 12 ⎦ = 10180 cm 4
根据弯曲正应力强度条件
M
0.8p
σ max
M = ymax ≤ [σ ] , M≤[σ].Iz/ymax Iz
解:梁的弯矩图如图, 弯矩的两个极值分别为
µ1 = 0.8P , MA =2P×1.4 - P×2= 0.8P µ2 = 0.6 P , MC = -0.6 P
截面对形心轴的惯性矩为
8
(Iz =bh /12 + Ah1 , h1 腹 = 153.6–100=53.6mm ,h1 翼 =200-153.6+25 =71.4mm )
实心圆截面梁的最大应力
σ max =
空心圆截面最大应力
′ = σ max
空心圆截面梁比实心圆截面梁的最大正应力减少了
′ σ max − σ max 159 − 93.6 = = 41.1% σ max 159

工程力学第九章

工程力学第九章

下一页 返回
9.4

梁的弯曲变形与刚度
2.
挠度和转角
(1) 挠度 是指梁轴线上的一点在垂直于轴线方向上的位移, 通常用y表示。

一般规定向上的挠度为正,向上的挠度为负。它的单位是mm。 (2) 转角 是指梁的各截面相对原来位置转过的角度,用θ 表
示。

一般规定,逆时针方向的转角为正,顺时针的转角为负。它 的单位是弧度(rad)或度(º)。
远的边缘处。其计算公式为
max

(2) 梁的正应力强度条件为
M max y max M max Iz Wz
M max ≤[σ ] Wz
下一页 返回
max




max
* FQ S z
(3) 梁横截面上的切应力与切应力强度条件 对矩形截面梁,横截面上的切应力计算公式为 其最大切应力在截面的中性轴上,计算公式为 梁的切应力强度条件为τ max≤[τ ]
上一页 返回
9.2


梁弯曲时正应力强度计算
梁弯曲时正应力强度计算
9.2
为了保证梁在载荷作用下能够正常工作,必须使梁具备足够 的强度。也就是说,梁的最大正应力值不得超过梁材料在单 向受力状态(轴向拉、压情况)下的许用应力值[σ ],即 M max max ≤[σ ] (9.10) Wz 式(9.10)就是梁弯曲时的正应力强度条件。需要指出的是, 式(9.10)只适用于许用拉应力[σ l]和许用压应力[σ y]相等 的材料。如果两者不相等(例如铸铁等脆性材料),为保证梁 的受拉部分和受压部分都能正常工作,应该按拉伸式
上一页 下一页 返回
My Iz
(9.4)

第九章第六节梁弯曲时的应力及强度计算(上课用)

第九章第六节梁弯曲时的应力及强度计算(上课用)

m
V
( Stresses in Beams)
m

m
M
V
m m
只有与剪应力有关的切向内力元素 d V = dA 才能合成剪力
只有与正应力有关的法向内力元素 d FN = dA 才能合成弯矩
剪力V 内力 弯矩M 正应力 剪应力
所以,在梁的横截面上一般
既有 正应力, 又有 剪应力
先观察下列各组图
所以,可作出如下 假设和推断:
1、平面假设:
2.单向受力假设: 各纵向纤维之间互不挤压,纵向纤维均处于单向受拉或受压的状态。 因此梁横截面上只有正应力σ而无剪应力τ
各横向线代表横截面,实验表 明梁的横截面变形后仍为平面。
梁在弯曲变形时,上面部分纵向纤维缩短,下面部分纵向纤维伸长,必 有一层纵向纤维既不伸长也不缩短,保持原来的长度,这一纵向纤维层称为 中性层. 中性层与横截面的交线称为中性轴,中性轴通过截面形心,是一条形心轴。 且与截面纵向对称轴y垂直,将截面分为受拉区及受压区。梁弯曲变形时, 各横截面绕中性轴转动。
(3)横截面上任一点处的剪应力计算公式(推导略)为

V S I zb
Z
V——横截面上的剪力
Iz——整个横截面对中性轴的惯性矩
b——需求剪应力处的横截面宽度 S*Z——横截面上需求剪应力处的水平线 以外(以下或以上)部分面积A*(如图 )对 中性轴的静矩
V
3V 4 y2 (1 2 ) 2bh h
应力状态按主应力分类:
(1)单向应力状态。在三个相对面上三个 主应力中只有一个主应力不等于零。 (2)双向应力状态。在三个相对面上三个 主应力中有两个主应力不等于零。
(3)三向应力状态。其三个主应力都不等于零。例 如列车车轮与钢轨接触处附近的材料就是处在三向应 力状态下.

梁的应力

梁的应力

ac
M
⑵、纵向线:由直线变为曲
线,且靠近上部的纤维缩短,
靠近下部的纤维伸长。
b
d
3、假设:
(1)弯曲平面假设:梁变形前原为平面的横截面变形后仍为平 面,且仍垂直于变形后的轴线。
第九章 梁的应力
梁是由许多纵向纤维组成的
凹入一侧纤维缩短
突出一侧纤维伸长
根据变形的连续性可知, 梁弯曲时从其凹入一侧的 纵向线缩短区到其凸出一 侧的纵向线伸长区,中间 必有一层纵向无长度改变
z
A2 20120mm2 y2 80mm
yc
80 2010 120 2080 80 20 120 20
52mm
(2)求截面对中性轴z的惯性矩
Iz
Hale Waihona Puke 80 203 1280 20 422
y
201203 20120 282
12
7.64106 m4
第九章 梁的应力
横截面上应力分布
b
d2
c,m ax
h yt,max yc,max d1
oz y
Oz
y b
t,m ax
中性轴 z 不是横截面的对称轴时,其横截面上最大拉
应力值和最大压应力值为
t,m ax
My t ,m a x Iz
c,m ax
Myc ,m a x Iz
第九章 梁的应力
例 对于图示 T形截面梁,求横截面上的最大拉应力和最大压 应力.已知: I z 290 .6 10 8 m4
d
在弹性范围内, E E Ey ...... (2)

O1
A1
B1 x
y
第九章 梁的应力
应力的分布图:

梁的弯曲

梁的弯曲

第九章梁的弯曲第一节平面弯曲一、平面弯曲的概念当杆件受到垂直于杆轴的外力作用或在纵向平面内受到力偶作用时(图9-1),杆轴由直线弯成曲线,这种变形称为弯曲。

以弯曲变形为主的杆件称为梁。

图9-1 受弯杆件的受力形式弯曲变形是工程中最常见的一种基本变形。

例如房屋建筑中的楼面梁,受到楼面荷载和梁自重的作用,将发生弯曲变形(9-2a、b),阳台挑梁(9-2 c、d)等,都是以弯曲变形为主的构件。

工程中常见的梁,其横截面往往有一根对称轴,如图9-3所示,这根对称轴与梁轴所组成的平面,称为纵向对称平面(图9-4)。

如果作用在梁上的外力(包括荷载和支座反力)和外力偶都位于纵向对称平面内,梁变形后,轴线将在此纵向对称平面内弯曲。

这种梁的弯曲平面与外力作用平面相重合的弯曲,称为平面弯曲。

平面弯曲是一种最简单,也是最常见的弯曲变形,本章将主要讨论等截面直梁的平面弯曲问题。

图9-2 工程中常见的受弯构件图9-3 梁常见的截面形状图9-4平面弯曲的特征二、单跨静定梁的几种形式工程中对于单跨静定梁按其支座情况分为下列三种形式:1.悬臂梁: 梁的一端为固定端,另一端为自由端(图9-5a )。

2.简支梁: 梁的一端为固定铰支座,另一端为可动铰支座(图9-5b )。

3.外伸梁: 梁的一端或两端伸出支座的简支梁(图9-5c )。

(a ) (b ) (c )图9-5 三种静定梁第二节 梁的弯曲内力——剪力和弯矩为了计算梁的强度和刚度问题,在求得梁的支座反力后,就必须计算梁的内力。

下面将着重讨论梁的内力的计算方法。

一、截面法求内力1、剪力和弯矩图9-6 用截面法求梁的内力图9-6a 所示为一简支梁,荷截F 和支座反力R A 、R B 是作用在梁的纵向对称平面内的平衡力系。

现用截面法分析任一截面m-m 上的内力。

假想将梁沿m-m 截面分为两段,现取左段为研究对象,从图9-6b 可见,因有座支反力R A 作用,为使左段满足Σ Y =0,截面m-m 上必然有与R A 等值、平行且反向的内力Q 存在,这个内力Q ,称为剪力;同时,因R A 对截面m-m 的形心O 点有一个力矩R A · a 的作用,为满足Σ M o =0,截面m-m 上也必然有一个与力矩R A · a 大小相等且转向相反的内力偶矩M存在,这个内力偶矩M 称为弯矩。

工程力学 9弯曲

工程力学 9弯曲

O
讨论: 惯性矩大于零
z
§A.3 惯性矩的平行移轴公式
组合截面的惯性矩
1.惯性矩的平行移轴公式 yc y 设有面积为A的任意形状的截面。 x xc dA C为其形心,Cxcyc 为形心坐标 yc xc 系。与该形心坐标轴分别平行 C 的任意坐标系为Oxy ,形心C在 y Oxy坐标系下的坐标为(a , b) 任意微面元dA在两坐标系 x 下的坐标关系为: O b
20
③计算静矩Sz(ω)和SzC(ω)
Sz ( ) A y C (0.1 0.02 0.14 0.02 0.103 0.494m 3 )
S zc ( ) Ai y C 0.1 0.02 0.047 - 0.02 0.14 0.033 1.6 10 6 m 3
(f)
纵向线应变在横截面范围内的变化规律
图c为由相距d x的两横截面取出的梁段在梁弯曲后的情
况,两个原来平行的横截面绕中性轴相对转动了角d。梁的 横截面上距中性轴 z为任意距离 y 处的纵向线应变由图c可知 为

B1B B1 B y d AB1 O1O2 dx
(c)
令中性层的曲率半径为(如图c),则根 1 d 据曲率的定义 有 dx y
切应力。
F
FS
M
F
M
C

C
F
A

Ⅰ. 纯弯曲时梁横截面上的正应力
计算公式的推导 (1) 几何方面━━ 藉以找出与横截面上正应力相对应 的纵向线应变在该横截面范围内的变化规律。 表面变形情况 在竖直平面内发生纯弯曲的梁(图a):
(a)
1. 弯曲前画在梁的侧面上相邻横向线mm和nn间的纵 向直线段aa和bb(图b),在梁弯曲后成为弧线(图a),靠近梁

第9章 直梁

第9章 直梁
图9.5.3 梁的截面形状
9.6
图9.6.1 梁横截面的切应力
图9.6.2 简支梁
图9.1.8 剪力和弯矩的符号
图9.1.9 简支梁
图9.1.10 剪板机电轧辊
图9.1.11 扳手受力
图9.1.12 起重机横梁受力
图9.1.13 简支梁
图9.1.14 简支梁受力图
图9.1.15 内力的突变
9.2 梁的弯曲强度计算 9.2.1
图9.2.1 纯弯曲与横力弯曲
图9.2.2 弯曲变形
第9章 直梁 9.1 直梁平面弯曲的概念及弯曲内力 9.1.1 直梁平面弯曲的概念
图9.1.1 桥式起重机大梁
图9.1.2 火车轮轴
图9.1.3 梁的结构
9.1.2 直梁平面弯曲的内力计算
图9.1.4 短支座的简化
图9.1.5 长支座的简化
图9.1.6 梁的典型形式
图9.1.7 截面法求梁内力
图9.2.3 弯曲正应力的分布
图9.2.4 简支梁受力图
9.2.2 梁的弯曲强度条件
图9.2.5 阶梯圆轴受力图
图9.2.6 T字形截面受力图
9.3 拉(压)与弯曲组合变形的强度计算
图9.3.1 起重结构
图9.3.2 偏心受压立柱
图9.3.3 抗弯组合变形悬臂梁
图9.3.4 钢支架受力图
9.4 梁的弯曲刚度简介 9.4.1 弯曲变形的概念
图9.4..4.2 梁的弯曲刚度条件
图9.4.3
9.5 提高梁弯曲强度和刚度的措施 9.5.1 合理安排梁的受力情况
图9.5.1 支承布置与受力
图9.5.2 载荷配置与受力
9.5.2 合理选择梁的截面形状

材料力学——第9章(平面弯曲杆件的变形与刚度计算)

材料力学——第9章(平面弯曲杆件的变形与刚度计算)

a
A
x1
F C
b
Fa l
当 a>b 时——
6lEI
B
max
x2
Fab( l a ) max B 6lEI 当 a>b 时——最大挠度发生在AC段
0 x l 2 b2 3 a( a 2b ) 3
xa
最大挠度一定在左侧段
x x
max 1
2 Fb 1 ( x x ) ( l b 2 )3 9 3 EIl
19
Fb l
讨论:1、此梁的最大挠度和最大转角。 左 1 max 1 0 x1 0 右 2 max 2 0 x 2 l 侧 侧 Fab( l b ) Fab( l a ) 段: 1 max A 段: 2 max B 6lEI
§9-1 挠曲线 挠度和转角
§9-2 挠曲线的近似微分方程
§9-3 积分法求梁的变形 §9-4 叠加法求梁的变形 §9-5 梁的刚度条件与合理刚度设计 §9-6 用变形比较法解简单超静定梁
1
研究范围:等直梁在对称弯曲时位移的计算。 研究目的:①对梁作刚度校核; ②解超静定梁(为变形几何条件提供补充方程)。
式中,C1、D1是积分常数,可通过梁的边界条件(支座 的约束条件)确定。
梁上有集中力、集中力偶以及间断性分布荷载作用时,弯 矩方程需分段写出,各梁段的挠曲线近似微分方程也不同。积 分常数还要利用连续性条件,才能求出。 7
二、位移边界条件
A F C B F D
支座位移条件: A 0 B 0 Nhomakorabea

18
⑸跨中点挠度及两端端截面的转角

x L 2

第九章 梁的平面弯曲

第九章 梁的平面弯曲

x
左顺右逆,M为正
M
FQ
M
内力 右截面正向 左截面正向 FQ M
微段变形(正)
顺时针错动 向上凹
内力图
剪力图—以杆件轴线为基线,Q为纵坐标,作出的反映Q沿
杆件轴线的变化规律的曲线
弯矩图—以杆件轴线为基线,M为纵坐标,作出的反映M 沿杆件轴线的变化规律的曲线
内力图作法:
以坐标x表示横截面的位置,通过平衡方程求出内力与x 的关系,称为内力方程,根据内力方程作图
FAy q M0 M3
0 x3 B C c FQ3
Fy=FAy-4q-FQ2=0 FQ2=13kN
Mc(F )=M2+4q(x2-2)-FAyx2=0 M2=13x2+72(kN•m)
CD段: 6mx3<8m FQ3=13kN; M3=13x3+24(kN•m)
FAy q M0 F M4 DE段: 8mx4<12m
内力与外力的相依关系
某一截面上的内力与作用在该截 面一侧局部杆件上的外力相平衡;
在载荷无突变的一段杆的各截 面上内力按相同的规律变化;
控制截面的概念: 外力规律发生变化的截面—集中力、集中力偶作用点、分 布载荷的起点和终点处的横截面,支座

截面法,确定各段Q、M 分布规律,以此列出各 段的内力方程(剪力方程、弯矩方程)。以此 作出剪力图和弯矩图。
q
A
FA
FQ qa
2a
B
2L
FB
qa
q(L-a) q(L-a)
M
qLa-qL2/2
q(L-a)2/2
根据给定的剪力图和弯矩图能否确定梁的受
力,能否确定梁的支承性质与支承位置?由给

第九章梁的弯曲应力

第九章梁的弯曲应力

一、梁横截面上的正应力
横力 F 弯曲 A a F (+)
V图
纯弯曲 C l D
F
横力 弯曲 B
纯弯曲——梁弯曲变形
时,横截面上只有弯矩
F
a
F 而无剪力(M 0,V 0)。
F
(-)
横力弯曲——梁弯曲变形 时,横截面上既有弯矩又 有剪力(M 0,V 0)。
Fa
M图
(+) Fa
一、梁横截面上的正应力
* z
max
* Vmax Sz Vmax max * Izd ( I z Sz max )d
* 对于工字钢, I z Sz
max
可由型钢表中查得。
3.工字形截面梁的剪应力
V
三、梁的强度条件
1、弯曲正应力强度条件:
max
Mmax [ ] Wz
可解决工程中有关强度方面的三类问题:
3.在进行梁的强度计算时,需注意以下问题:
(1)对于细长梁的弯曲变形,正应力的强度条件是
主要的,剪应力的强度条件是次要的。但对于较粗的
短梁,当集中力较大时,截面上的剪力较大而弯矩较
小,或是薄壁截面梁时,也需要校核剪应力强度。 (2)正应力的最大值发生在横截面的上下边缘,该
正应力最大。
注意:
(3)梁在中性轴的两侧分别受拉或受压,正应力
的正负号(拉或压)可根据弯矩的正负及梁的变形状
态来确定。 (4)必须熟记矩形截面、圆形截面对中性轴的惯 性矩的计算式。
二、梁横截面上的剪(切)应力
1.剪(切)应力分布规律假设
V
A*

(1)各点处的剪(切)应力 都与剪力V方向一致; (2)横截面上距中性轴等距离各点处剪(切)应力大小 相等,即沿截面宽度为均匀分布。 (3)剪(切)应力大小沿截面高度按抛物线规律变化。

第九章梁的弯曲变形-PPT精品文档

第九章梁的弯曲变形-PPT精品文档
第九章 梁的弯曲变形
第一节
工程中的弯曲变形
梁在外载荷作用下将产生变形,梁不但要满足强 度条件,还要满足刚度条件,即要求梁在工作时的变 形不能超过一定范围,否则就会影响梁的正常工作。 一、挠曲线 挠曲线:图所示悬臂梁在纵向对称面内的外力F的 作用下,将产生平面弯 曲,变形后梁的轴线将变 为一条光滑的平面曲线, 称梁的挠曲线。 挠曲线方程
挠曲轴线 近似微分方程
M ( x) y EI
对梁的挠曲轴线近似微分方程式积分:
积分一次得转角方程:
M ( x ) y x C EI d
积分二次得挠度方程:
M ( x ) y d x d x Cx D EI
第九章 梁的弯曲变形 转角方程 挠度方程
M ( x ) y x C EI d M ( x ) y d x d x Cx D EI
式中积分常数C、D由边界条件(梁中已知的截面 位移)确定:
0 , y 0 简支梁: y A B
悬臂梁: 0 , A
y 0 A
由边界条件、变形连续条件可确定积分常数,通 过上面两个公式可计算梁任一截面的转角与挠度, 这方法称积分法。
第九章 梁的弯曲变形
例9-1 如图所示简支梁,跨度为l,受均布载荷 q作用,梁的抗弯曲刚度EI已知,求跨中截面C的挠 度及截面A处的转角。 解:梁的弯矩方程为:
第九章 梁的弯曲变形 挠曲轴线 近似微分方程 结论 两种情况下弯矩与曲线的二阶导数均同号,微分 方程式应取正号,即: 挠曲轴线 近似微分方程
M(x) y EI
M ( x) y EI
梁的挠曲轴线近似微分方程的适用条件:梁的变 形是线弹性的小变形。
ห้องสมุดไป่ตู้

009 第九章1 弯曲应力

009 第九章1  弯曲应力



应力之比
max M max 2 A L 16.7 max W z 3Q h
25
60kN A 1m
q= 30kN/m B 5m 112.5kN 52.5kN
Q
例:图示梁为工字型截面,已知 〔σ〕=170MPa,〔τ〕=100MPa 试选择工字型梁的型号。 解:1、画Q、M图 YA=112.5kN ;YB=97.5kN 2、按正应力确定截面型号 x M 97.5kN max max WZ x 6
1
§9-1-1 概述
剪力“Q”——剪应力“τ”; 弯矩“M”——正应力“σ” 一、纯弯曲: 梁的横截面上只有弯矩
P a A
Q x
x M
2
P a B
而无剪力的弯曲。
梁的横截面上只有正应力 而无剪应力的弯曲 二、横力弯曲(剪切弯曲): 梁的横截面上既有弯矩又有 剪力的弯曲。
梁的横截面上既有正应力又有剪应力的弯曲
y
QS z I zb
注意:Q为横截面的剪力;Iz为整个横截 面对Z轴的惯性矩;b为Y点对应的宽度; 20 Sz*为Y点以外的面积对Z轴的静面矩。
3、剪应力的分布:
h y h b h2 S z yc A 2 b( y ) ( y2 ) 2 2 2 4
Q
a
c
b
a
d c
M
b
3、假设:
d
(1)、平面假设:梁变形前的横截面变形后仍为平面,且仍垂 直于变形后的轴线,只是各横截面绕某轴转动了一个角度。
4
(2)纵向纤维假设:梁是由许多纵向纤维组成的,且各纵向纤维 之间无挤压。
中性轴
中性面
4、中性层:不发生变形的一层纤维。 5、中性轴:中性层与横截面的交线。 推论:梁变形实际上是绕中性轴转动了一个角度, 等高度的一层纤维的变形完全相同。

弯曲刚度问题

弯曲刚度问题

第9章弯曲刚度问题9.1 基本概念9.1.1 梁弯曲后的挠曲线吊车梁若变形过大,将使小车行走困难,还会引起梁的严重振动。

因此,必须对梁的变形加以限制若梁的变形在弹性范围内,梁的轴线在梁弯曲后变为一条连续光滑曲线,该曲线称为弹性曲线或挠度曲线,简称弹性线或挠曲线。

挠曲线:梁变形后的轴线。

性质:连续、光滑、弹性、极其平坦的平面曲线。

9.1.2梁的挠度与转角设有一具有纵向对称面的悬臂梁,在自由端处作用一集中力F p。

F p力作用在梁的纵向对称面内,使梁发生平面弯曲。

一、挠度与转角梁的变形可用以下两个基本量来度量。

tan"二dw ,、w(x)二 w ‘ dxtan0-W⑴挠度挠度:横截面形心沿垂直于轴线方向的位移梁轴线上各点(各截面)的挠度w 随着点(截面)的位置 x 的不同而改变,即各截面的挠度是截面位置坐标x 的函数。

因小变形时,u 与w 相比为高阶无穷小,故忽略不计。

、挠度w 于转角二间的关系w = w(x)d挠曲线方程 单位:mm挠度 w 符号规定:向下为正⑵转角,向上为负。

转角:横截面绕中性轴转过的角度。

用“,”表示。

梁不同横截面其转角是不相同的,二是横截面位置坐标x 的函数 6 = &(兀)转角方程 单位:rad71的符号规定:由变形前的横截面转到变形后,顺时针为正;逆时针为负。

⑶ 水平位移:横截面形心沿水平方向的位移,用 u 表示。

9.2 小挠度微分方程及其积分9.2.1 小挠度微分方程1梁发生平面弯曲时,其轴线由直线变成一条曲率为7的平面曲线1 M 1 M (x)纯弯曲EI细长梁横力弯曲(x) El12d w d2w M(x)2dx2El 由高数知(x)dxM (x)与W的符号总是相反的JElM (x)dx C _______ 转角方程dw w解上二阶微分方程可求得挠度 w ,再根据dx,可求得截面转角71。

等截面梁:EI =常数。

Elw …M (x) Elw dx …M (x)dxElw = El — - 严(x)dx C Elw dx 二[j M (x)dx]dx Cdx Elw 二 」| M (x)dx]dx Cx Dd 2w M (x) dx 2 El尸EIw” = -M (工)求梁的变形:d 2w Eldx 2-M (x)挠曲线近似微分方程1 5 / 28w[ M (x)dx]dx Cx DE| i i ''____ 挠度方程其中C 、D 为积分常数。

第9章_直梁

第9章_直梁
WZ
max
IZ 1.067106 ymax
M max 141 MN/m2 150MN/m2 WZ
故压板的强度足够
第九章 直梁弯曲
例9-8 一起重量原为 50kN 的吊车,其跨度l = 10.5m (如图),由 45a号工字钢制成。为发挥其潜力,现欲将 起重量提高到Q =70kN,试校核梁的强度;若强度不足, 再计算其可能承载的起重量。设梁的材料为 Q235钢, 许用应力[σ]=140MN/m2,电葫芦自重G = 15kN,梁
第九章 直梁弯曲
推断和假设
假设:(1) 梁在纯弯曲时,各横截 面始终保持为平面,并垂直于梁轴。
此即弯曲变形的平面假设。
(2) 纵向纤维之间没有相互挤压,每 根纵向纤维只受到简单拉伸或压缩。 中性层:从伸长到缩短区,中间必有一层纤维既不伸长也不缩短。这 一长度不变的过渡层称为中性层。 中性轴:中性层与横截面的交线 在纯弯曲的条件下,所有横截面仍保持平面,只是绕中性轴作 相对转动,横截面之间并无互相错动的变形,而每根纵向纤维 则处于简单的拉伸或压缩的受力状态。
Q max P M max Pl
Q O
x P
第九章 直梁弯曲
例9-3
一简支梁 AB ,受均布载荷 q 的作用,试作此梁的弯矩图。
解: 1、求支反力
由对称性知: ql FA FB 2
2、建立剪力方程和弯矩方程
ql Q = FA qx = qx (0 < x < 1) 2 qx2 qlx qx2 M = FA x = (0 ≤x < 1) 2 2 2
非对称弯曲:若梁不具有纵向对称面,或梁有纵向对称面上但 外力并不作用在纵向对称面内的弯曲。
第九章 直梁弯曲
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FQ M
内力的符号规定 内力 右截面正向 左截面正向 FQ M
微段变形(正)
顺时针错动
向上凹 4
返回
例3 已知q=9kN/m,F=45kN,M0=48kNm, 求梁的内力。 q FAy F
M0
A 4m
B
C D E 2m 2m 4m
x
2) 截面法求内力 BC段: 4mx2<6m
FAy
0
q
x2 q x3 q x4
M
y
smax压 M
x
smax拉
适用范围:
横截面有对称轴的平面弯曲。 纯弯曲 横力弯曲 载荷作用在纵向对称面内; 平面弯曲的条件 梁的高跨比 h/L< 0.25; 变形平面假设的条件 19
返回
最大弯曲正应力:
y=ymax 时,s=s max ,故
y
smax压 M
Mymax M s max Iz Wz
变形后
中性轴
中性层(面)
13
返回
4. 变形几何关系
考虑梁AA-BB间的微段,oo 在中性层上,r为中性层的 曲率半径。截面坐标如图。
M
y
d
A a o A B a o B
r
M
距中性层为y的纵向纤维aa: 变形前: aa oo
变形后: aa r y d Dl aa aa r y d r d 应变: e
x
M
smax拉
Wz=I z /y max,是抗弯截面模量。(如表10-1或手册)
梁的弯曲强度条件:
M s max [s ] Wz
作用 抗力
若材料拉压性能不同,则
s max拉 [s 拉 ] s max压 [s 压 ]
处处均应满足强度条件。20
返回
例9.9 空心矩形截面梁的横截面尺寸H=120mm, B=60mm,h=80mm,b=30mm,若[s]=120MPa, 试校核梁的强度。 q=20kN/m 解:1)作Q、M图。 z h O 固定端弯矩最大, A L=1.2m M max=qL 2/2=14.4 kN.m b
10
返回
9.3 梁的应力与强度
讨论平面纯弯曲梁。 横截面上只有弯矩。
M
y M
z
s
x
弯矩分布在横截面上, 只能是正应力。
问题: 平面纯弯曲梁横截面上的正应力?
思路: 仍延研究变形体力学问题的主线。
变形的几何协调 (几何分析) 力与变形之关系 (物理关系) 力的平衡 (已熟悉)
11
返回
9.3.1 弯曲变形几何分析
4a a 4a
z
yc o C a
z
2) M>0时: 截面应力分布?
smax拉3.25aM/Iz smax压1.75aM/Iz
强度条件: M+[s]拉Iz/3.25a=4[s]拉Iz/13a
s max 压
C
y
1.75a 3.25a
24
返回
M
s max 拉
对于拉压力学性能(许用应力)不同的材料,应 讨论二 :铸铁T形截面梁有 [s]压/[s]拉=2,试求其
12
返回
2. 弯曲的基本假设—平面假设 梁的横截面在弯曲变形后仍保持 为平面,且仍与梁的轴线垂直。
M
A
B
M
a
a
b B
b A
3. 推论:
有中性层存在
M
d
A a b A B a b B
M
若梁由纵向纤维组成,则其变形 是伸长或缩短。 凹部纤维aa 缩短,凸部bb纤维伸 长,总有一层纤维既不伸长又不 缩短,此层称为中性层。 中性层与横截面的交线称为中性 轴。
1/r=M/EIz 梁的曲率
M
y
smax压
x
smax拉
Iz--截面对z轴的惯性矩。
EI--截面抗弯刚度。
s s max 。
18
返回
结论: s=-My/Iz
中性轴上,s=0,截面上、下缘,
9.3.4 平面弯曲的最大正应力及强度条件
My 弯曲正应力公式: s Iz
按绝对值计算应力s 的大小,依 据弯曲后的拉压情况判断正负。
梁有纵向对称面,且载荷均作用在 纵向对称面内,变形后梁的轴线仍 在该平面内,称为平面弯曲。 3
返回
9.1 用截面法作梁的内力图
截面法求内力的步骤:
求约 束反 力 截取 研究 对象 受力图, 内力按正 向假设。 列平衡 方程 x y x
FQ 左上右下,FQ为正 M
求解内力,负号 表示与假设反向
左顺右逆,M为正
FE
FQ/kN
49 + 13 -
x
M/k128
+
A B C D
E x
注意:C、D处左右二侧M、FQ 之差等于该处的集中 力偶、集中力。
6
返回
例4 作图示外伸梁的 FQ、M图。
解:1.求支座反力 MA=2q+630-60-4FB=0 FB=35 kN Fy=2q+FA+FB-30=0 FA=-25 kN 2)画FQ、M图 从左起,计算控制点的 FQ、M值。 由微分关系判断线形。
q=10kN.m M=60kN.m 30kN
C FA A D
2m 1m 3m
FQ/kN 20
FB
B E
2m
30
o
M/kNm 20
5
x
15
o
45
60
7
x
3)检查图形是否封闭。
返回
小结:
1)承受弯曲作用的杆,称为梁。 2)平面弯曲:载荷均作用在梁的纵向对称面内。 3)梁的内力有剪力、弯矩。作内力图一般步骤:
2 h/2 2
3
dy y
z o b
dA z y
z y r
h
圆形截面:取微面积如图。 I r r 2dA y 2 + z 2 dA I z + I y
A A
由对称 性知:
I y Iz Ir / 2
pd
4
o
d
64
17
返回
分析结果汇总:
变形几何关系: e=-y/r 物理关系: s=Ee=-y/r 静力平衡条件: A ydA=0 中性轴z过截面形心
l
y
y
a z o
aa
r d
r
横截面上任一点处线应变e的大小与该点到 中心层的距离y成正比。 e y /r 14
返回
9.3.2 材料的物理关系
基于: 问题:
y
r ?
smax压
中性轴
• 纵向纤维受单向拉压; 中心轴位置 ? • 材料拉压弹性常数相等。则
x
线弹性应力-应变关系: s=Ee=-Ey/r Hook 定理
返回
例9.10 矩形截面木梁的横截面高宽比h/b=3/2,已知 F=15kN,a=0.8m,[s]=10MPa。设计截面尺寸。 解:1. 求支反力: F A =FB=3F 2. 作FQ、M图。 M max =Fa=12 kN.m
a F a 2F a a 2F a F
2F
F
FA
a FB
F
x
3. 注意h/b=3/2,则: W z=bh 2 /6=3b 3/8
讨论矩形截面纯弯曲梁。 1. 弯曲变形实验现象
AA、BB仍保持直线,但相对 地转过一角度d。 aa 缩短,bb伸长,变为弧形, 但仍与AA、BB线正交。
M a
A b A
B
M
a
b B
M
d
A a b A B a b B
M
2. 弯曲的基本假设—平面假设
变形后
梁的横截面在弯曲变形后仍保持为平面,且仍与 梁的轴线垂直。
5
返回
FAy
0
M0 M 3
B C c
FQ3
FAy
0
M0 F
B C Dc
剪力、弯矩图:
分段处的剪力弯矩值:
FAy
A
q
B 4m
M0
F
x
C D E 2m 2m 4m
x1=0: FQA=49;MA=0 x2=4: FQB=13;MB=124 x3=6: FQC=13;MC=102 x36: MC150 x4=8: FQD=-32;MD=128 x48: FQD13
b
b
h/b=2/3 h
M
O
s bmax
Wz=b3/6 强度条件:
b3 M max [s ] 6
W z=2b 3 /27
强度条件:
2b 3 M max [s ] 27
强度条件:
3 b 3 M max 8 [s ]
b=147 h=220.5mm
b==h=193mm
b=253 h=169mm
A
令: I z y 2 dA 则有:1/r=M/EIz Iz 为截面对z 轴的惯性矩,取决于截面几何。
A
16
返回
2 截面对z 轴的惯性矩 I z的计算: I z y dA A
矩形截面: 取微面积如图 dA=bdy
y
hb I z y dA y bdy 12 -h/2 A
轴向拉压


弯 曲
轴向拉压—内力为轴力。如拉、撑、活塞杆、钢缆、柱。 扭转 —内力为扭矩。如各种传动轴等。 (轴) 弯曲 —内力为弯矩。如桥梁、房梁、地板等。(梁)
2
返回
梁的分类
F
q
平面弯曲
简支梁 悬臂梁 梁的横截面
M
都有对称轴 外伸梁
纵向对称面
集中力,集中力偶,分布载荷
相关文档
最新文档