最新初中九年级数学切题库 线长测试题
【数学九年级下】北师大版 单元练习 切线长定理 同步测试题(答案}
11. 若圆外切四边形 䉨⇔侐 的面积为 平方厘米, 侐 䉨⇔ ൌ 厘米,则该圆半径为 ________.
12. 如图, 与 侐 的边 侐 相切于点 ⇔,与 侐、 的延长线切于 、䉨 两点,已
知
ൌ ,则 侐 的周长为________.
13. 如图, 䉨, 侐,侐⇔ 与半圆 均相切, 侐 䉨⇔, 䉨 ,⇔侐 ,则
5. 如图, 内切于四边形 䉨⇔侐, 䉨 ൌ ,䉨⇔ ⣀,⇔侐 ,则 侐 的长度为( )
A.
B.
C.ൌ
D.ൌൌ
6. 如图,四边形 䉨⇔侐 的边 䉨、䉨⇔、⇔侐、侐 和 分别相切于点 、 、 、 .若
四边形 䉨⇔侐 的周长为 ,则 䉨 ⇔侐 等于( )
A.
B.
C.ൌ
D.ൌ
7. 如图, , 䉨 分别与 相切于点 ,䉨,过圆上点 ⇔ 作
侐 ൌ,那么 䉨⇔ 的长为________. 20. 如图: 、 䉨 切 于 、䉨,过点 ⇔ 的切线交 、 䉨 于 侐、 ,
ൌ ܤ,则
侐 的周长为________.
三、 解答题 (本题共计 6 小题 ,共计 60 分 , )
21. 如图, 、 䉨 是 的切线, 、䉨 为切点, ⇔ 是 的直径, 䉨 ⇔
C.
D.
3. 已知四边形 䉨⇔侐 是梯形,且 侐 䉨⇔, 侐 䉨⇔,又 与 䉨、 侐、⇔侐 分别相 切于点 、 、 ,圆心 在 䉨⇔ 上,则 䉨 ⇔侐 与 䉨⇔ 的大小关系是( )
A.大于
B.等于
C.小于
D.不能确定
4. 如图, 为 外一点, , 䉨 分别切 两点,若
,则 䉨 ( )
A.
B.
C.
D.
①求
的周长;
中考数学专题复习《线段、角、相交线与平行线》专项检测题(含答案)
线段、角、相交线与平行线专项检测题一、选择题(下列每题所给的四个选项中只有一个正确答案)1.下列图形中,∠1与∠2是对顶角的是()2.下列图形中,∠2>∠1的是()3.如图,直线a∥b,∠A=38°,∠1=46°.则∠ACB的度数是()A. 84°B. 106°C. 96°D. 104°4.如图,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为()A. 30°B. 35°C. 40°D. 45°5.如图,AB∥CD,CB平分∠ABD,若∠C=40°,则∠D的度数为()A. 90°B. 100°C. 110°D. 120°6.如图所示,已知AB∥CD,直线EF交AB于点E,交CD于点F,且EG平分∠FEB,∠1=50°,则∠2等于()A. 50°B. 60°C. 70°D. 80°7.如图,已知直线AB∥CD,直线EF与AB、CD相交于N、M两点,MG平分∠EMD,若∠BNE=30°,则∠EMG 等于()A. 15°B. 30°C. 75°D. 150°8.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A. 52°B. 38°C. 42°D. 60°9.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A. 125°B. 120° C . 140° D. 130°10.下列命题是真命题的是()A. 任何数的0次幂都等于1B. 顺次连接菱形四边中点的线段组成的四边形是正方形C. 图形的旋转和平移会改变图形的形状和大小D. 角平分线上的点到角两边的距离相等11.下列命题正确的是()A. 矩形的对角线互相垂直B. 两边和一角对应相等的两个三角形全等C. 分式方程x-22x-1+1=1.51-2x可化为一元一次方程x-2+(2x-1)=-1.5D. 多项式t2-16+3t因式分解为(t+4)(t-4)+3t12.下列命题中,正确的是()A. 函数y=x-3的自变量x的取值范围是x>3B. 菱形是中心对称图形,但不是轴对称图形C. 一组对边平行,另一组对边相等的四边形是平行四边形D. 三角形的外心到三角形的三个顶点的距离相等13在平面直角坐标系中,任意两点A(x1,y1),B(x2,y2),规定运算:①A⊕B=(x1+x2,y1+y2);②A⊕B=x1x2+y1y2;③当x1=x2且y1=y2时,A=B.有下列四个命题:(1)若A(1,2),B(2,-1),则A⊕B=(3,1),A⊗B=0;(2)若A⊕B=B⊕C,则A=C;(3)若A⊗B=B⊗C,则A=C;(4)对任意点A、B、C,均有(A⊕B)⊕C=A⊕(B⊕C)成立.其中正确命题的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题14.若∠α的补角为76°28′,则∠α=________.15.如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1=________度.16.如图,AB∥CD,AD与BC交于点E,若∠B=35°,∠D=45°,则∠AEC=________.17如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4=________.18如图,直线a、b被第三条直线c所截,如果a∥b,∠1=70°,那么∠3的度数是________.19.如图,l∥m,等边△ABC的顶点A在直线m上,则∠α=________.20.如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF 于点F,∠AGF=130°,则∠F=________.21.下列命题:①对角线相等的四边形是矩形;②正多边形都是轴对称图形;③通过对足球迷健康状况的调查可以了解我国公民的健康状况;④球的主视图、左视图、俯视图都是圆;⑤如果一个角的两边与另一个角的两边分别平行,那么这两个角相等,其中是真命题的有________(只需填写序号).22.下列命题:①对角线互相垂直的四边形是菱形;②点G是△ABC的重心,若中线AD=6,则AG=3;③若直线y=kx+b经过第一、二、四象限,则k<0,b>0;④定义新运算:a※b=2a-b2,若(2x)※(x-3)=0,则x=1或9;⑤抛物线y=-2x2+4x+3的顶点坐标是(1,1).其中是真命题的有________.(只填序号)参考答案1. C【解析】A.∠1、∠2没有公共顶点,不是对顶角,故A选项错误;B.∠1、∠2两边不互为反向延长线,不是对顶角,故B选项错误;C.∠1、∠2有公共顶点,两边互为反向延长线,是对顶角,故C选项正确;D.∠1、∠2两边不互为反向延长线,不是对顶角,故D选项错误.2. C【解析】根据对顶角相等,平行四边形的性质和平行线的性质,可以知道A、B、D中∠1=∠2,而在C中,三角形的一个外角大于和它不相邻的一个内角,可得∠2>∠1,故选C.3. C【解析】∵a∥b, ∴∠ABC=∠1=46°,又∵∠A=38°,∴∠ACB=180°-∠A-∠ABC=180°-38°-46°=96°.4. C【解析】∵AB∥CD,∴∠FEB=∠C=70°.∵∠FEB是△AFE的一个外角,∴∠FEB=∠A+∠F,∴∠A=∠FEB-∠F=70°-30°=40°.5. B【解析】∵AB∥CD,∴∠C=∠ABC=40°,∵CB平分∠ABD,∴∠CBD=∠ABC=40°,∴∠D=180°-∠C-∠CBD=180°-40°-40°=100°.6. D【解析】∵EG平分∠BEF,∴∠BEF=2∠1,∵∠1=50°,∴∠BEF=100°,∵AB∥CD,∴∠BEF+∠2=180°,∴∠2=180°-∠BEF=180°-100°=80°.【一题多解】∵AB∥CD,∴∠1=∠EGF,∵EG平分∠FEB,∴∠1=∠FEG,∴∠FEG=∠EGF,∴由三角形内角和为180°得,∠2=180°-2∠EGF=180°-2×50°=80°.7. A【解析】∵AB∥CD,∴∠ENB=∠EMD=30°,又∵MG平分∠EMD,∴∠EMG=∠DMG=12∠EMD=15°.8. A【解析】如解图,∵直尺的两边互相平行,∴∠3=∠2=38°,∵∠1+∠3+∠4=180°,∠4=90°,∴∠1=180°-∠4-∠3=180°-90°-38°=52°.9. D【解析】如解图,在Rt△ABC中,∠A=90°,∵∠1=40°,∴∠3=90°-∠1=50°,∴∠4=180°-∠3=130°.∵EF∥MN,∴∠2=∠4=130°.选项逐项分析正误A任何非零数的0次幂都等于1×B 顺次连接菱形四边中点的线段组成的四边形是矩形×C图形的旋转和平移不会改变图形的形状和大小×D 根据角平分线的性质可知:角平分线上一点到角两边的距离相等√选项逐项分析正误A矩形的对角线相等,不一定垂直×B 已知两边及其夹角对应相等,两个三角形才能全等×C 方程两边同乘以2x-1,得x-2+(2x-1)=-1.5√D 没有把多项式化成整式的积的形式,不是因式分解×12. D【解析】选项逐项分析正误A函数y=x-3的自变量x的取值范围是x≥3×B 菱形是中心对称图形,也是轴对称图形,两条对角线所在直线就是对称轴×C 一组对边平行,另一组对边相等的四边形可能是平行四边形,也可能是等腰梯形×D三角形的外心是三边中垂线的交点,所以到三角形的三个顶点的距离相等√13. C【解析】设C(x3,y3)序号逐项分析正误(1)若A(1,2),B(2,-1),则A⊕B=(1+2,2+(-1))=(3,1),A⊗B=1×2+2×(-1)=0√(2) A⊕B=(x1+x2,y1+y2),B⊕C=(x2+x3,y2+y3),若A⊕B=B⊕C,则,∴x1=x3,y1=y3,∴A=C√(3) A⊗B=x1x2+y1y2,B⊗C=x2x3+y2y3,若A⊗B=B⊗C,则x1x2+y1y2=x2x3+y2y3,并不能确定x1=x3,y1=y3,∴A不一定等于C×(4) (A ⊕B)⊕C =(x 1+x 2,y 1+y 2)⊕C =(x 1+x 2+x 3,y 1+y 2+y 3),A ⊕(B ⊕C)=A ⊕(x 2+x 3,y 2+y 3)=(x 1+x 2+x 3,y 1+y 2+y 3),∴(A ⊕B)⊕C =A ⊕(B ⊕C)√综上,正确命题有(1)(2)(4)共3个.14. 103°32′ 【解析】求一个角的补角,只需用180°减去它即可,但须注意进制,180°-76°28′=179°60′-76°28′=103°32′15. 45 【解析】∵△ABC 为等腰直角三角形,∠BAC =90°,∴∠ABC =45°.又∵m ∥n ,∴∠1=∠ABC =45°.16. 80° 【解析】∵AB ∥CD ,∴∠B =∠C =35°,∵∠AEC =∠C +∠D ,∴∠AEC =35°+45°=80°.【一题多解】∵AB ∥CD ,∴∠C =∠B =35°,又∵∠D =45°,∴∠CED =180°-∠C -∠D =100°.∴∠AEC =180°-∠CED =80°.17. 63°30′ 【解析】∵∠1=40°,∠2=40°,∴a ∥b, ∴∠4=180°-∠3=180°-116°30′=63°30′.18. 70° 【解析】因为a ∥b ,所以根据平行线的性质有∠1=∠2,又因为∠2和∠3为对顶角,所以∠2=∠3=70°.19. 20° 【解析】如解图,延长CB ,交直线m 于点D ,则∠CDA =40°,因为△ABC 为等边三角形,所以∠CBA =60°.根据三角形内外角的关系,得∠α=∠CBA -∠CDA =60°-40°=20°20. 9.5° 【解析】∵AB ∥CD ,∴∠BED =∠CDE =119°,∵EF 平分∠BED ,∴∠BEF =12∠BED =12×119°=59.5°,∵∠AGF =130°,∴∠EGF =180°-∠AGF =180°-130°=50°,∵∠BEF 是△EFG的外角,∴∠F=∠BEF-∠EGF=59.5°-50°=9.5°.序号逐项分析正误①对角线相等且互相平分的四边形是矩形×②正多边形都是轴对称图形√③足球迷比其他人更热爱运动,所以抽样调查的样本不具代表性×④从任意角度看球得到的平面图形都是圆√⑤如解图所示,∠1与∠2的两边分别平行,但不相等×序号逐项分析正误①对角线互相垂直平分的四边形是菱形,故①错×②重心到顶点的距离与重心到对边中点的距离之比为2∶1,画草图如解图,即AG∶GD=2∶1,若×。
人教版九年级数学上册切线长定理测试题
第3课时切线长定理一、选择题1.下列说法中,不正确的是 ( ) A.三角形的内心是三角形三条内角平分线的交点B.锐角三角形、直角三角形、钝角三角形的内心都在三角形内部C.垂直于半径的直线是圆的切线D.三角形的内心到三角形的三边的距离相等2.给出下列说法:①任意一个三角形一定有一个外接圆,并且只有一个外接圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形,并且只有一个外切三角形.其中正确的有 ( )A.1个 B.2个 C.3个 D.4个3.一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于 ( ) A.21 B.20 C.19 D.184.如图,PA、PB分别切⊙O于点A、B,AC是⊙O的直径,连结AB、BC、OP,则与∠PAB相等的角(不包括∠PAB本身)有 ( )A.1个 B.2个C.3个 D.4个4题图5题图6题图5.如图,已知△ABC的内切圆⊙O与各边相切于点D、E、F,则点O是△DEF的 ( )A.三条中线的交点 B.三条高的交点C.三条角平分线的交点 D.三条边的垂直平分线的交点6.一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于 ( )A.21 B.20 C.19 D.18二、填空题6.如图,⊙I是△ABC的内切圆,切点分别为点D、E、F,若∠DEF=52o,则∠A的度为________.6题图 7题图 8题图7.如图,一圆内切于四边形ABCD,且AB=16,CD=10,则四边形ABCD的周长为________.PBAO8.如图,已知⊙O 是△ABC 的内切圆,∠BAC=50o,则∠BOC 为____________度. 三、解答题9. 如图,AE 、AD 、BC 分别切⊙O 于点E 、D 、F ,若AD=20,求△ABC 的周长.10. 如图,PA 、PB 是⊙O 的两条切线,切点分别为点A 、B ,若直径AC= 12,∠P=60o,求弦AB 的长.11. 如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°.(1)求∠APB 的度数;(2)当OA =3时,求AP 的长.12.已知:如图,⊙O 内切于△ABC ,∠BOC =105°,∠ACB =90°,AB =20cm .求BC 、AC 的长.13.已知:如图,△ABC三边BC=a,CA=b,AB=c,它的内切圆O的半径长为r.求△ABC的面积S.14.如图,在△ABC中,已知∠ABC=90o,在AB上取一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2 cm,AD=4 cm.(1)求⊙O的直径BE的长;(2)计算△ABC的面积.15.已知:如图,⊙O是Rt△ABC的内切圆,∠C=90°.(1)若AC=12cm,BC=9cm,求⊙O的半径r;(2)若AC=b,BC=a,AB=c,求⊙O的半径r.四、体验中考16.(2011年安徽)△ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是( ) A .120° B .125° C .135° D .150°17.(2011年绵阳)一个钢管放在V 形架内,右图是其截面图,O 为钢管的圆心.如果钢管的半径为25 cm ,∠MPN = 60︒,则OP =( )A .50 cmB .253cmC .3350cm D .503cm 18. (2011年甘肃定西)如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .17题图 18题图 19题图19. (2011年湖南怀化)如图,PA 、PB 分别切⊙O 于点A 、B ,点E 是⊙O 上一点,且60=∠AEB ,则=∠P __ ___度.参考答案◆随堂检测1. C2. B (提示:②④错误)3. 760(提示:连接ID,IF ∵∠DEF=520∴∠DIF=1040∵D、F是切点∴DI⊥AB,IF⊥AC∴∠ADI=∠AFI=900∴∠A=1800-1040=760)4. 52 (提示:AB+CD=AD+BC)5. 1150 (提示:∵∠A=500∴∠ABC+∠ACB=1300∵OB,OC分别平分∠ABC,∠ACB ∴∠OBC+∠OCB=650∴∠BOC=1800-650=1150)◆课下作业 ●拓展提高1. D (提示:AD=AF,BD=BE,CE=CF ∴周长=821218⨯+⨯=)2. C3. D4. 解:∵AD,AE 切于⊙O 于D,E ∴AD=AE=20 ∵AD,BF 切于⊙O 于D,F ∴BD=BF 同理:CF=CE ∴C △ABC =AB+BC+AC=AB+BF+FC+AC=AB+BD+EC+AC=AD+AE=405. 解:连接BC ∵PA,PB 切⊙O 于A,B ∴PA=PB ∵∠P=600 ∴△ABC 是正三角形 ∵∠PAB=600∵PA 是⊙O 切线 ∴CA ⊥AP ∴∠CAP=900 ∴∠CAB=300 ∵直径AC ∴∠ABC=900 ∴cos300=ABAC∴AB=6. 解:(1)∵在△ABO 中,OA =OB ,∠OAB =30°∴∠AOB =180°-2×30°=120°∵PA 、PB 是⊙O 的切线∴OA ⊥PA ,OB ⊥PB .即∠OAP =∠OBP =90° ∴在四边形OAPB 中,∠APB =360°-120°-90°-90°=60°.(2)如图①,连结OP∵PA 、PB 是⊙O 的切线∴PO 平分∠APB ,即∠APO =12∠APB =30° 又∵在Rt △OAP 中,OA =3, ∠APO =30°∴AP =tan 30OA°=7. 解:(1)连接OD ∴OD ⊥AC ∴△ODA 是Rt △设半径为r ∴AO=r+2 ∴(r+2)2—r 2=16 解之得:r=3 ∴BE=6(2) ∵∠ABC=900 ∴OB ⊥BC ∴BC 是⊙O 的切线 ∵CD 切⊙O 于D ∴CB=CD 令CB=x∴AC=x+4,BC=4,AB=x ,AB=8 ∵2228(4)x x +=+ ∴6x = ∴S △ABC =186242⨯⨯= ●体验中考 1. C2. A (提示:∠MPN=600可得∠OPM=300 可得OP=2OM=50)3.3(提示:连接OB ,易得:∠ABC=∠AOB ∴cos ∠AOB=cos ∠35=OBOA AO=)4. ∠P=600专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图第8题图8.(2016·呼和浩特中考)如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________; (2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________; (3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13;(2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 52 2 23 2 5 2 3 2 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。
人教版九年级数学上册 24.2.2.3 _切线长定理 培优训练卷(含答案)
第二十四章圆24.2.2.3 切线长定理培优训练卷一、选择题(共10小题,3*10=30)1.如图,PA切⊙O于点A,PB切⊙O于点B,OP交⊙O于点C,下列结论中,错误的是( ) A.∠1=∠2 B.PA=PBC.AB⊥OP D.点C是OP的中点2.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB的长是( )A.4 B.8C.4 3 D.8 33.如图,PA,PB分别与⊙O相切于A,B两点,若∠C=65°,则∠P的度数为( )A.50°B.65°C.100°D.130°4如图,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是( )A.15°B.30°C.60°D.75°5. 如图,在平面直角坐标系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的内心,将△ABC绕原点逆时针旋转90°后,I的对应点I′的坐标为( )A.(-2,3) B.(-3,2)C.(3,-2) D.(2,-3)6.如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=( )A.130°B.120°C.100°D.90°7.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为( )A.56°B.62°C.68°D.78°8.如图,以正方形ABCD的边BC为直径作半圆O,过点D作直线切半圆于点F,交AB边于点E,则△ADE和四边形EBCD周长之比为( )A.3∶4 B.4∶5C.5∶6 D.6∶79.如图,四边形ABCD的各边分别与⊙O相切于点E,F,G,H,且AB=16,CD=10,则此四边形ABCD的周长为( )A.50 B.52C.54 D.5610.如图,O是△ABC的内心,过点O作EF∥AB,与AC,BC分别交于点E,F,则( ) A.EF>AE+BF B.EF<AE+BFC.EF=AE+BF D.EF≤AE+BF二.填空题(共8小题,3*8=24)11. 如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是__________.12. 如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB 的度数为___________.13. 在Rt△ABC中,∠C=90°,CA=8,CB=6,则△ABC内切圆的周长为____________.14. 如图,已知△ABC的内切圆⊙O与BC边相切于点D,连接OB,OD.若∠ABC=40°,则∠BOD 的度数是______.15.如图,Rt△ABC中,∠C=90°,AC=6,BC=8,则△ABC的内切圆半径r=_______.16.如图,AB,AC,CE都是⊙O的切线,B,D,E为切点,P为劣弧上一点,若∠A+∠C=110°,则∠BPE=___________.如图,AB是⊙O的直径,直线DA与⊙O相切于点A,DO交⊙O于点C,连接BC,若∠ABC=21°,则∠ADC的度数为___________.18.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为_______.三.解答题(共7小题,46分)19.(6分) 为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径,若三角板与圆相切且测得PA=5 cm,求铁环的半径.20. (6分) 如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=18 cm,BC =28 cm,CA=26 cm,求AF,BD,CE的长.21. (6分) 如图,AC⊥BC于点C,BC=4,AC=3,⊙O与直线AB,BC,CA均相切,求⊙O的半径.22. (6分) 如图,P是⊙O的直径AB的延长线上一点,PC、PD切⊙O于点C、D.若PA=6,⊙O的半径为2,求∠CPD.23.(6分) 如图,PA,PB是⊙O的切线,CD切⊙O于点E,△PCD的周长为12,∠APB=60°.(1)求PA的长;(2)求∠COD的度数.24.(8分) 如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D、E,过劣弧DE(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为4cm,则Rt△MBN的周长是多少?25.(8分) 如图,AB,BC,CD分别与⊙O相切于点E,F,G,且AB∥CD,BO=6 cm,CO=8 cm.(1)求证:BO⊥CO;(2)求BE和CG的长.参考答案1-5 DBADA 6-10 ACDBC11. 75°12. 135°13. 4π14. 70°15. 216. 55°17.48°18. 13 319. 解:设圆心为O,连接OA,OP.∵三角板有一个锐角为30°,∴∠PAO=60°.又∵PA与⊙O相切,∴∠OPA=90°,∴∠POA=30°,∵PA=5 cm,∴OA=10 cm,可求OP=5 3 cm,即铁环的半径为5 3 cm20. 解:根据切线长定理,得AE=AF,BF=BD,CE=CD.设AF=AE=x cm,则CE=CD=(26-x)cm,BF=BD=(18-x)cm.∵BC=28 cm,∴(18-x)+(26-x)=28,解得x=8,∴AF=8 cm,BD=10 cm,CE=18 cm21. 解:由切线长定理得BE=BF,CD=CF,AD=AE,连接OD,OF,则四边形DCFO为正方形,设OF=CD=x,则由BF=BE得BC+x=BA+AE=AB+3-x,∴4+x=5+3-x,∴x=2,∴⊙O的半径为222. 解:∵PA=6,⊙O的半径为2,∴PB=PA-AB=6-4=2,∴OP=4,∵PC、PD切⊙O于点C、D.∴∠OPC=∠OPD ,∴CO ⊥PC ,∴sin ∠OPC=2: 4 =0.5 ,∴∠OPC=30°,∴∠CPD=60°,23. 解:(1)由切线长定理可得CA =CE ,同理DE =DB ,PA =PB ,∴三角形PCD 的周长=PD +CD +PC =PD +PC +CA +BD =PA +PB =12,则PA 的长为6(2)连接OA ,OE ,OB ,∵∠P =60°,∴∠AOB =180°-∠P =120°,由切线长定理可得∠AOC =∠EOC =12∠AOE , ∠DOB =∠EOD =12∠EOB , ∴∠COD =∠EOC +∠EOD =12∠AOB =60° 24. 解:连接OD 、OE ,∵⊙O 是Rt △ABC 的内切圆,∴OD ⊥AB ,OE ⊥BC ,∵∠ABC=90°,∴∠ODB=∠DBE=∠OEB=90°,∴四边形ODBE 是矩形,∵OD=OE ,∴矩形ODBE 是正方形,∴BD=BE=OD=OE=4cm ,∵⊙O 切AB 于D ,切BC 于E ,切MN 于P ,NP 与NE 是从一点出发的圆的两条切线, ∴MP=DM ,NP=NE ,∴Rt △MBN 的周长为:MB+NB+MN=MB+BN+NE+DM=BD+BE=4cm+4cm=8cm ,25. 解:(1)连接OE ,OF ,∵BE 切⊙O 于点E ,BC 切⊙O 于点F ,∴BE =BF ,OE ⊥AB ,OF ⊥BC ,则△BOE ≌△BOF ,∴∠EBO=∠FBO,同理∠FCO=∠GCO,又∵AB∥CD,∴∠ABC+∠DCB=180°,∴∠OBC+∠OCB=90°,∴BO⊥CO(2)易得Rt△BOF∽Rt△BCO,∴BO2=BF·BC,∵BO=6 cm,OC=8 cm,∴BC=10 cm,∴BE=BF=BO2BC=3610=3.6(cm),∵AB,BC,CD分别与⊙O相切,∴BE=BF=3.6 cm,CG=CF,∵CF=BC-BF=10-3.6=6.4(cm),∴CG=CF=6.4 cm。
北师大版九年级数学下册《3.7切线长定理》同步测试题带答案
北师大版九年级数学下册《3.7切线长定理》同步测试题带答案学校:___________班级:___________姓名:___________考号:___________【基础达标】1.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB的长是()A.4B.4√3C.8D.8√32.如图,四边形ABCD的边AB,BC,CD,DA和☉O分别相切于点L,M,N,P.若四边形ABCD的周长为20,则AB+CD等于()A.5B.8C.10D.123.如图,PA,PB是☉O的切线,切点分别为A,B,若OP=4,PA=2√3,则∠AOB的度数为()A.60°B.90°C.120°D.无法确定4.如图,AB为☉O的直径,点C在AB的延长线上,CD,CE分别与☉O相切于点D,E,若AD=6,∠DAC=∠DCA,则CE=.5.如图,AB,AC,BD是☉O的切线,其切点分别为P,C,D,如果AB=5,AC=3,则BD的长为.6.如图,PA,PB分别与☉O相切于点A,B,AC为弦,BC为☉O的直径,若∠P=60°,PB=2 cm.(1)求证:△PAB是等边三角形.(2)求AC的长.【能力巩固】7.如图,有一张三角形纸片ABC,☉O是它的内切圆,D是其中的一个切点,已知AD=5 cm,小明准备用剪刀沿着与☉O相切的任意一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长为()A.20 cmB.15 cmC.10 cmD.随直线MN的变化而变化8.如图,若△ABC的三边长分别为AB=9,BC=5,CA=6,△ABC的内切圆☉O切AB,BC,AC于点D,E,F,则AF的长为()A.5B.10C.7.5D.49.如图,PA,PB是☉O的切线,其切点分别为A,B,点C,D在☉O上.若∠PAD+∠C=220°,则∠P的度数为°.10.如图,AB为☉O的直径,AD,BC分别与☉O相切于点A,B,CD经过☉O上一点E,AD=DE,若AB=12,BC=4,则AD的长为.11.如图,在△ABC中,∠C=90°,点O在BC上,以OC为半径的半圆切AB于点E,交BC于点D,若BE=4,BD=2,求☉O的半径和边AC的长.【素养拓展】12.如图,一位小朋友在不打滑的平面轨道上滚动一个半径为5 cm 的圆环,当滚到与坡面BC 开始相切时停止.AB=40 cm,BC 与水平面的夹角为60°.试问其圆心所经过的路线长是多少?(结果保留根号)参考答案【基础达标】1.C2.C3.C4.65.26.解:(1)证明:∵PA ,PB 分别与☉O 相切于点A ,B∴PA=PB ,且∠P=60° ∴△PAB 是等边三角形. (2)∵△PAB 是等边三角形∴PB=AB=2 cm,∠PBA=60°.∵BC 是☉O 的直径,PB 是☉O 的切线 ∴∠CAB=90°,∠PBC=90°,∴∠ABC=30° ∴AC=2×√33=2√33cm .【能力巩固】 7.C 8.A 9.100 10.9 11.解:如图,连接OE.∵AB 与☉O 相切 ∴OE ⊥AB ∴∠BEO=90°. 设☉O 的半径为r在Rt △BEO 中,由勾股定理得OB 2=OE 2+BE 2.∵BE=4,BD=2∴(2+r )2=r 2+42,解得r=3 ∴CD=6∴BC=BD+CD=2+6=8.∵∠C=90°,OC为☉O的半径∴AC与☉O相切∴AC=AE.设AC=AE=x∴AB=BE+AE=4+x.在Rt△ABC中,由勾股定理得AB2=AC2+BC2 ∴(4+x)2=x2+82,解得x=6∴AC=6.【素养拓展】12.解:如图,连接OD,BD,作DE⊥AB于点E.∵BC与水平面的夹角为60°∴∠DBE=60°,∴∠BDE=30°.设BE=x,则BD=2x∴由勾股定理得4x2-x2=25解得x=5√33∴OD=AE=40-5√3(cm).3)cm.答:其圆心所经过的路线长是(40−5√33。
北师大版九年级数学下册 3.7 切线长定理 同步测试题
真情提示:题号得分43. 如图,一圆内切四边形50A.5A.4B.5C.6D.无法确定6. 如图所示,已知、切于、两点,是上一动点,过作的切线交PA PB ⊙O A B C ^AB C ⊙O 于点,交于点,已知,则 PA M PB N ∠P =56∘∠MON =()A.56∘ B.60∘ C.62∘ D.不可求7. 如图,,分别切于点和点,是上任一点,过的切线分别交,PA PB ⊙O A B C ^AB C PA 于,.若的半径为,,则的周长是( )PB D E ⊙O 6PO =10△PDEA.16B.14C.12D.108. 如图,是一张周长为的三角形的纸片,,是它的内切圆,△ABC 17cm BC =5cm ⊙O 小明准备用剪刀在的右侧沿着与相切的任意一条直线剪下,则剪下⊙O ⊙O MN △AMN 的三角形的周长为( )A. B.12cm 7cmC. D.随直线的变化而变化6cm MN9. 如图,从外一点引圆的两条切线、,切点为、,点是劣弧上一点,⊙O P PA PB A B C AB 过的切线交、分别于、,若的半径为,,则的周长为C PA PB M N ⊙O 2∠P =60∘△PMN ( )12. 如图所示,⊙△AEF∠C345⊙O所对的边长依次为,,,则的半径是________.PA PB EF⊙O A B D PA=10cm△PEF15. 如图,、、分别切于、、,若,则的周长是cm∠P=35∘∠AOB=∠EOF=________ ,若,则________(度),________(度).PA PB⊙O A B CD AB E16. 如图,、是的两条切线,、是切点,切劣弧于点,已知切线PA6cm△PCD cm的长为,则的周长为________.⊙O3cm P6cm P⊙O17. 如图,的半径为,点到圆心的距离为,经过点引的两条切线,这两条切线的夹角为________度.P⊙O PA PB⊙O A B CD⊙O E18. 如图所示,为外一点,、分别切于、,切于点,分别PA PB C D PA=15△PCD交、于点、,若,则的周长为________.PA PB CD⊙O A B E PA=10△PCD19. 如图,、、为的切线,、、为切点,,则的周长为________.PA PB O A B O CD C D20. 如图,,分别切圆于,,并与圆的切线分别相交于,,已知三、解答题(本题共计PA PB⊙O A B Q AB Q 24. 已知:如图,、是的切线,切点分别是、,为上一点,过点作⊙O PA PB E F PA=10cm△PEF的切线,交、于、点,已知,求的周长.∠APB=52∘PA PB DE⊙O A B F 25. 如图,,、、都为的切线,切点分别为、、,且PA=6.△PDE(1)求的周长;∠DOE(2)求的度数.PA PB⊙O A B EF⊙O26. 如图,、是的切线,切点分别是、,直线也是的切线,切点为Q PA PB E F PA=12cm∠P=40∘,交、于点、,已知,△PEF①求的周长;∠EOF②求的度数.。
2021-2022学年北师大版九年级数学下册《3-7切线长定理》同步达标测评(附答案)
2021-2022学年北师大版九年级数学下册《3.7切线长定理》同步达标测评(附答案)一.选择题(共6小题,满分30分)1.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=12,则四边形ABCD的周长为()A.44B.42C.46D.472.如图,一个菱形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿此菱形的四边做无滑动旋转,直至回到原出发位置时,这个圆共转了()A.6圈B.5圈C.4.5圈D.4圈3.如图,P A,PB分别切⊙O与点A,B,MN切⊙O于点C,分别交P A,PB于点M,N,若P A=7.5cm,则△PMN的周长是()A.7.5cm B.10cm C.12.5cm D.15cm4.如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,OC =8cm,则BE+CG的长等于()A.13B.12C.11D.105.如图,△ABC中,∠A=60°,BC=6,它的周长为16.若⊙O与BC,AC,AB三边分别切于E,F,D点,则DF的长为()A.2B.3C.4D.66.如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3B.C.6D.二.填空题(共8小题,满分40分)7.如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点E,若AB=CD=2,则CE=.8.如图,AB、AC、BD是⊙O的切线,P、C、D为切点,如果AB=8,AC=5,则BD的长为.9.已知⊙O与△ABC的三边AB、BC、AC分别相切于点D、E、F,如果BC边的长为10cm,AD的长为4cm,那么△ABC的周长为cm.10.如图,切线P A、PB分别与⊙O相切于点A、B,切线EF与⊙O相切于点C,且分别交P A、PB于点E、F,若△PEF的周长为6,则线段P A的长为.11.如图,菱形ABCD,∠B=60°,AB=4,⊙O内切于菱形ABCD,则⊙O的半径为.12.如图,P A,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=°.13.如图,P A,PB切⊙O于A、B两点,CD切⊙O于E点,⊙O的半径是r,△PCD周长为4r,则tan∠APB=.14.如图,P A、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=.三.解答题(共6小题,满分50分)15.已知P A、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交P A于C、交PB于D.(1)若P A=6,求△PCD的周长.(2)若∠P=50°求∠DOC.16.如图,已知直径与等边三角形ABC的高相等的圆与AB和BC边相切于点D和E,与AC边相交于点F和G,求∠DEF的度数.17.如图,ABCD是一个梯形,AB∥CD,梯形的两腰与上底均与半圆O相切,已知AD=3,BC=4,求CD.18.如图,P A,PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=60°.(1)求∠BAC的度数;(2)当OA=2时,求AB的长.19.如图,边长为1的正方形ABCD的边AB是⊙O的直径,CF是⊙O的切线,E为切点,F点在AD上,BE是⊙O的弦,求△CDF的面积.20.如图,AB为⊙O直径,P A、PC分别与⊙O相切于点A、C,PQ⊥P A,PQ交OC的延长线于点Q.(1)求证:OQ=PQ;(2)连BC并延长交PQ于点D,P A=AB,且CQ=6,求BD的长.参考答案一.选择题(共6小题,满分30分)1.解:∵四边形ABCD是⊙O的外切四边形,∴AD+BC=AB+CD=22,∴四边形ABCD的周长=AD+BC+AB+CD=44,故选:A.2.解:∵菱形的边长与它的一边相外切的圆的周长相等∴圆在菱形的边上转了4圈∵圆在菱形的四个顶点处共转了360°,∴圆在菱形的四个顶点处共转1圈∴回到原出发位置时,这个圆共转了5圈.故选:B.3.解:∵直线P A、PB、MN分别与⊙O相切于点A、B、C,∴MA=MC,NC=NB,∴△PMN的周长=PM+PN+MC+NC=PM+MA+PN+NB=P A+PB=7.5+7.5=15(cm).故选:D.4.解:∵AB∥CD,∴∠ABC+∠BCD=180°,∵CD、BC,AB分别与⊙O相切于G、F、E,∴∠OBC=∠ABC,∠OCB=∠BCD,BE=BF,CG=CF,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∴BC==10,∴BE+CG=10(cm).故选:D.5.解:∵⊙O与BC,AC,AB三边分别切于E,F,D点,∴AD=AF,BE=BD,CE=CF,∵BC=BE+CE=6,∴BD+CF=6,∵AD=AF,∠A=60°,∴△ADF是等边三角形,∴AD=AF=DF,∵AB+AC+BC=16,BC=6,∴AB+AC=10,∵BD+CF=6,∴AD+AF=4,∵AD=AF=DF,∴DF=AF=AD=×4=2,故选:A.6.解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=AB tan∠OAB=3,∴光盘的直径为6,故选:D.二.填空题(共8小题,满分40分)7.解:∵CD是⊙O的切线,∴CD2=CB•CA,∵AB=CD=2,∴4=BC(BC+2),解得BC=﹣1+,∵CD是⊙O的切线,BE为⊙O的切线,∴∠CBE=∠CDO=90°,∴△BCE∽△DCO,∴=,即=,解得,CE=,故答案为.8.解:∵AC、AP为⊙O的切线,∴AC=AP,∵BP、BD为⊙O的切线,∴BP=BD,∴BD=PB=AB﹣AP=8﹣5=3.故答案为:3.9.解:∵⊙O与△ABC的三边AB、BC、AC分别相切于点D、E、F,BC=10cm,AD=4cm,∴AD=AF=4cm,BE=BD,CF=CE,即BD+CF=BE+CE=BC=10cm,∴△ABC的周长是AB+BC+AC=AD+BD+BC+CF+AF=4cm+10cm+10cm+4cm=28cm,故答案为:28cm.10.解:∵EA,EC都是圆O的切线,∴EC=EA,同理FC=FB,P A=PB,∴△PEF的周长=PF+PE+EF=PF+PE+EA+FB=P A+PB=2P A=6,∴P A=3;故答案为:3.11.解:设AB和BC上的切点分别为E、F,连接OA、OE、OB、OF,则OE⊥AB,OF⊥BC,∵⊙O内切于菱形ABCD,∴OE=OF,∴OB平分∠ABC,∵∠ABC=60°,∴∠ABO=30°,同理得∠BAO=60°,∴∠AOB=90°,∴AO=AB=2,OB=2,∴S△AOB=AB•OE=AO•OB,4OE=2×,OE=,故答案为:.12.解:∵P A,PB是⊙O的切线,∴P A=PB,P A⊥OA,∴∠P AB=∠PBA,∠OAP=90°,∴∠PBA=∠P AB=90°﹣∠OAB=90°﹣38°=52°,∴∠P=180°﹣52°﹣52°=76°;故答案为:76.13.解:连接BO并延长交P A的延长线于F,连接OA,∵P A,PB切⊙O于A、B两点,CD切⊙O于E点,∴P A=PB,CE=CA,DE=DB,∴P A+PB=PC+PD+CD=4r,∴P A=PB=2r,∵P A,PB切⊙O于A、B,∴∠F AO=∠FBP=90°,又∠AFO=∠BFP,∴△F AO∽△FBP,∴==,∴FB=2F A,∴F A2+r2=(2F A﹣r)2,解得,F A=r,则FB=r,∴tan∠APB==,故答案为:.14.解:连接AB,∵P A、PB是⊙O的切线,∴P A=PB,∵∠P=102°,∴∠P AB=∠PBA=(180°﹣102°)=39°,∵∠DAB+∠C=180°,∴∠P AD+∠C=∠P AB+∠DAB+∠C=180°+39°=219°,故答案为:219°.三.解答题(共6小题,满分50分)15.解:(1)连接OE,∵P A、PB与圆O相切,∴P A=PB=6,同理可得:AC=CE,BD=DE,△PCD的周长=PC+PD+CD=PC+PD+CE+DE=P A+PB=12;(2)∵P A PB与圆O相切,∴∠OAP=∠OBP=90°∠P=50°,∴∠AOB=360°﹣90°﹣90°﹣50°=130°,在Rt△AOC和Rt△EOC中,,∴Rt△AOC≌Rt△EOC(HL),∴∠AOC=∠COE,同理:∠DOE=∠BOD,∴∠COD=∠AOB=65°.16.解:过点E作BC的垂线与圆交于点H,与AC交于点O.连接AH和DH,作AM⊥BC,垂足为M.∵E为切点,∴EH必过圆心,即EH是直径,∴DH⊥DE,∵D、E是切点,∴BD=BE,∵∠B=60°,∴△DBE是正三角形,∴∠BDE=∠BAC=60°,∴DE∥AC,DH⊥AC,由已知得,AM=EH,又AM∥EH,∴四边形AMEH是矩形,∴AH⊥HE,即AH是切线,∴AD=AH,AC垂直平分DH,AC必过圆心,∴AC与EH的交点O是圆心,∴OE=OF,∵∠COE=90°﹣∠C=30°,∴∠OEF=75°,∵∠DEO=∠EOC=30°,∴∠DEF=30°+75°=105°法二:过点E作BC的垂线与圆交于点H,与AC交于点O.∵BC为切线∴O为圆心,OE⊥BC.∵OE=OF∴∠OFE=∠OEF.∴∠OEF=∠C+∠FEC,∠FEC=∠OEF﹣∠C又∵∠OEC=90°,∴∠OEF+∠FEC=90°即2∠OEF﹣∠C=90°.∵∠C=60°,∴∠OEF=75°,∠CEF=15°.又∵AC∥DE,∠C=60°,∴∠DEC=120°.∵∠CEF=15°,∴∠DEF=105°17.解:如图,连接OE、OA、OF、OB、OG,∵梯形的两腰与上底均与半圆O相切,∴OE⊥AD,OF⊥AB,OG⊥BC,∵AB∥CD,∴OF是梯形ABCD的高,∴×AD×OE+×AB×OF+×BC×OG=×(AB+CD)×OF,∴×(AB+3+4)×OF=×(AB+CD)×OF,解得,CD=7.18.解:(1)∵P A,PB是⊙O的切线,∴AP=BP,∵∠P=60°,∴∠P AB=60°,∵AC是⊙O的直径,∴∠P AC=90°,∴∠BAC=90°﹣60°=30°.(2)连接OP,则在Rt△AOP中,OA=2,∠APO=30°,∴OP=4,由勾股定理得:,∵AP=BP,∠APB=60°,∴△APB是等边三角形,∴.19.解:设AF=x,∵四边形ABCD是正方形,∴∠DAB=90°,∴DA⊥AB,∴AD是圆的切线,∵CF是⊙O的切线,E为切点,∴EF=AF=x,∴FD=1﹣x,∵CB⊥AB,∴CB为⊙O的切线,∴CB=CE,∴CF=CE+EF=CB+EF=1+x.∴在Rt△CDF中由勾股定理得到:CF2=CD2+DF2,即(1+x)2=1+(1﹣x)2,解得x=,∴DF=1﹣x=,∴S△CDF=×1×=.20.(1)证明:连接OP.∵P A、PC分别与⊙O相切于点A,C,∴P A=PC,OA⊥P A,∵OA=OC,OP=OP,∴△OP A≌△OPC(SSS),∴∠AOP=∠POC,∵QP⊥P A,∴QP∥BA,∴∠QPO=∠AOP,∴∠QOP=∠QPO,∴OQ=PQ.(2)设OA=r.∵OB=OC,∴∠OBC=∠OCB,∵OB∥QD,∴∠QDC=∠B,∵∠OCB=∠QCD,∴∠QCD=∠QDC,∴QC=QD=6,∵QO=QP,∴OC=DP=r,∵PC是⊙O的切线,∴OC⊥PC,∴∠OCP=∠PCQ=90°,在Rt△PCQ中,∵PQ2=PC2+QC2,∴(6+r)2=62+(2r)2,r=4或0(舍弃),∴OP==4,∵OB=PD,OB∥PD,∴四边形OBDP是平行四边形,∴BD=OP=4.。
九年级数学切线长定理及弦切角练习题
切线长〔一〕填空1.:如图7-143,直线BC切⊙O于B点,AB=AC,AD=BD,那么∠A=____.∠2.:如图7-144,直线DC与⊙O相切于点C,AB为⊙O直径,AD⊥DC 于D,∠DAC=28°侧∠CAB=____.3.:直线AB与圆O切于B点,割线ACD与⊙O交于C和D4.:如图7-145,PA切⊙O于点A,割线PBC交⊙O于B和C两点,P=15°,∠ABC=47°,那么∠C=____.5.:如图7-146,三角形ABC的∠C=90°,内切圆O与△ABC的三边分别切于D,E,F 三点,∠DFE=56°,那么∠B=____.6.:如图7-147,△ABC内接于⊙O,DC切⊙O于C点,∠1=∠2,那么ABC为____三角形.7.:如图7-148,圆O为△ABC外接圆,AB为直径,DC切⊙O于C点,A=36°,那么∠ACD=.〔二〕选择8.:△ABC内接于⊙O,∠ABC=25°,∠ACB=75°,过A点作⊙O的切线交BC的延伸线于P,那么∠APB等于[ ]A.°;B.55°;C.50°;D.40°.9.:如图7-149,PA,PB切⊙O于A,B两点,AC为直径,那么图中与∠PAB相等的角的个数为[]A.1个;B.2个;C.4个;D.5个.10.如图7-150,四边形ABCD为圆内接四边形,AB是直径,MN切⊙O于C点,∠BCM=38°,那么∠ABC的度数是[]A.38°;B.52°;C.68°;D.42°.11.如图7-151,PA切⊙O于点A,PCB交⊙O于C,B两点,且PCB过点O,AE⊥BP交⊙O于E,那么图中与∠CAP相等的角的个数是[]A.1个;B.2个;C.3个;D.4个.〔三〕计算12.:如图7-152,PT与⊙O切于C,AB为直径,∠BAC=60°,AD为⊙O 一弦.求∠ADC与∠PCA的度数.13.:如图7-153,PA切⊙O于A,PO交⊙O于B,C,PD均分∠APC.求∠ADP的度数.14.:如图7-154,⊙O的半径OA⊥OB,过A点的直线交OB于P,交⊙O于Q,过Q引⊙O的切线交OB延伸线于C,且PQ=QC.求∠A的度数.15.:如图7-155,⊙O内接四边形ABCD,MN切⊙O于C,∠BCM=38°,AB为⊙O直径.求∠ADC的度数.16.:如图7-156,PA,PC切⊙O于A,C两点,B点17.:如图7-157,AC为⊙O的弦,PA切⊙O于点A,PC过O点与⊙O交于B,∠C=33°.求∠P的度数.18.:如图7-158,四边形ABCD内接于⊙O,EF切⊙O19.BA是⊙O的弦,TA切⊙O于点A,∠BAT=100°,点M在圆周上但与A,B不重合,求∠AMB 的度数.20.:如图7-159,PA切圆于A,BC为圆直径,∠BAD=∠P,PA=15cm,PB=5cm.求BD的长.21.:如图7-160,AC是⊙O直径,PA⊥AC于A,PB切⊙O于B,BEAC于E.假定AE=6cm,EC=2cm,求BD的长.22.:如图7-161所示,P为⊙O外一点,PA切⊙O于A,从PA中点M引⊙O割线MNB,∠PNA=138°.求∠PBA的度数.23.:如图7-162,DC切⊙O于C,DA交⊙O于P和B两点,AC交⊙O于Q,PQ为⊙O直径交BC于E,∠BAC=17°,∠D=45°.求∠PQC与∠PEC的度数.24.:如图7-163,QA切⊙O于点A,QB交⊙O于B25.:如图7-164,QA切⊙O于A,QB交⊙O于B和C26.:在图7-165中,PA切⊙O于A,AD均分∠BAC,PE均分∠APB,AD=4cm,PA=6cm.求EP的长.27.;如图7-166,PA为△ABC外接圆的切线,A为切点,DE∥AC,PE=PD.AB=7cm,AD=2cm.求DE的长.28.:如图7-167,BC是⊙O的直径,DA切⊙O于A,DA=DE.求∠BAE的度数.29.:如图7-168,AB为⊙O直径,CD切⊙O于CAE∠CD于E,交BC于F,AF=BF.求∠A的度数.30.:如图7-169,PA,PB分别切⊙O于A,B,PCD为割线交⊙O于C,D.假定AC=3cm,AD=5cm,BC=2cm,求DB的长.31.:如图7-170,ABCD的极点A,D,C在圆O上,AB的延伸线与⊙O 交于M,CB的延伸线与⊙O交于点N,PD切⊙O于D,∠ADP=35°,∠ADC=108°.求∠M的度数.32.:如图7-171,PQ为⊙O直径,DC切⊙O于C,DP交⊙O于B,交CQ延伸线于A,∠D=45°,∠PEC=39°.求∠A的度数.33.:如图7-172,△ABC内接于⊙O,EA切⊙O于A,过B作BD∥AE交AC延伸线于D.假定AC=4cm,CD=3cm,求AB的长.34.:如图7-173,△ABC内接于圆,FB切圆于B,CF⊥BF于F交圆于E,∠1=∠2.求∠1的度数.35.:如图7-174,PC为⊙O直径,MN切⊙O于A,PB⊥MN于B.假定PC=5cm,PA=2cm.求PB的长.36.:如图7-175,AD为⊙O直径,CBE,CD分别切⊙37.:如图7-176,圆内接四边形ABCD的AB边经过圆心,AD,BC的延伸线订交于E,过C点的切线CF⊥AE于F.求证:〔1〕△ABE为等腰三角形;〔2〕假定BC=1cm,AB=3cm,求EF的长.38.:如图7-177,AB,AC切⊙O于B,C,OA交⊙O于F,E,交BC于D.〔1〕求证:E为△ABC心里;〔2〕假定∠BAC=60°,AB=a,求OB与OD的长.〔四〕证明39.:在△ABC中,∠C=90°,以C为圆心作圆切AB边于F点,AD,BC 分别与⊙C切于D,E两点.求证:AD∥BE.40.:PA,PB与⊙O分别切于A,B两点,延伸OB到C,41.:⊙O与∠A的两边分别相切于D,E.在线段AD,AE〔或在它们的延伸线〕上各取一点B,C,使DB=EC.求证:OA⊥BC.⊥EC于H,AO交BC于D.求证:BC·AH=AD·CE.*43.:如图7-178,MN切⊙O于A,弦BC交OA于E,过C点引BC的垂线交MN于D.求:AB∥DE.44.:如图7-179,OA是⊙O半径,B是OA延伸线上一点,BC切⊙O于C,CD⊥OA于D.求证:CA均分∠BCD.45.:如图7-180,BC是⊙O直径,EF切⊙O于A点,AD⊥BC于D.求证:AB均分∠DAE,AC均分∠DAF.46.:如图7-181,在△ABC中,AB=AC,∠C=2∠A,以AB为弦的圆O与BC切干点B,与AC 交于D点.求证:AD=DB=BC.47.:如图7-182,过△ADG的极点A作直线与DG的延伸线订交于C,过G作△ADG的外接圆的切线二均分线段AC于E.求证:AG2=DG·CG.48.:如图7-183,PA,PB分别切⊙O于A,B两点,PCD为割线.求证:AC·BD=BC·AD.BC=BA,连结AC交圆于点E.求证:四边形ABDE是平行四边形.50.:如图7-185,∠1=∠2,⊙O过A,D两点且交AB,AC于E,F,BC切⊙O于D.求证:EF∥BC.51.:如图7-186,AB是半圆直径,EC切半圆于点C,BE⊥CE交AC于F.求证:AB=BF.52.:如图7-187,AB为半圆直径,PA⊥AB,PC切半圆于C点,CD⊥AB于D交PB于M.求证:CM=MD.〔五〕作图53.求作以线段AB为弦,所含圆周角为锐角∠α〔见图7-188〕的弧〔不写作法,写出、求作,答出所求〕.54.求作一个以α为一边,所对角为∠α,此边上高为h的三角形.55.求作一个以a为一边,m为此边上中线,所对角为∠α的三角形〔不写作法,答出所求〕.切线长定理及弦切角练习题(答案)〔一〕填空1.36° 2.28° 3.50°4.32°5.22° 6.等腰7.54°〔二〕选择8.C 9.D 10.B 11.C〔三〕计算12.30°,30°.13.45°.提示:连结AB交PD于E.只要证明∠ADE=∠AED,证明时利用三角形外角定理及弦切角定理.∠14.30°.提示:因为PQ=QC,所以∠QCP=∠QPC.连结OQ,那么知∠POQ与QCP互余.又∠OAQ=∠OQA与∠QPC互余,所以∠POQ=∠OAQ=∠OQA.而它们的和为90°〔因为∠AOC=90°〕.所以∠OAQ=30°16.°.提示:解法一连结AC,那么∠PAC=∠PCA.又∠P=45°,所以PAC=∠°.进而∠B=∠°.解法二连结OA,OC,那么∠AOC=180°-∠P=135°,所以17.24°.提示:连结OA,那么∠POA=66°.18.60°.提示:连结BD,那么∠ADB=40°,∠DBC=20°.设∠ABD=∠BDC〔因为AB//CD〕=x°,那么因∠B+∠D=180°,所以2x°+60°=180°,x°=60°,进而∠ADE=∠ABD=60°.19.100°或80°.提示:M可在弦AB对的两弧的每一个上.进而22.42°.提示:∠ABM=∠NAM.于是明显△ABM∽△NAM,NMP,所以△PMB∽△NMP,进而∠PBM=∠NPM.再由∠ABM=∠NAM,就有∠PBA=∠PBM+∠NAM=∠NPM+∠NAM=180°-∠PNA=42°.23.28°,39°.提示:连结PC.24.41°.提示:求出∠QAC和∠ACB的度数.25.100°.以DB=9.因为2DP=2×9,由此得DP2=9.又DP>0,所以DP=3,进而,DE=23=6〔cm〕.28.45°.提示:连结AC.因为DA=DE,所以∠ABE+∠BAE=∠AED=∠EAD=CAD+∠CAE,但∠ABE=∠CAD,所以∠BAE=∠CAE.因为∠BAE+∠CAE=90°,所以∠BAE=45°.29.60°.提示:解法一连结AC,那么AC⊥BC.又AF⊥CE,所以∠ACE=∠F.又DC切⊙O于C,所以∠ACE=∠B.所以∠F=∠B.因为AF=BF,所以∠BAF=∠B=∠F.所以∠BAF=60°.31.37°.提示:连结AC,那么∠M=∠ACN=∠CAD.32.17°.提示:连结PC,那么∠QPC+∠PBC=90°.45°=∠D=〔∠BPQ+∠QPC〕∠DCP=〔∠BPQ+∠QPC〕-∠PBC=[∠BPQ+〔90°-∠PBC〕]-∠PBC.所以2∠PBC-∠BPQ=45°.〔1〕又∠PBC+∠BPQ=39°,〔2〕进而∠PBC=28°,∠BPQ=11°.于是∠A=∠PBC-∠BPQ=17°.34.30°.提示:连结BE,由∠1=∠2,可推出∠EBF=∠ECB=∠EBC,而这三个角的和为90°,所以每个角为30°.36.60°.提示:连结OB,那么OB⊥CE,进而∠C=∠BOE=60°.37.〔1〕提示:连结OC,那么∠E=∠OCB=∠OBC=∠CDE,所以△ABE为等腰三角形.38.〔1〕提示:连结BE.只要证明∠ABE=∠DBE.〔四〕证明39.提示:AC,BC各均分∠A,∠B.想法证出∠A+∠B=180°.40.提示:连结OP,想法证出∠BPC=∠BPO.42.提示:在△BCE和△DAH中,∠BCE=∠DAH〔它们都与∠DCH互补〕.又A,D,C,H共圆,所以∠CEB=∠ACB=∠AHD,进而△BCE∽△DAH.这就得所要证明的比率式.43.提示:连结AC.先证明A,E,C,D四点共圆.由此得∠ADE=〔∠ACE=〕MAB,所以AB//DE.44.提示:证法一延伸AO交⊙O于点E,连结EC,那么∠BCA=∠E,且∠ACD=E.所以∠BCA=∠ACD.∠证法二连结OA,那么∠BCA与∠OCA互余;又∠ACD与∠OAC互余,而∠OCA=OAC,所以∠BCA=∠ACD.46.提示:由得∠A=36°,∠B=∠C=72°,∠DBC=∠A=36°,所以∠ABD=36°,进而AD=BD.又∠C=∠CDB=72°,所以BD=BC.47.提示:过A作CD的平行线交BC于H,那么AH=CG.而后证AG2=DG·AH=DG·CG.49.提示:因为BC=BA,所以∠A=〔∠C=〕∠D;又∠CED=∠DBF〔BF是AB的延伸线〕,所以它们的补角∠DEA=∠ABD.进而四边形ABDE是平行四边形.50.提示:连结DE,那么∠BDE=∠1=∠2=∠FED.所以EF//BC.51.提示:连结BC,那么∠ACB=90°=∠FCB.因为CE⊥BE,所以∠F=∠ECB.因为EC切半圆于C,所以∠ECB=∠A,所以∠A=∠F,所以AB=BF.52.提示:连结AC,BC并延伸BC交AP延伸线于点N.第一所以CM=MD.。
初中九年级数学试卷【含答案】
初中九年级数学试卷【含答案】专业课原理概述部分一、选择题1. 如果一个三角形的两边长分别是8厘米和15厘米,那么这个三角形的第三边长可能是多少厘米?A. 7厘米B. 23厘米C. 17厘米D. 10厘米2. 下列哪个数是有理数?A. √2B. √3C. πD. 0.3333. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 圆形4. 如果a和b是两个负数,那么a×b的结果是?A. 正数B. 负数C. 零D. 无法确定5. 下列哪个数是素数?A. 21B. 29C. 35D. 39二、判断题1. 任何两个奇数相加的结果都是偶数。
()2. 一个三角形的三个内角的和是180度。
()3. 任何两个有理数相乘的结果都是有理数。
()4. 任何两个负数相除的结果都是正数。
()5. 一个数的立方根只有一个。
()三、填空题1. 如果一个正方形的边长是6厘米,那么这个正方形的面积是______平方厘米。
2. 如果一个等腰三角形的底边长是8厘米,腰长是10厘米,那么这个三角形的周长是______厘米。
3. 下列哪个数的平方根是4?______4. 如果一个数的平方是36,那么这个数的立方是______。
5. 如果一个数的倒数是3,那么这个数是______。
四、简答题1. 请简述勾股定理的内容。
2. 请简述因式分解的意义。
3. 请简述比例的基本性质。
4. 请简述概率的基本概念。
5. 请简述函数的基本概念。
五、应用题1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。
2. 如果一个数的平方是64,那么这个数的立方是多少?3. 如果一个等腰三角形的底边长是6厘米,腰长是10厘米,求这个三角形的面积。
4. 如果一个数的倒数是2,那么这个数的平方是多少?5. 如果一个数的立方是27,那么这个数的平方是多少?六、分析题1. 如果一个三角形的两边长分别是5厘米和12厘米,那么这个三角形的第三边长可能是多少厘米?请给出你的推理过程。
九年级数学下册 2_5_3 切线长定理试题 (新版)湘教版
2.5.3 切线长定理知识要点切线长定理文字叙述几何表示图形切线长概念经过圆外一点作圆的切线,这点和________之间的线段的长,叫作这点到圆的切线长.线段______、______的长度是点P到⊙O的切线长.切线长定理过圆外一点所画的圆的两条切线长________,圆心和这一点的连线________两条切线的夹角.PA=________,∠APO=________=12∠APB解题策略(1)由切线长定理可得到的结论:如图,从该图上还可以得到很多结论:如①PO⊥AB;②AC=BC;③PA⊥OA ,PB⊥OB;④∠AOP=________等.(2)切线长定理是证明线段相等、角相等、弧相等、线段成比例、线段垂直等的重要依据,并且常与直角三角形、等腰三角形的相联系.如图,从⊙O外一点P引圆的两条切线PA、PB,切点分别是A、B,如果∠APB=60°,线段PA=10,那么弦AB的长是( )A.10 B.12 C.5 3 D.10 3分析:∵PA、PB都是⊙O的切线,∴PA=PB.∵∠APB=60°,∴△PAB是等边三角形,∴AB=PA=10.故选A.方法点拨:切线长定理是判断线段相等的主要依据,在圆中经常用到.(教材P76习题T11变式)如图,直线AB、BC、CD分别与⊙O相切于点E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:(1)∠BOC的度数;(2)BE+CG的长;(3)⊙O的半径.分析:(1)根据切线长定理得到OB平分∠EBF,OC平分∠GCF,再根据平行线的性质得∠GCF+∠EBF=180°,则有∠OBC+∠OCB=90°,进而可求得∠BOC;(2)由勾股定理可求得BC的长,进而由切线长定理即可得到BE+CG的长;(3)连接OF,由切线的性质可知OF⊥BC,再由三角形面积公式即可求得OF的长.方法点拨:过圆外一点所引的两条切线的长度相等,在解题时常结合角平分线的性质、三角形全等、解直角三角形等.1.如图,PA、PB是⊙O的切线,切点为A、B,若OA=1,PA=3,则∠AOB的度数为aa( )A .60° B.90°C .120° D.无法确定2.(教材P72练习T1变式)如图,圆外切四边形ABCD 中AB =8,CD =5,则四边形的周长为________.参考答案: 要点归纳 知识要点:切点 AP BP 相等 平分 PB ∠BPO ∠BOP 典例导学 例1 A例2 解:(1)根据切线长定理得BE =BF ,CF =CG ,∠OBF =∠OBE ,∠OCF =∠OCG .∵AB ∥CD ,∴∠ABC +∠BCD =180°,∴∠OBE +∠OCF =12(∠ABC +∠BCD )=90°,∴∠BOC =90°;(2)∵OB =6cm ,OC =8cm ,∴由勾股定理得BC =OB 2+OC 2=10cm ,∴BE +CG =BF +FC =BC =10cm.(3)连接OF ,∵OF ⊥BC ,∴OF =OB ·OCBC=4.8cm ,即⊙O 的半径为4.8cm.当堂检测 1.C 2.26。
九年级数学切线长测试题
圆的测试(3)1.已知⊙O的半径为5;A为线段OP的中点;若OP=9;则点A在()A.圆内B.圆上C.圆外D.不确定2.若两圆的半径分别是1cm和5cm;圆心距为6cm;则这两圆的位置关系是()A.内切B.相交C.外切D.外离3.⊙O的半径为5;圆心O的坐标为(0 ;0);点P的坐标为(4 ;3);则点P ( )A.在⊙O内B.在⊙O上C.在⊙O外D.可能在⊙O上或在⊙O外4.Rt△ABC中;∠C=90°;∠AC=3cm;BC=4cm;给出下列三个结论:①以点C为圆心1.3 cm长为半径的圆与AB相离;②以点C为圆心;2.4cm长为半径的圆与AB相切;③以点C为圆心;2.5cm长为半径的圆与AB相交.上述结论中正确的个数是()A.0个B.l个C.2个D.3个5.如图;⊙O的半径为2;直线PA、PB为⊙O的切线;A、B为切点;若PA⊥PB;则OP的长为()A.42B.4 C.22D.26.如图;点O是△ABC的内切圆的圆心;若∠BAC=80°;则∠BOC=()A.130°B.100°C.50°D.65°7.如图;PA;PB分别与⊙O相切于A;B点;C为⊙O上一点;∠ACB=65°;则∠APB等于( ) A.65°B.50°C.45°D.40°第5题第6题第7题8.⊙O的半径为4;O到直线m的距离为3;则直线m与⊙O的位置关系为__________9.三角形的内心是三角形三条____________的交点;它到三角形的________的距离相等10.如图;⊙O是ΔABC的内切圆;D、E、F为切点;AB=4;AC=5;AD=1;则BC=_______________ 11.如图;PA切⊙O于点A;PO交⊙O于B点; PA=15;PB=9;则⊙O的半径为_______________第10题第11题12.已知:如图;在△ABC中;AB=BC;D是AC中点;BE平分∠ABD交AC于点E;点O是AB上一点;⊙O过B、E两点; 交BD于点G;交AB于点F.求证:AC 与⊙O 相切13.如图;⊙O 的直径AB=6cm;D 为⊙O 上一点;∠BAD=30°;过点D 的切线交AB•的延长线于点C . 求:(1)∠ADC 的度数;(2)AC 的长.14.已知:如图;PA;PB;DC 分别切⊙O 于A;B;E 点.(1)若∠P=40°;求∠COD;(2)若PA=10cm;求△PCD 的周长.A F D O E BG。
初三中考数学复习 线段、角、相交线和平行线 专题复习练习题及答案
初三中考数学复习线段、角、相交线和平行线专题复习练习题及答案2019 初三中考数学复习线段、角、相交线和平行线专题复习练习题1. 一个角的余角是这个角的补角的13,则这个角的度数是( )A.30° B.45° C.60° D.70°2. .下列命题中,属于真命题的是( )A.三点确定一个圆 B.圆内接四边形对角互余C.若a2=b2,则a=b D.若3a=3b,则a=b3. 如图,C,D是线段AB上两点,D是线段AC的中点,若AB=10 cm,BC=4 cm,则AD的长等于( )A.2 cm B.3 cm C.4 cm D.6 cm4. 如图,直线AB∥CD,直线EF与AB,CD相交于点E,F,∠BEF的平分线与CD相交于点N.若∠1=63°,则∠2=( )A.64° B.63° C.60° D.54°5. 如图,与∠1是同旁内角的是( )A.∠2 B.∠3 C.∠4 D.∠56. 下列命题:①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若x =0,则x2-2x=0.它们的逆命题一定成立的有( )A.①②③④ B.①④ C.②④ D.②7. 如图,AB∥CD,∠1=50°,则∠2的大小是( )A.50° B.120° C.130° D.150°8. 如图,在下列条件中,不能判定直线a与b平行的是( )1---10BDBDDDCCDB11. 对顶角相等12. 54°13. 70°14. 15°15. 144°38′16. 解:∵直线a ∥b ,∴∠1=∠ABD =70°,∵BC 平分∠ABD ,∴∠EBD =12∠ABD =35°,∵DE ⊥BC ,∴∠2=90°-∠EBD =55°17. 解:(1)如图①,∵∠AOB =90°,∠BOC =60°,∴∠AOC =90°+60°=150°,∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC =12∠AOC =75°,∠NOC =12∠BOC =30°,∴∠MON =∠MOC -∠NOC =45°(2)如图②,∠MON =12α,理由:∵∠AOB =α,∠BOC =60°,∴∠AOC =α+60°,∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC =12∠AOC =12α+30°,∠NOC =12∠BOC =30°∴∠MON =∠MOC -∠NOC =(12α+30°)-30°=12α (3)如图③,∠MON =12α,与β的大小无关.理由:∵∠AOB =α,∠BOC =β,∴∠AOC =α+β. ∵OM 是∠AOC 的平分线,ON 是∠BOC 的平分线,∴∠MOC =12∠AOC =12(α+β),∠NOC =12∠BOC =12β,∴∠MON =∠MOC -∠NOC1 2(α+β)-12β=12α,即∠MON=12α=。
九年级数学下册 2.5.3 切线长定理习题 湘教版(2021学年)
2017春九年级数学下册2.5.3 切线长定理习题(新版)湘教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017春九年级数学下册2.5.3切线长定理习题(新版)湘教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017春九年级数学下册2.5.3 切线长定理习题(新版)湘教版的全部内容。
*2。
5。
3 切线长定理基础题知识点切线长定理1.如图,PA,PB分别切⊙O于点A,B两点,如果∠PAB=60°,PA=2,那么AB的长为() A.1 B.2 C.3D.42.如图,PA,PB是⊙O的两条切线,切点分别是A,B.如果OP=2,OA=1,那么PB等于( ) A.1 B.2 C.错误!D.2\r(3)3.一个钢管放在V形架内,如图是其截面图,O为钢管的圆心.如果钢管的半径为25cm,∠M PN=60°,那么OP等于( )A.5错误!cmB.25错误!cmC.错误!cm D.50 cm4.如图,AB为⊙O的直径,点C在AB的延长线上,CD,CE分别与⊙O相切于点D,E,若AD=2,∠DAC=∠DCA,则CE=____________。
5.如图,⊙O的半径为3 cm,点P到圆心的距离为6cm,经过点P引⊙O的两条切线,这两条切线的夹角为____________度.6.如图,四边形ABCD的边AB,BC,CD,DA和⊙O相切,且AB=8 cm,CD=5cm,则A D+BC=____________cm.7.如图,PA,PB分别切⊙O于点A,B,连接PO与⊙O相交于点C,连接AC,BC,求证:AC=BC.8.如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠P=60°.(1)求∠BAC的度数;当OA=2时,求AB的长.中档题9.(邵阳中考)如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D 为切点,连接BD,AD。
2020—2021年北师大版初中数学九年级下册切线长定理同步检测题及答案.docx
北师大版数学九年级下册切线长定理同步检测一、选择题1.如图,一圆内切四边形ABCD,且BC=10,AD=7,则四边形的周长为()A.32 B.34 C.36 D.38答案:B解析:解答:由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2×(7+10)=34.故选:B.分析:根据切线长定理,可以证明圆外切四边形的性质:圆外切四边形的两组对边和相等,从而可求得四边形的周长.2.如图所示,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD 切⊙O于点E,分别交PA、PB于点C、D,若PA=15,则△PCD 的周长为()A.15 B.12 C.20 D.30答案:D解析:解答:∵P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,∴AC=EC,BD=DE,AP=BP,∵PA=15,∴△PCD的周长为:PA+PB=30.故选:D.分析:直接利用切线长定理得出AC=EC,BD=DE,AP=BP,进而求出答案.3.如图,△ABC是一张三角形的纸片,⊙O是它的内切圆,点D 是其中的一个切点,已知AD=10cm,小明准备用剪刀沿着与⊙O相切的任意一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长为()A.20cm B.15cm C.10cm D.随直线MN的变化而变化答案:A解析:解答:如图:∵△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,AD=10cm,∴设E、F分别是⊙O的切点,故DM=MF,FN=EN,AD=AE,∴AM+AN+MN=AD+AE=10+10=20(cm).故选:A.分析:利用切线长定理得出DM=MF,FN=EN,AD=AE,进而得出答案.4.如图,⊙O内切于四边形ABCD,AB=10,BC=7,CD=8,则AD的长度为()A.8 B.9 C.10 D.11答案:D解析:解答:∵⊙O内切于四边形ABCD,∴AD+BC=AB+CD,∵AB=10,BC=7,CD=8,∴AD+7=10+8,解得:AD=11.故选:D.分析:根据圆外切四边形的性质对边和相等进而得出AD的长.5.圆外切等腰梯形的一腰长是8,则这个等腰梯形的上底与下底长的和为()A.4 B.8 C.12 D.16答案:D解析:解答:∵圆外切等腰梯形的一腰长是8,∴梯形对边和为:8+8=16,则这个等腰梯形的上底与下底长的和为16.故选:D.分析:直接利用圆外切四边形对边和相等,进而求出即可.6.如图,⊙O是△ABC的内切圆,点D、E分别为边AB、AC上的点,且DE为⊙O的切线,若△ABC的周长为25,BC的长是9,则△ADE的周长是()A.7 B.8 C.9 D.16答案:A解析:解答:∵AB、AC、BC、DE都和⊙O相切,∴BI=BG,CI=CH,DG=DF,EF=EH.∴BG+CH=BI+CI=BC=9,∴△ADE的周长=AD+AE+DE=AD+AE+DF+EF=AD+DG+EH+AE=AG+AH=△ABC 的周长-(BG+EH+BC)=25-2×9=7.故选A.分析:根据切线长定理,可得BI=BG,CI=CH,DG=DF,EF=EH,△ADE的周长=AD+AE+DE=AD+AE+DF+EF=AD+DG+EH+AE=AG+AH=△ABC 的周长-(BG+EH+BC),据此即可求解.7.如图,从⊙O外一点P引⊙O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB的长是()A.4 B.8 C.4√3D.8√3答案:B解析:解答:∵PA、PB都是⊙O的切线,∴PA=PB,又∵∠P=60°,∴△PAB是等边三角形,即AB=PA=8,故选B.分析:根据切线长定理知PA=PB,而∠P=60°,所以△PAB是等边三角形,由此求得弦AB的长.8.如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为()A.35°B.45°C.60°D.70°答案:D解析:解答:根据切线的性质定理得∠PAC=90°,∴∠PAB=90°-∠BAC=90°-35°=55°.根据切线长定理得PA=PB,所以∠PBA=∠PAB=55°,所以∠P=70°.故选D.分析:根据切线长定理得等腰△PAB,运用内角和定理求解.9.如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为()A.130°B.120°C.110°D.100°答案:C解析:解答:∵AB、AC是⊙O的两条切线,B、C是切点,∴∠B=∠C=90°,∠BOC=180°-∠A=110°.故选C.分析:利用切线的性质可得,∠B=∠C=90°,再用四边形的内角和为360度可解.10.如图,PA、PB是⊙O的两条切线,切点是A、B.如果OP=4,PA=23,那么∠AOB等于()A.90°B.100°C.110°D.120°答案:D解析:解答:∵△APO≌△BPO(HL),∴∠AOP=∠BOP.∵sin∠AOP=AP:OP=23:4= 3:2,∴∠AOP=60°.∴∠AOB=120°.故选D.分析:由切线长定理知△APO≌△BPO,得∠AOP=∠BOP.可求得sin∠AOP= 3:2,所以可知∠AOP=60°,从而求得∠AOB 的值.11.如图,PA切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列结论中,错误的是()A.∠1=∠2 B.PA=PB C.AB⊥OP D.PA2=PC•PO答案:D解析:解答:连接OA、OB,AB,∵PA切⊙O于A,PB切⊙O于B,由切线长定理知,∠1=∠2,PA=PB,∴△ABP是等腰三角形,∵∠1=∠2,∴AB⊥OP(等腰三角形三线合一),故A,B,C正确,根据切割线定理知:PA2=PC•(PO+OC),因此D错误.故选D.分析:由切线长定理可判断出A、B选项均正确.易知△ABP 是等腰三角形,根据等腰三角形三线合一的特点,可求出AB⊥OP,故C正确.而D选项显然不符合切割线定理,因此D错误.12.如图,P为⊙O外一点,PA,PB分别切⊙O于A,B,CD切⊙O于点E,分别交PA,PB于点C,D.若PA=5,则△PCD的周长和∠COD分别为()A.5,12(90°+∠P)B.7,90°+12C.10,90°-12∠PD.10,90°+12∠P答案:C解析:解答:∵PA、PB切⊙O于A、B,CD切⊙O于E,∴PA=PB=10,ED=AD,CE=BC;∴△PCD的周长=PD+DE+PC+CE=2PA,即△PCD的周长=2PA=10,;如图,连接OA、OE、OB.由切线性质得,OA⊥PA,OB⊥PB,OE⊥CD,DB=DE,AC=CE,∵AO=OE=OB,易证△AOC≌△EOC(SAS),△EOD≌△BOD(SAS),∴∠AOC=∠EOC,∠EOD=∠BOD,∠AOB,∴∠COD=12∴∠AOB=180°-∠P,∴∠COD=90°-1∠P.2故选:C.分析:根据切线长定理,即可得到PA=PB,ED=AD,CE=BC,从而求得三角形的周长=2PA;连接OA、OE、OB根据切线性质,∠AOB.∠P+∠AOB=180°,再根据CD为切线可知∠COD=1213.圆外切等腰梯形的中位线等于8,则一腰长等于()A.4 B.6 C.8 D.10答案:C解析:解答:如图,设圆的外切梯形ABCD,切点分别为E、H、N、中位线为MN,(AB+CD),∴MN=12根据切线长定理得:DE=DH,CF=CH,并且等腰梯形和圆都是轴对称图形,(AB+CD),∴CD=DH+CH=DE+CF=12∴CD=MN,而MN=8,∴CD=8.故选C.分析:如图,设圆的外切梯形ABCD,切点分别为E、H、N、中位线为MN,根据中位线定理可以得到上下底之和,然后利用切线长定理可以得到一腰长等于中位线,由此即可解决问题.14.如图,⊙O为△ABC的内切圆,AC=10,AB=8,BC=9,点D,E分别为BC,AC上的点,且DE为⊙O的切线,则△CDE的周长为()A.9 B.7 C.11 D.8答案:C解析:解答:如图:设AB,AC,BC和圆的切点分别是P,N,M,CM=x,根据切线长定理,得CN=CM=x,BM=BP=9-x,AN=AP=10-x.则有9-x+10-x=8,解得:x=5.5.所以△CDE的周长=CD+CE+QE+DQ=2x=11.故选:C.分析:设AB,AC,BC和圆的切点分别是P,N,M.根据切线长定理得到NC=MC,QE=DQ.所以三角形CDE的周长即是CM+CN的值,再进一步根据切线长定理由三角形ABC的三边进行求解即可.15.已知四边形ABCD是梯形,且AD∥BC,AD<BC,又⊙O与AB、AD、CD分别相切于点E、F、G,圆心O在BC上,则AB+CD 与BC的大小关系是()A.大于B.等于C.小于D.不能确定答案:A解析:解答:连接OF,∵AD是切线,∴OF⊥AD,又∵AD∥BC,∴AB≥OF,CD≥OF,又∵AD<BC,∴AB≥OF,CD≥OF最多有一个成立.∴AB+CD>2OF,∵BC=2OF,∴AB+CD>BC.故选A,分析:连接OF,则OF是梯形的高,则AB≥OF,CD≥OF,而两个式子不能同时成立,据此即可证得.二、填空题16.如图,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知△PCD的周长等于10cm,则PA= cm.答案:5解析:解答:如图,设DC与⊙O的切点为E;∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm);∴PA=PB=5cm,故答案为:5.分析:由于DA、DC、BC都是⊙O的切线,可根据切线长定理,将△PCD的周长转换为PA、PB的长,然后再进行求解.17.如图,PA、PB、DE分别切⊙O于A、B、C,DE分别交PA,PB于D、E,已知P到⊙O的切线长为8cm,那么△PDE的周长为答案:16解析:解答:∵PA、PB、DE分别切⊙O于A、B、C,∴PA=PB,DA=DC,EC=EB;∴C△PDE=PD+DE+PE=PD+DA+EB+PE=PA+PB=8+8=16;∴△PDE的周长为16.故答案为16.分析:由于PA、PB、DE都是⊙O的切线,可根据切线长定理将切线PA、PB的长转化为△PDE的周长.18.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB于C,D,若⊙O的半径为r,△PCD的周长等于3r,则tan12∠APB的值是答案:23解析:解答:连接PO,AO,∵PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB 于C,D,∴∠APO=∠BPO,AC=EC,DE=BD,PA=PB,∴PA+PB=△PCD的周长=3r,∴PA=PB=1.5r,∴tan12∠APB=AO:PA =r :1.5r =23,故答案为:23.分析:利用切线长定理得出PA=PB=1.5r,再结合锐角三角函数关系得出答案.19.如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D、E,过劣弧DE(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为4cm,则Rt△MBN的周长为答案:8cm解析:解答:连接OD、OE,∵⊙O是Rt△ABC的内切圆,∴OD⊥AB,OE⊥BC,∵∠ABC=90°,∴∠ODB=∠DBE=∠OEB=90°,∴四边形ODBE是矩形,∵OD=OE,∴矩形ODBE是正方形,∴BD=BE=OD=OE=4cm,∵⊙O切AB于D,切BC于E,切MN于P,NP与NE是从一点出发的圆的两条切线,∴MP=DM,NP=NE,∴Rt△MBN的周长为:MB+NB+MN=MB+BN+NE+DM=BD+BE=4cm+4cm=8cm,故答案为:8cm.分析:连接OD、OE,求出∠ODB=∠DBE=∠OEB=90°,推出四边形ODBE是正方形,得出BD=BE=OD=OE=4cm,根据切线长定理得出MP=DM,NP=NE,代入MB+NB+MN得出BD+BE,求出即可.20.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是答案:14解析:解答:根据切线长定理,得AD=AE,BC=BE,所以梯形的周长是5×2+4=14,故答案为:14.分析:由切线长定理可知:AD=AE,BC=BE,因此梯形的周长=2AB+CD,已知了AB和⊙O的半径,由此可求出梯形的周长.三、计算题21.已知四边形ABCD外切于⊙O,四边形ABCD的面积为24,周长24,求⊙O的半径.答案:2解析:解答:设四边形ABCD是⊙O的外切四边形,切点分别为:F,G,M,E,连接FO,AO,OG,CO,OM,DO,OE,四边形ABCD的面积为:1 2×EO×AD+12OM×DC+12GO×BC+12FO×AB=12EO(AD+AB+BC+DC)=12EO×24=24,解得:EO=2.故r=2.分析:利用切线的性质进而利用三角形面积求法得出⊙O的半径.22.如图,AB为⊙O的直径,点C在AB的延长线上,CD、CE 分别与⊙O相切于点D、E,若AD=2,∠DAC=∠DCA,求CE.答案:2解析:解答:∵CD、CE分别与⊙O相切于点D、E,∴CD=CE,∵∠DAC=∠DCA,∴AD=CD,∴AD=CE,∵AD=2,∴CE=2.故答案为:2.分析:由条件可得AD=CD,再由切线长定理可得:CD=CE,所以AD=CE,问题得解.23.如图,已知PA、PB分别切⊙O于点A、B,∠P=90°,PA=3,求⊙O的半径.答案:3解析:解答:连接OA、OB,则OA=OB(⊙O的半径),∵PA、PB分别切⊙O于点A、B,∴PA=PB,∠OAP=∠OBP=90°,已知∠P=90°,∴∠AOB=90°,∴四边形APBO为正方形,∴OA=OB=PA=3,则⊙O的半径长是3,故答案为:3.分析:连接OA、OB,已知PA、PB分别切⊙O于点A、B,由切线的性质及切线长定理可得:PA=PB,∠OAP=∠OBP=90°,再由已知∠P=90°,所以得到四边形APBO为正方形,从而得⊙O 的半径长即PA的长.24.如图,P是⊙O的直径AB的延长线上一点,PC、PD切⊙O 于点C、D.若PA=6,⊙O的半径为2,求∠CPD.答案:60°解析:解答:∵PA=6,⊙O的半径为2,∴PB=PA-AB=6-4=2,∴OP=4,∵PC、PD切⊙O于点C、D.∴∠OPC=∠OPD,∴CO⊥PC,∴sin∠OPC=2: 4 =0.5 ,∴∠OPC=30°,∴∠CPD=60°,故答案为:60°.分析:根据切线的性质定理和切线长定理求出OP=4,∠OPC=∠OPD,再利用解直角三角形的知识求出∠OPC=30°,即可得出答案.25.如图,⊙O与△ABC中AB、AC的延长线及BC边相切,且∠ACB=90°,∠A,∠B,∠C所对的边长依次为3,4,5,求⊙O 的半径.答案:2解析:解答:连接OD、OE,∵⊙O与△ABC中AB、AC的延长线及BC边相切,∴AF=AD,BE=BF,CE=CD,OD⊥AD,OE⊥BC,∵∠ACB=90°,∴四边形ODCE是正方形,设OD=r,则CD=CE=r,∵BC=3,∴BE=BF=3-r,∵AB=5,AC=4,∴AF=AB+BF=5+3-r,AD=AC+CD=4+r,∴5+3-r=4+r,r=2,则⊙O的半径是2.故答案为:2.分析:先连接OD、OE根据⊙O与△ABC中AB、AC的延长线及BC边相切,得出AF=AD,BE=BF,CE=CD,再根据OD⊥AD,OE⊥BC,∠ACB=90°,得出四边形ODCE是正方形,最后设OD=r,列出5+3-r=4+r,求出r=2即可.美好的未来不是等待而是孜孜不倦的攀登!为自己加油。
人教版九年级数学上册切线的判定与性质测试题
第2课时切线的判定与性质1.过圆上一点可以作圆的______条切线;过圆外一点可以作圆的_____条切线;•过圆内一点的圆的切线______.2.以三角形一边为直径的圆恰好与另一边相切,则此三角形是_______.3.下列直线是圆的切线的是()A.与圆有公共点的直线 B.到圆心的距离等于半径的直线C.垂直于圆的半径的直线 D.过圆直径外端点的直线4.OA平分∠BOC,P是OA上任意一点(O除外),若以P为圆心的⊙P与OC相切,那么⊙P与OB的位置位置是() A.相交 B.相切 C.相离 D.相交或相切5.△ABC中,∠C=90°,AB=13,AC=12,以B为圆心,5为半径的圆与直线AC的位置关系是()A.相切 B.相交 C.相离 D.不能确定6.如图,AB是半径⊙O的直径,弦AC与AB成30°角,且AC=CD.(1)求证:CD是⊙O的切线;(2)若OA=2,求AC的长.7.如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是半圆O的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.8.如图,AB为⊙O的直径,弦CD⊥AB于点M,过点B作BE∥CD,交AC•的延长线于点E,连结BC.(1)求证:BE为⊙O的切线;(2)如果CD=6,tan∠BCD=12,求⊙O的直径.9.在直角坐标系中,⊙M的圆心坐标为M(a,0),半径为2,如果⊙M与y轴相离,那么a的取值范围是______.10.菱形的对角线相交于O,以O为圆心,以点O到菱形一边的距离为半径的⊙O•与菱形其它三边的位置关系是() A.相交 B.相离 C.相切 D.无法确定11.平面直角坐标系中,点A(3,4),以点A为圆心,5为半径的圆与直线y=-x的位置关系是()A.相离 B.相切 C.相交 D.以上都有可能12.如图,已知:△ABC内接于⊙O,点D在OC的延长线上,sin=12,∠D=30°.(1)求证:AD是⊙O的切线;(2)若AC=6,求AD的长.13.已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B•点,OC=BC,AC=12 OB.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.14.如图,P为⊙O外一点,PO交⊙O于C,过⊙O上一点A作弦AB⊥PO于E,若∠EAC=∠CAP,求证:PA是⊙O的切线.15.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA的延长线相交于点E,G是AD的中点,连结OG并延长与BE相交于点F,延长AF•与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是⊙O的切线;(3)若FG=BF,且⊙O的半径长为32,求BD和FG的长度.答案:1.1,2,不存在 2.直角三角形 3.B 4.B 5.A 6.(1)略(2)37.(1)略(2)928.(1)略(2)1529.a>2或a<-210.C 11.C 12.(1)略(2)3.(1)略(262 14.提示:连结OA,证OA⊥AP15.(1)略(2)略(3),FG=3专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图第8题图8.(2016·呼和浩特中考)如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________; (2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________; (3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6. 9.12 10.12 11.15 12.35 13.15 14.1315.解:(1)4 2或3(2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14; (2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16; (3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13; (2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 5 22 23 2 5 2 32 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。
初三数学线段长度练习题
初三数学线段长度练习题1. 已知平面直角坐标系中,点A(-3,2)和点B(4,-5)为一条线段的两个端点,请计算线段AB的长度。
解析:根据勾股定理,线段AB的长度可以通过以下公式来计算:AB = √[(x₂ - x₁)² + (y₂ - y₁)²]将点的坐标代入计算公式,可以得到:AB = √[(4 - (-3))² + (-5 - 2)²]= √[7² + (-7)²]= √[49 + 49]= √98≈ 9.899因此,线段AB的长度约为9.899。
2. 平面直角坐标系中,点C(-2,-2)和点D(2,3)为一条线段的两个端点,请问线段CD的长度是多少?解析:同样地,根据勾股定理,线段CD的长度可以通过以下公式来计算:CD = √[(x₂ - x₁)² + (y₂ - y₁)²]将点的坐标代入计算公式,可以得到:CD = √[(2 - (-2))² + (3 - (-2))²]= √[4² + 5²]= √[16 + 25]= √41≈ 6.403因此,线段CD的长度约为6.403。
3. 在平面直角坐标系中,点E(0,0)和点F(5,12)分别为一条线段的两个端点,请计算线段EF的长度。
解析:同样地,根据勾股定理,线段EF的长度可以通过以下公式来计算:EF = √[(x₂ - x₁)² + (y₂ - y₁)²]将点的坐标代入计算公式,可以得到:EF = √[(5 - 0)² + (12 - 0)²]= √[5² + 12²]= √[25 + 144]= √169= 13因此,线段EF的长度为13。
4. 平面直角坐标系中,点G(1,1)和点H(1,5)为一条线段的两个端点,请计算线段GH的长度。
解析:同样地,根据勾股定理,线段GH的长度可以通过以下公式来计算:GH = √[(x₂ - x₁)² + (y₂ - y₁)²]将点的坐标代入计算公式,可以得到:GH = √[(1 - 1)² + (5 - 1)²]= √[0² + 4²]= √[0 + 16]= √16= 4因此,线段GH的长度为4。
初三数学线段试卷
一、选择题(每题3分,共30分)1. 在线段AB上取点C,若AC:CB=2:3,则AC占AB的比值为:A. 1/5B. 2/5C. 3/5D. 4/52. 已知线段AB=6cm,CD=8cm,E是BC的中点,则BE的长度为:A. 2cmB. 4cmC. 5cmD. 6cm3. 在△ABC中,AB=8cm,BC=6cm,AC=10cm,则△ABC是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 梯形4. 若线段AB=10cm,点C在线段AB上,AC=4cm,则BC的长度可能是:A. 2cmB. 3cmC. 4cmD. 5cm5. 已知线段AB=12cm,点C在线段AB上,且AC:CB=3:2,则AB的长度是:A. 10cmB. 12cmC. 15cmD. 18cm6. 在△ABC中,AB=8cm,BC=6cm,AC=10cm,则△ABC的周长为:A. 24cmB. 25cmC. 26cmD. 27cm7. 若线段AB=10cm,点C在线段AB上,AC=5cm,则BC的长度可能是:A. 5cmB. 6cmC. 7cmD. 8cm8. 在△ABC中,AB=8cm,BC=6cm,AC=10cm,则△ABC的面积是:A. 24cm²B. 25cm²C. 26cm²D. 27cm²9. 若线段AB=12cm,点C在线段AB上,且AC:CB=2:1,则AB的长度是:A. 8cmB. 10cmC. 12cmD. 14cm10. 在△ABC中,AB=8cm,BC=6cm,AC=10cm,则△AB C的面积是:A. 24cm²B. 25cm²C. 26cm²D. 27cm²二、填空题(每题4分,共20分)11. 若线段AB=10cm,点C在线段AB上,且AC=6cm,则BC的长度为____cm。
12. 在△ABC中,AB=8cm,BC=6cm,AC=10cm,则△ABC的周长为____cm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的测试(3)
1.已知⊙O的半径为5,A为线段OP的中点,若OP=9,则点A在()
A.圆内B.圆上C.圆外D.不确定
2.若两圆的半径分别是1cm和5cm,圆心距为6cm,则这两圆的位置关系是()
A.内切B.相交C.外切D.外离
3.⊙O的半径为5,圆心O的坐标为(0 ,0),点P的坐标为(4 ,3),则点P ( )
A.在⊙O内B.在⊙O上C.在⊙O外D.可能在⊙O上或在⊙O外
4.Rt△ABC中,∠C=90°,∠AC=3cm,BC=4cm,给出下列三个结论:
①以点C为圆心1.3 cm长为半径的圆与AB相离;②以点C为圆心,2.4cm长为半径的圆与AB
相切;③以点C为圆心,2.5cm长为半径的圆与AB相交.上述结论中正确的个数是()A.0个B.l个C.2个D.3个
5.如图,⊙O的半径为2,直线PA、PB为⊙O的切线,A、B为切点,若PA⊥PB,则OP的长为()
A.B.4 C.D.2
6.如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=()A.130°B.100°C.50°D.65°
7.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠ACB=65°,则∠APB等于( ) A.65°B.50°C.45°D.40°
第5题第6题第7题
8.⊙O的半径为4,O到直线m的距离为3,则直线m与⊙O的位置关系为__________
9.三角形的内心是三角形三条____________的交点,它到三角形的________的距离相等
10.如图,⊙O是ΔABC的内切圆,D、E、F为切点,AB=4,AC=5,AD=1,则BC=_______________ 11.如图,PA切⊙O于点A,PO交⊙O于B点,PA=15,PB=9,则⊙O的半径为_______________
第10题第11题
12.已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB 上一点,⊙O过B、E两点, 交BD于点G,交AB于点F.
求证:AC 与⊙O 相切
13.如图,⊙O 的直径AB=6cm ,D 为⊙O 上一点,∠BAD=30°,过点D 的切线交AB •的延长线于点C .
求:(1)∠ADC 的度数;
(2)AC 的长.
14.已知:如图,PA ,PB ,DC 分别切⊙O 于A ,B ,E 点.
(1)若∠P=40°,求∠COD ;
(2)若PA=10cm ,求△PCD 的周长.
A。