广东省广州市2016年普通高中毕业班综合测试(一模)数学文试题(解析版)

合集下载

广州市普通高中毕业班综合测试(广一模)含答案word版

广州市普通高中毕业班综合测试(广一模)含答案word版

2016年广州市普通高中毕业班综合测试(一)物理试卷第I 卷二、选择题(本题共8小题,每小题6分。

在每小题给出的四个选项中,第14-18题只有一项符合题意要求,第19-21题有多项符合题意要求。

全部选对得6分,选对但不全的得3分,有选错的得0分)14.物理学史上是哪位科学家、由于哪项贡献而人们称为“能称出地球质量的人”A .阿基米德,发现了杠杆原理B .牛顿,发现了万有引力定律C .伽利略,测出了重力加速度的值D .卡文迪许,测出了万有引力常量 15.不计重力的两个带电粒子M 和N 沿同一方向经小孔S 垂直进入匀强磁场,在磁场中的径迹如图。

分别用v M 与v N , t M 与t N ,M Mm q 与NN m q 表示它们的速率、在磁场中运动的时间、荷质比,则A .如果M M m q =NNm q ,则v M > v N B .如果M M m q =NNm q ,则t M < t N C .如果v M = v N ,则M Mm q >N N m q D .如果t M = t N ,则M Mm q >NN m q 16.如图a ,理想变压器原、副线圈的匝数比为2∶1,与副线圈相连的两个灯泡完全相 同、电表都为理想电表。

原线圈接上如图b 所示的正弦交流电,电路正常工作。

闭合开关后,A .电压表示数增大B .电流表示数增大C .变压器的输入功率增大D .经过灯泡的电流频率为25 Hz 17.如图,窗子上、下沿间的高度H=1.6m ,墙的厚度d=0.4m ,某人在离墙壁距离L=1.4m 、距窗子上沿h=0.2m 处的P 点,将可视为质点的小物件以v 的速度水平抛出,小物件直接穿过窗口并落在水平地面上,取g=10m/s 2。

则v 的取值范围是A .7>v m/sB .32.v <m/sC .7m/s m/s 3<<vD .3m/s m/s 32<<v .18.电梯经过启动、匀速运行和制动三个过程,从低楼层到达高楼层,启动和制动可看作是匀变速直线运动。

广东省广州市普通高中2016届高三下学期综合测试(一)理数试题(解析版)

广东省广州市普通高中2016届高三下学期综合测试(一)理数试题(解析版)

2016年广州市普通高中毕业班综合测试(一)理科数学一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)(1)已知集合{}1A x x =<,{}20B x x x =-≤,则AB =( )(A ){}11x x -≤≤ (B ){}01x x ≤≤ (C ){}01x x <≤ (D ){}01x x ≤< 【答案】D 【解析】 试题分析:{}11A x x =-<<,{}01B x x ≤≤,{}01A B x x ∴=≤<,故选D.考点:集合的交集. (2)已知复数3i1iz +=-,其中i 为虚数单位,则复数z 的共轭复数z 所对应的点在( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】D 【解析】 试题分析:()()()()()31124112i i z i i i ++==+-+12i =+,12z i ∴=-,即z 对应点在第四象限,故选D.考点:1、复数的概念;2、复数的运算.(3)执行如图所示的程序框图,如果输入3x =,则输出k 的值为( )【答案】C 【解析】试题分析: 第一循环2339,2x k =⨯+==;第二循环29321,4x k =⨯+==;第三循环221345,6x k =⨯+==;第四循环245393,8x k =⨯+==;第五循环2933189,10x k =⨯+==, 189100>结束循环,输出10k =,故选C.考点: 程序框图及循环结构. (4)如果函数()sin 6f x x ωπ⎛⎫=+⎪⎝⎭()0ω>的相邻两个零点之间的距离为6π,则ω的值为( ) (A )3 (B )6 (C )12 (D )24 【答案】B 【解析】 试题分析:函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的相邻两个零点之间的距离为函数的半个周期,,626T ππωω∴===,故选B. 考点:三角函数的图象和周期.(5)设等差数列{}n a 的前n 项和为n S ,且271224a a a ++=,则13S =( ) (A )52 (B )78 (C )104 (D )208 【答案】C 【解析】 试题分析:271224a a a ++=,7324a ∴=,即78a =,∴()11313713131042a a S a +===,故选C.考点:等差数列的性质及前n 项和公式.(6)如果1P ,2P ,…,n P 是抛物线C :24y x =上的点,它们的横坐标依次为1x ,2x ,…,n x ,F 是抛物线C 的焦点,若1210n x x x +++=,则12n PF P F P F +++=( )(A )10n + (B )20n + (C )210n + (D )220n + 【答案】A 【解析】 试题分析:24,12py x =∴=,由抛物线定义可知11221,2PF x P F x =+=+,⋅⋅⋅,1n n P F x =+,12n PF P F P F ∴++⋅⋅⋅()12n n x x x =+++⋅⋅⋅+10n =+,故选A. 考点:1、抛物线的标准方程;2、抛物线的定义及简单几何性质. (7)在梯形ABCD 中,ADBC ,已知4AD =,6BC =,若CD mBA nBC =+(),m n ∈R ,则mn=( ) (A )3- (B )13- (C )13(D )3 【答案】A 【解析】试题分析: 过A 作AE CD 交BG 于E ,则CD EA EB BA ==+13BC BA =-+,即1m =,13n =-,3mn=-,故选A.考点: 1、平面向量基本概念定理;2、向量的运算.(8)设实数x ,y 满足约束条件10,10,1x y x y x --≤⎧⎪+-≤⎨⎪≥-⎩, 则()222x y ++的取值范围是( )(A )1,172⎡⎤⎢⎥⎣⎦ (B )[]1,17 (C)⎡⎣ (D)【答案】A 【解析】试题分析:画出约束条件所表示的可行域,如图,()()1,2,0.2A D --,由可行域知()22z x y =++的最大值是217AD =,最小值为D 到直线10x y --=的距离的平方为12,故选A.考点: 利用可行域求目标函数的最值.(9)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上, 则该球的体积为( )(A )20π (B (C )5π (D 【答案】D 【解析】试题分析:由题意知,22215124R ⎛⎫=+= ⎪⎝⎭,34=3R V R π=∴=球,故选D.考点: 1、棱柱的性质;2、球的体积公式. (10)已知下列四个命题:1p :若直线l 和平面α内的无数条直线垂直,则l α⊥; 2p :若()22x x f x -=-,则x ∀∈R ,()()f x f x -=-; 3p :若()11f x x x =++,则()00,x ∃∈+∞,()01f x =; 4p :在△ABC 中,若A B >,则sin sin A B >.其中真命题的个数是( )(A )1 (B )2 (C )3 (D )4 【答案】B 【解析】试题分析:如果l 与α内无数条平行线垂直,则l 与α不一定垂直,所以1p 错误;()22x x f x -=-,()()22x x f x f x -∴-=-=-,故2p 正确;()1,f x =只有一个根0x =,0x ∴>时,()f x 1=无解,故3p 错误; 因为在ABC ∆中A B >一定有a b >,再由正弦定理可得sin sin A B >,故4p 正确;故选B. 考点:1、直线与平面垂直的判定;2、正弦定理及函数的奇偶性.(11)如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表 面积为( )(A )8++ (B )8++(C )2+(D )12【答案】A 【解析】试题分析:由三视图可知,几何体是以P 为顶点,以ABC ∆为底面,以PC 为高的三棱锥,如图.由三视图可知4,2PC BC ==,可求得AB PB AC ===AP =,所以ABC BC PAC S S S S ∆∆P ∆=++表PAB S ∆+8=+A.CP考点:1、几何体的三视图;2、几何体的表面积.(12)以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角 形”.1 2 3 4 5 … 2013 2014 2015 2016 3 5 7 9 ………… 4027 4029 4031 8 12 16 ………………… 8056 8060 20 28 ………………………… 16116 …………………………………………该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有 一个数,则这个数为( ) (A )201520172⨯ (B )201420172⨯ (C )201520162⨯ (D )201420162⨯【答案】B 【解析】试题分析:第一行为1、2、3的三角形,最后一行的数为()1312+⨯;第一行为1、2、3、4的三角形,最后一行的数为()2412+⨯;第一行为1、2、3、4、5的三角形最后一行的数为,()3512+⨯…可猜想第一行为1、2、3…2016最后一行的数为()2014201420161220172+⨯=⨯,故选B.考点:归纳推理及不完全归纳法.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分.)(13)一个总体中有60个个体,随机编号0,1,2,…,59,依编号顺序平均分成6个小组,组号 依次为1,2,3,…,6.现用系统抽样方法抽取一个容量为6的样本,若在第1组随机抽取的号码为3, 则在第5组中抽取的号码是 . 【答案】43 【解析】试题分析:总体60个个体,依编号顺序分成6个小组,则间隔编号为60106=,所以在第5组中抽取的号码为310443+⨯=,故答案为43. 考点:系统抽样方法.(14)已知双曲线C :22221x y a b-=()0,0a b >>的左顶点为A ,右焦点为F ,点()0,B b ,且0BA BF =,则双曲线C 的离心率为 .【解析】 试题分析:0,BA BF AB BF =∴⊥,又BO AF ⊥,所以由射影定理知2OB OA OF =,即2b ac =22c a =-,210,e e e --==考点: 1、向量垂直与向量数量积之间的关系;2、双曲线的几何性质及离心率. (15)()422x x --的展开式中,3x 的系数为 . (用数字填写答案) 【答案】40- 【解析】试题分析:()422x x -- ()422x x ⎡⎤=-+⎣⎦展开后只有()42x +与()33242C xx -+中含3x 项其系数和为133124432240C C C ⨯-⨯⨯=-,故答案为40-.考点:二项展开式定理.(16)已知函数()211,1,42,1x x f x x x x ⎧-+<⎪=⎨-+≥⎪⎩,则函数()()22xg x f x =-的零点个数为 个.【答案】2考点: 函数的零点和图象交点的关系.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)(17)(本小题满分12分)如图,在△ABC 中,点D 在边AB 上,CD BC ⊥,AC =,5CD =,2BD AD =. (Ⅰ)求AD 的长; (Ⅱ)求△ABC 的面积.【答案】(Ⅰ)5;【解析】试题分析:(Ⅰ)设AD x=()0x >,则2BD x =.因为CD BC ⊥,5CD =,2BD x =,所以cos CD CDB BD ∠=52x =,由余弦定理得222cos 2AD CD AC ADC AD CD +-∠==⨯⨯.因为cos cos ADC CDB ∠=-∠,即52x=-.解得5x =.所以AD 的长为5;(Ⅱ)由(Ⅰ) 3AB x =15= ,所以1sin 2ABC S AB BC CBA ∆=⨯⨯⨯∠ 可得正确答案. 试题解析:(Ⅰ) 在ABC ∆中,因为2BD AD =,设AD x =()0x >,则2BD x =. 在BCD ∆中,因为CD BC ⊥,5CD =,2BD x =,所以cos CD CDB BD ∠=52x=.在ACD ∆中,因为AD x =,5CD =,AC =,由余弦定理得222cos 2AD CD AC ADC AD CD +-∠==⨯⨯CDB ADC ∠+∠=π, 所以cos cos ADC CDB ∠=-∠,52x=-.解得5x =.所以AD 的长为5.(Ⅱ)由(Ⅰ)求得315AB x ==,BC ==. 所以cos BC CBD BD ∠==,从而1sin 2CBD ∠=,所以1sin 2ABC S AB BC CBA ∆=⨯⨯⨯∠111522=⨯⨯=.考点:余弦定理及三角形面积公式. (18)(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率 分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1. (Ⅰ)求这些产品质量指标值落在区间[]75,85内的频率;(Ⅱ)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区 间[)45,75内的产品件数为X ,求X 的分布列与数学期望.【答案】(Ⅰ)0.05;(Ⅱ)1.8. 【解析】试题分析:(Ⅰ)先根据比例设出质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率,再根据各个矩形面积和为1可求得质量指标值落在区间[]75,85内的频率;(Ⅱ)从该企业生产的该种产品中随机抽取3件,相当于进行了3次独立重复试验,所以X 服从二项分布(),B n p ,其中3n =,根据独立重复试验概率公式求概率,根据二项分布期望公式求期望. 试题解析:(Ⅰ)设区间[]75,85内的频率为x , 则区间[)55,65,[)65,75内的频率分别为4x 和2x .依题意得()0.0040.0120.0190.0310421x x x +++⨯+++=,解得0.05x =. 所以区间[]75,85内的频率为0.05.(Ⅱ)从该企业生产的该种产品中随机抽取3件,相当于进行了3次独立重复试验, 所以X 服从二项分布(),B n p ,其中3n =.由(Ⅰ)得,区间[)45,75内的频率为0.30.2+0.1=0.6+,将频率视为概率得0.6p =.因为X 的所有可能取值为0、1、2、3, 且033(0)C 0.60.40.064P X ==⨯⨯=,1123(1)C 0.60.40.288P X ==⨯⨯=,2213(2)C 0.60.40.432P X ==⨯⨯=,3303(3)C 0.60.40.216P X ==⨯⨯=.所以X 的分布列为:X 服从二项分布(),B n p ,所以X 的数学期望为30.6 1.8EX =⨯=.考点:1、频率分布直方图;2、离散型随机变量的均值期望. (19)(本小题满分12分)如图,四棱柱1111ABCD A B C D -的底面ABCD 是菱形,ACBD O =,1A O ⊥底面ABCD ,21==AA AB .(Ⅰ)证明:平面1ACO ⊥平面11BB D D ; (Ⅱ)若60BAD ∠=,求二面角1B OB C --的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ)【解析】试题分析:(Ⅰ)先证1A O BD ⊥,CO BD ⊥可得BD ⊥平面1A CO ,进而得平面11BB D D ⊥平面1ACO ;(Ⅱ)以O 为原点,OB ,OC ,1OA 方向为x ,y ,z 轴正方向建立如图所示空间直角坐标系.分别求出平面1OBB 的法向量,平面1OCB 的法向量 ,利用空间向量夹角公式即可求得二面角1B OB C -- 的余弦值. 试题解析:(Ⅰ)证明:因为1A O ⊥平面ABCD ,BD ⊂平面ABCD ,所以1A O BD ⊥.因为ABCD 是菱形,所以CO BD ⊥.因为1AO CO O =,所以BD ⊥平面1A CO .因为BD ⊂平面11BB D D , 所以平面11BB D D ⊥平面1ACO .(Ⅱ)解 :因为1A O ⊥平面ABCD ,CO BD ⊥,以O 为原点,OB ,OC ,1OA 方 向为x ,y ,z 轴正方向建立如图所示空间直角坐标系. 因为12AB AA ==,60BAD ∠=, 所以1OB OD ==,OA OC ==11OA ==.则()1,0,0B,()C,()0,A ,()10,0,1A ,所以()11BB AA ==,()11+OB OB BB ==.设平面1OBB 的法向量为(),,x y z =n , 因为()1,0,0OB =,()1OB =,所以0,0.x x z =⎧⎪⎨++=⎪⎩令1=y ,得(0,1,=n .同理可求得平面1OCB 的法向量为()1,0,1=-m .所以cos ,<>==n m 1B OB C --的平面角为钝角, 所以二面角1B OB C --的余弦值为.考点:1、线面及面面垂直的判定定理;2、利用法向量夹角公式求二面角的余弦. (20)(本小题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为()120F -,,点(B 在椭 圆C 上,直线()0y kx k =≠与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N .(Ⅰ)求椭圆C 的方程;(Ⅱ)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.【答案】(Ⅰ)22184x y +=;(Ⅱ)经过两定点()12,0P ,()22,0P -.【解析】试题分析:(Ⅰ)椭圆的左焦点为()120F -,,所以224a b -=.由点(2B 在椭圆C 上,得22421a b+=,进而解出,a b 得到椭圆C 的方程;(Ⅱ)直线(0)y kx k =≠与椭圆22184x y +=联立,解得,E F 的坐标(用k 表示),设出AE ,AF 的方程,解出,M N 的坐标,圆方程用k 表示,最后可求得MN 为直径的圆经过两定点.试题解析:(Ⅰ) 设椭圆C 的方程为22221(0)x y a b a b+=>>,因为椭圆的左焦点为()120F -,,所以224a b -=.因为点(2B 在椭圆C 上,所以22421a b +=.由①②解得,a =2b =.所以椭圆C 的方程为22184x y +=. (Ⅱ)因为椭圆C 的左顶点为A ,则点A的坐标为()-.因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F , 设点()00,E x y (不妨设00x >),则点()00,F x y --.联立方程组22,184y kx x y =⎧⎪⎨+=⎪⎩消去y 得22812x k =+.所以0x =,则0y =.所以直线AE的方程为y x =+.因为直线AE ,AF 分别与y 轴交于点M ,N ,令0x =得y =,即点M ⎛ ⎝.同理可得点N ⎛ ⎝..设MN 的中点为P ,则点P 的坐标为0,P ⎛ ⎝. 则以MN 为直径的圆的方程为22x y ⎛+=⎝2, 即224x y y +=. 令0y =,得24x =,即2x =或2x =-.故以MN 为直径的圆经过两定点()12,0P ,()22,0P -. 考点:1、 待定系数法求椭圆;2、圆的方程及几何意义. (21)(本小题满分12分) 已知函数+3()ex mf x x =-,()()ln 12g x x =++.(Ⅰ)若曲线()y f x =在点()()00f ,处的切线斜率为1,求实数m 的值; (Ⅱ)当1m ≥时,证明:()3()f x g x x >-.【答案】(Ⅰ)0m =;(Ⅱ)证明见解析. 【解析】试题分析:(Ⅰ)先求出()f x ',再令()0e 1mf '==,可解得m 的值;(Ⅱ)()3()f x g x x >-等价于()+e ln 120x m x -+->,当1m ≥时,只需证明1e ln(1)20x x +-+->,设()()1e ln 12x h x x +=-+-,则()11e 1x h x x +'=-+,利用()h x 的单调性,可以证明()h x 的最小值()0h x 为正,进而()3()f x g x x >-. 试题解析:(Ⅰ)因为+3()ex mf x x =-,所以+2()e 3x m f x x '=-.因为曲线()y f x =在点()()00f ,处的切线斜率为1,所以()0e 1mf '==,解得0m =.(Ⅱ)因为+3()ex mf x x =-,()()ln 12g x x =++,所以()3()f x g x x >-等价于()+e ln 120x mx -+->.当1m ≥时,()()+1e ln 12e ln 12x mx x x +-+-≥-+-.要证()+eln 120x mx -+->,只需证明1e ln(1)20x x +-+->设()()1eln 12x h x x +=-+-,则()11e 1x h x x +'=-+. 设()11e 1x p x x +=-+,则()()121e 01x p x x +'=+>+. 所以函数()p x =()11e 1x h x x +'=-+在()1+-∞,上单调递增. 因为121e 202h ⎛⎫'-=-< ⎪⎝⎭,()0e 10h '=->,所以函数()11e 1x h x x +'=-+在()1+-∞,上有唯一零点0x ,且01,02x ⎛⎫∈- ⎪⎝⎭因为()00h x '=,所以0+101e1x x =+,即()()00ln 11x x +=-+. 当()01,x x ∈-时,()0h x '<;当()0,x x ∈+∞时,()0h x '>, 所以当0x x =时,()h x 取得最小值()0h x . 所以()()()0100=eln 12x h x h x x +≥-+-()0011201x x =++->+. 综上可知,当1m ≥时,()3()f x g x x >-.考点:1、利用导数求切线斜率;2、利用导数研究函数的单调性及 最值.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.(22)(本小题满分10分)选修4-1:几何证明选讲如图所示,△ABC 内接于⊙O ,直线AD 与⊙O 相切于点A ,交BC 的延长线于点D ,过点D 作DE CA 交BA 的延长线于点E .(Ⅰ)求证:2DE AE BE =;(Ⅱ)若直线EF 与⊙O 相切于点F ,且4EF =,2EA =,求线段AC 的长.【答案】(Ⅰ)证明见解析;(Ⅱ)3.考点:1、三角形相似;2、切割线定理.(23)(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方 程为θρsin 2=,[)0,2θ∈π. (Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)在曲线C 上求一点D ,使它到直线l :32x y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R )的距离最短,并求出点D 的直角坐标.【答案】(Ⅰ)2220x y y +-=;(Ⅱ)32⎫⎪⎪⎭,.【解析】试题分析:(Ⅰ)利用极坐标方程与直角坐标的互化公式可得:(Ⅱ)参数方程化为普通方程,利用圆心到直线的距离减半径最小可知,过圆心与直线垂直的直线与圆的交点之一取得最小值,根据几何意义排除一个即可.试题解析:(Ⅰ)解:由θρsin 2=,[)0,2θ∈π,可得22sin ρρθ=.因为222x y ρ=+,sin y ρθ=,所以曲线C 的普通方程为2220x y y +-=(或()2211x y +-=).(Ⅱ)解:因为直线的参数方程为32x y t ⎧=⎪⎨=-+⎪⎩(t 为参数,t ∈R ),消去t 得直线l的普通方程为5y =+.因为曲线C :()2211x y +-=是以G ()1,0为圆心,1为半径的圆,设点()00,D x y ,且点D 到直线l:5y =+的距离最短, 所以曲线C 在点D 处的切线与直线l:5y =+平行. 即直线GD 与l 的斜率的乘积等于1-,即(0011y x -⨯=-. 因为()220011x y +-=,解得0x =或0x = 所以点D 的坐标为12⎛⎫ ⎪ ⎪⎝⎭,或32⎫⎪⎪⎭,. 由于点D到直线5y =+的距离最短,所以点D 的坐标为32⎫⎪⎪⎭,. 考点:1、极坐标方程与直角坐标的方程互化;2、参数方程与普通方程的互化. (24)(本小题满分10分)选修4-5:不等式选讲 设函数()f x x =+ (Ⅰ)当1a =时,求不等式()12f x ≥的解集;(Ⅱ)若对任意[]0,1a ∈,不等式()f x b ≥的解集为空集,求实数b 的取值范围.【答案】(Ⅰ)1,4⎡⎫-+∞⎪⎢⎣⎭;(Ⅱ))+∞.【解析】试题分析:(Ⅰ)讨论三种情况1x ≤-,10x -<<,0x ≥,最后找并集即可;(Ⅱ)不等式()f x b ≥的解集为空集,只需()max b f x >⎡⎤⎣⎦,利用基本不等式可得()f x ≤+,进而转化为maxb >,最后运用三角换元法或平方后结合基本不等式求出max .试题解析:(Ⅰ)解:当1a =时,()12f x ≥等价于112x x +-≥. ①当1x ≤-时,不等式化为112x x --+≥,无解; ②当10x -<<时,不等式化为112x x ++≥,解得104x -≤<;③当0x ≥时,不等式化为112x x +-≥,解得0x ≥.综上所述,不等式()1≥x f 的解集为1,4⎡⎫-+∞⎪⎢⎣⎭. (Ⅱ)因为不等式()f x b ≥的解集为空集,所以()max b f x >⎡⎤⎣⎦.因为 ()f x x =+x +,当且仅当x ≥()max f x ⎡⎤⎣⎦=.因为对任意[]0,1a ∈,不等式()f x b ≥的解集为空集,所以max b >, 令()g a =+所以()21ga =+2212≤++==,即12a =时等号成立.所以()maxg a =⎡⎤⎣⎦.所以b 的取值范围为)+∞.考点:1、绝对值不等式的解法;2、利用基本不等式求最值.。

广东省广州市2016届高三普通高中毕业班综合测试(一)数学(理)试题

广东省广州市2016届高三普通高中毕业班综合测试(一)数学(理)试题

绝密 ★ 启用前2016年广州市普通高中毕业班综合测试(一)理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合{}1A x x =<,{}20B x x x =-≤,则AB =(A ){}11x x -≤≤ (B ){}01x x ≤≤ (C ){}01x x <≤ (D ){}01x x ≤< (2)已知复数3i1iz +=-,其中i 为虚数单位,则复数z 的共轭复数z 所对应的点在 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限(3)执行如图所示的程序框图,如果输入3x =,则输出k 的值为(A )6 (B )8 (C )10 (D )12 (4)如果函数()sin 6f x x ωπ⎛⎫=+ ⎪⎝⎭()0ω>的相邻两个零点之间的距离为6π,则ω的值为(A )3 (B )6 (C )12(D )24(5)设等差数列{}n a 的前n 项和为n S ,且271224a a a ++=,则13S =(A )52 (B )78 (C )104 (D )208 (6)如果1P ,2P ,…,n P 是抛物线C :24y x =上的点,它们的横坐标依次为1x ,2x ,…,n x ,F 是抛物线C 的焦点,若1210n x x x +++=,则12n PF P F P F +++=(A )10n + (B )20n + (C )210n + (D)220n +(7)在梯形ABCD 中,A DB C ,已知4AD =,6BC =,若C D m B A n =+(),m n ∈R ,则mn = (A )3- (B )13- (C )13(D )3(8)设实数x ,y 满足约束条件10,10,1x y x y x --≤⎧⎪+-≤⎨⎪≥-⎩, 则()222x y ++的取值范围是(A )1,172⎡⎤⎢⎥⎣⎦ (B )[]1,17 (C)⎡⎣ (D)⎣ (9)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为(A )20π (B(C )5π (D)(11)已知下列四个命题:1p :若直线l 和平面α内的无数条直线垂直,则l α⊥; 2p :若()22x x f x -=-,则x ∀∈R ,()()f x f x -=-; 3p :若()11f x x x =++,则()00,x ∃∈+∞,()01f x =; 4p :在△ABC 中,若A B >,则sin sin A B >.其中真命题的个数是(A )1 (B )2 (C )3 (D )4(11)如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为(A)8+ (B)8+(C)2+ (D)1224(12)以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.1 2 3 4 5 … 2013 2014 2015 20163 5 7 9 ………… 4027 4029 4031 8 12 16 ………………… 8056 8060 20 28 ………………………… 16116 …………………………………………该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为(A )201520172⨯ (B )201420172⨯ (C )201520162⨯ (D )201420162⨯第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题:本大题共4小题,每小题5分.(13)一个总体中有60个个体,随机编号0,1,2,…,59,依编号顺序平均分成6个小组,组号依次为1,2,3,…,6.现用系统抽样方法抽取一个容量为6的样本,若在第1组随机抽取的号码为3,则在第5组中抽取的号码是 .(14)已知双曲线C :22221x y a b-=()0,0a b >>的左顶点为A ,右焦点为F ,点()0,B b ,且0BA BF =,则双曲线C 的离心率为 .(15)()422x x --的展开式中,3x 的系数为 . (用数字填写答案) (16)已知函数()211,1,42,1x x f x x x x ⎧-+<⎪=⎨-+≥⎪⎩,则函数()()22xg x f x =-的零点个数为个.三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)如图,在△ABC 中,点D 在边AB 上,CD BC ⊥,AC =5CD =,2BD AD =.(Ⅰ)求AD 的长; (Ⅱ)求△ABC 的面积.(18)(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1.(Ⅰ)求这些产品质量指标值落在区间[]75,85内的频率;(Ⅱ)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产 品中质量指标值位于区间[)45,75内的产 品件数为X ,求X 的分布列与数学期望.(19)(本小题满分12分)如图,四棱柱1111ABCD A BC D -的底面ABCD 是菱形,AC BD O =,1AO ⊥底面ABCD ,21==AA AB .(Ⅰ)证明:平面1ACO ⊥平面11BB D D ;(Ⅱ)若60BAD ∠=,求二面角1B OB -(20)(本小题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为()120F -,,点(B 在椭圆C 上,直线()0y kx k =≠与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N .(Ⅰ)求椭圆C 的方程;(Ⅱ)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.(21)(本小题满分12分)已知函数+3()e x m f x x =-,()()ln 12g x x =++.(Ⅰ)若曲线()y f x =在点()()00f ,处的切线斜率为1,求实数m 的值; (Ⅱ)当1m ≥时,证明:()3()f x g x x >-.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分.做答时请写清题号.(22)(本小题满分10分)选修4-1:几何证明选讲如图所示,△ABC 内接于⊙O ,直线AD 与⊙O 相切于点A ,交BC 的延长线于点D ,过点D 作DECA 交BA 的延长线于点E .(Ⅰ)求证:2DE AE BE =;(Ⅱ)若直线EF 与⊙O 相切于点F ,且4EF =,2EA =,求线段AC 的长.(23)(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρsin 2=,[)0,2θ∈π. (Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)在曲线C 上求一点D ,使它到直线l :32x y t ⎧=⎪⎨=-+⎪⎩(t 为参数,t ∈R )的距离最短,并求出点D 的直角坐标.(24)(本小题满分10分)选修4-5:不等式选讲设函数()f x x x =+- (Ⅰ)当1a =时,求不等式()12f x ≥的解集; (Ⅱ)若对任意[]0,1a ∈,不等式()f x b ≥的解集为空集,求实数b 的取值范围.绝密 ★ 启用前2016年广州市普通高中毕业班综合测试(一)理科数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分. 一.选择题(1)D (2)D (3)C (4)B (5)C (6)A (7)A (8)A(9)D(10)B(11)A(12)B二.填空题(13)43(14 (15)40- (16)2三.解答题(17)(Ⅰ) 解法一: 在△ABC 中,因为2BD AD =,设AD x =()0x >,则2BD x =.在△BCD 中,因为CD BC ⊥,5CD =,2BD x =, 所以cos CD CDB BD ∠=52x=.………………………………………………………2分在△ACD 中,因为AD x =,5CD =,AC =由余弦定理得222cos 2AD CD AC ADC AD CD +-∠==⨯⨯ ………4分 因为CDB ADC ∠+∠=π, 所以cos cos ADC CDB ∠=-∠,52x=-.………………………………………………………5分 解得5x =.所以AD 的长为5. …………………………………………………………………6分解法二: 在△ABC 中,因为2BD AD =,设AD x =()0x >,则2BD x =. 在△BCD 中,因为CD BC ⊥,5CD =,2BD x =,所以BC =.所以cos BC CBD BD ∠==.……………………………………………2分在△ABC 中,因为3AB x =,BC AC =由余弦定理得2222cos 2AB BC AC CBA AB BC +-∠==⨯⨯.…………4分=25分 解得5x =.所以AD 的长为5. …………………………………………………………………6分(Ⅱ)解法一:由(Ⅰ)求得315AB x ==,BC ==.………………8分所以cos 2BC CBD BD ∠==1sin 2CBD ∠=.…………………………10分 所以1sin 2ABC S AB BC CBA ∆=⨯⨯⨯∠111522=⨯⨯=12分解法二:由(Ⅰ)求得315AB x ==,BC =.………………8分因为AC =ABC 为等腰三角形.因为cos BC CBD BD ∠==30CBD ∠=.……………………………10分所以△ABC 底边AB 上的高12h BC == 所以12ABC S AB h ∆=⨯⨯1152=⨯=12分解法三:因为AD 的长为5, 所以51cos ==22CD CDB BD x ∠=,解得3CDB π∠=.……………………………8分所以12sin 234ADC S AD CD ∆π=⨯⨯⨯=.1sin 232BCD S BD CD ∆π=⨯⨯⨯=.……………………………………10分所以ABC ADC BCD S S S ∆∆∆=+=12分(18)解:(Ⅰ)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x .…………………………1分 依题意得()0.0040.0120.0190.0310421x x x +++⨯+++=,………………3分 解得0.05x =.所以区间[]75,85内的频率为0.05.………………………………………………4分 (Ⅱ)从该企业生产的该种产品中随机抽取3件,相当于进行了3次独立重复试验,所以X 服从二项分布(),B n p ,其中3n =.由(Ⅰ)得,区间[)45,75内的频率为0.30.2+0.1=0.6+,将频率视为概率得0.6p =.………………………………………………………5分 因为X 的所有可能取值为0,1,2,3,…………………………………………6分且0033(0)C 0.60.40.064P X ==⨯⨯=,1123(1)C 0.60.40.288P X ==⨯⨯=, 2213(2)C 0.60.40.432P X ==⨯⨯=,3303(3)C 0.60.40.216P X ==⨯⨯=.所以X 的分布列为:X 0 1 2 3P0.064 0.288 0.432 0.216所以X 的数学期望为00.06410.28820.43230.216 1.8EX =⨯+⨯+⨯+⨯=. (或直接根据二项分布的均值公式得到30.6 1.8EX np ==⨯=)……………12分………………………10分(19)(Ⅰ)证明:因为1AO ⊥BD ⊂平面ABCD ,所以1AO BD ⊥因为ABCD 是菱形,所以CO BD ⊥因为1AO CO O =,所以BD ⊥平面1ACO 因为BD ⊂平面11BB D D ,所以平面11BB D D ⊥平面1ACO .…………………………………………………4分 (Ⅱ)解法一:因为1AO ⊥平面ABCD ,CO BD ⊥,以O 为原点,OB ,OC ,1OA 方 向为x ,y ,z 轴正方向建立如图所示空间直角坐标系.………………………5分 因为12AB AA ==,60BAD ∠=, 所以1OB OD ==,OA OC =11OA ==.………………6分则()1,0,0B ,()C ,()0,A ,()10,0,1A ,所以()11BB AA ==设平面1OBB 的法向量为n 因为()1,0,0OB =,1OB =所以0,0.x x z =⎧⎪⎨+=⎪⎩令1=y ,得(0,1,=n 同理可求得平面1OCB 的法向量为()1,0,1=-m .………………………………10分 所以cos ,<>==n m 11分 因为二面角1B OB C --的平面角为钝角,所以二面角1B OB C --的余弦值为4-.……………………………………12分解法二:由(Ⅰ)知平面连接11AC 与11B D 交于点连接1CO ,1OO ,因为11AA CC =,1//AA 所以11CAAC 因为O ,1O 分别是AC ,11所以11OAO C 为平行四边形.且111OC OA ==. 因为平面1ACO 平面11BB D D 1OO =,过点C 作1CH OO ⊥于H ,则CH ⊥平面11BB D D .过点H 作1HK OB ⊥于K ,连接CK ,则1CK OB ⊥.所以CKH ∠是二面角1B OB C --的平面角的补角.……………………………6分 在1Rt OCO ∆中,11122O C OC CH OO ⨯===.………………………………7分在1OCB ∆中,因为1AO ⊥11A B ,所以1OB ==因为11A B CD =,11//A B CD , 所以11B C A D ===.因为22211B C OC OB +=,所以1OCB ∆为直角三角形.……………………………8分 所以11CB OC CK OB ===⨯9分所以KH ==.…………………………………………………10分所以cos 4KH CKH CK∠==.……………………………………………………11分所以二面角1B OB C --的余弦值为4-.……………………………………12分(20)(Ⅰ)解法一:设椭圆C 的方程为22221(0)x y a b a b+=>>,因为椭圆的左焦点为()120F -,,所以224a b -=.……………………………1分 设椭圆的右焦点为()220F ,,已知点(2B 在椭圆C 上, 由椭圆的定义知122BF BF a +=,所以2a ==.………………………………………………………2分所以a =2b =.………………………………………………………3分所以椭圆C 的方程为22184x y +=.………………………………………………4分 解法二:设椭圆C 的方程为22221(0)x y a b a b+=>>,因为椭圆的左焦点为()120F -,,所以224a b -=. ①…………………1分因为点(2B 在椭圆C 上,所以22421a b+=. ②…………………2分由①②解得,a =2b =.…………………………………………………3分所以椭圆C 的方程为22184x y +=.………………………………………………4分 (Ⅱ)解法一:因为椭圆C 的左顶点为A ,则点A的坐标为()-.…………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F , 设点()00,E x y (不妨设00x >),则点()00,F x y --.联立方程组22,184y kx x y =⎧⎪⎨+=⎪⎩消去y 得22812x k =+.所以0x =,则0y =.所以直线AE的方程为y x =+.……………………………6分因为直线AE ,AF 分别与y 轴交于点M ,N ,令0x =得y =M ⎛ ⎝.……………………7分同理可得点N ⎛ ⎝.…………………………………………………8分所以MN ==.…………………9分设MN 的中点为P ,则点P 的坐标为0,P k ⎛⎫- ⎪ ⎪⎝⎭.…………………………10分则以MN 为直径的圆的方程为22x y ⎛+= ⎝⎭2, 即224x y y k++=.…………………………………………………………11分 令0y =,得24x =,即2x =或2x =-.故以MN 为直径的圆经过两定点()12,0P ,()22,0P -.………………………12分 解法二:因为椭圆C的左端点为A ,则点A 的坐标为()-.……………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F , 设点00(,)E x y ,则点00(,)F x y --.所以直线AE的方程为y x =+.………………………………6分 因为直线AE 与y 轴交于点M ,令0x =得y =,即点M ⎛⎫⎝.……………………………7分同理可得点N ⎛⎫⎝.……………………………………………………8分所以020168y MN x =-=-.因为点00(,)E x y 在椭圆C 上,所以2200184x y +=. 所以08MN y =.……………………………………………………………………9分 设MN 的中点为P ,则点P的坐标为000,P y ⎛⎫-⎪ ⎪⎝⎭.………………………10分 则以MN为直径的圆的方程为2200x y y ⎛⎫++= ⎪ ⎪⎝⎭2016y .即220+x y y y +=4.………………………………………………………11分 令0y =,得24x =,即2x =或2x =-.故以MN 为直径的圆经过两定点()12,0P ,()22,0P -.………………………12分 解法三:因为椭圆C 的左顶点为A ,则点A的坐标为()-.……………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F ,设点(),2sin E θθ(0θ<<π),则点(),2sin F θθ--. 所以直线AE的方程为y x =+.………………………6分因为直线AE 与y 轴交于点M ,令0x =得2sin cos 1y θθ=+,即点2sin 0,cos 1M θθ⎛⎫⎪+⎝⎭.………………………………7分同理可得点2sin 0,cos 1N θθ⎛⎫⎪-⎝⎭.………………………………………………………8分所以2sin 2sin 4cos 1cos 1sin MN θθθθθ=-=+-.………………………………………9分 设MN 的中点为P ,则点P 的坐标为2cos 0,sin P θθ⎛⎫-⎪⎝⎭.………………………10分 则以MN 为直径的圆的方程为222cos sin x y θθ⎛⎫++= ⎪⎝⎭24sin θ,即224cos 4sin x y y θθ++=.………………………………………………………11分 令0y =,得24x =,即2x =或2x =-.故以MN 为直径的圆经过两定点()12,0P ,()22,0P -.………………………12分(21)(Ⅰ)解:因为+3()e x m f x x =-,所以+2()e 3x m f x x '=-.……………………………………………………………1分 因为曲线()y f x =在点()()00f ,处的切线斜率为1,所以()0e 1mf '==,解得0m =.…………………………………………………2分(Ⅱ)证法一:因为+3()e x m f x x =-,()()ln 12g x x =++,所以()3()f x g x x >-等价于()+e ln 120x mx -+->.当1m ≥时,()()+1e ln 12e ln 12x mx x x +-+-≥-+-.要证()+eln 120x mx -+->,只需证明1e ln(1)20x x +-+->.………………4分以下给出三种思路证明1e ln(1)20x x +-+->. 思路1:设()()1eln 12x h x x +=-+-,则()11e 1x h x x +'=-+. 设()11e 1x p x x +=-+,则()()121e 01x p x x +'=+>+. 所以函数()p x =()11e 1x h x x +'=-+在()1+-∞,上单调递增.…………………6分 因为121e 202h ⎛⎫'-=-< ⎪⎝⎭,()0e 10h '=->,所以函数()11e1x h x x +'=-+在()1+-∞,上有唯一零点0x ,且01,02x ⎛⎫∈- ⎪⎝⎭. ………………………………8分 因为()00h x '=,所以0+101e1x x =+,即()()00ln 11x x +=-+.………………9分 当()01,x x ∈-时,()0h x '<;当()0,x x ∈+∞时,()0h x '>,所以当0x x =时,()h x 取得最小值()0h x .………………………………………10分 所以()()()0100=e ln 12x h x h x x +≥-+-()0011201x x =++->+. 综上可知,当1m ≥时,()3()f x g x x >-. ……………………………………12分 思路2:先证明1e2x x +≥+()x ∈R .……………………………………………5分设()1e 2x h x x +=--,则()+1e 1x h x '=-.因为当1x <-时,()0h x '<,当1x >-时,()0h x '>,所以当1x <-时,函数()h x 单调递减,当1x >-时,函数()h x 单调递增. 所以()()10h x h ≥-=. 所以1e2x x +≥+(当且仅当1x =-时取等号).…………………………………7分所以要证明1e ln(1)20x x +-+->,只需证明()2ln(1)20x x +-+->.………………………………………………8分 下面证明()ln 10x x -+≥.设()()ln 1p x x x =-+,则()1111xp x x x '=-=++. 当10x -<<时,()0p x '<,当0x >时,()0p x '>,所以当10x -<<时,函数()p x 单调递减,当0x >时,函数()p x 单调递增. 所以()()00p x p ≥=.所以()ln 10x x -+≥(当且仅当0x =时取等号).……………………………10分 由于取等号的条件不同, 所以1eln(1)20x x +-+->.综上可知,当1m ≥时,()3()f x g x x >-. ……………………………………12分 (若考生先放缩()ln 1x +,或e x、()ln 1x +同时放缩,请参考此思路给分!) 思路3:先证明1eln(1)20x x +-+->.令1t x =+,转化为证明e ln 2tt ->()0t >.……………………………………5分因为曲线e t y =与曲线ln y t =关于直线y t =对称,设直线0x x =()00x >与曲线e t y =、ln y t =分别交于点A 、B ,点A 、B 到直线y t =的距离分别为1d 、2d ,则)12AB d d =+.其中01x d =,2d ()00x >.①设()000e x h x x =-()00x >,则()00e 1x h x '=-. 因为00x >,所以()00e 10x h x '=->.所以()0h x 在()0,+∞上单调递增,则()()001h x h >=.所以01x d =>. ②设()000ln p x x x =-()00x >,则()0000111x p x x x -'=-=. 因为当001x <<时,()00p x '<;当01x >时,()00p x '>, 所以当001x <<时,函数()000ln p x x x =-单调递减;当01x >时,函数()000ln p x x x =-单调递增. 所以()()011p x p ≥=.所以2d ≥.所以)122AB d d ≥+>=⎭. 综上可知,当1m ≥时,()3()f x g x x >-.……………………………………12分 证法二:因为+3()ex mf x x =-,()()ln 12g x x =++,所以()3()f x g x x >-等价于()+e ln 120x mx -+->.…………………………4分以下给出两种思路证明()+eln 120x mx -+->.思路1:设()()+e ln 12x m h x x =-+-,则()+1e 1x mh x x '=-+. 设()+1e1x mp x x =-+,则()()+21e 01x m p x x '=+>+. 所以函数()p x =()+1e 1x mh x x '=-+在()+∞-1,上单调递增.………………6分 因为1m ≥, 所以()()1e+1e 1ee e e e 10mmmmm m h ----+-+'-+=-=-<,()0e 10m h '=->.所以函数()+1e1x mh x x '=-+在()+∞-1,上有唯一零点0x ,且()01e ,0m x -∈-+. …………………8分 因为()00h x '=,所以0+01e1x mx =+,即()00ln 1x x m +=--.………………9分 当()00,x x ∈时,()0h x '<;当()0,x x ∈+∞时,()0h x '>.所以当0x x =时,()h x 取得最小值()0h x .……………………………………10分 所以()()()0+00e ln 12x mh x h x x ≥=-+-00121x m x =++-+ ()0011301x m x =+++->+. 综上可知,当1m ≥时,()3()f x g x x >-.……………………………………12分 思路2:先证明e 1()xx x ≥+∈R ,且ln(1)(1)x x x +≤>-.…………………5分 设()e 1xF x x =--,则()e 1x F x '=-.因为当0x <时,()0F x '<;当0x >时,()0F x '>, 所以()F x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 所以当0x =时,()F x 取得最小值(0)0F =.所以()(0)0F x F ≥=,即e 1()xx x ≥+∈R .…………………………………7分 所以ln(1)x x +≤(当且仅当0x =时取等号).…………………………………8分 再证明()+eln 120x mx -+->.由e 1()x x x ≥+∈R ,得1e 2x x +≥+(当且仅当1x =-时取等号).…………9分 因为1x >-,1m ≥,且1e2x x +≥+与ln(1)x x +≤不同时取等号,所以 ()()+11e ln 12e e ln 12x m m x x x -+-+-=⋅-+-11e (2)2(e 1)(2)0m m x x x -->+--=-+≥.综上可知,当1m ≥时,()3()f x g x x >-.……………………………………12分(22)(Ⅰ)证明:因为AD 是⊙O 的切线,所以DAC B ∠=∠(弦切角定理). (1)因为DECA ,所以DAC EDA ∠=∠.……………………………2所以EDA B ∠=∠.因为AED D EB ∠=∠(公共角),所以△AED ∽△DEB .……………………………………………………………3分 所以DE AE BEDE=.即2DE AE BE =.…………………………………………………………………4分 (Ⅱ)解:因为EF 是⊙O 的切线,EAB 是⊙O 的割线,所以2EF EA EB = (切割线定理).……………………………………………5分 因为4EF =,2EA =,所以8EB =,6AB EB EA =-=.…………………7分 由(Ⅰ)知2DE AE BE =,所以4DE =.………………………………………8分 因为DE CA ,所以△BAC ∽△BED . ………………………………………9分所以BA ACBEED =.所以6438BA EDAC BE⋅⨯===. …………………………………………………10分(23)(Ⅰ)解:由θρsin 2=,[)0,2θ∈π,可得22sin ρρθ=.…………………………………………………………………1分 因为222x y ρ=+,sin y ρθ=,…………………………………………………2分所以曲线C 的普通方程为2220x y y +-=(或()2211x y +-=). …………4分(Ⅱ)解法一:因为直线的参数方程为32x y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R ),消去t 得直线l的普通方程为5y =+. ……………………………………5分因为曲线C :()2211x y +-=是以G ()1,0为圆心,1为半径的圆,设点()00,D x y ,且点D 到直线l:5y =+的距离最短, 所以曲线C 在点D 处的切线与直线l:5y =+平行. 即直线GD 与l 的斜率的乘积等于1-,即(0011y x -⨯=-.………………7分 因为()220011x y +-=,解得0x =或0x = 所以点D 的坐标为12⎛⎫ ⎪ ⎪⎝⎭,或32⎫⎪⎪⎝⎭,.……………………………………9分 由于点D到直线5y =+的距离最短,所以点D 的坐标为32⎫⎪⎪⎝⎭,.……………………………………………………10分 解法二:因为直线l的参数方程为32x y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R ),消去t 得直线l50y +-=.……………………………………5分因为曲线C ()2211x y +-=是以G ()1,0为圆心,1为半径的圆,因为点D 在曲线C 上,所以可设点D ()cos ,1sin ϕϕ+[)()0,2ϕ∈π.………7分 所以点D 到直线l的距离为d =2sin 3ϕπ⎛⎫=-+⎪⎝⎭.………………………………8分 因为[)0,2ϕ∈π,所以当6ϕπ=时,min 1d =.…………………………………9分 此时D 32⎫⎪⎪⎝⎭,,所以点D 的坐标为32⎫⎪⎪⎝⎭,.……………………………10分(24)(Ⅰ)解:当1a =时,()12f x ≥等价于112x x +-≥.……………………1分 ①当1x ≤-时,不等式化为112x x --+≥,无解; ②当10x -<<时,不等式化为112x x ++≥,解得104x -≤<; ③当0x ≥时,不等式化为112x x +-≥,解得0x ≥.…………………………3分 综上所述,不等式()1≥x f 的解集为1,4⎡⎫-+∞⎪⎢⎣⎭.………………………………4分 (Ⅱ)因为不等式()f x b ≥的解集为空集,所以()max b f x >⎡⎤⎣⎦.…………………5分以下给出两种思路求()f x 的最大值.思路1:因为()f x x x =+-()01a ≤≤,当x ≤()f x x x =-=0<.当x <时,()f x x x =2x =£=+当x ≥()f x x x =+=所以()max f x ⎡⎤⎣⎦=7分思路2:因为 ()f x x x =+-x x ≤++==当且仅当x ≥所以()max f x ⎡⎤⎣⎦=7分因为对任意[]0,1a ∈,不等式()f x b ≥的解集为空集,所以max b >.………………………………………………………8分以下给出三种思路求()g a =. 思路1:令()g a =所以()21g a =+2212≤++=.=12a =时等号成立. 所以()max g a =⎡⎤⎣⎦所以b的取值范围为)∞.…………………………………………………10分 思路2:令()g a =因为01a ≤≤,所以可设2cos a θ= 02θπ⎛⎫≤≤ ⎪⎝⎭, 则()g a=cos sin 4θθθπ⎛⎫=+=+≤ ⎪⎝⎭ 当且仅当4θπ=时等号成立. 所以b的取值范围为)∞.…………………………………………………10分 思路3:令()g a =因为01a ≤≤,设x y ìï=ïíï=ïî则221x y +=()01,01x y ##. 问题转化为在221x y +=()01,01x y ##的条件下, 求z x y =+的最大值.利用数形结合的方法容易求得z此时x y ==. 所以b的取值范围为)∞.…………………………………………………10分。

2016年广州市一模试题及答案(文科数学)

2016年广州市一模试题及答案(文科数学)

2016年广州市一模试题及答案(文科数学) 2016年广州市普通高中毕业班综合测试(一)文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一。

选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合$A=\{x|-1\leq x\leq 1\}$,$B=\{x|x(x-2)\leq 0\}$,则$A\cap B=$A) $\{-1,0,1\}$ (B) $\{-1,0,1,2\}$ (C) $\{1,2\}$ (D)$\{x|x\leq 0\text{或}1\leq x\leq 2\}$2.已知复数$z=\dfrac{3+i}{1+i}$,其中$i$为虚数单位,则复数$z$所对应的点在A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限3.已知函数$f(x)=\begin{cases}x^2-x。

& x\leq 1\\ 1.&x>1\end{cases}$,则$f(-2)=$A) $1$ (B) $-1$ (C) $-2$ (D) $-5$4.设$P$是$\triangle ABC$所在平面内的一点,且$CP=2PA$,则$\triangle PAB$与$\triangle PBC$的面积之比是A) $1:1$ (B) $1:2$ (C) $2:1$ (D) $2:3$5.如果函数$f(x)=\cos\left(\dfrac{\omegax+\pi}{64}\right)$在$[0,2\pi]$上有两个相邻的零点,且它们之间的距离为$\dfrac{1}{4}$,则$\omega$的值为A) $3$ (B) $6$ (C) $12$ (D) $24$6.执行如图所示的程序框图,如果输入$x=3$,则输出$k$的值为图略)A) $6$ (B) $8$ (C) $10$ (D) $12$7.在平面区域$\{(x,y)|-1\leq x\leq 1.1\leq y\leq 2\}$内随机投入一点$P$,则点$P$的坐标$(x,y)$满足$y\leq 2x$的概率为A) $\dfrac{1}{6}$ (B) $\dfrac{1}{3}$ (C)$\dfrac{1}{2}$ (D) $\dfrac{2}{3}$8.已知$f(x)=\sin\left(x+\dfrac{3\pi}{5}\right)$,若$\sin\alpha=\dfrac{\sqrt{2}}{2}$,且$\dfrac{\pi}{2}<\alpha<\pi$,则$f(\alpha+\pi)=\underline{\hspace{1cm}}$A) $-\dfrac{\sqrt{2}}{2}$ (B) $-\dfrac{1}{2}$ (C) $-\dfrac{\sqrt{10}}{10}$ (D) $\dfrac{\sqrt{10}}{10}$二。

2016年模拟考试答案(文科数学)

2016年模拟考试答案(文科数学)

2016年广州市普通高中毕业班模拟考试文科数学答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题不给中间分.一.选择题(1)A(2)D (3)C (4)B (5)D (6)B (7)A(8)D (9)B (10)B (11)C (12)A 二.填空题(13)(1,)-+∞(14)3 (15)2n (16)94三.解答题(17)解:(Ⅰ)由23cos cos 23sin sin 2cos B C B C A +=+,得()23cos 22cos B C A ++=.………………………………………………………………………1 分 即22cos 3cos 20A A +-=.………………………………………………………………………2分 即(2cos 1)(cos 2)0A A -+=. 解得1cos 2A =或cos 2A =-(舍去).………………………………………………………………4分 因为0A <<π,所以A π=3. ………………………………………………………………………6 分(Ⅱ)由1sin 2S bc A ===20bc =. 因为5b =,所以4c =.………………………………………………………………………8 分由余弦定理2222cos a b c bc A =+-, 得212516220=212a =+-⨯⨯,故a =10 分 根据正弦定理2sin sin sin a b c R A B C===, 得5sin sin sin sin 7b c B C A A a a =⨯=.……………………………………………………………12 分(18)解:(Ⅰ)这3个人接受挑战分别记为,,A B C ,则,,A B C 分别表示这3个人不接受挑战.……1分这3个人参与该项活动的可能结果为:{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C .共有8种. …………………………………………………………3 分 其中,至少有2个人接受挑战的可能结果有:{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,共有4种.………………………………………………………………………5分 根据古典概型的概率公式,所求的概率为4182P ==. …………………………………………6 分 (Ⅱ)根据22⨯列联表,得到2K 的观测值为: ()()()()()22n ad bc K a b c d a c b d -=++++=()21004515251560407030⨯-⨯⨯⨯⨯ ………………………………………8分 25 1.7914=≈. ………………………………………………………………………10 分 因为1.79 2.706<,………………………………………………………………………11 分所以没有90%的把握认为“冰桶挑战赛与受邀者的性别有关”. ……………………12 分(19)(Ⅰ)证明:因为AB AC =,D 是BC 的中点,所以AD ⊥BC . ………………………………………………………………………1 分在直三棱柱111ABC A B C -中,因为1B B ⊥底面ABC ,AD ⊂底面ABC ,所以AD ⊥1B B . ………………………………………………………………………2 分因为BC ∩1B B =B ,所以AD ⊥平面11B BCC . ………………………………………………………………………3 分因为1B F ⊂平面11B BCC ,所以AD ⊥1B F . ………………………………………………………………………4 分在矩形11B BCC 中,因为11C F CD ==,112B C CF ==,所以Rt DCF ∆≌11Rt FC B ∆.所以∠CFD =∠11C B F .所以∠1=90B FD .(或通过计算1FD B F ==1B D =得到△1B FD 为直角三角形)所以1B F FD ⊥. ………………………………………………………………………5分因为AD ∩FD =D ,所以1B F ⊥平面ADF . ………………………………………………………………………6分(Ⅱ)解:因为1AD B DF ⊥平面,AD =因为D 是BC 的中点,所以1CD =. ………………………………………………………………7 分 在Rt △1B BD 中,1BD CD ==,13BB =,所以1B D == ………………………………………………………………8分因为1FD B D ⊥,所以Rt CDF ∆∽1Rt BB D ∆. 所以11DF CD B D BB =.所以133DF ==.………………………………………………………………………10 分所以11111332B ADF B DF V S AD -∆=⋅=⨯=.………………………………12 分(20)解:(Ⅰ)因为点F )在圆22:(16M x y +=内,所以圆N 内切于圆M . ………1 分 因为||NM +||4||NF FM =>, ………………………………………………………………………2 分 所以点N 的轨迹E是以()M ,F )为焦点的椭圆, ……………………………3 分且24,a c ==所以1b =. ………………………………………………………………………4分所以轨迹E 的方程为2214x y +=.………………………………………………………………………5 分 (Ⅱ)(1)当AB 为长轴(或短轴)时,依题意知,点C 就是椭圆的上下顶点(或左右顶点), 此时1||2ABC S OC ∆=⨯⨯||2AB =. …………………………………………………………………6 分 (2)当直线AB 的斜率存在且不为0时, 设其斜率为k ,直线AB 的方程为y kx =, 联立方程221,4,x y y kx ⎧+=⎪⎨⎪=⎩得2222244,,1414A A k x y k k ==++ ………………………………………7 分 所以2||OA =2A x 2224(1)14Ak y k ++=+. ……………………………………………………………8 分由||||AC CB =知,ABC △为等腰三角形,O 为AB 的中点,OC AB ⊥,所以直线OC 的方程为1y x k =-,由221,41,x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩解得2224,4Ck x k =+2C y =24,4k +2224(1)||4k OC k +=+. ………………………………9分 2||||ABC OAC S S OA OC ∆∆==⨯=2=10分222(14)(4)5(1)22k k k ++++≤=, 所以85ABC S ∆…,当且仅当22144k k +=+,即1k =±时等号成立, 此时ABC △面积的最小值是85. …………………………………………………………………11 分 因为825>,所以ABC △面积的最小值为85, 此时直线AB 的方程为y x =或y x =-. …………………………………………………………12 分(21)解:(Ⅰ)因为()2mx f x x n=+, 所以2222222()2()()()m x n mx mx mn f x x n x n +--+'==++. …………………………………………………2 分 由()f x 在1x =处取到极值2,所以()10f '=,()12f =,即20(1) 2.1mn m n m n-⎧=⎪+⎪⎨⎪=⎪+⎩,解得4m =,1n =.经检验,此时()f x 在1=x 处取得极值. 所以24()1x f x x =+. ………………………………………………………………………4 分(Ⅱ)由(Ⅰ)知224(1)(1)()(1)x x f x x --+'=+,故()f x 在(1,1)-上单调递增, 由(1)2,(1)2f f =-=- 故()f x 的值域为[]2,2-. ………………………………………………5 分 从而173()22f x +≥. 所以总存在[]21,e x ∈,使得()()2172g x f x ≤+成立,只须3()2g x ≤最小值. …………6分 函数()ln a g x x x=+的定义域为()0,+∞,且221()a x a g x x x x -'=-=. ………………………7分 ① 当1a ≤时,()g x '>0,函数()g x 在[]1,e 上单调递增, 其最小值为3(1)12g a =≤<,符合题意. …………………………………………………8分 ②当1e a <<时,在[)1,a 上有()0g x '<,函数()g x 单调递减,在(],e a 上有()0g x '>,函数()g x 单调递增,所以函数()g x 的最小值为()ln 1g a a =+.由3ln 12a +≤,得0a <≤1a <≤. …………………………………10分 ③当e a ≥时,显然函数)(x g 在[]1,e 上单调递减, 其最小值为3(e)12e 2a g =+≥>,不合题意. ……………………………………………11 分综上所述,a 的取值范围为(-∞. ……………………………………………12 分 (22)解:(Ⅰ) 在ACB ∆中,90ACB ∠=,CD AB ⊥于点D ,所以2CD AD DB =⋅,……………………………………………………………………………2 分因为CD 是圆O 的切线,由切割线定理得2CD CE CB =⋅.,……………………………………………………………4 分所以CE CB AD DB ⋅=⋅. ,…………………………………………………………………5 分(Ⅱ)因为ON NF ⊥,所以NF ……………………………6分因为线段OF 的长为定值,即需求解线段ON 长度的最小值. ……………………7分弦中点到圆心的距离最短,此时N 为BE 的中点,点F 与点B 或E 重合. …………8分 因此max 122NF BE ==. ……………………………………………………………………10分(23)解:(Ⅰ)曲线1C :112x t y t =+⎧⎨=-⎩,的直角坐标方程为32y x =-.………………………………1分 曲线1C 与x 轴交点为3,02⎛⎫ ⎪⎝⎭.……………………………………………………………………2 分 曲线2C :cos ,3sin x a y θθ=⎧⎨=⎩的直角坐标方程为22219x y a +=. ……………………………………3 分 曲线2C 与x 轴交点为(,0),(,0)a a -.……………………………………………………………4 分 由0a >,曲线1C 与曲线2C 有一个公共点在x 轴上,知32a =. …………………………5 分 (Ⅱ)当3a =时, 曲线2C :3cos ,3sin x y θθ=⎧⎨=⎩为圆229x y +=. …………………………6 分 圆心到直线32y x =-的距离d ==.…………………………………………8 分 所以,A B两点的距离5AB ===. ……………………10分(24)解:(Ⅰ)因为||||()x m x x m x m -+≥--=. …………………………………………2分要使不等式||||2x m x -+<有解,则||2m <,解得22m -<<. …………………………4分 因为*m ∈N ,所以1m =.………………………………………………………………………5 分 (Ⅱ)因为,1αβ≥,所以()()21214f f αβαβ+=-+-=,即3αβ+=.…………………………………………6 分 所以()411413αβαβαβ⎛⎫+=++ ⎪⎝⎭ 1453βααβ⎛⎫=++ ⎪⎝⎭1533⎛≥+= ⎝.……………………………………………8分 (当且仅当4βααβ=时,即2α=,1β=等号成立) …………………………………………9分 故413αβ+≥.……………………………………10分。

2016年广州市普通高中毕业班综合测试

2016年广州市普通高中毕业班综合测试

2016年广州市普通高中毕业班综合测试(二)数学(文科)第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符 合题目要求的。

(1) 已知集合{}0,1,2M =,{11,N x x =-≤≤x ∈Z}, 则(A)M N ⊆ (B) N M ⊆ (C) {}0,1M N = (D) M N N = (2) 已知()1i i +=a b +i (,a b ∈R ),其中i 为虚数单位,则a b +的值为 (A) 1-(B)0 (C)1 (D) 2 (3) 已知等比数列{}n a 的公比为12-, 则135246a a a a a a ++++的值是 (A)2- (B) 12-(C) 12(D) 2 (4) 从数字1,2,3,4,5中任取2的两位数,则这个两位数大于30的概率是(A) 15 (B)25 (C)35 (D)45(5) 执行如图的程序框图,若程序运行中输出的一组数是(),12x -,则x 的值为(A) 27 (B) 81(C) 243 (D) 729(6) 不等式组0,2,22x y x y x y -≤⎧⎪+≥-⎨⎪-≥-⎩的解集记为D , 若(),a b D ∈, 则(A) 1 (B) 4 (C) 1- (D) 4- (7) 已知函数()sin 24f x x π⎛⎫=+⎪⎝⎭,则下列结论中正确的是 (A)函数()f x 的最小正周期为2π(B) 函数()f x 的图象关于点,04π⎛⎫⎪⎝⎭对称 (C) 由函数()f x 的图象向右平移8π个单位长度可以得到函数sin 2y x =的图象 (D) 函数()f x 在区间5,88ππ⎛⎫⎪⎝⎭上单调递增 (8) 已知1F , 2F 分别是椭圆C ()2222:10x y a b a b +=>>的左, 右焦点,点1,2A ⎛ ⎝⎭在椭 圆C 上, 124AF AF +=, 则椭圆C 的离心率是 (A)12(B) 4 (C) 23(D) 2(9) 已知球O 的半径为R ,,,A B C 三点在球O 的球面上,球心O 到平面ABC 的距离为12R ,2AB AC ==,120BAC ︒∠=, 则球O 的表面积为 (A)169π (B)163π (C)649π (D)643π (10) 已知命题p :x ∀∈N *, 1123x x⎛⎫⎛⎫≥ ⎪ ⎪⎝⎭⎝⎭,命题q :x ∃∈R, 122x x-+=命题中为真命题的是(A) p q ∧ (B) ()p q ⌝∧ (11) 如图, 网格纸上的小正方形的边长为1, 的是某几何体的三视图, (A)86+π (B)46+π (C)412+π (D)812+π(12) 设函数()f x 的定义域为R , ()f x -=()3f x x =, 则函数()()cos g x x π=-22⎢⎥⎣⎦(A) 4 (B) 3 (C) 2 (D) 1第Ⅱ卷本卷包括必考题和选考题两部分。

2016年广州市普通高中毕业班数学综合测试(一)

2016年广州市普通高中毕业班数学综合测试(一)

2016年XX 市普通高中毕业班综合测试(一)理科数学注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用0.5毫米黑色字迹的签字笔在答题卡指定位置填写自己的学校、XX 和考生号,同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.不按要求填涂的,答案无效.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.漏涂、错涂、多涂的答案无效.5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回.第Ⅰ卷一.选择题:(本大题共12小题,每小题5分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

) 1. 已知集合,,则=Q P ( )A .B .C .D .(0,1)2.i 是虚数单位,复数的虚部为( ) A .2iB .-2iC .2D .-23.将函数sin()()6y x x R π=+∈的图象上所有点的纵坐标不变横坐标缩小到原来的倍,再把图象上各点向左平移4π个单位长度,则所得的图象的解析式为( ) A .)652sin(π+=x y B .)621sin(π+=x y C .)322sin(π+=x y D .)12521sin(π+=x y(第7题图)4.已知βα,是两个不同的平面,n m ,是两条不同的直线,给出下列命题: ①若βα⊂⊥m m ,,则βα⊥; ②若α⊥⊥m n m ,,则α//n ;③若βαα⊥,//m ,则β⊥m ; ④若m n m //,=βα ,且βα⊄⊄n n ,, 则βα//,//n n ,其中真命题的个数是() A .0B .1C .2D .35.设a ,b 是两个非零向量.下列命题正确的是()A .若|a +b |=|a |-|b |,则a ⊥bB .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ使得a =λbD .若存在实数λ,使得a =λb ,则|a +b |=|a |-|b |6. 用数学归纳法证明“(n+1)(n+2)·…·(n+n )=2n·1·3·…·(2n -1)”,从“n=k 到n=k+1”左端需增乘的代数式为( ) A .2(2k+1) B .2k+1 C .112++k k D .132++k k 7.如果执行右边的程序框图,且输入6n =,4m =,则输出的p = ( )A .240B .120C .720D .3608.) A 9.某校选定甲、乙、丙、丁、戊共5名教师去3个边远地区支教 (每地至少1人),其中甲和乙一定不同地,甲和丙必须同地,则不同 的选派方案共有( )种.A.27B.30C.33D.3610.当实数,x y 满足240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值X 围( )A .]23,1[B .]2,1[-C .)2,1[-D .)23,1[ 11.已知函数22)1lg()(221---=x x x f ;()111)(2-+⋅-=x x x x f ;)1(log )(23++=x x x f a ,ABCD )1,0(≠>a a ;⎪⎭⎫ ⎝⎛+-⋅=21121)(4xx x f ,()0≠x ,下面关于这四个函数奇偶性的判断正确的是( )A .都是偶函数B .一个奇函数,一个偶函数,两个非奇非偶函数C .一个奇函数,两个偶函数,一个非奇非偶函数D . 一个奇函数,三个偶函数12.若过点A (2,m )可作函数x x x f 3)(3-=对应曲线的三条切线,则实数m 的取值X 围( ) A .]6,2[- B .)1,6(- C .)2,6(-D .)2,4(-第Ⅱ卷本卷包括必考题和选考题两部分。

广东省广州市2016届高三数学毕业班综合测试试题(二)文(含解析)

广东省广州市2016届高三数学毕业班综合测试试题(二)文(含解析)

2016年广州市普通高中毕业班综合测试(二)数 学(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符 合题目要求的。

1.已知集合{0,1,2}M =,{11,}N x x x =-≤≤∈Z , 则( ) A . M N ⊆ B . N M ⊆ C .{0,1}M N = D .M N N =【答案】C【解析】{1,0,1}N =-,∴{0,1}MN =.2.已知(1i)i i(,)a b a b +=+∈R ,其中i 为虚数单位,则a b +的值为( ) A . 1- B . 0 C .1 D .2 【答案】B【解析】∵(1i)i i a b +=+,∴1ii a b -+=+,∴1,1a b =-=,0a b +=. 3.已知等比数列{}n a 的公比为12- )1.2 2=-.435 D .45123205P ==.5.执行如图的程序框图,若程序运行中输出的一组数是(),12x -则x 的值为( )A . 27B . 81C .243D .729 【答案】B【解析】由程序框图可知:6.不等式组0,2,22x y x y x y -≤⎧⎪+≥-⎨⎪-≥-⎩的解集记为D , 若(,)a b D ∈, 则23z a b =-的最大值是( )A .1B .4C .1-D .4- 【答案】A【解析】不等式组表示的平面区域的角点 坐标分别为(1,1),(2,0),(2,2)A B C ---,1,4,2A B C z z z ==-=-,故选A .7.已知函数()sin(2)4f x x π=+,则下列结论中正确的是( )A . 函数()f x 的最小正周期为2πsin2y x =的图象8)的左, 右焦点,点A 在椭圆)A .12 B .23D 【答案】D【解析】∵1242AF AF a +==,∴2a =.∵点A 在椭圆C 上,∴213144b+=,∴1b=,c=2e=.9.已知球O的半径为R,,,A B C三点在球O的球面上,球心O到平面ABC的距离为12R,2AB AC==,120BAC︒∠=, 则球O的表面积为()A.169π B.163π C.649π D.643π【答案】D【解析】∵2AB AC==,120BAC︒∠=,,∴2222cosBC AB ACAB AC A=+-⋅⋅22122222()122=+-⨯⨯⨯-=,∴BC=设ABC∆外接圆的半径为r,则24sin2BCrA===,∴2r=.∴2221()2R R r=+,得2163R=.∴球O的表面积为26443Rππ=.10.已知命题p:*x∀∈N,11()()23x x≥,命题q:x∃∈R, 122x x-+=,则下列命题中为真命题的是()A.p q∧ B.()p q⌝∧ C.()p q∧⌝ D.()()p q⌝∧⌝【答案】A【解析】由11()()23x x≥,得0x≥,故命题p为真命题.∵122x x-+=2202xx+-=,∴2(2)220x x-+=,∴2(20x=,∴12x=,故命题q为真命题.∴p q∧为真命题.11.如图, 网格纸上的小正方形的边长为1,体的体积是()A.86π+B.46π+C.412π+D.812π+【答案】A【解析】该几何体为半圆柱和四棱锥组成, 其中,平面PDC ⊥平面ABCD , ∴ 21143223V r h π=+⨯⨯⨯ 21238862ππ=⨯⨯+=+.12.设函数()f x 的定义域为R , ()(),()(2)f x f x f x f x -==-, 当[0,1]x ∈时,3()f x x =,则函数()cos()()g x x f x π=-在区间13[,]22-上的所有零点的和为( )A .4B .3C .2D .1 【答案】B【解析】∵()(),()(2)f x f x f x f x -==-,∴()(2)f x f x -=-,∴()f x 的周期为2. 13.曲线2()23f x x x =-在点(1,(1))f 的处的切线方程为 . 【答案】20x y --=【解析】()43f x x '=-,(1)1f '=,(1)1f =-,∴切线方程为11y x +=-,即20x y --=.C BADP14.已知a 与b 的夹角为3π,=a,2-=a b =b . 【答案】2【解析】∵2-=a b 224412-⋅=a a b+b .∴22242cos 4123π-⨯⨯⨯=b +b .∴220--=b b ,∴2=b .15.设数列{}n a 的前n 项和为n S ,若212a =,2*1()n S kn n =-∈N ,则数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为 . 【答案】21nn + 【解析】依题意得112141a k a a k =-⎧⎨+=-⎩,∵212a =,∴4k =,13a =.∴241n S n =-,211111()4122121n S n n n ==---+, ∴数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为 11111111[(1)()()()2335572121n n -+-+-+⋅⋅⋅+--+ 11(1)22121nn n =-=++.16.已知点O 为坐标原点,点M 在双曲线:C 22(x y λλ-=为正常数)上,过点M 作双曲线C 的某一条渐近线的垂线,垂足为N ,则2ON MN +的最小值为 .【答案】【解析】双曲线的渐近线为y x =±.设00(,)M x y ,直线MN 的方程为00()y x x y =--+, 由00()y x y x x y =⎧⎨=--+⎩,解得0000(,)22x y x y N ++.∴00ON y =+,00MN y ==-, ∵2200x y λ-=,∴0000()()x y x y λ-+=∴0000x y x y λ-=+,002MN x y =+.∴00002ON MN y x y +=+++≥=三、 解答题:解答应写出文字说明,证明过程或演算步骤。

广东省广州市2016届高三数学一模试卷 文(含解析)

广东省广州市2016届高三数学一模试卷 文(含解析)

2016年广东省广州市高考数学一模试卷(文科)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0},则A∩B=()A.{x|﹣1≤x≤2} B.{x|﹣1≤x≤0} C.{x|1≤x≤2} D.{x|0≤x≤1}2.已知复数z满足z=(i为虚数单位),则复数z所对应的点所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知函数则f(f(﹣2))的值为()A.B.C.D.4.设P是△ABC所在平面内的一点,且=2,则△PAB与△PBC的面积之比是()A.B.C.D.5.如果函数(ω>0)的相邻两个零点之间的距离为,则ω的值为()A.3 B.6 C.12 D.246.执行如图所示的程序框图,如果输入x=3,则输出k的值为()A.6 B.8 C.10 D.127.在平面区域{(x,y)|0≤x≤1,1≤y≤2}内随机投入一点P,则点P的坐标(x,y)满足y≤2x的概率为()A.B.C.D.8.已知f(x)=sin(x+),若sinα=(<α<π),则f(α+)=()A.B.﹣C.D.9.如果P1,P2,…,P n是抛物线C:y2=4x上的点,它们的横坐标依次为x1,x2,…,x n,F 是抛物线C的焦点,若x1+x2+…+x n=10,则|P1F|+|P2F|+…+|P n F|=()A.n+10 B.n+20 C.2n+10 D.2n+2010.一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为()A.20π B.C.5πD.11.已知下列四个命题:p1:若直线l和平面α内的无数条直线垂直,则l⊥α;p2:若f(x)=2x﹣2﹣x,则∀x∈R,f(﹣x)=﹣f(x);p3:若,则∃x0∈(0,+∞),f(x0)=1;p4:在△ABC中,若A>B,则sinA>sinB.其中真命题的个数是()A.1 B.2 C.3 D.412.如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为()A.8+8+4B.8+8+2C.2+2+D. ++二.填空题:本大题共4小题,每小题5分.13.函数f(x)=x3﹣3x的极小值为.14.设实数x,y满足约束条件,则z=﹣2x+3y的取值范围是.15.已知双曲线C:(a>0,b>0)的左顶点为A,右焦点为F,点B(0,b),且,则双曲线C的离心率为.16.在△ABC中,点D在边AB上,CD⊥BC,,CD=5,BD=2AD,则AD的长为.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.已知数列{a n}是等比数列,a2=4,a3+2是a2和a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=2log2a n﹣1,求数列{a n b n}的前n项和T n.18.从某企业生产的某中产品中抽取100件,测量这些产品的质量指标值.由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1.(Ⅰ)求这些产品质量指标落在区间[75,85]内的概率;(Ⅱ)用分层抽样的方法在区间[45,75)内抽取一个容量为6的样本,将该样本看成一个总体,从中任意抽取2件产品,求这2件产品都在区间[45,65)内的概率.19.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是菱形,AC∩BD=O,A1O⊥底面ABCD,AB=AA1=2.(Ⅰ)证明:BD⊥平面A1CO;(Ⅱ)若∠BAD=60°,求点C到平面OBB1的距离.20.已知椭圆C的中心在坐标原点,焦点在x轴上,左顶点为A,左焦点为F1(﹣2,0),点B(2,)在椭圆C上,直线y=kx(k≠0)与椭圆C交于E,F两点,直线AE,AF分别与y轴交于点M,N(Ⅰ)求椭圆C的方程;(Ⅱ)在x轴上是否存在点P,使得无论非零实数k怎样变化,总有∠MPN为直角?若存在,求出点P的坐标,若不存在,请说明理由.21.已知函数f(x)=me x﹣lnx﹣1.(Ⅰ)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当m≥1时,证明:f(x)>1.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.【选修4-1:几何证明选讲】22.如图所示,△ABC内接于⊙O,直线AD与⊙O相切于点A,交BC的延长线于点D,过点D作DE∥CA交BA的延长线于点E.(I)求证:DE2=AE•BE;(Ⅱ)若直线EF与⊙O相切于点F,且EF=4,EA=2,求线段AC的长.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,以坐标原点0为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ,θ∈[0,2π).(1)求曲线C的直角坐标方程;(2)在曲线C上求一点D,使它到直线l:,(t为参数,t∈R)的距离最短,并求出点D的直角坐标.选修4-5:不等式选讲24.设函数f(x)=|x+|﹣|x﹣|.(I)当a=1时,求不等式f(x)≥的解集;(Ⅱ)若对任意a∈[0,1],不等式f(x)≥b的解集为空集,求实数b的取值范围.2016年广东省广州市高考数学一模试卷(文科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0},则A∩B=()A.{x|﹣1≤x≤2} B.{x|﹣1≤x≤0} C.{x|1≤x≤2} D.{x|0≤x≤1}【考点】交集及其运算.【分析】求出集合的等价条件,根据集合的基本运算进行求解即可.【解答】解:B={x|x2﹣2x≤0}={x|0≤x≤2},则A∩B={x|0≤x≤1},故选:D2.已知复数z满足z=(i为虚数单位),则复数z所对应的点所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数的代数表示法及其几何意义.【分析】根据复数的几何意义,即可得到结论.【解答】解:z===,对应的坐标为(2,﹣1),位于第四象限,故选:D.3.已知函数则f(f(﹣2))的值为()A.B.C.D.【考点】函数的值.【分析】利用分段函数的性质求解.【解答】解:∵函数,∴f(﹣2)=(﹣2)2﹣(﹣2)=6,f(f(﹣2))=f(6)==﹣.故选:C.4.设P是△ABC所在平面内的一点,且=2,则△PAB与△PBC的面积之比是()A.B.C.D.【考点】向量数乘的运算及其几何意义.【分析】由=2可知P为AC上靠近A点的三等分点.【解答】解:∵=2,∴P为边AC靠近A点的三等分点,∴△PAB与△PBC的面积比为1:2.故选:B.5.如果函数(ω>0)的相邻两个零点之间的距离为,则ω的值为()A.3 B.6 C.12 D.24【考点】y=Asin(ωx+φ)中参数的物理意义.【分析】根据余弦函数的相邻两个零点之间的距离恰好等于半个周期,即可求得ω的值.【解答】解:函数(ω>0)的相邻两个零点之间的距离为,∴T=2×=,又=,解得ω=6.故选:B.6.执行如图所示的程序框图,如果输入x=3,则输出k的值为()A.6 B.8 C.10 D.12【考点】程序框图.【分析】根据框图的流程依次计算程序运行的结果,直到满足条件x>100,跳出循环体,确定输出k的值.【解答】解:模拟执行程序,可得x=3,k=0x=9,k=2不满足条件x>100,x=21,k=4不满足条件x>100,x=45,k=6不满足条件x>100,x=93,k=8不满足条件x>100,x=189,k=10满足条件x>100,退出循环,输出k的值为10.故选:C.7.在平面区域{(x,y)|0≤x≤1,1≤y≤2}内随机投入一点P,则点P的坐标(x,y)满足y≤2x的概率为()A.B.C.D.【考点】简单线性规划;几何概型.【分析】作出不等式组对应的区域,利用几何概型的概率公式,即可得到结论.【解答】解:不等式组表示的平面区域为D的面积为1,不等式y≤2x对应的区域为三角形ABC,则三角形ABC的面积S==,则在区域D内任取一点P(x,y),则点P满足y≤2x的概率为,故选:A.8.已知f(x)=sin(x+),若sinα=(<α<π),则f(α+)=()A.B.﹣C.D.【考点】两角和与差的正弦函数.【分析】根据同角的三角函数的关系,以及两角和的正弦公式,即可求出.【解答】解:∵<α<π,sinα=,∴cosα=﹣∵f(x)=sin(x+),∴f(α+)=sin(α++)=sin(α+)=sinαcos+cosαsin=﹣(﹣)=,故选:C.9.如果P1,P2,…,P n是抛物线C:y2=4x上的点,它们的横坐标依次为x1,x2,…,x n,F 是抛物线C的焦点,若x1+x2+…+x n=10,则|P1F|+|P2F|+…+|P n F|=()A.n+10 B.n+20 C.2n+10 D.2n+20【考点】抛物线的简单性质.【分析】由抛物线性质得|P n F|==x n+1,由此能求出结果.【解答】解:∵P1,P2,…,P n是抛物线C:y2=4x上的点,它们的横坐标依次为x1,x2,…,x n,F是抛物线C的焦点,x1+x2+…+x n=10,∴|P1F|+|P2F|+…+|P n F|=(x1+1)+(x2+1)+…+(x n+1)=x1+x2+…+x n+n=n+10.故选:A.10.一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为()A.20π B.C.5πD.【考点】球的体积和表面积.【分析】作出六棱柱的最大对角面与外截球的截面,设正六棱柱的上下底面中心分别为O1,O2,球心为O,一个顶点为A,如右图.可根据题中数据结合勾股定理算出球的半径OA,再用球的体积公式即可得到外接球的体积.【解答】解:作出六棱柱的最大对角面与外截球的截面,如右图,则该截面矩形分别以底面外接圆直径和六棱柱高为两边,设球心为O,正六棱柱的上下底面中心分别为O1,O2,则球心O是O1,O2的中点.∵正六棱柱底面边长为1,侧棱长为1,∴Rt△AO1O中,AO1=1,O1O=,可得AO==,因此,该球的体积为V=π•()3=.故选:D.11.已知下列四个命题:p1:若直线l和平面α内的无数条直线垂直,则l⊥α;p2:若f(x)=2x﹣2﹣x,则∀x∈R,f(﹣x)=﹣f(x);p3:若,则∃x0∈(0,+∞),f(x0)=1;p4:在△ABC中,若A>B,则sinA>sinB.其中真命题的个数是()A.1 B.2 C.3 D.4【考点】命题的真假判断与应用.【分析】p1:根据线面垂直的判断定理判定即可;p2:根据奇函数的定义判定即可;p3:对表达式变形可得=x+1+﹣1,利用均值定理判定即可;p4:根据三角形角边关系和正弦定理判定结论成立.【解答】解:p1:根据判断定理可知,若直线l和平面α内两条相交的直线垂直,则l⊥α,若没有相交,无数的平行直线也不能判断垂直,故错误;p2:根据奇函数的定义可知,f(﹣x)=2﹣x﹣2x=﹣f(x),故∀x∈R,f(﹣x)=﹣f(x),故正确;p3:若=x+1+﹣1≥1,且当x=0时,等号成立,故不存在x0∈(0,+∞),f(x0)=1,故错误;p4:在△ABC中,根据大边对大角可知,若A>B,则a>b,由正弦定理可知,sinA>sinB,故正确.故选:B.12.如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为()A.8+8+4B.8+8+2C.2+2+D. ++【考点】由三视图求面积、体积.【分析】由三视图可知几何体为从边长为4的正方体切出来的三棱锥.作出直观图,计算各棱长求面积.【解答】解:由三视图可知几何体为从边长为4的正方体切出来的三棱锥A﹣BCD.作出直观图如图所示:其中A,C,D为正方体的顶点,B为正方体棱的中点.∴S△ABC==4,S△BCD==4.∵AC=4,AC⊥CD,∴S△ACD==8,由勾股定理得AB=BD==2,AD=4.∴cos∠ABD==﹣,∴sin∠ABD=.∴S△ABD==4.∴几何体的表面积为8+8+4.故选A.二.填空题:本大题共4小题,每小题5分.13.函数f(x)=x3﹣3x的极小值为﹣2 .【考点】利用导数研究函数的极值.【分析】首先求导可得f′(x)=3x2﹣3,解3x2﹣3=0可得其根,再判断导函数的符号分析函数的单调性,即可得到极小值.【解答】解析:令f′(x)=3x2﹣3=0,得x=±1,可求得f(x)的极小值为f(1)=﹣2.故答案:﹣2.14.设实数x,y满足约束条件,则z=﹣2x+3y的取值范围是[﹣6,15] .【考点】简单线性规划.【分析】由题意作平面区域,化简z=﹣2x+3y为y=x+,从而结合图象求解.【解答】解:由题意作平面区域如下,化简z=﹣2x+3y为y=x+,故结合图象可知,在点B(3,0)处有最小值,在点C(﹣3,3)处有最大值,故﹣2×3+3×0≤z≤﹣2×(﹣3)+3×3,即z∈[﹣6,15],故答案为:[﹣6,15].15.已知双曲线C:(a>0,b>0)的左顶点为A,右焦点为F,点B(0,b),且,则双曲线C的离心率为.【考点】双曲线的简单性质.【分析】设出A,F的坐标,运用向量的数量积的坐标表示,结合a,bc的关系和离心率公式,计算即可得到所求值.【解答】解:由题意可得A(﹣a,0),F(c,0),B(0,b),可得=(﹣a,﹣b),=(c,﹣b),由,可得﹣ac+b2=0,即有b2=c2﹣a2=ac,由e=,可得e2﹣e﹣1=0,解得e=(负的舍去).故答案为:.16.在△ABC中,点D在边AB上,CD⊥BC,,CD=5,BD=2AD,则AD的长为 5 .【考点】三角形中的几何计算.【分析】根据题意画出图象,延长BC、过A做AE⊥BC、垂足为E,根据平行线的性质和勾股定理依次求出AE、CE、BC、BD,由条件求出AD的长.【解答】解:如图所示:延长BC,过A做AE⊥BC,垂足为E,∵CD⊥BC,∴CD∥AE,∵CD=5,BD=2AD,∴,解得AE=,在RT△ACE,CE===,由得BC=2CE=5,在RT△BCD中,BD===10,则AD=5,故答案为:5.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.已知数列{a n}是等比数列,a2=4,a3+2是a2和a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=2log2a n﹣1,求数列{a n b n}的前n项和T n.【考点】数列递推式;等差数列与等比数列的综合.【分析】(Ⅰ)等比数列{a n}中,a2=4,a3+2是a2和a4的等差中项,有等比数列的首项和公比分别表示出已知条件,解方程组即可求得首项和公比,代入等比数列的通项公式即可求得结果;(Ⅱ)把(1)中求得的结果代入b n=2log2a n﹣1,求出b n,利用错位相减法求出T n.【解答】解:(Ⅰ)设数列{a n}的公比为q,因为a2=4,所以a3=4q,.)因为a3+2是a2和a4的等差中项,所以2(a3+2)=a2+a4.即2(4q+2)=4+4q2,化简得q2﹣2q=0.因为公比q≠0,所以q=2.所以(n∈N*).(Ⅱ)因为,所以b n=2log2a n﹣1=2n﹣1.所以.则,①,,②,①﹣②得,.=,所以.18.从某企业生产的某中产品中抽取100件,测量这些产品的质量指标值.由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1.(Ⅰ)求这些产品质量指标落在区间[75,85]内的概率;(Ⅱ)用分层抽样的方法在区间[45,75)内抽取一个容量为6的样本,将该样本看成一个总体,从中任意抽取2件产品,求这2件产品都在区间[45,65)内的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(I)由题意,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之和,利用之比为4:2:1,即可求出这些产品质量指标值落在区间[75,85]内的频率;(2)由频率分布直方图得从[45,65)的产品数中抽取5件,记为A,B,C,D,E,从[65,75)的产品数中抽取1件,记为a,由此利用列举法求出概率.【解答】解:(I)由题意,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之和为1﹣0.04﹣0.12﹣0.19﹣0.3=0.35,∵质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1,∴这些产品质量指标值落在区间[75,85]内的频率为0.35×=0.05,(Ⅱ)由频率分布直方图得:这些产品质量指标值落在区间[55,65)内的频率为0.35×=0.2,这些产品质量指标值落在区间[65,75)内的频率为0.35×=0.1,这些产品质量指标值落在区间[45,55)内的频率为0.03×10=0.30,所以这些产品质量指标值落在区间[45,65)内的频率为0.3+0.2=0.5,∵=∴从[45,65)的产品数中抽取6×=5件,记为A,B,C,D,E,从[65,75)的产品数中抽取6×=1件,记为a,从中任取两件,所有可能的取法有:(A,B),(A,C),(A,D),(A,E),(A,a),(B,C),(B,D),(B,E),(B,a),(C,D),(D(C,E),(C,a),(D,E),(D,a),(E,a),共15种,这2件产品都在区间[45,65)内的取法有10种,∴从中任意抽取2件产品,求这2件产品都在区间[45,65)内的概率=.19.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是菱形,AC∩BD=O,A1O⊥底面ABCD,AB=AA1=2.(Ⅰ)证明:BD⊥平面A1CO;(Ⅱ)若∠BAD=60°,求点C到平面OBB1的距离.【考点】点、线、面间的距离计算;直线与平面垂直的判定.【分析】(Ⅰ)证明A1O⊥BD.CO⊥BD.即可证明BD⊥平面A1CO.(Ⅱ)解法一:说明点B1到平面ABCD的距离等于点A1到平面ABCD的距离A1O.设点C到平面OBB1的距离为d,通过,求解点C到平面OBB1的距离.解法二:连接A1C1与B1D1交于点O1,连接CO1,OO1,推出OA1O1C为平行四边形.证明CH⊥平面BB1D1D,然后求解点C到平面OBB1的距离.【解答】(Ⅰ)证明:因为A1O⊥平面ABCD,BD⊂平面ABCD,所以A1O⊥BD.…因为ABCD是菱形,所以CO⊥BD.…因为A1O∩CO=O,A1O,CO⊂平面A1CO,所以BD⊥平面A1CO.…(Ⅱ)解法一:因为底面ABCD是菱形,AC∩B D=O,AB=AA1=2,∠BAD=60°,所以OB=OD=1,.…所以△OBC的面积为.…因为A1O⊥平面ABCD,AO⊂平面ABCD,所以A1O⊥AO,.…因为A1B1∥平面ABCD,所以点B1到平面ABCD的距离等于点A1到平面ABCD的距离A1O.…由(Ⅰ)得,BD⊥平面A1AC.因为A1A⊂平面A1AC,所以BD⊥A1A.因为A1A∥B1B,所以BD⊥B1B.…所以△OBB1的面积为.…设点C到平面OBB1的距离为d,因为,所以.…所以.所以点C到平面OBB1的距离为.…解法二:由(Ⅰ)知BD⊥平面A1CO,因为BD⊂平面BB1D1D,所以平面A1CO⊥平面BB1D1D.…连接A1C1与B1D1交于点O1,连接CO1,OO1,因为AA1=CC1,AA1∥CC1,所以CAA1C1为平行四边形.又O,O1分别是AC,A1C1的中点,所以OA1O1C为平行四边形.所以O1C=OA1=1.…因为平面OA1O1C与平面BB1D1D交线为OO1,过点C作CH⊥OO1于H,则CH⊥平面BB1D1D.…因为O1C∥A1O,A1O⊥平面ABCD,所以O1C⊥平面ABCD.因为OC⊂平面ABCD,所以O•1C⊥OC,即△OCO1为直角三角形.…所以.所以点C到平面OBB1的距离为.…20.已知椭圆C的中心在坐标原点,焦点在x轴上,左顶点为A,左焦点为F1(﹣2,0),点B(2,)在椭圆C上,直线y=kx(k≠0)与椭圆C交于E,F两点,直线AE,AF分别与y轴交于点M,N(Ⅰ)求椭圆C的方程;(Ⅱ)在x轴上是否存在点P,使得无论非零实数k怎样变化,总有∠MPN为直角?若存在,求出点P的坐标,若不存在,请说明理由.【考点】椭圆的简单性质.【分析】(Ⅰ)由题意可设椭圆标准方程为+=1(a>b>0),结合已知及隐含条件列关于a,b,c的方程组,求解方程组得到a2,b2的值,则椭圆方程可求;(Ⅱ)设F(x0,y0),E(﹣x0,﹣y0),写出AE、AF所在直线方程,求出M、N的坐标,得到以MN为直径的圆的方程,由圆的方程可知以MN为直径的圆经过定点(±2,0),即可判断存在点P.【解答】解:(Ⅰ)由题意可设椭圆方程为+=1(a>b>0),则c=2,a2﹣b2=c2, +=1,解得:a2=8,b2=4.可得椭圆C的方程为+=1;(Ⅱ)如图,设F(x0,y0),E(﹣x0,﹣y0),则+=1,A(﹣2,0),AF所在直线方程y=(x+2),取x=0,得y=,∴N(0,),AE所在直线方程为y=(x+2),取x=0,得y=.则以MN为直径的圆的圆心坐标为(0,),半径r=,圆的方程为x2+(y﹣)2==,即x2+(y+)2=.取y=0,得x=±2.可得以MN为直径的圆经过定点(±2,0).可得在x轴上存在点P(±2,0),使得无论非零实数k怎样变化,总有∠MPN为直角.21.已知函数f(x)=me x﹣lnx﹣1.(Ⅰ)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当m≥1时,证明:f(x)>1.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求得m=1时,f(x)的导数,可得切点坐标和切线的斜率,由点斜式方程可得所求切线的方程;(Ⅱ)证法一:运用分析法证明,当m≥1时,f(x)=me x﹣lnx﹣1≥e x﹣lnx﹣1.要证明f (x)>1,只需证明e x﹣lnx﹣2>0,思路1:设g(x)=e x﹣lnx﹣2,求得导数,求得单调区间,可得最小值,证明大于0即可;思路2:先证明e x≥x+1(x∈R),设h(x)=e x﹣x﹣1,求得导数和单调区间,可得最小值大于0;证明x﹣lnx﹣1≥0.设p(x)=x﹣lnx﹣1,求得导数和单调区间,可得最小值大于0,即可得证;思路3:先证明e x﹣lnx>2.:因为曲线y=e x与曲线y=lnx的图象关于直线y=x对称,结合点到直线的距离公式,求得两曲线上的点的距离AB>2,即可得证;证法二:因为f(x)=me x﹣lnx﹣1,要证明f(x)>1,只需证明me x﹣lnx﹣2>0.思路1:设g(x)=me x﹣lnx﹣2,求得导数和单调区间,求得最小值,证明大于0,即可得证;思路2:先证明e x≥x+1(x∈R),且lnx≤x+1(x>0).设F(x)=e x﹣x﹣1,求得导数和单调区间,可得最小值大于0,再证明me x﹣lnx﹣2>0,运用不等式的性质,即可得证.【解答】(Ⅰ)解:当m=1时,f(x)=e x﹣lnx﹣1,所以.…所以f(1)=e﹣1,f'(1)=e﹣1.…所以曲线y=f(x)在点(1,f(1))处的切线方程为y﹣(e﹣1)=(e﹣1)(x﹣1).即y=(e﹣1)x.…(Ⅱ)证法一:当m≥1时,f(x)=me x﹣lnx﹣1≥e x﹣lnx﹣1.要证明f(x)>1,只需证明e x﹣lnx﹣2>0.…以下给出三种思路证明e x﹣lnx﹣2>0.思路1:设g(x)=e x﹣lnx﹣2,则.设,则,所以函数h(x)=在(0,+∞)上单调递增.…因为,g'(1)=e﹣1>0,所以函数在(0,+∞)上有唯一零点x0,且.…因为g'(x0)=0时,所以,即lnx0=﹣x0.…当x∈(0,x0)时,g'(x)<0;当x∈(x0,+∞)时,g'(x)>0.所以当x=x0时,g(x)取得最小值g(x0).…故.综上可知,当m≥1时,f(x)>1.…思路2:先证明e x≥x+1(x∈R).…设h(x)=e x﹣x﹣1,则h'(x)=e x﹣1.因为当x<0时,h'(x)<0,当x>0时,h'(x)>0,所以当x<0时,函数h(x)单调递减,当x>0时,函数h(x)单调递增.所以h(x)≥h(0)=0.所以e x≥x+1(当且仅当x=0时取等号).…所以要证明e x﹣lnx﹣2>0,只需证明(x+1)﹣lnx﹣2>0.…下面证明x﹣lnx﹣1≥0.设p(x)=x﹣lnx﹣1,则.当0<x<1时,p'(x)<0,当x>1时,p'(x)>0,所以当0<x<1时,函数p(x)单调递减,当x>1时,函数p(x)单调递增.所以p(x)≥p(1)=0.所以x﹣lnx﹣1≥0(当且仅当x=1时取等号).…由于取等号的条件不同,所以e x﹣lnx﹣2>0.综上可知,当m≥1时,f(x)>1.…(若考生先放缩lnx,或e x、lnx同时放缩,请参考此思路给分!)思路3:先证明e x﹣lnx>2.因为曲线y=e x与曲线y=lnx的图象关于直线y=x对称,设直线x=t(t>0)与曲线y=e x,y=lnx分别交于点A,B,点A,B到直线y=x的距离分别为d1,d2,则.其中,(t>0).①设h(t)=e t﹣t(t>0),则h'(t)=e t﹣1.因为t>0,所以h'(t)=e t﹣1>0.所以h(t)在(0,+∞)上单调递增,则h(t)>h(0)=1.所以.②设g(t)=t﹣lnt(t>0),则.因为当0<t<1时,g'(t)<0;当t>1时,g'(t)>0,所以当0<t<1时,g(t)=t﹣lnt单调递减;当t>1时,g(t)=t﹣lnt单调递增.所以g(t)≥g(1)=1.所以.所以.综上可知,当m≥1时,f(x)>1.…证法二:因为f(x)=me x﹣lnx﹣1,要证明f(x)>1,只需证明me x﹣lnx﹣2>0.…以下给出两种思路证明me x﹣lnx﹣2>0.思路1:设g(x)=me x﹣lnx﹣2,则.设,则.所以函数h(x)=在(0,+∞)上单调递增.…因为,g'(1)=me﹣1>0,所以函数在(0,+∞)上有唯一零点x 0,且.…因为g'(x 0)=0,所以,即lnx 0=﹣x 0﹣lnm .… 当x ∈(0,x 0)时,g'(x )<0;当x ∈(x 0,+∞)时,g'(x )>0.所以当x=x 0时,g (x )取得最小值g (x 0).…故.综上可知,当m ≥1时,f (x )>1.…思路2:先证明e x ≥x+1(x ∈R ),且lnx ≤x+1(x >0).…设F (x )=e x ﹣x ﹣1,则F'(x )=e x ﹣1.因为当x <0时,F'(x )<0;当x >0时,F'(x )>0,所以F (x )在(﹣∞,0)上单调递减,在(0,+∞)上单调递增.所以当x=0时,F (x )取得最小值F (0)=0.所以F (x )≥F (0)=0,即e x ≥x+1(当且仅当x=0时取等号).…由e x ≥x+1(x ∈R ),得e x ﹣1≥x (当且仅当x=1时取等号).…所以lnx ≤x ﹣1(x >0)(当且仅当x=1时取等号).…再证明me x ﹣lnx ﹣2>0.因为x >0,m ≥1,且e x ≥x+1与lnx ≤x ﹣1不同时取等号,所以me x ﹣lnx ﹣2>m (x+1)﹣(x ﹣1)﹣2=(m ﹣1)(x+1)≥0.综上可知,当m ≥1时,f (x )>1.…请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.【选修4-1:几何证明选讲】22.如图所示,△ABC 内接于⊙O ,直线AD 与⊙O 相切于点A ,交BC 的延长线于点D ,过点D 作DE ∥CA 交BA 的延长线于点E .(I )求证:DE 2=AE•BE;(Ⅱ)若直线EF 与⊙O 相切于点F ,且EF=4,EA=2,求线段AC 的长.【考点】与圆有关的比例线段.【分析】(Ⅰ)推导出△AED∽△DEB,由此能证明DE2=AE•BE.(Ⅱ)由切割线定理得EF2=EA•EB,由DE∥CA,得△BAC∽△BED,由此能求出AC.【解答】证明:(Ⅰ)∵AD是⊙O的切线,∴∠DAC=∠B,∵DE∥CA,∴∠DAC=∠EDA,∴∠EDA=∠B,∵∠AED=∠DEB,∴△AED∽△DEB,∴,∴DE2=AE•BE.解:(Ⅱ)∵EF是⊙O的切线,EAB是⊙O割线,∴EF2=EA•EB,∵EF=4,EA=2,∴EB=8,AB=EB﹣EA=6,由(Ⅰ)知DE2=AE•BE,∴DE=4,∵DE∥CA,∴△BAC∽△BED,∴,∴AC==.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,以坐标原点0为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ,θ∈[0,2π).(1)求曲线C的直角坐标方程;(2)在曲线C上求一点D,使它到直线l:,(t为参数,t∈R)的距离最短,并求出点D的直角坐标.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)利用可把圆C的极坐标方程化为普通方程.(II)消去参数把直线l的参数方程化为普通方程,求出圆心C到直线l的距离d,得出直线与圆的位置关系即可得出.【解答】解:(1)曲线C的极坐标方程为ρ=2sinθ,θ∈[0,2π),即ρ2=2ρsinθ,化为x2+y2﹣2y=0,配方为x2+(y﹣1)2=1.(2)曲线C的圆心C(0,1),半径r=1.直线l:,(t为参数,t∈R)化为普通方程:﹣y﹣1=0,可得圆心C到直线l的距离d==1=0,∴直线l与圆C相切,其切点即为所求.联立,解得D.选修4-5:不等式选讲24.设函数f(x)=|x+|﹣|x﹣|.(I)当a=1时,求不等式f(x)≥的解集;(Ⅱ)若对任意a∈[0,1],不等式f(x)≥b的解集为空集,求实数b的取值范围.【考点】绝对值不等式的解法.【分析】(I)当a=1时,利用绝对值的意义求得不等式的解集.(Ⅱ)由题意可得b大于f(x)的最大值.再根据绝对值的意义可得f(x)的最大值为1,可得实数b的范围.【解答】解:(I)当a=1时,不等式f(x)≥,即|x+1|﹣|x|≥,即数轴上的x对应点到﹣1对应点的距离减去它到原点的距离大于,而﹣0.25对应点到﹣1对应点的距离减去它到原点的距离正好等于,故|x+1|﹣|x|≥的解集为{x|x≥﹣0.25}.(Ⅱ)若对任意a∈[0,1],不等式f(x)≥b的解集为空集,则b大于f(x)的最大值.而由绝对值的意义可得f(x)的最大值为1,故实数b>1.。

广东省广州市高三数学毕业班综合测试试卷(一)文(含解析)

广东省广州市高三数学毕业班综合测试试卷(一)文(含解析)

2016年广州市普通高中毕业班综合测试(一)文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}11A x x =-≤≤,{}220B x x x =-≤,则AB =(A ){}12x x -≤≤ (B ){}10x x -≤≤ (C ){}12x x ≤≤ (D ){}01x x ≤≤答案:D解析:集合A ={}11x x ≤≤-,集合B ={}2x x ≤≤0,所以,A B ={}01x x ≤≤。

(2)已知复数3i1iz +=+,其中i 为虚数单位,则复数z 所对应的点在 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限答案:D 解析:(3)(1)22i i z i +==--,对应坐标为(2,-1),在第四象限。

(3)已知函数()2,1,1,1,1x x x f x x x⎧-≤⎪=⎨>⎪-⎩则()()2f f -的值为(A )12 (B )15 (C )15- (D )12-答案:C解析:2f (-)=4+2=6,11((2))(6)165f f f -===--,选C 。

(4)设P 是△ABC 所在平面内的一点,且2CP PA =,则△PAB 与△PBC 的面积之比是(A )13 (B )12 (C )23 (D )34答案:B解析:依题意,得:CP =2PA ,设点P 到AC 之间的距离为h ,则△PAB 与△PBC 的面积之比为1212BPA BCPPA h S S PC h ∆∆==12(5)如果函数()cos 4f x x ωπ⎛⎫=+ ⎪⎝⎭()0ω>的相邻两个零点之间的距离为6π,则ω的值为(A )3 (B )6 (C )12 (D )24 答案:B解析:依题意,得:周期T =3π,23ππω=,所以,ω=6。

2016年广州市高三一模考试参考答案及评分(文科数学)

2016年广州市高三一模考试参考答案及评分(文科数学)

文科数学试题答案 第1页(共15页)绝密 ★ 启用前2016年广州市普通高中毕业班综合测试(一)文科数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分. 一.选择题(1)D (2)D (3)C (4)B (5)B (6)C (7)A (8)B(9)A(10)D(11)B(12)A二.填空题(13)2-(14)[]6,15- (15(16)5三.解答题(17)解:(Ⅰ)设数列{}n a 的公比为q ,因为24a =,所以34a q =,244a q =.…………………………………………1分因为32a +是2a 和4a 的等差中项,所以()32422a a a +=+.……………………2分 即()224244q q +=+,化简得220q q -=.因为公比0q ≠,所以2q =.………………………………………………………4分 所以222422n n n n a a q --==⨯=(*n ∈N ).…………………………………………5分 (Ⅱ)因为2n na =,所以22log 121n nb a n =-=-.所以()212nn n a b n =-.……………………………………………………………7分 则()()231123252232212n n n T n n -=⨯+⨯+⨯+⋅⋅⋅+-+-, ①()()23412123252232212n n n T n n +=⨯+⨯+⨯+⋅⋅⋅+-+-. ②………………9分文科数学试题答案 第2页(共15页)①-②得,()2312222222212n n n T n +-=+⨯+⨯+⋅⋅⋅+⨯--……………………………………10分()()()11142221262321212n n n n n ++-=+⨯--=-----,所以()16232n n T n +=+-.……………………………………………………………12分(18)解:(Ⅰ)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x .…………………………1分 依题意得()0.0040.0120.0190.03010421x x x +++⨯+++=,……………3分 解得0.05x =.所以区间[]75,85内的频率为0.05.………………………………………………4分 (Ⅱ)由(Ⅰ)得,区间[)45,55,[)55,65,[)65,75内的频率依次为0.3,0.2,0.1.用分层抽样的方法在区间[)45,75内抽取一个容量为6的样本,则在区间[)45,55内应抽取0.3630.30.20.1⨯=++件,记为1A ,2A ,3A .在区间[)55,65内应抽取0.2620.30.20.1⨯=++件,记为1B ,2B . 在区间[)65,75内应抽取0.1610.30.20.1⨯=++件,记为C .…………………6分 设“从样本中任意抽取2件产品,这2件产品都在区间[)45,65内”为事件M , 则所有的基本事件有:{}12,A A ,{}13,A A ,{}11,A B ,{}12,A B ,{}1,A C ,{}23,A A , {}21,A B ,{}22,A B ,{}2,A C ,{}31,A B ,{}32,A B ,{}3,A C ,{}12,B B ,{}1,B C ,{}2,B C ,共15种.…………………………………………………………………8分事件M 包含的基本事件有:{}12,A A ,{}13,A A ,{}11,A B ,{}12,AB ,{}23,A A , {}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10种.…………10分所以这2件产品都在区间[)45,65内的概率为102153=.………………………12分文科数学试题答案 第3页(共15页)(19)(Ⅰ)证明:因为1AO ⊥平面ABCD ,BD ⊂平面ABCD , 所以1AO ⊥BD .……………………………………………………………………1分 因为ABCD 是菱形,所以CO ⊥BD .……………………………………………2分因为1AO CO O = ,1AO ,CO ⊂平面1ACO , 所以BD ⊥平面1ACO .……………………………………………………………3分 (Ⅱ)解法一:因为底面ABCD 是菱形,AC BD O = ,21==AA AB ,60BAD ∠=, 所以1OB OD ==,OA OC ==4分所以OBC ∆的面积为112212OBC S OB OC ∆==⨯=⨯⨯.…………………5分 因为1AO ⊥平面ABCD ,AO ⊂平面ABCD , 所以1AO AO ⊥,11AO ==.………………………………………6分因为11A B 平面ABCD ,所以点1B 到平面ABCD 的距离等于点1A 到平面ABCD 的距离1AO .…………7分 由(Ⅰ)得,BD ⊥平面1A AC .因为1A A ⊂平面1AAC ,所以BD ⊥1A A . 因为11A A B B ,所以BD ⊥1B B .………………………………………………8分 所以△1OBB 的面积为111121212OBB S OB BB ∆=⨯⨯==⨯⨯.……………………9分 设点C 到平面1OBB 的距离为d , 因为11C OBB B OBC V V --=,所以111133OBB OBC S d S A O D D =gg .………………………………………………10分所以111212OBC OBBS AO d S ∆∆⋅===文科数学试题答案 第4页(共15页)所以点C 到平面1OBB的距离为2.……………………………………………12分 解法二:由(Ⅰ)知BD因为BD ⊂平面11BB D D 所以平面1ACO ⊥平面连接11AC 与11B D 交于点连接1CO ,1OO ,因为11AA CC =,11//AA CC ,所以11CAAC 为平行四边形. 又O ,1O 分别是AC ,11AC 的中点,所以11OAO C 为平行四边形. 所以111OC OA ==.…………………………………………………………………6分 因为平面11OAO C 与平面11BB D D 交线为1OO , 过点C 作1CH OO ⊥于H ,则CH ⊥平面11BB D D .………………………………8分 因为11O C A O ,1AO ⊥平面ABCD ,所以·1O C ⊥平面ABCD . 因为OC ⊂平面ABCD ,所以·1O C ⊥OC ,即△1OCO 为直角三角形.………10分 所以11122O C OC CH OO ⋅===.所以点C 到平面1OBB 的距离为212分(20)(Ⅰ)解法一:设椭圆C 的方程为22221(0)x y a b a b+=>>,因为椭圆的左焦点为()120F -,,所以224a b -=.……………………………1分 设椭圆的右焦点为()220F ,,已知点(2B 在椭圆C 上, 由椭圆的定义知122BF BF a +=,所以2a ==………………………………………………………2分 所以a =2b =.………………………………………………………3分文科数学试题答案 第5页(共15页)所以椭圆C 的方程为22184x y +=.………………………………………………4分解法二:设椭圆C 的方程为22221(0)x y a b a b+=>>,因为椭圆的左焦点为()120F -,,所以224a b -=. ①…………………1分因为点(2B 在椭圆C 上,所以22421a b +=. ②…………………2分由①②解得,a =2b =.…………………………………………………3分所以椭圆C 的方程为22184x y +=.………………………………………………4分 (Ⅱ)解法一:因为椭圆C 的左顶点为A ,则点A的坐标为()-.…………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F , 设点()00,E x y (不妨设00x >),则点()00,F x y --.联立方程组22,184y kx x y =⎧⎪⎨+=⎪⎩消去y 得22812x k =+.所以0x =0y =.………………………………………………6分所以直线AE的方程为y x =+.……………………………7分因为直线AE 与y 轴交于点M ,令0x =得y =M ⎛ ⎝.……………………8分同理可得点N ⎛ ⎝.…………………………………………………9分 假设在x 轴上存在点(,0)P t ,使得MPN ∠为直角,则0MP NP ⋅=.………10分即20t =,即240t -=.………………………11分文科数学试题答案 第6页(共15页)解得2t =或2t =-.故存在点()2,0P 或()2,0P -,无论非零实数k 怎样变化,总有MPN ∠为直角. ………………………………12分 解法二: 因为椭圆C 的左端点为A ,则点A的坐标为()-.……………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F , 设点00(,)E x y ,则点00(,)F x y --.所以直线AE的方程为y x =+.………………………………6分 因为直线AE 与y 轴交于点M ,令0x =得y =,即点M ⎛⎫⎝.……………………………7分同理可得点N ⎛ ⎝.……………………………………………………8分假设在x 轴上存在点(),0P t ,使得MPN ∠为直角,则0MP NP ⋅=.即20t =,即2220808y t x +=-. (※)…………9分 因为点00(,)E x y 在椭圆C 上,所以2200184x y +=,即220082x y -=.……………………………………………10分 将220082x y -=代入(※)得240t -=.………………………………………11分解得2t =或2t =-.故存在点()2,0P 或()2,0P -,无论非零实数k 怎样变化,总有MPN ∠为直角. ………………………………12分 解法三:因为椭圆C 的左顶点为A ,则点A的坐标为()-.……………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F ,设点(),2sin E θθ(0θ<<π),则点(),2sin F θθ--.……6分文科数学试题答案 第7页(共15页)所以直线AE的方程为y x =+.………………………7分 因为直线AE 与y 轴交于点M ,令0x =得2sin cos 1y θθ=+,即点2sin 0,cos 1M θθ⎛⎫⎪+⎝⎭.………………………………8分同理可得点2sin 0,cos 1N θθ⎛⎫⎪-⎝⎭.………………………………………………………9分 假设在x 轴上存在点(,0)P t ,使得MPN ∠为直角,则0MP NP ⋅=.………10分即22sin 2sin 0cos 1cos 1t θθθθ--+⨯=+-,即240t -=.…………………………………11分解得2t =或2t =-.故存在点()2,0P 或()2,0P -,无论非零实数k 怎样变化,总有MPN ∠为直角. ………………………………12分(21)(Ⅰ)解:当1m =时,()e ln 1x f x x =--,所以1()e xf x x'=-.………………………………………………………………1分 所以(1)e 1f =-,(1)e 1f '=-. …………………………………………………2分 所以曲线()y f x =在点()()11f ,处的切线方程为(e 1)(e 1)(1)y x --=--. 即()e 1y x =-.………………………………………………………………………3分 (Ⅱ)证法一:当1m ≥时,()e ln 1e ln 1x x f x m x x =--≥--.要证明()1f x >,只需证明e ln 20xx -->.……………………………………4分 以下给出三种思路证明e ln 20xx -->.思路1:设()e ln 2xg x x =--,则1()e x g x x'=-. 设1()e xh x x =-,则21()e 0xh x x'=+>, 所以函数()h x =1()e xg x x'=-在0+∞(,)上单调递增.…………………………6分文科数学试题答案 第8页(共15页)因为121e 202g ⎛⎫'=-< ⎪⎝⎭,(1)e 10g '=->,所以函数1()e xg x x '=-在0+∞(,)上有唯一零点0x ,且01,12x ⎛⎫∈ ⎪⎝⎭.…………8分 因为0()0g x '=时,所以01ex x =,即00ln x x =-.………………………………9分 当()00,x x ∈时,()0g x '<;当()0,x x ∈+∞时,()0g x '>.所以当0x x =时,()g x 取得最小值()0g x .……………………………………10分 故()000001()=e ln 220xg x g x x x x ≥--=+->. 综上可知,当1m ≥时,()1f x >.………………………………………………12分 思路2:先证明e 1xx ≥+()x ∈R .………………………………………………5分 设()e 1xh x x =--,则()e 1xh x '=-.因为当0x <时,()0h x '<,当0x >时,()0h x '>,所以当0x <时,函数()h x 单调递减,当0x >时,函数()h x 单调递增. 所以()()00h x h ≥=.所以e 1xx ≥+(当且仅当0x =时取等号).………………………………………7分 所以要证明e ln 20xx -->,只需证明()1ln 20x x +-->.……………………………………………………8分 下面证明ln 10x x --≥. 设()ln 1p x x x =--,则()111x p x x x-'=-=. 当01x <<时,()0p x '<,当1x >时,()0p x '>,所以当01x <<时,函数()p x 单调递减,当1x >时,函数()p x 单调递增. 所以()()10p x p ≥=.所以ln 10x x --≥(当且仅当1x =时取等号).………………………………10分文科数学试题答案 第9页(共15页)由于取等号的条件不同, 所以e ln 20xx -->.综上可知,当1m ≥时,()1f x >.………………………………………………12分 (若考生先放缩ln x ,或e x、ln x 同时放缩,请参考此思路给分!) 思路3:先证明e ln 2xx ->.因为曲线e x y =与曲线ln y x =的图像关于直线y x =对称,设直线x t =()0t >与曲线e x y =,ln y x =分别交于点A ,B ,点A ,B 到直线y x = 的距离分别为1d ,2d ,则)12AB d d =+.其中1t d =2d ()0t >.①设()e t h t t =-()0t >,则()e 1t h t '=-. 因为0t >,所以()e 10t h t '=->.所以()h t 在()0,+∞上单调递增,则()()01h t h >=.所以1t d => ②设()ln g t t t =-()0t >,则()111t g t t t -'=-=.因为当01t <<时,()0g t '<;当1t >时,()0g t '>,所以当01t <<时,()ln g t t t =-单调递减;当1t >时,()ln g t t t =-单调递增. 所以()()11g t g ≥=.所以2d =≥所以)122AB d d +=⎭. 综上可知,当1m ≥时,()1f x >.………………………………………………12分文科数学试题答案 第10页(共15页)证法二:因为()e ln 1x f x m x =--,要证明()1f x >,只需证明e ln 20xm x -->.…………………………………4分以下给出两种思路证明e ln 20xm x -->.思路1:设()e ln 2x g x m x =--,则1()e xg x m x'=-. 设1()e xh x m x =-,则21()e 0xh x m x'=+>. 所以函数()h x =()1e xg x m x'=-在()0+∞,上单调递增.……………………6分因为11221e 2e 202m mg m m m m ⎛⎫⎛⎫'=-=-< ⎪ ⎪⎝⎭⎝⎭,()1e 10g m '=->, 所以函数1()e xg x m x '=-在()0+∞,上有唯一零点0x ,且01,12x m ⎛⎫∈⎪⎝⎭.……8分 因为()00g x '=,所以01ex m x =,即00ln ln x x m =--.……………………9分 当()00,x x ∈时,()0g x '<;当()0,x x ∈+∞时,()0g x '>.所以当0x x =时,()g x 取得最小值()0g x .……………………………………10分 故()()000001e ln 2ln 20xg x g x m x x m x ≥=--=++->. 综上可知,当1m ≥时,()1f x >.………………………………………………12分 思路2:先证明e 1()x x x ≥+∈R ,且ln 1(0)x x x ≤+>.……………………5分 设()e 1x F x x =--,则()e 1x F x '=-.因为当0x <时,()0F x '<;当0x >时,()0F x '>, 所以()F x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 所以当0x =时,()F x 取得最小值(0)0F =.所以()(0)0F x F ≥=,即e 1xx ≥+(当且仅当0x =时取等号).……………7分 由e 1()xx x ≥+∈R ,得1ex x -≥(当且仅当1x =时取等号).………………8分文科数学试题答案 第11页(共15页)所以ln 1(0)x x x ≤->(当且仅当1x =时取等号).……………………………9分 再证明e ln 20xm x -->.因为0x >,1m ≥,且e 1xx ≥+与ln 1x x ≤-不同时取等号,所以()()e ln 2112x m x m x x -->+---()()11m x =-+0≥.综上可知,当1m ≥时,()1f x >.………………………………………………12分(22)(Ⅰ)证明:因为AD 是⊙O 的切线,所以DAC B ∠=∠(弦切角定理). (1)因为DE CA ,所以DAC EDA ∠=∠.……………………………2所以EDA B ∠=∠.因为AED DEB ∠=∠(公共角),所以△AED ∽△DEB .……………………………………………………………3分 所以DE AE BEDE=.即2DE AE BE = .…………………………………………………………………4分 (Ⅱ)解:因为EF 是⊙O 的切线,EAB 是⊙O 的割线,所以2EF EA EB = (切割线定理).……………………………………………5分 因为4EF =,2EA =,所以8EB =,6AB EB EA =-=.…………………7分 由(Ⅰ)知2DE AE BE = ,所以4DE =.………………………………………8分 因为DE CA ,所以△BAC ∽△BED . ………………………………………9分 所以BA ACBEED=.所以6438BA EDAC BE⋅⨯===. …………………………………………………10分文科数学试题答案 第12页(共15页)(23)(Ⅰ)解:由θρsin 2=,[)0,2θ∈π,可得22sin ρρθ=.…………………………………………………………………1分 因为222x y ρ=+,sin y ρθ=,…………………………………………………2分所以曲线C 的普通方程为2220x y y +-=(或()2211x y +-=). …………4分(Ⅱ)解法一:因为直线的参数方程为32x y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R ),消去t 得直线l的普通方程为5y =+. ……………………………………5分因为曲线C :()2211x y +-=是以G ()1,0为圆心,1为半径的圆,设点()00,D x y ,且点D 到直线l:5y =+的距离最短, 所以曲线C 在点D 处的切线与直线l:5y =+平行. 即直线GD 与l 的斜率的乘积等于1-,即(0011y x -⨯=-.………………7分 因为()220011x y +-=,解得0x =或0x = 所以点D的坐标为12⎛⎫ ⎪ ⎪⎝⎭,或32⎫⎪⎪⎝⎭,.……………………………………9分 由于点D到直线5y =+的距离最短,所以点D 的坐标为32⎫⎪⎪⎝⎭,.……………………………………………………10分 解法二:因为直线l的参数方程为32x y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R ),消去t 得直线l50y +-=.……………………………………5分因为曲线C ()2211x y +-=是以G ()1,0为圆心,1为半径的圆,因为点D 在曲线C 上,所以可设点D ()cos ,1sin ϕϕ+[)()0,2ϕ∈π.………7分文科数学试题答案 第13页(共15页)所以点D 到直线l的距离为d =2sin 3ϕπ⎛⎫=-+ ⎪⎝⎭.………………………………8分 因为[)0,2ϕ∈π,所以当6ϕπ=时,min 1d =.…………………………………9分 此时D 322⎛⎫ ⎪ ⎪⎝⎭,,所以点D的坐标为322⎛⎫⎪ ⎪⎝⎭,.……………………………10分(24)(Ⅰ)解:当1a =时,()12f x ≥等价于112x x +-≥.……………………1分 ①当1x ≤-时,不等式化为112x x --+≥,无解;②当10x -<<时,不等式化为112x x ++≥,解得104x -≤<;③当0x ≥时,不等式化为112x x +-≥,解得0x ≥.…………………………3分综上所述,不等式()1≥x f 的解集为1,4⎡⎫-+∞⎪⎢⎣⎭.………………………………4分 (Ⅱ)因为不等式()f x b ≥的解集为空集,所以()max b f x >⎡⎤⎣⎦.…………………5分以下给出两种思路求()f x 的最大值.思路1:因为()f x x x =+ ()01a ≤≤,当x ≤()f x x x =-=0<.当x <时,()f x x x =2x =≤=当x ≥()f x x x ==所以()max f x ⎡⎤⎣⎦=7分思路2:因为()f x x x=-x x≤+==当且仅当x≥所以()maxf x⎡⎤⎣⎦=7分因为对任意[]0,1a∈,不等式()f x b≥的解集为空集,所以maxb>.………………………………………………………8分以下给出三种思路求()g a=.思路1:令()g a=所以()21g a=+2212≤++=.=12a=时等号成立.所以()maxg a=⎡⎤⎣⎦所以b的取值范围为)+∞.…………………………………………………10分思路2:令()g a=因为01a≤≤,所以可设2cosaθ=02θπ⎛⎫≤≤⎪⎝⎭,则()g a=cos sin4θθθπ⎛⎫=+=+≤⎪⎝⎭当且仅当4θπ=时等号成立.所以b的取值范围为)+∞.…………………………………………………10分思路3:令()g a=因为01a≤≤,设xyìï=ïíï=ïî则221x y+=()01,01x y##.文科数学试题答案第14页(共15页)文科数学试题答案 第15页(共15页)问题转化为在221x y +=()01,01x y ##的条件下,求z x y =+的最大值.利用数形结合的方法容易求得z此时2x y ==.所以b 的取值范围为)+∞.…………………………………………………10分。

广东省广州市2016届高三数学毕业班综合测试试题(二)文(含解析)

广东省广州市2016届高三数学毕业班综合测试试题(二)文(含解析)

2016年某某市普通高中毕业班综合测试(二)数 学(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符 合题目要求的。

1.已知集合{0,1,2}M =,{11,}N x x x =-≤≤∈Z , 则( ) A .M N ⊆ B . N M ⊆ C .{0,1}M N = D .M N N =【答案】C【解析】{1,0,1}N =-,∴{0,1}MN =.2.已知(1i)i i(,)a b a b +=+∈R ,其中i 为虚数单位,则a b +的值为( ) A . 1-B . 0 C .1 D .2 【答案】B【解析】∵(1i)i i a b +=+,∴1i i a b -+=+,∴1,1a b =-=,0a b +=. 3.已知等比数列{}n a 的公比为12-, 则135246a a a a a a ++++的值是( )A .2-B .12-C .12D .2 【答案】A 【解析】1351352461352()a a a a a aa a a q a a a ++++==-++++.4.从数字1,2,3,4,5中任取2个,组成一个没有重复数字的两位数,则这个两位数大于30的概率是( )A . 15B .25C .35D .45【答案】C【解析】重复数字的两位数共有10个,两位数大于30的数共有12个,∴123205P ==.5.执行如图的程序框图,若程序运行中输出的一组数是(),12x-则x 的值为( )A . 27B . 81C .243D .729 【答案】B【解析】由程序框图可知:6.不等式组0,2,22x y x y x y -≤⎧⎪+≥-⎨⎪-≥-⎩的解集记为D , 若(,)a b D ∈, 则23z a b =-的最大值是( )A .1B .4C .1-D .4- 【答案】A【解析】不等式组表示的平面区域的角点 坐标分别为(1,1),(2,0),(2,2)A B C ---,1,4,2A B C z z z ==-=-,故选A .7.已知函数()sin(2)4f x x π=+,则下列结论中正确的是( )A .函数()f x 的最小正周期为2πB .函数()f x 的图象关于点(,0)4π对称 C .由函数()f x 的图象向右平移8π个单位长度可以得到函数sin 2y x =的图象 D .函数()f x 在区间5(,)88ππ上单调递增 【答案】C【解析】()f x 的最小正周期为π,故A 错误;()sin(2)04442f πππ=⨯+=≠,故B 错误; ()sin[2()]sin 2884f x x x πππ-=-+=,故C 正确.8.已知1F ,2F 分别是椭圆C :()222210x y a b a b+=>>的左, 右焦点,点A 在椭圆C 上, 124AF AF +=, 则椭圆C 的离心率是( )A .12 B.23D【答案】D【解析】∵1242AF AF a +==,∴2a =.∵点A 在椭圆C 上,∴213144b+=,∴1b =,c =2e =.9.已知球O 的半径为R ,,,A B C 三点在球O 的球面上,球心O 到平面ABC 的距离为12R ,2AB AC ==,120BAC ︒∠=, 则球O 的表面积为( )A .169π B .163π C .649π D .643π 【答案】D【解析】∵2AB AC ==,120BAC ︒∠=,,∴2222cos BC AB AC AB AC A =+-⋅⋅22122222()122=+-⨯⨯⨯-=,∴BC =设ABC ∆外接圆的半径为r ,则24sin 2BC r A ===,∴2r =. ∴2221()2R R r =+,得2163R =.∴球O 的表面积为26443R ππ=.10.已知命题p :*x ∀∈N , 11()()23x x≥,命题q :x ∃∈R, 122x x-+=,则下列命题中为真命题的是( )A .p q ∧B .()p q ⌝∧C .()p q ∧⌝D .()()p q ⌝∧⌝ 【答案】A【解析】由11()()23xx≥,得0x ≥,故命题p 为真命题.∵122xx-+=2202x x +-=,∴2(2)220x x -+=,∴2(20x =,∴12x =,故命题q 为真命题.∴p q ∧为真命题.11.如图, 网格纸上的小正方形的边长为1, 体的体积是( ) A .86π+ B .46π+ C .412π+ D .812π+【答案】A【解析】该几何体为半圆柱和四棱锥组成, 其中,平面PDC ⊥平面ABCD , ∴21143223V r h π=+⨯⨯⨯ 21238862ππ=⨯⨯+=+.12.设函数()f x 的定义域为R , ()(),()(2)f x f x f x f x -==-, 当[0,1]x ∈时,3()f x x =,则函数()cos()()g x x f x π=-在区间13[,]22-上的所有零点的和为( )A .4B .3C .2D .1 【答案】B【解析】∵()(),()(2)f x f x f x f x -==-,∴()(2)f x f x -=-,∴()f x 的周期为2. 画出()y f x =和cos()y x π=的图象, 由图可知,()g x 共有5个零点, 其中120x x +=,40x =,352x x +=. ∴所有零点的和为3.二、填空题(本题共4小题,每小题5分,共20分) 13.曲线2()23f x x x =-在点(1,(1))f 的处的切线方程为. 【答案】20x y --=【解析】()43f x x '=-,(1)1f '=,(1)1f =-,∴切线方程为11y x +=-,即20x y --=.C BADP14.已知a 与b 的夹角为3π,=a,2-=a b =b . 【答案】2【解析】∵2-=a b 224412-⋅=a a b+b .∴22242cos 4123π-⨯⨯⨯=b +b .∴220--=b b ,∴2=b .15.设数列{}n a 的前n 项和为n S ,若212a =,2*1()n S kn n =-∈N ,则数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为. 【答案】21nn + 【解析】依题意得112141a k a a k =-⎧⎨+=-⎩,∵212a =,∴4k =,13a =.∴241n S n =-,211111()4122121n S n n n ==---+, ∴数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为 11111111[(1)()()()2335572121n n -+-+-+⋅⋅⋅+--+ 11(1)22121nn n =-=++.16.已知点O 为坐标原点,点M 在双曲线:C 22(x y λλ-=为正常数)上,过点M 作双曲线C 的某一条渐近线的垂线,垂足为N ,则2ON MN +的最小值为.【答案】【解析】双曲线的渐近线为y x =±.设00(,)M x y ,直线MN 的方程为00()y x x y =--+, 由00()y x y x x y =⎧⎨=--+⎩,解得0000(,)22x y x y N ++.∴00ON y =+,00MN y ==-, ∵2200x y λ-=,∴0000()()x y x y λ-+=∴0000x y x y λ-=+,002MN x y =+.∴00002ON MN y x y +=+++≥=三、 解答题:解答应写出文字说明,证明过程或演算步骤。

广州六中、广雅中学、执信中学等六校2016届高三上学期第一次联考数学试卷(文科) 含解析

广州六中、广雅中学、执信中学等六校2016届高三上学期第一次联考数学试卷(文科) 含解析

2015-2016学年广东省广州六中、广雅中学、执信中学等六校高三(上)第一次联考数学试卷(文科)一、选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},集合A={2,3,4},B={1,4},则(∁U A)∪B为()A.{1} B.{1,5} C.{1,4}D.{1,4,5}2.若是z的共轭复数,且满足•(1﹣i)2=4+2i,则z=()A.﹣1+2i B.﹣1﹣2i C.1+2i D.1﹣2i3.已知p、q是简单命题,则“p∧q是真命题"是“¬p是假命题”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.设等比数列{a n}的公比q=,前n项和为S n,则=()A.5 B.7 C.8 D.155.下列四个函数中,既是偶函数又在(0,+∞)上为增函数的是()A.y=x2﹣2x B.y=x3C.y=ln D.y=|x|+16.已知双曲线的渐近线方程为y=±x,焦点坐标为(﹣,0),(,0),则双曲线方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=17.函数f(x)=sin(ωx+)(ω>0)相邻两个对称中心的距离为,以下哪个区间是函数f(x)的单调减区间()A.[﹣,0]B.[0,]C.[,] D.[,]8.曲线y=lnx﹣2x在点(1,﹣2)处的切线与坐标轴所围成的三角形的面积是() A.B.C.1 D.29.在边长为2的正方体内部随机取一点,则该点到正方体8个顶点得距离都不小于1得概率为()A.B.C.D.1﹣10.一个空间几何体的三视图如图,其中正视图是边长为2的正三角形,俯视图是边长分别为1,2的矩形,则该几何体的侧面积为()A.+4 B.+6 C.2+4 D.2+611.执行如图所示的程序框图若输出的n=9,则输入的整数p的最小值是()A.50 B.77 C.78 D.30612.已知抛物线y2=x上一定点B(1,1)和两个动点P、Q,当P在抛物线上运动时,BP⊥PQ,则Q点的纵坐标的取值范围是.二、填空题:本大题共4小题,每小题5分,满分20分.13.已知平面向量=(2,1),=(m,2),且∥,则3+2=.14.已知等差数列{a n}满足a1+a5+a9=24,则log2(2a6﹣a7)=.15.设变量x,y满足约束条件,则z=3x+y的最小值为.16.已知定义在R上的偶函数满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减,给出以下四个命题:①f(2)=0;②x=﹣4为函数y=f(x)图象的一条对称轴;③函数y=f(x)在[8,10]单调递增;④若方程f(x)=m在[﹣6,﹣2]上的两根为x1,x2,则x1+x2=﹣8.上述命题中所有正确命题的序号为.三、解答题:第17到21题为必做题,从第22、23、24三个小题中选做一题,满分60分.17.已知△ABC的三内角A,B,C所对三边分别为a,b,c,且sin(A﹣)=.(1)求tanA的值;(2)若△ABC的面积S=24,b=10,求a的值.18.2015年7月16日,电影《捉妖记》上映,上映至今全国累计票房已超过20亿,某影院为了解观看此部电影的观众年龄的情况,在某场次的100名观众中随机调查了20名观众,已知抽到的观众年龄可分成5组:[20,25),[25,30),[30,35),[35,40),[40,45),根据调查结果得出年龄情况残缺的频率分布直方图如图所示.(1)根据已知条件,补充画完整频率分布直方图,并估计该电影院观看此部电影的观众年龄的平均数;(2)现在从年龄属于[25,30)和[40,45)的两组中随机抽取2人,求他们属于同一年龄组的概率.19.如图所示的长方体ABCD﹣A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC 与BD的交点,BB1=,M是线段B1D1的中点.(1)求证:BM∥平面D1AC;(2)求三棱锥D1﹣AB1C的体积.。

广东省广州市2016届高考数学1月模拟试卷 文(含解析)

广东省广州市2016届高考数学1月模拟试卷 文(含解析)

2016年某某省某某市高考数学模拟试卷(文科)(1月份)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若全集U=R,集合A={x|0<x<2},B={x|x﹣1>0},则A∩∁U B=()A.{x|0<x≤1}B.{x|1<x<2} C.{x|0<x<1} D.{x|1≤x<2}2.已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=()A.5﹣4i B.5+4i C.3﹣4i D.3+4i3.已知||=1, =(0,2),且•=1,则向量与夹角的大小为()A.B.C.D.4.已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH 不相交,则甲是乙成立的()A.必要不充分条件B.充分不必要条件C.充要条件 D.既不充分也不必要条件5.设a=log37,b=2,则()A.b<a<c B.a<c<b C.c<b<a D.c<a<b6.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=()A.2 B.﹣2 C.﹣98 D.987.一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为2的直角三角形,俯视图是半径为1的圆周和两条半径,则这个几何体的体积为()A.πB.πC.πD.π8.数列{a n}中,对任意n∈N*,a1+a2+…+a n=2n﹣1,则a12+a22+…+a n2等于()A.(2n﹣1)2 B.C.4n﹣1 D.9.已知sinφ=,且φ∈(,π),函数f(x)=sin(ωx+φ)(ω>0)的图象的相邻两条对称轴之间的距离等于,则f()的值为()A.﹣B.﹣C.D.10.执行如图所示的程序框图输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)11.已知双曲线=1(a>0,b>0)的右焦点到左顶点的距离等于它到渐近线距离的2倍,则其渐近线方程为()A.2x±y=0B.x±2y=0C.4x±3y=0 D.3x±4y=012.已知y=f(x)为R上的连续可导函数,且xf′(x)+f(x)>0,则函数g(x)=xf(x)+1(x>0)的零点个数为()A.0 B.1 C.0或1 D.无数个二.填空题:本大题共4小题,每小题5分.13.函数y=的定义域是.14.设x,y满足约束条件,则z=x﹣2y的最大值为.15.设数列{a n}的各项都是正数,且对任意n∈N*,都有4S n=a n2+2a n,其中S n为数列{a n}的前n项和,则数列{a n}的通项公式为a n=.16.已知以F为焦点的抛物线y2=4x上的两点A,B满足=2,则弦AB中点到抛物线准线的距离为.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.在△ABC中,角A、B、C对应的边分别是a、b、c,已知3cosBcosC+2=3sinBsinC+2cos2A.(I)求角A的大小;(Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值.18.“冰桶挑战赛”是一项社交网络上发起的慈善公益活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.(Ⅰ)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?(Ⅱ)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下2×2列联表:接受挑战不接受挑战合计男性45 15 60女性25 15 40合计70 30 100根据表中数据,能否有90%的把握认为“冰桶挑战赛与受邀者的性别有关”?附:K2=P(K2≥k0)k019.在直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=3,BC=2,D是BC的中点,F是C1C上一点.(1)当CF=2,求证:B1F⊥平面ADF;(2)若FD⊥B1D,求三棱锥B1﹣ADF体积.20.定圆M: =16,动圆N过点F且与圆M相切,记圆心N的轨迹为E.(I)求轨迹E的方程;(Ⅱ)设点A,B,C在E上运动,A与B关于原点对称,且|AC|=|CB|,当△ABC的面积最小时,求直线AB的方程.21.已知函数f(x)=(m,n∈R)在x=1处取到极值2.(1)求f(x)的解析式;(2)设函数g(x)=lnx+,若对任意的x1∈[﹣1,1],总存在x2∈[1,e],使得g(x2)≤f(x1)+,某某数a的取值X围.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分.做答时请写清题号.选修4-1:几何证明选讲22.如图∠ACB=90°,CD⊥AB于点D,以BD为直径的eO与BC交于点E.(Ⅰ)求证:BC•CD=AD•DB;(Ⅱ)若BE=4,点N在线段BE上移动,∠ONF=90°,NF与⊙O相交于点F,求NF的最小值.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,已知曲线C1:(t为参数)与曲线C2:(θ为参数,a>0).(Ⅰ)若曲线C1与曲线C2有一个公共点在x轴上,求a的值;(Ⅱ)当a=3时,曲线C1与曲线C2交于A,B两点,求A,B两点的距离.选修4-5:不等式选讲24.已知定义在R上的函数f(x)=|x﹣m|+|x|,m∈N*,存在实数x使f(x)<2成立.(Ⅰ)某某数m的值;(Ⅱ)若α,β>1,f(α)+f(β)=2,求证: +≥.2016年某某省某某市高考数学模拟试卷(文科)(1月份)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若全集U=R,集合A={x|0<x<2},B={x|x﹣1>0},则A∩∁U B=()A.{x|0<x≤1}B.{x|1<x<2} C.{x|0<x<1} D.{x|1≤x<2}【考点】交、并、补集的混合运算.【分析】先求出集合B,进而求出C U B,由此能求出A∩∁U B.【解答】解:∵全集U=R,集合A={x|0<x<2},B={x|x﹣1>0}={x|x>1},∴A∩∁U B={x|0<x<2}∩{x|x≤1}={x|0<x≤1}.故选:A.2.已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=()A.5﹣4i B.5+4i C.3﹣4i D.3+4i【考点】复数代数形式的乘除运算.【分析】由条件利用共轭复数的定义求得a、b的值,即可得到(a+bi)2的值.【解答】解:∵a﹣i与2+bi互为共轭复数,则a=2、b=1,∴(a+bi)2=(2+i)2=3+4i,故选:D.3.已知||=1, =(0,2),且•=1,则向量与夹角的大小为()A.B.C.D.【考点】平面向量数量积的坐标表示、模、夹角.【分析】利用向量的夹角公式即可得出.【解答】解:∵||=1, =(0,2),且•=1,∴===.∴向量与夹角的大小为.故选:C.4.已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH 不相交,则甲是乙成立的()A.必要不充分条件B.充分不必要条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义分别判断充分性和必要性,从而得到答案.【解答】解:命题甲能推出命题乙,是充分条件,命题乙:直线EF和GH不相交,可能平行,命题乙推不出命题甲,不是必要条件,故选:B,5.设a=log37,b=2,则()A.b<a<c B.a<c<b C.c<b<a D.c<a<b【考点】对数值大小的比较.【分析】由于1<a=log37<2,b=2<1,即可得出.【解答】解:∵1<a=log37<2,b=2<1,则c<a<b.故选:D.6.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=()A.2 B.﹣2 C.﹣98 D.98【考点】函数的值.【分析】利用函数的周期性、奇偶性求解.【解答】解:∵f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,∴f(7)=f(﹣1)=﹣f(1)=﹣2.故选:B.7.一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为2的直角三角形,俯视图是半径为1的圆周和两条半径,则这个几何体的体积为()A.πB.πC.πD.π【考点】由三视图求面积、体积.【分析】几何体为圆锥的,根据三视图的数据计算体积即可.【解答】解:由三视图可知几何体为圆锥的,圆锥的底面半径为1,母线长为2,∴圆锥的高为.∴V=××=.故选A.8.数列{a n}中,对任意n∈N*,a1+a2+…+a n=2n﹣1,则a12+a22+…+a n2等于()A.(2n﹣1)2 B.C.4n﹣1 D.【考点】数列的求和.【分析】当n≥2时,由a1+a2+…+a n=2n﹣1可得a1+a2+…+a n﹣1=2n﹣1﹣1,因此a n=2n﹣1,当n=1时也成立.再利用等比数列的前n项和公式可得a12+a22+…+a n2.【解答】解:当n≥2时,由a1+a2+…+a n=2n﹣1可得a1+a2+…+a n﹣1=2n﹣1﹣1,∴a n=2n﹣1,当n=1时也成立.∴=4n﹣1.∴a12+a22+…+a n2==.故选:D.9.已知sinφ=,且φ∈(,π),函数f(x)=sin(ωx+φ)(ω>0)的图象的相邻两条对称轴之间的距离等于,则f()的值为()A.﹣B.﹣C.D.【考点】正弦函数的图象.【分析】由周期求出ω,由条件求出cosφ的值,从而求得f()的值.【解答】解:根据函数f(x)=sin(ωx+φ)(ω>0)的图象的相邻两条对称轴之间的距离等于,可得==,∴ω=2.由sinφ=,且φ∈(,π),可得cosφ=﹣,∴则f()=sin(+φ)=cosφ=﹣,故选:B.10.执行如图所示的程序框图输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)【考点】程序框图.【分析】模拟程序框图的运行过程,即可得出程序运行后输出的结果.【解答】解:模拟程序框图的运行过程,如下;x=1,y=1,k=0时,s=x﹣y=0,t=x+y=2;x=s=0,y=t=2,k=1时,s=x﹣y=﹣2,t=x+y=2;x=s=﹣2,y=t=2,k=2时,s=x﹣y=﹣4,t=x+y=0;x=s=﹣4,y=t=0,k=3时,循环终止,输出(x,y)是(﹣4,0).故选:B.11.已知双曲线=1(a>0,b>0)的右焦点到左顶点的距离等于它到渐近线距离的2倍,则其渐近线方程为()A.2x±y=0B.x±2y=0 C.4x±3y=0 D.3x±4y=0【考点】双曲线的简单性质.【分析】可用筛选,由4x±3y=0得y=±x,取a=3,b=4,则c=5,满足a+c=2b.【解答】解:双曲线的右焦点到左顶点的距离为a+c,右焦点到渐近线y=±x距离为d==b,所以有:a+c=2b,取a=3,b=4,得4x±3y=0,整理得y=±x,则c=5,满足a+c=2b.故选:C.12.已知y=f(x)为R上的连续可导函数,且xf′(x)+f(x)>0,则函数g(x)=xf(x)+1(x>0)的零点个数为()A.0 B.1 C.0或1 D.无数个【考点】利用导数研究函数的单调性;函数零点的判定定理.【分析】根据函数与方程的关系,得到xf(x)=﹣1,(x>0),构造函数h(x)=xf(x),求函数的导数,研究函数的单调性和取值X围进行求解即可.【解答】解:由g(x)=xf(x)+1=0得,xf(x)=﹣1,(x>0),设h(x)=xf(x),则h′(x)=f(x)+xf′(x),∵xf′(x)+f(x)>0,∴h′(x)>0,即函数在x>0时为增函数,∵h(0)=0•f(0)=0,∴当x>0时,h(x)>h(0)=0,故h(x)=﹣1无解,故函数g(x)=xf(x)+1(x>0)的零点个数为0个,故选:A.二.填空题:本大题共4小题,每小题5分.13.函数y=的定义域是(﹣1,+∞).【考点】函数的定义域及其求法.【分析】根据二次根式的性质以及父母不为0,得到关于x的不等式,解出即可.【解答】解:由题意得:x+1>0,解得:x>﹣1,故函数的定义域是(﹣1,+∞),故答案为:(﹣1,+∞).14.设x,y满足约束条件,则z=x﹣2y的最大值为 3 .【考点】简单线性规划.【分析】由题意作平面区域,化简z=x﹣2y为y=x﹣,从而可得﹣是直线y=x﹣的截距,从而解得.【解答】解:由题意作平面区域如下,,化简z=x﹣2y为y=x﹣,﹣是直线y=x﹣的截距,故过点(3,0)时截距有最小值,此时z=x﹣2y有最大值3,故答案为:3.15.设数列{a n}的各项都是正数,且对任意n∈N*,都有4S n=a n2+2a n,其中S n为数列{a n}的前n项和,则数列{a n}的通项公式为a n= 2n .【考点】数列递推式.【分析】当n=1时,得a1=2;当n≥2时,由4a n=4S n﹣4S n﹣1,得a n﹣a n﹣1=2,从而可得结论.【解答】解:当n=1时,由4S1=a12+2a1,a1>0,得a1=2,当n≥2时,由4a n=4S n﹣4S n﹣1=(a n2+2a n)﹣(a n﹣12+2a n﹣1),得(a n+a n﹣1)(a n﹣a n﹣1﹣2)=0,因为a n+a n﹣1>0,所以a n﹣a n﹣1=2,故a n=2+(n﹣1)×2=2n.故答案为:2n.16.已知以F为焦点的抛物线y2=4x上的两点A,B满足=2,则弦AB中点到抛物线准线的距离为.【考点】抛物线的简单性质.【分析】设BF=m,由抛物线的定义知AA1和BB1,进而可推断出AC和AB,及直线AB的斜率,则直线AB的方程可得,与抛物线方程联立消去y,进而跟韦达定理求得x1+x2的值,则根据抛物线的定义求得弦AB的中点到准线的距离.【解答】解:设BF=m,由抛物线的定义知AA1=2m,BB1=m∴△ABC中,AC=m,AB=3m,∴k AB=2直线AB方程为y=2(x﹣1)与抛物线方程联立消y得2x2﹣5x+2=0所以AB中点到准线距离为+1=.故答案为:.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.在△ABC中,角A、B、C对应的边分别是a、b、c,已知3cosBcosC+2=3sinBsinC+2cos2A.(I)求角A的大小;(Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值.【考点】正弦定理;余弦定理.【分析】(I)利用两角和与差的三角函数以及二倍角公式化简3cosBcosC+2=3sinBsinC+2cos2A,得到cosA的值,即可求解A.(II )通过三角形的面积求出b、c的值,利用余弦定理以及正弦定理求解即可.【解答】解:(I)由3cosBcosC+2=3sinBsinC+2cos2A,得2cos2A+3cosA﹣2=0,﹣﹣﹣﹣﹣即(2cosA﹣1)(cosA+2)=0.解得cosA=或cosA=﹣2(舍去).﹣﹣﹣﹣﹣因为0<A<π,所以A=.﹣﹣﹣﹣(II)由S=bcsinA=bc•=bc=5,得bc=20.又b=5,所以c=4.﹣﹣﹣﹣﹣由余弦定理,得a2=b2+c2﹣2bccosA=25+16﹣20=21,故a=.﹣﹣﹣又由正弦定理,得sinBsinC=sinA•sinA=•sin2A=×=.﹣﹣﹣﹣18.“冰桶挑战赛”是一项社交网络上发起的慈善公益活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.(Ⅰ)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?(Ⅱ)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下2×2列联表:接受挑战不接受挑战合计男性45 15 60女性25 15 40合计70 30 100根据表中数据,能否有90%的把握认为“冰桶挑战赛与受邀者的性别有关”?附:K2=P(K2≥k0)k0【考点】独立性检验的应用.【分析】(Ⅰ)确定基本事件的个数,根据古典概型的概率公式,求这3个人中至少有2个人接受挑战的概率;(Ⅱ)根据2×2列联表,得到K2的观测值,与临界值比较,即可得出结论.【解答】解:(Ⅰ)这3个人接受挑战分别记为A,B,C,则,,分别表示这3个人不接受挑战.这3个人参与该项活动的可能结果为:{A,B,C},{,B,C},{A,,C},{A,B, },{,,C},{A,, },{,B, },{,, }.共有8种;其中,至少有2个人接受挑战的可能结果有:{A,B,C},{,B,C},{A,,C},{A,B, },共有4种.根据古典概型的概率公式,所求的概率为P==.(Ⅱ)假设冰桶挑战赛与受邀者的性别无关,根据2×2列联表,得到K2的观测值为:k=≈1.79.因为1.79<2.706,所以在犯错误的概率不超过0.1的前提下认为“冰桶挑战赛与受邀者的性别无关”.19.在直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=3,BC=2,D是BC的中点,F是C1C上一点.(1)当CF=2,求证:B1F⊥平面ADF;(2)若FD⊥B1D,求三棱锥B1﹣ADF体积.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【分析】(1)证明B1F与两线AD,DF垂直,利用线面垂直的判定定理得出B1F⊥平面ADF;(2)若FD⊥B1D,则Rt△CDF∽Rt△BB1D,可求DF,即可求三棱锥B1﹣ADF体积.【解答】(1)证明:∵AB=AC,D是BC的中点,∴AD⊥BC.在直三棱柱ABC﹣A1B1C1中,∵B1B⊥底面ABC,AD⊂底面ABC,∴AD⊥B1B.∵BC∩B1B=B,∴AD⊥平面B1BCC1.∵B1F⊂平面B1BCC1,∴AD⊥B1F.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣在矩形B1BCC1中,∵C1F=CD=1,B1C1=CF=2,∴Rt△DCF≌Rt△FC1B1.∴∠CFD=∠C1B1F.∴∠B1FD=90°,∴B1F⊥FD.∵AD∩FD=D,∴B1F⊥平面ADF.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)解:∵AD⊥面B1DF,,又,CD=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵FD⊥B1D,∴Rt△CDF∽Rt△BB1D,∴.∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣20.定圆M: =16,动圆N过点F且与圆M相切,记圆心N的轨迹为E.(I)求轨迹E的方程;(Ⅱ)设点A,B,C在E上运动,A与B关于原点对称,且|AC|=|CB|,当△ABC的面积最小时,求直线AB的方程.【考点】直线与圆锥曲线的综合问题.【分析】(I)因为|NM|+|NF|=4>|FM|,所以点N的轨迹E为椭圆,且,所以b=1,从而可求求轨迹E的方程;(Ⅱ)分类讨论,直线AB的方程为y=kx,代入椭圆方程,求出|OA|,|OC|,可得S△ABC=2S△OAC=|OA|×|OC|,利用基本不等式求最值,即可求直线AB的方程.【解答】解:(Ⅰ)因为点在圆内,所以圆N内切于圆M,因为|NM|+|NF|=4>|FM|,所以点N的轨迹E为椭圆,且,所以b=1,所以轨迹E的方程为.…(Ⅱ)(i)当AB为长轴(或短轴)时,依题意知,点C就是椭圆的上下顶点(或左右顶点),此时|AB|=2.…(ii)当直线AB的斜率存在且不为0时,设其斜率为k,直线AB的方程为y=kx,联立方程得,所以|OA|2=.…由|AC|=|CB|知,△ABC为等腰三角形,O为AB的中点,OC⊥AB,所以直线OC的方程为,由解得, =,,…S△ABC=2S△OAC=|OA|×|OC|=,由于,所以,…当且仅当1+4k2=k2+4,即k=±1时等号成立,此时△ABC面积的最小值是,因为,所以△ABC面积的最小值为,此时直线AB的方程为y=x或y=﹣x.…21.已知函数f(x)=(m,n∈R)在x=1处取到极值2.(1)求f(x)的解析式;(2)设函数g(x)=lnx+,若对任意的x1∈[﹣1,1],总存在x2∈[1,e],使得g(x2)≤f(x1)+,某某数a的取值X围.【考点】导数在最大值、最小值问题中的应用;利用导数研究函数的极值.【分析】(1)利用函数的求导公式计算函数的导数,根据函数在x=1处取到极值得出函数在x=1处的导数为0,再把x=2代入函数,联立两式求出m,n的值即可.已知函数 f(x)=(m,n∈R)在x=1处取到极值2.(2)由(1)知f(x)的定义域为R,且f(﹣x)=﹣f(x).故f(x)为奇函数.f(0)=0,x>0时,f(x)>0,f(x)=≤2.当且仅当x=1时取“=”.故f(x)的值域为[﹣2,2].从而f(x1)+≥.依题意有g(x)最小值≤.【解答】解:(1)…由f(x)在x=1处取到极值2,故f′(1)=0,f(1)=2即,解得m=4,n=1,经检验,此时f(x)在x=1处取得极值.故…(2)由(1)知f(x)的定义域为R,且f(﹣x)=﹣f(x).故f(x)为奇函数.f(0)=0,x>0时,f(x)>0,f(x)=≤2.当且仅当x=1时取“=”.故f(x)的值域为[﹣2,2].从而f(x1)+≥.依题意有g(x)最小值≤函数g(x)=lnx+的定义域为(0,+∞),g′(x)=①当a≤1时,g′(x)>0函数g(x)在[1,e]上单调递增,其最小值为g(1)=a≤1<合题意;②当1<a<e时,函数g(x)在[1,a)上有g′(x)<0,单调递减,在(a,e]上有g′(x)>0,单调递增,所以函数g(x)最小值为f(a)=lna+1,由lna+1≤,得0<a≤.从而知1<a≤符合题意.③当a≥e时,显然函数g(x)在[1,e]上单调递减,其最小值为g(e)=1+≥2>,不合题意综上所述,a的取值X围为a≤请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分.做答时请写清题号.选修4-1:几何证明选讲22.如图∠ACB=90°,CD⊥AB于点D,以BD为直径的eO与BC交于点E.(Ⅰ)求证:BC•CD=AD•DB;(Ⅱ)若BE=4,点N在线段BE上移动,∠ONF=90°,NF与⊙O相交于点F,求NF的最小值.【考点】与圆有关的比例线段.【分析】(Ⅰ)由∠ACB=90°,CD⊥AB于D,得到CD2=AD•DB,由此利用切割线定理能证明CE•CB=AD•DB.(Ⅱ)由NF=,线段OF的长为定值,得到需求解线段ON长度的最小值,由此能求出结果.【解答】证明:(Ⅰ)在△ABC中,∠ACB=90°,CD⊥AB于D,∴CD2=AD•DB,∵CD是圆O的切线,由切割线定理,得CD2=CE•CB,∴CE•CB=AD•DB.解:(Ⅱ)∵ON⊥NF,∴NF=,∵线段OF的长为定值,即需求解线段ON长度的最小值,弦中点到圆心的距离最短,此时N为BE的中点,点F与点B或E重合,∴|NF|min=|BE|=2.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,已知曲线C1:(t为参数)与曲线C2:(θ为参数,a>0).(Ⅰ)若曲线C1与曲线C2有一个公共点在x轴上,求a的值;(Ⅱ)当a=3时,曲线C1与曲线C2交于A,B两点,求A,B两点的距离.【考点】参数方程化成普通方程.【分析】(I)曲线C1:(t为参数),化为:y=3﹣2x.令y=0可得与x轴的交点.曲线C2:(θ为参数,a>0)的直角坐标方程为: +=1.利用y=0可得与x轴的交点.(II)当a=3时,曲线C2:化为:x2+y2=9.利用点到直线的距离公式可得:圆心到直线的距离d.利用弦长公式可得|AB|=2.【解答】解:(I)曲线C1:(t为参数),化为:y=3﹣2x.与x轴的交点为.曲线C2:(θ为参数,a>0)的直角坐标方程为: +=1.与x轴的交点为(±a,0).∵a>0,∴a=.(II)当a=3时,曲线C2:化为:x2+y2=9.圆心到直线的距离d==.∴|AB|=2=2=.选修4-5:不等式选讲24.已知定义在R上的函数f(x)=|x﹣m|+|x|,m∈N*,存在实数x使f(x)<2成立.(Ⅰ)某某数m的值;(Ⅱ)若α,β>1,f(α)+f(β)=2,求证: +≥.【考点】基本不等式;绝对值三角不等式.【分析】(I)|x﹣m|+|x|≥|x﹣m﹣x|=|m|,要使|x﹣m|+|x|<2有解,则|m|<2,m∈N*,解得m.(II)α,β>1,f(α)+f(β)=2α﹣1+2β﹣1=2,可得α+β=2.再利用基本不等式的性质即可得出.【解答】(I)解:∵|x﹣m|+|x|≥|x﹣m﹣x|=|m|,∴要使|x﹣m|+|x|<2有解,则|m|<2,解得﹣2<m<2.∵m∈N*,∴m=1.(II)证明:α,β>0,f(α)+f(β)=2α﹣1+2β﹣1=2,∴α+β=2.∴+==≥=,当且仅当α=2β=时取等号.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密 ★ 启用前2016年广州市普通高中毕业班综合测试(一)文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}11A x x =-≤≤,{}220B x x x =-≤,则A B =(A ){}12x x -≤≤ (B ){}10x x -≤≤ (C ){}12x x ≤≤ (D ){}01x x ≤≤ 答案:D解析:集合A ={}11x x ≤≤-,集合B ={}2x x ≤≤0,所以,A B = {}01x x ≤≤。

(2)已知复数3i1iz +=+,其中i 为虚数单位,则复数z 所对应的点在 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 答案:D 解析:(3)(1)22i i z i +==--,对应坐标为(2,-1),在第四象限。

(3)已知函数()2,1,1,1,1x x x f x x x ⎧-≤⎪=⎨>⎪-⎩则()()2f f -的值为(A )12 (B )15 (C )15- (D )12-答案:C解析:2f (-)=4+2=6,11((2))(6)165f f f -===--,选C 。

(4)设P 是△ABC 所在平面内的一点,且2CP PA =,则△PAB 与△PBC 的面积之比是(A )13 (B )12 (C )23 (D )34答案:B解析:依题意,得:CP =2PA ,设点P 到AC 之间的距离为h ,则△PAB 与△PBC 的面积之比为1212BPA BCPPA h S S PC h ∆∆= =12(5)如果函数()cos 4f x x ωπ⎛⎫=+⎪⎝⎭()0ω>的相邻两个零点之间的距离为6π,则ω的值为 (A )3 (B )6 (C )12 (D )24答案:B解析:依题意,得:周期T =3π,23ππω=,所以,ω=6。

(6)执行如图所示的程序框图,如果输入3x =,则输出k 的值为(A )6 (B )8 (C )10 (D )12 答案:C解析:第一步:x =9,k =2;第二步:x =21,k =4;第三步:x =45,k =6; 第四步:x =93,k =8;第五步:x =189,k =10;退出循环,故k =10。

(7)在平面区域(){},0112x y x y ≤≤≤≤,内随机投入一点P ,则点P 的坐标(),x y 满足2y x≤的概率为(A )14 (B )12 (C )23 (D )34答案:A解析:画出平面区域,如图,阴影部分符合2y x ≤,其面积为:14,正方形面积为1,故所求概率为:14(8)已知()sin 6f x x π⎛⎫=+⎪⎝⎭,若3sin 5α=2πα⎛⎫<<π ⎪⎝⎭,则12f απ⎛⎫+= ⎪⎝⎭(A )7210- (B )210- (C )210(D )7210 答案:B解析:因为3sin 5α=2πα⎛⎫<<π ⎪⎝⎭,所以,4cos 5α=-, 12f απ⎛⎫+= ⎪⎝⎭sin()sin()1264πππαα++=+=22sin cos 22αα+=210- (9)如果1P ,2P ,…,n P 是抛物线C :24y x =上的点,它们的横坐标依次为1x ,2x ,…,n x , F 是抛物线C 的焦点,若1210n x x x +++= ,则12n PF P F P F +++= (A )10n + (B )20n + (C )210n + (D )220n +答案:A解析:由抛物线的焦点为(1,0),准线为x =-1,由抛物线的定义,可知11||1PF x =+, 22||1P F x =+,…,故12n PF P F P F +++=10n + (10)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为(A )20π (B )2053π (C )5π (D )556π答案:D解析:六棱柱的对角线长为:22215+=,球的体积为:V =34532π⎛⎫⨯ ⎪ ⎪⎝⎭=556π(11)已知下列四个命题:1p :若直线l 和平面α内的无数条直线垂直,则l α⊥; 2p :若()22x x f x -=-,则x ∀∈R ,()()f x f x -=-; 3p :若()11f x x x =++,则()00,x ∃∈+∞,()01f x =; 4p :在△ABC 中,若A B >,则sin sin A B >.其中真命题的个数是(A )1 (B )2 (C )3 (D )4答案:B解析:p 1错误,因为无数条直线不一定是相交直线,可能是平行直线;p 2正确;p 3错误,因为由111x x +=+,得x =0,故错误;p 4正确,注意前提条件是在△ABC 中。

(12)如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为(A )88246++ (B )88226++(C )2226++ (D )126224++答案:A解析:该几何体为如图中的三棱锥C -A 1C 1E ,EC =EA 1=25,A 1C =161616++=43,三角形EA 1C 的底边A 1C 上的高为:22, 表面积为:S =12⨯2⨯4+12⨯2⨯4+12⨯42⨯4+12⨯22⨯43=88246++第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题:本大题共4小题,每小题5分. (13)函数()33f x x x =-的极小值为 .答案:-2解析:求导,得:2'()330f x x =-=,得1x =±,当x =1时,函数f(x)取得极小值-2。

(14)设实数x ,y 满足约束条件230,230,3x y x y x --≤⎧⎪+-≤⎨⎪≥-⎩, 则23z x y =-+的取值范围是 .答案:[]6,15-解析:画出不等式表示的平面区域,在点(3,0)处,23z x y =-+取得最小值-6,在点(-3,3)处取得最大值15。

(15)已知双曲线C :22221x y a b-=()0,0a b >>的左顶点为A ,右焦点为F ,点()0,B b ,且0BA BF =,则双曲线C 的离心率为 .答案:512+ 解析:设F (c ,0),又A (-a ,0),由0BA BF =,得:(-a ,-b )(c ,-b )=0,所以,有:2b ac =,即22c a ac -=,化为210c c a a ⎛⎫--= ⎪⎝⎭,可得离心率e =512+。

(16)在△ABC 中,点D 在边AB 上,CD BC ⊥,53AC =,5CD =,2BD AD =,则AD 的长为 .答案:5解析:因为BD =2AD ,设AD =x ,则BD =2x , 因为CD BC ⊥,所以,BC =2425x -,在三角形ACD 中,cosA =27525103x x +-,在三角形ABC 中,cosA =22759(425)303x x x+--,所以,27525103x x +-=22759(425)303x x x+--,解得:x =5,所以,AD =5。

三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知数列{}n a 是等比数列,24a =,32a +是2a 和4a 的等差中项. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设22log 1n n b a =-,求数列{}n n a b 的前n 项和n T . 解析:解:(Ⅰ)设数列{}n a 的公比为q ,因为24a =,所以34a q =,244a q =.…………………………………………1分因为32a +是2a 和4a 的等差中项,所以()32422a a a +=+.……………………2分 即()224244q q +=+,化简得220q q -=.因为公比0q ≠,所以2q =.………………………………………………………4分 所以222422n n n n a a q --==⨯=(*n ∈N ).…………………………………………5分 (Ⅱ)因为2n na =,所以22log 121n nb a n =-=-.所以()212nn n a b n =-.……………………………………………………………7分 则()()231123252232212n n n T n n -=⨯+⨯+⨯+⋅⋅⋅+-+-, ①()()23412123252232212n n n T n n +=⨯+⨯+⨯+⋅⋅⋅+-+-. ②………………9分①-②得,()2312222222212n n n T n +-=+⨯+⨯+⋅⋅⋅+⨯--……………………………………10分()()()11142221262321212n n n n n ++-=+⨯--=-----,所以()16232n n T n +=+-.……………………………………………………………12分(18)(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1.(Ⅰ)求这些产品质量指标值落在区间[]75,85内的频率;(Ⅱ)用分层抽样的方法在区间[)45,75内抽取一个容量为6的样本,将该样本看成一 个总体,从中任意抽取2件产品,求这2 件产品都在区间[)45,65内的概率.解析:解:(Ⅰ)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x .…………………………1分 依题意得()0.0040.0120.0190.03010421x x x +++⨯+++=,……………3分 解得0.05x =.所以区间[]75,85内的频率为0.05.………………………………………………4分 (Ⅱ)由(Ⅰ)得,区间[)45,55,[)55,65,[)65,75内的频率依次为0.3,0.2,0.1.用分层抽样的方法在区间[)45,75内抽取一个容量为6的样本,则在区间[)45,55内应抽取0.3630.30.20.1⨯=++件,记为1A ,2A ,3A .在区间[)55,65内应抽取0.2620.30.20.1⨯=++件,记为1B ,2B . 在区间[)65,75内应抽取0.1610.30.20.1⨯=++件,记为C .…………………6分 设“从样本中任意抽取2件产品,这2件产品都在区间[)45,65内”为事件M , 则所有的基本事件有:{}12,A A ,{}13,A A ,{}11,A B ,{}12,A B ,{}1,A C ,{}23,A A ,{}21,A B ,{}22,A B ,{}2,A C ,{}31,A B ,{}32,A B ,{}3,A C ,{}12,B B ,{}1,B C ,{}2,B C ,共15种.…………………………………………………………………8分质量指标值0.0120.0040.0190.03015 25 35 45 55 65 75 85 0频率 组距事件M 包含的基本事件有:{}12,A A ,{}13,A A ,{}11,A B ,{}12,A B ,{}23,A A ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10种.…………10分所以这2件产品都在区间[)45,65内的概率为102153=.………………………12分(19)(本小题满分12分)如图,四棱柱1111ABCD A BC D -的底面ABCD 是菱形,AC BD O = ,1AO ⊥底面ABCD ,21==AA AB .(Ⅰ)证明:BD ⊥平面1ACO ; (Ⅱ)若60BAD ∠=,求点C 到平面1OBB 的距离.解析:(Ⅰ)证明:因为1AO ⊥平面ABCD ,BD ⊂平面ABCD , 所以1AO ⊥BD .……………………………………………………………………1分 因为ABCD 是菱形,所以CO ⊥BD .……………………………………………2分因为1AO CO O = ,1AO ,CO ⊂平面1ACO , 所以BD ⊥平面1ACO .……………………………………………………………3分 (Ⅱ)解法一:因为底面ABCD 是菱形,AC BD O = ,21==AA AB ,60BAD ∠=, 所以1OB OD ==,3OA OC ==.……………………………………………4分所以OBC ∆的面积为13132212OBC S OB OC ∆==⨯⨯=⨯⨯.…………………5分 因为1AO ⊥平面ABCD ,AO ⊂平面ABCD , 所以1AO AO ⊥,22111AO AA OA =-=.………………………………………6分因为11A B 平面ABCD ,ABCDO1A1B1C1D所以点1B 到平面ABCD 的距离等于点1A 到平面ABCD 的距离1AO .…………7分 由(Ⅰ)得,BD ⊥平面1A AC .因为1A A ⊂平面1A AC ,所以BD⊥1A A . 因为11A A B B ,所以BD ⊥1B B .………………………………………………8分所以△1OBB 的面积为111121212OBB S OB BB ∆=⨯⨯==⨯⨯.……………………9分 设点C 到平面1OBB 的距离为d , 因为11C OBB B OBC V V --=,所以111133OBB OBC S d S A O D D =gg .………………………………………………10分 所以11313212OBC OBBS AO d S ∆∆⨯⋅===.所以点C 到平面1OBB 的距离为32.……………………………………………12分 解法二:由(Ⅰ)知BD ⊥平面1ACO , 因为BD ⊂平面11BB D D ,所以平面1ACO ⊥平面11BB D D .…4分 连接11AC 与11B D 交于点1O , 连接1CO ,1OO ,因为11AA CC =,11//AA CC ,所以11CAAC 为平行四边形. 又O ,1O 分别是AC ,11AC 的中点,所以11OAO C 为平行四边形. 所以111OC OA ==.…………………………………………………………………6分 因为平面11OAO C 与平面11BB D D 交线为1OO , 过点C 作1CH OO ⊥于H ,则CH ⊥平面11BB D D .………………………………8分 因为11O C A O ,1AO ⊥平面ABCD ,所以·1O C ⊥平面ABCD . ABCDO1A1B1C1DH1O因为OC ⊂平面ABCD ,所以·1O C ⊥OC ,即△1OCO 为直角三角形.………10分 所以1113322O C OC CH OO ⋅⨯===.所以点C 到平面1OBB 的距离为32.……………………………………………12分(20)(本小题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为()120F -,,点()2B 2,在椭圆C 上,直线()0y kx k =≠与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N .(Ⅰ)求椭圆C 的方程;(Ⅱ)在x 轴上是否存在点P ,使得无论非零实数k 怎样变化,总有MPN ∠为直角?若存在,求出点P 的坐标;若不存在,请说明理由.解析:(Ⅰ)解法一:设椭圆C 的方程为22221(0)x y a b a b +=>>,因为椭圆的左焦点为()120F -,,所以224a b -=.……………………………1分 设椭圆的右焦点为()220F ,,已知点()22B ,在椭圆C 上, 由椭圆的定义知122BF BF a +=,所以232242a =+=.………………………………………………………2分 所以22a =,从而2b =.………………………………………………………3分所以椭圆C 的方程为22184x y +=.………………………………………………4分 解法二:设椭圆C 的方程为22221(0)x y a b a b+=>>,因为椭圆的左焦点为()120F -,,所以224a b -=. ①…………………1分 因为点()22B ,在椭圆C 上,所以22421a b+=. ②…………………2分 由①②解得,22a =,2b =.…………………………………………………3分所以椭圆C 的方程为22184x y +=.………………………………………………4分(Ⅱ)解法一:因为椭圆C 的左顶点为A ,则点A 的坐标为()22,0-.…………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F , 设点()00,E x y (不妨设00x >),则点()00,F x y --.联立方程组22,184y kx x y =⎧⎪⎨+=⎪⎩消去y 得22812x k =+. 所以022212x k=+,022212k y k=+.………………………………………………6分所以直线AE 的方程为()222112k y x k=+++.……………………………7分因为直线AE 与y 轴交于点M ,令0x =得222112ky k =++,即点2220,112kM k ⎛⎫⎪ ⎪++⎝⎭.……………………8分 同理可得点2220,112k N k ⎛⎫⎪ ⎪-+⎝⎭.…………………………………………………9分 假设在x 轴上存在点(,0)P t ,使得MPN ∠为直角,则0MP NP ⋅=.………10分即22222220112112kkt k k --+⨯=++-+,即240t -=.………………………11分解得2t =或2t =-.故存在点()2,0P 或()2,0P -,无论非零实数k 怎样变化,总有MPN ∠为直角. ………………………………12分 解法二: 因为椭圆C 的左端点为A ,则点A 的坐标为()22,0-.……………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F , 设点00(,)E x y ,则点00(,)F x y --.所以直线AE 的方程为()002222y y x x =++.………………………………6分 因为直线AE 与y 轴交于点M ,令0x =得002222y y x =+,即点00220,22y M x ⎛⎫⎪ ⎪+⎝⎭.……………………………7分 同理可得点00220,22y N x ⎛⎫⎪ ⎪-⎝⎭.……………………………………………………8分假设在x 轴上存在点(),0P t ,使得MPN ∠为直角,则0MP NP ⋅=.即20000222202222y y t x x +⨯=+-,即2220808y t x +=-. (※)…………9分 因为点00(,)E x y 在椭圆C 上,所以2200184x y +=,即220082x y -=.……………………………………………10分 将220082x y -=代入(※)得240t -=.………………………………………11分解得2t =或2t =-.故存在点()2,0P 或()2,0P -,无论非零实数k 怎样变化,总有MPN ∠为直角. ………………………………12分 解法三:因为椭圆C 的左顶点为A ,则点A 的坐标为()22,0-.……………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F , 设点()22cos ,2sin E θθ(0θ<<π),则点()22cos ,2sin F θθ--.……6分 所以直线AE 的方程为()2sin 2222cos 22y x θθ=++.………………………7分因为直线AE 与y 轴交于点M ,令0x =得2sin cos 1y θθ=+,即点2sin 0,cos 1M θθ⎛⎫⎪+⎝⎭.………………………………8分同理可得点2sin 0,cos 1N θθ⎛⎫⎪-⎝⎭.………………………………………………………9分假设在x 轴上存在点(,0)P t ,使得MPN ∠为直角,则0MP NP ⋅=.………10分即22sin 2sin 0cos 1cos 1t θθθθ--+⨯=+-,即240t -=.…………………………………11分解得2t =或2t =-.故存在点()2,0P 或()2,0P -,无论非零实数k 怎样变化,总有MPN ∠为直角. ………………………………12分(21)(本小题满分12分)已知函数()e ln 1x f x m x =--.(Ⅰ)当1m =时,求曲线()y f x =在点()()11f ,处的切线方程; (Ⅱ)当1m ≥时,证明:()1f x >.解析:(Ⅰ)解:当1m =时,()e ln 1xf x x =--,所以1()e x f x x'=-.………………………………………………………………1分 所以(1)e 1f =-,(1)e 1f '=-. …………………………………………………2分 所以曲线()y f x =在点()()11f ,处的切线方程为(e 1)(e 1)(1)y x --=--. 即()e 1y x =-.………………………………………………………………………3分 (Ⅱ)证法一:当1m ≥时,()e ln 1e ln 1x xf x m x x =--≥--.要证明()1f x >,只需证明e ln 20xx -->.……………………………………4分 以下给出三种思路证明e ln 20xx -->.思路1:设()e ln 2xg x x =--,则1()e x g x x'=-. 设1()e xh x x =-,则21()e 0xh x x'=+>, 所以函数()h x =1()e xg x x'=-在0+∞(,)上单调递增.…………………………6分 因为121e 202g ⎛⎫'=-< ⎪⎝⎭,(1)e 10g '=->,所以函数1()e xg x x '=-在0+∞(,)上有唯一零点0x ,且01,12x ⎛⎫∈ ⎪⎝⎭.…………8分 因为0()0g x '=时,所以01ex x =,即00ln x x =-.………………………………9分 当()00,x x ∈时,()0g x '<;当()0,x x ∈+∞时,()0g x '>.所以当0x x =时,()g x 取得最小值()0g x .……………………………………10分 故()000001()=e ln 220xg x g x x x x ≥--=+->. 综上可知,当1m ≥时,()1f x >.………………………………………………12分 思路2:先证明e 1xx ≥+()x ∈R .………………………………………………5分 设()e 1x h x x =--,则()e 1x h x '=-.因为当0x <时,()0h x '<,当0x >时,()0h x '>,所以当0x <时,函数()h x 单调递减,当0x >时,函数()h x 单调递增. 所以()()00h x h ≥=.所以e 1xx ≥+(当且仅当0x =时取等号).………………………………………7分 所以要证明e ln 20xx -->,只需证明()1ln 20x x +-->.……………………………………………………8分 下面证明ln 10x x --≥. 设()ln 1p x x x =--,则()111x p x x x-'=-=. 当01x <<时,()0p x '<,当1x >时,()0p x '>,所以当01x <<时,函数()p x 单调递减,当1x >时,函数()p x 单调递增. 所以()()10p x p ≥=.所以ln 10x x --≥(当且仅当1x =时取等号).………………………………10分由于取等号的条件不同, 所以e ln 20xx -->.综上可知,当1m ≥时,()1f x >.………………………………………………12分 (若考生先放缩ln x ,或e x、ln x 同时放缩,请参考此思路给分!) 思路3:先证明e ln 2xx ->.因为曲线e x y =与曲线ln y x =的图像关于直线y x =对称,设直线x t =()0t >与曲线e x y =,ln y x =分别交于点A ,B ,点A ,B 到直线y x =的距离分别为1d ,2d , 则()122AB d d =+. 其中1e 2t t d -=,2ln 2t t d -=()0t >.①设()e t h t t =-()0t >,则()e 1t h t '=-. 因为0t >,所以()e 10t h t '=->.所以()h t 在()0,+∞上单调递增,则()()01h t h >=. 所以1e 222t t d -=>. ②设()ln g t t t =-()0t >,则()111t g t t t -'=-=.因为当01t <<时,()0g t '<;当1t >时,()0g t '>,所以当01t <<时,()ln g t t t =-单调递减;当1t >时,()ln g t t t =-单调递增. 所以()()11g t g ≥=. 所以2ln 222t t d -=≥. 所以()122222222AB d d ⎛⎫=+>+= ⎪ ⎪⎝⎭. 综上可知,当1m ≥时,()1f x >.………………………………………………12分证法二:因为()e ln 1xf x m x =--,要证明()1f x >,只需证明e ln 20xm x -->.…………………………………4分以下给出两种思路证明e ln 20xm x -->.思路1:设()e ln 2xg x m x =--,则1()e x g x m x'=-. 设1()e xh x m x =-,则21()e 0xh x m x'=+>. 所以函数()h x =()1e xg x m x'=-在()0+∞,上单调递增.……………………6分因为11221e 2e 202m m g m m m m ⎛⎫⎛⎫'=-=-< ⎪ ⎪⎝⎭⎝⎭,()1e 10g m '=->,所以函数1()e xg x m x '=-在()0+∞,上有唯一零点0x ,且01,12x m ⎛⎫∈⎪⎝⎭.……8分 因为()00g x '=,所以01ex m x =,即00ln ln x x m =--.……………………9分 当()00,x x ∈时,()0g x '<;当()0,x x ∈+∞时,()0g x '>.所以当0x x =时,()g x 取得最小值()0g x .……………………………………10分 故()()000001e ln 2ln 20xg x g x m x x m x ≥=--=++->. 综上可知,当1m ≥时,()1f x >.………………………………………………12分 思路2:先证明e 1()x x x ≥+∈R ,且ln 1(0)x x x ≤+>.……………………5分 设()e 1x F x x =--,则()e 1x F x '=-.因为当0x <时,()0F x '<;当0x >时,()0F x '>, 所以()F x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 所以当0x =时,()F x 取得最小值(0)0F =.所以()(0)0F x F ≥=,即e 1xx ≥+(当且仅当0x =时取等号).……………7分 由e 1()xx x ≥+∈R ,得1ex x -≥(当且仅当1x =时取等号).………………8分所以ln 1(0)x x x ≤->(当且仅当1x =时取等号).……………………………9分 再证明e ln 20xm x -->.因为0x >,1m ≥,且e 1xx ≥+与ln 1x x ≤-不同时取等号,所以()()e ln 2112x m x m x x -->+---()()11m x =-+0≥.综上可知,当1m ≥时,()1f x >.………………………………………………12分请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分.做答时请写清题号.(22)(本小题满分10分)选修4-1:几何证明选讲如图所示,△ABC 内接于⊙O ,直线AD 与⊙O 相切于点A ,交BC 的延长线于点D ,过点D 作DE CA 交BA 的延长线于点E .(Ⅰ)求证:2DE AE BE = ;(Ⅱ)若直线EF 与⊙O 相切于点F ,且4EF =,2EA =,求线段AC 的长.解析:(Ⅰ)证明:因为AD 是⊙O 的切线,所以DAC B ∠=∠(弦切角定理).………………1分 因为DE CA ,所以DAC EDA ∠=∠.……………………………2分 所以EDA B ∠=∠.因为AED DEB ∠=∠(公共角),所以△AED ∽△DEB .……………………………………………………………3分 所以DE AE BEDE=.即2DE AE BE = .…………………………………………………………………4分 (Ⅱ)解:因为EF 是⊙O 的切线,EAB 是⊙O 的割线,所以2EF EA EB = (切割线定理).……………………………………………5分 因为4EF =,2EA =,所以8EB =,6AB EB EA =-=.…………………7分 由(Ⅰ)知2DE AE BE = ,所以4DE =.………………………………………8分FC D.O ABEFCD. O A BE因为DE CA ,所以△BAC ∽△BED . ………………………………………9分 所以BA ACBEED =.所以6438BA ED AC BE⋅⨯===. …………………………………………………10分(23)(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρsin 2=,[)0,2θ∈π. (Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)在曲线C 上求一点D ,使它到直线l :33,32x t y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R )的距离最短,并求出点D 的直角坐标.解析:(Ⅰ)解:由θρsin 2=,[)0,2θ∈π,可得22sin ρρθ=.…………………………………………………………………1分因为222x y ρ=+,sin y ρθ=,…………………………………………………2分 所以曲线C 的普通方程为2220x y y +-=(或()2211x y +-=). …………4分(Ⅱ)解法一:因为直线的参数方程为33,32x t y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R ),消去t 得直线l 的普通方程为35y x =-+. ……………………………………5分因为曲线C :()2211x y +-=是以G ()1,0为圆心,1为半径的圆,设点()00,D x y ,且点D 到直线l :35y x =-+的距离最短, 所以曲线C 在点D 处的切线与直线l :35y x =-+平行. 即直线GD 与l 的斜率的乘积等于1-,即()00131y x -⨯-=-.………………7分 因为()220011x y +-=,解得032x =-或032x =. 所以点D 的坐标为3122⎛⎫- ⎪ ⎪⎝⎭,或3322⎛⎫⎪ ⎪⎝⎭,.……………………………………9分 由于点D 到直线35y x =-+的距离最短, 所以点D 的坐标为3322⎛⎫⎪ ⎪⎝⎭,.……………………………………………………10分 解法二:因为直线l 的参数方程为33,32x t y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R ),消去t 得直线l 的普通方程为350x y +-=.……………………………………5分因为曲线C ()2211x y +-=是以G ()1,0为圆心,1为半径的圆,因为点D 在曲线C 上,所以可设点D ()cos ,1sin ϕϕ+[)()0,2ϕ∈π.………7分 所以点D 到直线l 的距离为3cos sin 42d ϕϕ+-=2sin 3ϕπ⎛⎫=-+ ⎪⎝⎭.………………………………8分 因为[)0,2ϕ∈π,所以当6ϕπ=时,min 1d =.…………………………………9分 此时D 3322⎛⎫⎪⎪⎝⎭,,所以点D 的坐标为3322⎛⎫ ⎪ ⎪⎝⎭,.……………………………10分(24)(本小题满分10分)选修4-5:不等式选讲设函数()1f x x a x a =+---. (Ⅰ)当1a =时,求不等式()12f x ≥的解集; (Ⅱ)若对任意[]0,1a ∈,不等式()f x b ≥的解集为空集,求实数b 的取值范围. 解析:(Ⅰ)解:当1a =时,()12f x ≥等价于112x x +-≥.……………………1分 ①当1x ≤-时,不等式化为112x x --+≥,无解;②当10x -<<时,不等式化为112x x ++≥,解得104x -≤<; ③当0x ≥时,不等式化为112x x +-≥,解得0x ≥.…………………………3分 综上所述,不等式()1≥x f 的解集为1,4⎡⎫-+∞⎪⎢⎣⎭.………………………………4分 (Ⅱ)因为不等式()f x b ≥的解集为空集,所以()max b f x >⎡⎤⎣⎦.…………………5分以下给出两种思路求()f x 的最大值.思路1:因为()1f x x a x a =+--- ()01a ≤≤, 当x a ≤-时,()1f x x a x a =--+--1a a =---0<.当1a x a <-<-时,()1f x x a x a =++--21x a a =+--211a a a ≤-+-- 1a a =+-.当1x a ≥-时,()1f x x a x a =+-+-1a a =+-.所以()max f x ⎡⎤⎣⎦1a a =+-.……………………………………………………7分思路2:因为 ()1f x x a x a =+---1x a x a ≤+-+- 1a a =+-1a a =+-,当且仅当1x a ≥-时取等号. 所以()max f x ⎡⎤⎣⎦1a a =+-.……………………………………………………7分因为对任意[]0,1a ∈,不等式()f x b ≥的解集为空集, 所以max 1b a a ⎡⎤>+-⎣⎦.………………………………………………………8分以下给出三种思路求()1g a a a =+-的最大值.21 思路1:令()1g a a a =+-, 所以()2121g a a a =+-()()22112a a ≤++-=. 当且仅当1a a =-,即12a =时等号成立. 所以()max 2g a =⎡⎤⎣⎦.所以b 的取值范围为()2+∞,.…………………………………………………10分 思路2:令()1g a a a =+-,因为01a ≤≤,所以可设2cos a θ= 02θπ⎛⎫≤≤ ⎪⎝⎭, 则()g a =1cos sin 2sin 24a a θθθπ⎛⎫+-=+=+≤ ⎪⎝⎭, 当且仅当4θπ=时等号成立. 所以b 的取值范围为()2+∞,.…………………………………………………10分 思路3:令()1g a a a =+-,因为01a ≤≤,设,1,x a y a ìï=ïíï=-ïî则221x y +=()01,01x y ##. 问题转化为在221x y +=()01,01x y ##的条件下, 求z x y =+的最大值.利用数形结合的方法容易求得z 的最大值为2,此时22x y ==. 所以b 的取值范围为()2+∞,.…………………………………………………10分x y O。

相关文档
最新文档