2015年全_不等式

合集下载

2015年全国各地高考数学试题(卷)与解答分类汇编大全(05_不等式)

2015年全国各地高考数学试题(卷)与解答分类汇编大全(05_不等式)

2015年全国各地高考数学试题及解答分类汇编大全(05不等式)一、选择题:1.(2015文)已知x,y满足约束条件401x yx yy-≥⎧⎪+-≤⎨⎪≥⎩,则yxz+-=2的最大值是()(A)-1 (B)-2(C)-5 (D)12.(2015理)若x,y满足1x yx yx-⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y=+的最大值为()A.0 B.1 C.32D.2【答案】D【解析】试题分析:如图,先画出可行域,由于2z x y=+,则1122y x z=-+,令0Z=,作直线12y x=-,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z取得最小值2.考点:线性规划;3.(2015文)若直线1(0,0)x ya ba b+=>>过点(1,1),则a b+的最小值等于()A.2 B.3 C.4 D.5【答案】C考点:基本不等式.4.(2015理)若变量,x y满足约束条件20,0,220,x yx yx y+≥⎧⎪-≤⎨⎪-+≥⎩则2z x y=-的最小值等于 ( ) A.52- B.2- C.32- D.2【答案】A【解析】试题分析:画出可行域,如图所示,目标函数变形为2y x z=-,当z最小时,直线2y x z=-的纵截距最大,故将直线2y x=经过可行域,尽可能向上移到过点1(1,)2B-时,z取到最小值,最小值为152(1)22z=⨯--=-,故选A.考点:线性规划.5.(2015文)变量,x y满足约束条件220x yx ymx y+≥⎧⎪-+≥⎨⎪-≤⎩,若2z x y=-的最大值为2,则实数m等于()A.2- B.1-C.1 D.2【答案】C【解析】x–1–2–3–41234–1–2–3–4123BOC试题分析:将目标函数变形为2y x z =-,当z 取最大值,则直线纵截距最小,故当0m ≤时,不满足题意;当0m >时,画出可行域,如图所示, 其中22(,)2121mB m m --.显然(0,0)O 不是最优解,故只能22(,)2121m B m m --是最优解,代入目标函数得4222121mm m -=--,解得1m =,故选C .考点:线性规划.6.(2015文)若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .2 【答案】C考点:线性规划.7.(2015理)若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≥+2031854y x y x 则y x z 23+=的最小值为( )A .531 B. 6 C. 523D. 4【答案】C .【解析】不等式所表示的可行域如下图所示,由32z x y =+得322z y x =-+,依题当目标函数直线l :322z y x =-+经过41,5A ⎛⎫⎪⎝⎭时,z 取得最小值即min42331255z =⨯+⨯=,故选C【考点定位】本题考查二元一次不等式的线性规划问题,属于容易题.8. (2015文)不等式2340x x --+>的解集为 .(用区间表示) 【答案】()4,1- 【解析】试题分析:由2340x x --+<得:41x -<<,所以不等式2340x x --+>的解集为()4,1-,所以答案应填:()4,1-. 考点:一元二次不等式.9、(2015文)若变量x 、y 满足约束条件111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则z=2x-y 的最小值为( )A 、-1B 、0C 、1D 、2【答案】AxyOA l考点:简单的线性规划10. (2015理)若变量x,y满足约束条件1 211 x yx yy+≥-⎧⎪-≤⎨⎪≤⎩,则3z x y=-的最小值为()A.-7B.-1C.1D.2【答案】A.而可知当2-=x,1=y时,min3(2)17z=⨯--=-的最小值是7-,故选A.【考点定位】线性规划.【名师点睛】本题主要考查了利用线性规划求线性目标函数的最值,属于容易题,在画可行域时,首先必须找准可行域的围,其次要注意目标函数对应的直线斜率的大小,从而确定目标函数取到最优解时所经过的点,切忌随手一画导致错解.11、(2015文)若实数a,b满足12aba b+=,则ab的最小值为( )A2 B、2 C、2 D、4【答案】C考点:基本不等式12.(2015理)已知,x y满足约束条件2x yx yy-≥⎧⎪+≤⎨⎪≥⎩,若z ax y=+的最大值为4,则a=()(A)3 (B)2 (C)-2 (D)-3 【答案】B【解析】不等式组2xyx yy-≥⎧⎪+≤⎨⎪≥⎩在直角坐标系中所表示的平面区域如下图中的阴影部分所示,若z ax y=+的最大值为4,则最优解可能为1,1x y==或2,0x y==,经检验,2,0x y==是最优解,此时2a=;1,1x y==不是最优解.故选B.【考点定位】简单的线性规划问题.【名师点睛】本题考查了简单的线性规划问题,通过确定参数a的值,考查学生对线性规划的方法理解的深度以及应用的灵活性,意在考查学生利用线性规划的知识分析解决问题的能力.13.(2015理)设()ln,0f x x a b=<<,若)p f ab=,()2a bq f+=,1(()())2r f a f b=+,则下列关系式中正确的是()A.q r p=< B.q r p=> C.p r q=< D.p r q=>【答案】C考点:1、基本不等式;2、基本初等函数的单调性.14. (2015文)设()ln ,0f x x a b =<<,若()p f ab =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q => 【答案】C 【解析】试题分析:1()ln ln 2p f ab ab ab ===;()ln22a b a bq f ++==;11(()())ln 22r f a f b ab =+=因为2a b ab +>,由()ln f x x =是个递增函数,()()2a b f f ab +>所以q p r >=,故答案选C考点:函数单调性的应用.15. (2015文) 某企业生产甲乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品需原料及每天原料的可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元、4万元,则该企业每天可甲乙原料限额A(吨)3212B(吨)128万元【答案】D当直线340x y z +-=过点(2,3)A 时,z 取得最大值324318z =⨯+⨯=故答案选D考点:线性规划.16. (2015理)某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )D .18万元甲乙原料限额A(吨)3212B(吨)128【解析】试题分析:设该企业每天生产甲、乙两种产品分别为x 、y 吨,则利润34z x y =+由题意可列32122800x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,其表示如图阴影部分区域:当直线340x y z +-=过点(2,3)A 时,z 取得最大值,所以max 324318z =⨯+⨯=,故选D . 考点:线性规划.17. (2015文)下列不等式中,与不等式23282<+++x x x 解集相同的是( ).A. 2)32)(8(2<+++x x xB. )32(282++<+x x xC.823212+<++xxxD.218322>+++xxx【答案】B18、(2015理)记方程①:2110x a x++=,方程②:2220x a x++=,方程③:2340x a x++=,其中1a,2a,3a是正实数.当1a,2a,3a成等比数列时,下列选项中,能推出方程③无实根的是()A.方程①有实根,且②有实根 B.方程①有实根,且②无实根C.方程①无实根,且②有实根 D.方程①无实根,且②无实根【答案】B【解析】当方程①有实根,且②无实根时,22124,8a a≥<,从而4222321816,4aaa=<=即方程③:2340x a x++=无实根,选B.而A,D由于不等式方向不一致,不可推;C推出③有实根【考点定位】不等式性质19. (2015文)若不等式组2022020x yx yx y m+-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为三角形,且其面积等于43,则m的值为()(A)-3 (B) 1 (C)43(D)3【答案】B【解析】试题分析:如图,;由于不等式组2022020x y x y x y m +-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为三角形ABC ,且其面积等于43,再注意到直线AB :x+y-2=0与直线BC:x-y+2m=0互相垂直,所以三角形ABC 是直角三角形;易知,A (2,0),B (1-m,m+1),C(2422,33m m -+); 从而112222122223ABC m S m m m ∆+=+⋅+-+⋅=43,化简得:2(1)4m +=,解得m=-3,或m=1;检验知当m=-3时,已知不等式组不能表示一个三角形区域,故舍去;所以m=1; 故选B.考点:线性规划.20、(2015文)设实数x ,y 满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 的最大值为( )(A )252(B )492 (C )12 (D )14【答案】A【考点定位】本题主要考查线性规划与基本不等式的基础知识,考查知识的整合与运用,考查学生综合运用知识解决问题的能力.【名师点睛】本题中,对可行域的处理并不是大问题,关键是“求xy 最大值”中,xy 已经不是“线性”问题了,如果直接设xy =k ,,则转化为反比例函数y =的曲线与可行域有公共点问题,难度较大,且有超出“线性”的嫌疑.而上面解法中,用基本不等式的思想,通过系数的配凑,即可得到结论,当然,对于等号成立的条件也应该给以足够的重视.属于较难题.21.(2015天津文)设变量,y x 满足约束条件2020280x x y x y ì-?ïï-?íï+-?ïî,则目标函数3y z x =+的最大值为( )(A) 7 (B) 8 (C) 9 (D)14【答案】C考点:线性规划22.( 2015天津理)设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数6z x y =+的最大值为( )(A )3 (B )4 (C )18 (D )40【答案】C864224681510551015AB考点:线性规划.23、(2015文)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m)分别为x,y,z,且x y z<<,三种颜色涂料的粉刷费用(单位:元/2m)分别为a,b,c,且a b c<<.在不同的方案中,最低的总费用(单位:元)是()A.ax by cz++ B.az by cx++ C.ay bz cx++ D.ay bx cz++【答案】B考点:1.不等式性质;2.不等式比较大小.二、填空题:1、(2015文)如图,C∆AB及其部的点组成的集合记为D,(),x yP为D中任意一点,则23z x y=+的最大值为.【答案】7考点:线性规划.2.(2015文)若变量,x y满足约束条件4,2,30,x yx yx y+≤⎧⎪-≤⎨⎪-≥⎩则3x y+的最大值是_________.【答案】10.【考点定位】本题考查线性规划的最值问题,属基础题.【名师点睛】这是一道典型的线性规划问题,重点考查线性规划问题的基本解决方法,体现了数形结合的思想在数学解题中重要性和实用性,能较好的考查学生准确作图能力和灵活运用基础知识解决实际问题的能力.3、(2015全国新课标Ⅰ卷文)若x,y满足约束条件20210220x yx yx y+-≤⎧⎪-+≤⎨⎪-+≥⎩,则z=3x+y的最大值为.【答案】4【解析】作出可行域如图中阴影部分所示,作出直线l:30x y+=,平移直线l,当直线l:z=3x+y 过点A时,z取最大值,由2=021=0x yx y+-⎧⎨-+⎩解得A(1,1),∴z=3x+y的最大值为4.【考点定位】简单线性规划解法【名师点睛】对线性规划问题,先作出可行域,在作出目标函数,利用z的几何意义,结合可行域即可找出取最值的点,通过解方程组即可求出做最优解,代入目标函数,求出最值,要熟悉相关公式,确定目标函数的意义是解决最优化问题的关键,目标函数常有距离型、直线型和斜率型.4.(2015全国新课标Ⅰ卷理)若x,y满足约束条件1040xx yx y-≥⎧⎪-≤⎨⎪+-≤⎩,则yx的最大值为 .【答案】3【解析】试题分析:作出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域一点与原点连线的斜率,由图可知,点A(1,3)与原点连线的斜率最大,故yx的最大值为3.考点:线性规划解法5. (2015全国新课标Ⅱ卷文)若x,y满足约束条件50210210x yx yx y+-≤⎧⎪--≥⎨⎪-+≤⎩,则z=2x+y的最大值为.【答案】8考点:线性规划6.(2015全国新课标Ⅱ卷理)若x,y满足约束条件1020,220,x yx yx y-+≥⎧⎪-≤⎨⎪+-≤⎩,,则z x y=+的最大值为____________.【答案】32【解析】试题分析:画出可行域,如图所示,将目标函数变形为y x z=-+,当z取到最大时,直线y x z=-+的纵截距最大,故将直线尽可能地向上平移到1(1,)2D,则z x y=+的最大值为32.考点:线性规划.xy–1–2–3–41234–1–2–3–41234DCBO7. (2015文)若x,y满足约束条件13,1y xx yy-≤⎧⎪+≤⎨⎪≥⎩则3z x y=+的最大值为 .【答案】7【解析】试题分析:画出可行域及直线30x y+=,平移直线30x y+=,当其经过点(1,2)A时,直线的纵截距最大,所以3z x y=+最大为1327z=+⨯=.考点:简单线性规划.8. (2015文)定义运算“⊗”:22x yx yxy-⊗=(,0x y R xy∈≠,).当00x y>>,时,(2)x y y x⊗+⊗的最小值是 .2【解析】试题分析:由新定义运算知,2222(2)4(2)(2)2y x y xy xy x xy--⊗==,因为,00x y>>,,所以,2222224222(2)2222x y y x x y xyx y y xxy xy xy xy--+⊗+⊗=+=≥=2x y=时,(2)x y y x⊗+⊗2考点:1.新定义运算;2.基本不等式.9. (2015文)若yx,满足⎪⎩⎪⎨⎧≥≤+≥-2yyxyx,则目标函数yxz2+=的最大值为 .【答案】3【考点定位】不等式组表示的平面区域,简单的线性规划.10. (2015天津文)已知0,0,8,a b ab>>=则当a的值为时()22log log2a b⋅取得最大值. 【答案】4【解析】试题分析:()()()()22222222log log211log log2log2log164,244a ba b ab+⎛⎫⋅≤===⎪⎝⎭当2a b=时取等号,结合0,0,8,a b ab>>=可得4, 2.a b==考点:基本不等式.11. (2015文)设,0,5a b a b>+=,1++3a b+ ________.【答案】23考点:基本不等式.12、(2015文)已知实数x ,y 满足221x y +≤,则2463x y x y +-+--的最大值是 . 【答案】15 【解析】试题分析: 22,2224631034,22x y y xz x y x y x y y x+-≥-⎧=+-+--=⎨--<-⎩由图可知当22y x ≥-时,满足的是如图的AB 劣弧,则22z x y =+-在点(1,0)A 处取得最大值5;当22y x <-时,满足的是如图的AB 优弧,则1034z x y =--与该优弧相切时取得最大值,故1015z d -==,所以15z =,故该目标函数的最大值为15.考点:1.简单的线性规划;13. (2015理)若实数,x y 满足221x y +≤,则2263x y x y +-+--的最小值是 .三、解答题。

2015年全国高考数学试题分类汇编第十七章 不等式选讲

2015年全国高考数学试题分类汇编第十七章 不等式选讲

第十七章不等式选讲考点不等式的解法及证明4.(2015课标Ⅰ,24,10分)选修4—5:不等式选讲已知函数f(x)=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.解析(1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0.当x≤-1时,不等式化为x-4>0,无解;当-1<x<1时,不等式化为3x-2>0,解得23<x<1;当x≥1时,不等式化为-x+2>0,解得1≤x<2.所以f(x)>1的解集为 x23<x<2.(5分)(2)由题设可得,f(x)=x-1-2a,x<-1,3x+1-2a,-1≤x≤a, -x+1+2a,x>a.所以函数f(x)的图象与x轴围成的三角形的三个顶点分别为A2a-13,0,B(2a+1,0),C(a,a+1),△ABC的面积为23(a+1)2.由题设得23(a+1)2>6,故a>2.所以a的取值范围为(2,+∞).(10分)5.(2015课标Ⅱ,24,10分)选修4—5:不等式选讲设a,b,c,d均为正数,且a+b=c+d.证明:(1)若ab>cd,则a+b>c+d;(2)a+>c+是|a-b|<|c-d|的充要条件.证明(1)因为(a+b)2=a+b+2ab,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd得(a+b)2>(c+d)2.因此a+b>c+d.(2)(i)若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1)得a+>c+.(ii)若a+b>c+d,则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件. 6.(2015陕西,24,10分)选修4—5:不等式选讲已知关于x的不等式|x+a|<b的解集为{x|2<x<4}.(1)求实数a,b的值;(2)求at+12+.解析(1)由|x+a|<b,得-b-a<x<b-a,则-b-a=2,b-a=4,解得a=-3,b=1.(2)-3t+12+t=34-t+t≤[(3)2+12][(4-t)2+(t)2] =24-t+t=4,当且仅当4-t3=t1,即t=1时等号成立,故(-3t+12+t)max=4.。

2015年高考题不等式部分

2015年高考题不等式部分

(3)(天津卷)设命题P :∃n ∈N ,2n >2n,则⌝P 为(A )∀n ∈N,2n >2n (B )∃ n ∈N,2n ≤2n(C )∀n ∈N,2n ≤2n (D )∃ n ∈N,2n =2n(4)(天津卷)设x R ∈,则“21x -<”是“220x x +->”的(A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件4. (浙江卷)命题“且的否定形式是 A.**,()n N f n N ∀∈∉且 B.**,()n N f n N ∀∈∉或C.**00,()n N f n N ∃∈∉且D.**00,()n N f n N ∃∈∉或(2)(天津卷)设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数6z x y =+的最大值为(A )3(B )4(C )18(D )40(14)(全国2卷)若x ,y 满足约束条件,则的最大值为____________.(15)(全国1卷)若,x y 满足约束条件10,0,40,x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩则y x 的最大值为.8.(四川卷)设a ,b 都是不等于1的正数,则“”是“”的(A )充要条件(B )充分不必要条件**,()n N f n N ∀∈∈()f n n ≤()f n n >()f n n >00()f n n >00()f n n >333a b >>log 3log 3a b <(C )必要不充分条件(D )既不充分也不必要条件1.(广东卷)若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N =A .∅B .{}1,4--C .{}0D .{}1,4(安徽卷)(3)设,则p 是q 成立的(A )充分不必要条件(B )必要不充分条件(C )充分必要条件(D )既不充分也不必要条件 2.(北京卷)若x ,y 满足010x y x y x -⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y =+的最大值为A .0B .1C .32D .25、(福建)若变量,x y 满足约束条件20,0,220,x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩则2z x y =-的最小值等于 A.52- B.2- C.32- D.26.(广东卷)若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≥+2031854y x y x 则y x z 23+=的最小值为A .531 B.6C.523 D. 4 4. (湖南卷)若变量,x y 满足约束条件1,2,1x y x y y +≥-⎧⎪-≤⎨⎪≤⎩则3z x y =-的最小值为( )A.-7B.-1C.1D.2(6)(山东卷)已知,x y 满足约束条件0,2,0.x y x y y -≥⎧⎪+≤⎨⎪≥⎩若z ax y =+的最大值为4,则a =(A )3(B )2 (C )-2 (D )-3 :12,:21xp x q <<>。

2015高考数学一轮配套课件:15-6不等式的证明

2015高考数学一轮配套课件:15-6不等式的证明

个数或代数式,移项,在不等式的两边同时乘
以(或除以)一个正数或一个正的代数式,得到的
不等式都和原来的不等式等价.这些方法,也
是利用综合法和分析法证明不等式时常常用到 诊断·基础知识
突破·高频考第点十八页,编辑于培星期养五:·解十三题点能五十力九分。
【训练 2】 (2012·南通模拟)已知 a,b,c 为正实数,求证:21a+
们的几何平均数,即a1+a2+n …+an ≥ n a1a2…an, 当且仅当 a1=a2=…=an 时,等号成立.
诊断·基础知识
突破·高频考第点三页,编辑于星培期五养:十·解三点题五能十九力分。
3.柯西不等式 (1)设 a,b,c,d 均为实数,则(a2+b2)(c2+d2)≥(ac+bd)2, 当且仅当 ad=bc 时等号成立.
诊断·基础知识
突破·高频考第点十二页,编辑于培星期养五:·解十三题点能五十力九分。
(2) bac+ abc+ acb=a+abb+c c.
在(1)中已证 a+b+c≥ 3.
因此要证原不等式成立,只需证明
1≥ abc
a+
b+
c.
即证 a bc+b ac+c ab≤1,
即证 a bc+b ac+c ab≤ab+bc+ca. 而 a bc= ab·ac≤ab+2 ac,b ac≤ab+2 bc,c ab≤bc+2 ac.
诊断·基础知识
突破·高频考第点八页,编辑于星培期五养:十·解三点题五能十九力分。
2.(2010·江苏卷)已知实数 a,b≥0,求证:a3+b3≥ ab(a2+b2). 证明 由 a,b 是非负实数,作差得 a3+b3- ab(a2+b2)=a2 a( a- b)+b2 b( b- a)=( a- b)[( a)5-( b)5]. 当 a≥b 时, a≥ b,从而( a)5≥( b)5, 得( a- b)[( a)5-( b)5]≥0; 当 a<b 时, a< b,从而( a)5<( b)5, 得( a- b)[( a)5-( b)5]>0; ∴a3+b3≥ ab(a2+b2).

2015年高考数学知识点之集合不等式

2015年高考数学知识点之集合不等式

集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 集合的表示法:列举法、描述法、图形表示法.2.集合元素的特征:确定性、互异性、无序性.3.集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.[注]:已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.( ) ①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅) 4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个.集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉ U 交:且并:或补:且C 主要性质和运算律 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇ C等价关系:U A B A B A A B B A B U ⊆⇔=⇔=⇔= C 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ=== 等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B ) 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0. 基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card ( U A )= card(U)- card(A)【易错点1】忽视空集是任何非空集合的子集导致思维不全面。

2015年高考数学试题分类汇编-----专题七(不等式)-推荐下载

2015年高考数学试题分类汇编-----专题七(不等式)-推荐下载

【答案】A 【解析】
2
2
满足约束条件
试题分析:画出可行域,如图所示,目标函数变形为 y 2x z ,当 z 最小时,直线
y 2x z 的纵截距最大,故将直线 y 2x 经过可行域,尽可能向上移到过点
B(1, 1 ) 时, z 取到最小值,最小值为 2
z 2 (1) 1 5 ,故选 A. 22
【答案】7

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2015高考数学真题分类 考点23 不等式的解法

2015高考数学真题分类 考点23 不等式的解法

考点23 不等式的解法1.(2015.上海.文,16)下列不等式中,与不等式28223x x x +<++解集相同的是( ) A.()()28232x x x +++<B. ()28223x x x +<++C. 212238x x x <+++D. 223182x x x ++>+ 2.(2015.陕西.理文,24)已知关于x 的不等式||x a b +<的解集为{|24}x x <<。

(I )求实数a,b 的值;(II )求12at bt ++得最大值。

3.(2015.广东.文,11)不等式2340x x --+>的解集为 .(用区间表示)4.(2015.江苏,7)不等式422<-x x 的解集为5.(2015.江苏,21)D.(选修4—5:不等式选讲)解不等式|23|3x x ++≥6.(2015.山东.理,5)不等式152x x ---<的解集是A. (),4-∞B. (),1-∞C. ()1,4D. ()1,57.(2015.福建.理,21)(3)选修4-5:不等式选讲已知a ﹥0,b ﹥0,c ﹥0,函数f (x )=∣x+a ∣+∣x-b ∣+c 的最小值为4.(1)求a b c ++的值;(2)求2221149a b c ++的最小值8.(2015.全国I.理文,24)选修4-5:不定式选讲已知函数0=a+xxfx-a|2.||1|(>)-(I)当a=1时,求不等式1)xf的解集:(>(II)若)f的图像与x轴围成的三角形面积大于6,求a的取值范围(x。

2015全国高考数学(文科)分类汇编不等式

2015全国高考数学(文科)分类汇编不等式

绝密★启用前 2015-2016学年度???学校11月月考卷 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题(题型注释) 1.【2015高考天津,文2】设变量,y x 满足约束条件2020280x x y x y ì-?ïï-?íï+-?ïî,则目标函数3y z x =+的最大值为( ) (A )7 (B ) 8 (C )9 (D )14 2.【2015高考浙江,文6】有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m )分别为x ,y ,z ,且x y z <<,三种颜色涂料的粉刷费用(单位:元/2m )分别为a ,b ,c ,且a b c <<.在不同的方案中,最低的总费用(单位:元)是( ) A .ax by cz ++ B .az by cx ++ C .ay bz cx ++D .ay bx cz ++ 3.【2015高考重庆,文10】若不等式组2022020x y x y x y m +-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为三角形,且其面积等于43,则m 的值为( ) (A )-3 (B )1 (C )43 (D )3 4.【2015高考湖南,文7】若实数,a b 满足12a b +=,则ab 的最小值为( )5.【2015高考四川,文9】设实数x ,y 满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 的最大值为( ) (A )252 (B )492 (C )12 (D )14 6.【2015高考广东,文4】若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( ) A .10 B .8 C .5 D .27.【2015高考陕西,文11】某企业生产甲乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品需原料及每天原料的可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元.4万元,则该企业每天可获得最大利润为( )甲乙原料限额A(吨)3212B(吨)128A .12万元B .16万元C .17万元D .18万元8.【2015高考湖南,文4】若变量x y ,满足约束条件111x y y x x +≥⎧⎪-≤⎨⎪≤⎩ ,则2z x y =-的最小值为( )A 、1-B 、0C 、1D 、29.【2015高考福建,文10】变量,x y 满足约束条件02200xy x y mx y +≥⎧⎪-+≥⎨⎪-≤⎩,若2z x y =-的最大值为2,则实数m 等于( )A .2-B .1-C .1D .210.【2015高考福建,文5】若直线1(0,0)xya b a b +=>>过点(1,1),则a b +的最小值等于( )A .2B .3C .4D .511.【2015高考安徽,文5】已知x ,y 满足约束条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩,则y x z +-=2的最大值是( )(A )-1 (B )-2 (C )-5 (D )112.【2015高考上海,文16】 下列不等式中,与不等式23282<+++x x x 解集相同的是( ).A .2)32)(8(2<+++x x x2C .823212+<++x x xD .218322>+++x x x第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题(题型注释) 13.【2015高考重庆,文14】设,0,5a b a b >+=,________. 14.【2015高考新课标1,文15】若x,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z=3x+y 的最大值为 .15.【2015高考天津,文12】已知0,0,8,a b ab >>= 则当a 的值为 时()22log log 2a b ⋅取得最大值.16.【2015高考山东,文12】 若,x y 满足约束条件13,1y x x y y -≤⎧⎪+≤⎨⎪≥⎩则3z x y =+的最大值为 .17.【2015高考湖北,文12】若变量,x y 满足约束条件4,2,30,x y x y x y +≤⎧⎪-≤⎨⎪-≥⎩ 则3x y +的最大值是_________.18.【2015高考广东,文11】不等式2340x x --+>的解集为 .(用区间表示)19.【2015高考北京,文13】如图,C ∆AB 及其内部的点组成的集合记为D ,(),x y P 为D 中任意一点,则23z x y =+的最大值为 .20.【2015高考浙江,文14】已知实数x ,y 满足221x y +≤,则2463x y x y +-+--的最大值是 .21.【2015高考上海,文9】若y x ,满足⎪⎩⎪⎨⎧≥≤+≥-020y y x y x ,则目标函数y x z 2+=的最大值为 . 三、解答题(题型注释)参考答案1.C【解析】()()513y 2289922z x x x y =+=-++-+?,当 2,3x y == 时取得最大值9,故选C .此题也可画出可行域,借助图像求解,【考点定位】本题主要考查线性规划知识.【名师点睛】线性规划也是高考中常考的知识点,一般以客观题形式出现,基本题型是给出约束条件求目标函数的最值,常见的结合方式有:纵截距、斜率、两点间的距离、点到直线的距离,解决此类问题常利用数形结合,准确作出图形是解决问题的关键.2.B【解析】由x y z <<,a b c <<,所以()()()ax by cz az by cx a x z c z x ++-++=-+-()()0x z a c =-->,故ax by cz az by cx ++>++;同理,()ay bz cx ay bx cz ++-++ ()()()()0b z x c x z x z c b =-+-=--<,故a yb zc x a y ++<++.因为()az by cx ay bz cx ++-++()()()(a z y b y z a b z y =-+-=--<,故a z b y ++<++.故最低费用为az by cx ++.故选B .考点:1.不等式性质;2.不等式比较大小.【名师点睛】本题主要考查不等式的性质以及不等式比较大小.解答本题时要能够对四个选项利用作差的方式进行比较,确认最小值.本题属于容易题,重点考查学生作差比较的能力.3.B【解析】如图,,由于不等式组2022020x y x y x y m +-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为ABC ∆,且其面积等于43, 再注意到直线:20AB x y +-=与直线:20BC x y m -+=互相垂直,所以ABC ∆是直角三角形,易知,(2,0),(1,1)A B m m -+,2422(,)33m m C -+;从而112222122223ABC m S m m m ∆+=+⋅+-+⋅=43, 化简得:2(1)4m +=,解得3m =-,或1m =,检验知当3m =-时,已知不等式组不能表示一个三角形区域,故舍去,所以1m =;故选B .【考点定位】线性规划与三角形的面积.【名师点睛】本题考查线性规划问题中的二元一次不等式组表示平面区域,利用已知条件将三角形的面积用含m 的代数式表示出来,从而得到关于m 的方程来求解.本题属于中档题,注意运算的准确性及对结果的检验.4.C【解析】121200a b ab a b a b +=∴=+≥=∴≥ >,>,,(当且仅当2b a =时取等号),所以ab 的最小值为C .【考点定位】基本不等式【名师点睛】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.5.A【解析】画出可行域如图在△ABC 区域中结合图象可知当动点在线段AC 上时xy 取得最大此时2x +y =10xy =12(2x ·y )≤21225()222x y += 当且仅当x =52,y =5时取等号,对应点(52,5)落在线段AC 上,故最大值为252选A【考点定位】本题主要考查线性规划与基本不等式的基础知识,考查知识的整合与运用,考查学生综合运用知识解决问题的能力.【名师点睛】本题中,对可行域的处理并不是大问题,关键是“求xy 最大值”中,xy 已经不是“线性”问题了,如果直接设xy =k ,,则转化为反比例函数y =k x的曲线与可行域有公共点问题,难度较大,且有超出“线性”的嫌疑.而上面解法中,用基本不等式的思想,通过系数的配凑,即可得到结论,当然,对于等号成立的条件也应该给以足够的重视.属于较难题.6.C【解析】作出可行域如图所示:作直线0:l 230x y +=,再作一组平行于0l 的直线:l 23x y z +=,当直线l 经过点A 时,23z x y =+取得最大值,由224x y x +=⎧⎨=⎩得:41x y =⎧⎨=-⎩,所以点A 的坐标为()4,1-,所以()max 24315z =⨯+⨯-=,故选C .【考点定位】线性规划.【名师点晴】本题主要考查的是线性规划,属于容易题.线性规划类问题的解题关键是先正确画出不等式组所表示的平面区域,然后确定目标函数的几何意义,通过数形结合确定目标函数何时取得最值.解题时要看清楚是求“最大值”还是求“最小值”,否则很容易出现错误;画不等式组所表示的平面区域时要通过特殊点验证,防止出现错误.7.D【解析】设该企业每天生产甲乙两种产品分别x ,y 吨,则利润34z x y =+由题意可列0,0321228x y x y x y ≥≥⎧⎪+≤⎨⎪+≤⎩,其表示如图阴影部分区域:当直线340x y z +-=过点(2,3)A 时,z 取得最大值324318z =⨯+⨯=,故答案选D 。

2015年高考数学总复习精品课件:第5章 第1讲 不等式的概念与性质

2015年高考数学总复习精品课件:第5章 第1讲 不等式的概念与性质
第五页,编辑于星期五:十一点 二十六分。
2.a,b∈R,若 a-|b|>0,则下列不等式中正确的是( D )
A.b-a>0
B.a3+b3<0
C.a2-b2<0
D.b+a>0
解析:利用赋值法:令 a=1,b=0,可排除 A,B,C.
3.(2013 年广东深圳二模)设 0<a<b<1,则下列不等式
成立的是( D )
第八页,编辑于星期五:十一点 二十六分。
考点 1 不等式的基本性质
例 1:(1)设 0<a<b,则下列不等式中正确的是(
)
A.a<b<
a+b ab< 2
B.a<
a+b ab< 2 <b
C.a<
a+b ab<b< 2
a+b D. ab<a< 2 <b
第九页,编辑于星期五:十一点 二十六分。
解析一:已知 0<a<b 和 ab<a+2 b,比较 a 与 ab.
∵fn+1= f(n)
22nn++53·1+bn1+1=
2n+3 2n+4 2n+5·2n+3

2n+2n5+· 42n+3=
4n2+16n+16 4n2+16n+15>1.
∴f(n+1)>f(n),即 f(n)单调递增.
∴f(n)min=f(1)=
15·43=4 15
5.∴0<a≤4
15
5 .
第二十四页,编辑于星期五:十一点 二十六分。
法等.有时把差变形为常数,有时变形为常数与几个数平方和 的形式,有时变形为几个因式积的形式等.总之,变形到能判
断出差的符号为止.
第十八页,编辑于星期五:十一点 二十六分。

2015年高考数学(理)真题分项解析:专题07+不等式

2015年高考数学(理)真题分项解析:专题07+不等式

合运用知识解题的能力 .在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档
题的形式出现 .
x y≤0,
2.【 2015 高考北京,理 2】若 x , y 满足 x y ≤ 1, 则 z x 2y 的最大值为(

x≥ 0,
A.0 【答案】 D
B.1
3 C.
2
D .2
1
高中学习交流群: 9854211
高中学习交流群: 9854211
专题七 不等式
1.【 2015 高考四川,理 9】如果函数 f x
1 m
2 x2
2
间 1 ,2 上单调递减,则 mn 的最大值为(

2
n 8 x 1 m 0,n 0 在区
(A ) 16
【答案】 B 【解析】
( B )18
( C)25
( D) 81 2
m 2 时,抛物线的对称轴为 x
【解析】 如图,先画出可行域, 由于 z x 2y ,则 y
1 x 1 z ,令 Z 0 , 22
作直线 y
1 x ,在可行域中作平行线, 得最优解 (0,1) ,此时直线的截距最大, Z
2
取得最小值 2. 考点定位:本题考点为线性规划的基本方法
【名师点睛】本题考查线性规划解题的基本方法,本题属于基础题
2
2
故应舍去 .要使得 mn 取得最大值,应有 m 2n 18 (m 2, n 8) .所以
mn (18 2n)n (18 2 8) 8 16 ,所以最大值为 18.选 B..
【考点定位】函数与不等式的综合应用 .
【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到
m、n 满足的条

2015年高考数学真题分类汇编:专题(07)不等式(理科)及答案

2015年高考数学真题分类汇编:专题(07)不等式(理科)及答案

2015年高考数学真题分类汇编:专题(07)不等式(理科)及答案D轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现.2.【2015高考北京,理2】若x ,y 满足010x y x y x -⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y=+的最大值为( )A .0B .1 C.32D .2 【答案】D【解析】如图,先画出可行域,由于2zx y =+,则1122y x z =-+,令0Z =,作直线12y x =-,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取得最小值2.考点定位:本题考点为线性规划的基本方法【名师点睛】本题考查线性规划解题的基本方法,本题属于基础题,要求依据二元一次不等式组准确画出可行域,利用线性目标函数中直线的纵截距的几何意义,令0z =,画出直线12yx =-,在可行域内平移该直线,确定何时z 取得最大值,找出此时相应的最优解,依据线性目标函数求出最值,这是最基础的线性规划问题.3.【2015高考广东,理6】若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≥+2031854y x y x 则y x z 23+=的最小值为( )A .531 B. 6 C. 523D. 4【答案】C .【考点定位】二元一次不等式的线性规划.【名师点睛】本题主要考查学生利用二元一次不等式组所表示的平面区域解决线性规划的应用,数形结合思想的应用和运算求解能力,本题关键在于正确作出二元一次不等式组所表示的可行域和准确判断目标函数直线出取得最小值的可行解,属于容易题.4.【2015高考陕西,理9】设()ln ,0f x x a b =<<,若(p f ab =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q =>【答案】C 【解析】(p f ab ab ==()ln 22a b a b q f ++==,11(()())ln ln 22r f a f b ab ab =+==()ln f x x =在()0,+∞上单调递增,因为2a b ab +>,所以()(2a b f f ab +>,所以q p r >=,故选C .【考点定位】1、基本不等式;2、基本初等函数的单调性.【名师点晴】本题主要考查的是基本不等式和基本初等函数的单调性,属于容易题.解题时一定要注意检验在使用基本不等式求最值中是否能够取得等号,否则很容易出现错误.本题先判断2a b +ab 即可比较大小.5.【2015高考湖北,理10】设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]nt n = 同时成立....,则正整数n 的最大值是( )A .3B .4C .5D .6【答案】B【解析】因为[]x 表示不超过x 的最大整数.由1][=t 得21<≤t ,由2][2=t 得322<≤t,由3][4=t 得544<≤t ,所以522<≤t ,所以522<≤t ,由3][3=t 得433<≤t ,所以5465<≤t ,由5][5=t 得655<≤t ,与5465<≤t 矛盾,故正整数n 的最大值是4. 【考点定位】函数的值域,不等式的性质.【名师点睛】这类问题一般有两种:[]x 表示不超过x 的最大整数;{}x 表示不小于x 的最大整数. 应注意区别.6.【2015高考天津,理2】设变量,x y满足约束条件2030230xx yx y+≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数6z x y=+的最大值为( )(A)3 (B)4 (C)18 (D)40【答案】C【考点定位】线性规划.【名师点睛】本题主要考查线性规划与二元一次不等式的几何意义,将二元一次不等式(组)的几何意义与求线性目标函数的最值问题结合在一起,考查线性相关问题和数形结合的数学思想,同时考查学生的作图能力与运算能力.本题中不等式所表示的平面区域为不封闭区域,与平时教学中的练习题有出入,是易错问题.7.【2015高考陕西,理10】某企业生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()A.12万元B.16万元C.17万元 D.18万元甲乙原料限额A(吨)3212B(吨)128【答案】D【解析】设该企业每天生产甲、乙两种产品分别为x、y吨,则利润34z x y=+由题意可列321228x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,其表示如图阴影部分区域:当直线340x y z+-=过点(2,3)A时,z取得最大值,所以max 324318z=⨯+⨯=,故选D.【考点定位】线性规划.【名师点晴】本题主要考查的是线性规划,属于容易题.线性规划类问题的解题关键是先正确画出不等式组所表示的平面区域,然后确定目标函数的几何意义,通过数形结合确定目标函数何时取得最值.解题时要看清楚是求“最大值”还是求“最小值”,否则很容易出现错误;画不等式组所表示的平面区域时要通过特殊点验证,防止出现错误.8.【2015高考山东,理5】不等式152x x---<的解集是()(A)(-,4)(B)(-,1)(C)(1,4)(D)(1,5)【答案】A【解析】原不等式同解于如下三个不等式解集的并集;1155()()()152152152x x x I II III x x x x x x <≤<≥⎧⎧⎧⎨⎨⎨-+-<-+-<--+<⎩⎩⎩解(I )得:1x < ,解(II )得:14x ≤< ,解(III )得:x φ∈ , 所以,原不等式的解集为{}4x x < .故选A.【考点定位】含绝对值的不等式的解法.【名师点睛】本题考查了含绝对值的不等式的解法,重点考查学生利用绝对值的意义将含绝对值的不等式转化为不含绝对值的不等式(组)从而求解的能力,本题属中档题.9.【2015高考福建,理5】若变量,x y 满足约束条件20,0,220,x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩ 则2z x y =- 的最小值等于 ( )A .52-B .2-C .32- D .2值,解该类题目时候,往往还要将目标直线的斜率和可行域边界的斜率比较,否则很容易出错,属于基础题.10.【2015高考山东,理6】已知,x y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a = ( )(A )3 (B )2(C )-2 (D )-3【答案】B【解析】不等式组020x y x y y -≥⎧⎪+≤⎨⎪≥⎩ 在直角坐标系中所表示的平面区域如下图中的阴影部分所示,若z ax y =+的最大值为4,则最优解可能为1,1x y == 或2,0x y == ,经检验,2,0x y ==是最优解,此时2a = ;1,1x y ==不是最优解.故选B.【考点定位】简单的线性规划问题.【名师点睛】本题考查了简单的线性规划问题,通过确定参数a 的值,考查学生对线性规划的方法理解的深度以及应用的灵活性,意在考查学生利用线性规划的知识分析解决问题的能力.11.【2015高考新课标1,理15】若,x y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则y x 的最大值为 .【答案】3【解析】作出可行域如图中阴影部分所示,由斜率的意义知,y x 是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故y的最大值为3.x【考点定位】线性规划解法【名师点睛】对线性规划问题,先作出可行域,在作出目标函数,利用z的几何意义,结合可行域即可找出取最值的点,通过解方程组即可求出做最优解,代入目标函数,求出最值,要熟悉相关公式,确定目标函数的意义是解决最优化问题的关键,目标函数常有距离型、直线型和斜率型.12.【2015高考浙江,理14】若实数,x y满足221+≤,x y则2263+-+--的最小值是.x y x y【答案】3.【考点定位】1.线性规划的运用;2.分类讨论的数学思想;3.直线与圆的位置关系【名师点睛】本题主要考查了以线性规划为背景的运用,属于中档题根据可行域是圆及其内部的特点,结合直线与圆的位置关系的判定,首先可以将目标函数的两个绝对值号中去掉一个,再利用分类讨论的数学思想去掉其中一个绝对值号,利用线性规划知识求解,理科试卷的线性规划问题基本考查含参的线性规划问题或者是利用线性规划的知识解决一些非线性的目标函数或可行域的问题,常需考查目标函数或可行域的几何意义求解,在复习时应予以关注.13.【2015高考新课标2,理14】若x ,y 满足约束条件1020,220,x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,,则z x y =+的最大值为____________. 【答案】32【解析】画出可行域,如图所示,将目标函数变形为y x z =-+,当z 取到最大时,直线y x z =-+的纵截距最大,故将直线尽可能地向上平移到1(1,)2D ,则z x y =+的最大值为32. 【考点定位】线性规划.x y –1–2–3–41234–1–2–3–41234D CB O【名师点睛】本题考查线性规划,要正确作图,首先要对目标函数进行分析,什么时候目标函数取到最大值,解该类题目时候,往往还要将目标直线的斜率和可行域边界的斜率比较,否则很容易出错,属于基础题.14.【2015高考江苏,7】不等式224x x -<的解集为________.【答案】(1,2).-【解析】由题意得:2212x x x -<⇒-<<,解集为(1,2).-【考点定位】解指数不等式与一元二次不等式【名师点晴】指数不等式按指数与1的大小判断其单调性,决定其不等号是否变号;对于一元二次方程20(0)ax bx c a ++=>的解集,先研究ac b 42-=∆,按照0>∆,0=∆,0<∆三种情况分别处理,具体可结合二次函数图像直观写出解集.15.【2015高考湖南,理4】若变量x ,y 满足约束条件1211x yx yy+≥-⎧⎪-≤⎨⎪≤⎩,则3z x y=-的最小值为()A.-7B.-1C.1D.2【答案】A.【解析】如下图所示,画出线性约束条件所表示的区域,即可行域,作直线l:30x y-=,平移l,从而可知当2-=x,1=y时,min 3(2)17z=⨯--=-的最小值是7-,故选A.【考点定位】线性规划.【名师点睛】本题主要考查了利用线性规划求线性目标函数的最值,属于容易题,在画可行域时,首先必须找准可行域的范围,其次要注意目标函数对应的直线斜率的大小,从而确定目标函数取到最优解时所经过的点,切忌随手一画导致错解.【2015高考上海,理17】记方程①:2110xa x ++=,方程②:2220xa x ++=,方程③:2340x a x ++=,其中1a ,2a ,3a 是正实数.当1a ,2a ,3a 成等比数列时,下列选项中,能推出方程③无实根的是( )A .方程①有实根,且②有实根B .方程①有实根,且②无实根C .方程①无实根,且②有实根D .方程①无实根,且②无实根【答案】B【考点定位】不等式性质【名师点睛】不等式的基本性质:同向同正可乘性00a b ac bd c d >>⎧⇒>⎨>>⎩,可推:00a b a b c d d c >>⎧⇒>⎨>>⎩一元二次方程有解的充要性:0∆≥;一元二次方程无解的充要性:0∆<;利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.。

2015年高考数学总复习(人教A版,理科)配套教案:第七章 不等式 7.2

2015年高考数学总复习(人教A版,理科)配套教案:第七章 不等式 7.2

§7.2二元一次不等式(组)与简单的线性规划问题1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可判断Ax+By+C>0表示的直线是Ax+By+C=0哪一侧的平面区域.2.线性规划相关概念名称意义约束条件由变量x,y组成的一次不等式线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数欲求最大值或最小值的函数线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题3.利用线性规划求最值,一般用图解法求解,其步骤是(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( × )(2)不等式x 2-y 2<0表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y 轴的两块区域.( √ )(3)不等式组⎩⎪⎨⎪⎧3x -y -6<0,x -y +2>0,x ≥0,y ≥0表示的平面区域是下图中的阴影部分. ( × )(4)线性目标函数的最优解可能是不唯一的.( √ ) (5)线性目标函数取得最值的点一定在可行域的顶点或边界上.( √ )(6)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( × ) 2.下列各点中,不在x +y -1≤0表示的平面区域内的是( )A.(0,0)B.(-1,1)C.(-1,3)D.(2,-3)答案 C解析 把各点的坐标代入可得(-1,3)不适合,故选C. 3.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则该约束条件所围成的平面区域的面积是( )A.3B.52C.2D.2 2答案 C解析 因为直线x -y =-1与x +y =1互相垂直, 所以如图所示的可行域为直角三角形, 易得A (0,1),B (1,0),C (2,3),故|AB |=2,|AC |=22,其面积为12×|AB |×|AC |=2.4.(2013·湖南)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2x ,x +y ≤1,y ≥-1,则x +2y 的最大值是( )A.-52B.0C.53D.52答案 C解析 画出可行域如图.设z =x +2y ,平行移动直线y =-12x +12z ,当直线y =-12x +z2过点M ⎝⎛⎭⎫13,23时,z 取最大值53, 所以(x +2y )max =53.5.(2013·浙江)设z =kx +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,x -2y +4≥0,2x -y -4≤0.若z 的最大值为12,则实数k =________. 答案 2解析 作出可行域如图阴影部分所示:由图可知当0≤-k <12时,直线y =-kx +z 经过点M (4,4)时z 最大,所以4k +4=12,解得k =2(舍去);当-k ≥12时,直线y =-kx +z 经过点(0,2)时z 最大,此时z 的最大值为2,不合题意;当-k <0时,直线y =-kx +z 经过点M (4,4)时z 最大,所以4k +4=12,解得k =2,符合题意.综上可知,k =2.题型一 二元一次不等式(组)表示的平面区域 例1 若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A.73B.37C.43D.34思维启迪 画出平面区域,显然点⎝⎛⎭⎫0,43在已知的平面区域内,直线系过定点⎝⎛⎭⎫0,43,结合图形寻找直线平分平面区域面积的条件即可. 答案 A解析 不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52. 当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43, 所以k =73.思维升华 二元一次不等式(组)表示平面区域的判断方法: 直线定界,测试点定域.注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,则测试点常选取原点.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A (0,1),B (-2,2),C (2,6),试写出△ABC 及其内部区域所 对应的二元一次不等式组.解 由已知得直线AB 、BC 、CA 的方程分别为直线AB :x +2y -2 =0,直线BC :x -y +4=0,直线CA :5x -2y +2=0,∴原点(0,0)不在各直线上,将原点坐标代入到各直线方程左端,结合式子的符号可得不等式组为⎩⎪⎨⎪⎧x -y +4≥0x +2y -2≥05x -2y +2≤0.题型二 求线性目标函数的最值例2 设x ,y 满足约束条件:⎩⎪⎨⎪⎧x -4y ≤-33x +5y ≤25x ≥1,求z =x +y 的最大值与最小值.思维启迪 作可行域后,通过平移直线l 0:x +y =0来寻找最优解,求出目标函数的最值. 解 先作可行域,如图所示中△ABC 的区域,且求得A (5,2)、 B (1,1)、C (1,225),作出直线l 0:x +y =0,再将直线l 0平移,当l 0的平行线l 1过点B 时,可使z =x +y 达到最小值;当l 0的平 行线l 2过点A 时,可使z =x +y 达到最大值. 故z min =2,z max =7.思维升华 (1)线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界处取得.(2)求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义,明确和直线的纵截距的关系.(1)已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为 ( )A.3B.4C.3 2D.4 2(2)(2013·课标全国Ⅱ)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a 等于( )A.14B.12C.1D.2答案 (1)B (2)B解析 (1)由线性约束条件⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其 化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,、 z 最大,将点(2,2)的坐标代入z =2x +y 得z 的最大值为4. (2)作出不等式组表示的可行域,如图(阴影部分). 易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a (x -3), 得⎩⎪⎨⎪⎧x =1,y =-2a , ∴z min =2-2a =1, 解得a =12,故选B.题型三 实际生活中的线性规划问题例3 (2012·江西)某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表年产量/亩 年种植成本/亩 每吨售价 黄瓜 4吨 1.2万元 0.55万元 韭菜6吨0.9万元0.3万元面积(单位:亩)分别为( )A.50,0B.30,20C.20,30D.0,50思维启迪 根据线性规划解决实际问题,要先用字母表示变量,找出各量的关系列出约束条件,设出目标函数,转化为线性规划问题. 答案 B解析 设种植黄瓜x 亩,韭菜y 亩,则由题意可知⎩⎪⎨⎪⎧x +y ≤50,1.2x +0.9y ≤54,x ,y ∈N +,求目标函数z =x+0.9y 的最大值,根据题意画可行域如图阴影所示.当目标函数线l 向右平移,移至点A (30,20)处时,目标函数取得最大值,即当黄瓜种植30亩,韭菜种植20亩时,种植总利润最大.思维升华 线性规划的实际应用问题,需要通过审题理解题意,找出各量之间的关系,最好是列成表格,找出线性约束条件,写出所研究的目标函数,转化为简单的线性规划问题,再按如下步骤完成:(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平行直线系中过原点的那一条l ;(2)平移——将l 平行移动,以确定最优解的对应点A 的位置;(3)求值——解方程组求出A 点坐标(即最优解),代入目标函数,即可求出最值.某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需送往A 地至少72吨的货物,派用的每辆车需满载且只能送一次.派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元,该公司合理计划当天派用两类卡车的车辆数,可得最大利润z 为( )A.4 650元B.4 700元C.4 900元D.5 000元答案 C解析 设该公司合理计划当天派用甲、乙型卡车的车辆数分别为x ,y ,则根据条件得x ,y满足的约束条件为⎩⎪⎨⎪⎧x +y ≤12,2x +y ≤19,10x +6y ≥72,x ≤8,y ≤7,x ∈N *,y ∈N *,目标函数z =450x+350y .作出约束条件所表示的平面区域如图,然后平移目标函数对应的直线450x +350y =0(即9x +7y =0)知,当直线经过直线x +y =12与2x +y =19的交点(7,5)时,目标函数取得最大值,即z =450×7+350×5=4 900.题型四 求非线性目标函数的最值 例4 (1)设实数x ,y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx的最大值为________. (2)已知O 是坐标原点,点A (1,0),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥2,x ≤1,y ≤2,上的一个动点,则|OA →+OM →|的最小值是________.思维启迪 与二元一次不等式(组)表示的平面区域有关的非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成. 答案 (1)32 (2)322解析 (1)y x 表示点(x ,y )与原点(0,0)连线的斜率,在点(1,32)处取到最大值.(2)依题意得,OA →+OM →=(x +1,y ),|OA →+OM →|=(x +1)2+y 2可视为点(x ,y )与点(-1,0)间的距离,在坐标平面内画出题中的不等式组表示的 平面区域,结合图形可知,在该平面区域内的点中,由点(-1,0)向直线x +y =2引垂线的垂足位于该平面区域内,且与点(-1,0)的距离最小,因此|OA →+OM →|的最 小值是|-1+0-2|2=322.思维升华 常见代数式的几何意义有 (1)x 2+y 2表示点(x ,y )与原点(0,0)的距离;(2)(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )之间的距离;(3)yx 表示点(x ,y )与原点(0,0)连线的斜率; (4)y -b x -a表示点(x ,y )与点(a ,b )连线的斜率. 设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x ,所表示的平面区域是Ω1,平面区域Ω2是与Ω1关于直线3x -4y -9=0对称的区域,对于Ω1中的任意一点A 与Ω2中的任意一点B ,|AB |的最小值等于( )A.285B.4C.125D.2答案 B解析 由题意知,所求的|AB |的最小值,即为区域Ω1中的点到直 线3x -4y -9=0的距离的最小值的两倍,画出已知不等式表示的 平面区域,如图所示,可看出点(1,1)到直线3x -4y -9=0的距离最小,故|AB |的最小值 为2×|3×1-4×1-9|5=4,选B.线性规划问题中忽视参数范围致误典例:(5分)已知x ,y 满足约束条件|x |+2|y |≤2,且z =y -mx (m ≠0)的最小值等于-2,则实数m 的值等于________.易错分析 本题容易出现的错误主要有两个方面:(1)没有将绝对值不等式转化为不等式组,画不出正确的可行域; (2)没有对参数m 的取值情况进行分类讨论,造成漏解,只得到m =1. 解析 原不等式等价于以下四个不等式组: ⎩⎪⎨⎪⎧ x ≥0,y ≥0,x +2y ≤2,⎩⎪⎨⎪⎧ x ≥0,y ≤0,x -2y ≤2,⎩⎪⎨⎪⎧ x ≤0,y ≥0,-x +2y ≤2,⎩⎪⎨⎪⎧x ≤0,y ≤0,-x -2y ≤2,因此可画出可行域(如图): 由z =y -mx 得y =mx +z .(1)当m >12时,由图形可知,目标函数在点A (2,0)处取得最小值,因此-2=0-2m ,解得m =1.(2)当0<m ≤12时,由图形可知,目标函数在点D (0,-1)处取得最小值,因此-2=-1-m ×0,m 无解.(3)当m <-12时,由图形可知,目标函数在点C (-2,0)处取得最小值,因此-2=0+2m ,解得m =-1.(4)当-12≤m <0时,由图形可知,目标函数在点D (0,-1)处取得最小值,因此-2=-1-m ×0,m 无解. 综上,实数m 的值等于1或-1. 答案 1或-1温馨提醒 (1)含绝对值不等式表示区域的画法含有绝对值的不等式所表示的平面区域,应该根据变量的取值情况,将不等式中的绝对值符号去掉,化为几个不等式组,把每一个不等式表示的平面区域画出后合并起来就是相应的含绝对值不等式所表示的平面区域. (2)正确运用分类讨论的方法本题是线性规划的逆问题,这类问题的特点是在目标函数或约束条件中含有参数,当在目标函数中含有参数时,参数的不同取值将要影响到最优解的位置,因此要根据可行域边界直线的斜率与目标函数对应直线斜率的大小关系,对参数的取值情况进行分类讨论,在运动变化中寻找问题成立的条件,从而得到参数的取值.如果在约束条件中含有参数,那么随着参数的变化,可行域的形状可能就要发生变化,因此在求解时也要根据参数的取值对可行域的各种情况进行分类讨论,以免出现漏解.方法与技巧1.平面区域的画法:线定界、点定域(注意实虚线).2.求最值:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb的最值间接求出z 的最值.最优解在顶点或边界取得.3.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.失误与防范1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.2.在通过求直线的截距zb 的最值间接求出z的最值时,要注意:当b>0时,截距zb取最大值时,z也取最大值;截距zb 取最小值时,z也取最小值;当b<0时,截距zb取最大值时,z取最小值;截距zb取最小值时,z取最大值.A 组 专项基础训练 (时间:40分钟)一、选择题1.在直角坐标平面内,不等式组⎩⎪⎨⎪⎧y ≤x +1y ≥00≤x ≤t 所表示的平面区域的面积为32,则t 的值为( )A.-3或 3B.-3或1C.1D. 3答案 C解析 不等式组⎩⎨⎧y ≤x +1y ≥00≤x ≤t所表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x +1x =t解得交点B (t ,t +1),在y =x +1中,令x =0得y =1, 即直线y =x +1与y 轴的交点为C (0,1),由平面区域的面积S =(1+t +1)×t 2=32,得t 2+2t-3=0,解得t =1或t =-3(不合题意,舍去),故选C.2.直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有 ( )A.0个B.1个C.2个D.无数个答案 B解析 在坐标平面内画出直线2x +y -10=0与不等式组表示的平面区域,易知直线与此区域的公共点有1个.3.(2013·天津)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( )A.-7B.-4C.1D.2答案 A解析 可行域如图阴影部分(含边界)令z =0,得直线l 0:y -2x =0,平移直线l 0知,当直线l 过A 点时, z 取得最小值.由⎩⎪⎨⎪⎧y =3,x -y -2=0得A (5,3). ∴z min =3-2×5=-7,选A.4.O 为坐标原点,点M 的坐标为(1,1),若点N (x ,y )的坐标满足⎩⎪⎨⎪⎧x 2+y 2≤4,2x -y ≥0,y ≥0,则OM →·ON →的最大值为( )A. 2B.2 2C. 3D.2 3答案 B解析 如图,点N 在图中阴影区域内,当O 、M 、N 共线时,OM →·ON →最大,此时N (2,2),OM →·ON →=(1,1)·(2,2)=22,故选B. 5.(2013·山东)在平面直角坐标系xOy 中,M 为不等式组 ⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A.2B.1C.-13D.-12答案 C解析 画出图形,数形结合得出答案. 如图所示,⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的平面区域为图中的阴影部分.由⎩⎪⎨⎪⎧x +2y -1=0,3x +y -8=0,得A (3,-1). 当M 点与A 重合时,OM 的斜率最小,k OM =-13.二、填空题6.已知z =2x -y ,式中变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≥1,x ≤2,则z 的最大值为________.答案 5解析 在坐标平面内画出题中的不等式表示的平面区域及直线2x -y =0,平移该直线,当平移到经过该平面区域内的点(2,-1)时, 相应直线在x 轴上的截距最大,此时z =2x -y 取得最大值,最大值 是z =2×2-(-1)=5.7.设z =2x +y ,其中x ,y 满足⎩⎪⎨⎪⎧x +y ≥0x -y ≤00≤y ≤k ,若z 的最大值为6,则k 的值为________,z 的最小值为________. 答案 2 -2解析 在坐标平面内画出题中的不等式组表示的平面区域及直线2x +y =6,结合图形分析可知,要使z =2x +y 的最大值是6,直线y =k 必过直线2x +y =6与x -y =0的交点,即必过点(2,2),于是有k =2; 平移直线2x +y =6,当平移到经过该平面区域内的点(-2,2)时,相应直线在y 轴上的截距达到最小,此时z =2x +y 取得最小值,最小值是z =2×(-2)+2=-2. 8.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如表:a b (万吨) c (百万元)A 50% 1 3 B70%0.562),则购买铁矿石的最少费用为________(百万元). 答案 15解析 设购买铁矿石A 、B 分别为x 万吨,y 万吨,购买铁矿石的费 用为z (百万元),则⎩⎨⎧0.5x +0.7y ≥1.9x +0.5y ≤2x ≥0y ≥0,目标函数z =3x +6y ,由⎩⎪⎨⎪⎧ 0.5x +0.7y =1.9,x +0.5y =2,得⎩⎪⎨⎪⎧x =1,y =2.记P (1,2), 画出可行域可知,当目标函数z =3x +6y 过点P (1,2)时,z 取到最小值15.三、解答题9.若直线x +my +m =0与以P (-1,-1)、Q (2,3)为端点的线段不相交,求m 的取值范围. 解 直线x +my +m =0将坐标平面划分成两块区域,线段PQ 与直线x +my +m =0不相交,则点P 、Q 在同一区域内,于是,⎩⎪⎨⎪⎧ -1-m +m >02+3m +m >0,或⎩⎪⎨⎪⎧-1-m +m <0,2+3m +m <0,所以,m 的取值范围是m <-12.10.已知x ,y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0x +7y -11≤04x +y +10≥0,求4x -3y 的最大值和最小值.解 不等式组⎩⎪⎨⎪⎧7x -5y -23≤0x +7y -11≤04x +y +10≥0表示的区域如图所示.可观察出4x -3y 在A 点取到最大值,在B 点取到最小值. 解方程组⎩⎪⎨⎪⎧7x -5y -23=04x +y +10=0, 得⎩⎪⎨⎪⎧x =-1y =-6,则A (-1,-6).解方程组⎩⎪⎨⎪⎧ x +7y -11=04x +y +10=0,得⎩⎪⎨⎪⎧x =-3y =2.则B (-3,2),因此4x -3y 的最大值和最小值分别为14,-18.B 组 专项能力提升 (时间:30分钟)1.(2012·课标全国)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 的取值范围是( )A.(1-3,2)B.(0,2)C.(3-1,2)D.(0,1+3)答案 A解析 如图,根据题意得C (1+3,2).作直线-x +y =0,并向左上或右下平移,过点B (1,3)和 C (1+3,2)时,z =-x +y 取范围的边界值,即-(1+3) +2<z <-1+3,∴z =-x +y 的取值范围是(1-3,2). 2.(2013·广东)给定区域D :⎩⎪⎨⎪⎧x +4y ≥4x +y ≤4x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线. 答案 6解析 线性区域为图中阴影部分,取得最小值时点为(0,1),最大值时点为(0,4)(1,3)(2,2)(3,1)(4,0),故共可确定6条.3.已知变量x ,y 满足条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是__________. 答案 ⎝⎛⎭⎫12,+∞ 解析 画出x 、y 满足条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0 的斜率,即-a <-12,∴a >12.4.当x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≤x ,2x +y +k ≤0,(k 为负常数)时,能使z =x +3y 的最大值为12,试求k 的值.解在平面直角坐标系中画出不等式组所表示的平面区域(如图所示).当直线y=-13x+1 3z经过区域中的点A时,截距最大.由⎩⎪⎨⎪⎧y=x2x+y+k=0,得x=y=-k3.∴点A的坐标为(-k3,-k3).则z的最大值为-k3+3(-k3)=-43k,令-4k3=12,得k=-9.∴所求实数k的值为-9.5.(2013·湖北)某客运公司用A、B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A、B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?解设A型、B型车辆的数量分别为x,y辆,相应营运成本为z元,则z=1 600x+2 400y.由题意,得x,y满足约束条件⎩⎪⎨⎪⎧x+y≤21,y≤x+7,36x+60y≥900,x,y≥0,x,y∈N.作可行域如图所示,可行域的三个顶点坐标分别为P(5,12),Q(7,14),R(15,6).由图可知,当直线z=1 600x+2 400y经过可行域的点P时,直线z=1 600x+2 400y在y轴上的截距z最小,即z取得最小值.2 400故应配备A型车5辆、B型车12辆.。

不等式 最终

不等式 最终
a b
>
c d;
II a b > c d 是|a-b|<|c-d|的充要条 件.
2014年全国I卷
12.设 x ,y 满足约束条件 且 z=x+ay 的最小值为7,则 a= (A)-5 (B)3 (C)-5或3 (D)5或-3
15.设函数
则使得

立的x 的取值范围是________.
题型二: 含绝对值不 等式(分段函数,一 元二次不等式) (1) 去掉绝对值化为 不等式组,求并集; (2) 化为分段函数 (3)若绝对值中未知 数的系数相同,常用 绝对值不等式的性质 求最值,可减少计算.
题型三: 与函数联合 考察 与集合联合 考察 导数问题
预测: 线性规划必考,形式不 定,选做题类型不变。
2013年全国II卷
(3)设x,y满足约束条件 z=2x-3y的最小值是
(A) -7 (C)-5 (B)-6 (D)- 9
,则
(24)(本小题满分10分)选修4-5:不等式选讲 设a,b, c均为正数,且a+b+c=1。证明:
(Ⅰ)ab+bc+ca≤ (Ⅱ) + ; ≥1。
2012年全国I卷 5、已知正三角形ABC的顶点A(1,1),B(1,3), 顶点C在第一象限,若点(x,y)在△ABC内 部,则z=-x+y的取值范围是 (A)(1- ,2) (B)(0,2) (C)( -1,2) (D)(0,1+ )
24.若a>0,b>0 且
(I)求 的最小值;
(II)是否存在 a,b,使得 2a+3b=6? 并说明理由.
2014年全国II卷
9.设 x,y,满足约束条件 则 z=x+2y的最大值为( (A) 8 (B) 7 (C)2 (D)1 )

2015年高考数学不等式(理)

2015年高考数学不等式(理)

不等式1.【2015高考四川,理9】如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,则mn 的最大值为( )(A )16 (B )18 (C )25 (D )812【答案】B【解析】2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,822n m --≥-即212m n +≤.226,182m nm n mn +⋅≤≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,8122n m --≤-即218m n +≤.28129,22n m n m mn +⋅≤≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以(182)(1828)816mn n n =-<-⨯⨯=,所以最大值为18.选B..2.【2015高考北京,理2】若x ,y 满足010x y x y x -⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y =+的最大值为( )A .0B .1C .32D .2【答案】D【解析】如图,先画出可行域,由于2z x y =+,则1122y x z =-+,令0Z =,作直线12y x =-,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取得最小值2.3.【2015高考广东,理6】若变量x,y满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≥+231854yxyx则yxz23+=的最小值为()A.531B. 6C.523D. 4【答案】C.4.【2015高考陕西,理9】设()ln,0f x x a b=<<,若(p f ab=,()2a bq f+=,1(()())2r f a f b=+,则下列关系式中正确的是()A.q r p=< B.q r p=> C.p r q=< D.p r q=>【答案】C【解析】lnp f ab ab==,()ln22a b a bq f++==,11(()())ln22r f a f b ab ab=+==,函数()lnf x x=在()0,+∞上单调递增,因为2a bab+>,所以()(2a bf f ab+>,所以q p r>=,故选C.5.【2015高考湖北,理10】设x∈R,[]x表示不超过x的最大整数. 若存在实数t,使得[]1t=,2[]2t=,…,[]n t n=同时成立....,则正整数n的最大值是()A.3 B.4 C.5 D.6【答案】B【解析】因为[]x 表示不超过x 的最大整数.由1][=t 得21<≤t ,由2][2=t 得322<≤t ,由3][4=t 得544<≤t ,所以522<≤t ,所以522<≤t ,由3][3=t 得433<≤t ,所以5465<≤t ,由5][5=t 得655<≤t ,与5465<≤t 矛盾,故正整数n 的最大值是4.6.【2015高考天津,理2】设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数6z x y =+的最大值为( )(A )3 (B )4 (C )18 (D )40 【答案】C7.【2015高考陕西,理10】某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A .12万元B .16万元C .17万元D .18万元甲乙原料限额A (吨) 32 12B (吨)128【答案】D【解析】设该企业每天生产甲、乙两种产品分别为x 、y 吨,则利润34z x y =+由题意可列321228x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,其表示如图阴影部分区域:当直线340x y z+-=过点(2,3)A时,z取得最大值,所以max324318z=⨯+⨯=,故选D.8.【2015高考山东,理5】不等式152x x---<的解集是()(A)(-错误!未找到引用源。

2015年高考数学总复习(人教A版,理科)配套教案:第七章 不等式 7.6

2015年高考数学总复习(人教A版,理科)配套教案:第七章 不等式 7.6

§7.6 数学归纳法数学归纳法证明一个与正整数n 有关的命题,可按以下步骤: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N +)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N +)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立. ( × ) (2)所有与正整数有关的数学命题都必须用数学归纳法证明. ( × ) (3)用数学归纳法证明问题时,归纳假设可以不用.( × )(4)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( × )(5)用数学归纳法证明等式“1+2+22+…+2n +2=2n +3-1”,验证n =1时,左边式子应为1+2+22+23.( √ )(6)用数学归纳法证明凸n 边形的内角和公式时,n 0=3.( √ ) 2.在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验n 等于( )A.1B.2C.3D.0答案 C解析 凸n 边形的边最少有三条,故第一个值n 0取3. 3.若f (n )=1+12+13+…+16n -1(n ∈N +),则f (1)为( )A.1B.15C.1+12+13+14+15D.非以上答案答案 C解析 等式右边的分母是从1开始的连续的自然数,且最大分母为6n -1,则当n =1时,最大分母为5,故选C.4.设f (n )=1n +1+1n +2+…+1n +n ,n ∈N *,那么f (n +1)-f (n )=________.答案12n +1-12n +2解析 f (n +1)-f (n )=1n +2+1n +3+…+1n +n +1n +1+n +1n +1+n +1-(1n +1+1n +2+…+1n +n )=12n +1+12n +2-1n +1=12n +1-12n +2. 5.用数学归纳法证明:“1+12+13+…+12n -1<n (n ∈N *,n >1)”时,由n =k (k >1)不等式成立,推理n =k +1时,左边应增加的项数是________. 答案 2k解析 当n =k 时,要证的式子为1+12+13+…+12k -1<k ;当n =k +1时,要证的式子为1+12+13+…+12k -1+12k +12k +1+…+12k +1-1<k +1.左边增加了2k 项.题型一 用数学归纳法证明等式例1 求证:(n +1)(n +2)·…·(n +n )=2n ·1·3·5·…·(2n -1)(n ∈N +). 思维启迪 证明时注意等式两边从n =k 到n =k +1时的变化. 证明 ①当n =1时,等式左边=2,右边=2,故等式成立; ②假设当n =k (k ∈N +)时等式成立,即(k +1)(k +2)·…·(k +k )=2k ·1·3·5·…·(2k -1), 那么当n =k +1时,左边=(k +1+1)(k +1+2)·…·(k +1+k +1) =(k +2)(k +3)·…·(k +k )(2k +1)(2k +2)=2k ·1·3·5·…·(2k -1)(2k +1)·2 =2k +1·1·3·5·…·(2k -1)(2k +1), 这就是说当n =k +1时等式也成立. 由①②可知,对所有n ∈N +等式成立. 思维升华 用数学归纳法证明恒等式应注意 (1)明确初始值n 0的取值并验证n =n 0时等式成立.(2)由n =k 证明n =k +1时,弄清左边增加的项,且明确变形目标. (3)掌握恒等变形常用的方法:①因式分解;②添拆项;③配方法.用数学归纳法证明:对任意的n ∈N *,11×3+13×5+…+1(2n -1)(2n +1)=n2n +1.证明 (1)当n =1时,左边=11×3=13, 右边=12×1+1=13,左边=右边,所以等式成立.(2)假设当n =k (k ∈N *)时等式成立,即有 11×3+13×5+…+1(2k -1)(2k +1)=k 2k +1, 则当n =k +1时,11×3+13×5+…+1(2k -1)(2k +1)+1(2k +1)(2k +3) =k 2k +1+1(2k +1)(2k +3)=k (2k +3)+1(2k +1)(2k +3) =2k 2+3k +1(2k +1)(2k +3)=k +12k +3=k +12(k +1)+1, 所以当n =k +1时,等式也成立. 由(1)(2)可知,对一切n ∈N *等式都成立. 题型二 用数学归纳法证明不等式例2 已知函数f (x )=ax -32x 2的最大值不大于16,又当x ∈[14,12]时,f (x )≥18.(1)求a 的值;(2)设0<a 1<12,a n +1=f (a n ),n ∈N *,证明:a n <1n +1.思维启迪 (1)利用题中条件分别确定a 的范围,进而求a ; (2)利用数学归纳法证明.(1)解 由题意,知f (x )=ax -32x 2=-32(x -a 3)2+a 26.又f (x )max ≤16,所以f (a 3)=a 26≤16.所以a 2≤1.又x ∈[14,12]时,f (x )≥18,所以⎩⎨⎧f (12)≥18,f (14)≥18,即⎩⎨⎧a 2-38≥18,a 4-332≥18,解得a ≥1.又因为a 2≤1,所以a =1. (2)证明 用数学归纳法证明: ①当n =1时,0<a 1<12,显然结论成立.因为当x ∈(0,12)时,0<f (x )≤16,所以0<a 2=f (a 1)≤16<13.故n =2时,原不等式也成立.②假设当n =k (k ≥2,k ∈N *)时,不等式0<a k <1k +1成立.因为f (x )=ax -32x 2的对称轴为直线x =13,所以当x ∈(0,13]时,f (x )为增函数.所以由0<a k <1k +1≤13,得0<f (a k )<f (1k +1).于是,0<a k +1=f (a k )<1k +1-32·1(k +1)2+1k +2-1k +2=1k +2-k +42(k +1)2(k +2)<1k +2.所以当n =k +1时,原不等式也成立. 根据①②,知对任何n ∈N *,不等式a n <1n +1成立. 思维升华 用数学归纳法证明不等式的关键是由n =k 时命题成立证n =k +1时命题也成立,在归纳假设使用后可运用比较法、综合法、分析法、放缩法等来加以证明,充分应用基本不等式、不等式的性质等放缩技巧,使问题得以简化.用数学归纳法证明:对一切大于1的自然数,不等式(1+13)(1+15) (1)12n -1)>2n +12均成立.证明 (1)当n =2时,左边=1+13=43;右边=52.∵左边>右边,∴不等式成立.(2)假设n =k (k ≥2,且k ∈N *)时不等式成立,即 (1+13)(1+15)·…·(1+12k -1)>2k +12. 则当n =k +1时,(1+13)(1+15)·…·(1+12k -1)[1+12(k +1)-1]>2k +12·2k +22k +1=2k +222k +1=4k 2+8k +422k +1>4k 2+8k +322k +1=2k +32k +122k +1=2(k +1)+12.∴当n =k +1时,不等式也成立.由(1)(2)知,对于一切大于1的自然数n ,不等式都成立. 题型三 归纳—猜想—证明例3 已知数列{a n }的前n 项和S n 满足:S n =a n 2+1a n-1,且a n >0,n ∈N *.(1)求a 1,a 2,a 3,并猜想{a n }的通项公式; (2)证明通项公式的正确性.思维启迪 通过计算a 1,a 2,a 3寻求规律猜想{a n }的通项公式,然后用数学归纳法证明.(1)解 当n =1时,由已知得a 1=a 12+1a 1-1,a 21+2a 1-2=0. ∴a 1=3-1(a 1>0).当n =2时,由已知得a 1+a 2=a 22+1a 2-1,将a 1=3-1代入并整理得a 22+23a 2-2=0. ∴a 2=5-3(a 2>0). 同理可得a 3=7- 5. 猜想a n =2n +1-2n -1(n ∈N *).(2)证明 ①由(1)知,当n =1,2,3时,通项公式成立. ②假设当n =k (k ≥3,k ∈N *)时,通项公式成立, 即a k =2k +1-2k -1.由a k +1=S k +1-S k =a k +12+1a k +1-a k 2-1a k ,将a k =2k +1-2k -1代入上式并整理得a 2k +1+22k +1a k +1-2=0,解得:a k +1=2k +3-2k +1(a n >0).即当n =k +1时,通项公式也成立. 由①和②,可知对所有n ∈N *,a n =2n +1-2n -1都成立.思维升华 (1)猜想{a n }的通项公式是一个由特殊到一般的过程,注意两点:①准确计算a 1,a 2,a 3发现规律(必要时可多计算几项);②证明a k +1时,a k +1的求解过程与a 2、a 3的求解过程相似,注意体会特殊性与一般性的辩证关系.(2)“归纳—猜想—证明”的模式,是不完全归纳法与数学归纳法综合应用的解题模式,这种方法在解决探索性问题、存在性问题时起着重要作用,它的模式是先由合情推理发现结论,然后经逻辑推理证明结论的正确性,这种思维方式是推动数学研究和发展的重要方式.已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1),试比较11+a 1+11+a 2+11+a 3+…+11+a n 与1的大小,并说明理由. 解 ∵f ′(x )=x 2-1,且a n +1≥f ′(a n +1), ∴a n +1≥(a n +1)2-1,∵函数g (x )=(x +1)2-1在[1,+∞)上单调递增. 于是由a 1≥1得a 2≥(a 1+1)2-1≥22-1, 进而a 3≥(a 2+1)2-1≥24-1>23-1, 由此猜想:a n ≥2n -1.下面用数学归纳法证明这个猜想: ①当n =1时,a 1≥21-1=1,结论成立;②假设n =k (k ≥1且k ∈N *)时结论成立,即a k ≥2k -1.当n =k +1时,由g (x )=(x +1)2-1在区间[1,+∞)上单调递增知a k +1≥(a k +1)2-1≥22k -1≥2k +1-1,即n =k +1时,结论也成立.由①②知,对任意n ∈N *,都有a n ≥2n -1, 即1+a n ≥2n ,∴11+a n ≤12n ,∴11+a 1+11+a 2+11+a 3+…+11+a n ≤12+122+123+…+12n =1-(12)n <1.归纳—猜想—证明问题典例:(12分)设a >0,f (x )=axa +x,令a 1=1,a n +1=f (a n ),n ∈N *. (1)写出a 2,a 3,a 4的值,并猜想数列{a n }的通项公式; (2)用数学归纳法证明你的结论.思维启迪 通过计算a 2,a 3,a 4观察规律猜想a n ,然后用数学归纳法证明. 规范解答(1)解 ∵a 1=1, ∴a 2=f (a 1)=f (1)=a1+a ;a 3=f (a 2)=a 2+a ;a 4=f (a 3)=a3+a .[2分]猜想a n =a(n -1)+a(n ∈N *).[4分] (2)证明 ①易知,n =1时,猜想正确.[6分]②假设n =k 时猜想正确, 即a k =a(k -1)+a,[8分]则a k +1=f (a k )=a ·a ka +a k =a ·a (k -1)+a a +a (k -1)+a=a (k -1)+a +1=a[(k +1)-1]+a.这说明,n =k +1时猜想正确.[11分] 由①②知,对于任何n ∈N *,都有a n =a(n -1)+a .[12分]归纳—猜想—证明问题的一般步骤:第一步:计算数列前几项或特殊情况,观察规律猜测数列的通项或一般结论; 第二步:验证一般结论对第一个值n 0(n 0∈N *)成立.第三步:假设n =k (k ≥n 0)时结论成立,证明当n =k +1时结论也成立. 第四步:下结论,由上可知结论对任意n ≥n 0,n ∈N *成立.温馨提醒 解决数学归纳法中“归纳—猜想—证明”问题及不等式证明时,还有以下几点容易造成失分,在备考时要高度关注:(1)归纳整理不到位得不出正确结果,从而给猜想造成困难.(2)证明n =k 到n =k +1这一步时,忽略了假设条件去证明,造成使用的不是纯正的数学归纳法.(3)不等式证明过程中,不能正确合理地运用分析法、综合法来求证.另外需要熟练掌握数学归纳法中几种常见的推证技巧,只有这样,才能快速正确地解决问题.方法与技巧1.数学归纳法的两个步骤相互依存,缺一不可有一无二,是不完全归纳法,结论不一定可靠;有二无一,第二步就失去了递推的基础. 2.归纳假设的作用在用数学归纳法证明问题时,对于归纳假设要注意以下两点: (1)归纳假设就是已知条件;(2)在推证n =k +1时,必须用上归纳假设. 3.利用归纳假设的技巧在推证n =k +1时,可以通过凑、拆、配项等方法用上归纳假设.此时既要看准目标,又要掌握n =k 与n =k +1之间的关系.在推证时,分析法、综合法、反证法等方法都可以应用. 失误与防范1.数学归纳法证题时初始值n 0不一定是1;2.推证n =k +1时一定要用上n =k 时的假设,否则不是数学归纳法.A 组 专项基础训练 (时间:40分钟)一、选择题1.用数学归纳法证明2n >2n +1,n 的第一个取值应是( )A.1B.2C.3D.4答案 C解析 ∵n =1时,21=1,2×1+1=3,2n >2n +1不成立; n =2时,22=4,2×2+1=5,2n >2n +1不成立; n =3时,23=8,2×3+1=7,2n >2n +1成立. ∴n 的第一个取值应是3.2.用数学归纳法证明“1+a +a 2+…+an +1=1-a n +21-a(a ≠1)”,在验证n =1时,左端计算所得的项为( ) A.1B.1+aC.1+a +a 2D.1+a +a 2+a 3 答案 C3.用数学归纳法证明“(n +1)(n +2)·…·(n +n )=2n ·1·2·…·(2n -1)(n ∈N +)”时,从“n =k 到n =k +1”时,左边应增添的式子是( ) A.2k +1B.2k +3C.2(2k +1)D.2(2k +3) 答案 C解析 左边应增添的式子等于(k +2)(k +3)·…·[(k +1)+(k +1)](k +1)(k +2)·…·(k +k )=(k +2)(k +3)·…·(2k )(2k +1)(2k +2)(k +1)(k +2)·…·(2k )=2(2k +1).4.对于不等式n 2+n <n +1(n ∈N *),某同学用数学归纳法证明的过程如下:(1)当n =1时,12+1<1+1,不等式成立.(2)假设当n =k (k ∈N *)时,不等式成立,即k 2+k <k +1,则当n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k +1)+1.∴当n =k +1时,不等式成立,则上述证法( )A.过程全部正确B.n =1验得不正确C.归纳假设不正确D.从n =k 到n =k +1的推理不正确答案 D解析 在n =k +1时,没有应用n =k 时的假设,不是数学归纳法.5.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( ) A.1(n -1)(n +1)B.12n (2n +1)C.1(2n -1)(2n +1)D.1(2n +1)(2n +2) 答案 C解析 当n =2时,13+a 2=(2×3)a 2,∴a 2=13×5. 当n =3时,13+115+a 3=(3×5)a 3,∴a 3=15×7. 故猜想a n =1(2n -1)(2n +1). 二、填空题6.设S n =1+12+13+14+…+12n ,则S n +1-S n =________. 答案 12n+1+12n +2+12n +3+…+12n +2n 解析 ∵S n +1=1+12+…+12n +12n +1+…+12n +2n, S n =1+12+13+14+…+12n , ∴S n +1-S n =12n +1+12n +2+12n +3+…+12n +2n . 7.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,当第二步假设n =2k -1(k ∈N +)命题为真时,进而需证n =________时,命题亦真.答案 2k +1解析 因为n 为正奇数,所以与2k -1相邻的下一个奇数是2k +1.8.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)=________;当n >4时,f (n )=________(用n 表示).答案 5 12(n +1)(n -2) 解析 f (3)=2,f (4)=f (3)+3=2+3=5,f (n )=f (3)+3+4+…+(n -1)=2+3+4+…+(n -1)=12(n +1)(n -2). 三、解答题9.用数学归纳法证明下面的等式12-22+32-42+…+(-1)n -1·n 2=(-1)n-1n (n +1)2. 证明 (1)当n =1时,左边=12=1,右边=(-1)0·1×(1+1)2=1,∴原等式成立. (2)假设n =k (k ∈N *,k ≥1)时,等式成立,即有12-22+32-42+…+(-1)k -1·k 2=(-1)k -1k (k +1)2. 那么,当n =k +1时,则有12-22+32-42+…+(-1)k -1·k 2+(-1)k (k +1)2=(-1)k -1k (k +1)2+(-1)k ·(k +1)2 =(-1)k·k +12[-k +2(k +1)] =(-1)k(k +1)(k +2)2. ∴n =k +1时,等式也成立,由(1)(2)知对任意n ∈N *有12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n (n +1)2. 10.已知数列{a n },a n ≥0,a 1=0,a 2n +1+a n +1-1=a 2n .求证:当n ∈N *时,a n <a n +1.证明 (1)当n =1时,因为a 2是方程a 22+a 2-1=0的正根,所以a 1<a 2.(2)假设当n =k (k ∈N *,k ≥1)时,0≤a k <a k +1,则由a 2k +1-a 2k=(a 2k +2+a k +2-1)-(a 2k +1+a k +1-1)=(a k +2-a k +1)(a k +2+a k +1+1)>0,得a k +1<a k +2,即当n =k +1时,a n <a n +1也成立,根据(1)和(2),可知a n <a n +1对任何n ∈N *都成立.B 组 专项能力提升(时间:30分钟)1.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上 ( )A.k 2+1B.(k +1)2C.(k +1)4+(k +1)22D.(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2答案 D解析 等式左边是从1开始的连续自然数的和,直到n 2.故n =k +1时,最后一项是(k +1)2,而n =k 时,最后一项是k 2,应加上(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2.2.下列代数式(其中k ∈N *)能被9整除的是( ) A.6+6·7kB.2+7k -1 C.2(2+7k +1)D.3(2+7k ) 答案 D解析 (1)当k =1时,显然只有3(2+7k )能被9整除.(2)假设当k =n (n ∈N *)时,命题成立,即3(2+7n )能被9整除,那么当k =n +1时有3(2+7n +1)=21(2+7n )-36.这就是说,k =n +1时命题也成立.由(1)(2)知,命题对k ∈N *成立.3.已知数列{a n }满足a 1=1,a n +1=12a n +1(n ∈N *),通过计算a 1,a 2,a 3,a 4,可猜想a n =________. 答案 2n -12n -1 解析 ∵a 1=1,∴a 2=12a 1+1=32, a 3=12a 2+1=74,a 4=12a 3+1=158. 猜想a n =2n -12n -1.4.已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n 2,n ∈N *. (1)当n =1,2,3时,试比较f (n )与g (n )的大小;(2)猜想f (n )与g (n )的大小关系,并给出证明.解 (1)当n =1时,f (1)=1,g (1)=1,所以f (1)=g (1);当n =2时,f (2)=98,g (2)=118,所以f (2)<g (2); 当n =3时,f (3)=251216,g (3)=312216,所以f (3)<g (3). (2)由(1),猜想f (n )≤g (n ),下面用数学归纳法给出证明.①当n =1,2,3时,不等式显然成立,②假设当n =k (k ≥3)时不等式成立,即1+123+133+143+…+1k 3<32-12k 2. 那么,当n =k +1时,f (k +1)=f (k )+1(k +1)3<32-12k 2+1(k +1)3. 因为12(k +1)2-[12k 2-1(k +1)3] =k +32(k +1)3-12k 2=-3k -12(k +1)3k 2<0, 所以f (k +1)<32-12(k +1)2=g (k +1). 由①②可知,对一切n ∈N *,都有f (n )≤g (n )成立.5.若不等式1n +1+1n +2+…+13n +1>a 24对一切正整数n 都成立,求正整数a 的最大值,并证明结论.解 当n =1时,11+1+11+2+13+1>a 24, 即2624>a 24,所以a <26. 而a 是正整数,所以取a =25,下面用数学归纳法证明1n +1+1n +2+…+13n +1>2524. (1)当n =1时,已证得不等式成立.(2)假设当n =k (k ∈N *)时,不等式成立,即1k +1+1k +2+…+13k +1>2524. 则当n =k +1时,有1(k +1)+1+1(k +1)+2+…+13(k +1)+1=1k +1+1k +2+…+13k +1+13k +2+13k +3+13k +4-1k +1>2524+[13k +2+13k +4-23(k +1)]. 因为13k +2+13k +4-23(k +1)=6(k +1)(3k +2)(3k +4)-23(k +1)=18(k +1)2-2(9k 2+18k +8)(3k +2)(3k +4)(3k +3)=2(3k +2)(3k +4)(3k +3)>0, 所以当n =k +1时不等式也成立.由(1)(2)知,对一切正整数n ,都有1n +1+1n +2+…+13n +1>2524, 所以a 的最大值等于25.。

2015高考数学一轮精品课件:7.4 基本不等式及其应用

2015高考数学一轮精品课件:7.4 基本不等式及其应用

第七章
7.4
基本不等式及其应用
考纲要求
梳理自测
探究突破
探究突破
巩固提升
方法提炼
利用基本不等式求最值的注意事项:
1.在应用基本不等式求最值时,要把握三个方面,即“一正——各项都是
正数;二定——和或积为定值;三相等——等号能取得”,这三个方面缺一不
可.
2.若无明显“定值”,则用配凑的方法,使和为定值或积为定值.当多次使
1
2
【例 1】 设 a,b 均为正实数,求证:
+
1
2.
2 +ab≥2

关闭
由于 a,b 均为正实数,所以
1

+
2
1

≥2
2
2
2


时等号成立.又因为 +ab≥2
1

·
2


+
2
1

2
=
2

.当且仅当
1
2
=
1
2
,即 a=b
2
·ab=2 2,当且仅当 =ab 时等号成立,所

1
1
1
2
+ab≥ +ab≥2 2,当且仅当
25

5
A. 7 6
B.
C.
D.不存在
2
3 m+n-2 4
6
由 =4a1,得 2
=2 ,即 m+n=6.
1
4
1
1
4
5
1 4

5
4
3
(2)设
故 +0<x<2,则函数

2015届高考数学(新课标)二轮复习课件 专题七第22讲 不等式的性质

2015届高考数学(新课标)二轮复习课件 专题七第22讲 不等式的性质

【命题立意】本题考查不等式的性质及推理能力.
第三页,编辑于星期五:十点 二十三分。
考题2(2014 全国大纲)设集合 M={x|x2-3x-
4<0},N={x|0≤x≤5},则 M∩N=( )
A.(0,4]
B.[0,4)
C.[-1,0) D.(-1,0]
【解析】选 B. 因为 M={x|x2-3x-4<0}={x|-1<x<4},N= {x|0≤x≤5},所以 M∩N={x|-1<x<4}∩{x|0≤x≤5} ={x|0≤x<4}.
第二十页,编辑于星期五:十点 二十三分。
(2)若两个正实数 x,y 满足2x+1y=1,并且 x+2y>m2 +2m 恒成立,则实数 m 的取值范围是___________.
【解析】(-4,2) x+2y=(x+2y)2x+1y=2+4xy+xy+2≥8,当且仅当 4xy=xy,即 x=2y=4 时等号成立.由 x+2y>m2+2m 恒成 立,可知 m2+2m<8,m2+2m-8<0,解得-4<m<2.
故当年产量为 9 千件时,该公司在这一品牌服装
的生产中所获得的年利润最大.
【点评】不等式知识与方法往往是分析求解实际 应用问题的工具.
第二十六页,编辑于星期五:十点 二十三分。
〔备选题〕例5(1)已知二次函数 f(x)=ax2+2x+ c(x∈R)的值域为[0,+∞),则a+c 1+c+a 1的最小值为
第八页,编辑于星期五:十点 二十三分。
四、基本不等式的解法 (1)一元二次不等式的解法 形如 ax2+bx+c>0 和 ax2+bx+c≤0(其中 a>0) 的解法如下表
第九页,编辑于星期五:十点 二十三分。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式(组)一.选择题1.不等式组1011x x +>⎧⎨-⎩≤的解集是:A 、2x ≤B 、1x >-C 、1x -<≤2D 、无解 2.不等式组的解集在数轴上表示为( ).A .B .C .D .3.一个关于x 的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是( )A .﹣2<x <1 B .﹣2<x ≤1C . ﹣2≤x <1D . ﹣2≤x ≤1 4.不等式组的整数解的个数是( )A . 3B . 5C . 7D . 无数个5.使不等式x ﹣1≥2与3x ﹣7<8同时成立的x 的整数值是( ) A . 3,4B . 4,5C . 3,4,5D . 不存在6.关于x 的不等式组⎩⎨⎧1ax >>x 的解集为x >1 ,则a 的取值范围是( )A . a >1B . a <1C . a ≥1D . a ≤16.不等式组的所有整数解的和是( ) A .2 B .3 C . 5D . 6 二.填空题1.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a ,则关于x 的不等式组()431122x x x x a ≥+⎧⎪⎨--<⎪⎩有解的概率为_________.2.不等式组的所有整数解的积为.三.解答题1.2015年的5月20日是第15个中国学生营养日,我市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如表).若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?2.解不等式组4(1)710853x xxx+≤+⎧⎪-⎨-<⎪⎩,并写出它的所有非负整数解。

3.2015年5月6日,凉山州政府在邛海“空列”项目考察座谈会上与多方达成初步合作意向,决定共同出资60.8亿元,建设40千米的邛海空中列车.据测算,将有24千米的“空列”轨道架设在水上,其余架设在陆地上,并且每千米水上建设费用比陆地建设费用多0.2亿元.(1)求每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元?(2)预计在某段“空列”轨道的建设中,每天至少需要运送沙石1600m3,施工方准备租用大、小两种运输车共10辆,已知每辆大车每天运送沙石200m3,每辆小车每天运送沙石120m3,大、小车每天每辆租车费用分别为1000元、700元,且要求每天租车的总费用不超过9300元,问施工方有几种租车方案?哪种租车方案费用最低,最低费用是多少?“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.【16.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元够进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元。

(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?17. 南海地质勘探队在南沙群岛的一小岛发现很有价值的A,B两种矿石,A矿石大约565吨,B矿石大约500吨,上报公司,要一次性将两种矿石运往冶炼厂,需要不同型号的甲、乙两种货船共30艘,甲货船每艘运费1000元,乙货船每艘运费1200元.(1)设运送这些矿石的总费用为y元,若使用甲货船x艘,请写出y和x之间的函数关系式;(2)如果甲货船最多可装A矿石20吨和B矿石15吨,乙货船最多可装A矿石15吨和B 矿石25吨,装矿石时按此要求安排甲、乙两种货船,共有几种安排方案?哪种安排方案运费最低并求出最低运费.18. 某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x 台,这100台家电的销售总利润为y 元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润;(3)实际进货时,厂家对电冰箱出厂价下调k (0<k <100)元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)问中条件,设计出使这100台家电销售总利润最大的进货方案.考点: 一次函数的应用;分式方程的应用;一元一次不等式组的应用.. 19.(1)计算:10)21(41)1(45cos 2-+++-︒π; (2)解不等式:53-x ≤)2(2+x20. 解不等式组21. (2015•浙江金华,第18题6分)解不等式组5x 34x4(x 1)32x -<⎧⎨-+≥⎩22. (2015•浙江宁波,第19题6分)解一元一次不等式组⎪⎩⎪⎨⎧≤-->+131221x x ,并把解在数轴上表示出来.23.(2015•广东广州,第19题10分)已知A =﹣(1)化简A ;(2)当x满足不等式组,且x为整数时,求A的值.考点:分式的化简求值;一元一次不等式组的整数解.分析:(1)根据分式四则混合运算的运算法则,把A式进行化简即可.(2)首先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x的值代入化简后的A式进行计算即可.解答:解:(1)A=﹣=﹣=﹣=(2)∵∴∴1≤x<3,∵x为整数,∴x=1或x=2,①当x=1时,∵x﹣1≠0,∴A=中x≠1,∴当x=1时,A=无意义.②当x=2时,A==.点评:(1)此题主要考查了分式的化简求值,注意化简时不能跨度太大,而缺少必要的步骤.(2)此题还考查了求一元一次不等式组的整数解问题,要熟练掌握,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件求得不等式组的整数解即可.24.(2015湖北荆州第23题10分)荆州素有“鱼米之乡”的美称,某渔业公司组织20辆汽车装运鲢鱼、草鱼、青鱼共120吨去外地销售,按计划20辆汽车都要装运,每辆汽车只能装运同一种鱼,且必须装满,根据下表提供的信息,解答以下问题:鲢鱼草鱼青鱼每辆汽车载鱼量(吨)8 6 5每吨鱼获利(万元)0.25 0.3 0.2(1)设装运鲢鱼的车辆为x辆,装运草鱼的车辆为y辆,求y与x之间的函数关系式;(2)如果装运每种鱼的车辆都不少于2辆,那么怎样安排车辆能使此次销售获利最大?并求出最大利润.考点:一次函数的应用.分析:(1)设装运鲢鱼的车辆为x辆,装运草鱼的车辆为y辆,则由(20﹣x﹣y)辆汽车装运青鱼,由20辆汽车的总运输量为120吨建立等式就可以求出结论;(2)根据建立不等装运每种鱼的车辆都不少于2辆,列出不等式组求出x的范围,设此次销售所获利润为w元,w=0.25x×8+0.3(﹣3x+20)×6+0.2(20﹣x+3x﹣20)×5=﹣1.4x+36,再利用一次函数的性质即可解答.解答:解:(1)设装运鲢鱼的车辆为x辆,装运草鱼的车辆为y辆,则由(20﹣x﹣y)辆汽车装运青鱼,由题意,得8x+6y+5(20﹣x﹣y)=120,∴y=﹣3x+20.答:y与x的函数关系式为y=﹣3x+20;(2),根据题意,得∴,解得:2≤x≤6,设此次销售所获利润为w元,w=0.25x×8+0.3(﹣3x+20)×6+0.2(20﹣x+3x﹣20)×5=﹣1.4x+36∵k=﹣1.4<0,∴w随x的增大而减小.∴当x=2时,w取最大值,最大值为:﹣1.4×2+36=33.2(万元).∴装运鲢鱼的车辆为2辆,装运草鱼的车辆为14辆,装运青鱼的车辆为4辆时获利最大,最大利润为33.2万元.点评:本题考查了一次函数的解析式的运用,一次函数的性质的运用,一元一次不等式组的运用,解答时求出函数的解析式是关键.25.(2015•湖南株洲,第19题6分)(本题满分6分)为了举行班级晚会,孔明准备去商店购买20乒乓球做道具,并买一些乒乓球拍做奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?【试题分析】本题考点为:一元一次不等式的应用题:由已知可知,乒乓球共买20个,单价为1.5元每个,而球拍为每个22元,总金额不超过200元,即乒乓球的金额+球拍的金额≤200①涉及的公式为:金额=单价×数量金额单价数量乒乓球 1.5×20=30 1.5 20球拍22x22 x将相关数据代入①即可解得:解:设购买球拍x个,依题意得:1.52022200x⨯+≤解之得:8711 x≤由于x取整数,故x的最大值为7。

答:略26.(2015•江苏南京,第17题3分)解不等式,并把它的解集在数轴上表示出来.【答案】.考点:1.解一元一次不等式;2.在数轴上表示不等式的解集.17.(2015•江苏苏州,第20题5分)解不等式组:错误!不能通过编辑域代码创建对象。

【难度】★★28.(2015•江苏无锡,第20题8分)(1)解不等式:2(x﹣3)﹣2≤0(2)解方程组:.考点:解一元一次不等式;解二元一次方程组.分析:(1)先去括号,再移项、合并同类项,不等式两边同乘以,即可得不等式的解集;(2)先把②整理,再由减法消去x求y,然后代入①求x即可,解答:解:(1)去括号,得:2x﹣6﹣2≤0,移项,得:2x≤6+2,合并同类项,得:2x≤8,两边同乘以,得:x≤4;∴原不等式的解集为:x≤4.(2)由②得:2x﹣2y=1③,①﹣②得:y=4,把y=4代入①得:x=,∴原方程组的解为:点评:本题考查了不等式的解法、二元一次方程组的解法;熟练掌握不等式的解法和用加减法解方程组是解决问题的关键,29.(2015·湖南省益阳市,第19题12分)大学生小刘回乡创办小微企业,初期购得原材料若干吨,每天生产相同件数的某种产品,单件产品所耗费的原材料相同.当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨.若剩余原材料数量小于或等于3吨,则需补充原材料以保证正常生产.(1)求初期购得的原材料吨数与每天所耗费的原材料吨数;(2)若生产16天后,根据市场需求每天产量提高20%,则最多再生产多少天后必须补充原材料?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设初期购得原材料a吨,每天所耗费的原材料为b吨,根据“当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨.”列出方程组解决问题;(2)最多再生产x天后必须补充原材料,根据若剩余原材料数量小于或等于3吨列出不等式解决问题.解答:解:(1)设初期购得原材料a吨,每天所耗费的原材料为b吨,根据题意得:.解得.答:初期购得原材料45吨,每天所耗费的原材料为1.5吨.(2)设再生产x天后必须补充原材料,依题意得:45﹣16×15﹣15(1+20%)x≤3,解得:x≥10.答:最多再生产10天后必须补充原材料.点评:此题考查一元一次不等式组的实际运用,二元一次方程组的实际运用,找出题目蕴含的数量关系与不等关系是解决问题的关键.30.(2015·湖北省孝感市,第21题9分)某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(4分)(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W 元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?(5分)考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用..分析:(1)设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时,根据“一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时”,列出方程组,即可解答.(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8﹣2a)件.从而得到W=﹣8a+3200,再根据“加工A型服装数量不少于B型服装的一半”,得到a≥50,利用一次函数的性质,即可解答.解答:解:(1)设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时.由题意得:,解得:…(3分)答:熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时.(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8﹣2a)件.∴W=16a+12(25×8﹣2a)+800,∴W=﹣8a+3200,又∵a≥,解得:a≥50,∵﹣8<0,∴W随着a的增大则减小,∴当a=50时,W有最大值2800.∵2800<3000,∴该服装公司执行规定后违背了广告承诺.点评:本题考查了一次函数的应用,解决本题的关键是关键题意列出方程组和一次函数解析式,利用一次函数的性质解决实际问题.31、(2015·湖南省常德市,第22题7分)某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元。

相关文档
最新文档