高中文科数学公式大全(精华版)
(完整版)文科高中数学公式大全(超全完美)
高中文科数学公式总结一、函数、导数1.元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.A A ∅⇔≠∅Ø集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n -个.2. 真值表 常四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)3. 充要条件(记p 表示条件,q 表示结论) (1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 4. 全称量词∀表示任意,∃表示存在;∀的否定是∃,∃的否定是∀。
例:2,10x R x x ∀∈++> 的否定是 2,10x R x x ∃∈++≤ 5. 函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.6. 复合函数)]([x g f y =单调性判断步骤:(1)先求定义域 (2)把原函数拆分成两个简单函数)(u f y =和)(x g u = (3)判断法则是同增异减(4)所求区间与定义域做交集 7. 函数的奇偶性(1)前提是定义域关于原点对称。
(2)对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
文科的高中数学公式
文科的高中数学公式文科必备的高中数学公式活着就要学习,学习不是为了活着。
下面是小编为大家整理的文科必备的高中数学公式,欢迎参考~文科必备的高中数学公式之立体几何直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r,a是圆心角的'弧度数r>0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h文科必备的高中数学公式之三角函数1.两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)2.二倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a文科必备的高中数学公式之不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac<0注:方程没有实根,有共轭复数根文科必备的高中数学公式之圆圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角文科必备的高中数学公式之数列1+2+3+4+5+6+7+8+9+...+n=n(n+1)/21+3+5+7+9+11+13+15+...+(2n-1)=n22+4+6+8+10+12+14+...+(2n)=n(n+1)12+22+32+42+52+62+72+82+...+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+...n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+...+n(n+1)=n(n+1)(n+2)/3。
高中文科数学公式大全(精炼版)
高中数学公式及知识点一、函数、导数1、函数的单调性(1) 设X i、x2[a,b], X i :::x2那么f (x i) - f(X2) -0 f (x)在[a,b]上是增函数;f(X i)-f(X2)0 f (x)在[a, b]上是减函数.(2) 设函数y = f(x)在某个区间内可导,若f(x) .0,贝U f(x)为增函数;若f(x):::0,则f(x)为减函数.2、函数的奇偶性对于定义域内任意的X,都有f (_x)二f (x),则f (x)是偶函数;对于定义域内任意的X,都有f(-x)二—f(x),则f (x)是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
3、函数y = f (x)在点x o处的导数的几何意义函数y二f (x)在点x o处的导数是曲线y二f (x)在P(x o, f (x o))处的切线的斜率f (x。
),相应的切线方程是y - y。
= f (x o)( x - X。
).4、几种常见函数的导数① C =0 :②(x n) =nx nd; ③(sin x) =cosx :④(cosx) =-sin x ;X ' x X ' X ' 1 ' 1⑤(a)二a ln a ; @ (e )二e ;⑦(log a x) :⑧(In x)In a5、导数的运算法则I I' ' ' ' ' ' u ' u v —uv(1) (u 土v) =u ±v . ( 2) (uv) =uv+uv. ( 3) (一)= ---- 2 -- (v^0).v v6、会用导数求单调区间、极值、最值7、求函数y = f x的极值的方法是:解方程「X = 0 .当f • x()i; = 0时:(1) 如果在X0附近的左侧f X 0,右侧r X :0,那么f X0是极大值;(2) 如果在X0附近的左侧「X :: 0,右侧「X 0,那么f X0是极小值.二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式sin2^ cos2 v -1 , tan二=刮cos廿9、正弦、余弦的诱导公式k二一:-的正弦、余弦,等于:的同名函数,前面加上把:看成锐角时该函数的符号;--::的正弦、余弦,等于:-的余名函数,前面加上把看成锐角时该函数的符号。
高中文科数学公式大全(精华版)
高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。
2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。
若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v-=. 6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时:① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)mna =.(2)1m nm naa-==.8、根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。
高中文科数学公式大全(完美)
高中数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±。
(2)'''()uv u v uv =+。
(3)'''2()(0)u u v uv v v v-=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin 。
高中文科数学公式汇总
高中数学公式汇总(文科)一、三角函数、三角变换、解三角形、平面向量1、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin . 2、正弦、余弦的诱导公式απ±k 的正弦、余弦,等于α的同名函数,前面加 上把α看成锐角时该函数的符号; αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。
3、和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβαβαβ±±=. 4、二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=- 22tan tan 21tan ααα=-. 公式变形: ;22cos 1sin ,2cos 1sin 2;22cos 1cos ,2cos 1cos 22222αααααααα-=-=+=+= 5、三角函数的周期函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=.6 函数sin()y x ωϕ=+的周期、最值、单调区间、图象变换7、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y其中ab =ϕtan 8、正弦定理 2sin sin sin a bc R A B C===.9、余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.10、三角形面积公式111sin sin sin 222S ab C bc A ca B ===. 11、三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+二、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数;对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
高中文科数学公式大全(完整完全精华版)
高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。
2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。
若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v -=.6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时:① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)m na =(2)1m nm naa-==.8、根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式:log b a N b a N =⇔=。
高中文科数学公式大全(精华版)
高中数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+-4、几种常见函数的导数①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm na a-==0,,a m n N *>∈,且1n >)..根式的性质(1)n a=(2)当n当n(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0,指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论log m nab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。
高三文科数学公式大全
高三文科数学公式大全数学公式是人类长期生产劳动的经验总结,包含着历代数学家辛勤汗水和智慧,它揭示了数学知识的基本规律,是学生数学认知发展的重要载体。
学习数学,前提就是对公式和定理有着正确透彻的理解。
牢固掌握并灵活运用公式定理是提高数学能力的关键。
以下是店铺为大家精心准备的:高三文科数学公式大全。
欢迎参考阅读!高三文科数学公式大全如下:一、对数函数log.a(MN)=logaM+logNloga(M/N)=logaM-logaNlogaM^n=nlogaM(n=R)logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1)二、简单几何体的面积与体积S直棱柱侧=c*h(底面周长乘以高)S正棱椎侧=1/2*c*h′(底面的周长和斜高的一半)设正棱台上、下底面的周长分别为c′,c,斜高为h′,S=1/2*(c+c′)*hS圆柱侧=c*lS圆台侧=1/2*(c+c′)*l=兀*(r+r′)*lS圆锥侧=1/2*c*l=兀*r*lS球=4*兀*R^3V柱体=S*hV锥体=(1/3)*S*hV球=(4/3)*兀*R^3三、两直线的位置关系及距离公式(1)数轴上两点间的距离公式|AB|=|x2-x1|(2) 平面上两点A(x1,y1),(x2,y2)间的距离公式|AB|=sqr[(x2-x1)^2+(y2-y1)^2](3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式d=|Ax0+By0+C|/sqr(A^2+B^2)(4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1-C2|/sqr(A^2+B^2)同角三角函数的基本关系及诱导公式sin(2*k*兀+a)=sin(a)cos(2*k*兀+a)=cosatan(2*兀+a)=tanasin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tanasin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tanasin(兀+a)=-sinasin(兀-a)=sinacos(兀+a)=-cosacos(兀-a)=-cosatan(兀+a)=tana四、二倍角公式及其变形使用1、二倍角公式sin2a=2*sina*cosacos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2tan2a=(2*tana)/[1-(tana)^2]2、二倍角公式的变形(cosa)^2=(1+cos2a)/2(sina)^2=(1-cos2a)/2tan(a/2)=sina/(1+cosa)=(1-cosa)/sina五、正弦定理和余弦定理正弦定理:a/sinA=b/sinB=c/sinC余弦定理:a^2=b^2+c^2-2bccosAb^2=a^2+c^2-2accosBc^2=a^2+b^2-2abcosCcosA=(b^2+c^2-a^2)/2bccosB=(a^2+c^2-b^2)/2accosC=(a^2+b^2-c^2)/2abtan(兀-a)=-tanasin(兀/2+a)=cosasin(兀/2-a)=cosacos(兀/2+a)=-sinacos(兀/2-a)=sinatan(兀/2+a)=-cotatan(兀/2-a)=cota(sina)^2+(cosa)^2=1sina/cosa=tana两角和与差的余弦公式cos(a-b)=cosa*cosb+sina*sinbcos(a-b)=cosa*cosb-sina*sinb两角和与差的正弦公式sin(a+b)=sina*cosb+cosa*sinbsin(a-b)=sina*cosb-cosa*sinb两角和与差的正切公式tan(a+b)=(tana+tanb)/(1-tana*tanb) tan(a-b)=(tana-tanb)/(1+tana*tanb)。
高中数学文科公式总结
高中数学文科公式总结高中数学文科公式总结是一个非常重要的部分,它是我们学习数学的基础,也是我们解题的工具。
下面我将总结一些高中数学文科公式。
一、代数部分公式:1. 二次方程的求根公式:对于二次方程$ax^2+bx+c=0$,求根公式为$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$。
2. 平方差公式:$(a+b)(a-b)=a^2-b^2$,$(a\pm b)^2=a^2\pm2ab+b^2$。
3. 二项式定理:$(a+b)^n=C_n^0a^n+bC_n^1a^{n-1}b+b^2C_n^2a^{n-2}b^2+\cdots+b^nC_n^na^0$,其中$C_n^k$表示组合数。
4. 因式分解:$(a\pm b)^2=a^2\pm2ab+b^2$,$a^2-b^2=(a+b)(a-b)$。
5. 根式化简:$\sqrt{a^2}=|a|$,$|\sqrt{a}|=\sqrt{|a|}$,$(\sqrt{a})^n=\sqrt{a^n}$。
二、函数部分公式:1. 一次函数:一次函数的标准形式为$y=kx+b$,其中$k$为斜率,$b$为截距。
2. 二次函数:二次函数的标准形式为$y=ax^2+bx+c$,其中$a$为开口方向,$b$为对称轴位置,$c$为顶点位置。
3. 幂函数:幂函数的标准形式为$y=x^k$,其中$k>0$时,函数增长;$k<0$时,函数减小。
4. 指数函数:指数函数的标准形式为$y=a^x$,其中$a>0$且$a\neq 1$。
5. 对数函数:对数函数的标准形式为$y=\log_a x$,其中$a>0$且$a\neq 1$。
三、概率与统计部分公式:1. 排列组合:排列公式$A_n^m=\frac{n!}{(n-m)!}$,组合公式$C_n^m=\frac{n!}{m!(n-m)!}$。
2. 等可能概型:事件A的概率$P(A)=\frac{m}{n}$,其中n为样本数,m为A 发生的样本数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。
2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。
若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-. 4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v-=. 6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,(即:左增右减),那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,(即:左减右增),那么()0f x 是极小值. 7、分数指数幂(1)mna =(2)1m nm naa-==.8、根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。
(2)对数的换底公式 :log log log m a m NN a=.( 3)对数恒等式:①log log n a a b n b =; ②log log m na a nb b m=; ③log a N a N =; ④log 10a =; ⑤log 1a a = 11、常见的函数图象12、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin .13、正弦、余弦的诱导公式诱导公式一: sin(2k π+α)=sin α; cos(2k π+α)=cos α tan(2k π+α)=tan α 诱导公式二: sin(πα+)=-sin α; cos(πα+)=-cos α; tan(πα+)=tan α. 诱导公式三: sin (α-)=-sin α; cos (α-)=cos α; tan (α-)=-tan α. 诱导公式四: sin(πα-)=sin α; cos(πα-)=-cos α; tan(πα-)=-tan α.诱导公式五: sin(2πα-)=cos α;cos(2πα-)=sin α;诱导公式六: sin(2πα+)=cos α;cos(2πα+)=-sin α[上面六组诱导公式,最好用口诀:奇变偶不变,符号看象限记忆,但要理解其含义] 14、和角与差角公式sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±=. sin cos a b αα+)αϕ+;(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).15、二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 公式变形: ;22cos 1sin ,2cos 1sin 2;22cos 1cos ,2cos 1cos 22222αααααααα-=-=+=+=16、三角函数的周期函数sin()y A x ωϕ=+及函数cos()y A x ωϕ=+的周期2||T πω=,最大值为|A|;函数tan()y A x ωϕ=+(2x k ππ≠+)的周期||T πω=.17.正弦定理 :2sin sin sin a b cR A B C===(R 为ABC ∆外接圆的半径). 2sin ,2sin ,2sin a R A b R B c R C ⇔=== ::sin :sin :sin a b c A B C ⇔=18.余弦定理:2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.19.面积定理111sin sin sin 222S ab C bc A ca B ===.20、三角形内角和定理在△ABC 中,有A B C π++= ()C A B dx π⇔=-+ 222C A B π+⇔=- 222()C A B π⇔=-+.21、三角函数的性质22、a 与b 的数量积:a ·b =|a |⋅|b |cos θ. 23、平面向量的坐标运算(1)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--uu u r uu u r uu r(2)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (3)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (4)设a =(,),x y R λ∈,则λa=(,)x y λλ. (5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +.(6)设a =),(y x ,则22y x a +=24、两向量的夹角公式:cos a ba bθ⋅==⋅r r r r (a =11(,)x y ,b =22(,)x y ).25、平面两点间的距离公式:,A B d =||AB uu ur=26、向量的平行与垂直: 设a =11(,)x y ,b =22(,)x y ,则a ∥b ⇔b =λ a 12210x y x y ⇔-=. a ⊥b ⇔a ·b=012120x x y y ⇔+=. 27、数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩;( 数列{}n a 的前n 项的和为12n n s a a a =+++ ).28、等差数列的通项公式11(1)n a a n d dn a d =+-=+-;29、等差数列其前n 项和公式为 1()2n n n a a s +=1(1)2n n na d -=+. 30、等差数列的性质:①等差中项:2n a =1n a -+1n a +; ②若m+n=p+q ,则m a +n a =p a +q a ;③m S ,2m S ,3m S 分别为前m ,前2m ,前3m 项的和,则m S ,2m S -m S ,3m S -2m S 成等差数列。
31、等比数列的通项公式 11n n a a q -=;32、等比数列前n 项的和公式为11(1),11,1n n a q q q s na q ⎧-≠⎪-=⎨⎪=⎩ 或 11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.33、等比数列的性质: ①等比中项:2n b =11n n b b -+⋅; ②若m+n=p+q ,则m n b b ⋅=p q b b ⋅;③m S ,2m S ,3m S 分别为前m ,前2m ,前3m 项的和,则m S ,2m S -m S ,3m S -2m S 成等比数列。
34、常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥当且仅当a =b 时取“=”号).35、直线的三种方程 :(1)点斜式:11()y y k x x -=-; (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式:y kx b =+;(b 为直线l 在y 轴上的截距). (3)一般式:0Ax By C ++=;(其中A 、B 不同时为0). 另外,还有两点式和截距式方程,请你自己补上! 36、两条直线的平行和垂直若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠且;②12121l l k k ⊥⇔⋅=-.37、点到直线的距离d =; (点00(,)P x y ,直线l :0Ax By C ++=). 38、 圆的两种方程:(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.39、点与圆的位置关系:点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外; d r =⇔点P 在圆上; d r <⇔点P 在圆内. 40、直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:其中22BA C Bb Aa d +++=0d r >⇔⇔∆<相离方程组无解:;0d r =⇔⇔∆=相切方程组有唯一解:;0d r <⇔⇔∆>相交方程组有两个解:.41、椭圆、双曲线、抛物线的图形、定义、标准方程、几何性质①椭圆:22221(0)x y a b a b+=>>,焦点(±c,0),222b c a =-,离心率2=2a c e c a ==焦距长轴,参数方程是cos sin x a y b θθ=⎧⎨=⎩.②双曲线:12222=-by a x (a>0,b>0),焦点(±c,0),222b a c =-,离心率2=2a c e c a ==焦距长轴,渐近线方程是x ab y ±=.③抛物线:px y 22=,焦点)0,2(p ,准线2px -=。