阶段综合能量与动量
动量与能量综合专题
动量与能量综合专题一、动量守恒定律动量守恒定律是物理学中的一个重要定律,它表述的是物体动量的变化遵循一定的规律。
当两个或多个物体相互作用时,它们的总动量保持不变。
这个定律的适用范围非常广泛,从微观粒子到宏观宇宙,只要有物体之间的相互作用,就可以应用动量守恒定律来描述。
在理解动量守恒定律时,需要注意以下几点:1、系统:动量守恒定律适用于封闭的系统,即系统内的物体之间相互作用,不受外界的影响。
2、总动量:动量的变化是指物体之间的总动量的变化,而不是单个物体的动量变化。
3、方向:动量是矢量,具有方向性。
在计算动量的变化时,需要考虑动量的方向。
二、能量守恒定律能量守恒定律是物理学中的另一个重要定律,它表述的是能量不能被创造或消灭,只能从一种形式转化为另一种形式。
这个定律的适用范围同样非常广泛,从微观粒子到宏观宇宙,只要有能量的转化和转移,就可以应用能量守恒定律来描述。
在理解能量守恒定律时,需要注意以下几点:1、封闭系统:能量守恒定律适用于封闭的系统,即系统内的能量之间相互转化和转移,不受外界的影响。
2、转化与转移:能量的转化和转移是不同的。
转化是指一种形式的能量转化为另一种形式的能量,而转移是指能量从一个物体转移到另一个物体。
3、方向:能量的转化和转移是有方向的。
在计算能量的变化时,需要考虑能量的方向。
三、动量与能量的综合应用在实际问题中,动量和能量往往是相互的。
当一个物体受到力的作用时,不仅会引起物体的运动状态的变化,还会引起物体能量的变化。
因此,在解决复杂问题时,需要综合考虑动量和能量的因素。
例如,在碰撞问题中,两个物体相互作用后可能会发生弹射、粘合、破碎等情况。
这些情况的发生不仅与物体的动量有关,还与物体的能量有关。
如果两个物体的总动量不为零,它们将会继续运动;如果两个物体的总能量不为零,它们将会继续发生能量的转化和转移。
因此,在解决碰撞问题时,需要综合考虑物体的动量和能量因素。
四、总结动量守恒定律和能量守恒定律是物理学中的两个重要定律,它们分别描述了物体动量的变化和能量的转化和转移遵循的规律。
动量与能量的综合应用PPT演示文稿
1 1 2 2 (2m)v2 (2m)v3 (2m) g (2l2 ) 2 2
由动能定理有
3
4
A
4.后A、B开始分离,A单独向右滑到P点停下, 由以上各式,解得
1 2 mv 3 mgl 1 2
v0 g (10l1 16l2 )
B l2
l1
P
2.用轻弹簧相连的质量均为2kg的A、B两物块 都以 的速度在光滑的水平地面 上运动,弹簧处于原长,质量为4kg的物体C 静止在前方,如图3所示,B与C碰撞后二者 粘在一起运动。求:在以后的运动中
研究某一时刻(或某一位置)的动力学 问题应使用牛顿第二定律,研究某一个 过程的动力学问题,若物体受恒力作用, 且又直接涉及物体运动过程中的加速度 问题,应采用运动学公式和牛顿第二定 律求解。
解决动力学问题的基本观点之二:
动量观点(包括动量定理和动量守恒定律) 1、对于不涉及物体运动过程中的加速度而 涉及物体运动时间的问题,特别对于打击一类 的问题,因时间短且冲力随时间变化,则应用 动量定理求解。
W其他=△E W重=-△Ep W弹=-△Ep′
重力的功 弹力的功
弹力势能
考点一 动能定理和动量定理的比较 动能定理反映的是力在空间上的积累,引起的是动能的 变化,是一个标量式;动量定理反映的是力在时间上的积 累,引起的是动量的变化,是一个矢量式,也可以说物体 在 某个方向上受到冲量的作用,则引起的是该方向上的动 量变化量.当然高中物理中一般遇见的是在一维情况下 的问题
考点二 动量守恒定律和机械能守恒定律的比较 两个守恒定律所研究的对象都是相互作用的物体所构成 的系统,且研究的都是某一个物理过程.但两者守恒的条 件不同:系统动量是否守恒,决定于系统所受合外力是否 为零;而机械能是否守恒,则决定于是否有重力以外的力(不 管是内力还是外力)做功.所以,在利用动量守恒定律处理 问题时要着重分析系统的受力情况,是否满足合外力为零; 在利用机械能守恒定律处理问题时,除了分析各力,还得分析各 力的做功情况,看是否有重力以外的力做功.所以对于一个系统所 发生的某一过程, 动量是否守恒、机械能是否守恒,两者没有必然联系,可以 出现各种不同的情况.另外,动量守恒定律为矢量表达式, 应用时必须注意方向,且 有时某个方向上合外力为零则该方向上的动量守恒;机械能 守恒定律则是标量式,对功或能量只是代数和而已.
动量和能量的综合应用 板块模型课件
原理
动量定理描述了物体动量的变化 与其所受力的关系。
公式
Ft = Δp,其中F表示力的大小,t 表示力的作用时间,Δp表示动量 的变化量。
能量定理的原理和公式
原理
能量定理描述了系统能量的转化和守 恒关系。
公式ห้องสมุดไป่ตู้
E = E0 + ΔE,其中E表示系统的总能 量,E0表示初始能量,ΔE表示能量的 变化量。
动量和能量在板块模型中的综合应用
动量与能量的相互转化
在板块模型中,物体的动量和能量可以 相互转化。例如,在碰撞过程中,物体 的动能可能转化为内能或势能,反之亦 然。通过分析动量和能量的变化,可以 深入了解物体的相互作用过程。
VS
动量和能量的同时分析
在解决板块模型问题时,通常需要同时考 虑动量和能量的综合应用。通过结合动量 定理和能量守恒定律,可以更全面地分析 物体的运动过程和相互作用效果。
04
板块模型的实例分析
BIG DATA EMPOWERS TO CREATE A NEW
ERA
实例一:汽车碰撞分析
总结词
汽车碰撞分析是板块模型的重要应用之一,通过分析碰撞过程中动量和能量的变化,可以更好地理解碰撞的物理 机制,为汽车安全设计提供理论支持。
详细描述
在汽车碰撞分析中,板块模型可以用来模拟汽车在碰撞过程中的运动状态和受力情况。通过分析碰撞前后的动量 和能量变化,可以评估碰撞对车辆和乘员的影响,从而优化汽车的结构设计,提高汽车的安全性能。
板块模型可以模拟地震发 生的机制和过程,为地震 预测提供理论支持。
地质构造分析
通过板块模型可以分析地 壳运动和地质构造的形成 与演化,有助于地质学研 究和资源勘探。
气候变化研究
动量与能量高中物理知识点与常用结论
动量与能量高中物理知识点与常用结论动量与能量动量与能量的综合问题,是高中力学最重要的综合问题,也是难度较大的问题。
分析这类问题时,应首先建立清晰的物理图象,抽象出物理模型,选择合理的物理规律建立方程进行求解。
一、力学规律的选用原则1、如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律。
2、研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间问题)或动能定理(涉及位移问题)去解决。
3、若研究的对象为一物体系统,且它们之间有相互作用,一般用两个守恒定律去解决问题,但须注意研究的问题是否满足守恒条件。
4、在涉及相对位移问题时,则优先考虑能量守恒定律,即用系统克服摩擦力所做的总功等于系统机械能的减少量,也即转变为系统内能的量。
5、在涉及有碰撞、爆炸、打击、绳绷紧等物理现象时,须注意到一般这些过程均隐含有系统机械能与其他形式能量之间的转化,这种问题由于作用时间都极短,故动量守恒定律一般能派上大用场。
二、利用动量观点和能量观点解题应注意下列问题(1)动量定理和动量守恒定律是矢量表达式,还可以写出分量表达式,而动能定理和能量守恒定律是标量式,绝无分量式。
(2)从研究对象上看动量定理既可研究单体,又可研究系统,但高中阶段一般用于单体,动能定理在高中阶段只能用于单体。
(3)动量守恒定律和能量守恒定律,是自然界最普遍的规律,它们研究的是物体系统,解题时必须注意动量守恒的条件和机械能守恒的条件,在应用这两个规律时,应当确定了研究对象及运动状态变化的过程后,根据问题的已知条件和要求解未知量,选择研究的两个状态列方程求解。
(4)中学阶段可用力的观点解决的问题,若用动量观点或能量观点求解,一般都要比用力的观点简便,而中学阶段涉及的曲线运动(加速度不恒定)、竖直面内的圆周运动、碰撞等,就中学只是而言,不可能单纯考虑用力的观点解决,必须考虑用动量观点和能量观点解决。
机械振动1、判断简谐振动的方法简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。
专题07动量和能量的综合应用
专题07动量和能量的综合应用知识梳理考点一 动量与动量定理应用动量定理解题的一般步骤及注意事项线如图所示,则( )A .t=1 s 时物块的速率为1 m/sB .t=2 s 时物块的动量大小为4 kg·m/sC .t=3 s 时物块的动量大小为5 kg·m/sD .t=4 s 时物块的速度为零【答案】AB【解析】由动量定理可得:Ft=mv ,解得m Ft v = ,t=1 s 时物块的速率为s m m Ft v /212⨯===1 m/s ,故A 正确;在Ft 图中面积表示冲量,所以,t=2 s 时物块的动量大小P=Ft=2×2=4kg.m/s ,t=3 s 时物块的动量大小为P /=(2×21×1)kgm/s=3 kg·m/s ,t=4 s 时物块的动量大小为P //=(2×21×2)kgm/s=2 kg·m/s ,所以t=4 s 时物块的速度为1m/s ,故B正确 ,C 、D 错误 考点二 动量守恒定律一、应用动量守恒定律的解题步骤二、几种常见情境的规律碰撞(一维)动量守恒动能不增加即p122m1+p222m2≥p1′22m1+p2′22m2速度要合理①若两物体同向运动,则碰前应有v后>v前;碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′。
②若两物体相向运动,碰后两物体的运动方向不可能都不改变。
爆炸动量守恒:爆炸物体间的相互作用力远远大于受到的外力动能增加:有其他形式的能量(如化学能)转化为动能位置不变:爆炸的时间极短,物体产生的位移很小,一般可忽略不计反冲动量守恒:系统不受外力或内力远大于外力机械能增加:有其他形式的能转化为机械能人船模型两个物体动量守恒:系统所受合外力为零质量与位移关系:m1x1=m2x2(m1、m2为相互作用的物体质量,x1、x2为其位移大小)例一(多选)(2021·甘肃天水期末)如图所示,木块B与水平面间的摩擦不计,子弹A沿水平方向射入木块并在极短时间内相对于木块静止下来,然后木块压缩弹簧至弹簧最短。
专题20 动量与能量综合问题(解析版)
2021届高考物理一轮复习热点题型归纳与变式演练专题20动量与能量综合问题【专题导航】目录热点题型一应用动量能量观点解决“子弹打木块”模型 (1)热点题型二应用动量能量观点解决“弹簧碰撞”模型 (4)热点题型三应用动量能量观点解决“板块”模型 (9)热点题型四应用动量能量观点解决斜劈碰撞现象 (13)【题型演练】 (16)【题型归纳】热点题型一应用动量能量观点解决“子弹打木块”模型s 2d s 1v 0子弹打木块实际上是一种完全非弹性碰撞。
作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。
下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。
设质量为m 的子弹以初速度0v 射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。
求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
要点诠释:子弹和木块最后共同运动,相当于完全非弹性碰撞。
从动量的角度看,子弹射入木块过程中系统动量守恒:()v m M mv +=0……①从能量的角度看,该过程系统损失的动能全部转化为系统的内能。
设平均阻力大小为f ,设子弹、木块的位移大小分别为1s 、2s ,如图所示,显然有ds s =-21对子弹用动能定理:20212121mv mv s f -=⋅-……②对木块用动能定理:2221Mv s f =⋅……③②相减得:()()2022022121v m M Mm v m M mv d f +=+-=⋅……④对子弹用动量定理:0-mv mv t f -=⋅……⑤对木块用动量定理:Mv t f =⋅……⑥【例1】(2020·江苏苏北三市模拟)光滑水平地面上有一静止的木块,子弹水平射入木块后未穿出,子弹和木块的v -t 图象如图所示.已知木块质量大于子弹质量,从子弹射入木块到达稳定状态,木块动能增加了50J ,则此过程产生的内能可能是()A .10JB .50JC .70JD .120J【答案】D.【解】析:设子弹的初速度为v 0,射入木块后子弹与木块共同的速度为v ,木块的质量为M ,子弹的质量为m ,根据动量守恒定律得:mv 0=(M +m )v ,解得v =mv 0m +M .木块获得的动能为E k =122=Mm 2v 202(M +m )2=Mmv 202(M +m )·m M +m .系统产生的内能为Q =12mv 20-12(M +m )v 2=Mmv 202(M +m ),可得Q =M +m mE k >50J ,当Q =70J 时,可得M ∶m =2∶5,因已知木块质量大于子弹质量,选项A 、B 、C 错误;当Q =120J 时,可得M ∶m =7∶5,木块质量大于子弹质量,选项D 正确.【变式1】(2020·陕西咸阳模拟)如图所示,相距足够远完全相同的质量均为3m 的两个木块静止放置在光滑水平面上,质量为m 的子弹(可视为质点)以初速度v 0水平向右射入木块,穿出第一块木块时的速度为25v 0,已知木块的长为L ,设子弹在木块中所受的阻力恒定。
动量和能量综合问题例析
动量和能量综合问题例析
动量和能量是物理学中最基础也是最重要的概念之一。
它们之间的关系
前五个世纪已进入各种相关科学的潮流,有各种综合实例让我们去分析和探索。
动量定义为物体所拥有的惯性,是物体移动时所产生的物理量,即动量
定义为物体的质量和速度的乘积,且它是一个守恒量,既不会减少,也不会
增加。
只有在力与动态平衡时,物体的动量才能保持稳定。
能量是物体发生变化时所拥有的量,它可以是动能、热能、电能等,它
至少有一种形式在变化,而另一种形式保持不变。
不像动量是守恒量,能量
却不是,能量在转化或消耗的过程中可会增加或减少。
实际上,动量和能量之间有相互联系和转化的规律,定义了它们之间有
某种影响的关系,其中又称为“动能定律”,即动能和动量之间是有相互联
系和转化的,当动量改变时,物体的动能也会随之改变,或反之,当动能发
生变化时,物体的动量也会改变。
举个例题:一弹球从高度h发射到地面,根据动能定律,给出该弹球从
发射到着陆的能量和转换过程:在发射时,弹球的动能为:Ea=mgh;发射时
的动量为:Pa=0。
然后当它准备落地时,弹球的动量已经为它提供了
Pb=2mv;而动能则被消耗为Eb=mgh,即与发射时相同,这里将发射落地两
个过程中速度&动量及动能转移做了对比。
总之,动量和能量之间是有相互联系和转化的,当其中一个改变的时候,另一个也会随之改变,这是一个重要的物理概念需要人们去分析和探索。
2021高考物理统考二轮复习学案:专题复习篇 专题2 第讲 动量和能量的综合应用
动量和能量的综合应用[建体系·知关联][析考情·明策略]考情分析近几年高考对动量及动量守恒的考查多为简单的选择题形式;而动量和能量的综合性问题则以计算题形式命题,难度较大,常与曲线运动,带电粒子在电磁场中运动和导体棒切割磁感线相联系。
素养呈现1。
动量、冲量、动量定理2。
动量守恒的条件及动量守恒定律3.动力学、能量和动量守恒定律的应用素养落实1。
掌握与动量相关的概念及规律2.灵活应用解决碰撞类问题的方法3。
熟悉“三大观点”在力学中的应用技巧考点1| 动量定理和动量守恒定律冲量和动量定理(1)恒力的冲量可应用I=Ft直接求解,变力的冲量优先考虑应用动量定理求解,合外力的冲量可利用I=F合·t或I合=Δp求解。
(2)动量定理的表达式是矢量式,在一维情况下,各个矢量必须选取统一的正方向.[典例1](2020·武汉二中阶段测试)运动员在水上做飞行运动表演,如图所示,他操控喷射式悬浮飞行器将竖直送上来的水反转180°后向下喷出,令自己悬停在空中。
已知运动员与装备的总质量为90 kg,两个喷嘴的直径均为10 cm,重力加速度大小g=10 m/s2,水的密度ρ=1。
0×103kg/m3,则喷嘴处喷水的速度大约为( )A.2.7 m/s B.5.4 m/sC.7。
6 m/s D.10。
8 m/s[题眼点拨] ①“悬停在空中”表明水向上的冲击力等于运动员与装备的总重力。
②“水反转180°”水速度变化量大小为2v。
B [两个喷嘴的横截面积均为S=错误!πd2,根据平衡条件可知每个喷嘴对水的作用力为F=错误!mg,取质量为Δm=ρSvΔt的水为研究对象,根据动量定理得FΔt=2Δmv,解得v=错误!≈5。
4 m/s,选项B正确.]动量和动量守恒定律(1)判断动量是否守恒时,要注意所选取的系统,注意区别系统内力与外力。
系统不受外力或所受合外力为零时,系统动量守恒。
如何进行动量和能量综合题的复习
关键 词 : 量 动 能量 复 习
“ 滑块 ” 问题是 动量和 能量 的综 合应用 之
一
而不要求考虑其运动的过程 。所 以 , 如果题 目
,
由于滑块与木板之间常存在一对相互作用
不涉及运动过程加速度而是涉及运动时间的问 的摩擦力 , 这对摩 擦力使 滑块 、 木板 的动量、 动
■ 扣 + 扣 ■ 叶 扣 ■ ■ + 扣 . 扣 ■ ■ . 扣 扣 一 卜■ 一 ■ 扣 扣 ■ ■ . 扣 + + .扣 ■ 叶 一 叶叶 ■ 扣 ■ 扣 ■ ■ ■ 扣 ■ 扣 和 + ■ ■ 一 . ■ _ + 扣 ■ . ■■
如何进行动量和能量综合题的复习
水平的考查 , 目让学生比较容易人题 , 题 而随着
一不Biblioteka 拘泥于教学大纲 , 会更加注重对考生能力
一
、
我们来看初中数学课程改革有哪些变化 ,
3注重培养学生对语言理解 能力 和表达能 对学生通过实际动手解决问题的能力的考查 。 .
值得我们留意
力。苏步青教授曾经讲过 , 学不好语文的学生 ,
考是高 中阶段 的学校招生考试 , 具有一 定的选 2创设 问题情景 , . 提高学生解决 问题 的能 拔性 , 因此 , 在试 卷上 重视对 “ 双基 ” 查 的同 考 力 。同样在新 的教材 中 , 课本亦 相当重视提高 答 题 的 深入 , 目难度 逐 渐 增加 , 需 知识 题 所 时, 进一步加强 了对数学能力 , 就是 思维能力 、 学生 自己动手 , 解决实 际问题 的能力 。例如在 点也越来越多 。进一步点明了“ 指挥棒 ” 指示 的 运算能力 、 空间概念 和应 用所 学知识分析 问题 新的几 何教材 中, 就有让学生 自己动手 , 通过实 方 向。 能力的考查 , 试题强调应用 型开放性与创新意 际操作得 出几何 中立体图形 的初步概念的实验 那么初 中数 学课程改革 和中考命题的变化 识, 试题新颖, 具有很强 的时代气息 。 课, 不仅提高学生 的学习兴趣 , 还促进学生动手 是否是互相配合 的呢?我们从 中是否可以看出 2 . 注重对学生通过实际动手获得知识 的考 解决 问题 的能力。 些中考发展方 向的轨迹 ? 查。近年 的中考 中,亦出现 了不少的题 目注重
物理能量与动量
物理能量与动量物理学是一门关于能量和物质运动的科学领域。
本文将聚焦于物理中的两个重要概念:能量和动量。
通过深入探讨它们的定义、性质和相互关系,我们可以更好地理解宇宙中发生的各种运动和相互作用。
一、能量的定义和性质能量是物体或系统具有的做功能力。
它是物理学中最基本的概念之一,广泛应用于各个学科领域。
根据能量形式的不同,能量可以分为多种类型,包括机械能、热能、电能、化学能等。
1. 机械能:机械能是物体由于运动或位置而具有的能量。
它包括动能和势能两个组成部分。
动能是由于物体的运动而产生的能量,它与物体的质量和速度成正比。
势能是由于物体的位置而产生的能量,它与物体的质量和位置高度成正比。
2. 热能:热能是物体内部微观粒子的热运动所具有的能量。
它与物体的温度和热容量有关,符合热力学第一定律,即能量守恒定律。
3. 电能:电能是由于电荷之间的相互作用所产生的能量。
在电路中,电能可以转化为其他形式的能量,如光能、热能、声能等。
二、动量的定义和性质动量是物体运动的物理量,是描述物体运动状态的重要参数。
它是速度与质量的乘积,用符号p表示。
动量是矢量量,方向与速度方向一致。
动量的定义为:p = m·v其中,p表示动量,m表示物体的质量,v表示物体的速度。
动量的单位是千克·米/秒(kg·m/s)。
根据动量定理,当一个物体受到外力作用时,它的动量将发生变化,变化率等于作用力的瞬时值,即:F = Δp/Δt其中,F表示作用力,Δp表示动量的变化量,Δt表示时间的变化量。
这个定理说明了力与物体动量变化之间的关系。
三、能量与动量的关系能量和动量在物理中有着密切联系,并且彼此之间可以相互转化。
1. 动能和能量转化:当物体的动量改变时,它的动能也会发生相应改变。
根据动能的定义,动能的大小与物体的质量和速度平方的乘积成正比。
因此,当速度增加时,动能增加;当速度减小时,动能减小。
2. 势能和能量转化:物体的势能也能转化为动能或其他形式的能量。
动量和能量的综合应用 板块模型课件
板块模型的应用
板块模型的应用包括解释地震、 火山喷发、山脉形成等地质现 象,以及帮助预测地质灾害和 资源பைடு நூலகம்布。
实例分析
通过具体案例分析,展示板块 模型在解释地质现象和预测地 质灾害方面的应用。
结论
1 动量和能量的关系
动量和能量是物体运动的两个重要方面。动 量可以描述物体的运动状态,而能量可以描 述物体的运动能力。
动量和能量的综合应用 板块模型ppt课件
本课件将介绍动量和能量的综合应用,包括动量的定义和单位、动量守恒定 律及其应用、动量定理及其应用、能量的定义和单位、动能和势能的转化、 能量守恒定律及其应用、弹性碰撞及其应用、非弹性碰撞及其应用、动能定 理与动量定理的综合应用、板块模型的概念、板块模型的应用、以及动量和 能量的关系和对实际问题的启示。
动量
动量的定义和单位
动量是物体运动的描述,它 等于物体的质量乘以速度。 单位是千克·米/秒。
动量守恒定律及其应用
动量守恒定律指出,在没有 外力作用下,系统的总动量 保持不变。应用场景包括碰 撞和爆炸。
动量定理及其应用
动量定理描述了力对物体动 量的改变。应用场景包括推 进器和火箭的工作原理。
能量
1 能量的定义和单位
2 动量和能量的综合应用对实际问题
的启示
动量和能量的综合应用可以帮助我们理解和 解决实际问题,如交通事故、能源转换等。
2
非弹性碰撞及其应用
非弹性碰撞是指碰撞后物体发生形变或损失动能的碰撞。应用场景包括汽车碰撞 事故的分析。
3
动能定理与动量定理的综合应用
将动能定理和动量定理结合应用于实际问题,如火箭发射、物体自由落体等。
板块模型
板块模型的概念
动量与能量综合问题归类分析
量守恒,故小物块恰能到达圆弧最高点A时,
两者旳共同速度 v共 =0
①
设弹簧解除锁定前旳弹性势能为EP,上述过程中系 统能量守恒,则有 EP=mgR+μmgL ②
代入数据解得 EP =7.5 J
③
⑵设小物块第二次经过O′时旳速度大小为vm,此时 平板车旳速度大小为vM ,研究小物块在圆弧面上下 滑过程,由系统动量守恒和机械能守恒有
1 2
Mv 2 2
题目 2页 3页 末页
代入数据可得:v1+3v2=4
v21 +3v22 =10
解得
v1
2
3 2
2 3.12m/s
2 2 v2 2 0.29m/s
以上为A、B碰前瞬间旳速度。
或
v1
23 2
2 1.12m/s
v2
2 2
2
1.71m/s
此为A、B刚碰后瞬间旳速度。
题目 2页 3页 末页
m
M
若小球只能在下半个圆周内作摆动 1/2m1V22 =m1gh ≤m1gL V2 2gL v0 m M 2gL
类型三:子弹射木块类问题
如图所示,质量为m旳小木块与水平面间旳动摩擦因数
μ=0.1.一颗质量为0.1m、水平速度为v0=33 Rg 旳子弹
打入原来处于静止状态旳小木块(打入小木块旳时间极短, 且子弹留在小木块中),小木块由A向B滑行5R,再 滑上半径为R旳四分之一光滑圆弧BC,在C点正上方有一 离C高度也为R旳旋转平台,平台同一直径上开有两个离轴 心等距旳小孔P和Q,平台旋转时两孔均能经过C点旳正上 方,若要使小木块经过C后穿过P孔,又能从Q孔落下,则平台 旳角速度应满足什么条件?
住一轻弹簧后连接在一起,两车从光滑弧形轨道上旳 某一高度由静止滑下,当两车刚滑入圆环最低点时连 接两车旳挂钩忽然断开,弹簧将两车弹开,其中后车 刚好停下,前车沿圆环轨道运动恰能越过圆弧轨道最 高点,求:
能量和动量的综合应用(超详细)
【本讲主要内容】能量和动量的综合应用相互作用过程中的能量转化及动量守恒的问题【知识掌握】【知识点精析】1. 应用动量和能量的观点求解的问题综述:该部分是力学中综合面最广,灵活性最大,内容最为丰富的部分。
要牢固树立能的转化和守恒思想,许多综合题中,当物体发生相互作用时,常常伴随多种能量的转化和重新分配的过程。
因此,必须牢固地以守恒(系统总能量不变)为指导,这样才能正确无误地写出能的转化和分配表达式。
2. 有关机械能方面的综述:(1)机械能守恒的情况:例如,两木块夹弹簧在光滑水平面上的运动,过程中弹性势能和木块的动能相互转化;木块冲上放在光滑面上的光滑曲面小车的过程,上冲过程中,木块的动能减少,转化成木块的重力势能和小车的动能。
等等……(2)机械能增加的情况:例如,炸弹爆炸的过程,燃料的化学能转化成弹片的机械能;光滑冰面上两个人相互推开的过程,生物能转化成机械能。
等等……(3)机械能减少的情况:例如,“子弹击木块”模型,包括“木块在木板上滑动”模型等;这类模型为什么动量守恒,而机械能不守恒(总能量守恒),请看下面的分析:如图1所示,一质量为M 的长木板B 静止在光滑水平面上,一质量为m 的小滑块A 以水平速度v 0从长木板的一端开始在长木板上滑动,最终二者相对静止以共同速度一起滑行。
滑块A 在木板B 上滑动时,A 与B 之间存在着相互作用的滑动摩擦力,大小相等,方向相反,设大小为f 。
因水平面光滑,合外力为零,以A 、B 为系统,动量守恒。
(过程中两个滑动摩擦力大小相等,方向相反,作用时间相同,对系统总动量没有影响,即系统的内力不影响总动量)。
由动量守恒定律可求出共同速度0v m M m v += 上述过程中,设滑块A 对地的位移为s A ,B 对地位移为s B 。
由图可知,s A ≠s B ,且s A =(s B +Δs ),根据动能定理:对A :W fA =2020202B 21)(212121)(mv m M mv m mv mv s s f -+=-=∆+- 对B :202B fB )(21021mM mv M Mv fs W +=-== 以上两式表明:滑动摩擦力对A 做负功,对B 做正功,使A 的动能减少了,使B 的动(1)撤去力F 后木块B 能够达到的最大速度是多大?(2)木块A 离开墙壁后,弹簧能够具有的弹性势能的最大值多大?分析:本题第一问,撤去力F 后木块B 只在弹簧弹力作用下运动,木块A 不动,弹簧的弹性势能转化为木块B 的动能,弹簧第一次恢复原长时,木块B 有最大速度。
动量与能量的关系
动量与能量的关系动量与能量是物理学中两个重要的概念,它们在描述物体运动和相互作用时起着关键的作用。
本文将探讨动量与能量之间的关系,以及它们在实际应用中的意义。
一、动量的定义与性质动量是描述物体运动的物理量,它是物体质量和速度的乘积。
动量的计算公式为:p = m * v,其中p表示动量,m表示物体的质量,v表示物体的速度。
动量具有以下几个重要的性质:1. 动量是矢量量,具有方向性。
它的方向与物体的速度方向一致。
2. 动量与物体质量成正比,与速度成正比。
质量越大,速度越快,动量就越大。
3. 动量是守恒的。
在一个封闭系统中,物体间的相互作用不会改变系统的总动量。
二、能量的定义与性质能量是描述物体状态和物体间相互作用的物理量,它是物体所具有的做工能力。
根据能量的性质和形式,能量可以分为多种类型,如机械能、热能、电能、化学能等。
能量的计量单位是焦耳(J)。
能量具有以下几个重要的性质:1. 能量是标量量,不具有方向性。
2. 能量具有转化和守恒的性质。
能量可以在不同形式之间相互转化,但总能量守恒,不会因为转化而减少或增加。
三、动能与动量之间的关系物体的动能是指因物体运动而具有的能量。
动能的计算公式为:E_k = 1/2 * m * v^2,其中E_k表示动能,m表示物体质量,v表示物体的速度。
动能与动量之间存在着密切的关系。
根据动能的计算公式可以推导出:E_k = 1/2 * p * v,其中p表示物体的动量。
这表明动能与动量之间存在着倍数关系,动量越大,动能也越大。
四、冲量与动量的关系物体受到外力作用时,会发生动量的变化,这种变化称为冲量。
冲量的计算公式为:I = ∆p = m * ∆v,其中I表示冲量,∆p表示动量的变化量,m表示物体的质量,∆v表示速度的变化量。
冲量与动量之间存在着密切的关系。
根据冲量的计算公式可以推导出:I = F * ∆t = ∆p,其中F表示外力的大小,∆t表示作用时间。
这表明冲量等于动量的变化量,而动量是物体运动的量度,因此冲量可以看作是物体运动状态变化的度量。
能量与动量的关系
能量与动量的关系(下面用到的符号含义:E :能量;p :动量;m :静质量;m':动质量;c :光速;v :粒子的运动速度;k E :动能;h :普朗克常量;ν:频率;λ:波长)最近在量子力学教材中看到两种能量与动量关系的表达式:(1)E=2mp 2; (2)E=pc 。
为探讨他们的区别,作如下分析:在(1)中,能量E 指的是动能,即认为运动粒子的能量全部表现为动能,因为:E=2m p 2=2mv 21;在(2)中,E=pc=c c v1mv22-=vc m'而相对论中的能量与动量关系表达式为:2E =222)mc ((pc)+可以证明,上面的关系式与质能方程等价,因为: 2E =222)mc ((pc)+=222c)c v 1mv(-+22)mc (=2222)c cv 1m (-=22)c (m',即E=2c m' 另外,相对论中的动能表达式为:k E =2c m'-2mc可以看到,若粒子是光量子,则:E=pc ,2E =222)mc ((pc)+,k E =2c m'-2mc 三式是等价的,因为对于光量子, m =0,p=m'c,且其能量全部为动能,故有:E =k E =pc=2c m';然而对于其他粒子,显然以上三式是不等价的。
经过上述分析,我们看到:(1)式是非相对论性的粒子的能量动量关系式;(2)式是相对论性的光量子的能量动量关系式。
然而事实真是如此吗?我们可以看一下德布罗意关系式:E=hν;p=h/λ。
由此可推出:E=hν=pλν=pc我们知道德布罗意关系式对任何粒子都是成立的,那么由其推出的E=pc应该也适用于任何粒子,这显然与上面得出的E=pc只适用于光量子的结论矛盾。
问题到底出在哪里?通过仔细的检查,我们可以发现这样的事实:前面讨论的(1)、(2)两式中,速度v和c都是指粒子运动的速度;而在德布罗意关系式中,λν=c是指波速。
动量和能量综合问题
动量和能量综合问题班级__________ 座号_____ 姓名__________ 分数__________1. 弹性碰撞发生弹性碰撞的两个物体碰撞前后动量守恒,动能守恒,若两物体质量分别为m 1和m 2,碰前速度为v 1,v 2,碰后速度分别为v 1ˊ,v 2ˊ,则有: m 1v 1+m 2v 2=m 1v 1ˊ+m 2v 2ˊ (1)21m 1v 12+21m 2v 22=21m 1v 1ˊ2+21m 2v 2ˊ 2 (2) 联立(1)、(2)解得:v 1ˊ=1212211-2v m m v m v m ++,v 2ˊ=2212211-2v m m v m v m ++.特殊情况:①若m 1=m 2 ,v 1ˊ= v 2 ,v 2ˊ= v 1 . ②若v 2=0则 v 1ˊ=12121-v m m m m +,v 2ˊ=21112m m v m +.(i)m 1>>m 2 v 1ˊ=v 1,v 2ˊ=2v 1 . (ii)m 1<<m 2 v 1ˊ=-v 1,v 2ˊ=0 . 2. 完全非弹性碰撞碰后物体的速度相同, 根据动量守恒定律可得:m 1v 1+m 2v 2=(m 1+m 2)v 共 (1)完全非弹性碰撞系统损失的动能最多,损失动能:ΔE k = ½m 1v 12+ ½ m 2v 22- ½(m 1+m 2)v 共2. (2) 联立(1)、(2)解得:v 共 =212211m m v m v m ++;ΔE k =2212121-21)v v (m m m m + 3. 非弹性碰撞介于弹性碰撞和完全非弹性碰撞之间的碰撞。
动量守恒,碰撞系统动能损失。
根据动量守恒定律可得:m 1v 1+m 2v 2=m 1v 1ˊ+m 2v 2ˊ (1) 损失动能ΔE k ,根据机械能守恒定律可得: ½m 1v 12+ ½ m 2v 22=21m 1v 1ˊ2+21m 2v 2ˊ 2 + ΔE k . (2) 恢复系数e =2112-′-v v v v ′ ①非弹性碰撞:0<e <1;②弹性碰撞:e =1;③完全非弹性碰撞:e =0。
动量与能量动量守恒定律与能量守恒定律的应用
动量与能量动量守恒定律与能量守恒定律的应用动量与能量:动量守恒定律与能量守恒定律的应用动量和能量是物理学中的两个重要概念,它们在解释和描述物体运动以及相互作用时起到了关键作用。
在本文中,我们将讨论动量守恒定律和能量守恒定律的应用,并探讨它们之间的联系和区别。
一、动量守恒定律的应用动量是一个物体运动状态的量度,它等于物体的质量乘以速度。
动量守恒定律指出,当物体之间没有外力作用时,它们的总动量保持不变。
这个定律在解释碰撞过程中起到了重要的作用。
碰撞是物体之间相互作用的一种形式。
根据动量守恒定律,碰撞前后物体的总动量不变。
这个定律可以用于解释许多现象,比如球类运动、交通事故等。
以球类碰撞为例,当两个球碰撞时,它们之间的力会改变彼此的速度和运动方向,但是它们的总动量保持不变。
这意味着两个球的动量和在碰撞前后是相等的。
在交通事故中,动量守恒定律也发挥了重要作用。
当两辆车相撞时,如果没有外力作用,它们的总动量在碰撞前后保持不变。
这样一来,我们可以根据车辆的质量和速度来计算碰撞后的速度,从而预测事故的严重程度。
二、能量守恒定律的应用能量是物体进行工作或产生力量的能力,它有多种形式,如动能、势能、热能等。
能量守恒定律指出,当一个系统内部没有外力或外界做功时,系统的总能量保持不变。
能量守恒定律在解释和分析能量转化和传递的过程中起到了重要作用。
它可以用于解释摩擦、弹性变形、机械能的转化等现象。
摩擦是一种能量转化的过程。
当物体在表面上运动或滑动时,由于摩擦力的作用,部分机械能被转化成热能,从而导致能量损失。
能量守恒定律可以帮助我们计算在摩擦中能量的转化和损失。
弹性变形也是能量转化的一种形式。
当物体受到外力作用时,它们会发生弹性变形,这时一部分机械能被转化为弹性势能。
当外力停止作用时,物体恢复原状,弹性势能再次转化为机械能。
机械能的转化是能量守恒定律的典型应用。
当物体在重力场中运动时,它们的机械能由动能和势能组成。
根据能量守恒定律,机械能的总量保持不变。
第38课时动量和能量的综合问题2025届高考物理一轮复习课件
m3)3 2 =1.5 J。
−
1
(m2+
2
目录
高中总复习·物理
(3)小物块压缩弹簧的过程中弹簧具有的最大弹性势能。
答案:0.45 J
解析:设物块相对板运动的路程为s,则Q=μm3gs
解得s=1.5 m
1.5−0.6
则当弹簧压缩量最大时,物块相对板运动的路程为s'=
2
m+0.6 m=1.05 m
1
2
2
根据能量守恒定律得 m10 = m11 + m22 2
2
2
2
解得v1=v2=2 m/s。
目录
高中总复习·物理
(2)物块与长木板间因摩擦产生的热量;
答案:1.5 J
解析:设物块与平板最后的共同速度大小为v3,根据动量守恒
定律得m2v2=(m2+m3)v3
解得v3=1.5 m/s
1
根据能量守恒定律,因摩擦产生的热量Q= m22 2
1 kg的小球悬挂在O点,轻绳处于水平拉直状态。现将小球由静止
释放,下摆至最低点刚好与长木板的左端发生弹性碰撞,已知物块
与长木板间的动摩擦因数为0.1,物块与长木板相对静止时刚好停在
长木板的中点,重力加速度g取10 m/s2,所有碰撞时间忽略不计,
不计空气阻力,不计小球大小,绳长为0.8 m,挡板质量不计,求:
解得a=4 m/s2
由运动学公式有1 2 =2ax1
解得x1=0.125 m。
目录
高中总复习·物理
(2)求木板与弹簧接触以后,物块与木板之间即将相对滑动时弹簧
的压缩量x2及此时木板速度v2的大小。
答案:0.25 m
3
2
m/s
解析:木板与弹簧接触后,物块与木板先一起减速,当物块受到
2024届高考一轮复习物理课件(新教材鲁科版):动量和能量的综合问题
上,A上固定一竖直轻杆,轻杆上端的O点系一条不可拉伸的长为l的细
线,细线另一端系一个可以看作质点的球C,质量也为m.现将C球拉起使
细线水平自然伸直,并由静止释放C球,重力加速度为g.求:
(1)C球第一次摆到最低点时的速度大小;
答案 2
gl 3
1234
对A、B、C组成的系统,由水平方向动量守恒及 系统机械能守恒可得mvC=2mvAB mgl=12mvC2+12×2mvAB2 联立解得 C 球第一次摆到最低点时的速度大小为 vC=2 g3l.
(2)求B与A的挡板碰撞后瞬间平板A的动能; 答案 2 J
B、C分离后,B向左做匀减速直线运动,A静止不
动,设A、B碰撞前瞬间B的速度为vB1,对物块B, 由动能定理得-μmBgL=12mBvB12-12mBvB2 A、B发生弹性碰撞,取水平向左为正方向,碰撞过程中系统动量守
恒、机械能守恒,则有mBvB1=mBvB2+mAvA, 12mBvB12=12mBvB22+12mAvA2 且 EkA=12mAvA2 联立解得vB1=2 m/s,vB2=0,vA=2 m/s,EkA=2 J.
(3)求平板A在桌面上滑行的距离.
答案
3 8m
A、B碰撞后,A向左做匀减速直线运动,B向左做匀加速直线运动,
则对B有μmBg=mBaB 对A有μmBg+μ(mB+mA)g=mAaA 解得aA=6 m/s2,aB=2 m/s2 设经过时间t,两者共速,则有v=aBt=vA-aAt 解得 v=12 m/s,t=14 s 此过程中A向左运动距离 x1=vA+2 vt=2+2 12×14 m=156 m
1234
(1)质量为m1的物块到达B点时的速度大小vB; 答案 5 m/s
1234
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阶段综合评估(六) 能量与动量一、选择题(在每小题给出的四个选项中,第1~4题只有一项符合题目要求,第5~8题有多项符合题目要求)1.如图所示是一种清洗车辆用的手持喷水枪。
设枪口截面积为0.6 cm 2,喷出水的速度为 20 m/s (水的密度为1×103 kg/m 3)。
当它工作时,估计水枪的功率约为( )A .250 WB .300 WC .350 WD .400 W解析:选A 每秒钟喷出水的动能为E k =12m v 2=12ρS v t ·v 2,代入数据得E k =240 J ,故选项A 正确。
2.如图所示,在高1.5 m 的光滑平台上有一个质量为2 kg 的小球被一细线拴在墙上,小球与墙之间有一根被压缩的轻质弹簧。
当烧断细线时,小球被弹出,小球落地时的速度方向与水平方向成60°角,则弹簧被压缩时具有的弹性势能为(g =10 m/s 2)( )A .10 JB .15 JC .20 JD .25 J解析:选A 由2gh =v y 2-0得:v y =2gh ,即v y =30 m/s ,落地时,tan 60°=v y v 0可得:v 0=v y tan 60°=10 m/s ,由机械能守恒定律得E p =12m v 02,可求得:E p =10 J ,故A 正确。
3.如图所示,两物体A 、B 用轻质弹簧相连静止在光滑水平面上,现同时对A 、B 两物体施加等大反向的水平恒力F 1、F 2,使A 、B 同时由静止开始运动。
在以后的运动过程中,关于A 、B 两物体与弹簧组成的系统,下列说法正确的是(整个过程中弹簧不超过其弹性限度)( )A .由于F 1、F 2所做的总功为零,所以系统的机械能始终不变B .当A 、B 两物体之间的距离减小时,系统的机械能增大C .当弹簧伸长到最长时,系统的机械能最大D .当弹簧弹力的大小与F 1、F 2的大小相等时,A 、B 两物体速度为零解析:选C 从开始状态到弹簧拉到最长过程中,两拉力方向与其受力物体位移方向均相同,做正功,由功能关系可知,系统机械能增大,A 项错;当两物体之间距离减小即A 、B 相向运动,力F 1和F 2做负功,系统机械能减小,B 项错误;当弹簧伸长到最长时,力F 1和F 2做正功最多,故系统机械能最大,C 项正确;分别对A 、B 应用动能定理,从开始到弹力与外力相等时,合外力分别对A 、B 做正功,两物体动能增加,速度一定大于零,D 项错误。
4.(2017·合肥质检)如图所示,水平传送带保持2 m/s的速度运动,一质量为1 kg的物体与传送带间的动摩擦因数为0.2,现将该物体无初速度地放到传送带上的A点,然后运动到了距A点2 m的B点,则传送带对该物体做的功为()A.0.5 J B.2 JC.2.5 J D.4 J解析:选B由题意知,物体的加速度a=μg=2 m/s2。
物体在传送带上匀加速运动的位移x=v22a=1 m,又因为x AB=2 m,所以物体先做匀加速运动后做匀速运动,由动能定理知传送带对物体做功W=12m v2=2 J,B正确。
5.静止在湖面上的小船中有两人分别向相反方向水平抛出质量相同的小球,先将甲球向左抛,后将乙球向右抛。
抛出时两小球相对于河岸的速率相等,水对船的阻力忽略不计,则下列说法正确的是()A.两球抛出后,船向左以一定速度运动B.两球抛出后,船向右以一定速度运动C.两球抛出后,船的速度为0D.抛出时,人给甲球的冲量比人给乙球的冲量大解析:选CD 水对船的阻力忽略不计,根据动量守恒定律,两球抛出前,由两球、人和船组成的系统总动量为0,两球抛出后的系统总动量也是0。
两球质量相等,速度大小相等,方向相反,合动量为0,船的动量也必为0,船的速度必为0。
具体过程是:当甲球向左抛出后,船向右运动,乙球抛出后,船静止。
人给甲球的冲量I甲=m v-0,人给乙球的冲量I2=m v-m v′,v′是甲球抛出后的船速,方向向右,所以乙球的动量变化量小于甲球的动量变化量,乙球所受冲量也小于甲球所受冲量。
6.有一系列斜面,倾角各不相同,它们的底端相同,都是O点,如图所示。
有一些完全相同的滑块(可视为质点)从这些斜面上的A、B、C、D…各点同时由静止释放,下列判断正确的是()A.若各斜面均光滑,且这些滑块到达O点的速率相同,则A、B、C、D…各点处在同一水平线上B.若各斜面均光滑,且这些滑块到达O点的速率相同,则A、B、C、D…各点处在同一竖直面内的圆周上C .若各斜面均光滑,且这些滑块到达O 点的时间相同,则A 、B 、C 、D …各点处在同一竖直面内的圆周上D .若各斜面与这些滑块间有相同的动摩擦因数,滑到O 点的过程中,各滑块损失的机械能相同,则A 、B 、C 、D …各点处在同一竖直线上解析:选ACD 由机械能守恒可知A 正确、B 错误;若A 、B 、C 、D …各点在同一竖直平面内的圆周上,则下滑时间均为t = 2dg ,d 为直径,因此选项C 正确;设斜面和水平面间夹角为θ,损失的机械能为ΔE =μmgx cos θ,损失机械能相同,则x cos θ相同,因此A 、B 、C 、D …各点在同一竖直线上,D 正确。
7.如图所示,n 个完全相同,边长足够小且互不粘连的小方块依次排列,总长度为l ,总质量为M ,它们一起以速度v 在光滑水平面上滑动,某时刻开始滑上粗糙水平面。
小方块与粗糙水平面之间的动摩擦因数为μ,若小方块恰能完全进入粗糙水平面,则所有小方块克服摩擦力做功为( ) A.12M v 2 B .M v 2 C.12μMgl D .μMgl解析:选AC 小方块恰能完全进入粗糙水平面,说明小方块进入粗糙水平面后速度为零。
以所有小方块为研究对象,由动能定理可知,所有小方块克服摩擦力做功W f =12M v 2,A 项正确;将所有小方块等效为质量集中在重心的质点,恰能完全进入粗糙水平面,重心位移为l ,且在l 2大小的位移上存在摩擦力,所以克服摩擦力做功为12μMgl ,C 正确。
8.(2017·宜兴模拟)如图所示,一个表面光滑的斜面体M 置于水平地面上,它的两个斜面与水平面的夹角分别为α、β,且α<β,M 的顶端装有一定滑轮,一轻质细绳跨过定滑轮后连接A 、B 两个小滑块,细绳与各自的斜面平行,不计绳与滑轮间的摩擦,A 、B 恰好在同一高度处于静止状态。
剪断细绳后,A 、B 滑至斜面底端,M 始终保持静止,则( )A .滑块A 的质量大于滑块B 的质量B .两滑块到达斜面底端时的速率相同C .两滑块到达斜面底端时,滑块A 重力的瞬时功率较大D .两滑块到达斜面底端所用时间相同解析:选AB 根据题意,由于A 、B 物体均处于平衡状态,有F T A =F T B ,而F T A =m A g sin α,F T B =m B g sin β,所以m A 大于m B ,A 正确;由于A 、B 物体距离地面的高度h 相同,据机械能守恒定律可知两者到达地面的速率v 相同,B 正确;两者到达地面时重力的瞬时功率为P A =m A g v sin α,P B =m B g v sin β,所以P A =P B ,C 错误;两者到达地面的时间为h sin α=g sin α·t A 22,h sin β=g sin β·t B 22,有t A 大于t B ,D 错误。
二、实验题9.(2017·深圳模拟)某同学用如图甲所示装置来探究“动能定理”,得到一条如图乙所示的纸带,O 点为第一个点,并在纸带清晰段依次标记了A 、B 、C 三个点,用毫米刻度尺测得各点到O 点的距离如图,重物质量m =1.00 kg 。
(1)电火花打点计时器应选择以下哪种电源________。
A .4~6 V 、50 Hz 交流电源B .220 V 、50 Hz 交流电源(2)从O 点到B 点,重物的重力做功W 重=________J ,动能的增加量ΔE k =________J 。
(g 取10 m/s 2,以上计算结果均保留三位有效数字)解析:(1)电火花打点计时器使用220 V 、50 Hz 的交流电源,所以选项B 正确。
(2)从O 点到B 点,重物的重力做功W G =mgh =1.00×10×0.777 6 J ≈7.78 J ,B 点的速度v B =h AC 2T =(85.76-70.18)×10-22×0.02m /s =3.895 m/s , B 点的动能E k B =12m v B 2≈7.59 J 动能的增加量ΔE k =E k B -0=7.59 J 。
答案:(1)B (2)7.78 7.5910.某同学利用打点计时器和气垫导轨做“验证动量守恒定律”的实验,气垫导轨装置如图甲所示,所用的气垫导轨装置由导轨、滑块、弹射架等组成。
在空腔导轨的两个工作面上均匀分布着一定数量的小孔,向导轨空腔内不断通入压缩空气,空气会从小孔中喷出,使滑块稳定地飘浮在导轨上,这样就大大减小了因滑块和导轨之间的摩擦而引起的误差。
(1)下面是实验的主要步骤:①安装好气垫导轨,调节气垫导轨的调节旋钮,使导轨水平;②向气垫导轨空腔内通入压缩空气;③把打点计时器固定在紧靠气垫导轨左端弹射架的外侧,将纸带穿过打点计时器和弹射架并固定在滑块1的左端,调节打点计时器的高度,直至滑块拖着纸带移动时,纸带始终在水平方向;④使滑块1挤压导轨左端弹射架上的橡皮绳;⑤把滑块2放在气垫导轨的中间;⑥先__________________,然后________________,让滑块带动纸带一起运动;⑦取下纸带,重复步骤④⑤⑥,选出理想的纸带如图乙所示;⑧测得滑块1的质量为310 g,滑块2(包括橡皮泥)的质量为205 g。
完善实验步骤⑥的内容。
(2)已知打点计时器每隔0.02 s打一个点,计算可知两滑块相互作用以前系统的总动量为________ kg·m/s;两滑块相互作用以后系统的总动量为________ kg·m/s(保留三位有效数字)。
(3)试说明(2)中两结果不完全相等的主要原因是___________________________。
解析:(1)实验时应先接通打点计时器的电源,再放开滑块1。
(2)相互作用前滑块1的速度v1=0.20.1m/s=2 m/s,系统的总动量为0.310 kg×2 m/s=0.620 kg·m/s,两滑块相互作用后具有相同的速度v=0.1680.14m/s=1.2 m/s,系统的总动量为(0.310 kg+0.205 kg)×1.2 m/s=0.618 kg·m/s。