高考物理上考场前必须掌握的75个结论

合集下载

高考物理高频考点归纳

高考物理高频考点归纳

高考物理考点归纳一、力物体的平衡1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。

2.重力(1)重力是由于地球对物体的吸引而产生的.[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力.但在地球表面附近,可以认为重力近似等于万有引力(2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g(3)重力的方向:竖直向下(不一定指向地心)。

(4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上.3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的.(2)产生条件:①直接接触;②有弹性形变.(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面;在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面.①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等.②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆.(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解.★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m.4.摩擦力(1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可.(2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反.(3)判断静摩擦力方向的方法:①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向.②平衡法:根据二力平衡条件可以判断静摩擦力的方向.(4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解.①滑动摩擦力大小:利用公式f=μFN 进行计算,其中FN是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或牛顿定律来求解.②静摩擦力大小:静摩擦力大小可在0与f max 之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解.5.物体的受力分析(1)确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上.(2)按“性质力”的顺序分析.即按重力、弹力、摩擦力、其他力顺序分析,不要把“效果力”与“性质力”混淆重复分析.(3)如果有一个力的方向难以确定,可用假设法分析.先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态.6.力的合成与分解(1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力.(2)力合成与分解的根本方法:平行四边形定则.(3)力的合成:求几个已知力的合力,叫做力的合成.共点的两个力(F 1 和F 2 )合力大小F 的取值范围为:|F 1 -F 2 |≤F ≤F 1 +F 2 .(4)力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算).在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法.7.共点力的平衡(1)共点力:作用在物体的同一点,或作用线相交于一点的几个力.(2)平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态.(3)★共点力作用下的物体的平衡条件:物体所受的合外力为零,即∑F=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑F x =0,∑F y =0.(4)解决平衡问题的常用方法:隔离法、整体法、图解法、三角形相似法、正交分解法等等.二、直线运动1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动.2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。

高考物理:40个二级结论,超实用!

高考物理:40个二级结论,超实用!

高考物理:40个二级结论,超实用!▼4.在变速直线运动的速度—时间图像中,图像上各点切线的斜率表示加速度;某段图线下的“面积”数值上与该段位移相等。

5.竖直上抛运动:上升过程是匀减速直线运动,下落过程是匀加速直线运7.匀加速运动的物体追匀速运动的物体,当两者速度相等时,距离最远;匀减速运动的物体追匀速运动的物体,当两者速度相等时,距离最近,若这时仍未追上,则不会追上。

8.质点做简谐运动时,靠近平衡位置时加速度减小而速度增加;离开平衡位置时,加速度增加而速度减小。

9.若三个非平行的力作用在一个物体上并使该物体保持平衡,则这三个力必相交于一点。

它们可平移为一个封闭的矢量三角形。

18.双星系统由于万有引力而绕连线上一点做圆周运动,其轨道半径与质量成反比、环绕速度与质量成反比。

25.若一条直线上有三个点电荷因相互作用均平衡,则这三个点电荷的相邻电性相反,即两同夹一异,两大夹一小。

26.电容器充电后和电源断开,仅改变板间的距离时,场强不变;若始终与电源相连,仅改变正对面积时,场强不变。

27.电场强度方向是电势降低最快的方向,在等差等势面分布图中,等势面密集的地方电场强度大。

28.在闭合电路里,某一支路的电阻增大(或减小),一定会导致总电阻的增大(或减小),总电流的减小(或增大),路端电压的增大(或减小)。

32.多用电表欧姆表的指针越接近中值电阻,误差越小。

33.内接法和外接法的选择:内大大,外小小34.滑动变阻器分压接法的确定:从零开始调节,调节范围大;变阻器阻值较小,不能保证用电器安全。

37.在各种电磁感应现象中,电磁感应的效果总是阻碍引起电磁感应的原因,若是由相对运动引起的,则阻碍相对运动;若是由电流变化引起的,则阻碍电流变化的趋势。

高中物理高考常考知识点归纳总结

高中物理高考常考知识点归纳总结

高中物理高考常考知识点归纳总结一、力和力的作用1. 力的概念和分类力是物体之间相互作用的结果,分为接触力和非接触力。

接触力包括摩擦力、弹力、支持力等;非接触力包括重力、电磁力、引力等。

2. 牛顿三定律第一定律:物体静止或匀速直线运动时,受力合力为零。

第二定律:物体受到的力等于其质量与加速度的乘积:F = ma。

第三定律:作用力与反作用力大小相等、方向相反、作用在不同物体上。

二、运动学1. 物体的运动描述位移:物体从一个位置到另一个位置的变化量。

速度:物体在单位时间内的位移变化量。

加速度:物体单位时间内速度的变化量。

2. 直线运动和平抛运动直线运动:匀速直线运动和变速直线运动。

平抛运动:物体在水平方向上匀速运动,竖直方向受到重力影响。

3. 牛顿运动定律第一定律:如果物体受到合力为零,则物体将保持静止或匀速直线运动。

第二定律:物体受到的合力等于其质量与加速度的乘积。

第三定律:相互作用的两个物体对彼此都有大小相等、方向相反的力。

三、能量和功1. 功与功率功:力对物体做功的表现,等于力与物体位移的乘积:W = Fd。

功率:单位时间内做功的大小,等于功除以时间:P = W/t。

2. 势能和动能势能:物体由于位置或状态而具有的能量,包括重力势能和弹性势能等。

动能:物体由于运动而具有的能量,等于物体质量与速度平方的乘积的一半:K = 1/2 mv^2。

机械能守恒定律:在只有重力做功的系统中,机械能守恒。

四、能量转换和守恒1. 功与能的转化功可以将一种能转化为另一种能,但总能量守恒。

例如,将化学能转化为机械能的蓄电池或将电能转化为热能的电炉等。

2. 机械能守恒在只有重力做功的系统中,机械能守恒。

例如,自由下落、滑动摩擦等情况下,机械能守恒。

五、电学基础1. 电荷和电场电荷:物体带有的正电荷或负电荷。

电场:电荷周围的物理量,描述电荷对其他电荷的作用力。

电场强度:单位正电荷在电场中所受到的力的大小。

2. 安培定律和库仑定律安培定律:描述电流与导线长度、导线横截面积和导线材料的关系。

高考物理复习必备的65条知识点汇总

高考物理复习必备的65条知识点汇总

1.若三个力大小相等方向互成120°,则其合力为零。

2.几个互不平行的力作用在物体上,使物体处于平衡状态,则其中一部分力的合力必与其余部分力的合力等大反向。

3.在匀变速直线运动中,任意两个连续相等的时间内的位移之差都相等,即Δx=aT2(可判断物体是否做匀变速直线运动),推广:xm-xn=(m-n) aT2。

4.在匀变速直线运动中,任意过程的平均速度等于该过程中点时刻的瞬时速度。

即vt/2=v平均。

5.对于初速度为零的匀加速直线运动(1)T末、2T末、3T末、…的瞬时速度之比为:v1:v2:v3:…:vn=1:2:3:…:n。

(2)T内、2T内、3T内、…的位移之比为:x1:x2:x3:…:xn=12:22:32:…:n2。

(3)第一个T内、第二个T内、第三个T内、…的位移之比为:xⅠ:xⅡ:xⅢ:…:xn=1:3:5:…:(2n-1)。

(4)通过连续相等的位移所用的时间之比:t1:t2:t3:…:tn=1:(21/2-1): (31/2-21/2):…:[n1/2-(n-1)1/2]。

6.物体做匀减速直线运动,末速度为零时,可以等效为初速度为零的反向的匀加速直线运动。

7.对于加速度恒定的匀减速直线运动对应的正向过程和反向过程的时间相等,对应的速度大小相等(如竖直上抛运动)8.质量是惯性大小的唯一量度。

惯性的大小与物体是否运动和怎样运动无关,与物体是否受力和怎样受力无关,惯性大小表现为改变物理运动状态的难易程度。

9.做平抛或类平抛运动的物体在任意相等的时间内速度的变化都相等,方向与加速度方向一致(即Δv=at)。

10.做平抛或类平抛运动的物体,末速度的反向延长线过水平位移的中点。

11.物体做匀速圆周运动的条件是合外力大小恒定且方向始终指向圆心,或与速度方向始终垂直。

12.做匀速圆周运动的物体,在所受到的合外力突然消失时,物体将沿圆周的切线方向飞出做匀速直线运动;在所提供的向心力大于所需要的向心力时,物体将做向心运动;在所提供的向心力小于所需要的向心力时,物体将做离心运动。

高考物理必考知识点的总结和归纳

高考物理必考知识点的总结和归纳

高考物理必考知识点的总结和归纳一、运动的描述。

1. 质点。

- 定义:用来代替物体的有质量的点。

- 条件:当物体的大小和形状对研究问题的影响可忽略不计时,物体可视为质点。

例如研究地球绕太阳公转时,地球可视为质点;研究地球自转时,不能将地球视为质点。

2. 参考系。

- 定义:为了描述物体的运动而假定为不动的物体。

- 选择不同的参考系,对物体运动的描述可能不同。

例如坐在行驶汽车中的乘客,以汽车为参考系是静止的,以路边的树木为参考系是运动的。

3. 位移与路程。

- 位移:矢量,是由初位置指向末位置的有向线段,其大小等于初末位置间的直线距离,方向由初位置指向末位置。

- 路程:标量,是物体运动轨迹的长度。

只有在单向直线运动中,位移的大小才等于路程。

4. 速度。

- 平均速度:定义为位移与发生这个位移所用时间的比值,即v = (Δ x)/(Δ t),是矢量,其方向与位移方向相同。

- 瞬时速度:物体在某一时刻(或某一位置)的速度,是矢量。

当Δ t趋近于0时,平均速度就趋近于瞬时速度。

- 速率:速度的大小,是标量。

5. 加速度。

- 定义:速度的变化量与发生这一变化所用时间的比值,即a=(Δ v)/(Δ t),是矢量,方向与速度变化量的方向相同。

加速度反映了速度变化的快慢。

二、匀变速直线运动的研究。

1. 匀变速直线运动的基本公式。

- 速度公式:v = v_0+at,其中v_0为初速度,a为加速度,t为时间,v为末速度。

- 位移公式:x = v_0t+(1)/(2)at^2。

- 速度 - 位移公式:v^2 - v_0^2=2ax。

2. 自由落体运动。

- 定义:物体只在重力作用下从静止开始下落的运动。

- 特点:初速度v_0 = 0,加速度a = g(重力加速度,g≈9.8m/s^2)。

- 公式:v = gt,h=(1)/(2)gt^2,v^2 = 2gh。

3. 竖直上抛运动。

- 定义:将物体以一定的初速度竖直向上抛出的运动。

高中物理 高考物理须熟记的75个结论

高中物理 高考物理须熟记的75个结论

高中物理高考物理须熟记的75个结论1. 加速度的方向与作用力方向相同,速度的方向与加速度方向相同,而加速度的大小与作用力大小成正比。

这是牛顿第二定律的基本结论。

2. 光速在真空中为常数,约为3.0×10^8m/s,不会因光源的运动状态而改变。

这是相对论的基本结论。

3. 能量守恒定律:能量可以在不同形式之间转化,但总能量守恒不变。

4. 动量守恒定律:系统内外力的合力为零时,系统的总动量守恒不变。

5. 焦耳定律:通过导线的电流所产生的热量与电流的大小、电阻的大小、时间的长短有关。

6. 温度与物体内能的平均动能成正比,低温表示物体内能的平均动能较低。

7. 电压等于单位正电荷在电场中所具有的电势能。

8. 电阻的大小和材料的导电性质、导线的长度、横截面积有关。

9. 静电力与电荷的大小和距离的平方成反比,与介质的相对介电常数有关。

10. 质心是物体所有微小质量元的叠加点,对于孤立系统,质心具有匀速直线运动的特点。

11. 引力是质点之间的相互作用力,与物体的质量和距离的平方成正比。

12. 由高温向低温传热的过程中,热量通过传导、对流和辐射三种方式传递。

13. 反射定律:入射角等于反射角。

14. 折射定律:入射光线所在的平面内,入射角的正弦与折射角的正弦成正比。

15. 电压(V)等于电能(E)与电荷(q)的比值。

16. 缓冲区中溶液的pH值趋近于缓冲溶液的pK值。

17. 光的干涉和衍射现象是光的波动性质的表现。

18. 电极电位差等于氧化电位减去还原电位。

19. 多晶半导体的电导率比单晶半导体的电导率高。

20. 同等电荷和距离条件下,电势能最大的是电容器两极板上的电荷。

21. 同质异能:同质核的差能级发生跃迁,发射出γ射线。

22. 柳暗花明又一村:光强较弱的地方会有衍射现象,形成亮斑。

23. 光的波长越长,频率越低,能量越小。

24. 两物体之间的万有引力按照万有引力公式计算。

25. 单色光通过凸透镜后,光线会聚于主焦点。

高考物理必考知识点总结

高考物理必考知识点总结

高考物理必考知识点总结一、力学部分:1. 质点运动:质点的位置、速度和加速度的概念及其之间的关系。

2. 牛顿运动定律:第一定律(惯性定律)、第二定律(力和加速度的关系)、第三定律(相互作用力)。

3. 万有引力定律:描述两个质点之间的引力大小和方向。

4. 动量与冲量:动量的定义、动量守恒定律、冲量的定义和冲量定理。

5. 力的合成与分解:合力的定义及其计算方法,分解力的定义及其计算方法。

6. 平抛运动与斜抛运动:平抛运动的特点和公式,斜抛运动的特点和公式。

二、热学部分:1. 温度与热量:温度的定义和测量方法,热量的概念和传递方式。

2. 热力学定律:热力学第一定律(能量守恒定律)、热力学第二定律(热气体的熵增原理)。

3. 理想气体定律:理想气体状态方程及其推导,理想气体的压强、体积和温度之间的关系。

4. 内能与焓:内能的概念和计算方法,焓的概念和计算方法。

三、光学部分:1. 光的反射:光的入射角、反射角和法线之间的关系,反射定律。

2. 光的折射:光在两种介质界面上的折射定律,光速在不同介质中的变化。

3. 光的干涉与衍射:双缝干涉和单缝衍射的实验现象和解释,干涉和衍射的条件。

4. 透镜和成像:薄透镜的构造和性质,透镜的焦距和成像公式。

5. 光的色散:光的色彩和光的色散现象,色散的原因和应用。

四、电磁部分:1. 电场与电势:电场的定义和计算方法,电势的定义和计算方法。

2. 电流与电阻:电流的定义和计算方法,欧姆定律。

3. 磁场与电磁感应:磁场的定义和计算方法,磁感应强度和磁通量的关系,电磁感应定律。

4. 电磁波:电磁波的产生和传播方式,电磁波的特点和分类。

5. 电路中的能量:电场能和电势能的概念和计算方法,电路中的电能和功率。

五、原子物理部分:1. 原子结构:原子的组成、质子、中子和电子的性质,基本粒子的分类和特点。

2. 放射性衰变:放射性元素的性质和衰变过程,半衰期的概念和计算方法。

3. 核反应:核反应的基本概念和反应方程式,裂变和聚变的区别和特点。

高考物理必考知识点总结归纳

高考物理必考知识点总结归纳

高考物理必考知识点总结归纳高考物理必考知识点总结归纳如下:1. 物理量及其单位:了解物理量的定义,并掌握常见物理量的单位,例如时间的单位为秒,速度的单位为米/秒,力的单位为牛顿等。

2. 运动和力学:了解运动的基本概念,包括位移、速度、加速度等。

掌握力学定律,如牛顿第一、二、三定律,能够运用这些定律解题。

3. 重力和万有引力:了解地球对物体的重力作用及重力的计算方法。

了解万有引力定律,并能用此定律计算物体间的引力大小。

4. 力和压强:了解力的概念及计算方法,包括力的合成与分解。

了解压力的概念及压强的计算方法。

5. 动量和能量:了解动量和能量的概念。

掌握动量和能量守恒的原理,并能在解题过程中应用。

6. 电学:了解电荷、电流、电压、电阻等基本概念。

了解欧姆定律,即电流与电压、电阻之间的关系,并能解题运用。

7. 光学:了解光的传播特性,如直线传播、反射和折射等。

掌握光的三大定律:反射定律、折射定律和光的照明关系,并能解题运用。

8. 热学:了解热量和温度的概念,以及热传递方式。

掌握热力学定律,如热平衡定律、热传导定律等,并能应用于解题。

9. 波动:了解波的传播特性,包括波长、频率、振幅等。

了解波的叠加原理,包括波的干涉和衍射等现象,并能解题运用。

10. 原子物理学:了解原子的结构和组成,包括原子核、电子壳层等。

了解放射性衰变和核反应等基本概念。

总之,高考物理试卷中的必考知识点主要涵盖了运动和力学、重力和万有引力、力和压强、动量和能量、电学、光学、热学、波动、原子物理学等内容。

通过对这些知识点的掌握,可以有效地应对物理考试并取得好成绩。

高考物理试卷涵盖了广泛而深入的物理知识点,下面将进一步对常见的高考物理知识点进行详细的总结归纳。

1. 运动和力学:运动是物质在空间中位置随时间发生变化的过程。

物体的位移是指从初始位置到终止位置的位移向量。

速度是位移对时间的比值,而加速度是速度对时间的变化率。

在力学中,牛顿三定律是基础,分别是质点的惯性定律、动量定律和作用-反作用定律。

高考物理必背知识点

高考物理必背知识点

高考物理必背知识点高考物理是一门非常重要的考试科目,它不仅在高考中占据着重要的地位,而且在我们的生活中也扮演着至关重要的角色。

为了在高考物理中取得好成绩,我们需要掌握一些必备的知识点。

下面是关于“高考物理必背知识点”的文档,帮助大家更好地准备高考。

一、力学在力学考试中,我们需要掌握以下几个方面的知识点:1.力和力的分类力是物体之间的相互作用,在力学中具有至关重要的作用。

当我们考虑物体的运动时,必须考虑到这些力以及它们的方向和大小。

在力的分类方面,我们需要了解重力、弹力、摩擦力、张力等各种类型的力。

2.牛顿运动定律牛顿运动定律是力学中最基本的定律之一。

它包括三个方面:第一定律(或惯性定律)、第二定律(或运动定律)和第三定律(或作用-反作用定律)。

牛顿运动定律给出了物体的运动状态与施加在物体上的力之间的关系。

3.能量的转化和守恒能量是物体运动或变形所具有的属性,能量具有守恒性和转化性。

在物体的运动或变形过程中,能量可以从一种形式转化为另一种形式,但总能量不会改变。

在考试中,我们需要掌握能量守恒定律、机械功和动能定律等知识点。

二、热学在热学考试中,我们需要掌握以下几个方面的知识点:1.温度和热量温度是一种度量物体热度的物理量,用来描述物体内部粒子的运动情况。

热量是能够引起物体温度变化的能量,它可以通过传导、对流和辐射等方式传输。

在热学考试中,我们需要了解热力学第一定律、热力学第二定律等知识点。

2.热学循环热学循环是指在一定的条件下,将工质经过一系列物理过程后,使其回到原来的状态,从而实现能量转换和物理过程的一种过程。

在考试中,我们需要掌握卡诺循环、摩尔周期循环等知识点。

三、电学在电学考试中,我们需要掌握以下几个方面的知识点:1.电荷和电场电荷是物体内部带有的一种属性,能够相互作用、相互吸引或相互排斥。

电场是一种电荷相互作用所产生的物理场,是电荷所在位置的一种描述。

在电学中,我们需要了解库仑定律、电势、电场等知识点。

高中物理高考重点总结归纳

高中物理高考重点总结归纳

高中物理高考重点总结归纳一、力学部分力学是物理学的基础,是高考物理考试的重点内容。

在这部分中,题目通常涉及到力的平衡、物体在斜面上的运动、弹簧的力学性质等等。

1. 力的平衡力的平衡是力学中一个基本的概念。

在题目中,我们经常需要判断物体在平面上是否处于力的平衡状态,根据力的平衡条件可以解决这类问题。

2. 物体在斜面上的运动物体在斜面上的运动是高考物理考试中的一大热点。

我们需要了解物体在斜面上受到的重力分解、摩擦力和斜面的倾角等因素对物体的影响,并能够根据这些因素解决题目。

3. 弹簧的力学性质弹簧是力学中常见的重要实验装置,也是高考物理考试中的常考内容。

我们需要了解弹簧的胡克定律、弹簧的弹性势能和弹簧振动等性质,并能够应用到具体的题目中。

二、电学部分电学是高中物理的另一个重要部分,涉及到电流、电阻、电容等概念,以及各种电路的分析和计算。

1. 电流和电阻电流和电阻是电学中最基本的概念。

我们需要了解电流的定义、表示方法,以及电阻和电流之间的关系。

在解题过程中,需要掌握欧姆定律和串并联电阻的计算方法。

2. 电容和电能电容是电学中的一个重要性质,涉及到电荷的积累和存储。

我们需要了解电容的定义、表示方法,以及电容和电能之间的关系。

在题目中,常常需要计算电容器的能量和电容的大小。

3. 电路分析电路分析是电学中的一个重点内容。

我们需要了解串联和并联电路的特点和计算方法,并能够应用基尔霍夫定律和功率定律来解决复杂电路的问题。

三、光学部分光学是高考物理中的一部分,主要涉及到光的反射、折射、光的波动性等内容,以及镜片、透镜的成像原理和公式的应用。

1. 光的反射和折射光的反射和折射是光学的基本现象。

我们需要了解光线的入射角、反射角和折射角之间的关系,以及光的全反射现象。

在题目中,经常需要根据这些现象解决反射和折射的问题。

2. 光的波动性光的波动性是光学中的一个重点。

我们需要了解光的波长、频率和光速之间的关系,以及光的干涉和衍射现象。

高考物理必背的知识点汇总

高考物理必背的知识点汇总

高考物理必背的知识点汇总导言:高考是每个学生人生中的重要节点,而物理作为高考科目之一,是一个很多学生都面临的挑战。

为了帮助学生更好地准备物理高考,本文将介绍一些高考物理必背的知识点,希望可以帮助学生复习备考。

一、力与运动1. 牛顿第一定律:物体静止或匀速直线运动的状态不会自发发生改变,除非有外力作用。

2. 牛顿第二定律:物体的加速度正比于受力的大小,反比于物体的质量。

F=ma。

3. 牛顿第三定律:对于每一个施力都有一个等大反向的反作用力。

二、力学1. 力的合成:力的合成是指多个力合并成一个力的过程。

可以使用三角法则或平行四边形法则进行合成。

2. 力的分解:力的分解是指一个力分解为多个力的过程。

可以使用正弦定理和余弦定理进行分解。

3. 万有引力定律:任何两个物体之间都存在引力,大小与物体质量成正比,与两物体距离平方成反比。

F=G(m1*m2)/r^2。

三、电学1. 静电场:带电物体附近的电场使得其他带电物体发生受力。

同性相斥,异性相吸。

2. 电流:电流是指单位时间内电荷通过导体截面的数量。

单位为安培(A)。

3. 电流方向:正电荷的流动方向与电荷本身运动的方向相反,即从正电荷高电势处流向低电势处。

四、磁学1. 磁场:磁场是指磁物体周围的一种物理现象,具有磁性的物体会受到磁场的影响。

2. 磁感线:磁感线是用于描述磁场的虚拟线条,其方向表示磁场的方向,而线的密度表示磁场的强度。

3. 洛伦兹力:当电流通过一段导线时,会产生磁场,而磁场会对电流产生力,这种力称为洛伦兹力。

五、光学1. 折射率:光在不同介质中传播的速度不同,折射率是描述光在介质中传播性质的物理量。

2. 理想镜像:理想镜像是指光线通过一平面镜后所形成的镜像,具有左右对称性。

3. 高斯光束:高斯光束是一种具有特定形状的激光光束,其光强会随着传播距离增加而减弱。

六、波动1. 声波:声波是空气分子或其他介质中的机械波,其传播速度与介质的性质有关。

2. 波长与频率:波长是指波的连续部分之间的距离,频率是指波的周期数。

高考物理必背知识点总结归纳

高考物理必背知识点总结归纳

高考物理必背知识点总结归纳高中物理必背知识点1.力力学是高中物理的开山和基础,弹力的方向和弹簧、摩擦力应该是一轮复习的重中之重,受力分析的判断不仅关乎到这个部分,也会影响整个物理学科,所谓武学基础——“蹲马步”2. 运动学这个部分是看起来简单,但做起来易错,且计算不算死人不罢休的境界,各种刹车、追击、相遇、滑块板块、传送带,没有做题底蕴的支撑,你会感到深深的恶意。

3. 牛顿定律牛顿就是力学中的隐藏高手,就是王者荣耀中的法师,攻击力本来就不错,还可以对运动学、电场进行加持,让你面对的陡然上升了几个level功力。

连接体是这里面一轮要拿下的核心考点。

4. 曲线运动两大法宝:平抛和圆周,不能说难,但是高考年年出现,平抛的计算、水平圆周模型、竖直圆周模型、向心和离心的机车拐弯,这四个点重点拿下,然后给自己大大的微笑吧5. 天体运动天体会的人觉得可爱简单送分,不会的人觉得变态、恶心、惹人烦,这个部分的核心公式之后很长的一组,但是出题的方式确异常灵活,且题目和实际结合多变,总从意想不到的地方出手,高手过招,就是毫厘之间定胜负,数量级运算可以帮助你不少哦。

6. 功和能力学部分大boss的存在,谁都可以结合,从弹簧到皮带到滑块,等你做多了你会感到世界的真谛就是动能定理和一堆物理物体,多过程、大计算、复杂分析,烧脑的侦探小说也就到这个程度了,一轮必须啃下的硬骨头,想想上甘岭战役的激烈程度吧7. 电场这就像一个软妹子,看起来瘦弱不堪,但实际是芭比金刚,电场线、带电粒子运动、电容器、这些都是理工科出题人最喜欢的软妹子类型,多接触接触,熟悉了就好8. 恒定电路这个部分最难的是电学实验,7个电学实验要如数家珍,有人问为啥啊?因为考,年年考,考到12分熟了,其他的召唤出体内强大的初中物理基础就可以了。

9. 磁场电磁学的大boss,一剑封喉,杀人于无形,多见于选择题压轴或者和电场结合出在物理最后一道压轴题,难度系数3.5,转体动作复杂且难,尽量从步骤上逐个击破,拿下这个你的高考物理满分有望了。

高考物理知识点归纳总结

高考物理知识点归纳总结

高考物理知识点归纳总结1. 力和运动:- 力的定义:力是物体间相互作用的结果,可以改变物体的状态或形状。

- 牛顿第一定律(惯性定律):物体如果不受力作用,将保持静止或匀速直线运动。

- 牛顿第二定律(运动定律):物体受到的力等于质量乘以加速度,即 F = ma。

- 牛顿第三定律(作用-反作用定律):物体间的相互作用力大小相等、方向相反。

2. 万有引力定律:- 万有引力定律:两个物体之间的引力与它们的质量成正比,与它们的距离的平方成反比。

F = G * (m1 * m2) / r^2,其中 G 是万有引力常量。

3. 动能和功:- 动能:物体由于运动而具有的能量。

动能的大小与物体的质量和速度的平方成正比。

动能 K = 1/2 * mv^2。

- 功:力对物体的作用产生的效果,计算公式为功 = 力 * 距离* cosθ。

4. 简单机械:- 杠杆原理:杠杆平衡时,两个物体受到的力的乘积相等,即力的大小与距离成反比。

- 斜面和滑块:斜面上的物体受到重力分解和支持力的作用,通过运用三角函数,可以计算物体的加速度。

- 轮轴系统:利用轮轴系统可以实现力的传递和改变方向,根据杠杆原理和角动量守恒定律,可以计算轮轴系统的机械效率。

5. 电学基础:- 电荷和电场:电荷是电磁相互作用的基本载体,有正负之分。

电场是电荷周围的物理量,可以用来描述电荷之间的相互作用。

- 电流和电阻:电流是电荷的流动,可以用电流强度来表示。

电阻是物体阻碍电流流动的程度,可以用电阻大小来衡量。

- 欧姆定律:在恒定温度下,电流强度与电压成正比,与电阻成反比。

U = IR,其中 U 是电压,I 是电流强度,R 是电阻。

- 串联和并联电路:串联电路中,电流强度相等,电压分担;并联电路中,电压相等,电流分担。

以上是一些高考物理的基本知识点归纳总结。

希望对你有帮助!6. 磁学基础:- 磁场和磁力:磁场是由磁体或电流所产生的物理场,可用磁感应强度来表示。

磁力是磁场对磁体或带电粒子产生的力。

高中物理重要二级结论(全)汇总(最新整理)

高中物理重要二级结论(全)汇总(最新整理)

向左传:△t = (K+3/4)T K=0、1、2、3…) S = Kλ+(λ-△X) (K=0、1、2、3…) 六、热和功 分子运动论∶ 1.求气体压强的途径∶①固体封闭∶《活塞》或《缸体》《整体》列力平衡方程 ;
②液体封闭:《某液面》列压强平衡方程 ; ③系统运动:《液柱》《活塞》《整体》列牛顿第二定律方程。
1.平衡位置:振动物体静止时,∑F 外=0 ;振动过程中沿振动方向∑F=0。 2.由波的图象讨论波的传播距离、时间和波速:注意“双向”和“多解”。
3.振动图上,振动质点的运动方向:看下一时刻,“上坡上”,“下坡下”。
4.振动图上,介质质点的运动方向:看前一质点,“在上则上”,“在下则下”。
5.波由一种介质进入另一种介质时,频率不变,波长和波速改变(由介质决定)
vo g
2H g
同一位置 v 上=v 下 7.绳端物体速度分解
v v
点光源

平面镜 ω θ
8.“刹车陷阱”,应先求滑行至速度为零即停止的时间 t0 ,确定了滑行时间 t 大于 t0 时,用
vt2 2as

S=vot/2,求滑行距离;若
t
小于
t0

s
v0t
1 2
at
2
9.匀加速直线运动位移公式:S = A t + B t2 式中 a=2B(m/s2) V0=A(m/s)
F2 F
④ΔS=aT2
Sn-Sn-k= k aT2 a=ΔS/T2 a =( Sn-Sn-k)/k T2
位移等分(S0): ① 1S0 处、2 S0 处、3 S0 处···速度比:V1:V2:V3:···Vn=
1: 2 : 3 :: n

高考物理新必考知识点归纳

高考物理新必考知识点归纳

高考物理新必考知识点归纳高考物理是高中物理学习的重要环节,它不仅要求学生掌握扎实的物理基础知识,还要求学生能够灵活运用这些知识解决实际问题。

以下是对高考物理新必考知识点的归纳总结:一、力学基础1. 力的概念:包括力的三要素(大小、方向、作用点)和力的分类(重力、弹力、摩擦力等)。

2. 牛顿运动定律:牛顿第一、二、三定律是解决动力学问题的基础。

3. 动量守恒定律:在没有外力作用的系统中,动量守恒。

4. 能量守恒定律:能量既不会凭空产生,也不会凭空消失,只能从一种形式转化为另一种形式。

二、电学基础1. 电荷的性质:包括电荷的守恒定律、电荷间的相互作用力。

2. 电场和电势:电场强度、电势差、电势能等概念。

3. 电流和电阻:欧姆定律、串联和并联电路的电流和电压规律。

4. 电磁感应:法拉第电磁感应定律、楞次定律。

三、光学基础1. 光的反射和折射:包括反射定律、折射定律以及全反射现象。

2. 光的干涉和衍射:干涉条纹的形成、衍射现象的观察。

3. 光的偏振和色散:偏振现象、色散现象及其应用。

四、热学基础1. 温度和热量:温度的定义、热量的传递方式。

2. 热力学第一定律:能量守恒在热力学过程中的应用。

3. 热力学第二定律:热机效率的限制、熵的概念。

五、原子物理学基础1. 原子结构:原子核和电子云的概念。

2. 原子核的放射性衰变:衰变类型、半衰期的概念。

3. 核反应:核裂变和核聚变的原理。

六、相对论基础1. 狭义相对论:时间膨胀、长度收缩、质能等价原理。

2. 广义相对论:引力的几何化描述。

七、量子力学基础1. 量子态和量子叠加原理。

2. 波函数和薛定谔方程。

3. 不确定性原理。

八、物理实验方法1. 测量误差的来源和处理方法。

2. 实验数据的处理:包括数据的记录、图表的绘制和分析。

3. 常见物理实验仪器的使用。

结语:高考物理的知识点覆盖面广,要求学生不仅要理解物理概念,还要能够将这些概念应用到实际问题中。

因此,平时的学习中,同学们应该注重基础知识的积累,同时加强实践操作能力,培养解决实际问题的能力。

高考物理必背知识点归纳大全(一览)

高考物理必背知识点归纳大全(一览)

高考物理必背知识点归纳大全(一览)高考物理知识点一、运动的描述1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。

物体位置的变化,准确描述用位移,运动快慢S比t ,a用Δv与t 比。

2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。

自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。

中心时刻的速度,平均速度相等数;求加速度有好方,ΔS 等a T平方。

3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。

二、力1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。

2.分析受力要仔细,定量计算七种力;重力有无看提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑; 洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。

3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹,平行四边形定法;合力大小随q变,只在最大最小间,多力合力合另边。

多力问题状态揭,正交分解来解决,三角函数能化解。

4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。

三、牛顿运动定律1.F等ma,牛顿二定律,产生加速度,原因就是力。

合力与a同方向,速度变量定a向,a变小则u可大,只要a与u同向。

2.N、T等力是视重,mg乘积是实重; 超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零四、曲线运动、万有引力1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。

2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比R,mrw平方也需,供求平衡不心离。

高考物理必须熟记的75个结论

高考物理必须熟记的75个结论

高考物理必须熟记的75个结论1. 质量守恒定律:封闭系统内,物体总质量不变。

2. 动量守恒定律:封闭系统内,物体总动量保持不变。

3. 能量守恒定律:封闭系统内,能量总和保持不变。

4. 功率定义:功率是单位时间内做功的量。

5. 重力加速度:在地球上,物体受到的重力加速度约为9.8米/秒²。

6. 牛顿第一定律:物体在无外力作用下保持静止或匀速直线运动。

7. 牛顿第二定律:物体所受合外力等于其质量与加速度的乘积。

8. 牛顿第三定律:任何两个物体之间存在相等大小、方向相反的作用力。

9. 向心加速度公式:物体做匀速圆周运动时,向心加速度等于速度的平方除以半径。

10. 动能定理:物体的动能等于其质量与速度的平方的乘积的一半。

11. 动能守恒定律:在一个封闭系统内,物体之间能量的转化可以改变形式但总能量保持不变。

12. 弹性势能公式:弹性势能等于弹性系数与物体形变的平方的乘积的一半。

13. 位移定义:位移是物体由起始位置到终止位置的位置变化。

14. 瞬时速度定义:瞬时速度是物体在某一瞬间的速度。

15. 平均速度定义:平均速度是物体在某一时间段内的位移与时间的比值。

16. 平均加速度定义:平均加速度是物体在某一时间段内速度变化量与时间的比值。

17. 瞬时加速度定义:瞬时加速度是物体在某一瞬间的加速度。

18. 运动图象:位移-时间、速度-时间和加速度-时间图象分别描述物体运动的位移、速度和加速度的变化。

19. 自由落体加速度:自由落体物体在真空中的加速度为9.8米/秒²。

20. 斜抛运动:物体在竖直方向上受到重力加速度,在水平方向上匀速运动的运动状态。

21. 弹性碰撞:碰撞前后物体总动量和总动能守恒的碰撞。

22. 不完全弹性碰撞:碰撞前后物体总动量守恒,但总动能不守恒的碰撞。

23. 完全非弹性碰撞:碰撞前后物体总动量守恒,但部分机械能转化为其他形式的碰撞。

24. 静电力:由于电荷间的互斥或吸引而产生的力。

高考物理解题常用数学公式结论总结(11页)

高考物理解题常用数学公式结论总结(11页)

高考物理解题常用数学公式结论总结一、初中数学圆的知识:(1)弦切角等于所对圆心角的一半(12PAC AOC ∠=∠); (2)角平分线垂直平分弦(OP AC ⊥,AD CD =);(3)找出图中相等的角、互余的角;(4)直径所对的圆周角是直角(90ACE ∠=︒);(5)圆周角等于所对圆心角的一半;(6)圆的半径始终垂直于切线(∠PAO =90°,∠PCO =90°);(7)两圆相交时,圆心连线垂直且平分公共弦.二、高考物理解题常用数学结论:1.一元二次方程:ax 2+bx +c =0,Δ=b 2-4ac ≥0,ab x 22,1∆±-=. 2.初中数学直角三角形的知识:c 2=a 2+b 2,(︒=37θ的直角三角形满足“勾三股四玄五”)c a =θs i n ,c b =θcos ,b a =θtan ,a b =θcot ,θθtan 1cot =. 2130sin =︒,2245sin =︒,2360sin =︒,5337sin =︒. 2330cos =︒,2245cos =︒,2160cos =︒,5437cos =︒. 3330tan =︒,145tan =︒,360tan =︒,4337tan =︒. 3.1cos sin 22=+θθ.4.θθθcos sin 22sin =.5.sin(α±β)=sin αcos β±cos αsin β6.cos(α±β)=cos αcos β±sin αsin β7.22tan 2tan 1tan 2θθθ=- 8.a bb a b a y arctan)sin(cos sin 22=++=+=φφθθθ,,大值,有最时 2当y φπθ-=.9.当θθθπθ≈≈=︒<tan sin 时365,.10.均值不等式:ab b a 2≥+.11.等差数列前n 项和:2)(1n n a a n S +=. 12.等比数列前n 项和:qq a a S n n --=11 13.无穷递缩等比数列求和:qa S -=11. 14.球的体积公式:334R V π=,球的表面积24R S π=. 三、物理解题中常用的数学方法:(一)极值法数学中求极值的方法很多,物理极值问题中常用的极值法有:三角函数极值法、二次函数极值法、一元二次方程的判别式法等. 1.利用三角函数求极值y =a cos θ+b sin θ =a 2+b 2(a a 2+b 2cos θ+b a 2+b2sin θ) 令sin φ=a a 2+b 2,cos φ=b a 2+b2 则有:y =a 2+b 2(sin φcos θ+cos φsin θ)=a 2+b 2sin (φ+θ)所以当φ+θ=π2时,y 有最大值,且y max =a 2+b 2.2.利用二次函数求极值 二次函数:y =ax 2+bx +c =a (x 2+b a x +b 24a 2)+c -b 24a =a (x +b 2a )2+4ac -b 24a (其中a 、b 、c 为实常数),当x =-b 2a 时,有极值y m =4ac -b 24a (若二次项系数a >0,y 有极小值;若a <0,y 有极大值).3.均值不等式对于两个大于零的变量a 、b ,若其和a +b 为一定值p ,则当a=b 时,其积ab 取得极大值 p 24;对于三个大于零的变量a 、b 、c ,若其和a+b+c为一定值q,则当a=b=c时,其积abc取得极大值q327.(二)几何法利用几何方法求解物理问题时,常用到的有“对称点的性质”、“两点间直线距离最短”、“直角三角形中斜边大于直角边”以及“全等、相似三角形的特性”等相关知识,如:带电粒子在有界磁场中的运动类问题,物体的变力分析时经常要用到相似三角形法、作图法等.与圆有关的几何知识在力学部分和电学部分的解题中均有应用,尤其在带电粒子在匀强磁场中做圆周运动类问题中应用最多,此类问题的难点往往在圆心与半径的确定上,确定方法有以下几种.1.依切线的性质确定.从已给的圆弧上找两条不平行的切线和对应的切点,过切点作切线的垂线,两条垂线的交点为圆心,圆心与切点的连线为半径.2.依垂径定理(垂直于弦的直径平分该弦,且平分弦所对的弧)和相交弦定理(如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项)确定.如图1所示.图1由EB2=CE·ED=CE·(2R-CE)得:R=EB22CE+CE 2也可由勾股定理得:R2=(R-CE)2+EB2解得:R=EB22CE+CE 2.以上两种求半径的方法常用于求解“带电粒子在匀强磁场中的运动”这类习题中.(三)图象法中学物理中一些比较抽象的习题常较难求解,若能与数学图形相结合,再恰当地引入物理图象,则可变抽象为形象,突破难点、疑点,使解题过程大大简化.图象法是历年高考的热点,因而在复习中要密切关注图象,掌握图象的识别、绘制等方法.1.物理图象的分类整个高中教材中有很多不同类型的图象,按图形形状的不同可分为以下几类.(1)直线型:如匀速直线运动的s-t图象、匀变速直线运动的v -t图象、定值电阻的U-I图象等.(2)正弦曲线型:如简谐振动的x-t图象、简谐波的y-x图象、正弦式交变电流的e-t图象、正弦式振荡电流的i-t图象及电荷量的q-t图象等.(3)其他型:如共振曲线的A-f图象、分子力与分子间距离的f -r图象等.2.物理图象的应用(1)利用图象解题可使解题过程更简化,思路更清晰.利用图象法解题不仅思路清晰,而且在很多情况下可使解题过程得到简化,起到比解析法更巧妙、更灵活的独特效果.甚至在有些情况下运用解析法可能无能为力,但是运用图象法则会使你豁然开朗,如求解变力分析中的极值类问题等.(2)利用图象描述物理过程更直观.从物理图象上可以比较直观地观察出物理过程的动态特征.(3)利用物理图象分析物理实验.运用图象处理实验数据是物理实验中常用的一种方法,这是因为它除了具有简明、直观、便于比较和减少偶然误差的特点外,还可以由图象求解第三个相关物理量,尤其是无法从实验中直接得到的结论.3.对图象意义的理解(1)首先应明确所给的图象是什么图象,即认清图象中比纵横轴所代表的物理量及它们的“函数关系”,特别是对那些图形相似、容易混淆的图象,更要注意区分.例如振动图象与波动图象、运动学中的s-t图象和v-t图象、电磁振荡中的i-t图象和q-t图象等.(2)要注意理解图象中的“点”、“线”、“斜率”、“截距”、“面积”的物理意义.①点:图线上的每一个点对应研究对象的一个状态.要特别注意“起点”、“终点”、“拐点”、“交点”,它们往往对应着一个特殊状态.如有的速度图象中,拐点可能表示速度由增大(减小)变为减小(增大),即加速度的方向发生变化的时刻,而速度图线与时间轴的交点则代表速度的方向发生变化的时刻.②线:注意观察图线是直线、曲线还是折线等,从而弄清图象所反映的两个物理量之间的关系.③斜率:表示纵横坐标上两物理量的比值.常有一个重要的物理量与之对应,用于求解定量计算中所对应的物理量的大小以及定性分析变化的快慢.如 v -t 图象的斜率表示加速度.④截距:表示纵横坐标两物理量在“边界”条件下物理量的大小.由此往往可得到一个很有意义的物理量.如电源的U -I 图象反映了U =E -Ir 的函数关系,两截距点分别为(0,E )和⎝ ⎛⎭⎪⎫E r ,0. ⑤面积:有些物理图象的图线与横轴所围的面积往往代表一个物理量的大小.如v -t 图象中面积表示位移.4.运用图象解答物理问题的步骤(1)看清纵横坐标分别表示的物理量.(2)看图象本身,识别两物理量的变化趋势,从而分析具体的物理过程.(3)看两相关量的变化范围及给出的相关条件,明确图线与坐标轴的交点、图线斜率、图线与坐标轴围成的“面积”的物理意义.(四)数学归纳法在解决某些物理过程中比较复杂的具体问题时,常从特殊情况出发,类推出一般情况下的猜想,然后用数学归纳法加以证明,从而确定我们的猜想是正确的.利用数学归纳法解题要注意书写上的规范,以便找出其中的规律.(五)微元法利用微分思想的分析方法称为微元法.它是将研究对象(物体或物理过程)进行无限细分,再从中抽取某一微小单元进行讨论,从而找出被研究对象的变化规律的一种思想方法.微元法解题的思维过程如下.(1)隔离选择恰当的微元作为研究对象.微元可以是一小段线段、圆弧或一小块面积,也可以是一个小体积、小质量或一小段时间等,但必须具有整体对象的基本特征.(2)将微元模型化(如视为点电荷、质点、匀速直线运动、匀速转动等),并运用相关的物理规律求解这个微元与所求物体之间的关联.(3)将一个微元的解答结果推广到其他微元,并充分利用各微元间的对称关系、矢量方向关系、近似极限关系等,对各微元的求解结果进行叠加,以求得整体量的合理解答.(六)三角函数法三角函数反映了三角形的边、角之间的关系,在物理解题中有较广泛的应用.例如:讨论三个共点的平衡力组成的力的三角形时,常用正弦定理求力的大小;用函数的单调变化的临界状态来求取某个物理量的极值;用三角函数的“和积公式”将结论进行化简等.(七)数列法凡涉及数列求解的物理问题都具有过程多、重复性强的特点,但每一个重复过程均不是原来的完全重复,而是一种变化了的重复.随着物理过程的重复,某些物理量逐步发生着前后有联系的变化.该类问题求解的基本思路为:(1)逐个分析开始的几个物理过程;(2)利用归纳法从中找出物理量变化的通项公式(这是解题的关键);(3)最后分析整个物理过程,应用数列特点和规律求解.无穷数列的求和,一般是无穷递减数列,有相应的公式可用.等差:S n =n (a 1+a n )2=na 1+n (n -1)2d (d 为公差). 等比:S n =a 1(1-q n )1-q(q 为公比). (八)比例法比例计算法可以避开与解题无关的量,直接列出已知和未知的比例式进行计算,使解题过程大为简化.应用比例法解物理题,要讨论物理公式中变量之间的比例关系,要清楚公式的物理意义和每个量在公式中的作用,以及所要讨论的比例关系是否成立.同时要注意以下几点.(1)比例条件是否满足.物理过程中的变量往往有多个,讨论某两个量间的比例关系时要注意只有其他量为常量时才能成比例.(2)比例是否符合物理意义.不能仅从数学关系来看物理公式中各量的比例关系,要注意每个物理量的意义.(如不能根据R =U I 认定电阻与电压成正比)(3)比例是否存在.讨论某公式中两个量的比例关系时,要注意其他量是否能认为是不变量.如果该条件不成立,比例也不能成立.(如在串联电路中,不能认为P =U 2R 中P 与R 成反比,因为R 变化的同时,U 也随之变化而并非常量)许多物理量都是用比值法来定义的,常称之为“比值定义”.如密度ρ=m V ,导体的电阻R =U I ,电容器的电容 C =Q U ,接触面间的动摩擦因数μ=f F N,电场强度E =F q 等.它们的共同特征是:被定义的物理量是反映物体或物质的属性和特征的,它和定义式中相比的物理量无关.对此,学生很容易把它当做一个数学比例式来处理而忽略了其物理意义,也就是说教学中还要防止数学知识在物理应用中的负迁移.数学是“物理学家的思想工具”,它使物理学家能“有条理地思考”并能想象出更多的东西.可以说,正是有了数学与物理学的有机结合,才使物理学日臻完善.物理学的严格定量化,使得数学方法成为物理解题中一个不可或缺的工具.典型例:例1 如图所示,一质量m =1 kg 的木板静止在光滑水平地面上.开始时,木板右端与墙相距L =0.08 m ,一质量m =1 kg 的小物块以初速度v 0=2 m/s 滑上木板左端.木板的长度可保证物块在运动过程中不与墙接触.物块与木板之间的动摩擦因数μ=0.1,木板与墙碰撞后以与碰撞前瞬时等大的速度反弹.取g =10 m/s 2,求:(1)从物块滑上木板到两者达到共同速度时,木板与墙碰撞的次数及所用的时间.(2)达到共同速度时木板右端与墙之间的距离.【解析】物块滑上木板后,在摩擦力的作用下,木板从静止开始做匀加速运动.设木板的加速度大小为a ,经历时间T 后与墙第一次碰撞,碰撞时的速度为v 1,则有:μmg =maL =12aT 2v 1=aT可得:a =1 m/s 2,T =0.4 s ,v 1=0.4 m/s物块与木板达到共同速度之前,在每两次碰撞之间,木板受到物块对它的摩擦力作用而做加速度恒定的运动,因而木板与墙相碰后将返回至初态,所用时间为T .设在物块与木板达到共同速度v 之前木板共经历了n 次碰撞,则有:v =v 0-(2nT +Δt )a =a ·Δt式中Δt 是碰撞n 次后木板从起始位置至达到共同速度所需要的时间上式可改写为:2v =v 0-2nTa由于木板的速率只能在0到v 1之间,故有:0≤v 0-2nTa ≤2v 1解得:1.5≤n ≤2.5由于n 是整数,故n =2解得:v =0.2 m/s ,Δt =0.2 s从开始到物块与木板达到共同速度所用的时间为:t =4T +Δt =1.8 s .(2)物块与木板达到共同速度时,木板右端与墙之间的距离为:s =L -12a ·Δt 2解得:s =0.06 m例2 如图所示为一个内外半径分别为R 1和R 2的圆环状均匀带电平面,其单位面积的带电量为σ.取环面中心O 为原点,以垂直于环面的轴线为x 轴.设轴上任意点P 到O 点的距离为x ,P 点的电场强度大小为E .下面给出E 的四个表达式(式中k 为静电力常量),其中只有一个是合理的.你可能不会求解此处的场强E ,但是你可以通过一定的物理分析,对下列表达式的合理性作出判断.根据你的判断,E 的合理表达式应为 ( )A .E =2πkσ⎝ ⎛⎭⎪⎫R 1x 2+R 12-R 2x 2+R 22x B .E =2πkσ⎝ ⎛⎭⎪⎫1x 2+R 12-1x 2+R 22x C .E =2πkσ⎝ ⎛⎭⎪⎫R 1x 2+R 12+R 2x 2+R 22 D .E =2πkσ⎝ ⎛⎭⎪⎫1x 2+R 12+1x 2+R 22x 【解析】A 选项表达式可变形为:E =2πkσ⎝ ⎛⎭⎪⎫R 11+(R 1x )2-R 21+(R 2x )2,对于这一表达式,当R 1=0时,E =-2πkσR 21+(R 2x )2,随x 的增大,E 的绝对值增大,这与客观事实不符合,故A 错误,对于C 选项中的表达式,当x =0时,E =4πkσ,而事实由对称性知应该为E =0,故C 错误.对于D 选项,E =2πkσ⎝ ⎛⎭⎪⎫11+(R 1x )2+11+(R 2x )2 同样E 随x 增大而增大,当x =∞时E >0,这与事实不符合,故D 错误,只有B 可能正确.[答案] B例3 如图所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l 、足够长且电阻忽略不计,导轨平面的倾角为α,条形匀强磁场的宽度为d ,磁感应强度大小为B ,方向与导轨平面垂直.长度为2d 的绝缘杆将导体棒和正方形的单匝线框连接在一起组成“”形装置,总质量为m ,置于导轨上.导体棒中通以大小恒为I 的电流(由外接恒流源产生,图中未画出).线框的边长为d (d <l ),电阻为R ,下边与磁场区域上边界重合.将装置由静止释放,导体棒恰好运动到磁场区域下边界处返回,导体棒在整个运动过程中始终与导轨垂直.重力加速度为g .求:(1)装置从释放到开始返回的过程中,线框中产生的焦耳热Q .(2)线框第一次穿越磁场区域所需的时间t 1.(3)经过足够长时间后,线框上边与磁场区域下边界的最大距离x m .【解析】(1)设装置由静止释放到导体棒运动到磁场下边界的过程中,作用在线框上的安培力做功为W ,由动能定理得:mg sin α·4d +W -BIld =0且Q =-W解得:Q =4mgd sin α-BIld .(2)设线框刚离开磁场下边界时的速度为v 1,则接着向下运动2d ,由动能定理得:mg sin α·2d -BIld =0-12mv 12线框在穿越磁场中运动时受到的合力F =mg sin α-F ′感应电动势E =Bdv感应电流I ′=E R安培力F ′=BI ′d由牛顿第二定律,在t 到(t +Δt )时间内,有Δv =F m Δt 则Δv =∑[g sin α-B 2d 2v mR ]Δt有v 1=gt 1sin α-2B 2d 3mR解得:t 1=2m (BIld -2mgd sin α)+2B 2d 3R mg sin α. (3)经过足够长时间后,线框在磁场下边界与最大距离x m 之间往复运动,由动能定理得:mg sin α·x m-BIl(x m-d)=0解得:x m=BIldBIl-mg sin α.[答案](1)4mgd sin α-BIld(2)2m(BIld-2mgd sin α)+2B2d3Rmg sin α(3)BIldBIl-mg sin α。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档