自考高等数学(00020)2014年4月真题
2014成人高等学校招生全国统一考试数学真题(理工类)
附录 2014年成人高等学校招生全国统一考试(高起点)数学试题(理工农医类)第Ⅰ卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}21|<≤-=x x M ,{}1|≤=x x N ,则集合=N MA . {}1|->x xB .{}1|>x xC .{}11|≤≤-x xD .{}21|≤≤x x 2.函数51-=x y 的定义域为 A . ()5,∞- B . ()+∞∞-, C . ()+∞,5 D .()()+∞∞-,55, 3.函数x y 6sin 2=的最小正周期为A . 3πB .2πC . π2D .π34.下列函数为奇函数的是A . x y 2log =B . x y sin =C . 2x y =D .x y 3=5.过点()1,2 且与直线x y =垂直的直线方程为A . 2+=x yB . 1-=x yC . 3+-=x yD .2+-=x y6.函数12+=x y 的反函数为A .21+=x yB .21-=x y C .12-=x y D .x y 21-= 7.若c b a ,,为实数,且0≠a .设甲:042≥-ac b ,乙:02=++c bx ax 有实数根,则A .甲是乙的必要条件,但不是乙的充分条件B .甲是乙的充分条件,但不是乙的必要条件C .甲既不是乙的充分条件,也不是乙的必要条件D .甲是乙的充分必要条件8. 二次函数22-+=x x y 的图像与x 轴的交点坐标为A . ()0,2- 和()0,1B .()0,2- 和()0,1-C .()0,2 和()0,1D .()0,2 和()0,1-9.设i z 31+=,i 是虚数单位,则=z 1 A .431i + B .431i - C .232i + D .232i - 10.设1>>b a ,则A .44b a ≤B .4log 4log b a >C .22--<b aD .b a 44<11.已知平面向量()1,1=a ,()1,1-=b ,则两向量的夹角为A . 6πB .4πC . 3πD .2π 12.3)1(xx -的展开式中的常数项为A .3B .2C .2-D .3-13.每次射击时,甲击中目标的概率为8.0,乙击中目标的概率为6.0,甲、乙各自独立地向目标射击一次,则恰有一人击中的概率为A .44.0B .6.0C .8.0D .1 14.已知一个球的体积为π332,则它的表面积为 A . π4 B .π8 C .π16 D .π2415.在等腰三角形ABC 中,A 是顶角,且21cos -=A ,则=B cos A .23 B .21 C . 21- D .23- 16. 四棱锥ABCD P -的底面为矩形,且4=AB ,3=BC ,⊥PD 底面ABCD ,5=PD ,则PB与底面所成角为A .︒30B .︒455.1C .︒60D .︒7517.将5本不同的历史书和2本不同的数学书排成一行,则2本数学书恰好在两端的概率为A .101 B .141 C .201 D .211第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分) 18.已知空间向量()3,2,1=a ,()3,2,1-=b ,则=+b a 2 .19.曲线x x y 23-=在点()1,1-处的切线方程为 .20.设函数()11+=+x x x f ,则()=3f . 21.某运动员射击10次,成绩(单位:环)如下8 10 9 9 10 8 9 9 8 7则该运动员的平均成绩是 环.三、解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22.(本小题满分12分)已知ABC ∆中,︒=110A ,5=AB ,6=AC ,求BC .(精确到01.0)23.(本小题满分12分)已知数列{}n a 的前n 项和n n S 211-=,求 (Ⅰ) {}n a 的前三项;(Ⅱ) {}n a 的通项公式. 24.(本小题满分12分)设函数()x x x x f 9323--=,求(Ⅰ)函数()x f 的导数;(Ⅱ)函数()x f 在区间[]4,1的最大值与最小值.25.(本小题满分13分) 设椭圆的焦点为()0,31-F ,()0,32F ,其长轴长为4. (Ⅰ)求椭圆的方程;(Ⅱ) 若直线m x y +=23与椭圆有两个不同的交点,求m 的取值范围.参考答案一、 选择题(每小题5分,共85分)1 . C 2.D 3.A 4.B 5.C 6.B 7.D 8.A 9.B 10.C 11.D 12.D 13.A 14.C 15.A 16.B 17.D二、填空题(每小题4分,共16分,)18. ()9,2,3 19. 2-=x y 20.32 21. 7.8 三、解答题(共49分.)22.解:根据余玄定理 A AC AB AC AB BC cos 222∙∙-+=︒∙∙∙-+=110cos 652652203.9≈23.解:(Ⅰ)因为n n S 211-=,则 2121111=-==S a 41212112122=--=-=a S a 8141218112133=---=--=a a S a (Ⅱ)当2≥n 时,1--=n n n S S a⎪⎭⎫ ⎝⎛---=-1211211n n ⎪⎭⎫ ⎝⎛-=-211211n n 21=当1=n 时,211=a ,满足公式n n a 21= 所以数列的通项公式为n n a 21=. 24.解:(Ⅰ) 因为函数()x x x x f 9323--=,所以963)(2'--=x x x f(Ⅱ) 令0)('=x f ,解得3=x 或1-=x ,比较()1f ,()3f ,()4f 的大小,()111-=f ,()273-=f ,()204-=f所以函数()x x x x f 9323--=在区间[]4,1的最大值为11-,最小值为27-. 25.解:(Ⅰ)由已知,椭圆的长轴长42=a ,焦距322=c ,设其短半轴长为b ,则 13422=-=-=c a b所以椭圆的方程为1422=+y x (Ⅱ) 将直线方程m x y +=23代入椭圆方程可得01322=-++m mx x因为直线与椭圆有两个不同交点,所以()014322>--=∆m m解得 22<<-m所以m 的取值范围为()2,2-.。
2014年10月全国自考高等数学(一)微积分考前密卷00020(含答案)
2014年10月全国自考高等数学(一)微积分考前密卷(含答案)一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
第1题A. 0B. 1C. -1D. 不存在【正确答案】 D【你的答案】本题分数2分第2题A. x=-1B. x=1C. y=0D. y=1【正确答案】 D【你的答案】本题分数2分第3题【正确答案】 A【你的答案】本题分数2分第4题设f(x)=lnx,g(x)=x+3,则f[g(x)]的定义域为()A. (-3,+∞)B. [-3,+∞)C. (-∞,3)D. (-∞,3]【正确答案】 A【你的答案】本题分数2分第5题A. 148元B. 149元C. 150元D. 100元【正确答案】 A二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
第1题图中空白处答案应为:___【正确答案】【你的答案】修改分数本题分数3分你的得分___第2题图中空白处答案应为:【正确答案】【你的答案】修改分数本题分数3分你的得分___第3题图中空白处答案应为:【正确答案】【你的答案】修改分数本题分数3分你的得分第4题图中空白处答案应为:___【正确答案】 -1【你的答案】修改分数本题分数3分你的得分第5题函数y=|lnx|的上凸区间是___.【正确答案】[1,+∞)【你的答案】你的得分第6题图中空白处答案应为:___【正确答案】【你的答案】本题分数3分修改分数你的得分________第7题图中空白处应填的答案为:【正确答案】 2【你的答案】修改分数本题分数3分你的得分第8题___【正确答案】【你的答案】你的得分___第9题【正确答案】【你的答案】本题分数3分修改分数你的得分___第10题三、计算题(一)(本大题共5小题,每小题5分,共25分)第1题【正确答案】【你的答案】本题分数5分你的得分修改分数第2题【正确答案】【你的答案】本题分数5分你的得分修改分数第3题【正确答案】【你的答案】本题分数5分你的得分修改分数【正确答案】【你的答案】修改分数本题分数5分你的得分第5题【正确答案】【你的答案】四、计算题(二)(本大题共3小题,每小题7分,共21分)【正确答案】【你的答案】修改分数本题分数7分你的得分第2题【正确答案】【你的答案】本题分数7分修改分数你的得分第3题【正确答案】【你的答案】五、应用题(本大题9分)第1题【正确答案】【你的答案】六、证明题(本大题5分)第1题【正确答案】【你的答案】。
2014专升本高等数学真题及答案
河南省2014年普通高校等学校选拔优秀本科毕业生本科阶段学习考试高等数学一.选择题(每小题2分,共60分)1.函数2()sin 9ln(1)f x x x =-+-的定义域是()A.(1,3] B.(1,)+∞ C.()3,+∞ D.[3,1)-2.已知2(2)2f x x x =-,则()f x =()A.2114x + B.2114x - C.214x x - D.114x +3.设()f x 的定义域为R ,则()()()g x f x f x =--.()A.是偶函数 B.是奇函数C.不是奇函数也不是偶函数D.是奇函数也是偶函数4.已知224lim 42x ax x →+=--,则()A.1a =- B.0a = C.1a = D.2a =5.1x =-是函数2212x y x x -=--的()A.跳跃间断点B.可去间断点C.连续点D.第二类间断点6.当x→0时,比1cos x -高阶的无穷小是()A.211x +- B.2ln(1)x +C.sin xD.3arctan x7.已知()ln f x x =,则220()()lim 2h f x h f x h→+-=()A.2ln xx -Bln x x C.-21xD.1x8.曲线sin 2cos y t x t=⎧⎨=⎩(t 为参数)。
在2t=对应点处切线的方程为()A.1x =B.1y =C.1y x =+ D.1y x =-9.函数()(1)(2)(3)(4)f x x x x x x =----,则方程'()0f x =实根的个数为()A.2B.3C.4D.510.设()y y x =是由方程xy xy e =+确定的隐函数。
则dy dx=A.11x y x +-- B.21y xy x --C.11y x+- D.12x x xy---11.已知函数()f x 在区间[]0,a (a>0)上连实,(0)f >0且在(0,a)上恒有'()f x >0,设10()aS f x dx =⎰,2(0)S af =,1S 与2S 的关系是()A.1S <2SB.1S =2SC.1S >2S D.不确定12.曲线31y x =+()A.无拐点B 有一个拐点C.有两个拐点D.有三个拐点13.曲线y=12x -的渐近线的方程为()A.0,1x y ==B1,0x y ==C.2,1x y == D.2,0x y ==14.设()F x 是()f x 的一个原函数则()xx e f e dx --⎰=()A.()xF e c -+ B.()xF e c --+C.()x F e c+ D.()xF e c-+15.设()f x 在[],a b 上连续,则由曲线()y f x =与直线x=a,x=b,y=0所围成平面图形的面积为()A ()baf x dx⎰B.()baf x dx⎰C.()b af x dx ⎰D.()()()f b f a b a --16.设()f x 是连实函数,满足()f x =21sin 1x x ++_11(),f x dx -⎰则lim ()x f x →∞=()A.B.-6πC.3πD6π17.设()f x =(1)sin ,xt tdt -⎰则'()f x =()A.sin cos x x x +B.(1)cos x x- C.sin cos x x x- D.(1)sin x x-18.下列广义积分收敛的是()A.2ln xdx x+∞⎰B.11dx x+∞⎰C.2111dx x -⎰D.1cos xdx+∞⎰19.微方程0dx dy y x+=的通解是()A.2225x y += B.34x y c+= C.22x y c+= D.227y x -=20解常微方程''2'xy y y xe -+=的过程中,特解一般应设为()A.2=)xy Ax Bx e+半( B.=xy Axe半 C.=xy Ae半 D.2=()xy x e Ax B +半21.已知a,b,c 为非零向量,且0a b ⋅=,0b c ⨯=则()A.a b ⊥ 且b cB.a b b c⊥ 且 C.a c b c⊥ 且 D.a c b c⊥ 且22、直线L:==3-25x y z与平面π:641010x y z -+-=的位置关系是()A、L 在π上B、L 与π平行但无公共点C、L 与π相交但不垂直D、L 与π垂直23、在空间直角坐标系内,方程222-y =1x 表示的二次曲面是()A、球面B、双曲抛物面C、圆锥面D、双曲柱面24、极限0y 02lim+1-1x xyxy →→=()A、0B、4C、14D、-1425、点(0,0)是函数z xy =的()A、驻点B、极值点C、最大值点D、间断点26、设{}(,)21D x y x y =≤≤,则()+Dxy y dxdy ⎰⎰=()A、0B、-1C、2D、127、设(),f x y 为连续函数,()()122-01,+,x xdx f x y dy dx f x y dy ⎰⎰⎰⎰交换积分次序后得到()A、()212,yy dy f x y dx⎰⎰B、()2,ydy f x y dx⎰⎰C、()12-0,y ydy f x y dx⎰⎰D、()2022,yy dy f x y dx⎰⎰28、L 为从(0,0)经点(0,1)到点(1,1)的折线,则2+Lx dy ydx ⎰=()A、1B、2C、0D、-113.下列级数条件中收敛的是()A、2n=12n-1n +1∞∑B、n nn=11-3∞∑(1)C、22n=1n +n+1n -n+1∞∑D、nn=11-n∞∑(1)30、级数2n=114n -1∞∑的和是()A、1B、2C、12D、14二、填空题(每题2分,共20分)31、设-1=-1x x f x x x ⎛⎫≠⎪⎝⎭(0,1),则()f x =______.32、设连续函数()f x 满足22()()f x x f x dx =-⎰,则2()f x dx ⎰=______.33、已知(){,1ln 1x a x x x f x -<≥=,,若函数()f x 在1x =连续,则a=______.34、设33'(1)12f x x +=+是()01f =-,则()f x =______.35、不定积分cos 2xdx ⎰=______.36、若向量{}{}{}0,1,1;1,0,1;1,1,0a b c ===则()a b c ⨯ =______.37、微分方程"4'40y y y -+=的通解()y x =______.38、设arctan222(,)ln()cos y xf x y ex y xy =+,则'(1,0)x f =______.39、函数()222,,f x y z x y z =++在点(1,1,1)处方向导数的最大值为______.40、函数()112f x x=-的幂级数展开式是______.三、计算题(每题5分,共50分)41、求极限20(1)lim1tan -1x x x e x x→-++42、设n a 为曲线ny x =与1(1,2,3,4...)n y xn +==所围的面积,判定级数1n n na ∞-∑的敛散性43.求不定积分21xdx x -⎰.44.计算定积分402x dx -⎰.45.解方程3xy y x '-=.46.已知函数(,)z f x y =由方程20xyz ez e --+=所确定,求dz .47.已知点(4,1,2),(1,2,2),(2,0,1)A B C --求ΔABC 的面积.48.计算二重积分22lnDx y dxdy +⎰⎰,其中22{(,)14}D x y x y =≤+≤.49.计算曲线积分22(1)(1)y x dx x y dy <++-⎰其中L 是圆221x y +=(逆时针方向).50.试确定幂级数01nn x n ∞=+∑的收敛域并求出和函数.四.应用题(每小题7分,共14分)51.欲围一个面积150平方米的矩形场地,所用材料的造价其正面每平方米6元,其余三面是每平方3元,问场地的长,宽各为多少时,才能使造价最低?52.已知D 是抛物线L:22y x =和直线12x =所围成的平面区域,试求:(1)区域D 的面积(2)区域D 绕Ox 轴旋转所形成空间旋转体体积.五.证明题(6分)53.设2e a b e <<<证明2224ln ln ()b a b a e ->-2014专升本真题答案一.选择题1-10A C B A B D B B C B 11-20C B D B C B D C C D 21-30B D D B A A C A D C 二.填空题31.1x 32.8933.134.21x x --35.1sin 22x c=36.237.2212xx x c ec e+38.239.2340.2n nn x ∞=∑,11(,)22x ∈-41.2030303030320220220(1)1tan 11tan 1(1tan 1)1tan (1)(1tan 1)tan 2tan 6sec 16tan 66lim limlimlimlimlim lim lim x x x x x x x x x x e x x x x x x x x x x x x x x x x x x x x x x x x →→→→→→→→-+-+=+-++++=+-++++=-=-=-===42.解:由题意知112110111(1212(1)(2)n n n n n x x a x x dx n n n n n n +++⎡⎤=-=-=-=⎢⎥++++++⎣⎦⎰)1131123231112(1)(2)(1)(2)1(1)(2)lim 101(1)(2)1(1)(2)n n n n n n n n n n n n nna n n n n nn n n n n n n n a n n n∞∞==∞∞→∞==∞∞∞=====++++++=>++++∑∑∑∑∑∑∑故此级数为正项级数且u 由正项级数比较判别法的极限形式知故与级数的敛散性相同且为收敛级数,故为收敛级数即级数收敛43.22212221122211(1)2111(1)(1)21(1)11212xdx d x x x x d x x c x c--+=---=---=+=-+-+⎰⎰⎰44.42x dx-⎰4422422022(2)2222224x dx x dxx x x x =-+-⎡⎤⎡⎤=-+-⎢⎥⎢⎥⎣⎦⎣⎦=+=⎰⎰45.原方程可化为21'y y x x-=为一阶线性齐次微分方程,由公式知,其通解为112ln 2ln 2231(+c)2=2x xx xdx x e dx c e x e dx c x x dx c x x xdx c x x x cx ----⎡⎤⎰⎰⋅+⎢⎥⎣⎦⎡⎤=+⎣⎦⎡⎤=+⎢⎥⎣⎦⎡⎤=+⎣⎦=+⎰⎰⎰⎰y=e 46..'''''''2,,22222xy z xy xy z x y Z xy x zz xy y zz xy xyz z z e F ye F xe F e F zye x F e F z xe y F e z zdz dx dy x yye xe dx dy e e --------+=-=-=-∂=-=∂-∂=-=∂-∂∂=+∂∂=+--解:令F(x,y,z)=e 则故所以47.解:{}AB=3,34-- ,,{}AC=2,11-- ,{}AB*AC=3341,5,3211i j k--=--AB ×AC=22215335++=ABC 的面积等于12AB ×AC =35248.在极坐标下22221221222211222122122212lnln .2ln 22.ln ln 22122ln .224ln 224ln 2434ln 2x r rr r x y dxdy d rdrr dr r l d r dr rdrr l θπππππππππ+==⎡⎤=-⎢⎥⎣⎦⎡⎤=-⎢⎥⎣⎦=-=-=-⎰⎰⎰⎰⎰⎰⎰⎰49.由格林公式知2222222222212013410(1)(1)(1)(1)1(1)(1)()(2242x oy x dx x y dy x y y x dxdy y x y y x dxdy x y dxdyd r rdr r drr l θπππ++-⎧⎫⎡⎤⎡⎤∂-∂+⎪⎪⎣⎦⎣⎦=-+=⎨⎬∂∂⎪⎪⎩⎭⎡⎤=--+⎣⎦=-+=--=-=-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰,其中D:x 用极坐标计算)50.解:幂级数01n n x n ∞=+∑中11n a n =+有公式知112limlim 111n n n na n a n ρ+→∞→∞+===+故收敛半径11R ρ==,收敛区间为(1,1)-1x =-时,幂级数为0(1)1nn n ∞=-+∑收敛;1x =时,幂级数为011n n ∞=+∑发散;故幂级数01nn x n ∞=+∑的收敛域为[1,1)-设幂级数01n n x n ∞=+∑的和函数为()s x ,即0()1nn x s x n ∞==+∑则10()1n n x xs x n +∞==+∑由100111n n n n x x n x +∞∞=='⎛⎫== ⎪+-⎝⎭∑∑则1(1)00011(1)ln 111n x x x n x dx d x n x x +∞-===--=-+--∑⎰⎰故(1)()ln x xs x -=-即(1)1()ln x s x x-=-51.解:设场地的长为x ,宽为y ,高为h 。
00020《高等数学一》过程性考核80题
1.设函数y =f (x )的定义域为(1,2],则f (ax )(a <0)的定义域是( )A.(a a 2,1 ]B.[a a 1,2)C.(a ,2a]D.(a a ,2]答案:B2.下列极限中不能应用洛必达法则的是( )A.x x x ln lim +∞→B.x x x 2cos lim ∞→C.x xx -→1ln lim 1 D.x e x x ln lim -+∞→ 答案: B3.设f (x )是连续函数,且⎰=xx x dt t f 0cos )(,则f (x )=( )A.cos x -x sin xB.cos x +x sin xC.sin x -x cos xD.sin x +x cos x 答案:A4设某商品的需求量D 对价格p 的需求函数为D =50-5p,则需求价格弹性函数为( ) A.250-p p B.p p -250 C.51p p -250 D.51250-p p 答案:B5.设f (x )=xx+1,则f (f (x ))=( ) A.12xx+ B.x x +12 C.x x -1 D.x x +13答案:A 6.nn n ln )1ln(lim+∞→=( )A. 4B.3C.2D.1答案:D7.=--→xa a x ax 1sin)(lim ( ) A. 2 B.3 C.0 D.1答案:C8.设f ′(0)=1,则0(3)()lim2t f t f t t→--=( )A. 1B.2C.0D.4 答案:B9.设函数y =x +k ln x 在[1,e ]上满足罗尔定理的条件,则k =( )A. 1e -B.eC.e -2D.2e 答案:A11.曲线y =ln 3x 的竖直渐近线为( )A. 1=xB.2=xC.0=xD.1-=x 答案:D12.曲线y =x ln x -x 在x =e 处的切线方程为( ) A. 0y x e -+= B.01=+-x y C.0=--e x y D.1=+-e x y 答案:A 13.1=⎰( )A. 1B.2C.0D.4 答案:C14.微分方程xy ′-y ln y =0的通解是( ) A. xe y -= B.Cx y e = C.x e y = D.xe y 2=答案:B15.设z =(x +y )e xy ,则)0,0(yz ∂∂=( )A. 1B.2C.0D.4 答案:A16.函数f(x)=1x 2e 31+是( )A .奇函数B .偶函数C .有界函数D .单调增函数答案:D17.在区间),0(+∞内,下列函数无界的是( )A .x sinB .x x sinC .x x cos sin +D .)2cos(+x 答案:B18.已知极限2211lim e x bxx =⎪⎭⎫ ⎝⎛+∞→,则=b ( )A .1B .2C .3D .4答案:D19.设函数)(x f 二阶可导,则极限=⎪⎭⎫ ⎝⎛∆-∆-→∆bxx x x f x x f )(')2('lim 000( )A .)(''0x f -B .)(''0x fC .)(''20x f -D .)(''20x f答案:C20.函数C x F dx x f +=⎰)()(,则=⎰xdx x f cos )(sin ( )A .C x x F +sin )(sinB .C x x f +sin )(sinC .C x F +)(sinD .C x f +)(sin 答案:C21.函数),(y x f z =在点),(00y x 处偏导数存在,则该函数在点),(00y x 处必( ) A .有定义 B .极限存在 C .连续 D .可微 答案:A22.已知函数xxx f +=12)(,则复合函数=)]([x f f ( ) A .x x +14 B .x x 314+ C .x x 21+ D .xx214+答案:B23.极限()=⋅+∞→xx x 1sin1ln lim ( ) A .1 B .2 C .3 D .0 答案:D24.某产品产量为q 时总成本22001200)(q q C +=,则100=q 时的边际成本为 ( )A .1B .2C .3D .4 答案:A25.极限=-→xx x x ln 1lim1( ) A .0 B .1 C .3 D .4 答案:B26.设函数xxy +=1sin 的铅直渐近线为( ) A .=x 0 B .=x -1 C .=x 2 D .=x 3答案:B27.已知直线l 与X 轴平行且与曲线xe x y -=相切,则切点坐标为( ) A .( 0 , 1 ) B .( 1 , 1 ) C .( 0 , -1 ) D .( -1 , 1 ) 答案:C28.极限xxx x sin 11lim--+→=( )A .1B .2C .3D .4 答案:A29.已知函数)(x f 可导,且)(sin )(,)0('x f x g a f ==,则)0('g =( ) A .2a B .a - C .a D .0 答案:C30.下列函数中为奇函数的是( )A.()2x xe ef x -+=B.()2x x e e f x --= C.3()cos f x x x =- D.5()sin f x x x =答案:B31.当0x +→时,下列变量为无穷小量的是( ) A.1e xB.ln xC.x sin 1xD.1sin x x答案:C32.设函数f (x )=2ln(1), 0,, 0x x x x +≥⎧⎨<⎩则f (x )在点x =0处( )A.左导数存在,右导数不存在B.左导数不存在,右导数存在C.左、右导数都存在D.左、右导数都不存在答案:C33.曲线y x =1处的切线方程为( ) A.x -3y -4=0 B.x -3y +4=0 C.x +3y -2=0 D.x +3y +2=0答案:A34. 函数f (x )=x 2+1在区间[1,2]上满足拉格朗日中值公式的中值ξ=( ) A.1 B.65 C.54D.32答案:D35. 函数f (x )A.]4,1[B.[]14-,C.]4,1[-D.]4,1[-- 答案:B36. 设某商品的需求函数为Q =16-4p ,则价格p =3时的需求弹性为( ) A .1 B .2 C .3 D .4 答案:C37. 函数f (x )=x -2cos x 在区间[0,2π]上的最小值是( ) A .-1 B .-2 C .-3 D .-4 答案:B38. 曲线y =22231x x x ---的铅直渐近线为( ) A .=x 0 B .=x 1 C .=x 2 D .=x 3 答案:B39.设)(x f 是),(+∞-∞内以4为周期的周期函数,且4)2(=f ,则=)6(f ( )A.4 B .4- C. 16- D .16答案:A40.已知函数)(x f 在),(+∞-∞内单调增加,则下面关系正确的是( )A .)1()3(f f ≤B .)2()3(f f ≤ C.)2()1(f f ≤ D .)1()2(f f ≤答案:C41.若函数⎪⎩⎪⎨⎧=≠=00,4,sin )(x x xkx x f 在0=x 处连续,则常数=k ( )A .1B .2C .3D .4答案:D42.函数xe x x y )1(22-+=的间断点的个数为( )A .1B .2C .3D .4答案:B43. 曲线113--=x x y 的水平渐近线为( ) A .1=y B .3=y C .1=x D .3=x答案:B44.设函数x xe x f 2)(-=,则导数=)('x f ( )A .x xxe e 222--- B .x x xe e 222--+ C .x xxe e22--- D .x x xe e 22--+答案:A45.设函数)1cos(2x y +=,则微分=dy ( )A .)1sin(2x +-B .)1sin(22x x +-C .dx x )1sin(2+- D .dx x x )1sin(22+-答案:D46.设函数)(x f 可导,且0)('0=x f ,则0x 一定是函数的( )A .极大值点B .极小值点C .驻点D .拐点答案:C47.设函数)(x f 在区间],[b a 上连续,则当x 在],[b a 在变化时,⎰xadt t f )(是( )A .确定的常数B .任意常数C .)(x f 的一个原函数 D .)(x f 的全体原函数答案:C48.函数)5(12)(x g x x f -+-=的定义域为( )A.)5,2[B.[]14-,C.]4,2[-D.]4,1[-- 答案:A49. 当常数( )时,使得点(1,12)为曲线y =32114x ax bx +++的拐点. A.304a b =-=, B.1,0==b a C.1,2==b a D.0,32==b a 答案:A50.曲线y=x 1在点(2,21)处的切线的斜率为( ) A .-4 B .-41C .41D .4答案:A51.若⎰+=C 2xsin 2dx )x (f ,则f(x)=( ) A .cosC 2x+ B .cos2x C .2cos C 2x+D .2sin2x 答案:B52.函数1212)(+-=x x x f 的反函数=-)(1x f ( )A.)1(21x x -- B. )1(21x x -+ C. )1(22x x +- D. )1(22x x ++答案:B53.设函数f(x)在x=1处可导,则=')1(f ( ) A. 1)1()(lim--→x f x f x B. x f x f x )1()(lim 0-→C. x f x f x )1()(lim1-→ D. 1)1()(lim 1--→x f x f x答案:D54 .函数x x x f ---=41)(的定义域是( )A.[1,4]B.[1,+∞)C.(-∞,4]D.[-4,-1] 答案:A55. 极限=+++∞→4412lim22x x x x ( ) A. 0 B. 41 C. 21D.∞ 答案:C56.函数2156)(3+--=x x xx f 的单调减少区间为( )A.(-∞,-1)B.(5,+∞)C. (-∞,-1)与(5,+∞)D.(-1,5) 答案:D57.函数431)(2-+-=x x x x f 的全部间断点为( ) A. x=-1及x=4 B. x=-1及x=-4 C. x=1及x=-4 D. x=1及x=4 答案:C58.若C e dx x f x +=⎰221)(,则f(x)=( ) A.221x e B. 221x xe C. 2x xe D. 2x e 答案:C 59.定积分⎰-=112)sin(dx x x ( )A. -1B. 0C. 1D. 2 答案:B60.设函数⎰='=-2)(,则)(2x ttx f dt e x f ( )A.xx e--2 B. xx e-2C. xx e x ---2)12( D. xx e x --2)12(答案:A61.设函数yx xy z +=2,则偏导数=∂∂)1,1(y z( )A. 4ln2+4B. 4ln2-4C. 42ln 4+D. 42ln 4- 答案:A 62.解方程02111=-++x x 解得x= ( )A. -1B. 21C. 1D. 2 答案:B63. 极限xx x x 3)2tan(lim 20+→=( )A.31 B. 21 C. 32D. 2 答案:C64.企业生产某产品的固定成本为20万元,生产x 件的可变成本为3x 2+2x 万元,总成本函数=( )A. 20232-+x xB. 20232++x x C. 2022-+x x D. 2022++x x 答案:B65.企业生产某产品的固定成本为20万元,生产x 件的可变成本为3x 2+2x 万元,则其边际成本=( )A. 26-xB. 23-xC. 26+xD. 23+x 答案:C66. 方程022=--x x 的根为( )A. 1,121==x xB. 2,121=-=x xC. 2,121-==x xD. ,1,121-=-=x x 答案:B67. 下列函数为奇函数的是( )A. 2211x x -+ B. )(2sin x C. 2x x e e -- D. x答案:C68. 下列各式中正确的是( )答案:D69. 函数17+=x y 在定义域内( )A. 单调递减B. 不增不减C. 单调递增D. 有增有减 答案:C70. 曲线1593++=x x y 的的拐点为( )A.(0,-1)B.(5,+∞)C. (0,15)D.(-1,5) 答案:C71. 曲线133++=x x y 在点(0,1)处的切线方程为( )A. 013=++y xB. 20232++x x C. 2022-+x x D. 013=+-y x 答案:D72.某产品产量为q 时总成本22001200)(q q C +=,则100=q 时的边际成本为( ) A. -1 B. 21C. 1D. 2 答案:C73.设z =x +y +xy1,则)1,1(2x y z ∂∂∂=( )A. 1B. 21C. 3D. 2 答案:A74.=--→xa a x ax 1sin)(lim ( ) A. 1 B. 0 C. 2 D. 3 答案:B75.已知函数f (x )连续,若Φ(x )=x 1x⎰f (t )d t ,则Φ′(x )=( )A. dt t f x⎰1)( B.)()(1x f dt t f x-⎰C.)()(1x f dt t f x+⎰D.1()()xf t dt xf x +⎰答案:D76. 数列极限221lim(62)sin.31n n n →∞++=( )A. 0B. 1C. 2D. 3 答案:C77.)sin(2x y =的二阶导为( )A. )cos(22x B. )(sin 4)cos(2222x x x - C. )(sin 422x x - D. )(sin )cos(222x x - 答案:B78. 极限11252lim +∞→⎪⎪⎭⎫⎝⎛++x x x x =( )A. 0B. 2e C e D. 3 答案:B79.设函数f(x)在点x 0处具有二阶导数且0)x (f 0=',那末当0)x (f 0<''时( ) A .函数f(x)在点x 0处取得最小值 B .函数f(x)在点x 0处不取得极值 C .函数f(x)在点x 0处取得极大值D .函数f(x)在点x 0处取得极小值答案:C80.已知0=x 是函数x x a y 3sin 31sin +=的驻点,则常数a=( ) A. 0 B. 1- C. 2- D. 3 答案:C。
全国2014年4月自学考试00020高等数学(一)试题答案
全国2014年4月高等教育自学考试高等数学(一)试题课程代码:00020一、单项选择题(本大题共10小题,每小题3分,30分)在每小题列出的四个知识点。
备选项中只有一个知识点。
是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.下列运算正确的是(B )A.ln6+ln3=ln9B.ln6-ln3=ln2C.(1n6)•(ln3)=ln18D.ln6ln2ln3= 【解析】A :ln6+ln3=ln18B :6ln6ln3ln ln23-== C :(1n6)•(ln3)≠ln18D :ln6ln2ln3≠ 2.设函数f(x)可导,且1f x x ⎛⎫= ⎪⎝⎭,则导数f'(x)=(D ) A.1x B.-1xC.21xD.-21x第1章(上)第6个知识点。
【解析】1()f x x =,令1u x =,则有1()f u u=, 因为函数与自变量的符号无关, 所以1()f u u =跟1()f x x=表示的是同一个函数, 211()()f x x x''==- 3.设函数f (x ,y )=xy x y -,则11,f y x ⎛⎫ ⎪⎝⎭=(C )A.1y x -B.x y yx- C.1x y - D.22x y x y- 第1章(下)第2个知识点。
【解析】因为函数与自变量的符号无关, 所以(,)xy f x y x y =-跟(,)uv f u v u v=-表示的是同一个函数, 题目要求的是11(,)f y x ,则有11,u v y x ==, 1111111(,)11y x xy xy f x y x y y x x y y x xy xy xy⨯====----4.函数f(x)=sin x +cos x 是(C )A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数 第1章(下)第3个知识点。
【解析】f (-x)=sin(-x)+cos(-x)=-sinx+cosx 。
00020高等数学(一)0604
2006年4月高等教育自学考试全国统一命题考试
高等数学(一) 试卷
(课程代码0020)
一、单项选择题(本大题共5小题,每小题2分,共10分)
在每小题列出的四个备选项中只有一个是符合题目要求的。
请将其代码填写在题后的括号内。
错选、多选或未选均无分。
二、填空题(大题共10小题,每小题3分,共30分)
请在每小题的空格中填上正确答案。
错填、不填均无分。
三、计算题(一)(本大题共5小题,每小题5分,共25分)
四、计算题(二)(本大题共3小题,每小题7分,共21分)
22.将一长为l的铁丝截成两段,并将其中一段围成正方形,另一段围成圆形,为使正方形
与圆形面积之和最小,问这两段铁丝的长应各为多少?
五、应用题(本大题9分)
六、证明题(本大题5分)。
全国2014年4月自考高等数学(工本)试题和答案
正确答案:3(2分)
7.已知函数 ,则 ______.
正确答案:1024(2分)
8.设积分区域 ,则二重积分 化为极坐标系下的二次积分为______.
正确答案: (2分)
9.微分方程 的特征方程为______.
正确答案: (2分)
10.设函数 的傅里叶级数的和函数为 ,则 ______.
一、单项选择题(本大题共5小题,每小题3分,共15分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。错涂、多涂或未涂均无分。
1.下列曲面方程中,是旋转曲面方程的为
A. B.
C. D.
正确答案:B
2.函数 的全微分 为
A.1B.2
C. D.
正确答案:C
3.在曲线 的所有切线中,与平面 平行的切线
A.只有一条B.只有二条
C.只有三条D.不存在
正确答案:B
4.微分方程 的满足 的特解为
A. B.
C. D.正确答Leabharlann :A5.幂级数 的收敛域是
A. B.
C. D.
正确答案:C
非选择题部分
注意事项:
用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
二、填空题(本大题共5小题,每小题2分,共10分)
正确答案:
15.计算二重积分 ,其中积分区域 是由 和 所围成.
正确答案:
16.计算三重积分 ,其中积分区域Ω: .
正确答案:
17.计算对弧长的曲线积分 ,其中L为从点 到点 的直线段.
正确答案:
18.验证曲线积分 与路径无关,并计算其值.
正确答案:
2014年成人高考专升本高等数学一考试真题及参考答案
2014年成人高考专升本高等数学一考试真题及参考答案2014年成人高考专升本高等数学一考试真题及参考答案一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
第1题参考答案:D第2题参考答案:A第3题参考答案:B第4题设函数f(x)在[a,b]连续,在(a,b)可导,f’(x)>0.若f(a)·f(b)<0,则y=f(x)在(a,b)( )参考答案:C第8题参考答案:A第9题参考答案:A第10题设球面方程为(x一1)2+(y+2)2+(z一3)2=4,则该球的球心坐标与半径分别为( ) A.(一1,2,一3);2B.(一1,2,-3);4C.(1,一2,3);2D.(1,一2,3);4参考答案:C二、填空题:本大题共10小题。
每小题4分,共40分,将答案填在题中横线上。
第11题参考答案:2/3第12题第13题第14题参考答案:3第15题曲线y=x+cosx在点(0,1)处的切线的斜率k=_______.参考答案:1第16题参考答案:1/2第17题参考答案:1第18题设二元函数z=x2+2xy,则dz=_________.参考答案:2(x+y)dx-2xdy第19题过原点(0,0,0)且垂直于向量(1,1,1)的平面方程为________.参考答案:z+y+z=0第20题微分方程y’-2xy=0的通解为y=________.三、解答题:本大翘共8个小题,共70分。
解答应写出推理,演算步骤。
第21题第22题设Y=y(x)满足2y+sin(x+y)=0,求y’.第23题求函数f(x)一x3—3x的极大值.第24题第25题第26题第27题第28题求微分方程y”+3y’+2y=ex的通解.。
2014年成人高等学校专升本招生全国统一考试高等数学
2014年成人高等学校专升本招生全国统一考试高等数学(二)答案必须答在答题卡上指定的位置,答在试卷上无效.......。
选择题一、选择题:1—10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项的字母填涂在答题卡相应题号的信息点上............。
1.0lim →x 22sin xx= A.0 B.1 C.2 D.∞ 2.设函数)(x f 在x=1处可导,且)1('f =2,则0lim→x xf x f )1()1(--=A.-2B. -21C.21D.23. d(sin2x)=A.2cos2xdxB.cos2xdxC.-2cos2xdxD.-cos2xdx4.设函数)(x f 在区间[a ,b]连续且不恒为零,则下列各式中不恒为常数.....的是 A.)()(a f b f - B.⎰badx x f )( C. 0lim →x )(x f D. ⎰xadt t f )(5.设)(x f 为连续函数,且⎰xdt t f 0)(=)1ln(3++x x ,则)(x f =A.1132++x x B. 113++x x C.3x 2 D. 11+x6.设函数)(x f 在区间[a ,b]连续,且I (u )=,)()(dx t f dx x f uaua⎰⎰-a<u<b ,则I (u )A.恒大于零B.恒小于零C.恒等于零 D 可正,可负. 7.设二元函数z=x y,则yz∂∂= A. x yB. x ylny C. x ylnx D.yx y-18.设函数)(x f 在区间[a ,b]连续,则曲线y=)(x f 与直线x=a ,x=b 及x 轴所围成的平面图形的面积为 A.⎰badx x f )( B. -⎰b adx x f )( C. ⎰b adx x f )( D.⎰badx x f )(9.设二元函数z=xcosy ,则yx z∂∂∂2=A.xsinyB.-xsinyC.sinyD.-siny 10.设事件A ,B 相互独立,A,B 发生的概率分别为0.6;0.9,则A ,B 都不发生的概率为 A.0.54 B.0.04 C.0.1 D.0.4非选择题二、填空题:11~20小题,每小题4分,共40分。
2014年10月全国自考高等数学(一)真题及答案
2004年下半年高等教育自学考试全国统一命题考试高等数学(一) 试题课程代码:0020一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列函数中,函数的图象关于原点对称的是( )A .y=sin |x|B .y=3sin 2x+1C .y=-x 3sin xD .y=x 2sin x2.下列各函数中,互为反函数的是( )A .y=e x y=e x -B .y=log 2x, y= log 21xC .y=tan x, y=cot xD .y=2x+1, y=21 (x-1) 3.)(n n e 11lim -∞→sin n=( ) A .0 B .1C .不存在D .∞4.设f(x)=ln(9-x 2),则f(x)的连续区间是( )A .(-∞, -3)B .(3, +∞)C .[-3, 3]D .(-3, 3) 5.设f(x)=⎩⎨⎧≤<-≤≤-21,3310,12x x x x , 则f +′(1)=( ) A .2 B .-2C .3D .-36.设y=sin 2x, 则y)(n =( ) A .2sin(2x+2πn ) B .2n sin(2x+2πn ) C .2n sin(x+2πn ) D .2sin(2x+2πn )7.设y=ex 1-,则dy=( ) A .e x 1-dx B .e x 1dxC .-21xe x 1-dx D .21x e x 1-dx8.=-242)3(dx x x d ( ) A .1-6x 2 B .2-36x 2C .2x-12x 3D .x-6x 3 9.=-→xe x x sin 1lim 20( ) A .2 B .1C .0D .∞10.函数y=42)1(422+++x x x 的水平渐近线方程是( ) A .y=1 B .y=2C .y=4D .不存在11.设⎰+=C x dx x f sec )(,则f(x)=() A .tan x B .tan 2xC .secx· tan xD .secx· tan 2 x12.=-⎰dx xx 621( ) A .arcsin x 3+C B .31arcsin x 3+C C .3arcsin x 3+C D .261x -+C13.下列广义积分中,收敛的是( )A .dx x ⎰101 B .dx x ⎰101 C .dx x ⎰1021 D .dx x x ⎰101 14.设⎰=xt e dt e 0,则x=( )A .e+1B .eC .ln (e+1)D .ln (e-1)15.下列级数中条件收敛的是( )A .n n n )32()1(11∑∞=-- B .∑∞=--11)1(n n nC .n n n )31()1(11∑∞=-- D .∑∞=-+-1212)1(n n n n16.幂级数∑∞=++11)21(n nnx 的收敛区间是( )A .(-23 , 21) B .[-23 , 21]C .[-23 , 21) D .(-23 , 21]17.设z=ln(x-y 2),则y z∂∂=( )A .21y x - B .22y x y--C . 221y x y --D .22y x yx --18.函数z=x 2+2xy-y 2-4x+2y-9的驻点是( )A .)23,21(B .)23,21(-C .)23,21(- D .)23,21(--19.⎰⎰≤≤≤≤+1010y x y x dxdy e =( )A .e-1B .eC .(e-1)2D .e 220.设y=y(x)满足微分方程e o y x =-1',且当x=0时,y=0,则x=-1时,y=()A .1-eB .1+eC .-eD .e二、简单计算题(本大题共5小题,每小题4分,共20分)21.讨论函数y=⎪⎩⎪⎨⎧≥-<-o x x x x ,10,12在点x=0处的连续性.22.设y=x x+-11,求y′|4=x23.求不定积分 ⎰xdx x x cos sin .24.设z=(ysinx)31,求dz.25.判断级数n n n n )12(1∑∞=+的敛散性. 三、计算题(本大题共4小题,每小题6分,共24分) 26.求z=x 4+y 4-4(x-y)+1的极值. 27.计算定积分I=⎰-π03)sin 1(dx x .28.计算二重积分⎰⎰D y dxdy xe 3,其中D :x≤y≤1,0≤x≤1. 29.求微分方程cosx x x y dxdy 2cos sin +=满足初始条件y|π=x =1的特解. 四、应用题(本大题共2小题,每小题8分,共16分)30.用薄铁皮做成一个容积为V 0的有盖长方匣,其底为正方形,由于下底面无需喷漆,故其每单位面积成本仅为其余各面的一半,问长方匣的底面边长为多少时,才能使匣子的造价最低?31.求抛物线y 2=4x 与直线x=1所围成的平面图形分别绕x 轴和y 轴旋转一周所得旋转体的体积V x 和V y .。
000201404 高等数学(一)00020 高等数学(一)自考历年真题
2014年4月高等教育自学考试《高等数学(一)》试题课程代码:00020一、单项选择题1.下列运算正确的是( )A .9ln 3ln 6ln =+B .2ln 3ln 6ln =-C .18ln )3(ln )6(ln =⋅D .2ln 3ln 6ln = 2.设函数)(x f 可导,且x x f =⎪⎭⎫ ⎝⎛1,则导数=)('x f ( ) A .x1 B .x 1- C .21x D .21x - 3.设函数y x xy y x f -=),(,则=⎪⎪⎭⎫ ⎝⎛x y f 1,1( )A .x y -1B .yx y x -C .yx -1 D .y x y x -22 4. 函数x x x f cos sin )(+=是( ) A .奇函数 B .偶函数 C .非奇非偶函数 D .既是奇函数又是偶函数5.下列各对函数中,为同一函数的是( )A .)ln(2x y =与x y ln 2=B .)2tan(x y =与x y tan 2=C .x y =与⎪⎭⎫ ⎝⎛=2x yD .1-=x y 与112+-=x x y 6.设函数22)(x x f =,x x g sin )(=,则当0→x 时( ) A .)(x f 是比)(x g 高阶的无穷小量 B .)(x f 是比)(x g 低阶的无穷小量 C .)(x f 与)(x g 是同阶但非等价的无穷小量 D .)(x f 与)(x g 是等价无穷小量7.设函数⎪⎩⎪⎨⎧>+=<+-=2,22,243)(2x x x b x a x x x f 在2=x 处连续,则( ) A .1=a ,4=b B .0=a ,4=bC .1=a ,5=bD .0=a ,5=b8.设)(x y y =是由方程设函数13-=y xy 所确定的隐函数,则导数==0'x y ( )A .-1B .0C .1D .29.已知函数x x a y 2cos 21cos +=(其中a 为常数)在2π=x 处取得极值,则=a ( ) A .0 B .1 C .2 D .3 10.设函数x x x f ln )(=,则下列结论正确的是( ) A .)(x f 在),0(+∞内单调减少 B .)(x f 在),0(e 内单调减少 C .)(x f 在),0(+∞内单调增加 D .)(x f 在),0(e 内单调增加二、简单计算题11.求极限1523lim 323+++∞→x x x x 。
2014专升本高等数学真题及答案
河南省2014年普通高校等学校选拔优秀本科毕业生本科阶段学习考试高等数学一.选择题(每小题2分,共60分)1.函数2()sin 9ln(1)f x x x =-+-的定义域是()A.(1,3] B.(1,)+∞ C.()3,+∞ D.[3,1)-2.已知2(2)2f x x x =-,则()f x =()A.2114x + B.2114x - C.214x x - D.114x +3.设()f x 的定义域为R ,则()()()g x f x f x =--.()A.是偶函数 B.是奇函数C.不是奇函数也不是偶函数D.是奇函数也是偶函数4.已知224lim 42x ax x →+=--,则()A.1a =- B.0a = C.1a = D.2a =5.1x =-是函数2212x y x x -=--的()A.跳跃间断点B.可去间断点C.连续点D.第二类间断点6.当x→0时,比1cos x -高阶的无穷小是()A.211x +- B.2ln(1)x +C.sin xD.3arctan x7.已知()ln f x x =,则220()()lim 2h f x h f x h→+-=()A.2ln xx -Bln x x C.-21xD.1x8.曲线sin 2cos y t x t=⎧⎨=⎩(t 为参数)。
在2t=对应点处切线的方程为()A.1x =B.1y =C.1y x =+ D.1y x =-9.函数()(1)(2)(3)(4)f x x x x x x =----,则方程'()0f x =实根的个数为()A.2B.3C.4D.510.设()y y x =是由方程xy xy e =+确定的隐函数。
则dy dx=A.11x y x +-- B.21y xy x --C.11y x+- D.12x x xy---11.已知函数()f x 在区间[]0,a (a>0)上连实,(0)f >0且在(0,a)上恒有'()f x >0,设10()aS f x dx =⎰,2(0)S af =,1S 与2S 的关系是()A.1S <2SB.1S =2SC.1S >2S D.不确定12.曲线31y x =+()A.无拐点B 有一个拐点C.有两个拐点D.有三个拐点13.曲线y=12x -的渐近线的方程为()A.0,1x y ==B1,0x y ==C.2,1x y == D.2,0x y ==14.设()F x 是()f x 的一个原函数则()xx e f e dx --⎰=()A.()xF e c -+ B.()xF e c --+C.()x F e c+ D.()xF e c-+15.设()f x 在[],a b 上连续,则由曲线()y f x =与直线x=a,x=b,y=0所围成平面图形的面积为()A ()baf x dx⎰B.()baf x dx⎰C.()b af x dx ⎰D.()()()f b f a b a --16.设()f x 是连实函数,满足()f x =21sin 1x x ++_11(),f x dx -⎰则lim ()x f x →∞=()A.B.-6πC.3πD6π17.设()f x =(1)sin ,xt tdt -⎰则'()f x =()A.sin cos x x x +B.(1)cos x x- C.sin cos x x x- D.(1)sin x x-18.下列广义积分收敛的是()A.2ln xdx x+∞⎰B.11dx x+∞⎰C.2111dx x -⎰D.1cos xdx+∞⎰19.微方程0dx dy y x+=的通解是()A.2225x y += B.34x y c+= C.22x y c+= D.227y x -=20解常微方程''2'xy y y xe -+=的过程中,特解一般应设为()A.2=)xy Ax Bx e+半( B.=xy Axe半 C.=xy Ae半 D.2=()xy x e Ax B +半21.已知a,b,c 为非零向量,且0a b ⋅=,0b c ⨯=则()A.a b ⊥ 且b cB.a b b c⊥ 且 C.a c b c⊥ 且 D.a c b c⊥ 且22、直线L:==3-25x y z与平面π:641010x y z -+-=的位置关系是()A、L 在π上B、L 与π平行但无公共点C、L 与π相交但不垂直D、L 与π垂直23、在空间直角坐标系内,方程222-y =1x 表示的二次曲面是()A、球面B、双曲抛物面C、圆锥面D、双曲柱面24、极限0y 02lim+1-1x xyxy →→=()A、0B、4C、14D、-1425、点(0,0)是函数z xy =的()A、驻点B、极值点C、最大值点D、间断点26、设{}(,)21D x y x y =≤≤,则()+Dxy y dxdy ⎰⎰=()A、0B、-1C、2D、127、设(),f x y 为连续函数,()()122-01,+,x xdx f x y dy dx f x y dy ⎰⎰⎰⎰交换积分次序后得到()A、()212,yy dy f x y dx⎰⎰B、()2,ydy f x y dx⎰⎰C、()12-0,y ydy f x y dx⎰⎰D、()2022,yy dy f x y dx⎰⎰28、L 为从(0,0)经点(0,1)到点(1,1)的折线,则2+Lx dy ydx ⎰=()A、1B、2C、0D、-113.下列级数条件中收敛的是()A、2n=12n-1n +1∞∑B、n nn=11-3∞∑(1)C、22n=1n +n+1n -n+1∞∑D、nn=11-n∞∑(1)30、级数2n=114n -1∞∑的和是()A、1B、2C、12D、14二、填空题(每题2分,共20分)31、设-1=-1x x f x x x ⎛⎫≠⎪⎝⎭(0,1),则()f x =______.32、设连续函数()f x 满足22()()f x x f x dx =-⎰,则2()f x dx ⎰=______.33、已知(){,1ln 1x a x x x f x -<≥=,,若函数()f x 在1x =连续,则a=______.34、设33'(1)12f x x +=+是()01f =-,则()f x =______.35、不定积分cos 2xdx ⎰=______.36、若向量{}{}{}0,1,1;1,0,1;1,1,0a b c ===则()a b c ⨯ =______.37、微分方程"4'40y y y -+=的通解()y x =______.38、设arctan222(,)ln()cos y xf x y ex y xy =+,则'(1,0)x f =______.39、函数()222,,f x y z x y z =++在点(1,1,1)处方向导数的最大值为______.40、函数()112f x x=-的幂级数展开式是______.三、计算题(每题5分,共50分)41、求极限20(1)lim1tan -1x x x e x x→-++42、设n a 为曲线ny x =与1(1,2,3,4...)n y xn +==所围的面积,判定级数1n n na ∞-∑的敛散性43.求不定积分21xdx x -⎰.44.计算定积分402x dx -⎰.45.解方程3xy y x '-=.46.已知函数(,)z f x y =由方程20xyz ez e --+=所确定,求dz .47.已知点(4,1,2),(1,2,2),(2,0,1)A B C --求ΔABC 的面积.48.计算二重积分22lnDx y dxdy +⎰⎰,其中22{(,)14}D x y x y =≤+≤.49.计算曲线积分22(1)(1)y x dx x y dy <++-⎰其中L 是圆221x y +=(逆时针方向).50.试确定幂级数01nn x n ∞=+∑的收敛域并求出和函数.四.应用题(每小题7分,共14分)51.欲围一个面积150平方米的矩形场地,所用材料的造价其正面每平方米6元,其余三面是每平方3元,问场地的长,宽各为多少时,才能使造价最低?52.已知D 是抛物线L:22y x =和直线12x =所围成的平面区域,试求:(1)区域D 的面积(2)区域D 绕Ox 轴旋转所形成空间旋转体体积.五.证明题(6分)53.设2e a b e <<<证明2224ln ln ()b a b a e ->-2014专升本真题答案一.选择题1-10A C B A B D B B C B 11-20C B D B C B D C C D 21-30B D D B A A C A D C 二.填空题31.1x 32.8933.134.21x x --35.1sin 22x c=36.237.2212xx x c ec e+38.239.2340.2n nn x ∞=∑,11(,)22x ∈-41.2030303030320220220(1)1tan 11tan 1(1tan 1)1tan (1)(1tan 1)tan 2tan 6sec 16tan 66lim limlimlimlimlim lim lim x x x x x x x x x x e x x x x x x x x x x x x x x x x x x x x x x x x →→→→→→→→-+-+=+-++++=+-++++=-=-=-===42.解:由题意知112110111(1212(1)(2)n n n n n x x a x x dx n n n n n n +++⎡⎤=-=-=-=⎢⎥++++++⎣⎦⎰)1131123231112(1)(2)(1)(2)1(1)(2)lim 101(1)(2)1(1)(2)n n n n n n n n n n n n nna n n n n nn n n n n n n n a n n n∞∞==∞∞→∞==∞∞∞=====++++++=>++++∑∑∑∑∑∑∑故此级数为正项级数且u 由正项级数比较判别法的极限形式知故与级数的敛散性相同且为收敛级数,故为收敛级数即级数收敛43.22212221122211(1)2111(1)(1)21(1)11212xdx d x x x x d x x c x c--+=---=---=+=-+-+⎰⎰⎰44.42x dx-⎰4422422022(2)2222224x dx x dxx x x x =-+-⎡⎤⎡⎤=-+-⎢⎥⎢⎥⎣⎦⎣⎦=+=⎰⎰45.原方程可化为21'y y x x-=为一阶线性齐次微分方程,由公式知,其通解为112ln 2ln 2231(+c)2=2x xx xdx x e dx c e x e dx c x x dx c x x xdx c x x x cx ----⎡⎤⎰⎰⋅+⎢⎥⎣⎦⎡⎤=+⎣⎦⎡⎤=+⎢⎥⎣⎦⎡⎤=+⎣⎦=+⎰⎰⎰⎰y=e 46..'''''''2,,22222xy z xy xy z x y Z xy x zz xy y zz xy xyz z z e F ye F xe F e F zye x F e F z xe y F e z zdz dx dy x yye xe dx dy e e --------+=-=-=-∂=-=∂-∂=-=∂-∂∂=+∂∂=+--解:令F(x,y,z)=e 则故所以47.解:{}AB=3,34-- ,,{}AC=2,11-- ,{}AB*AC=3341,5,3211i j k--=--AB ×AC=22215335++=ABC 的面积等于12AB ×AC =35248.在极坐标下22221221222211222122122212lnln .2ln 22.ln ln 22122ln .224ln 224ln 2434ln 2x r rr r x y dxdy d rdrr dr r l d r dr rdrr l θπππππππππ+==⎡⎤=-⎢⎥⎣⎦⎡⎤=-⎢⎥⎣⎦=-=-=-⎰⎰⎰⎰⎰⎰⎰⎰49.由格林公式知2222222222212013410(1)(1)(1)(1)1(1)(1)()(2242x oy x dx x y dy x y y x dxdy y x y y x dxdy x y dxdyd r rdr r drr l θπππ++-⎧⎫⎡⎤⎡⎤∂-∂+⎪⎪⎣⎦⎣⎦=-+=⎨⎬∂∂⎪⎪⎩⎭⎡⎤=--+⎣⎦=-+=--=-=-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰,其中D:x 用极坐标计算)50.解:幂级数01n n x n ∞=+∑中11n a n =+有公式知112limlim 111n n n na n a n ρ+→∞→∞+===+故收敛半径11R ρ==,收敛区间为(1,1)-1x =-时,幂级数为0(1)1nn n ∞=-+∑收敛;1x =时,幂级数为011n n ∞=+∑发散;故幂级数01nn x n ∞=+∑的收敛域为[1,1)-设幂级数01n n x n ∞=+∑的和函数为()s x ,即0()1nn x s x n ∞==+∑则10()1n n x xs x n +∞==+∑由100111n n n n x x n x +∞∞=='⎛⎫== ⎪+-⎝⎭∑∑则1(1)00011(1)ln 111n x x x n x dx d x n x x +∞-===--=-+--∑⎰⎰故(1)()ln x xs x -=-即(1)1()ln x s x x-=-51.解:设场地的长为x ,宽为y ,高为h 。
2014年4月全国自考线性代数(经管类)试题及答案(3)
绝密★考试结束前全国2014年4月高等教育自学考试线性代数(经管类)试题课程代码:04184请考生按规定用笔将所有试题的答案涂、写在答题纸上。
说明:在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 表示 单位矩阵,|A |表示方阵A 的行列式,r(A )表示矩阵A 的秩。
选择题部分注意事项:1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.设行列式11122122a a a a =3,则行列式111211212221a 2a 5a a 2a 5a ++= CA .-15B .-62.设A ,B 为4阶非零矩阵,且AB=0,若r(A )=3,则r(B)= A A .1 B .2 C .3 D .4设A 为s×m 矩阵,B 为m×n 矩阵,则r(AB)≥r(A)+r(B)-m 。
本题 0≥3+r(B)-4 则r(B)≤1 ,又因为A 为非零矩阵,所以r(B)≥1 所以 r(B)=13.设向量组=(1,0,0)T ,=(0,1,0)T ,则下列向量中可由1α2α1α,2α线性表出的是 B A .(0,-1,2)T B .(-1,2,0)T C .(-1,0,2)T D .(1,2,-1)T设β由,α线性表出,则β=k 1α1+k 2α2=(k 1,k 2,0)Tα4.设A 为3阶矩阵,且r(A )=2,若1α,2α为齐次线性方程组Ax=0的两个不同的解。
k 为任意常数,则方程组Ax=0的通解为 D A .k B .k 1α2αC .1k2α+αD .12k2α-α P112 定理4.1Ax=0的基础解系包含1个解向量。
2014年成人高等学校招生全国统一考试高起点数学试卷(文科)
2014年成人高等学校招生全国统一考试高起点数学本试卷分第Ⅰ卷(选择题)和第II (非选择题)两部分,满分150分,考试时间150分钟第Ⅰ卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.从1、2、3、4、5中任取3个数,组成没有重复数字的三位数共有( ) A.40个 B.80个 C.30个 D.60个2.抛物线23y x =的准线方程为 ( )A. 12x =B. 32x =-C. 34x =D. 34x =- 3.已知一次函数2y x b =+的图象经过点(-2,1),则该图象也经过点 ( ) A.(1,7) B. (1,-3) C.(1,5) D.(1,-1) 4.若,,a b c 为实数,且0a ≠。
设甲:240b ac -≥,乙:20ax bx c ++=有实数根,则 ( ) A.甲既不是乙的充分条件,也不是乙的必要条件B.甲是乙的必要条件,但不是乙的充分条件C.甲是乙的充分必要条件D.甲是乙的充分条件,但不是乙的必要条件5.二次函数22y x x =+-的图象与x 轴的交点坐标为 ( ) A. (2,0)和(1,0) B. (-2,0)和(1,0) C. (2,0)和(-1,0) D. (-2,0)和(-1,0) 6.设集合{}12M x x =-≤<,{}1N xx =≤,则集合MN = ( )A. {}11x x -≤≤B. {}1x x >- C. {}12x x ≤≤ D. {}1xx >7.函数15y x =-的定义域为 ( ) A. (5,)+∞ B. (,5)-∞ C. (,5)(5,)-∞+∞ D. (,)-∞+∞8.函数2sin 6y x =的最小正周期为 ( ) A. 2π B. 3π C.3π D. 2π9.下列函数是奇函数的是 ( ) A. 2y x = B. 2log y x = C. 3xy = D. sin y x = 10.设函数1()x f x x+=,则(1)f x -= ( ) A. 11x + B. 1x x + C. 11x - D. 1x x -11.设两个正数,a b 满足20a b +=,则ab 的最大值为 ( ) A. 100 B.400 C. 50 D.20012.将5本不同的历史书和2本不同的数学书排成一行,则2本数学数恰好在两端的概率为A. 120B. 110C. 121D. 114( ) 13.在等腰三角形ABC 中,A 是顶角,且1cos 2A =-,则cosB = ( )A. 12-B. C. D. 1214.不等式32x ->的解集是 ( ) A. {5x x >或}1x < B. {}1x x < C. {}15x x << D. {}5x x >15.已知圆2248110x y x y ++-+=,经过点(1,0)P 作该圆的切线,切点为Q ,则线段PQ 的长为 ( )A. 10B. 4C. 16D. 816.已知平面向量(1,1),(1,1)a b ==-,则两向量的夹角为 ( ) A.3π B. 6π C. 2π D. 4π 17.若0lg lg 2a b <<<,则 ( ) A. 1100b a <<< B. 01a b <<< C. 1100a b <<< D. 01b a <<< 第II (非选择题,共65分)二、填空题(本大题共4题,每小题4分,共16分)18.计算513344833log 10log 5⨯--= 19.曲线32y x x =-在点(1,1)-处的切线方程为 20.等比数列{}n a 中,若28a =,公比为14,则5a = 21.某运动员射击10次,成绩(单位:环)如下:8 10 9 9 10 8 9 9 8 7则该运动员的平均成绩是 环。
历年自考数学真题(2010-2014)
全国2014年4月自学考试高等数学(一)试题课程代码:00020请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分注意事项:1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
一、单项选择题(本大题共10小题,每小题3分,30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.下列运算正确的是A.ln6+ln3=ln9B.ln6-ln3=ln2C.(1n6)•(ln3)=ln18D.ln6ln2ln3= 2.设函数f(x)可导,且1f x x ⎛⎫= ⎪⎝⎭,则导数f'(x)= A.1x B.-1x C.21x D.-21x 3.设函数厂f (x ,y )=xy x y -,则f 11,y x ⎛⎫ ⎪⎝⎭= A.1y x - B.x y yx- C.1x y - D.22x y x y- 4.函数f(x)=sin x +cos x 是A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数 5.下列各对函数中,为同一函数的是A.y=ln (x 2)与y =21n|x |B.y =tan(2x )与y =2tan xC.y=x 与y =2D.y =x -1与y=211x x -+ 6.设函数f (x )=2x 2,g (x )=sin x ,则当x →0时A.f (x )是比g (x )高阶的无穷小量B.f (x )是比g (x )低阶的无穷小量C.f (x )与g (x )是同阶但非等价的无穷小量D.f (x )与g (x )是等价无穷小量7.设函数234,<2(),22,2x x a x f x b x x x ⎧-+⎪==⎨⎪+>⎩在x =2处连续,则A.a =1,b =4B.a =0,b =4C.a =1,b =5D.a =0,b =58.设y =y (x )是由方程xy 3=y -1所确定的隐函数,则导数y ′=0x =A.-1B.0C.1D.2 9.已知函数y =a cos x +12cos2x (其中a 为常数)在x =2π处取得极值,则a= A.0 B.1C.2D.310.设函数f (x )=ln x x,则下列结论正确的是 A.f (x )在(0,+∞)内单调减少B.f (x )在(0,e)内单调减少…C.f (x )在(0,+∞)内单调增加D.f (x )在(0,e)内单调增加非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
全国2012年04月自学考试00020《高等数学(一)》历年真题与答案
全国2012年4月自学考试高等数学(一)试题课程代码:00020一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.函数y=f(x)的图形如图所示,则它的值域为( ) A.[1,4) B.[1,4] C.[1,5) D.[1,5]2.当x →0时,下列变量为无穷小量的是( ) A.21sin x xB.1sin x xC.xe -3.设函数f(x)可导,且0(1)(1)lim1x f f x x→--=-,则曲线y=f(x)在点(1,f(1))处的切线斜率为( )A.1B.0C.-1D.-24.曲线21(1)y x =-的渐近线的条数为 ( )A.1B.2C.3D.45.下列积分中可直接用牛顿-莱布尼茨公式计算的是( ) A.111dx x -⎰B.111d x x -⎰2(2+1)C.1211d x x-⎰D.1x -⎰二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设函数2,||1(),1,||1x f x x ≤⎧=⎨⎩>则f [f(1)]=______.7.已知33lim 1nkn e n -→∞⎛⎫+= ⎪⎝⎭,则k=______.8.若级数1n n u ∞→∑的前n 项和1121n S n =-+,则该级数的和S=______. 9.设函数f(x)可微,则微分d[e f(x)]=______. 10.曲线y=3x 5-5x 4+4x-1的拐点是______.11.函数()arctan f x x x =-在闭区间[-1,1]上的最大值是______.12.导数20d sin 2d d xu u x ⎰=______.13.微分方程2()20x y xy y '''-+=的阶数是______. 14.设22{(,)|4}D x y x y =+≤,则二重积分d d Dx y =⎰⎰______.15.设函数(,)ln()2y f x y x =+,则偏导数(0,1)y f ='______. 三、计算题(一)(本大题共5小题,每小题5分,共25分) 16.设函数21()cos x f x e x-=,求导数()f x '. 17.求极限0tan limsin x x xx x→--.18.求函数3212()2333f x x x x =-++的极值.19.计算无穷限反常积分231=d 610I x x x +∞-++⎰.20.计算二重积分=(32)d d DI x y x y +⎰⎰,其中D 是由直线x+y=1及两个坐标轴围成的区域,如图所示.四、计算题(二)(本大题共3小题,每小题7分,共21分) 21.确定常数a,b 的值,使函数3sin ,0()ln(1)0x x f x a x b x <⎧=⎨++≥⎩在点x=0处可导.22.设某商品的需求函数为Q(P)=12-0.5P (其中P 为价格). (1)求需求价格弹性函数. (2)求最大收益.23.计算定积分2=I x .五、应用题(本题9分) 24.设曲线1y x=与直线y=4x,x=2及x 轴围成的区域为D ,如图所示.(1)求D 的面积A.(2)求D 绕x 轴一周的旋转体体积V x . 六、证明题(本题5分)25.设函数z=xy+f(u),u=y 2-x 2,其中f 是可微函数. 证明:22z zyx x y x y∂∂+=+∂∂.全国2012年4月自考《高等数学(一)》试题答案详解课程代码:00020试卷总体分析:试卷详解:一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
════════════════════════════════════════════════════════════════════
2014.4 本套试题共分3页,当前页是第1页-
全国2014年4月高等教育自学考试
高等数学(一)试题
课程代码:00020
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分
注意事项:
1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
一、单项选择题(本大题共10小题,每小题3分,30分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.下列运算正确的是
A.ln6+ln3=ln9
B.ln6-ln3=ln2
C.(1n6)•(ln3)=ln18
D.ln6ln2ln3
= 2.设函数f(x)可导,且1f x x ⎛⎫= ⎪⎝⎭,则导数f'(x)= A.
1x B.-1x C.2
1x D.-21x 3.设函数厂f (x ,y )=
xy x y -,则f 11,y x ⎛⎫ ⎪⎝⎭= A.1y x - B.x y yx
- C.1x y - D.22x y x y
- 4.函数f(x)=sin x +cos x 是
A.奇函数
B.偶函数
════════════════════════════════════════════════════════════════════
2014.4 本套试题共分3页,当前页是第2页-
C.非奇非偶函数
D.既是奇函数又是偶函数 5.下列各对函数中,为同一函数的是
A.y=ln (x 2)与y =21n|x |
B.y =tan(2x )与y =2tan x
C.y=x 与y
=2 D.y =x -1与y=211
x x -+ 6.设函数f (x )=2x 2,g (x )=sin x ,则当x →0时
A.f (x )是比g (x )高阶的无穷小量
B.f (x )是比g (x )低阶的无穷小量
C.f (x )与g (x )是同阶但非等价的无穷小量
D.f (x )与g (x )是等价无穷小量
7.设函数234,<2(),22,2x x a x f x b x x x ⎧-+⎪==⎨⎪+>⎩
在x =2处连续,则
A.a =1,b =4
B.a =0,b =4
C.a =1,b =5
D.a =0,b =5
8.设y =y (x )是由方程xy 3=y -1所确定的隐函数,则导数y ′
=0x =
A.-1
B.0
C.1
D.2 9.已知函数y =a cos x +12
cos2x (其中a 为常数)在x =2π处取得极值,则a= A.0 B.1
C.2
D.3
10.设函数f (x )=ln x x
,则下列结论正确的是 A.f (x )在(0,+∞)内单调减少
B.f (x )在(0,e)内单调减少…
C.f (x )在(0,+∞)内单调增加
D.f (x )在(0,e)内单调增加
非选择题部分
注意事项:
用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
二、简单计算题(本大题共5小题,每小题4分,共20分)
11.求极限lim x →∞3233251
x x x +++. 12.设函数f (x )在x =0处可导,且f (0)=1,f ′(x )=2.用导数定义求极限0()1lim x f x x
→-.
════════════════════════════════════════════════════════════════════
2014.4 本套试题共分3页,当前页是第3页
- 13.设函数f (x )满足f ′(x
,且f (1)=2,求f (x ).
14.求曲线y =x 3-3x 2-1的拐点.
15.求微分方程e y y ′-e 3x =0的通解.
三、计算题(本大题共5小题,每小题5分,共25分)
16.已知极限lim x →∞1x
k x ⎛⎫+ ⎪⎝⎭=e 2,求常数k 的值. 17.求抛物线y=x 2上一点,使该点的切线平行于直线y =4x -3.
18.求极限0lim x →21ln(1)x x x +⎡⎤-⎢⎥⎣⎦
. 19.计算定积分I=22
02x x +⎰d x . 20.计算二重积分I =D ⎰⎰1ln y x dxdy ,其中D 是由直线y =x ,y =1及x =5所围成的平面区
域,如图所示.
四、综合题(本大题共4小题,共25分)
21.(本小题6分)
设某厂生产收音机Q 台时的总成本为C(Q)=2000+10Q(元),销售价格为P=800-Q(元),假定产销平衡.
(1)求利润函数L (Q);
(2)问该厂生产多少台时可获得最大利润?并求获得最大利润时的价格.
22.(本小题6分)
设D 是由抛物线y =1-x 2与x 轴所围成的平面区域,如图所示.求:
(1)D 的面积A ;
(2)D 绕x 轴旋转一周所得的旋转体体积V x .
23.(本小题6分) 求证1z z x y
∂∂+=∂∂. 设z =z (x ,y )是由方程2sin(2x +3y -5z )=2x +3y -5z 所确定的隐函数,24.(本小题7分)
计算定积分I
=80⎰d x .。