北京市西城区2018届中考数学《二次函数》专项复习训练含答案

合集下载

中考数学复习《二次函数》专题训练-附带有参考答案

中考数学复习《二次函数》专题训练-附带有参考答案

中考数学复习《二次函数》专题训练-附带有参考答案一、选择题1.下列函数中,是二次函数的是()A.y=x2+1x B.y=12x(x-1) C.y=-2x-1 D.y=x(x2+1).2.抛物线y=(x−2)2−3的顶点坐标是()A.(2,−3)B.(−2,3)C.(2,3)D.(−2,−3)3.把抛物线y=5x2向左平移2个单位,再向上平移3个单位,得到的抛物线是()A.y=5(x−2)2+3B.y=5(x+2)2−3C.y=5(x+2)2+3D.y=5(x−2)2−34.函数y=ax2与y=﹣ax+b的图象可能是()A. B. C. D.5.函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0 C.k≤3且k≠0 D.k≤36.若A(−5,y1),B(1,y2),C(2,y3)为二次函数y=x2+2x+m的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y1<y27.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①b>0;②当x>0,y随着x 的增大而增大;③(a+c)2﹣b2<0;④a+b≥m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个8.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时,平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为()A.21元B.22元C.23元D.24元二、填空题9.将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为10.若抛物线y=ax2+bx+c与x轴的两个交点坐标是(-1,0),(3,0),则此抛物线的对称轴是直线.11.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.12.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数解析式是y=60t-65t2,从飞机着陆至停下来共滑行米.13.已知如图:抛物线y=ax2+bx+c与直线y=kx+n相交于点A(−52,74)、B(0,3)两点,则关于x的不等式ax2+bx+c<kx+n的解集是三、解答题14.如图,在平面直角坐标系中,一次函数y1=kx−7的图象与二次函数y2=2x2+bx+c的图象交于A(1,−5)、B(3,t)两点.(1)求y1与y2的函数关系式;(2)直接写出当y1<y2时,x的取值范围;(3)点C为一次函数y1图象上一点,点C的横坐标为n,若将点C向右平移2个单位,再向上平移4个单位后刚好落在二次函数y2的图象上,求n的值.15.某品牌服装公司新设计了一款服装,其成本价为60(元/件).在大规模上市前,为了摸清款式受欢迎状况以及日销售量y(件)与销售价格x(元/件)之间的关系,进行了市场调查,部分信息如表:销售价格x(元/件)80 90 100 110日销售量y(件)240 220 200 180(1)若y与x之间满足一次函数关系,请直接写出函数的解析式(不用写自变量x的取值范围);(2)若该公司想每天获利8000元,并尽可能让利给顾客,则应如何定价?(3)为了帮助贫困山区的小朋友,公司决定每卖出一件服装向希望小学捐款10元,该公司应该如何定价,才能使每天获利最大?(利润用w表示)16.如图,抛物线y=−x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线:l:y=−x−1与y轴交于点C,与抛物线y=−x2+bx+c的另一个交点为D(5,−6),已知P点为抛物线y=−x2+bx+c上一动.点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的动点,以NC为一边且顶点为N,C,M,P的四边形是平行四边形,直接写出所有符合条件的M点坐标.17.如图是北京冬奥会举办前张家口某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=−18x2+32x+32近似表示滑雪场地上的一座小山坡,某滑雪爱好者小张从点O正上方A点滑出,滑出后沿一段抛物线C2:y=−14x2+bx+c 运动.(1)当小张滑到离A处的水平距离为8米时,其滑行高度为10米,求出b,c的值;(2)在(1)的条件下,当小张滑出后离的水平距离为多少米时,他滑行高度与小山坡的竖直距离为是5米?2(3)若小张滑行到坡顶正上方,且与坡顶距离不低于4米,求b的取值范围.18.如图,在平面直角坐标系中,抛物线y=ax2+bx−4与x轴交于A(4,0)、B(−3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D 为顶点的四边形面积为S,求S与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.参考答案 1.B 2.A 3.C 4.B 5.D 6.B 7.B 8.B9.y =(x −1)2−1 10.x =1 11.a <5 12.75013.x <−52或x >014.(1)解:把点A(1,−5)代入y 1=kx −7得−5=k −7 ∴y 1=2x −7;把点B(3,t)代入y 1=2x −7中,得t =−1 ∴A(1,−5)把点A 、B 分别代入y 2=2x 2+bx +c 中,得{−2=2+b +c−1=18+3b +c 解得{b =−6c =−1∴y 2=2x 2−6x −1; (2)x <1或x >3(3)解:∵点C 为一次函数y 1图象上一点,∴C(n ,2n −7)将点C 向右平移2个单位,再向上平移4个单位后得到点C ′(n +2,2n −3) 把C ′代入y 2=2x 2−6x −1,得2n −3=2(n +2)2−6(n +2)−1 解得n =±1 所以n 的值为1或-1 15.(1)y=-2x+400(2)解:由题意,得:(x −60)(−2x +400)=8000解得x 1=100,x 2=160 ∵公司尽可能多让利给顾客 ∴应定价100元(3)解:由题意,得w =(x −60−10)(−2x +400)=−2x 2+540x −28000 =−2(x −135)2+8450∵−2<0∴当x =135时,w 有最大值,最大值为8450. 答:当一件衣服定为135元时,才能使每天获利最大. 16.(1)解:∵直线l :y =−x −1过点A∴A(−1,0)又∵D(5,−6)将点A ,D 的坐标代入抛物线表达式可得:{−1−b +c =0−25+5b +c =−6 解得{b =3c =4.∴抛物线的解析式为:y =−x 2+3x +4. (2)解:如图设点P(x ,−x 2+3x +4) ∵PE ∥x 轴,PF ∥y 轴则E(x 2−3x −5,−x 2+3x +4),F(x ,−x −1) ∵点P 在直线l 上方的抛物线上∴−1<x <5∴PE =|x −(x 2−3x −5)|=−x 2+4x +5,PF =|−x 2+3x +4−(−x −1)|=−x 2+4x +5 ∴PE +PF =2(−x 2+4x +5)=−2(x −2)2+18. ∴当x =2时,PE +PF 取得最大值,最大值为18.(3)符合条件的M 点有三个:M 1(4,−5),M 2(2+√14,−3−√14), M 3(2−√14,−3+√14). 17.(1)解:由题意可知抛物线C 2:y=−14x 2+bx+c 过点(0, 4)和(8, 10) 将其代入得:{4=c10=−14×82+8b +c解得 ∴b=114,c=4(2)解:由(1)可得抛物线Cq 解析式为: y=−14x 2+114x+4设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为52米,依题意得: −14m 2+114m +4−(−18m 2+32m +32)=52解得: m 1=10,m 2=0(舍)故运动员运动的水平距离为10米时,运动员与小山坡的竖直距离为为52米. (3)解:∵抛物线C 2经过点(0, 4) ∴c=4抛物线C 1: y=−18x 2+32x +32=−18(x −6)2+6 当x=6时,运动员到达坡项 即−14×62+6b+4≥4+6. ∴b ≥15618.(1)解:把A(4,0)、B(−3,0)代入y =ax 2+bx −4中 得{16a +4b −4=09a −3b −4=0解得{a =13b =−13∴这条抛物线所对应的函数表达式为y =13x 2−13x −4. (2)解:当x =0时y =−4∴C(0,−4)当−3<m <0时S =S △ODC +S △OAC =12×4×(−m)+12×4×4=−2m +8当0<m <4时S =S △ODC +S △OAD =12×4×m +12×4×(−13m 2+13m +4)=−23m 2+83m +8. (3)解:n =52,n =2511,n =3011.。

含参数的二次函数专题训练动态问题北京市中考数学题含答案解析

含参数的二次函数专题训练动态问题北京市中考数学题含答案解析

含参数的二次函数专题训练1.(2018·北京)在平面直角坐标系xOy 中,直线y=4x+4与x 轴、y 轴分别交于点A ,B ,抛物线y=ax 2 +bx −3a 经过点A ,将点B 向右平移5个单位长度,得到点C .(1)求点C 的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围.2.(2019·北京)在平面直角坐标系xOy 中,抛物线y =ax 2 +bx −a 1 与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示);(2)求抛物线的对称轴;(3)已知点P ⎪⎭⎫ ⎝⎛-a 1,21 ,Q (2,2),若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.含参数的二次函数专题训练答案解析1. 解: (1)∵直线y=4x+4与x 轴、y 轴交于点A ,B .∴A (−1,0),B (0,4),∴C (5,4).(2)抛物线y=ax 2+bx −3a 过A (−1,0),∴a −b −3a=0,b=−2a ,∴y=ax 2 −2ax −3a ,∴对称轴为直线x=1.(3)①当抛物线过点C 时,如答图①.25a −10a −3a=4,解得a=31 . ②当抛物线过点B 时,如答图②.−3a=4,解得a=34- . ③当抛物线顶点在BC 上时,如答图③.此时顶点为(1,4).∴a −2a −3a=4,解得a=−1.综上所述,a 的取值范围为a<34-或a ≥31 或a=−1.2.(2019·北京)在平面直角坐标系xOy 中,抛物线y =ax +bx − 与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示);(2)求抛物线的对称轴;(3)已知点P ,Q (2,2),若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.解: (1)将x =0代入y =ax 2 +bx −a 1,得y =−a1 , ∴点A 的坐标为(0,a1-) . ∴点B 的坐标为(2,a 1-) . (2)∵抛物线经过点A (0,a 1-) 和点B(2,a1-) , ∴抛物线的对称轴为直线x =1.(3)①当a >0时,a1- <0.根据抛物线的对称性,可知抛物线不能同时经过点A 和点P ,也不能同时经过点B 和点Q ,所以此时抛物线与线段PQ 没有交点;②当a <0时,a1- >0.根据抛物线的对称性,可知抛物线不能同时经过点A 和点P ;当点Q 在点B 上方或与点B 重合时,抛物线与线段PQ 恰有一个公共点,此时a 1-≤2,即a ≤21- . 综上可知,当a ≤21-时,抛物线与线段PQ 恰有一个公共点.。

中考数学一轮复习《二次函数》综合复习练习题(含答案)

中考数学一轮复习《二次函数》综合复习练习题(含答案)

中考数学一轮复习《二次函数》综合复习练习题(含答案)一、单选题1.二次函数223y x x =-+的一次项系数是( ) A .1B .2C .2-D .32.抛物线22(9)3y x =+-的顶点坐标是( ) A .(9,3)-B .(9,3)--C .(9,3)D .(9,3)-3.如图,一抛物线型拱桥,当拱顶到水面的距离为2m 时,水面宽度为4m .那么水位下降1m 时,水面的宽度为( )A 6mB .26mC .)64mD .()264m4.二次函数()225y x =+-的图象的顶点坐标是( ) A .2,5B .()2,5C .()2,5--D .()2,5-5.在平面直角坐标系xOy 中,点123(1)(2)(4)y y y -,,,,,在抛物线22y ax ax c =-+上,当0a >时,下列说法一定正确的是( ) A .若120y y <,则30y > B .若230y y >,则10y < C .若130y y <,则20y >D .若1230y y y =,则20y =6.抛物线221y x x =-+的顶点坐标是( ) A .(1,0)B .(-1,0)C .(1,2)D .(-1,2)7.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .()2323y x =++B .()2323y x =-+C .()2332y x =++D .()2332y x =-+8.小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为21(3)9y x k =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离.已知该同学出手点A 的坐标为16(0)9,,则实心球飞行的水平距离OB 的长度为( )A .7mB .7.5mC .8mD .8.5m9.关于抛物线2(1)y x =-,下列说法错误的是( ) A .开口向上B .当1x >时,y 随x 的增大而减小C .对称轴是直线1x =D .顶点()1,010.一次函数y x a =+与二次函数2y ax a =-在同一平面直角坐标系中的图象可能是( )A .B .C .D .11.如图,小明以抛物线为灵感,在平面直角坐标系中设计了一款高OD 为14的奖杯,杯体轴截面ABC 是抛物线2459y x =+的一部分,则杯口的口径AC 为( )A .7B .8C .9D .1012.下表中列出的是一个二次函致的自变量x 与函数y 的几组对应值:下列各选项中,正确的是( ) x … 2- 0 1 3 …y … 6- 4 6 4 …A .函数的图象开口向上B .函数的图象与x 轴无交点C .函数的最大值大于6D .当12x -≤≤时,对应函数y 的取值范围是36y ≤≤二、填空题13.已知函数221y mx mx =++在32x -上有最大值4,则常数m 的值为 __.14.二次函数2y ax bx c =++的图象如图所示.当0y >时,自变量x 的取值范围是 _____.15.某园艺公司准备围建一个矩形花圃,其中一边靠墙(墙长20米),另外三边用篱笆围成如图所示,所用的篱笆长为32米.请问当垂直于墙的一边的长为____米时,花圃的面积有最大值,最大值是____.16.如图是抛物线型拱桥,当拱顶高距离水面2m 时,水面宽4m ,如果水面上升1.5m ,则水面宽度为________.17.如图,某拱桥呈抛物线形状,桥的最大高度是16米,跨度是40米,在线段AB 上离中心M 处5米的地方,桥的高度是___________米.18.在平面直角坐标系中,抛物线2yx 的图象如图所示,已知A 点坐标()1,1,过点A 作1AA x ∥轴交抛物线于点1A ,过点1A 作12A A OA ∥交抛物线于点2A ,过点2A 作23A A x ∥轴交抛物线于点3A ,过点3A 作34A A OA ∥交抛物线于点4A ,…,依次进行下去,则点2022A 的坐标为______.19.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,如果水面下降0.5m ,那么水面宽度增加________m .20.如图,某单位的围墙由一段段形状相同的抛物线形栅栏组成,为了牢固,每段栅栏间隔0.2米设置一根立柱(即AB 间间隔0.2米的7根立柱)进行加固,若立柱EF 的长为0.28米,则拱高OC 为_____米三、解答题21.已知关于x 的方程2(23)0mx m x m +-+=有两个不相等的实数根,求m 的取值范围.22.已知关于x 的一元二次方程x 2+x −m =0.(1)设方程的两根分别是x 1,x 2,若满足x 1+x 2=x 1•x 2,求m 的值. (2)二次函数y =x 2+x −m 的部分图象如图所示,求m 的值.23.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售。

中考数学总复习《二次函数》专项提升练习题(附答案)

中考数学总复习《二次函数》专项提升练习题(附答案)

中考数学总复习《二次函数》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、单选题1.已知二次函数2281y x x =-+,当11x -≤≤时,函数y 的最小值是( )A .1B .5-C .6-D .7-2.把一抛物线向上平移3个单位,再向左平移1个单位得到的解析式为22y x =,则原抛物线的解析式为( ) A .()2213y x =-+B .()2213y x =++C .()2213y x =+-D .()2213y x =--3.新定义:若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:()1,3A 与()2,6B --,()0,0C 等都是“三倍点”.若二次函数2y x x c =--+的图像在31x -<<的范围内,至少存在一个“三倍点”,则c 的取值范围是( )A .45c -≤<B .43c -≤<-C .164c -≤<D .114c -≤< 4.如图为2y x bx c =++的图象,则( )A .0b > 0c <B .0b > 0c >C .0b < 0c >D .0b < 0c < 5.把抛物线22y x =-先向右平移6个单位长度,再向下平移2个单位长度后,所得函数的表达式为( )A .22(6)2y x =-++B .22(6)2y x =-+-C .22(6)2y x =--+D .22(6)2y x =---6.如图,抛物线2y ax c =-经过正方形OACB 的三个顶点A ,B ,C ,点C 在y 轴上,则ac 的值为( )A .1B .2C .3D .47.如图,菱形ABCD 的边长为3cm ,=60B ∠︒动点P 从点B 出发以3cm /s 的速度沿着边BC CD DA --运动,到达点A 后停止运动;同时动点Q 从点B 出发,以1cm/s 的速度沿着边BA 向A 点运动,到达点A 后停止运动.设点P 的运动时间为(s)x ,BPQ 的面积为()2cm y ,则y 关于x 的函数图象为( )A .B .B .C .D .8.已知在平面直角坐标系中,抛物线1C 的图象如图所示,对称轴为直线2x =-,将抛物线1C 向右平移2个单位长度得到抛物线2C :2y ax bx c =++ (a 、b 、c 为常数,且0a ≠),则代数式b c a +-与0的大小关系是( )A .0b c a +-<B .0b c a +-=C .0b c a +->D .不能确定二、填空题9.若关于x 的二次函数2321y x x m =-+-的值恒为正数,则m 的取值范围为 . 10.将抛物线2(1)2y x =++先向右平移3个单位,再向下平移4个单位,则所得抛物线的解析式为 .11.小华酷爱足球运动一次训练时,他将足球从地面向上踢出,足球距地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系为:2412h t t =-+,则足球距离地面的最大高度为 m .12.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,若水面下降1m ,则水面宽度增加 m .(结果可保留根号)13.如图,抛物线()20y ax bx c a =++≠的对称轴是直线2x =-,且抛物线与x 轴交于A ,B两点,若5OA OB =,则下列结论中:①0abc >;①()220a c b +->;①50a c +=;①若m 为任意实数,则224am bm b a ++≥,正确的是 .(填序号)三、解答题 14.已知抛物线23y ax bx =++交x 轴于()()1030A B ,,,两点 (1)求抛物线的函数表达式;(2)当x 取何值时,y 随x 的增大而减小.15.如图,抛物线214y x bx c =++过点()0,0O ,()10,0E 矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上.设动点B 坐标为(),0t .(1)求抛物线的函数表达式及顶点坐标;(2)当t 为何值时矩形ABCD 的周长有最大值?最大值是多少?16.“潼南柠檬”获评国家地理标志商标,被认定为全国名特优新农产品,柠檬即食片是其加工产品中非常受欢迎的一款零食.一家超市销售了净重500g 一袋的柠檬即食片,进价为每袋10元.销售过程中发现,如果以单价14元销售,那么一个月内可售出200袋.根据销售经验,提高销售单价会导致销售量减少,即销售单价每提高1元,每月销售量相应减少20袋.根据物价部门规定,这种柠檬即食片的销售单价不得低于进价且不得高于18元.(1)求每月销售量y (件)与销售单价x (元)之间的函数关系式;(2)设超市每月销售柠檬即食片获得离利润为w (元),当销售单价定为多少元时,每月可获得最大利润?最大利润是多少?(3)若超市想每月销售柠檬即食片所得利润w 稳定在900元,销售单价应定为多少元?17.如图,一名同学推铅球,铅球出手后行进过程中离地面的高度y (单位:m )与水平距离x (单位:m )近似满足函数关系212123y x x c =-++.已知铅球落地时的水平距离为10m .(1)求铅球出手后水平距离与这名同学相距多远时,铅球离地面最高?(2)在铅球出手后的行进过程中,当它离地面的高度为5m 3时,此时铅球的水平距离是多少?18.我市某企业安排20名工人生产甲、乙两种产品,根据生产经验,每人每天生产2件甲产品或1件乙产品(每人每天只能生产一种产品).甲产品生产成本为每件10元;若安排1人生产一件乙产品,则成本为38元,以后每增加1人,平均每件乙产品成本降低2元.规x x≥人生产乙产品.定甲产品每天至少生产20件.设每天安排()1(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品生产成本(元)甲10-乙x402x(2)为了增加利润,企业须降低成本,该企业如何安排工人生产才能使得每天的生产总成本最低?最低成本是多少?参考答案:1.B2.D3.A4.D5.D6.B7.D8.C9.43m > 10.2(2)2y x =--11.912.()264-13.③④/④③14.(1)243y x x =-+(2)当2x <,y 随x 的增大而减小15.(1)抛物线的函数表达式为21542y x x =-,顶点坐标为2554⎛⎫- ⎪⎝⎭,; (2)当1t =时,矩形ABCD 的周长有最大值,最大值为412.16.(1)()480201018y x x =-≤≤; (2)当销售单价定为17元时,每月可获得最大利润;每月获得最大利润为980元.(3)当销售单价定为15元时,每月获得利润可稳定在900元.17.(1)铅球出手后水平距离与这名同学相距3m 远时,铅球离地面最高为3m(2)此时铅球的水平距离为8m18.安排10名工人生产甲产品,10名工人生产乙产品才能使得每天的生产总成本最低,最低成本是400元。

北京2018年中考数学复习考题训练(13)二次函数与方程、不等式

北京2018年中考数学复习考题训练(13)二次函数与方程、不等式

考题训练(十三)二次函数与方程、不等式A组·真题演练[2017·北京]在平面直角坐标系xOy中,抛物线y=x2-4x+3与x轴交于点A、B(点A在点B的左侧),与y轴交于点C.(1)求直线BC的表达式;(2)垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),若x1<x2<x3,结合函数的图象,求x1+x2+x3的取值范围.B组·模拟训练[2016·顺义一模]在平面直角坐标系xOy中,抛物线y=ax2-2x的对称轴为直线x=-1.(1)求a的值及抛物线y=ax2-2x与x轴的交点坐标;(2)若抛物线y=ax2-2x+m与x轴有交点,且交点都在点A(-4,0),B(1,0)之间,求m的取值范围.图J13-1C组·自测训练一、选择题1.如图J13-2是二次函数y=-x2+2x+4的图象,则使y≤1成立的x的取值范围是()A.-1≤x≤3 B.x≤-1C.x≥1 D.x≤-1或x≥3J13-2J13-32.二次函数y =ax 2+bx 的图象如图J13-3,若一元二次方程ax 2+bx +m =0有实数根,则m 的最大值为( ) A .-3 B .3 C .-6 D .93.已知二次函数y =x 2-3x +m(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程x 2-3x +m =0的两个实数根是( )A .x 1=1,x 2=-1B .x 1=1,x 2=2C .x 1=1,x 2=0D .x 1=1,x 2=34.若函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点,那么m 的值为( )A .0B .0或2C .2或-2D .0,2或-25.已知二次函数y =ax 2+bx +c(a ≠0)的图象如图J13-4,且关于x 的一元二次方程ax 2+bx +c -m =0没有实数根,有下列结论:①b 2-4ac >0;②abc <0;③m >2.其中,正确结论的个数是( )图J13-4A .0B .1C .2D .3二、填空题6.如图J13-5,已知二次函数y =x 2+bx +c 的图象经过点A(-1,0),B(1,-2),该图象与x 轴的另一个交点为C ,则AC 的长为________.图J13-57.已知直线y =-2x +3与抛物线y =x 2相交于A ,B 两点,O 为坐标原点,那么△OAB 的面积等于________. 8.已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:则当y<5时,x三、解答题9.已知二次函数y=x2+bx+c的图象过点A(2,5),C(0,-3).(1)求此二次函数的解析式;(2)求该抛物线与x轴的交点坐标;(3)直接写出当-3≤x≤1时,y的取值范围.10.[2015·昌平期末]已知抛物线y=x2-(2m-1)x+m2-m.(1)求证:此抛物线与x轴必有两个不同的交点;(2)若此抛物线与直线y=x-3m+3的一个交点在y轴上,求m的值.11.[2017·门头沟二模]在平面直角坐标系xOy中,抛物线y=-x2+2mx-3+4m-m2的对称轴是直线x=1.(1)求抛物线的表达式;(2)点D(n,y1),E(3,y2)在抛物线上,若y1>y2,请直接写出n的取值范围;(3)设点M(p,q)为抛物线上的一个动点,当-1<p<2时,点M关于y轴的对称点形成的图象与直线y=kx-4(k≠0)有交点,求k的取值范围.12.[2016·怀柔一模]在平面直角坐标系中,二次函数y =x 2+mx +2m -7的图象经过点(1,0).(1)求抛物线的解析式;(2)把-4<x<1时的函数图象记为H ,求此时函数y 的取值范围;(3)在(2)的条件下,将图象H 在x 轴下方的部分沿x 轴翻折,图象H 的其余部分保持不变,得到一个新图象M.若直线y =x +b 与图象M 有三个公共点,求b 的取值范围.参考答案|真题演练|解:(1)由抛物线y =x 2-4x +3与x 轴交于点A ,B(点A 在点B 的左侧),令y =0,解得x 1=1,x 2=3, ∴点A ,B 的坐标分别为(1,0),(3,0),∵抛物线y =x 2-4x +3与y 轴交于点C ,令x =0, 得y =3,∴点C 的坐标为(0,3).设直线BC 的解析式为y =kx +b ,∴⎩⎨⎧3k +b =0,b =3,解得⎩⎨⎧k =-1,b =3,∴直线BC 的解析式为y =-x +3. (2)由y =x 2-4x +3=(x -2)2-1,∴抛物线的顶点坐标为(2,-1),对称轴为直线x =2, ∵y 1=y 2,∴x 1+x 2=4.把y =-1代入y =-x +3,得x =4.∵x 1<x 2<x 3,∴3<x 3<4,即7<x 1+x 2+x 3<8, ∴x 1+x 2+x 3的取值范围为:7<x 1+x 2+x 3<8.|模拟训练|解:(1)∵抛物线y =ax 2-2x 的对称轴为直线x =-1, ∴--22a=-1,解得a =-1,∴y =-x 2-2x.令y =0,则-x 2-2x =0,解得x 1=0,x 2=-2. ∴抛物线与x 轴的交点坐标为(0,0),(-2,0).(2)∵抛物线y =ax 2-2x 与抛物线y =ax 2-2x +m 的一次项系数、二次项系数相同,∴抛物线y =ax 2-2x +m 可以由抛物线y =ax 2-2x 上下平移得到. ∵抛物线y =-x 2-2x 的对称轴与x 轴的交点为(-1,0),抛物线y =-x 2-2x 与x 轴的交点(0,0),(-2,0)都在点A ,B 之间,且点B(1,0)比点A(-4,0)离对称轴x =-1近.∴把B(1,0)代入y =-x 2-2x +m 中,得m =3, 抛物线在x 轴负半轴的交点坐标为(-3,0).把(-1,0)代入y =-x 2-2x +m 中,得m =-1, 此时抛物线与x 轴只有一个交点为(-1,0).∴-1≤m<3. |自测训练| 1.D2.B [解析] ∵抛物线的开口向上,顶点的纵坐标为-3,∴a >0, -b 24a =-3,即b 2=12a.∵一元二次方程ax 2+bx +m =0有实数根,∴Δ=b 2-4am ≥0,即12a -4am ≥0,即12-4m ≥0,解得m ≤3,∴m 的最大值为3.故选B.3.B 4.D5.D [解析] ①∵二次函数y =ax 2+bx +c 的图象与x 轴有两个交点,∴b 2-4ac>0,故①正确;②∵抛物线的开口向下,∴a<0.∵抛物线与y 轴交于正半轴,∴c>0.∵对称轴方程x =-b2a >0,∴ab<0.∵a<0,∴b>0,∴abc<0,故②正确;③∵一元二次方程ax 2+bx +c -m =0没有实数根,∴抛物线y =ax 2+bx +c 和直线y =m 没有交点,由图可得m>2,故③正确.故选D.6.3 [解析] 由二次函数y =x 2+bx +c 的图象过点(-1,0),(1,-2),得⎩⎨⎧1-b +c =0,1+b +c =-2,解得⎩⎨⎧b =-1,c =-2,所以y =x 2-x -2.令x 2-x -2=0,解得x 1=-1,x 2=2,所以AC 的长为3.7.68.0<x <4 [解析] 由表可知,抛物线的对称轴为直线x =2,所以x =4时,y =5,所以y<5时,x 的取值范围为0<x<4.9.解:(1)∵函数y =x 2+bx +c 的图象过点A(2,5),C(0,-3),∴⎩⎨⎧5=4+2b +c ,-3=c ,解得⎩⎪⎨⎪⎧b =2,c =-3.∴二次函数的解析式为y =x 2+2x -3.(2)令y =0,则x 2+2x -3=0.∴(x +3)(x -1)=0. ∴x 1=-3,x 2=1.∴抛物线与x 轴的交点坐标为(-3,0),(1,0). (3)当x =-3或x =1时,y 最大值=0; 当x =-1时,y 最小值=-4.∴-4≤y ≤0.10.解:(1)证明:∵Δ=[-(2m -1)]2-4(m 2-m)=4m 2-4m +1-4m 2+4m =1>0, ∴此抛物线与x 轴必有两个不同的交点.(2)∵此抛物线与直线y =x -3m +3的一个交点在y 轴上, ∴m 2-m =-3m +3, ∴m 2+2m -3=0, ∴m 1=-3,m 2=1,∴m 的值为-3或1.11.解:(1)∵y =-x 2+2mx -m 2-3+4m =-(x -m)2+4m -3,抛物线的对称轴是直线x =1, ∴m =1,∴y =-x 2+2x.(2)-1<n <3.(3)设点M 关于y 轴的对称点为M′,由题意可得M′(-p ,q), ∴结合-1<p <2,确定动点M 及M′, 当x =-1时,y =-3;当x =2时,y =0.因为动点M 与M′关于y 轴对称,所以翻折后的函数表达式为y =-x 2-2x(-2<x<0),图象确定如图.当直线过点(1,-3)时,由-3=k·1-4得k =1;当直线过点(-2,0)时,由0=-2k -4得k =-2.综上所述:k>1或k<-2.12.解:(1)将(1,0)代入,得m =2.∴抛物线的解析式为y =x 2+2x -3.(2)抛物线y =x 2+2x -3开口向上,且在-4<x<1范围内有最低点, ∴当x =-1时,y 有最小值为-4. 当x =-4时,y =5.∴y 的取值范围是-4≤y<5.(3)当直线y =x +b 经过(-3,0)时,b =3. 变换后抛物线的解析式为y =-x 2-2x +3. 联立可得:-x 2-2x +3=x +b , 令判别式为零可得b =214.由图象可知,b 的取值范围是3<b<214.。

中考数学《二次函数》专项练习题-附带答案

中考数学《二次函数》专项练习题-附带答案

中考数学《二次函数》专项练习题-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列函数中,是二次函数的是()A.y=−8x B.y=8C.y=8x2D.y=8x−4x2.抛物线y=2x2﹣1的对称轴是()A.直线x=﹣1 B.直线x=1C.x轴D.y轴43.已知抛物线y=ax2(a≠0)的开口向下,则a的值可能为()A.-2 B.1C.1 D.√244.设函数y1=−(x−a1)2,y2=−(x−a2)2直线x=1的图象与函数y1,y2的图象分别交于点A(1,c1),B(1,c2)得()A.若1<a1<a2,则c1<c2B.若a1<1<a2,则c1<c2C.若a1<a2<1,则c1<c2D.若a1<a2<1,则c2<c15.若点M(0,5),N(2,5)在抛物线y=2(x−m)2+3上,则m的值为()A.2 B.1 C.0 D.-16.二次函数y=ax2+bx+c的图像经过点(−5,0),(3,0)则关于x的方程ax2+bx+c=0的根是()A.x1=0,x2=3B.x1=−5,x2=0C.x1=5,x2=−3D.x1=−5,x2=37.如图,抛物线y=ax2+bx+c的对称轴为直线x=1,经过点(3,0)下列结论:①abc>0;②b2−4ac>0;③3a+c=0;④抛物线经过点(−3,y1)和(4,y2),则y1>y2;⑤am2−b≤a−bm (m为任意实数).其中,正确结论的个数是()A.1 B.2 C.3 D.48.如图1,校运动会上,初一的同学们进行了投实心球比赛.我们发现,实心球在空中飞行的轨迹可以近似看作是抛物线.如图2建立平面直角坐标系,已知实心球运动的高度y(m)与水平距离x(m)之间的函数关系是y=−112x2+23x+53,则该同学此次投掷实心球的成绩是()A.2m B.6m C.8m D.10m二、填空题9.抛物线y=2(x+1)2+2的顶点坐标是.10.已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m的值为.11.把抛物线y=12x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为.12.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx=m有实数根,则m的最小值为13.某景点的“喷水巨龙”口中C处的水流呈抛物线形,该水流喷出的高度y(m)与水平距离x(m)之间的有关系如图所示,D为该水流的最高点DA⊥OB,垂足为A.已知OC=OB=8m,OA=2m则该水流距水平面的最大高度AD的为m.三、解答题14.已知二次函数y=−2x2+bx+c的图像经过A(−1,0),B(3,0)求抛物线的解析式15.将二次函数y=2x2+4x−1的解析式化为y=a(x+m)2+k的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.16.已知二次函数y=x2+bx+c经过(0,−2)和(1,−2).(1)求该二次函数的表达式和对称轴.(2)当−1≤x≤3时,求该二次函数的最大值和最小值.17.如图,二次函数y=x2+bx+c的图象与x轴分别交于点A,B(4,0)(点A在点B 的左侧),且经过点(−3,7),与y轴交于点C .(1)求b,c的值.(2)将线段OB平移,平移后对应点O′和B′都落在拋物线上,求点B′的坐标. 18.某某商店销售一种销售成本为 40 元/件的商品,销售一段时间后发现,每天的销量 y(件)与当天的销售单价 x (元/件)满足一次函数关系,并且当 x =20 时,y=1000,当 x =25 时,y=950.(1)求出y与x的函数关系式,并写出自变量的取值范围;(2)求出每件售价多少元时,商店销售该商品每天能获得最大利润,最大利润是多少元;(3)如果该商店要使每天的销售利润不低于 13750 元,且每天的总成本不超过 20000 元,那么销售单价应控制在什么范围内?参考答案1.C2.D3.A4.C5.B6.D7.C8.D9.(-1,2)10.1或﹣4511.y =12(x +1)2−212.-313.914.解:把(-1,0)、(3,0)代入y =−2x 2+bx +c 中得{−2−b +c =0−18+3b +c =0解得{b =4c =6∴二次函数的解析式为y =−2x 2+4x +6.15.解:y =2(x 2+2x)−1y =2(x 2+2x +1)−2−1y =2(x +1)2−3∴开口方向:向上,顶点坐标:(-1,-3),对称轴:直线x =−1.16.(1)解:将点(0,-2)与(1,-2)分别代入y=x 2+bx+c得{c =−21+b +c =−2解得:{b =−1c =−2所以所求的函数解析式为:y=x 2-x-2对称轴直线为:x =−b 2a =−−12=12;(2)解:∵函数y=x 2-x-2 中,二次项系数为1>0,对称轴直线是x=12 ∴抛物线的开口向上,当x=12时,函数有最小值y= −94又-1≤x ≤3,故当x=3时,有最大值y=4∴当-1≤x ≤3时,函数的最大值是4,最小值是−94.17.(1)解:将点 B(4,0) 、 (−3,7) 代入二次函数解析式 y =x 2+bx +c 得 {16+4b +c =09−3b +c =7解得 {b =−2c =−8; (2)解:由(1)得二次函数的解析式为 y =x 2−2x −8 ,由题意可得 OB =4 设平移后点 O ′ 和 B ′ 的坐标分别为 (x 1,m) , (x 2,m) 则 x 1,x 2 为一元二次方程 x 2−2x −8=m 的两个根( x 1<x 2 ),且 x 2−x 1=4∴x 2−2x −8−m =0由根与系数的关系可得: x 2+x 1=2 x 1x 2=−8−m∴{x 2+x 1=2x 2−x 1=4解得 {x 1=−1x 2=3∴x 1x 2=−1×3=−8−m∴m =5∴B ′(3,−5) .18.(1)解:设y 与x 的函数关系式为y =kx +b∵当x =20时y =1000,当x =25时∴{20k +b =100025k +b =950解得{k =−10b =120∴y 与x 的函数关系式为y =−10x +1200(40≤x ≤120);(2)解:设销售利润为w 元,则w =(x −40)(−10x +1200)=−10x 2+1600x −48000=−10(x −80)2+16000∵a =−10<0∴抛物线开口向下∴当x =80时答:当每件售价80元时,商店销售该商品每天可获得最大利润,最大利润是16000元.(3)解:当w=13750时解得:x1=65∵a=−10<0,抛物线开口向下∴w≥13750时的解集为:65≤x≤95又∵每天的总成本不超过20000元∴40(−10x+1200)≤20000解得:x≥70∴70≤x≤95答:销售单价应控制在70元至95元之间.。

中考数学总复习《二次函数》专项测试卷-附参考答案

中考数学总复习《二次函数》专项测试卷-附参考答案

中考数学总复习《二次函数》专项测试卷-附参考答案学校:___________姓名:___________班级:___________考号:___________一、单选题(共12题;共24分)1.二次函数y=﹣x2+2x﹣4,当﹣1<x<2时,y的取值范围是()A.﹣7<y<﹣4B.﹣7<y≤﹣3C.﹣7≤y<﹣3D.﹣4<y≤﹣3 2.已知二次函数y=3(x−2)2+ℎ,当自变量x分别取-2,2,5时,对应的值分别为y1,y2和y 3则y1,y2和y3的大小关系正确的是()A.y3<y2<y1B.y1<y2<y3C.y2<y3<y1D.y3<y1<y23.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数ℎ=3.5t−4.9t2(的单位:秒,h的单位:米)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是()A.0.71B.0.70C.0.63D.0.364.对于二次函数y=−14(x+2)2−1,下列说法正确的是()A.当x>−2时,y随x的增大而增大B.当x=−2时,y有最大值−1C.图象的顶点坐标为(2,−1)D.图象与x轴有两个交点5.抛物线y=2x2−12x+22的顶点是()A.(3,−4)B.(−3,4)C.(3,4)D.(2,4)6.如图,二次函数y=ax2+bx+c(a≠0)的图像的顶点在第一象限,且过点(0,1)和(-1,0)下列结论:①ab<0,②b2-4ac>0,③a-b+c<0,④c=1,⑤当x>-1时,y>0.其中正确结论的个数是()A.2个B.3个C.4个D.5个7.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(3,y2)是抛物线上两点,则y1<y2,其中说法正确的是()A.①②B.②③C.①②④D.②③④8.关于二次函数y=-(x -2)2+3,以下说法正确的是()A.当x>-2时,y随x增大而减小B.当x>-2时,y随x增大而增大C.当x>2时,y随x增大而减小D.当x>2时,y随x增大而增大9.如图,双曲线y= k x经过抛物线y=ax2+bx(a≠0)的顶点(﹣1,m)(m>0),则下列结论中,正确的是()A.a+b=k B.2a+b=0C.b<k<0D.k<a<010.如图,抛物线y=ax2+bx+c交x轴于(−1,0),(3,0)两点,则下列判断中,不正确的是()A.图象的对称轴是直线x=1B.当x>2时,y随x的增大而减小C .当−1<x <1时D .一元二次方程ax 2+bx +c =0的两个根是−1和311.已知点(x 1,y 1),(x 2,y 2)(x 1<x 2)在y =−x 2+2x +m 的图象上,下列说法错误的是( )A .当m >0时,二次函数y =−x 2+2x +m 与x 轴总有两个交点B .若x 2=2,且y 1>y 2,则0<x 1<2C .若x 1+x 2>2,则y 1>y 2D .当−1≤x ≤2时,y 的取值范围为m −3≤y ≤m12.从底面竖直向上抛出一小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的关系式是:h =30t ﹣5t 2这个函数图象如图所示,则小球从第3s 到第5s 的运动路径长为( )A .15mB .20mC .25mD .30m二、填空题(共6题;共6分)13.在二次函数 y =−x 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:则m 、n 的大小关系为 m n .(填“<”,“=”或“>”)14.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是 .(只需写一个)15.二次函数 y =ax 2+bx +c 的图象与 x 轴相交于 (−1, 0) 和 (5, 0) 两点,则该抛物线的对称轴是 .16.函数y= {x 2+2x −3(x <0)x 2−4x −3(x ≥0) 的图象与直线y=﹣x+n 只有两个不同的公共点,则n 的取值为 .17.已知二次函数y =﹣x 2+2mx+1,当﹣2≤x≤1时最大值为4,则m 的值为 . 18.若函数y=(m ﹣2)x m 2−2+3是二次函数,则m=三、综合题(共6题;共70分)19.已知抛物线 y =a(x −4)2+2 经过点 (2,−2) .(1)求a 的值;(2)若点A(m,y1),B(n,y2)(m<n<4)都在该抛物线上,试比较y1与y2的大小.20.宁波地区最近雾霾天气频繁,使得空气净化器得以畅销,某商场代理销售某种空气净化器,其进价是500元/台,经过市场销售后发现,在一个月内,当售价是1000元/台时,可售出50台,且售价每降低20元,就可多售出5台.若供货商规定这种空气净化器售价不能低于600元/台,代理销售商每月要完成不低于60台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?21.某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?22.如图,是一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m 的景观灯,把拱桥的截面图放在平面直角坐标系中。

2018版中考数学:3.3-二次函数(含答案)

2018版中考数学:3.3-二次函数(含答案)

§3.3二次函数一、选择题1.(原创题)函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是() A.k<3 B.k<3且k≠0C.k≤3且k≠0 D.k≤3解析当k=0时,y=-6x+3的图象与x轴有交点;当k≠0时,令y=kx2-6x+3=0,∵y=kx2-6x+3的图象与x轴有交点,∴Δ=36-12k≥0,∴k≤3.综上,k的取值范围为k≤3.答案 D2.(原创题)抛物线y=a(x+1)(x-3)(a≠0)的对称轴是直线() A.x=1 B.x=-1C.x=-3 D.x=3解析∵-1,3是方程a(x+1)(x-3)=0的两根,∴抛物线y=a(x+1)(x-3)与x轴交点横坐标是-1,3.∵这两个点关于对称轴对称,∴对称轴是x=-1+32=1.答案 A3.(原创题)已知抛物线y=x2-x-2与x轴的一个交点为(m,0),则代数式m2-m+2 013的值为() A.2 013 B.2 014C.2 015 D.2 016解析把(m,0)代入y=x2-x-2,得m2-m-2=0,即m2-m=2.∴m2-m +2 013=2+2 013=2 015.故选C.答案 C4.(改编题)如图是二次函数y =ax 2+bx +c 的部分图象,由图象可知不等式ax 2+bx +c >0的解集是( ) A .-1<x <5 B .x >5 C .x <-1且x >5D .x <-1或x >5解析 由图象可知,抛物线与x 轴的一个交点为(5,0),对称轴是x =2,根据抛物线的对称性可知抛物线与x 轴的另一个交点的坐标为(-1,0).由图象看出当-1<x <5时,函数图象在x 轴上方,所以不等式ax 2+bx +c >0的解集是-1<x <5.故选A. 答案 A5.(改编题)已知A (2,y 1),B (3,y 2),C (0,y 3)在二次函数y =ax 2+c (a >0)的图象上,则y 1,y 2,y 3的大小关系正确的是( )A .y 3<y 2<y 1B .y 1<y 2<y 3C .y 2<y 1<y 3D. y 3<y 1<y 2解析 由题意可知,当x ≥0时,y 随x 的增大而增大.∵0<2<3,∴y 3<y 1<y 2. 答案 D 二、填空题6.(原创题)若二次函数y =x 2-2x +c 有最小值6,则c 的值为________. 解析 ∵y =x 2-2x +c =(x -1)2-1+c ,∴-1+c =6,解得c =7. 答案 77.(原创题)已知抛物线y =-x 2-2x +3与x 轴的两个交点的横坐标分别是m ,n ,则m 2n +mn 2=________.解析 由题意,得m ,n 是-x 2-2x +3=0的两个不相等的实数根,由根与系数的关系得m +n =-2,mn =-3.∴m 2n +mn 2=mn (m +n )=-3×(-2)=6. 答案 68. (原创题)已知二次函数y =-23x 2-43x +2的图象与x 轴分别交于A ,B 两点(如图所示),与y 轴交于点C ,点P 是其对称轴上一动点,当PB +PC 取得最小值时,点P 的坐标为________.解析 连结AC 交对称轴于P ,则此时PB +PC 有最小值.把x =0代入y = -23x 2-43x +2,得y =2,即OC =2.把y =0代入y =-23x 2-43x +2,得x 1=1,x 2=-3,即OA =3,OB =1.∵y =-23x 2-43x +2=-23(x +1)2+83,∴抛物线的对称轴是x =-1.设对称轴与x 轴的交点为D ,则OD =1.由△ADP ∽△AOC 可得23=DP 2,解得DP =43.∴点P 的坐标为⎝ ⎛⎭⎪⎫-1,43.答案 ⎝ ⎛⎭⎪⎫-1,43三、解答题9.(原创题)如图,抛物线y =x 2+bx +c 过点A (3,0),B (1,0),交y 轴于点C ,点P 是该抛物线上一动点,点P 从C 点沿抛物线向A 点运动(点P 不与A 重合),过点P 作PD ∥y 轴交直线AC 于点D .(1)求抛物线的解析式;(2)求点P 在运动的过程中线段PD 长度的最大值;(3)△APD 能否构成直角三角形?若能请直接写出点P 坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M 使|MA -MC |最大?若存在,请求出点M 的坐标,若不存在请说明理由.解 (1)把点A (3,0)和点B (1,0)代入抛物线y =x 2+bx +c , 得:⎩⎨⎧9+3b +c =0,1+b +c =0,解得⎩⎨⎧b =-4,c =3.∴y =x 2-4x +3.(2)把x =0代入y =x 2-4x +3,得y =3.∴C (0,3). 又∵A (3,0),设直线AC 的解析式为:y =kx +m ,把点A ,C 的坐标代入得:⎩⎨⎧m =3,k =-1.∴直线AC 的解析式为:y =-x +3. PD =-x +3-(x 2-4x +3) =-x 2+3x =-⎝ ⎛⎭⎪⎫x -322+94.∵0<x <3,∴x =32时,PD 最大为94.即点P 在运动的过程中,线段PD 长度的最大值为94. (3)∵PD 与y 轴平行,且点A 在x 轴上,∴要使△APD 为直角三角形,只有当点P 运动到点B 时,此时点P 的坐标为:(1,0).(4)∵点A ,B 关于抛物线的对称轴对称,∴作直线CB ,交抛物线的对称轴于点M ,则此时点M 即为使得|MA -MC |最大的点,∴|MA -MC |=|MC -MB |=BC . ∵B (1,0),C (0,3),∴设BC 的解析式为y =k ′x +n ,则⎩⎨⎧k ′+n =0,n =3.∴⎩⎨⎧k ′=-3,n =3.即y =-3x +3.当x =2时,y =-3.∴M (2,-3).。

2018年中考数学精选题专练二次函数(含答案)

2018年中考数学精选题专练二次函数(含答案)

① 该抛物 线的对称轴 在 y 轴 左侧; ② 关 于 x 的 方 程 ax 2+bx+c+2=0 无 实 数 根 ;
③ a﹣ b+c ≥ 0 ;
④ a b c 的 最 小 值 为 3. ba
其 中,正 确结论的个 数为( )
A. 1 个
B. 2 个
C. 3 个
D. 4 个
2
16. 已知关于 x 的函数 y=( m- 1)x + 2x +m图像与坐标轴有且只有 2 个交点,则 m=
2
2
( 2) W=(x﹣ 30)(﹣ 2x+200 )﹣ 450=﹣2x +260x﹣ 6450=﹣2( x﹣ 65) +2000;
( 3) W=﹣2( x ﹣ 65)2+2000,
∵ 30≤ x≤60,∴ x=60 时, w 有最大值为 1950 元,
∴当销售单价为 60 元时,该公司日获利最大,为 1950 元.
200 元.
18.(1)M(12,0),P(6,6);(2)y=
19.y=
2 x2-
8 35
x+
999
1 x 2+2x.(3) 当 m=3时,最大为 15 米 . 6
20. 解:( 1)设 y=kx+b ,根据题意得 60k+b=80,50k+b=100 ,解得: k=﹣ 2, b=200,
∴ y= ﹣ 2x+200( 30≤x≤ 60);
则这个“支撑架”总长的最大值是多少米?
19. 已知二次函数的图象的对称轴为 数图象的关系式。
x=2, 函数的最小值为 3, 且图象经过点 (- 1,5), 求此二次函
20. 市化工材料经销公司购进一种化工原料若干千克,价格为每千克

中考数学专项复习《二次函数》练习题(附答案)

中考数学专项复习《二次函数》练习题(附答案)

中考数学专项复习《二次函数》练习题(附答案)一、单选题1.周长是4m的矩形,它的面积S(m2)与一边长x(m)的函数图象大致是() A.B.C.D.2.边长为1的正方形OABC的顶点A在x轴正半轴上,点C在y轴正半轴上,将正方形OABC绕顶点O顺时针旋转75°,如图所示,点B恰好落在函数y=ax2(a< 0)的图象上,则a的值为()A.−√2B.-1C.−3√24D.−√233.图中是有相同最小值的两条抛物线,则下列关系中正确的是()A.k<n B.h=m C.k+n=0D.h<0,m>04.在平面直角坐标系中二次函数y1=﹣x2+4x 和一次函数y2=2x 的图象如图所示,那么不等式﹣x2+4x>2x 的解集是()A.x<0B.0<x<4C.0<x<2D.2<x<45.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.对称轴是x=﹣1D.有最大值是26.已知抛物线y=x2+2x上三点A(﹣5,y1),B(2.5,y2),C(12,y3),则y1,y2,y3满足的关系式为()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2A.16B.15C.14D.13 8.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.9.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>0;④4a﹣2b+c>0.其中正确结论的个数是()A.1B.2C.3D.4 10.将抛物线y=x2向右平移1个单位长度,再向下平移3个单位长度,所得到的抛物线为()A.y=(x+1)2+3B.y=(x+1)2−3C.y=(x−1)2+3D.y=(x−1)2−311.已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2;⑤2a﹣b<c.其中正确的结论有()A.1个B.2个C.3个D.4个12.已知抛物线y=x2﹣2bx+4的顶点在x轴上,则b的值一定是()A.1B.2C.﹣2D.2或﹣2二、填空题13.如图,甲,乙两个转盘分别被三等分、四等分,各转动一次,停止转动后,将指针指向的数字分别记为a,b,使抛物线y=ax2−2x+b与x轴有公共点的概率为.14.将抛物线y=﹣x2+1向右平移2个单位长度,再向上平移3个单位长度所得的抛物线解析式为.15.若抛物线y=2(x−3)2−8与x轴的两个交点分别为点A和点B,则线段AB的长为.16.已知抛物线y=x2﹣x﹣1与x轴的一个交点的横坐标为m,则代数式m2﹣m+2016的值为.17.将抛物线y=x2向右平移2个单位,再向上平移3个单位,所得抛物线的表达式为.18.一个二次函数的图象顶点坐标为(2,1),形状与抛物线y=﹣2x2相同,试写出这个函数解析式三、综合题19.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE=3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y 与x之间的函数关系式,并写出自变量x的取值范围.20.已知二次函数的图象以A(−1,4)为顶点,且过点B(2,−5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;21.已知拋物线y=x2+bx+c经过点(−1,8)和(2,−7).(1)试确定b,c的值.(2)直接写出x满足什么条件时y随x的增大而减小.22.已知抛物线y=ax2+bx+5(a为常数,a≠0)交x轴于点A(-1,0)和点B(5,0),交y轴于点C.(1)求点C的坐标和抛物线的解析式;(2)若点P是抛物线上一点,且PB=PC,求点P的坐标;(3)点Q是抛物线的对称轴l上一点,当QA+QC最小时求点Q的坐标.23.在平面直角坐标系xOy中抛物线y=x2﹣2mx+m2﹣1与y轴交于点C.(1)试用含m的代数式表示抛物线的顶点坐标;(2)将抛物线y=x2﹣2mx+m2﹣1沿直线y=﹣1翻折,得到的新抛物线与y轴交于点D,若m>0,CD=8,求m的值.(3)已知A(﹣k+4,1),B(1,k﹣2),在(2)的条件下,当线段AB与抛物线y=x2﹣2mx+m2﹣1只有一个公共点时请求出k的取值范围.24.如图,平面直角坐标系中以点C(2,√3)为圆心,以2为半径的圆与x轴交于A,B两点.(1)求A,B两点的坐标;(2)若二次函数y=x2+bx+c的图象经过点A,B,试确定此二次函数的解析式.参考答案1.【答案】D2.【答案】D3.【答案】D4.【答案】C5.【答案】B6.【答案】C7.【答案】B8.【答案】C9.【答案】B10.【答案】D11.【答案】C12.【答案】D13.【答案】11214.【答案】y=﹣(x﹣2)2+415.【答案】416.【答案】201717.【答案】y=(x−2)2+318.【答案】y=﹣2(x﹣2)2+1或y=2(x﹣2)2+119.【答案】(1)证明:∵矩形MEFN与矩形EBCF面积相等∴ME=BE,MG=GN.∵四块矩形花圃的面积相等,即S矩形AMND=2S矩形MEFN∴AM=2ME∴AE=3BE;(2)解:∵篱笆总长为100m∴2AB+GH+3BC=100即2AB+12AB+3BC=100∴AB=40−65BC.设BC的长度为xm,矩形区域ABCD的面积为ym2则y=BC⋅AB=x(40−65x)=−65x2+40x∵AB =40−65BC∴B E =10﹣ 310x >0解得x < 1003∴y =65x 2+40x (0<x < 1003 ). 20.【答案】(1)解:由顶点A (−1,4),可设二次函数关系式为y =a (x +1)2+4(a≠0).∵二次函数的图象过点B (2,−5) ∴点B (2,−5)满足二次函数关系式 ∴−5=a (2+1)2+4 解得a =−1.∴二次函数的关系式是y =−(x +1)2+4; (2)解:令x =0,则y =−(0+1)2+4=3 ∴图象与y 轴的交点坐标为(0,3); 令y =0,则0=−(x +1)2+4 解得x 1=−3,x 2=1故图象与x 轴的交点坐标是(−3,0)、(1,0).答:图象与y 轴的交点坐标为(0,3),与x 轴的交点坐标是(−3,0)、(1,0).21.【答案】(1)解:∵抛物线y =x 2+bx +c 经过点(−1,8)和(2,−7)∴{1−b +c =84+2b +c =−7解得{b =−6c =1;(2)解:由(1)可知,抛物线y =x 2−6x −1开口向上,对称轴为直线x =−−62×1=3 故在对称轴左侧,即当x <3时y 随x 的增大而减小.22.【答案】(1)解:对于y =ax 2+bx +5,当x =0时y =5∴C(0,5)∵抛物线y =ax 2+bx +5(a 为常数,a ≠0)交x 轴于点A(−1,0)和点B(5,0)∴{a −b +5=025a +5b +5=0解得{a =−1b =4∴抛物线的解析式为y =−x 2+4x +5;(2)解:∵B(5,0) C(0,5)∴OB =OC连接BC ,设BC 的中点为D∴D(52,52)∴直线OD 的解析式为y =x∵PB =PC∴点P 在直线OD 上 设P(m ,m)∵点P 是抛物线上一点∴m =−m 2+4m +5解得m =3±√292∴点P 的坐标为(3+√292,3+√292)或(3−√292,3−√292);(3)解:由(1)知,抛物线的对称轴为直线x =2 ∵点A 与点B 关于l 对称,点Q 在直线l 上 ∴QA =QB QA +QC =QB +QC∴当B ,C ,Q 三点共线时QB +QC 最小,即QA +QC 最小 设直线BC 的解析式为y =kx +b∴{b =55k +b =5解得{k =−1b =5∴直线BC 的解析式为y =−x +5 把x =2代入y =−x +5得,y =3∴Q(2,3)∴当QA +QC 最小时求点Q 的坐标(2,3).23.【答案】(1)解:∵y =x 2﹣2mx+m 2﹣1=(x ﹣m )2﹣1∴抛物线的顶点坐标为(m ,﹣1)(2)解:由对称性可知,点C 到直线y =﹣1的距离为4 ∴OC =3 ∴m 2﹣1=3 ∵m >0 ∴m =2(3)解:∵m =2,∴抛物线为y =x 2﹣4x+3,当抛物线经过点A (﹣k+4,1)时k =2+ √2 或k =2﹣ √2 ;当抛物线经过点B (1,k ﹣2)时k =2;∵线段AB 与抛物线y =x 2﹣2mx+m 2﹣1只有一个公共点,则x 2-4x+3=x+k-3∴即x 2-5x+6-k=0的△=0∴25-4(6-k )=0k=-0.25∵线段AB 与抛物线y =x 2﹣2mx+m 2﹣1只有一个公共点∴2﹣ √2 <k <2或k≥2+ √2 或k=-0.25.24.【答案】(1)解:过点C 作CM△x 轴于点M ,则MA=MB ,连结AC ,如图∵点C 的坐标为(2, √3 ) ∴OM=2 CM= √3 在Rt△ACM 中CA=2 ∴AM= √AC 2−CM 2 =1∴OA=OM ﹣AM=1 OB=OM+BM=3 ∴A 点坐标为(1,0),B 点坐标为(3,0);(2)解:将A (1,0),B (3,0)代入y=x 2+bx+c 得 {1+b +c =09+3b +c =0解得 {b =−4c =3.所以二次函数的解析式为y=x 2﹣4x+3.。

中考数学《二次函数》专题训练及答案

中考数学《二次函数》专题训练及答案

中考数学《二次函数》专题训练及答案一、单选题1.已知二次函数y=ax2+bx+c的图象经过原点和第一、二、三象限,则()A.a>0,b>0,c>0B.a<0,b<0,c=0C.a<0,b<0,c>0D.a>0,b>0,c=02.把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6B.y=﹣2(x﹣1)2﹣6C.y=﹣2(x+1)2+6D.y=﹣2(x+1)2﹣63.将抛物线y=x2﹣4x+1向左平移至顶点落在y轴上,如图所示,则两条抛物线直线y=﹣3和x轴围成的图形的面积S(图中阴影部分)是()A.5B.6C.7D.84.从地面竖直向上抛出一小球,小球的高度y米与小球运动的时间x秒之间的关系式为y=ax2+ bx+c(a≠0).若小球在第7秒与第14秒时的高度相同,则在下列时间中小球所在高度最高的是( )A.第8秒B.第10秒C.第12秒D.第15秒5.如图,是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③若点B(﹣52,y1)、C(﹣12,y2)为函数图象上的两点,则y1<y2;④a+b+c>0,其中正确结论是()A.①③B.②③C.①④D.②④6.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=﹣1,与x轴的一个交点为(1,0),与y轴的交点为(0,3),则方程ax2+bx+c=0(a≠0)的解为()A .x=1B .x=﹣1C .x 1=1,x 2=﹣3D .x 1=1,x 2=﹣47.西宁中心广场有各种音乐喷泉,其中一个喷水管喷水的最大高度为3米,此时距喷水管的水平距离为12米,在如图所示的坐标系中,这个喷泉的函数关系式是( )A .y =-(x -12)2+3B .y =-3(x+12)2+3C .y =-12(x-12)2+3D .y =-12(x+12)2+38.若y=(2﹣m )x m2−2是二次函数,则m 的值为( )A .2B .-2C .2或﹣2D .09.同一坐标平面内,图象不可能由函数y=2x 2+1的图象通过平移变换、轴对称变换和旋转变换得到的函数是( )A .y =12x 2−1B .y=2x 2+3C .y=-2x 2-1D .y=2(x+1)2-110.下列函数:①x ≥3且x ≠4 ; ②√2−1 ;③x ;④y ,其中 y =(x −20)[105−5(x −25)]的值随 =−5x 2+330x −4600 值的增大而增大的函数有( ) . A .4个B .3个C .2个D .1个11.若将抛物线y=2x 2向右平移3个单位,再向上平移5个单位,则得到的抛物线是 ( )A .y=2(x+3)2-5B .y=2(x-3)2+5C .y=2(x-3)2-5D .y=2(x+3)2+512.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣52,y1)、C(﹣12,y2)为函数图象上的两点,则y1<y2其中正确结论是()A.②④B.①④C.①③D.②③二、填空题13.如图,直线y=kx+b与抛物线y=﹣x2+2x+3交于点A,B,且点A在y轴上,点B在x轴上,则不等式﹣x2+2x+3>kx+b的解集为.14.已知二次函数y=x2-x+ 14 m-1的图象与x轴有公共点,则m的取值范围是.15.y=﹣2x2的图象上有三个点(﹣1,y1),(2,y2),(3,y3),则y1,y2,y3的大小关系为.16.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是.17.如图,在平面直角坐标系中,点A(0,a2−2a)和点B(0,−4a−5)在y轴上,点M在x轴负半轴上,S△ABM=12.当线段OM最长时,点M的坐标为.18.如图,抛物线y=-x2+2x+c交x轴于点A(-1,0)、B(3,0),交y轴于点C,D为抛物线的顶点.(1)点D坐标为;(2)点C关于抛物线对称轴的对称点为E点,点M是抛物线对称轴上一点,且△DMB和△BCE相似,点M坐标为.三、综合题19.已知抛物线y=a(x-3)2+4经过点(1,0).(1)求a的值;(2)在方格纸中画出y=a(x-3)2+4的图像(3)根据图像写出方程a(x-3)2+4=0的解,和不等式a(x-3)2+4<0的解集20.已知点P(m,n)在抛物线y=ax2+2x+1上运动.(1)当a=−1时,若点P到y轴的距离等于2,求n的值;(2)当P为抛物线的顶点,且m=12时,求a的值.21.某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求这两种商品的进价.(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?22.如图,已知二次函数y=ax2+bx+c的图象过点A(−1,0)和点C(0,3),对称轴为直线x=1.(1)求该二次函数的关系式和顶点坐标;(2)结合图象,当y<3时,直接写出x的取值范围.23.根据下列条件,求二次函数的解析式.(1)图象经过(0,1),(1,﹣2),(2,3)三点;(2)图象的顶点(2,3),且经过点(3,1);24.如图1,等边三角形ABC中,点D在AB上(点D与点A,B不重合),DE⊥BC,垂足为E,点P在BC上,且DP∥AC,△B′DE′与△BDE关于DP对称.设BE=x,△B′DE′与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x<12,12≤x<m与m≤x<n时,函数的解析式不同).(1)填空:等边三角形ABC的边长为,图2中a的值为;(2)求S关于x的函数关系式,并直接写出x的取值范围.参考答案1.【答案】D2.【答案】C3.【答案】B4.【答案】B5.【答案】A6.【答案】C7.【答案】C8.【答案】B9.【答案】A10.【答案】C 11.【答案】B 12.【答案】B 13.【答案】0<x <3 14.【答案】m ≤5 15.【答案】y 3<y 2<y 1 16.【答案】1;9 17.【答案】(-6,0)18.【答案】(1)(1,4) (2)(1,23)或(1,-2)19.【答案】(1)解:将点(1,0)代入y=a (x-3)2+4中,得:0=4a+4 解得:a=-1;(2)解:由y=-(x-3)2+4知,对称轴为直线x=3,顶点坐标为(3,4),与x 轴的交点为点(1,0)和(5,0)令x=0,则y=-5,与y 轴的交点为(0,-5),与其对称的点坐标为(6,-5) 故画出该函数的图象如下:;(3)解:由图像可知,方程a (x-3)2+4=0的解为x 1=1,x 2=5,不等式a (x-3)2+4<0的解集为x <1或x >5.20.【答案】(1)解:∵a =−1∴y =ax 2+2x +1=−x 2+2x +1 ∵点P 到y 轴距离等于2 ∴x =2或−2∵点P(m ,n)在抛物线y =ax 2+2x +1上运动 将x =2代入y =−x 2+2x +1=−4+4+1=1 将x =−2代入y =−x 2+2x +1=−4−4+1=−7 ∴n 的值为1或−7.(2)解:由y =ax 2+2x +1,抛物线的对称轴为x =−22a当P(m ,n)为抛物线的顶点,且m =12∴−22a =12∴a =−2.21.【答案】(1) 设甲商品的进价为x 元,乙商品的进价为y 元,由题意得:{x =12y 3x +y =200解之:{x =40y =80答:甲商品的进价为40元,乙商品的进价为80元;(2)设购进甲商品m 件,则购进乙商品为(100-m )件,由题意地:{40m +80(100−m )≥671040m +80(100−m )≤6810解之:2934≤m ≤3214∵m 为正整数 ∴m=30,31,32 ∴100-m=70,69,68 因此有三种进货方案:方案一:甲商品30件。

2018年中考数学真题汇编二次函数(含答案)

2018年中考数学真题汇编二次函数(含答案)

中考数学真题演练2 2018年中考数学真题汇编----二次函数
一、选择题
1.给出下列函数:①y=-3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()
A. ①③
B. ③④
C. ②④
D. ②③
【答案】B
2.如图,函数和 ( 是常数,且 )在同一平面直角坐标系的图象可能是()
A. B.
C. D.
【答案】B
3.关于二次函数,下列说法正确的是()
A. 图像与轴的交点坐标为
B. 图像的对称轴在轴的右侧
C. 当时,的值随值的增大而减小
D. 的最小值为-3
【答案】D
4.二次函数的图像如图所示,下列结论正确是( )
A. B.
C. D. 有两个不相等的实数根
【答案】C
5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )
A. B.
C. D.
【答案】B
6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。

已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()
A. (-3,-6)
B. (-3,0)
C. (-3,-5)
D. (-3,-1)
【答案】B
7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t+1.则下列说法中正确的是()。

中考数学总复习《二次函数》练习题及答案

中考数学总复习《二次函数》练习题及答案

中考数学总复习《二次函数》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.要得到二次函数y=−x2图象,可将y=−(x−1)2+2的图象如何移动()A.向左移动1单位,向上移动2个单位B.向右移动1单位,向上移动2个单位C.向左移动1单位,向下移动2个单位D.向右移动1单位,向下移动2个单位2.若二次函数y=a x2+bx+c(a≠0)的图象的顶点在第二象限,且过点(0,1)和(1,0),则m=a-b+c的值的变化范围是()A.0<m<1B.0<m<2C.1<m<2D.-1<m<13.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1−(x−a)(x−b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b4.对于二次函数y=x2﹣2mx﹣3,有下列说法:①它的图象与x轴有两个公共点;②若当x≤1时y随x的增大而减小,则m=1;③若将它的图象向左平移3个单位后过原点,则m=﹣1;④若当x=4时的函数值与x=2时的函数值相等,则当x=6时的函数值为﹣3.其中正确的说法是()A.①②③B.①④C.②④D.①②④5.已知二次函数y=x2+2mx+m的图象与x轴交于A(a,0),B(b,0)两点,且满足,4≤a+b≤6.当1≤x≤3时,该函数的最大值H与m满足的关系式是()A.H=3m+1B.H=5m+4C.H=7m+9D.H=−m2+m6.如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣1),且顶点在第三象限,则a的取值范围是()A.a>0B.0<a<1C.1<a<2D.﹣1<a<17.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是()A.B.C.D.8.正方形的边长为3,边长增加x,面积增加y,则y关于x的函数解析式为()A.y=(x+3)2B.y=x2+9C.y=x2+6x D.y=3x2+12x9.若将抛物线y=2x2+1先向右平移1个单位长度,再向下平移3个单位长度,则所得抛物线的表达式为()A.y=2(x−1)2−2B.y=2(x+1)2−2C.y=2(x−1)2+3D.y=2(x+1)2+310.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:①2a−b<0;②abc<0;③a+b+c<0;④a−b+c>0;⑤4a+2b+c>0.其中正确的个数有()A.1个B.2个C.3个D.4个11.如图,二次函数y=ax2+bx+c的图象如图所示,则关于x的一元二次方程ax2+bx+c=0的解为()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣312.已知某种礼炮的升空高度ℎ(m)与飞行时间t(s)的关系式是ℎ=−52t2+20t+1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为()A.3 s B.4 s C.5 s D.6 s二、填空题13.若把函数y=x的图象用E(x,x)记,函数y=2x+1的图象用E(x,2x+1)记,……则E(x,x2−2x+3)图象上的最低点是.14.有一个角是60°的直角三角形,它的面积S与斜边长x之间的函数关系式是.15.如图,点P是双曲线C:y=4x(x>0)上的一点,过点P作x轴的垂线交直线AB:y=12x−2于点Q,连结OP,OQ.当点P在曲线C上运动,且点P在Q的上方时,△ POQ面积的最大值是.16.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如表:下列结论:①a>0;②当x=﹣2时,函数最小值为﹣6;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的序号是(把所有正确结论的序号都填上)x﹣5﹣4﹣202y60﹣6﹣4617<3时,x的取值范围是.18.在平面直角坐标系中,抛物线y=-x2+2ax与直线y=x+2的图象在-1≤x≤1的范围有且只有一个公共点P,则a的取值范围是.三、综合题19.已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B(3,0).(1)求抛物线的解析式;(2)过点D(0,74)作x轴的平行线交抛物线于E,F两点,求EF的长;(3)当y≤ 74时,直接写出x的取值范围是.20.已知抛物线y=−12x2+bx+c经过点(1,0),(0,32).(1)求该抛物线的函数表达式;(2)将抛物线y=−12x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.21.如图,有一个长为24米的篱笆,一面有围墙(墙的最大长度为10米)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S米2.(1)求S与的函数关系式及x的取值范围.(2)如果要围成的花圃ABCD的面积是45平方米,则AB的长为多少米?22.如图,二次函数y=−x2+2x+3的图象与x轴交于A、B两点,与y轴交于点C,顶点为D(1)求点A,B,C的坐标.(2)求△BCD的面积23.给出两种上宽带网的收费方式:收费方式月使用费/元包月上网时间/h超时费/(元/ min)A30250.05B50500.0512(1)直接写出y1,y2与x之间的函数关系式;(2)x为何值时,两种收费方式一样?(3)某用户选择B方式宽带网开网店.若该用户上网时间x小时,产生y=−x2+ax+1950(元)(a>103)的经济收益.若某月该用户上网获得的利润最大值为5650元,直接写出a的值.(上网利润=上网经济收益-月宽带费)24.已知抛物线y=ax2−2ax+c(a<0)的图象过点A(3,m).(1)当a=-1,m=0时,求抛物线的顶点坐标;(2)若P(t,n)为该抛物线上一点,且n<m,求t的取值围;(3)如图,直线l:y=kx+c(k<0)交抛物线于B,C两点,点Q(x,y)是抛物线上点B,C之间的一个动点,作QD△x轴交直线l于点D,作QE△y轴于点E,连接DE.设△QED=b,当2≤x≤4时,b 恰好满足30°≤β≤60°,求a的值.参考答案1.【答案】C2.【答案】B3.【答案】A4.【答案】B5.【答案】A6.【答案】B7.【答案】A8.【答案】C9.【答案】A10.【答案】C11.【答案】C12.【答案】B13.【答案】(1,2)14.【答案】√38x 215.【答案】3 16.【答案】①③④ 17.【答案】-1<x <3 18.【答案】a≥0或a≤-119.【答案】(1)解:把A (﹣1,0),B (3,0)代入y =ax 2+bx+3解得:a =﹣1,b =2抛物线的解析式为y =﹣x 2+2x+3(2)解:把点D 的y 坐标y = 74,代入y =﹣x 2+2x+3解得:x = 12 或 32则EF 长 =32−(−12)=2 (3)x ≤12 或 x ≥32.20.【答案】解:把(1,0),(0,32)代入抛物线解析式得:{−12+b +c =0c =32,解得:{b =−1c =32,则抛物线解析式为y =−12x 2−x +32(2)将抛物线y =−12x 2+bx +c 平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.【答案】解:抛物线解析式为y =−12x 2−x +32=−12(x +1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y =−12x 2.(1)解:把(1,0),(0,32)代入抛物线解析式得:{−12+b +c =0c =32解得:{b =−1c =32则抛物线解析式为y =−12x 2−x +32(2)解:抛物线解析式为y=−12x2−x+32=−12(x+1)2+2将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=−12x2.21.【答案】解:AB为xm,则BC就为(24-3x)m,S=(24-3x)x=24x-3x2,∵x>0,且10≥24-3x>0,∴143≤x<8. (2)如果要围成的花圃ABCD的面积是45平方米,则AB的长为多少米?解:45=24x-3x2,解得x=5或x=3;故AB的长为5米.(1)解:AB为xm,则BC就为(24-3x)mS=(24-3x)x=24x-3x2∵x>0,且10≥24-3x>0∴143≤x<8.(2)解:45=24x-3x2解得x=5或x=3;故AB的长为5米.22.【答案】(1)解:令y=0,可得x=3或x=﹣1.令x=0,可得y=3.∴A(-1,0)B(3,0)C(0,3)(2)解:依题意,可得y=-x2+2x+3=-(x-1)2+4.∴顶点D(1,4).令y=0,可得x=3或x=-1.∴令x=0,可得y=3.∴C(0,3).∴OC=3,∴直线DC的解析式为y=x+3.设直线DE交x轴于E.∴BE=6.∴S△BCD=S△BED-S△BCE=3.∴△BCD的面积为3.23.【答案】(1)解:由题意可得:A、B两种收费超时收费都为0.05×60=3元/小时A种上网的月收费为y1=30+3(x−25)=3x−45;B种上网的月收费可分①当25≤x≤50时,y2=50,②当x>50时,y2=50+3(x−50)=3x−100综上所述:y2={50,25≤x≤503x−100,x>50.(2)解:由(1)可分:①当25≤x≤50时,两种收费一样,则有3x−45=50解得:x=953②当x>50时,两种收费一样,则有3x−45=3x−100,方程无解,故不成立∴综上所述:当上网时间为953小时,两种上网收费一样;答:当上网时间x为953小时,两种上网收费一样.(3)解:设上网利润为w元,则由题意得:①当上网时间25≤x≤50时,上网利润为w=−x2+ax+1950−50=−x2+ax+1900∵a>103∴x=a2>50∵该二次函数的图象开口向下,在25≤x≤50,y随x的增大而增大∴该用户上网获得的利润最大值为5650元,所以当x=50时,则有:−2500+50a+1900=5650,解得:a=125;②当x>50时,上网利润为w=−x2+ax+1950−3x+100=−x2+(a−3)x+2050∴该二次函数的图象向下,对称轴为直线x=a−3 2∵a>103∴x=a−32>50∴y随x的增大而减小∴当x=a−32时,y有最大值,即−(a−32)2+(a−3)(a−32)+2050=5650解得:a1=123,a2=−117(不符合题意,舍去)综上所述:当某月该用户上网获得的利润最大值为5650元,则a=125或123. 24.【答案】(1)解:当a=-1,m=0时,y=−x2+2x+c,A点的坐标为(3,0)∴-9+6+c=0.解得c=3∴抛物线的表达式为y=−x2+2x+3.即y=−(x−1)2+4.∴抛物线的顶点坐标为(1,4).(2)解:∵y=ax2−2ax+c的对称轴为直线x=−2a−2a=1∴点A关于对称轴的对称点为(-1,m).∵a<0∴当x<1,y随x的增大而增大;当x>1,y随x的增大而减小.又∵n <m∴当点P 在对称轴左边时,t <-1; 当点P 在对称轴右边时,t >3.综上所述:t 的取值范围为t <-1或t >3; (3)解:∵点Q (x ,y )在抛物线上 ∴y =ax 2−2ax +c .又∵QD△x 轴交直线 l :y =kx +c(k <0) 于点D ∴D 点的坐标为(x ,kx +c ).又∵点Q 是抛物线上点B ,C 之间的一个动点 ∴QD =ax 2−2ax +c −(kx +c)=ax 2−(2a +k)x . ∵QE =x∴在Rt△QED 中, tanβ=QD QE =ax 2−(2a+k)x x=ax −2a −k . ∴tanβ 是关于x 的一次函数 ∵a <0∴tanβ 随着x 的增大而减小.又∵当 2≤x ≤4 时, β 恰好满足 30°≤β≤60° ,且 tanβ 随着 β 的增大而增大 ∴当x =2时, β =60°;当x =4时, β =30°. ∴{2a −2a −k =√34a −2a −k =√33解得 {k =−√3a =−√33∴a =−√33.。

中考数学二次函数 专题复习题(含答案)

中考数学二次函数 专题复习题(含答案)

二次函数专题复习题1.如图,抛物线y=ax2+bx+12与x轴交于A,B两点(B在A的右侧),且经过点C(﹣1,7)和点D(5,7).(1)求抛物线的函数表达式;(2)连接AD,经过点B的直线l与线段AD交于点E,与抛物线交于另一点F.连接CA,CE,CD,△CED的面积与△CAD的面积之比为1:7,点P为直线l上方抛物线上的一个动点,设点P的横坐标为t.当t为何值时,△PFB的面积最大?并求出最大值;(3)在抛物线y=ax2+bx+12上,当m≤x≤n时,y的取值范围是12≤y≤16,求m﹣n 的取值范围.(直接写出结果即可)2.已知二次函数y=ax2+bx+6的图象开口向下,与x轴交于点A(﹣6,0)和点B(2,0),与y轴交于点C,点P是该函数图象上的一个动点(不与点C重合).(1)求二次函数的关系式;(2)如图1,当点P是该函数图象上一个动点且在线段AC的上方,若△PCA的面积为12,求点P的坐标;(3)如图2,该函数图象的顶点为D,在该函数图象上是否存在点E,使得∠EAB=2∠DAC,若存在请直接写出点E的坐标;若不存在请说明理由.3.如图1,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C(0,﹣3),点D为该二次函数图象顶点.(1)求该二次函数解析式,及D点坐标;(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD 相切,求点P的坐标;(3)如图2,若M为线段BC上一点,且满足S△AMC=S△AOC,点E为直线AM上一动点,在x轴上是否存在点F,使以点F、E、B、C为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标,若不存在,请说明理由.4.抛物线y=x2+bx+c经过点A(﹣3,0)和点B(2,0),与y轴交于点C.(1)求该抛物线的函数表达式;(2)点P是该抛物线上的动点,且位于y轴的左侧.①如图1,过点P作PD⊥x轴于点D,作PE⊥y轴于点E,当PD=2PE时,求PE的长;②如图2,该抛物线上是否存在点P,使得∠ACP=∠OCB?若存在,请求出所有点P的坐标:若不存在,请说明理由.5.如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A,B两点,A点坐标为(﹣2,0),与y轴交于点C(0,4),直线y=﹣x+m与抛物线交于B,D两点.(1)求抛物线的函数表达式.(2)求m的值和D点坐标.(3)点P是直线BD上方抛物线上的动点,过点P作x轴的垂线,垂足为H,交直线BD 于点F,过点D作x轴的平行线,交PH于点N,当N是线段PF的三等分点时,求P点坐标.(4)如图2,Q是x轴上一点,其坐标为(﹣,0).动点M从A出发,沿x轴正方向以每秒5个单位的速度运动,设M的运动时间为t(t>0),连接AD,过M作MG⊥AD 于点G,以MG所在直线为对称轴,线段AQ经轴对称变换后的图形为A′Q′,点M在运动过程中,线段A′Q′的位置也随之变化,请直接写出运动过程中线段A′Q′与抛物线有公共点时t的取值范围.6.如图,已知二次函数y=ax2+bx+4的图象与y轴交于点A,与x轴交于点B(﹣2,0),点C(8,0),直线y=经过点A,与x轴交于D点.(1)求该二次函数的表达式;(2)点E为线段AC上方抛物线上一动点,若△ADE的面积为10,求点E的坐标;(3)点P为抛物线上一动点,连接AP,将线段AP绕点A逆时针旋转到AP',并使∠P′AP=∠DAO,是否存在点P使点P′恰好落到坐标轴上?如果存在,请直接写出此时点P的横坐标;如果不存在,请说明理由.7.在平面直角坐标系中,抛物线y=﹣x2+kx﹣2k的顶点为N.(1)若此抛物线过点A(﹣3,1),求抛物线的解析式;(2)在(1)的条件下,若抛物线与y轴交于点B,连接AB,C为抛物线上一点,且位于线段AB的上方,过C作CD垂直x轴于点D,CD交AB于点E,若CE=ED,求点C 坐标;(3)已知点M(2﹣,0),且无论k取何值,抛物线都经过定点H,当∠MHN=60°时,求抛物线的解析式.8.如图,在平面直角坐标系中,抛物线y=ax2+bx+1的对称轴为直线x=,其图象与x轴交于点A和点B(4,0),与y轴交于点C.(1)直接写出抛物线的解析式和∠CAO的度数;(2)动点M,N同时从A点出发,点M以每秒3个单位的速度在线段AB上运动,点N 以每秒个单位的速度在线段AC上运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动的时间为t(t>0)秒,连接MN,再将线段MN绕点M顺时针旋转90°,设点N落在点D的位置,若点D恰好落在抛物线上,求t的值及此时点D的坐标;(3)在(2)的条件下,设P为抛物线上一动点,Q为y轴上一动点,当以点C,P,Q 为顶点的三角形与△MDB相似时,请直接写出点P及其对应的点Q的坐标.(每写出一组正确的结果得1分,至多得4分)9.如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于A(﹣1,0),B(3,0),与y轴交于点C.已知直线y=kx+n过B,C两点.(1)求抛物线和直线BC的表达式;(2)点P是抛物线上的一个动点.①如图1,若点P在第一象限内,连接P A,交直线BC于点D.设△PDC的面积为S1,△ADC的面积为S2,求的最大值;②如图2,抛物线的对称轴l与x轴交于点E,过点E作EF⊥BC,垂足为F.点Q是对称轴l上的一个动点,是否存在以点E,F,P,Q为顶点的四边形是平行四边形?若存在,求出点P,Q的坐标;若不存在,请说明理由.10.如图,抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B左边),与y轴交于点C.直线y=x﹣2经过B、C两点.(1)求抛物线的解析式;(2)点P是抛物线上的一动点,过点P且垂直于x轴的直线与直线BC及x轴分别交于点D、M.PN⊥BC,垂足为N.设M(m,0).①点P在抛物线上运动,若P、D、M三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的m的值;②当点P在直线BC下方的抛物线上运动时,是否存在一点P,使△PNC与△AOC相似.若存在,求出点P的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,抛物线y=x2﹣2x经过坐标原点,与x轴正半轴交于点A,该抛物线的顶点为M,直线y=﹣x+b经过点A,与y轴交于点B,连接OM.(1)求b的值及点M的坐标;(2)将直线AB向下平移,得到过点M的直线y=mx+n,且与x轴负半轴交于点C,取点D(2,0),连接DM,求证:∠ADM﹣∠ACM=45°;(3)点E是线段AB上一动点,点F是线段OA上一动点,连接EF,线段EF的延长线与线段OM交于点G.当∠BEF=2∠BAO时,是否存在点E,使得3GF=4EF?若存在,求出点E的坐标;若不存在,请说明理由.12.如图,已知抛物线:y1=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)直接写出点A,B,C的坐标;(2)将抛物线y1经过向右与向下平移,使得到的抛物线y2与x轴交于B,B'两点(B'在B的右侧),顶点D的对应点为点D',若∠BD'B'=90°,求点B'的坐标及抛物线y2的解析式;(3)在(2)的条件下,若点Q在x轴上,则在抛物线y1或y2上是否存在点P,使以B′,C,Q,P为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点P的坐标;如果不存在,请说明理由.13.如图,在平面直角坐标系中,函数y=﹣ax2+2ax+3a(a>0)的图象交x轴于点A、B,交y轴于点C,它的对称轴交x轴于点E.过点C作CD∥x轴交抛物线于点D,连接DE 并延长交y轴于点F,交抛物线于点G.直线AF交CD于点H,交抛物线于点K,连接HE、GK.(1)点E的坐标为:;(2)当△HEF是直角三角形时,求a的值;(3)HE与GK有怎样的位置关系?请说明理由.14.如图1,抛物线y=﹣x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=﹣x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.15.已知抛物线y=ax2﹣2ax+c过点A(﹣1,0)和C(0,3),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出D点的坐标;(2)如图1,E为线段BC上方的抛物线上一点,EF⊥BC,垂足为F,EM⊥x轴,垂足为M,交BC于点G.当BG=CF时,求△EFG的面积;(3)如图2,AC与BD的延长线交于点H,在x轴上方的抛物线上是否存在点P,使∠OPB=∠AHB?若存在,求出点P的坐标;若不存在,请说明理由.16.如图①,二次函数y=﹣x2+bx+4的图象与直线l交于A(﹣1,2)、B(3,n)两点.点P是x轴上的一个动点,过点P作x轴的垂线交直线1于点M,交该二次函数的图象于点N,设点P的横坐标为m.(1)b=,n=;(2)若点N在点M的上方,且MN=3,求m的值;(3)将直线AB向上平移4个单位长度,分别与x轴、y轴交于点C、D(如图②).①记△NBC的面积为S1,△NAC的面积为S2,是否存在m,使得点N在直线AC的上方,且满足S1﹣S2=6?若存在,求出m及相应的S1,S2的值;若不存在,请说明理由.②当m>﹣1时,将线段MA绕点M顺时针旋转90°得到线段MF,连接FB、FC、OA.若∠FBA+∠AOD﹣∠BFC=45°,直接写出直线OF与该二次函数图象交点的横坐标.参考答案1.如图,抛物线y=ax2+bx+12与x轴交于A,B两点(B在A的右侧),且经过点C(﹣1,7)和点D(5,7).(1)求抛物线的函数表达式;(2)连接AD,经过点B的直线l与线段AD交于点E,与抛物线交于另一点F.连接CA,CE,CD,△CED的面积与△CAD的面积之比为1:7,点P为直线l上方抛物线上的一个动点,设点P的横坐标为t.当t为何值时,△PFB的面积最大?并求出最大值;(3)在抛物线y=ax2+bx+12上,当m≤x≤n时,y的取值范围是12≤y≤16,求m﹣n 的取值范围.(直接写出结果即可)【解答】解:(1)把C(﹣1,7),D(5,7)代入y=ax2+bx+12,可得,解得,∴抛物线的解析式为y=﹣x2+4x+12.(2)如图1中,过点E作EM⊥AB于M,过点D作DN⊥AB于N.对于抛物线y=﹣x2+4x+12,令y=0,得到,x2﹣4x﹣12=0,解得x=﹣2或6,∴A(﹣2,0),B(6,0),∵D(5,7),∴OA=2,DN=7,ON=5,AN=7∵△CED的面积与△CAD的面积之比为1:7,∴DE:AD=1:7,∴AE:AD=6:7,∵EM∥DN,∵===,∴==,∴AM=EM=6,∴E(4,6),∴直线BE的解析式为y=﹣3x+18,由,解得或,∴F(1,15),过点P作PQ∥y轴交BF于Q,设P(t,﹣t2+4t+12)则Q(t,﹣3t+18),∴PQ=﹣t2+4t+12﹣(﹣3t+18)=﹣t2+7t﹣6,∵S△PBF=•(﹣t2+7t﹣6)•5=﹣(t﹣)2+,∵﹣<0,∴t=时,△BFP的面积最大,最大值为.(3)对于抛物线y=﹣x2+4x+12,当y=16时,﹣x2+4x+12=16,解得x1=x2=2,当y=12时,﹣x2+4x+12=12,解得x=0或4,观察图2可知:当0≤x≤2或2≤x≤4时,12≤y≤16,∴m=0,n=2或m=2,n=4或m=0,n=4,∴﹣4≤m﹣n≤﹣22.已知二次函数y=ax2+bx+6的图象开口向下,与x轴交于点A(﹣6,0)和点B(2,0),与y轴交于点C,点P是该函数图象上的一个动点(不与点C重合).(1)求二次函数的关系式;(2)如图1,当点P是该函数图象上一个动点且在线段AC的上方,若△PCA的面积为12,求点P的坐标;(3)如图2,该函数图象的顶点为D,在该函数图象上是否存在点E,使得∠EAB=2∠DAC,若存在请直接写出点E的坐标;若不存在请说明理由.【解答】解:(1)因为点A(﹣6,0)和点B(2,0),设函数的表达式为:y=a(x+6)(x﹣2)=a(x2+4x﹣12),则﹣12a=6,解得:a=﹣,函数的表达式为:y=﹣x2﹣2x+6…①,顶点D坐标为(﹣2,8);(2)解法一:如图1所示,过点P作直线m∥AC交抛物线于点P′,过点P作PH∥y轴交AC于点H,作PG⊥AC于点G,∵OA=OC,∴∠PHG=∠CAB=45°,则HP=PG,S△PCA=PG×AC=×PG×6=12,解得:PH=4,直线AC的表达式为:y=x+6,则直线m的表达式为:y=x+10…②,联立①②并解得:x=﹣2或﹣4,则点P坐标为(﹣2,8)或(﹣4,6);解法二:如图1,过点P作PH∥y轴交AC于点H,设P(x,﹣x2﹣2x+6).∵△PCA的面积为12,∴OA•PH=12,即×6•PH=12.∴PH=4,∴PH•|x A﹣x P|+PH•|x P|=12,即×4•|﹣6﹣x P|+×4•|x P|=12,∴x P=﹣2或﹣4,则点P坐标为(﹣2,8)或(﹣4,6);(3)点A、B、C、D的坐标为(﹣6,0)、(2,0)、(0,6)、(﹣2,8),则AC=,CD=,AD=,则∠ACD=90°,sin∠DAC==,延长DC至D′使CD=CD′,连接AD′,过点D作DH⊥AD′,则DD′=2,AD=AD′=,S△ADD′=DD′×AC=DH×AD′,即:2×=DH×,解得:DH=,sin2∠DAC=sin∠DAD′====sin∠EAB,则tan∠EAB=,①当点E在AB上方时,则直线AE的表达式为:y=x+b,将点A坐标代入上式并解得:直线AE的表达式为:y=x+…④,联立①④并解得:x=(不合题意值已舍去),即点E(,);②当点E在AB下方时,同理可得:点E(,﹣).综上,点E(,)或(,﹣).3.如图1,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C(0,﹣3),点D为该二次函数图象顶点.(1)求该二次函数解析式,及D点坐标;(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD 相切,求点P的坐标;(3)如图2,若M为线段BC上一点,且满足S△AMC=S△AOC,点E为直线AM上一动点,在x轴上是否存在点F,使以点F、E、B、C为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标,若不存在,请说明理由.【解答】解:(1)设该二次函数解析式为y=a(x+1)(x﹣3),把点C(0,﹣3)代入得:﹣3=a×1×(﹣3),解得:a=1,二次函数解析式为y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴二次函数图象顶点D坐标为(1,﹣4);(2)由(1)得:抛物线对称轴为直线x=1,∵点P是抛物线的对称轴上一点,∴设点P的坐标为(1,m),设直线CD的解析式为y=kx+b,把点C(0,﹣3),点D(1,﹣4)代入得:,解得:,∴直线CD的解析式为y=﹣x﹣3,当y=0时,x=﹣3,∴直线CD与x轴的交点为G(﹣3,0),∴OG=3,∴GN=ON+OG=1+3=4,∵抛物线顶点D坐标为(1,﹣4),∴DN=4=GN,∴△DNG是等腰直角三角形,∴∠NDG=45°,设直线CD与圆P相切于点Q,连接PQ、P A,如图3所示:∵以点P为圆心的圆经过A、B两点,且与直线CD相切,∴PQ⊥CD,PQ=P A,∴△PQD是等腰直角三角形,∴PD=PQ=P A,∵PD=|m+4|,P A==,∴|m+4|=,整理得:m2﹣8m﹣8=0,解得:m=4±2,∴点P的坐标为(1,4+2)或(1,4﹣2);(3)存在,理由如下:∵S△AMC=S△AOC,A(﹣1,0)、B(3,0),∴S△ABC﹣S△ABM=S△AOC,AB=OA+OB=4,∴×4×3﹣×4×|y M|=×1×3,∴|y M|=,∵y M<0,∴y M=﹣,设直线BC的解析式为y=k'x+b',则,解得:,∴直线BC的解析式为y=x﹣3,当y=﹣时,﹣=x﹣3,∴x=,∴M(,﹣),同理得:AM的解析式为y=﹣x﹣,分三种情况:①如图4所示:四边形BCEF是平行四边形,则CE∥BF,CE=BF,由题意得:∵点E为直线AM上一动点,点F在x轴上,∴点E的纵坐标为﹣3,∴﹣3═﹣x﹣,∴x=,∴点E(,﹣3),∴BF=CE=,∴OF=OB+BF=3+=,∴点F的坐标为(,0);②如图5所示:四边形BF'CE是平行四边形,同①得:点F'的坐标为(,0);③四边形BCF''E是平行四边形,如图6所示:点F(,0)关于点A的对称点为F''(﹣,0);综上所述,在x轴上存在点F,使以点F、E、B、C为顶点的四边形为平行四边形,点F 的坐标为(,0)或(,0)或(﹣,0)4.抛物线y=x2+bx+c经过点A(﹣3,0)和点B(2,0),与y轴交于点C.(1)求该抛物线的函数表达式;(2)点P是该抛物线上的动点,且位于y轴的左侧.①如图1,过点P作PD⊥x轴于点D,作PE⊥y轴于点E,当PD=2PE时,求PE的长;②如图2,该抛物线上是否存在点P,使得∠ACP=∠OCB?若存在,请求出所有点P的坐标:若不存在,请说明理由.【解答】解:(1)∵抛物线y=x2+bx+c经过点A(﹣3,0)和点B(2,0),∴,解得:,∴抛物线解析式为:y=x2+x﹣6;(2)①设点P(a,a2+a﹣6),∵点P位于y轴的左侧,∴a<0,PE=﹣a,∵PD=2PE,∴|a2+a﹣6|=﹣2a,∴a2+a﹣6=﹣2a或a2+a﹣6=2a,解得:a1=,a2=(舍去)或a3=﹣2,a4=3(舍去)∴PE=2或;②存在点P,使得∠ACP=∠OCB,理由如下,∵抛物线y=x2+x﹣6与x轴交于点C,∴点C(0,﹣6),∴OC=6,∵点B(2,0),点A(﹣3,0),∴OB=2,OA=3,∴BC===2,AC===3,如图,过点A作AH⊥CP于H,∵∠AHC=∠BOC=90°,∠ACP=∠BCO,∴△ACH∽△BCO,∴,∴=,∴AH=,HC=,设点H(m,n),∴()2=(m+3)2+n2,()2=m2+(n+6)2,∴或,∴点H(﹣,﹣)或(﹣,),当H(﹣,﹣)时,∵点C(0,﹣6),∴直线HC的解析式为:y=﹣x﹣6,∴x2+x﹣6=﹣x﹣6,解得:x1=﹣2,x2=0(舍去),∴点P的坐标(﹣2,﹣4);当H(﹣,)时,∵点C(0,﹣6),∴直线HC的解析式为:y=﹣7x﹣6,∴x2+x﹣6=﹣7x﹣6,解得:x1=﹣8,x2=0(舍去),∴点P的坐标(﹣8,50);综上所述:点P坐标为(﹣2,﹣4)或(﹣8,50).5.如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A,B两点,A点坐标为(﹣2,0),与y轴交于点C(0,4),直线y=﹣x+m与抛物线交于B,D两点.(1)求抛物线的函数表达式.(2)求m的值和D点坐标.(3)点P是直线BD上方抛物线上的动点,过点P作x轴的垂线,垂足为H,交直线BD 于点F,过点D作x轴的平行线,交PH于点N,当N是线段PF的三等分点时,求P点坐标.(4)如图2,Q是x轴上一点,其坐标为(﹣,0).动点M从A出发,沿x轴正方向以每秒5个单位的速度运动,设M的运动时间为t(t>0),连接AD,过M作MG⊥AD 于点G,以MG所在直线为对称轴,线段AQ经轴对称变换后的图形为A′Q′,点M在运动过程中,线段A′Q′的位置也随之变化,请直接写出运动过程中线段A′Q′与抛物线有公共点时t的取值范围.【解答】解:(1)把A(﹣2,0),C(0,4)代入y=﹣x2+bx+c,得到,解得,∴抛物线的解析式为y=﹣x2+x+4.(2)令y=0,则有﹣x2+x+4=0,解得x=﹣2或4,∴B(4,0),把B(4,0)代入y=﹣x+m,得到m=2,∴直线BD的解析式为y=﹣x+2,由,解得或,∴D(﹣1,).(3)设P(a,﹣a2+a+4),则N(a,),F(a,﹣a+2),∴PN=﹣a2+a+4﹣=﹣a2+a+,NF=﹣(﹣a+2)=a+,∵N是线段PF的三等分点,∴PN=2NF或NF=2PN,∴﹣a2+a+=a+1或a+=﹣a2+2a+3,解得a=±1或﹣1或,∵a>0,∴a=1或,∴P(1,)或(,).(4)如图2中,∵A(﹣2,0),D(﹣1,),∴直线AD的解析式为y=x+5,∵A′Q′与AQ关于MG对称,MG⊥AD,∴QQ′∥AD,∵Q(﹣,0),∴直线QQ′的解析式为y=x+2,设直线QQ′交抛物线于E,由,解得或,∴E(1,),当点A′与D重合时,直线GM的解析式为y=﹣x+,可得M(,0),此时t=,当点Q′与E重合时,直线GM经过点(,),∵GM⊥AD,∴GM的解析式为y=﹣x+,令y=0,可得x=,∴M(,0),此时t==,观察图象可知,满足条件的t的值为≤t≤.6.如图,已知二次函数y=ax2+bx+4的图象与y轴交于点A,与x轴交于点B(﹣2,0),点C(8,0),直线y=经过点A,与x轴交于D点.(1)求该二次函数的表达式;(2)点E为线段AC上方抛物线上一动点,若△ADE的面积为10,求点E的坐标;(3)点P为抛物线上一动点,连接AP,将线段AP绕点A逆时针旋转到AP',并使∠P′AP=∠DAO,是否存在点P使点P′恰好落到坐标轴上?如果存在,请直接写出此时点P的横坐标;如果不存在,请说明理由.【解答】解:(1)把点B、C的坐标代入抛物线的解析式得,,解得,,∴二次函数的解析式为:;(2)设E(m,)(0<m<8),过E作EQ⊥x轴于点Q,则EQ=,∵D(3,0),∴DQ=m﹣3,∴S△ADE=S梯形AOQE﹣S△AOD﹣S△DEQ==,解得,m=8(舍),或m=,∴E点的坐标为(,);(3)①当P点在第一象限内,P′点在y轴上时,如图2,过P作PE⊥x轴于点E,过A作AM⊥PE于M,设P(m,+4),则AM=m,PM=,∵PE∥AO,∴∠APM=∠P′AP,∵∠P AP′=∠DAO,∴∠APM=∠DAO,∵∠AMP=∠AOD=90°,∴△APM∽△DAO,∴,即,解得,m=0(舍),或m=,∴此时P点的横坐标为;②当P点在y轴左边,P′在x轴上时,如图3,过P作PM⊥y轴于M,过P′作P′M′⊥AD于M′,则∠AMP=∠AM′P′,设P(m,+4),则AM=,PM=﹣m,∵∠P AP′=∠DAO,∴∠P AM=∠P′AM′,∵AP=AP′,∴△APM≌△AP′M′(AAS),∴PM=P′M′=﹣m,AM=AM′═,∵∠DM′P′=∠DOA=90°,∠P′DM′=∠ADO,∴△DP′M′∽△DAO,∴,即,∴,∵DM′+AM′=AD=5,∴,解得,m=,或m=(舍),∴此时P点的横坐标为;③当P点在第四象限内,P′点在x轴上时,如图4,过P作PM⊥y轴于M,过P′作P′M′⊥AD于点M′,则∠AMP=∠AM′P′,设P(m,+4),则AM=,PM=m,∵∠P AP′=∠DAO,∴∠P AM=∠P′AM′,∵AP=AP′,∴△APM≌△AP′M′(AAS),∴PM=P′M′=m,AM=AM′═,∵∠DM′P′=∠DOA=90°,∠P′DM′=∠ADO,∴△DP′M′∽△DAO,∴,即,∴,∵AM′﹣DM′=AD=5,∴,解得,m=(舍),或m=.∴此时P点的横坐标为.综上,存在,其中P点的横坐标为或或.7.在平面直角坐标系中,抛物线y=﹣x2+kx﹣2k的顶点为N.(1)若此抛物线过点A(﹣3,1),求抛物线的解析式;(2)在(1)的条件下,若抛物线与y轴交于点B,连接AB,C为抛物线上一点,且位于线段AB的上方,过C作CD垂直x轴于点D,CD交AB于点E,若CE=ED,求点C 坐标;(3)已知点M(2﹣,0),且无论k取何值,抛物线都经过定点H,当∠MHN=60°时,求抛物线的解析式.【解答】解:(1)把A(﹣3.1)代入y=﹣x2+kx﹣2k,得﹣9﹣3k﹣2k=1.解得k=﹣2,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)如图1,设C(t,﹣t2﹣2t+4),则E(t,﹣﹣t+2),设直线AB的解析式为y=kx+b,把A(﹣3,1),(0,4)代入得到,,解得,∴直线AB的解析式为y=x+4,∵E(t,﹣﹣t+2)在直线AB上,∴﹣﹣t+2=t+4,解得t1=t2=﹣2,∴C(﹣2,4).(3)由y=﹣x2+kx﹣2k=k(x﹣2)﹣x2,当x﹣2=0时,x=2,y=﹣4,∴无论k取何值,抛物线都经过定点H(2,﹣4),二次函数的顶点N(,﹣2k),①如图2中,过点H作HI⊥x轴于I,分别过H,N作y轴,x轴的垂线交于点G,若>2时,则k>4,∵M(2﹣,0),H(2,﹣4),∴MI=,HI=4,∴tan∠MHI==,∴∠MHI=30°,∵∠MHN=60°,∴∠NHI=30°,即∠GNH=30°,由图可知,tan∠GNH===,解得k=4+2或4(不合题意舍弃).②如图3中,过点H作HI⊥x轴于I,分别过H,N作y轴,x轴的垂线交于点G.若<2,则k<4,同理可得,∠MHI=30°,∵∠MHN=60°,∴NH⊥HI,即﹣2k═﹣4,解得k=4(不符合题意舍弃).③若=2,则N,H重合,不符合题意舍弃,综上所述,抛物线的解析式为y=﹣x2+(4+2)x﹣(8+4).8.如图,在平面直角坐标系中,抛物线y=ax2+bx+1的对称轴为直线x=,其图象与x轴交于点A和点B(4,0),与y轴交于点C.(1)直接写出抛物线的解析式和∠CAO的度数;(2)动点M,N同时从A点出发,点M以每秒3个单位的速度在线段AB上运动,点N 以每秒个单位的速度在线段AC上运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动的时间为t(t>0)秒,连接MN,再将线段MN绕点M顺时针旋转90°,设点N落在点D的位置,若点D恰好落在抛物线上,求t的值及此时点D的坐标;(3)在(2)的条件下,设P为抛物线上一动点,Q为y轴上一动点,当以点C,P,Q 为顶点的三角形与△MDB相似时,请直接写出点P及其对应的点Q的坐标.(每写出一组正确的结果得1分,至多得4分)【解答】解:(1)由题意:,解得,∴抛物线的解析式为y=﹣x2+x+1,令y=0,可得x2﹣3x﹣4=0,解得x=﹣1或4,∴A(﹣1,0),令y=0,得到x=1,∴C(0,1),∴OA=OC=1,∴∠CAO=45°.(2)如图1中,过点C作CE⊥OA于E,过点D作DF⊥AB于F.∵∠NEM=∠DFM=∠NMD=90°,∴∠NME+∠DMF=90°,∠DMF+∠MDF=90°,∴∠NME=∠MDF,∵NM=DM,∴△MEN≌△DFM(AAS),∴NE=MF,EM=DF,∵∠CAO=45°,AN=t,AM=3t,∴AE=EN=t,∴EM=AM﹣AE=2t,∴DF=2t,MF=t,OF=4t﹣1,∴D(4t﹣1,2t),∴﹣(4t﹣1)2+(4t﹣1)+1=2t,∵t>0,故可以解得t=,经检验,t=时,M,N均没有达到终点,符合题意,∴D(2,).(3)如图3﹣1中,当点Q在点C的下方,点P在y的右侧,∠QCP=∠MDB时,取E(,0),连接EC,过点E作EG⊥EC交PC于G,∵M(,0),D(2,),B(4,0)∴FM=2﹣=,DM=,BM=,BD=,∴DF=2MF,∵OC=2OE,∴tan∠OCE=tan∠MDF=,∴∠OCE=∠MDF,∴∠OCP=∠MDB,∴∠ECG=∠FDB,∴tan∠ECG=tan∠FDB=,∴EG=,可得G(,),∴直线CP的解析式为y=﹣x+1,由,解得或,∴P(,),∴PC=,当=或=时,△QCP与△MDB相似,可得CQ=或,∴Q(0,﹣)或(0,﹣).如图3﹣2中,当点Q在点C的下方,点P在y的右侧,∠QCP=∠DMB时,设PC交x轴于k.∵tan∠OCK=tan∠DMB=2,∴OK=2OC=2,∴点K与F重合,∴直线PC的解析式为y=﹣x+1,由,解得或,∴P(5,﹣),当=或=时,△QCP与△MDB相似,可得CQ=或,∴Q(0,﹣)或(0,﹣).当点Q在点C的下方,点P在y的右侧,∠QCP=∠DBM时,同法可得P(,﹣),Q(0,﹣)或(0,),当点Q在点C上方,∠QCP=∠DMB时,同法可得P(1,),Q(0,)或(0,),当点Q在点C上方,∠QCP=∠MDB时,同法可得P(,),Q(0,)或(0,),当点Q在点C下方,点P在y轴的左侧时,∠QCP=∠DBM时,同法可得P(﹣,﹣),Q(0,﹣)或(0,﹣).9.如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于A(﹣1,0),B(3,0),与y轴交于点C.已知直线y=kx+n过B,C两点.(1)求抛物线和直线BC的表达式;(2)点P是抛物线上的一个动点.①如图1,若点P在第一象限内,连接P A,交直线BC于点D.设△PDC的面积为S1,△ADC的面积为S2,求的最大值;②如图2,抛物线的对称轴l与x轴交于点E,过点E作EF⊥BC,垂足为F.点Q是对称轴l上的一个动点,是否存在以点E,F,P,Q为顶点的四边形是平行四边形?若存在,求出点P,Q的坐标;若不存在,请说明理由.【解答】解:(1)把A(﹣1,0),B(3,0)代入y=ax2+bx+3得:,解得∴抛物线的表达式为y=﹣x2+2x+3,∴点C坐标为(0,3),把B(3,0),C(0,3)代入y=kx+n得:,解得∴直线BC的表达式为y=﹣x+3.(2)①∵P A交直线BC于点D,∴设点D的坐标为(m,﹣m+3),设直线AD的表达式为y=k1x+b1,∴,解得,∴直线AD的表达式,y=x+,∴x+=﹣x2+2x+3,整理得,(x﹣)(x+1)=0解得x=或﹣1(不合题意,舍去),∴点D的横坐标为m,点P的横坐标为,分别过点D、P作x轴的垂线,垂足分别为M、N,如图1中:∴DM∥PN,OM=m,ON=,OA=1,∴=====,设=t,则t=整理得,(t+1)m2+(2t﹣3)m+t=0,∵△≥0,∴(2t﹣3)2﹣4t(t+1)≥0,解得t≤∴有最大值,最大值为.②存在,理由如下:过点F作FG⊥OB于G,如图2中,∵y=﹣x2+2x+3的对称轴为x=1,∴OE=1,∵B(3,0),C(0,3)∴OC=OB=3,又∵∠COB=90°,∴△OCB是等腰直角三角形,∵∠EFB=90°,BE=OB﹣OE=2,∴△EFB是等腰直角三角形,∴FG=GB=EG=1,∴点F的坐标为(2,1),当EF为边时,∵四边形EFPQ为平行四边形,∴QE=PF,QE∥PF∥y轴,∴点P的横坐标与点F的横坐标同为2,当x=2时,y=﹣22+2×2+3=3,∴点P的坐标为(2,3),∴QE=PF=3﹣1=2,点Q的坐标为(1,2),根据对称性当P(0,3)时,Q(1,4)时,四边形EFQP也是平行四边形.当EF为对角线时,如图3中,∵四边形PEQF为平行四边形,∴QE=PF,QE∥PF∥y轴,同理求得:点P的坐标为(2,3),∴QE=PF=3﹣1=2,点Q的坐标为(1,﹣2);综上,点P的坐标为(2,3)时,点Q的坐标为(1,2)或(1,﹣2),P(0,3)时,Q(1,4).10.如图,抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B左边),与y轴交于点C.直线y=x﹣2经过B、C两点.(1)求抛物线的解析式;(2)点P是抛物线上的一动点,过点P且垂直于x轴的直线与直线BC及x轴分别交于点D、M.PN⊥BC,垂足为N.设M(m,0).①点P在抛物线上运动,若P、D、M三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的m的值;②当点P在直线BC下方的抛物线上运动时,是否存在一点P,使△PNC与△AOC相似.若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)针对于直线y=x﹣2,令x=0,则y=﹣2,∴C(0,﹣2),令y=0,则0=x﹣2,∴x=4,∴B(4,0),将点B,C坐标代入抛物线y=x2+bx+c中,得,∴,∴抛物线的解析式为y=x2﹣x﹣2;(2)①∵PM⊥x轴,M(m,0),∴P(m,m2﹣m﹣2),D(m,m﹣2),∵P、D、M三点中恰有一点是其它两点所连线段的中点,∴Ⅰ、当点D是PM的中点时,∴Ⅰ、当点D是PM的中点时,(0+m2﹣m﹣2)=m﹣2,∴m=1或m=4(此时点D,M,P三点重合,舍去),Ⅱ、当点P是DM的中点时,(0+m﹣2)=m2﹣m﹣2,∴m=﹣或m=4(此时点D,M,P三点重合,舍去),Ⅲ、当点M是DP的中点时,(m2﹣m﹣2+m﹣2)=0,∴m=﹣2或m=4(此时点D,M,P三点重合,舍去),即满足条件的m的值为﹣或1或﹣2;②由(1)知,抛物线的解析式为y=x2﹣x﹣2,令y=0,则0=x2﹣x﹣2,∴x=﹣1或x=4,∴点A(﹣1,0),∴OA=1,∵B(4,0),C(0,﹣2),∴OB=4,OC=2,∴,∵∠AOC=∠COB=90°,∴△AOC∽△COB,∴∠OAC=∠OCB,∠ACO=∠OBC,∵△PNC与△AOC相似,∴Ⅰ、当△PNC∽△AOC,∴∠PCN=∠ACO,∴∠PCN=∠OBC,∴CP∥OB,∴点P的纵坐标为﹣2,∴m2﹣m﹣2=﹣2,∴m=0(舍)或m=3,∴P(3,﹣2);Ⅱ、当△PNC∽△COA时,∴∠PCN=∠CAO,∴∠OCB=∠PCD,∵PD∥OC,∴∠OCB=∠CDP,∴∠PCD=∠PDC,∴PC=PD,由①知,P(m,m2﹣m﹣2),D(m,m﹣2),∵C(0,﹣2),∴PD=2m﹣m2,PC==,∴2m﹣m2=,∴m=或m=0(舍),∴P(,﹣),即满足条件的点P的坐标为(3,﹣2)或(,﹣).11.如图,在平面直角坐标系中,抛物线y=x2﹣2x经过坐标原点,与x轴正半轴交于点A,该抛物线的顶点为M,直线y=﹣x+b经过点A,与y轴交于点B,连接OM.(1)求b的值及点M的坐标;(2)将直线AB向下平移,得到过点M的直线y=mx+n,且与x轴负半轴交于点C,取点D(2,0),连接DM,求证:∠ADM﹣∠ACM=45°;(3)点E是线段AB上一动点,点F是线段OA上一动点,连接EF,线段EF的延长线与线段OM交于点G.当∠BEF=2∠BAO时,是否存在点E,使得3GF=4EF?若存在,求出点E的坐标;若不存在,请说明理由.【解答】(1)解:对于抛物线y=x2﹣2x,令y=0,得到x2﹣2x=0,解得x=0或6,∴A(6,0),∵直线y=﹣x+b经过点A,∴0=﹣3+b,∴b=3,∵y=x2﹣2x=(x﹣3)2﹣3,∴M(3,﹣3).(2)证明:如图1中,设平移后的直线的解析式y=﹣x+n.∵平移后的直线经过M(3,﹣3),∴﹣3=﹣+n,∴n=﹣,∴平移后的直线的解析式为y=﹣x﹣,过点D(2,0)作DH⊥MC于H,则直线DH的解析式为y=2x﹣4,由,解得,∴H(1,﹣2),∵D(2,0),M(3,﹣3),∴DH==,HM==,∴DH=HM.∴∠DMC=45°,∵∠ADM=∠DMC+∠ACM,∴∠ADM﹣∠ACM=45°.(3)解:如图2中,过点G作GH⊥OA于H,过点E作EK⊥OA于K.∵∠BEF=2∠BAO,∠BEF=∠BAO+∠EF A,∴∠EF A=∠BAO,∵∠EF A=∠GFH,tan∠BAO===,∴tan∠GFH=tan∠EFK=,∵GH∥EK,∴==,设GH=4k,EK=3k,则OH=HG=4k,FH=8k,FK=AK=6k,∴OF=AF=12k=3,∴k=,∴OF=3,FK=AK=,EK=,∴OK=,∴E(,).12.如图,已知抛物线:y1=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)直接写出点A,B,C的坐标;(2)将抛物线y1经过向右与向下平移,使得到的抛物线y2与x轴交于B,B'两点(B'在B的右侧),顶点D的对应点为点D',若∠BD'B'=90°,求点B'的坐标及抛物线y2的解析式;(3)在(2)的条件下,若点Q在x轴上,则在抛物线y1或y2上是否存在点P,使以B′,C,Q,P为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点P的坐标;如果不存在,请说明理由.【解答】解:(1)对于y1=﹣x2﹣2x+3,令y1=0,得到﹣x2﹣2x+3=0,解得x=﹣3或1,∴A(﹣3,0),B(1,0),令x=0,得到y1=3,∴C(0,3).(2)设平移后的抛物线的解析式为y2=﹣(x﹣a)2+b,如图1中,过点D′作D′H⊥OB′于H,连接BD′.∵D′是抛物线的顶点,∴D′B=D′B′,D′(a,b),∵∠BD′B′=90°,D′H⊥BB′,∴BH=HB′,∴D′H=BH=HB′=b,∴a=1+b,又∵y2=﹣(x﹣a)2+b,经过B(1,0),∴b=(1﹣a)2,解得a=2或1(不合题意舍弃),b=1,∴B′(3,0),y2=﹣(x﹣2)2+1=﹣x2+4x﹣3.(3)如图2中,观察图象可知,当点P的纵坐标为3或﹣3时,存在满足条件的平行四边形.对于y1=﹣x2﹣2x+3,令y1=3,x2+2x=0,解得x=0或﹣2,可得P1(﹣2,3),令y1=﹣3,则x2+2x﹣6=0,解得x=﹣1,可得P2(﹣1﹣,﹣3),P3(﹣1+,﹣3),对于y2=﹣x2+4x﹣3,令y2=3,方程无解,令y2=﹣3,则x2﹣4x=0,解得x=0或4,可得P4(0,﹣3),P5(4,﹣3),综上所述,满足条件的点P的坐标为(﹣2,3)或(﹣1﹣,﹣3)或(﹣1+,﹣3)或(0,﹣3)或(4,﹣3).13.如图,在平面直角坐标系中,函数y=﹣ax2+2ax+3a(a>0)的图象交x轴于点A、B,交y轴于点C,它的对称轴交x轴于点E.过点C作CD∥x轴交抛物线于点D,连接DE 并延长交y轴于点F,交抛物线于点G.直线AF交CD于点H,交抛物线于点K,连接HE、GK.(1)点E的坐标为:(1,0);(2)当△HEF是直角三角形时,求a的值;(3)HE与GK有怎样的位置关系?请说明理由.【解答】解:(1)对于抛物线y=﹣ax2+2ax+3a,对称轴x=﹣=1,∴E(1,0),故答案为(1,0).(2)如图,连接EC.对于抛物线y=﹣ax2+2ax+3a,令x=0,得到y=3a,令y=0,﹣ax2+2ax+3a=0,解得x=﹣1或3,∴A(﹣1,0),B(3,0),C(0,3a),∵C,D关于对称轴对称,∴D(2,3a),CD=2,EC=DE,当∠HEF=90°时,∵ED=EC,∴∠ECD=∠EDC,∵∠DCF=90°,∴∠CFD+∠EDC=90°,∠ECF+∠ECD=90°,∴∠ECF=∠EFC,∴EC=EF=DE,∵EA∥DH,∴F A=AH,∴AE=DH,∵AE=2,∴DH=4,∵HE⊥DFEF=ED,∴FH=DH=4,在Rt△CFH中,则有42=22+(6a)2,解得a=或﹣(不符合题意舍弃),∴a=.当∠HFE=90°时,∵OA=OE,FO⊥AE,∴F A=FE,∴OF=OA=OE=1,∴3a=1,∴a=,综上所述,满足条件的a的值为或.(3)结论:EH∥GK.理由:由题意A(﹣1,0),F(0,﹣3a),D(2,3a),H(﹣2,3a),E(1,0),∴直线AF的解析式y=﹣3ax﹣3a,直线DF的解析式为y=3ax﹣3a,由,解得或,∴K(6,﹣21a),由,解得或,∴G(﹣3,﹣12a),∴直线HE的解析式为y=﹣ax+a,直线GK的解析式为y=﹣ax﹣15a,∵k相同,∴HE∥GK.14.如图1,抛物线y=﹣x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=﹣x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.【解答】解:(1)∵点C(6,0)在抛物线上,∴,得到6b+c=9,又∵对称轴为x=2,∴,解得b=1,∴c=3,∴二次函数的解析式为;(2)当点M在点C的左侧时,如图2﹣1中:。

【初三英语试题精选】2018届中考数学《二次函数》专项复习训练(北京市西城区带答案)

【初三英语试题精选】2018届中考数学《二次函数》专项复习训练(北京市西城区带答案)
2018届中考数学《二次函数》专项复习训练(北京市西城区带答案)
北京市西城区普通中学-8 DDCCD ABC
二、
9 (32,0)和(-3,0)
10-2 x 3
11 0
12-1
13 y3<y1<y2
14 22
三、
15 (1)∵直线y=x+m经过点A(1,0),∴0=1+m∴m=-1∴y=x-1∵抛物+c,2=9+3b+c,解得b=-3,c=2∴抛物线的表达式为y=x2-3x+2 (2)x 1或x 3
16 (1)y=-35x2+3x+1=-35(x-52)2+194故函数的最大值是194,∴演员弹跳离地面的最大高度是194米
(2)当x=4时,y=-35×42+3×4+1=34=BC∴这次表演成功
17 (1)∵AB=x,∴BC=24-4x,∴S=AB BC=x(24-4x)=-4x2+24x(0<x<6)
(2)S=-4x2+24x=-4(x-3)2+36,∵0<x<6,∴当x=3时,花圃的面积最大,最大为36平方米
(3)∵24-4x≤8,24-4x>0,∴4≤x<6,∴当x=4时,花圃的面积最大,最大为32平方米
18 (1)y=120x(0 x≤30),[120-(x-30)]x(30 x≤m),[120-(m-30)]x(x>m)
(2)由(1)可知当0<x≤30或x>m时,函数值y都是随着x的增大而增大的,当30<x≤m时,y=-x2+150x=-(x-75)2+5 625,∵a=-1<0,∴当x≤75时,y随着x的增大而增大,∴为了让收取的总费用随着团队中人数的增大而增大,m的取值范围为30<m≤75

北京市西城区普通中学2018届初三中考数学复习 二次函数 专题复习练习题 含答案

北京市西城区普通中学2018届初三中考数学复习   二次函数 专题复习练习题 含答案

北京市西城区普通中学2018届初三中考数学复习二次函数 专题复习练习题1.二次函数y =-x 2+bx +c 的图象的最高点是(-1,-3),则b ,c 的值分别是( ) A .b =2,c =4 B .b =2,c =-4 C .b =-2,c =4 D .b =-2,c =-42.如图,二次函数y =x 2+bx +c 的图象过点B(0,-2).它与反比例函数y =-8x的图象交于点A(m ,4),则这个二次函数的表达式为( )A .y =x 2-x -2B .y =x 2-x +2C .y =x 2+x -2D .y =x 2+x +23.已知二次函数图象的对称轴为直线x =-1,函数的最大值为4,且图象经过点(2,-5),则此函数的表达式为________________.4.已知二次函数的图象开口向上,且对称轴在y 轴的右侧,请你写出一个满足条件的二次函数的表达式____________________________________________. 5. 有一个抛物线形桥拱,其最大高度为16 m ,跨度为40 m ,现把它的示意图放在如图所示的平面直角坐标系中,则此抛物线的表达式为______________________.6. 已知二次函数的图象经过原点及点(-12,-14),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的表达式为___________________________________.7.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:从上表可知,下列说法中正确的是________.(填序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是x=0.5;④在对称轴左侧,y随x增大而增大.8. 如图,抛物线y=x2+bx+c经过点A(-1,0),B(3,0).请解答下列问题:(1)求抛物线的表达式;(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE的中点,连结FH,求线段FH的长.9. 某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s和t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式; (2)求截止到几月末公司累积利润可达到30万元; (3)求第8个月公司所获利润是多少万元?10.如图,直线y =x +2与抛物线y =ax 2+bx +6(a≠0)相交于点A(12,52)和B(4,m),点P 是线段AB 上异于A 、B 的动点,过点P 作PC⊥x 轴于点D ,交抛物线于点C.(1) 求抛物线的表达式.(2) 是否存在这样的P 点,使线段PC 的长有最大值?若存在,求出这个最大值;若不存在,请说明理由.(3) 求△PAC 为直角三角形时点P 的坐标.11. 分别求出符合下列条件的抛物线y =ax 2的解析式: (1)经过点(-3,2);(2)与y =13x 2开口大小相同,方向相反.12. 二次函数y =ax 2的图象与直线y =2x -1交于点P(1,m). (1)求a ,m 的值;(2)写出二次函数的解析式,并指出x 取何值时,y 随x 的增大而增大?3. 已知二次函数y=mxm2-2.(1)求m的值;(2)当m为何值时,二次函数有最小值?求出这个最小值,并指出x取何值时,y随x的增大而减小;(3)当m为何值时,二次函数的图象有最高点?求出这个最高点,并指出x取何值时,y随x的增大而增大.14. 如图,已知二次函数y=ax2(a≠0)与一次函数y=kx-2的图象相交于A,B两点,其中A(-1,-1),求△OAB的面积.答案: 1. D 2. A3. y =-x 2-2x +34. 答案不唯一,如y =x 2-x ,y =x 2-2x +85. y =-125x 2+85x6. y =x 2+x 或y =-13x 2+13x7. ①③④8. (1) 抛物线的表达式为:y =x 2-2x -3.(2) ∵点E(2,m)在抛物线上,∴m =4-4-3=-3,∴E(2,-3),∴由勾股定理,得BE =(3-2)2+32=10,∵点F 是AE 的中点,抛物线的对称轴与x 轴交于点H ,即H 为AB 的中点,连结BE(图略),则FH 是三角形ABE 的中位线,∴FH =12BE =12×10=102.9. (1)由图象可知其顶点坐标为(2,-2),故可设其函数关系式为:s =a(t -2)2-2.∵所求函数关系式的图象过点(0,0),∴a(0-2)2-2=0,解得a =12.∴s=12(t-2)2-2,即s =12t 2-2t.(2)把s =30代入s =12(t -2)2-2,得12(t -2)2-2=30.解得t 1=10,t 2=-6(舍去).答:截止到10月末公司累积利润可达30万元.(3)把t=7代入关系式,得s =12×72-2×7=10.5,把t =8代入关系式,得s =12×82-2×8=16,16-10.5=5.5.答:第8个月公司所获利润是5.5万元.10. (1)抛物线的表达式为y =2x 2-8x +6.(2)设动点P 的坐标为(n ,n +2),则点C 的坐标为(n ,2n 2-8n +6),∴PC =(n +2)-(2n 2-8n +6)=-2n 2+9n -4=-2(n -94)2+498,∵12<n<4,∴当n =94时,线段PC 最大且为498. (3)∵△PAC 为直角三角形,(ⅰ)若点P 为直角顶点,则∠APC=90°,由题意易知,PC ∥y 轴,∠APC =45°,因此这种情形不存在.(ⅱ)若点A 为直角顶点,则∠PAC =90°,如图①,过点A(12,52)作AN⊥x 轴于点N ,则ON =12,AN =52.过点A 作AM⊥直线AB ,交x 轴于点M ,则由题意易知,△AMN 为等腰直角三角形,∴MN =AN =52,∴OM =ON +MN =12+52=3,∴M(3,0).设直线AM 的表达式为y =kx +b ,则⎩⎪⎨⎪⎧12k +b =52,3k +b =0,解得⎩⎪⎨⎪⎧k =-1,b =3,∴直线AM 的表达式为y =-x +3①,又抛物线的表达式为y =2x 2-8x +6②,联立①②式,解得x =3或x =12(与点A 重合,舍去),∴C(3,0),即点C ,点M 重合,当x =3时,y =x +2=5,∴P 1(3,5).(ⅲ)若点C 为直角顶点,则∠ACP=90°,∴AC ∥x 轴.∵y=2x 2-8x +6=2(x -2)2-2,∴抛物线的对称轴为直线x =2,如图②,作点A(12,52)关于对称轴x =2的对称点C ,则点C 在抛物线上,且C(72,52).当x =72时,y =x +2=112,∴P 2(72,112).∵点P 1(3,5),P 2(72,112)均在线段AB 上,∴综上所述,点P 的坐标为(3,5)或(72,112).11. 解:(1)∵y =ax 2过点(-3,2),∴2=a ·(-3)2,则a =29,∴解析式为y =29x 2(2)∵y =ax 2与抛物线y =13x 2开口大小相同,方向相反,∴a =-13,∴解析式为y =-13x 212. 解:(1)把(1,m)代入y =2x -1 中,得m =1,所以P(1,1),把(1,1)代入y =ax 2中,得a =1(2)y =x 2,当x>0时,y 随x 的增大而增大 13. 解:(1)m =±2(2)m =2,y 最小=0,x <0时,y 随x 的增大而减小(3)m =-2,最高点(0,0),x <0时,y 随x 的增大而增大14. 解:∵点A(-1,-1)在抛物线y =ax 2(a ≠0)上,也在直线y =kx -2上, ∴-1=a ·(-1)2,-1=k ·(-1)-2, 解得a =-1,k =-1,∴两函数的解析式分别为y =-x 2,y =-x -2.由⎩⎪⎨⎪⎧y =-x 2,y =-x -2,解得⎩⎪⎨⎪⎧x 1=-1,y 1=-1,⎩⎪⎨⎪⎧x 2=2,y 2=-4,∴点B的坐标为(2,-4).∵y=-x-2与y轴交于点G,则G(0,-2),∴S△OAB=S△OAG+S△OBG=12×(1+2)×2=3。

北京市2018年度十八中分学校初三上学期二次函数单元考试试卷

北京市2018年度十八中分学校初三上学期二次函数单元考试试卷

二次函数单元测试卷一、选择题(共1小题)1.如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2 B.y=x2﹣x+2 C.y=x2+x﹣2 D.y=x2+x+2二、填空题(共2小题)2.已知二次函数y=x2+bx+c经过点(3,0)和(4,0),则这个二次函数的解析式是.3.抛物线y=ax2+bx+c(a≠0)经过点(1,2)和(﹣1,﹣6)两点,则a+c=.三、解答题(共13小题)4.已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.(1)求m、n的值;(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.5.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x 轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.6.已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.7.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.8.如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:(1)求抛物线的解析式.(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.9.如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.10.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.11.如图,抛物线y=a(x﹣1)2+4与x轴交于点A,B,与y轴交于点C,过点C 作CD∥x轴交抛物线的对称轴于点D,连接BD,已知点A的坐标为(﹣1,0)(1)求该抛物线的解析式;(2)求梯形COBD的面积.12.如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.13.在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,且点D纵坐标为t,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.14.如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).15.已知二次函数图象的顶点坐标为(1,﹣1),且经过原点(0,0),求该函数的解析式.16.如图①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).参考答案与试题解析一、选择题(共1小题)1.如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2 B.y=x2﹣x+2 C.y=x2+x﹣2 D.y=x2+x+2【分析】将A坐标代入反比例解析式求出m的值,确定出A的坐标,将A与B 坐标代入二次函数解析式求出b与c的值,即可确定出二次函数解析式.【解答】解:将A(m,4)代入反比例解析式得:4=﹣,即m=﹣2,∴A(﹣2,4),将A(﹣2,4),B(0,﹣2)代入二次函数解析式得:,解得:b=﹣1,c=﹣2,则二次函数解析式为y=x2﹣x﹣2.故选:A.【点评】此题考查了待定系数法求二次函数解析式,以及反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.二、填空题(共2小题)2.已知二次函数y=x2+bx+c经过点(3,0)和(4,0),则这个二次函数的解析式是y=x2﹣7x+12.【分析】由于已知了二次函数与x轴的两交点坐标,则可设交点式易得其解析式.【解答】解:设二次函数的解析式为y=a(x﹣3)(x﹣4),而a=1,所以二次函数的解析式为y=(x﹣3)(x﹣4)=x2﹣7x+12.故答案为y=x2﹣7x+12.【点评】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.3.抛物线y=ax2+bx+c(a≠0)经过点(1,2)和(﹣1,﹣6)两点,则a+c=﹣2.【分析】把两点的坐标代入二次函数的解析式,通过①+②,得出2a+2c=﹣4,即可得出a+c的值.【解答】解:把点(1,2)和(﹣1,﹣6)分别代入y=ax2+bx+c(a≠0)得:,①+②得:2a+2c=﹣4,则a+c=﹣2;故答案为:﹣2.【点评】此题考查了待定系数法求二次函数的解析式,解题的关键是通过①+②,得到2a+2c的值,再作为一个整体出现,不要单独去求a,c的值.三、解答题(共13小题)4.已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.(1)求m、n的值;(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.【分析】(1)利用对称轴公式求得m,把P(﹣3,1)代入二次函数y=x2+mx+n 得出n=3m﹣8,进而就可求得n;(2)根据(1)得出二次函数的解析式,根据已知条件,利用平行线分线段成比例定理求得B的纵坐标,代入二次函数的解析式中求得B的坐标,然后利用待定系数法就可求得一次函数的表达式.【解答】解:∵对称轴是经过(﹣1,0)且平行于y轴的直线,∴﹣=﹣1,∴m=2,∵二次函数y=x2+mx+n的图象经过点P(﹣3,1),∴9﹣3m+n=1,得出n=3m﹣8.∴n=3m﹣8=﹣2;(2)∵m=2,n=﹣2,∴二次函数为y=x2+2x﹣2,作PC⊥x轴于C,BD⊥x轴于D,则PC∥BD,∴=,∵P(﹣3,1),∴PC=1,∵PA:PB=1:5,∴=,∴BD=6,∴B的纵坐标为6,代入二次函数为y=x2+2x﹣2得,6=x2+2x﹣2,解得x1=2,x2=﹣4(舍去),∴B(2,6),∴,解得,∴一次函数的表达式为y=x+4.【点评】本题考查了待定系数法求二次函数的解析式和一次函数的解析式,根据已知条件求得B的坐标是解题的关键.5.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x 轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.【分析】(1)根据题意确定出B与C的坐标,代入抛物线解析式求出b与c的值,即可确定出解析式;(2)把抛物线解析式化为顶点形式,找出顶点坐标,四边形ABDC面积=三角形ABC面积+三角形BCD面积,求出即可.【解答】解:(1)由已知得:C(0,4),B(4,4),把B与C坐标代入y=﹣x2+bx+c得:,解得:b=2,c=4,则解析式为y=﹣x2+2x+4;(2)∵y=﹣x2+2x+4=﹣(x﹣2)2+6,∴抛物线顶点坐标为(2,6),则S=S△ABC+S△BCD=×4×4+×4×2=8+4=12.四边形ABDC【点评】此题考查了待定系数法求二次函数解析式,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.6.已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.【分析】(1)根据抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0),直接得出抛物线的解析式为;y=﹣(x﹣3)(x+1),再整理即可,(2)根据抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,即可得出答案.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).∴抛物线的解析式为;y=﹣(x﹣3)(x+1),即y=﹣x2+2x+3,(2)∵抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的顶点坐标为:(1,4).【点评】此题考查了用待定系数法求函数的解析式,用到的知识点是二次函数的解析式的形式,关键是根据题意选择合适的解析式.7.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.【分析】(1)利用待定系数法求二次函数解析式即可;(2)首先求出直线与二次函数的交点坐标进而得出E,F点坐标,即可得出△DEF 的面积.【解答】解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,∴,解得:,故抛物线解析式为:y=x2﹣2x﹣3;(2)根据题意得:,解得:,,∴D(4,5),对于直线y=x+1,当x=0时,y=1,∴F(0,1),对于y=x2﹣2x﹣3,当x=0时,y=﹣3,∴E(0,﹣3),∴EF=4,过点D作DM⊥y轴于点M.=EF•DM=8.∴S△DEF【点评】此题主要考查了待定系数法求二次函数解析式以及三角形面积求法等知识,利用数形结合得出D,E,F点坐标是解题关键.8.如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:(1)求抛物线的解析式.(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.【分析】(1)把点A(﹣4,﹣3)代入y=x2+bx+c得16﹣4b+c=﹣3,根据对称轴是x=﹣3,求出b=6,即可得出答案,(2)根据CD∥x轴,得出点C与点D关于x=﹣3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD 中CD边上的高,即可求出△BCD的面积.【解答】解:(1)把点A(﹣4,﹣3)代入y=x2+bx+c得:16﹣4b+c=﹣3,c﹣4b=﹣19,∵对称轴是x=﹣3,∴﹣=﹣3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=﹣3对称,∵点C在对称轴左侧,且CD=8,∴点C的横坐标为﹣7,∴点C的纵坐标为(﹣7)2+6×(﹣7)+5=12,∵点B的坐标为(0,5),∴△BCD中CD边上的高为12﹣5=7,∴△BCD的面积=×8×7=28.【点评】此题考查了待定系数法求二次函数的解析式、二次函数的性质,用到的知识点是二次函数的图象和性质,此题难度适中,注意掌握数形结合思想与方程思想的应用.9.如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.【分析】(1)利用待定系数法把A(1,0),C(0,﹣3)代入二次函数y=x2+bx+c 中,即可算出b、c的值,进而得到函数解析式是y=x2+2x﹣3;(2)首先求出A、B两点坐标,再算出AB的长,再设P(m,n),根据△ABP 的面积为10可以计算出n的值,然后再利用二次函数解析式计算出m的值即可得到P点坐标.【解答】解:(1)∵二次函数y=x2+bx+c过点A(1,0),C(0,﹣3),∴,解得,∴二次函数的解析式为y=x2+2x﹣3;(2)∵当y=0时,x2+2x﹣3=0,解得:x1=﹣3,x2=1;∴A(1,0),B(﹣3,0),∴AB=4,设P(m,n),∵△ABP的面积为10,∴AB•|n|=10,解得:n=±5,当n=5时,m2+2m﹣3=5,解得:m=﹣4或2,∴P(﹣4,5)(2,5);当n=﹣5时,m2+2m﹣3=﹣5,方程无解,故P(﹣4,5)(2,5);【点评】此题主要考查了待定系数法求二次函数解析式,以及求点的坐标,关键是掌握凡是函数图象经过的点必能满足解析式.10.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.【分析】(1)根据二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,代入得出关于a,b,c的三元一次方程组,求得a,b,c,从而得出二次函数的解析式;(2)令y=0,解一元二次方程,求得x的值,从而得出与x轴的另一个交点坐标;(3)画出图象,再根据图象直接得出答案.【解答】解:(1)∵二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C (4,5)三点,∴,∴a=,b=﹣,c=﹣1,∴二次函数的解析式为y=x2﹣x﹣1;(2)当y=0时,得x2﹣x﹣1=0;解得x1=2,x2=﹣1,∴点D坐标为(﹣1,0);(3)图象如图,当一次函数的值大于二次函数的值时,x的取值范围是﹣1<x<4.【点评】本题考查了用待定系数法求二次函数的解析式以及一次函数的图象、抛物线与x轴的交点问题,是中档题,要熟练掌握.11.如图,抛物线y=a(x﹣1)2+4与x轴交于点A,B,与y轴交于点C,过点C 作CD∥x轴交抛物线的对称轴于点D,连接BD,已知点A的坐标为(﹣1,0)(1)求该抛物线的解析式;(2)求梯形COBD的面积.【分析】(1)将A坐标代入抛物线解析式,求出a的值,即可确定出解析式;(2)抛物线解析式令x=0求出y的值,求出OC的长,根据对称轴求出CD的长,令y=0求出x的值,确定出OB的长,利用梯形面积公式即可求出梯形COBD的面积.【解答】解:(1)将A(﹣1,0)代入y=a(x﹣1)2+4中,得:0=4a+4,解得:a=﹣1,则抛物线解析式为y=﹣(x﹣1)2+4;(2)对于抛物线解析式,令x=0,得到y=3,即OC=3,∵抛物线解析式为y=﹣(x﹣1)2+4的对称轴为直线x=1,∴CD=1,∵A(﹣1,0),∴B(3,0),即OB=3,则S==6.梯形COBD【点评】此题考查了利用待定系数法求二次函数解析式,二次函数的性质,以及二次函数与x轴的交点,熟练掌握待定系数法是解本题的关键.12.如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)根据抛物线经过点A(1,0),对称轴是x=2列出方程组,解方程组求出b、c的值即可;(2)因为点A与点C关于x=2对称,根据轴对称的性质,连接BC与x=2交于点P,则点P即为所求,求出直线BC与x=2的交点即可.【解答】解:(1)由题意得,,解得b=4,c=3,∴抛物线的解析式为.y=x2﹣4x+3;(2)∵点A与点C关于x=2对称,∴连接BC与x=2交于点P,则点P即为所求,根据抛物线的对称性可知,点C的坐标为(3,0),y=x2﹣4x+3与y轴的交点为(0,3),∴设直线BC的解析式为:y=kx+b,,解得,k=﹣1,b=3,∴直线BC的解析式为:y=﹣x+3,则直线BC与x=2的交点坐标为:(2,1)∴点P的坐标为:(2,1).【点评】本题考查的是待定系数法求二次函数的解析式和最短路径问题,掌握待定系数法求解析式的一般步骤和轴对称的性质是解题的关键.13.在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,且点D纵坐标为t,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.【分析】(1)将A与B坐标代入抛物线解析式求出m与n的值,确定出抛物线解析式,求出对称轴即可;(2)由题意确定出C坐标,以及二次函数的最小值,确定出D纵坐标的最小值,求出直线BC解析式,令x=1求出y的值,即可确定出t的范围.【解答】解:(1)∵抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4),代入得:,解得:,∴抛物线解析式为y=2x2﹣4x﹣2,对称轴为直线x=1;(2)由题意得:C(﹣3,﹣4),二次函数y=2x2﹣4x﹣2的最小值为﹣4,由函数图象得出D纵坐标最小值为﹣4,设直线BC解析式为y=kx+b,将B与C坐标代入得:,解得:k=,b=0,∴直线BC解析式为y=x,当x=1时,y=,则t的范围为﹣4≤t≤.【点评】此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数的最值,熟练掌握待定系数法是解本题的关键.14.如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).【分析】(1)将A与B代入抛物线解析式求出a与c的值,即可确定出抛物线解析式;(2)利用顶点坐标公式表示出D点坐标,进而确定出E点坐标,得到DE与OE的长,根据B点坐标求出BO的长,进而求出BE的长,在直角三角形BED中,利用勾股定理求出BD的长.【解答】解:(1)∵抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),∴将A与B坐标代入得:,解得:,则抛物线解析式为y=﹣x2+2x+3;(2)点D为抛物线顶点,由顶点坐标(﹣,)得,D(1,4),∵对称轴与x轴交于点E,∴DE=4,OE=1,∵B(﹣1,0),∴BO=1,∴BE=2,在Rt△BED中,根据勾股定理得:BD===2.【点评】此题考查了待定系数法求二次函数解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.15.已知二次函数图象的顶点坐标为(1,﹣1),且经过原点(0,0),求该函数的解析式.【分析】设二次函数的解析式为y=a(x﹣1)2﹣1(a≠0),然后把原点坐标代入求解即可.【解答】解:设二次函数的解析式为y=a(x﹣1)2﹣1(a≠0),∵函数图象经过原点(0,0),∴a(0﹣1)2﹣1=0,解得a=1,∴该函数解析式为y=(x﹣1)2﹣1.【点评】本题考查了待定系数法求二次函数解析式,利用顶点式解析式求解更加简便.16.如图①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).【分析】(1)把点A、B、C代入抛物线解析式y=ax2+bx+c利用待定系数法求解即可;(2)把抛物线解析式整理成顶点式形式,然后写出顶点坐标与对称轴即可;(3)根据顶点坐标求出向上平移的距离,再根据阴影部分的面积等于平行四边形的面积,列式进行计算即可得解.【解答】解:(1)∵抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3),∴,解得,所以抛物线的函数表达式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),对称轴为直线x=2;(3)如图,∵抛物线的顶点坐标为(2,﹣1),∴PP′=1,阴影部分的面积等于平行四边形A′APP′的面积,平行四边形A′APP′的面积=1×2=2,∴阴影部分的面积=2.【点评】本题考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象与几何变换,(3)根据平移的性质,把阴影部分的面积转化为平行四边形的面积是解题的关键.。

(8)2018-2020年北京中考数学复习各地区模拟试题分类(8)——二次函数参考答案

(8)2018-2020年北京中考数学复习各地区模拟试题分类(8)——二次函数参考答案

(8)——二次函数参考答案与试题解析一.选择题(共2小题)1.【解答】解:由图象可得,该函数的对称轴x >18+542且x <54,∴36<x <54,故选:C .2.【解答】解:∵y =﹣n 2+14n ﹣24=﹣(n ﹣2)(n ﹣12),1≤n ≤12且n 为整数,∴当y =0时,n =2或n =12,当y <0时,n =1,故选:D .二.填空题(共5小题)3.【解答】解:(1)∵y =kx 2+(2k +1)x +1(k 为实数).∴当x =﹣2时,y =4k +(2k +1)×(﹣2)+1=﹣1,当x =0时,y =0+0+1=1,∴对于任意实数k ,函数图象一定经过点(﹣2,﹣1)和点(0,1),故答案为:(0,1);(2)∵k 为任意正实数,∴k >0,∴函数图象开口向上,∵函数y =kx 2+(2k +1)x +1的对称轴为x=−2k+12k =−1−12k <−1,∴在对称轴右侧,y 随x 的增大而增大,∵x >m 时,y 随x 的增大而增大,∴m ≥﹣1−12k ,故m =0时符合题意.(答案不唯一,m ≥﹣1即可).故答案为:0.4.【解答】解:将点A 、B 、C 的坐标代入抛物线表达式得:−2=4a −2b +c c =33=9a +3b +c ,解得:a =−12b =32c =3,故抛物线y 1的表达式为:y 1=−12x 2+32x +3,顶点(32,338);同理可得:y 2=−54x 2+154x +3,顶点坐标为:(32,9316);y 3=−58x 2+54x +3,顶点坐标为(1,298);y 4=﹣x 2+2x +6,与y 轴的交点为:(0,6);①由函数表达式知,四条抛物线的开口方向均向下,故正确,符合题意;②当x <0时,y 3随x 的增大而增大,故错误,不符合题意;③由顶点坐标知,抛物线y 1的顶点在抛物线y 2顶点的下方,错误,不符合题意;④抛物线y 4与y 轴的交点(0,6)在B 的上方,正确,符合题意.故答案为:①④.5.【解答】解:y =x 2﹣3x +2,答案不唯一.故答案为:y =x 2﹣3x +2,答案不唯一.6.【解答】解:符合的表达式是y =(x ﹣1)2,故答案为:(x ﹣1)2.7.【解答】解:y =3x 2+2=3(x +0)2+2,所以将抛物线y =3(x +2)2﹣1先向右平移2个单位长度,再向上平移3个单位长度得到抛物线y =3x 2+2.故答案为:将抛物线y =3(x +2)2﹣1先向右平移2个单位长度,再向上平移3个单位长度得到抛物线y=3x 2+2三.解答题(共32小题)8.【解答】解:(1)∵抛物线的对称轴是直线x =1,∴m 2=1,∴m =2,∴抛物线的解析式为y =﹣x 2+2x +3,令y =0,则﹣x 2+2x +3=0,∴x =﹣1或x =3,∴A (﹣1,0),B (3,0),画出图象如图1所示;(2)∵P (m ,2),Q (﹣m ,2m ﹣1),当x =m 时,y =﹣m 2+m 2+3=3,∴点P 在抛物线与x 轴围成的图象的内部,∵当x =﹣m 时,y =﹣m 2﹣m 2+3=﹣2m 2+3,当m ≥0时,点P 在第一象限内,∴点P 在抛物线与x 轴围成的图象的内部,∴线段PQ 只有和在x =m 左侧的抛物线相交,∵抛物线与线段PQ 恰有一个公共点,∴﹣2m 2+3≤2m ﹣1,∴m ≤﹣2或m ≥1,∵m ≥0,∴m ≥1,当m <0时,点P 在第二象限内,∴点P 在抛物线与x 轴围成的图象的内部,∴线段PQ 只有和在x =m 右侧的抛物线相交,∵抛物线与线段PQ 恰有一个公共点,∴﹣2m 2+3≤2m ﹣1,∴m ≤﹣2或m ≥1,∵m <0,∴m ≤﹣2,即满足条件的m 的范围为m ≤﹣2或m ≥1.9.【解答】(1)x 取任意实数;故答案为:x 取任意实数;(2)把x =1代入y=12x 3﹣4x +1得,y=12−4+1=−52,故答案为:−52;(3)根据列表、描点、连线得出函数y=12x 3−4x +1的图象,所画的图象如图所示:(4)通过图象直观得出函数的图象与x 轴正半轴交点的横坐标.故答案为:0.3或2.7.10.【解答】解:(1)∵y=x2﹣2ax+a2=(x﹣a)2,∴顶点A(a,0);(2)①当a=0时,则抛物线y=x2,如图所示,观察图形,可知:区域W内的整点个数是4;②如图所示:当抛物线经过(0,2),区域W内有1个整点;当抛物线经过(0,1),区域W内有3个整点;观察图形,可知:如果区域W 内有2个整点,a 的取值范围为−2<a ≤﹣1.11.【解答】解:(1)∵抛物线y =ax 2+a 2x +c 与y 轴交于点(0,2),∴c 的值为2;(2)当a =2时,抛物线为y =2x 2+4x +2=2(x +1)2,∴抛物线顶点的坐标为(﹣1,0);(3)当a >0时,①当a =2时,如图1,抛物线与AB 只有一个交点;②当a =1+2时,如图2,抛物线与线段AB 有两个交点,结合函数图象可知:2<a ≤1+2;当a <0时,抛物线与线段AB 只有一个交点或没有交点,综上所述,a 的取值范围为2<a ≤1+2.12.【解答】解:(1)把m =3代入y =mx 2﹣3(m ﹣1)x +2m ﹣1中,得y =3x 2﹣6x +5=3(x ﹣1)2+2,∴抛物线的顶点坐标是(1,2).(2)当x =1时,y =m ﹣3(m ﹣1)+2m ﹣1=m ﹣3m +3+2m ﹣1=2.∵点A (1,2),∴抛物线总经过点A .(3)∵点B (0,2),由平移得C (3,2).①当抛物线的顶点是点A (1,2)时,抛物线与线段BC 只有一个公共点.由(1)知,此时,m =3.②当抛物线过点B (0,2)时,将点B (0,2)代入抛物线表达式,得2m ﹣1=2.∴m=32>0.此时抛物线开口向上(如图1).∴当0<m <32时,抛物线与线段BC 只有一个公共点.③当抛物线过点C (3,2)时,将点C (3,2)代入抛物线表达式,得9m ﹣9(m ﹣1)+2m ﹣1=2.∴m =﹣3<0.此时抛物线开口向下(如图2).∴当﹣3<m <0时,抛物线与线段BC 只有一个公共点.综上,m 的取值范围是m =3或0<m <32或﹣3<m <0.13.【解答】解:(1)∵抛物线y =x 2+2x +m +1=(x +1)2+m ,∴抛物线的顶点(﹣1,m ),(2)∵抛物线经过点A (m ,m +1),∴m +1=m 2+2m +m +1,解得m =0或﹣2,∴抛物线的解析式为y =x 2+2x +1或y =x 2+2x ﹣1.(3)当m ≥0时,如图1中,观察图象可知:m+1≤m2+2m+m+1≤m+3,∴m2+2m≥0且m2+2m﹣2≤0,解得0≤m≤﹣1+3.当m<0时,如图2中,观察图象可知:m+1≤m2+2m+m+1≤m+3,∴m2+2m≥0且m2+2m﹣2≤0,解得﹣1−3≤m≤﹣2,综上所述,满足条件的m的值为:0≤m≤﹣1+3或﹣1−3≤m≤﹣2.14.【解答】解:(1)∵抛物线y=ax2+bx﹣1交y轴于点P,∴点P(0,﹣1),∵PQ=4,PQ∥x轴,∴点Q(4,﹣1),(﹣4,﹣1)当点Q为(4,﹣1),∴﹣1=16a+4b﹣1,∴ba=−4,当点Q(﹣4,﹣1)∴﹣1=16a﹣4b﹣1,∴ba=4;(2)当a<0时,当抛物线过点(2,2)时,a=−34,当抛物线过点(2,3)时,a =﹣1,∴﹣1≤a <−34,当a >0时,当抛物线过点(2,﹣2)时,a=14,当抛物线过点(1,﹣2)时,a=13,∴14<a ≤13;综上所述:14<a ≤13或﹣1≤a <−34.15.【解答】解:(1)抛物线的对称轴为:x =2,故答案为:x =2;(2)解:∵抛物线的对称轴直线为x =2,∴顶点在1≤x ≤5范围内,∵y 的最小值是﹣1,∴顶点坐标为(2,﹣1).∵a >0,开口向上,∴当x >2时,y 随x 的增大而增大,即x =5时,y 有最大值,∴把顶点(2,﹣1)代入y =ax 2﹣4ax +1,∴4a ﹣8a +1=﹣1,解得a=12,∴y=12x 2﹣2x +1,∴当x =5时,y=72,即y 的最大值是72;(3)当x =﹣2时,P (﹣2,5),把P (﹣2,5)代入y =ax 2﹣4ax +1,∴4a +8a +1=5,解得a=13,当x 1=﹣1时,P (﹣1,4),把P (﹣1,4)代入y =ax 2﹣4ax +1,∴a +4a +1=4,解得a=35,∴13≤a <35.16.【解答】解:(1)∵点A (﹣1,0)在抛物线y =ax 2+bx ﹣3a (a ≠0)上,∴a ﹣b ﹣3a =0,即b =﹣2a ,∴y =ax 2﹣2ax ﹣3a =a (x ﹣1)2﹣4a ,∴抛物线的顶点坐标为(1,﹣4a );(2)∵y =ax 2﹣2ax ﹣3a =a (x 2﹣2x ﹣3)=a (x +1)(x ﹣3),∴抛物线与x 轴交于点A (﹣1,0),D (3,0),与y 轴交于点E (0,﹣3a ).由题意得,点C (0,4),又∵B (3,4),如图,当a >0时,显然,抛物线与线段BC 无公共点,当a <0时,若抛物线的顶点在线段BC 上,则顶点坐标为(1,4),∴﹣4a =4,∴a =﹣1.若抛物线的顶点不在线段BC 上,由抛物线与线段BC 恰有一个公共点,得﹣3a >4,∴a <−43,综上,a 的取值范围是a <−43,或a =﹣1.17.【解答】解:(1)①当G 在原点下方时,b =﹣3,②当G 在原点上方时,(x −0)2+(x 2−b)2=3,整理得:x 4+(1﹣2b )x 2+b 2﹣9=0,△=(1﹣2b )2﹣4(b 2﹣9)=0,解得:b=374(舍去),故答案为:﹣3;(2)如图1,作直线y=x+3与x轴交于点B(﹣3,0),过点M作MN⊥BN交于点N,则MN的长度为所求值,则△BMN为等腰直角三角形,故MN==32,故点M(3,0)到直线y=x+3的距离为32;(3)①当点N在直线BH和x=2的交点下方时,如图2,作直线y=x+4交x轴于点B,过点N作NH⊥BH于点H,过点N作MN∥x轴交直线BH于点M,则HN=4,由(2)同理可知,△HMN为等腰直角三角形,MN=2HN=42,故x M=2﹣42,y M=x M+4=6﹣42=y N,故点N的坐标为:(2,6﹣42);②当点N在直线BH和x=2的交点上方时,同理可得:点N的坐标为:(2,6+42);综上,点N的坐标为:(2,6﹣42)或(2,6+42).18.【解答】解:(1)把点A(0,﹣4)和B(﹣2,2)分别代入y=ax2+bx+c中,得c=﹣4,4a﹣2b+c=2.∴b=2a﹣3;(2)当a<0时,依题意抛物线的对称轴需满足−2a−32a≤−2,解得−32≤a<0.当a>0时,依题意抛物线的对称轴需满足−2a−32a≥0,解得0<a ≤32.∴a 的取值范围是−32≤a <0或0<a ≤32;(3)设直线AB 的表达式为:y =mx +n ,则n =−42=−2m +n ,解得:m =−3n =−4,故直线AB 表达式为y =﹣3x ﹣4,把C (m ,5)代入得m =﹣3.∴C (﹣3,5),由平移得D (1,5).①当a >0时,若抛物线与线段CD 只有一个公共点(如图1),y =ax 2+bx +c =ax 2+(2a ﹣3)x ﹣4,当x =1时,y =3a ﹣7,则抛物线上的点(1,3a ﹣7)在D 点的下方,∴a +2a ﹣3﹣4<5.解得a <4.∴0<a <4;②当a <0时,若抛物线的顶点在线段CD 上,则抛物线与线段只有一个公共点(如图2),∴4ac−b 24a =5.即4a×(−4)−(2a−3)24a =5.解得a =−3+a =−3−综上,a 的取值范围是0<a <4或a =−3−19.【解答】解:(1)当x =0时,则y=1m x 2﹣2x +1=1,∴A (0,1),∵y=1m x 2﹣2x +1=1m (x −m)2+1−m ,∴B (m ,1﹣m ),故答案为(0,1);(m ,1﹣m );(2)当m >0时,1﹣m <1,∴抛物线的对称轴在y 轴右边,顶点在y =4的下方,若抛物线与线段MN ×(−6)2−2×(−6)+1≥4×32−2×3+1<4,解得,m >1;当m <0时,1﹣m >1,若1<1﹣m <4,即﹣3<m <0时,抛物线开口向下,顶点在直线y =4的下方,则抛物线与线段MN 无交点;若1﹣m =4,即m =﹣3时,抛物线的顶点在线段MN 上,此时抛物线与线段MN 只有一个公共点;若1﹣m >4,即m <﹣3时,抛物线的对称轴在直线x =﹣3的左边,顶点在直线y =4的上方,若抛物线与线段MN ×(−6)2−2×(−6)+1>4×32−2×3+1≤4,解得,m <﹣4,综上,m <﹣4或m =﹣3或m >1.20.【解答】解:(1)①如图1,∵矩形ACBD 是点A ,B 的“相关矩形”,∴AD ∥CB ,∵点A (1,0),B (2,5),∴点C (2,0),BC =5,∴AC =2﹣1=1,∴点A ,B 的“相关矩形”的周长为2(AC +BC )=2×(1+5)=12;②如图2,∵点C 在直线x =3上,∴点C 的横坐标为3,∵点A (1,0),C 的“相关矩形”为正方形,∴BC ∥AD ,AB =BC ,∴点B 的坐标为(3,0),∴BC =AB =3﹣1=2∴点C 的坐标为(3,2)或(3,﹣2),∵抛物线y =x 2+mx +n 经过点A 和点C ,∴1+m +n =09+3m +n =2或1+m +n =09+3m +n =−2∴m =−3n =2或m =−5n =4∴抛物线的解析式为y =x 2﹣3x +2或y =x 2﹣5x +4,令x =0,则y =0,或y =4∴点D 的坐标为(0,2)或(0,4);(2)如图3,当点F 在y 轴的右侧时,点E 在点M 的右侧时,点E 的横坐标大,连接OM ,OF ,设OG =m ,∵点E ,F 的“相关矩形”为正方形,∴FM =ME ,∵点E 在直线y =3上,∴MG =3,在Rt △OGF 中,FG=OF 2−OG 2=16−m 2,∴点E 的横坐标为OG +ME =OG +MF =OG +MG +FG =OG +3+FG=m+16−m 2+3=(m )2+16−m 2)2﹣2m 16−m 2+2m 16−m 2+3=(m −16−m 2)2+2m 16−m 2+3≥2m 16−m 2+3(当且仅当m =16−m 2时,取等号),即m =22时,点E 的横坐标为(OG +ME )最大=(m+16−m 2)最大+3=42+3,∴点E 的横坐标最大是42+3,由圆的对称性得,点E 的横坐标的最小值为﹣(42+3),即点E 的横坐标的范围是大于等于﹣(42+3)而小于等于(42+3).21.【解答】解:(1)∵二次函数y =ax 2﹣2kx +k 2+k 图象的对称轴为直线x =k ,∴−−2k 2a =k ,∴a =1;(2)把a =1代入y =ax 2﹣2kx +k 2+k 得,y =x 2﹣2kx +k 2+k ,当x =k 时,y =k 2﹣2k 2+k 2+k =k ,∴顶点P (k ,k );(3)∵函数y =ax 2﹣2kx +k 2+k =x 2﹣2kx +k 2+k =(x ﹣k )2+k ,∴抛物线的开口向上,抛物线的对称轴为x =k ,顶点为(k ,k ),∵点A (0,1),B (2,1),∴①当k >1时,抛物线的顶点在直线AB 的上方,抛物线与直线AB 没有公共点,则函数y =ax 2﹣2kx +k 2+k (k ﹣1≤x ≤k +1)的图象与线段AB 没有公共点;②当k =1时,顶点(1,1)在线段AB 上,即函数y =ax 2﹣2kx +k 2+k (k ﹣1≤x ≤k +1)的图象与线段AB恰有一个公共点;③当k <0时,则x =k +1或k ﹣1时,y =1+k <1,函数y =ax 2﹣2kx +k 2+k (k ﹣1≤x ≤k +1)的图象在线段AB 下方,没有公共点;④当k =0时,函数y =ax 2﹣2kx +k 2+k =x 2,与线段AB 恰有一个公共点(1,1);⑤当0<k <1时,若函数图象过A (0,1)时,k 2+k =1,解得k=0(舍去),或k=∵01,∴根据抛物线的对称性知,当−1+52≤k <1时,函数y =ax 2﹣2kx +k 2+k (k ﹣1≤x ≤k +1)的图象与线段AB 有两个公共点,当0<k y =ax 2﹣2kx +k 2+k (k ﹣1≤x ≤k +1)的图象与线段AB 恰有一个公共点;综上所述:若函数y =ax 2﹣2kx +k 2+k (k ﹣1≤x ≤k +1)的图象与线段AB 恰有一个公共点,则0≤k 或k =1;22.【解答】解:(1)∵x 轴是图形l ,△PAB 是边长为2的等边三角形,∴P 点纵坐标为±3,y =x 上存在点(3,3)或(−3,−3)是x 轴的“美好点”,y=1x 上存在点(33,3)或(−−3)是x 轴的“美好点”y =x 2+2中y 的最小是2,∴y =x 2+2上不存在x 轴的“美好点”,故选A 、B ;(2)①∵M (3n ,0),N (0,n ),n >0,设直线MN 的解析式为y =kx +b ,则有b =n 0=3nk +b ,解得b =nk =−∴y=−+n ,如图1:∵M (3n ,0),N (0,n ),其中n >0,∴∠MNO =60°,∵△ABD 与△ACB 是边长为2的等边三角形,∴∠BAD =60°,∴AD ∥BC ∥y 轴,设过点C 与MN 平行的直线为y=+c ,过点D 与MN 平行的直线为y=+d ,当直线y=+c 与⊙O 相切时,c =4,∴n =4+2=6,此时⊙O 上恰好存在1个直线MN 的“美好点”,如图2:当直线y=+d 与⊙O 相切时,d =4,∴n =4﹣2=2,此时当直线y=−+c 经过原点O ,则c =0,∴此时⊙O 上恰好存在3个直线MN 的“美好点”,∴2<n <6时,⊙O 上恰好存在2个直线MN 的“美好点”;②如图3:∵n =4,∴M (43,0),N (0,4),∴∠OMN =30°,设AB =2在圆O 上,C 与D 是MN 上的点,则△ABC与△ABD是边长为2的等边三角形,当MN与D点所在圆相切时,OD=23,∴r=2,此时线段MN上存在⊙O的“美好点”,如图4:当OC=OM时,OC=43,∴MH=3,AH=1,∴OA=219,此时线段MN上存在⊙O的“美好点”,∴2≤r≤219,线段MN上存在⊙O的“美好点”.23.【解答】解:(1)令y =0,即0=ax 2﹣4ax ,解得x 1=0,x 2=4,∴A (0,0),B (4,0).答:点A 、B 的坐标为:(0,0),(4,0);(2)①设直线PC 解析式为y =kx +b ,将点C (2,1),P (1,−32a )代入解得:k =1+32a ,b =﹣3a ﹣1,∴直线PC 解析式为y =(1+32a )x ﹣3a ﹣1,当x =4时,y =3a +3,所以点Q 的纵坐标为3a +3.②∵当点Q 在B 上方或与点B 重合时,抛物线与线段PQ 恰有一个公共点,3a +3≥0,∴a ≥﹣1∴当a <0时,抛物线开口向下,抛物线只能与点Q 相交,∴﹣1≤a <0当a >0时,抛物线开口向上,只能与点P 相交,当x =1时,y=−32a ,y =﹣3a ,所以抛物线与点P 不相交.综上:a 的取值范围是:﹣1≤a <024.【解答】解:(1)根据题意量取数据m 为2.6,故答案为:2.6(2)根据已知数据描点连线得(3)①由图象可得,当0.8<x <3.5时,y >2.故答案为:0.8<x <3.5②不存在,理由如下:若BQ =BP∴∠BPQ =∠BQP∵∠BQP =∠APQ +∠PAQ >90°∴∠BPQ +∠BQP +∠QBP >180°与三角形内角和为180°相矛盾.∴不存在点P ,使得BQ =BP .故答案为不存在.25.【解答】解:(1)观察对应数值表可知:m =0,(2)用平滑的曲线依次连接图中所描的点,如下图所示:(3)观察函数图象,发现该函数图象关于y 轴对称,(答案不唯一),故答案为:函数图象关于y 轴对称;(4)①∵函数的图象与x 轴有4个交点,∴方程x 4﹣5x 2+4=0有4互不相等的实数根,故答案为4;②函数图象可知,当x 2>x 1>2时,y 1<y 2;故答案为<;③观察函数图象,结合对应数值表可知:﹣2.2<a <4,故答案为:﹣2.2<a <4.26.【解答】解:(1)根据顶点坐标公式得:x=−b 2a =−−2n 2n =1,y =n ﹣2n +n +2=2;∴顶点D (1,2);答:D 点坐标为(1,2).(2)直线y =kx +b 经过点D (1,2)和点C (0,1),∴k +b =2b =1,解得:k =1,b =1;∴直线的解析式为y =x +1.答:直线CD 的解析式为y =x +1.(3)如图所示,∵x 1+x 2=3,∴P 、Q 关于直线x=32对称,当t =1时,P 在C 处,即x 1=0,∵x 1+x 2=3,∴x 2=3,∴Q (3,1),代入抛物线y =nx 2﹣2nx +n +2中得:9n ﹣6n +n +2=1,n=−14,当t =﹣1时,y =﹣1=x +1,即x 1=﹣2,∵x 1+x 2=3,∴x 2=5,∴Q (5,﹣1),代入抛物线y =nx 2﹣2nx +n +2中得:25n ﹣10n +n +2=﹣1,n=−316,∵抛物线的顶点不变,且开口向下,随Q 的移动开口大小不改变,答:n 的取值范围是:−14<n <−316.27.【解答】解:(1)∵抛物线M :y =ax 2﹣4ax +a ﹣1(a ≠0),∴抛物线的对称轴直线为:x=−b 2a =−−4a 2a =2.故答案为:x =2.(2)∵抛物线M :y =ax 2﹣4ax +a ﹣1(a ≠0)的对称轴为直线,抛物线M 与x 轴的交点为点A ,点B ,(点A 在点B 的左侧),AB =2∴点A 、B 的坐标分别为(1,0),(3,0),∵点A 在抛物线M 上,∴将A 的坐标代入抛物线的函数表达式,得a ﹣4a +a ﹣1=0,解得a=−12,∴抛物线M 的解析式为:y=−12x 2+2x −32,∴直线l 与y 轴的交点在y 轴的上方,∴b >2,k <0∵抛物线M 的解析式为:y=−12x 2+2x −32=−12(x ﹣2)2+12∴顶点坐标D 为(2,12).(3)如图,由(2)知点D 的坐标为(2,12).∵直y =n 与直线l 的交点横坐标记为x 3,(x 3<4),且当﹣2≤n ≤﹣1时,总有x 1﹣x 3<x 3﹣x 2<0,∴可以得出x 1<x 3x 3<x 2,∵x 3<4∴2<x 3<4当直线l :y =kx +b (k ≠0)经过抛物线的顶点D (2,12)和(4,﹣2)时,2k +b =124k +b =−2,解得k=−54故k 的取值范围:k <−54.28.【解答】解:(1)抛物线y =ax 2﹣2a 2x 的对称轴是直线x =−−2a 22a=a ,∴点P 的坐标是(a ,0);(2)由题意可知图形M 为线段AB ,A (﹣1,3),B (3,0).当抛物线经过点A 时,解得a =−32或a =1;当抛物线经过点B 时,解得a =32.……………………………………………………(3分)如图1,当a =−32时,抛物线与图形M 恰有一个公共点.如图2,当a =1时,抛物线与图形M 恰有两个公共点.如图3,当a =32时,抛物线与图形M 恰有两个公共点.结合函数的图象可知,当a ≤−32或0<a <1或a >32时,抛物线与图形M 恰有一个公共点.29.【解答】解:(1)∵抛物线y =mx 2+2mx ﹣3(m >0)的顶点D 的纵坐标是﹣4,∴−12m−4m 24m =−4,解得m =1,∴y =x 2+2x ﹣3,令y =0,则x =﹣3或1,∴A (﹣3,0)B (1,0);(2)∵y =x 2+2x ﹣3=(x +1)2﹣4,∴抛物线的对称轴为x =﹣1,∵点C (0,﹣3)关于抛物线的对称轴的对称点坐标是E (﹣2,﹣3),点A (﹣3,0)关于该抛物线的对称轴的对称点坐标是B (1,0),设直线的表达式为y =kx +b ,∵点E (﹣2,﹣3)和点B (1,0)在直线上∴−2k +b =−3k +b =0,解得k =1b =−1,∴直线的表达式为y =x ﹣1;(3)由对称性可知x 1+x 22=−1,∴x 1+x 2=﹣2,∵x 1<x 3<x 2,∴﹣2<x 3<1,∴﹣4<x 1+x 2+x 3<﹣1.30.【解答】解:(1)函数的对称轴为:x=−b 2a=m ;(2)函数对称轴为x =m ,函数开口向上,x =m 时函数取得最小值,故:y 3>y 1>y 2;(3)把点A 的坐标代入y =﹣x +b 的表达式并解得:b =3,则点B (0,3),直线表达式为:y =﹣x +3,当y =3时,y =x 2﹣2mx +m 2﹣1=3,则x =m ±2,则点P (m +2,3),当△OAP 为钝角三角形时,则m +2<0或m +2>3,解得:m <﹣2或m >1.31.【解答】解:(1)∵y =x 2﹣2ax +a 2+2=(x ﹣a )2+2,∴抛物线顶点C 的坐标为(a ,2).(2)∵1>0,∴抛物线开口向上,又∵点C (a ,2)到直线l 的距离为2,直线l 垂直于y 轴,且与抛物线有交点,∴直线l 的解析式为y =4.当y =4时,x 2﹣2ax +a 2+2=4,解得:x 1=a −2,x 2=a+2,∴点E 的坐标为(a −2,4),点F 的坐标为(a+2,4),∴EF =a+2−(a −2)=22.(3)当y =t 时,x 2﹣2ax +a 2+2=t ,解得:x 1=a −t −2,x 2=a+t −2,∴EF =2t −2.又∵存在实数m ,使得x 1≥m ﹣1且x 2≤m +5成立,∴t −2>02t −2≤6,解得:2<t ≤11.32.【解答】解:(1)∵抛物线y =ax 2+bx +c (a >0)经过点A (0,﹣3)和B (3,0).∴−3=c 0=9a +3b +c ,∴c =﹣3,3a +b ﹣1=0.(2)由1可得:y =ax 2+(1﹣3a )x ﹣3,对称轴为x=−1−3a 2a ,∵抛物线在A 、B 两点间从左到右上升,当a >0时,对称轴在A 点左侧,如图:即:−1−3a 2a ≤0,解得:a ≤13,∴0<a ≤13.A 、B 两点间从左到右上升,∴当0<a ≤13时,抛物线在A 、B 两点间从左到右上升,(3)抛物线不能同时经过点M (﹣1+m ,n )、N (4﹣m ,n ).理由如下:若抛物线同时经过点M (﹣1+m ,n )、N (4﹣m ,n ).则对称轴为:x =(−1+m)+(4−m)2=32,由抛物线经过A 点可知抛物线经过(3,﹣3),与抛物线进过B (3,0)相矛盾,故:抛物线不能同时经过点M (﹣1+m ,n )、N (4﹣m ,n )33.【解答】解:(1)∵y =kx ﹣4k +4=k (x ﹣4)+4,即k (x ﹣4)=y ﹣4,而k 为任意实数,∴x ﹣4=0,y ﹣4=0,解得x =4,y =4,∴直线过定点(4,4);(2)当k=−12时,直线解析式为y=−12x +6,解方程组y =−12x +6y =14x 2−x 得x =−4y =8或x =6y =3,则A (6,3)、B (﹣4,8);①如图1,作PQ ∥y 轴,交AB 于点Q ,设P (x ,14x 2﹣x ),则Q (x ,−12x +6),∴PQ =(−12x +6)﹣(14x 2﹣x )=−14(x ﹣1)2+254,∴S △P AB =12(6+4)×PQ=−54(x ﹣1)2+1254=20,解得x 1=﹣2,x 2=4,∴点P 的坐标为(4,0)或(﹣2,3);②设P (x ,14x 2﹣x ),如图2,由题意得:AO =35,BO =45,AB =55,∵AB 2=AO 2+BO 2,∴∠AOB =90°,∵∠AOB =∠PCO ,∴当CP CO =OA OB 时,△CPO ∽△OAB ,即|14x 2−x||x|=35,整理得4|14x 2﹣x |=3|x |,解方程4(14x 2﹣x )=3x 得x 1=0(舍去),x 2=7,此时P 点坐标为(7,214);解方程4(14x 2﹣x )=﹣3x 得x 1=0(舍去),x 2=1,此时P 点坐标为(1,−34);当CP OC =OB OA 时,△CPO ∽△OBA ,即|14x 2−x||x|=45,整理得3|14x 2﹣x |=4|x |,解方程3(14x 2﹣x )=4x 得x 1=0(舍去),x 2=283,此时P 点坐标为(283,1129);解方程3(14x 2﹣x )=﹣4x 得x 1=0(舍去),x 2=−43,此时P 点坐标为(−43,169)综上所述,点P 的坐标为:(7,214)或(1,−34)或(−43,169)或(283,1129).34.【解答】(1)证明:△=(5﹣m )2﹣4×(﹣1)(6﹣m )=m 2﹣14m +49=(m ﹣7)2≥0,∴该抛物线与x 轴总有交点;(2)解:由(1)△=(m ﹣7)2,根据求根公式可知,方程的两根为:x =m−5±(m−7)2−2,即x 1=﹣1,x 2=﹣m +6,由题意,有3<﹣m +6<5,∴1<m <3;(3)解:令x =0,y =﹣m +6,∴M (0,﹣m +6),由(2)可知抛物线与x 轴的交点为(﹣1,0)和(﹣m +6,0),它们关于直线y =﹣x 的对称点分别为(0,1)和(0,m ﹣6),由题意,可得:﹣m +6=1或﹣m +6=m ﹣6,∴m =5或m =6.35.【解答】解:(1)∵二次函数y =ax 2﹣2ax ﹣2(a ≠0),∴该二次函数图象的对称轴是直线x=−−2a 2a =1,故答案为:x =1;(2)∵该二次函数的图象开口向上,对称轴为直线x =1,﹣1≤x ≤5,∴当x =5时,y 取得最大值,即M (5,112),∴112=a ×52−2a ×5−2,得a=12,∴该二次函数的表达式为y =ax 2﹣2ax ﹣2=a (x ﹣1)2﹣a ﹣2=12(x ﹣1)2−52,即点N 的坐标为(1,−52).(3)当a >0时,该函数的图象开口向上,对称轴为直线x =1,无法保证t ≤x 1≤t +1,当x 2≥3时,具有y 1≥y 2;当a <0时,该函数的图象开口向下,对称轴为直线x =1,∵t ≤x 1≤t +1,当x 2≥3时,具有y 1≥y 2,点A (x 1,y 1)B (x 2,y 2)在该函数图象上,∴t +1≤3t ≥1−(3−1),∴﹣1≤t ≤2.36.【解答】解:(1)∵抛物线y =ax 2+4x +c (a ≠0)经过点A (3,﹣4)和B (0,2),可得:9a +12+c =−4c =2解得:a =−2c =2∴抛物线的表达式为y =﹣2x 2+4x +2.∵y =﹣2x 2+4x +2=﹣2(x ﹣1)2+4,∴顶点坐标为(1,4);(2)设点B (0,2)关于x =3的对称点为B ′,则点B ′(6,2).若直线y =kx +b 经过点C (9,4)和B '(6,2),可得b =﹣2.若直线y =kx +b 经过点C (9,4)和A (3,﹣4),可得b =﹣8.直线y =kx +b 平行x 轴时,b =4.综上,﹣8<b <﹣2或b =4.37.【解答】解:(1)根据题意得△=(﹣4)2﹣4(2m ﹣1)>0,解得m <52;(2)m 的最大整数为2,抛物线解析式为y =x 2﹣4x +3,当y =0时,x 2﹣4x +3=0,解得x 1=1,x 2=3,所以A (1,0),B (3,0).38.【解答】解:∵抛物线y =x 2﹣2ax +b 的顶点在x 轴上,∴4b−(−2a)24=0,∴b =a 2.(1)∵a =1,∴b =1,∴抛物线的解析式为y =x 2﹣2x +1.①∵m =b =1,∴x 2﹣2x +1=1,解得:x 1=0,x 2=2.②设平移后的抛物线为y =(x ﹣1)2+k .∵抛物线的对称轴是x =1,平移后与x 轴的两个交点之间的距离是4,∴(3,0)是平移后的抛物线与x 轴的一个交点,∴(3﹣1)2+k =0,即k =﹣4,∴变化过程是:将原抛物线向下平移4个单位.(2)∵x 2﹣2ax +a 2=m ,解得:x 1=a −m ,x 2=a+m ,∴PQ =2m .又∵x 1≤c ﹣1,x 2≥c +7,∴2m ≥(c +7)﹣(c ﹣1)=8,∴m ≥16.39.【解答】解:(1)①∵OE=12+12=2,OF==1,OM=22+22=22,∴点F 在⊙上,而点F 的横坐标和纵坐标相等∴⊙O 的“梦之点”为点F ;故答案为F 点;②∵⊙O 的半径为1.∴⊙O 的“梦之点”坐标为(−−)和(22,22),又∵双曲线y=k x (k ≠0)与直线y =x 的交点均为双曲线的“梦之点”,∴将(−−k=−(=12,∵点P 位于⊙O 内部.∴0<k <12;(2)设P (x ,x ),∵点C 的坐标为(1,t ),⊙C 的半径为2,∴(x ﹣1)2+(x ﹣t )2=2,整理得2x 2﹣2(t +1)x +t 2﹣1=0,∵△=4(t +1)2﹣4•2•(t 2﹣1)≥0,∴﹣1≤t ≤3;(3)由“梦之点”定义可得:A (x 1,x 1),B (x 2,x 2).则x =ax 2﹣ax +1.整理得ax 2﹣(a +1)x +1=0解得x 1=1,x 2=1a ,把两个根代入|x 1﹣x 2|=2中得|1−1a |=2,解得,a 1=﹣1,a 2=13,当a =﹣1时,y =﹣x 2+x +1=﹣(x −12)2+54,其顶点坐标为(12,54);当a=13时,y=13x 2−13x +1=13(x −12)2+1112,其顶点坐标为(12,1112).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市西城区2018届中考数学《二次函数》专项复习训练含答案
北京市西城区普通中学2018届初三数学中考复习二次函数专项复习训练一、选择题(每小题4分,共32分)1.下列函数中一定是二次函数的是(
)
A.y=ax 2+bx+c B.y=x 2+3x 3
C.y=
1
x 2+2x+3
D.y=2-3x 2
2.已知抛物线y=(m-1)x 2
-mx-m 2
+1的图象过原点,则m 的值为()A.±1B.0C.1D.-1
3.在同一平面直角坐标系中,函数y=ax+b 与y=ax 2
-bx 的图象可能是(
)
A B C D
4.将抛物线y=x 2-2平移到抛物线y=x 2
+2x-2的位置,以下描述正确的是()
A.向左平移1个单位长度,向上平移1个单位长度B.向右平移1个单位长度,向上平移1个单位长度C.向左平移1个单位长度,向下平移1个单位长度D.向右平移1个单位长度,向下平移1个单位长度
5.若函数y=mx 2+(m+2)x+1
2
m+1的图象与坐标轴只有2个公共点,那么m 的值为(
)
A.0B.0或2C.2或-2D.0,2或-2
6.抛物线y=x 2
+bx+c(其中b,c 是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c 的值不可能是()A.4B.6C.8D.107.在羽毛球比赛中,某次羽毛球的运动路线可以看作是抛物线y=-14x 2+34x+1的一部分(如
图所示,单位:m),则下列说法不正确的是(
)
A.出球点A 离地面点O 的距离是1m
B.该羽毛球横向飞出的最远距离是3m C.此次羽毛球最高达到25
16
m
D.当羽毛球横向飞出3
2
m 时,可达到最高点
8.如图是抛物线y=ax 2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x 轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a-b+c>0;②3a+b=0;③b 2=4a(c-n);④一元二次方程ax 2+bx+c=n-1有两个不相等的实数根.其中正确结论的个数是()
A.1B.2C.3D.4
二、填空题(每小题4分,共24分)
9.二次函数y=2x 2+3x-9的图象与x 轴交点的坐标是____________________.
10.如图是抛物线y=ax 2+bx+c 的图象,则由图象可知,不等式ax 2+bx+c<0的解集是________.
11.如图,抛物线y=ax 2+bx+c(a>0)的对称轴是过点(1,0)且平行于y 轴的直线,若点P(4,0)在该抛物线上,则4a-2b+c 的值为______.
12.科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如下表:
温度t/℃
-4-2014植物高度增长量l/mm
41
49
49
46
25
科学家经过猜想,推测出l 与t 之间是二次函数关系.由此可以推测最适合这种植物生长的温度为________℃.
13.已知函数y=x 2
-2mx+2017(m 为常数)的图象上有三点:A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),其中x 1=m-2,x 2=m+3,x 3=m-1,则y 1,y 2,y 3的大小关系是____________.
14.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为________元时,该服装店平均每天的销售利润最大.
三、解答题(共44分)
15.(10分)如图,直线y=x+m 和抛物线y=x 2+bx+c 都经过点A(1,0),B(3,2).
(1)求m 的值和抛物线的表达式;
(2)求不等式x 2+bx+c>x+m 的解集.(直接写出答案)
16.(10分)杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一个点)的路线是抛物线y=-3
5
x 2+3x+1的一部分,如图所示.
(1)求演员弹跳离地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?说明理由.
17.(12分)如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有两道篱笆的长方形花圃,设花圃的宽AB 为x 米,面积为S 平方米.
(1)求S 与x 的函数关系式及自变量的取值范围;
(2)当x 取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,求围成的最大面积.
18.(12分)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.
(1)求y关于x的函数表达式;
(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.
答案:
一、
1---8DDCCD ABC
二、
9.(3
2
,0)和(-3,0)
10.-2<x<3
11.0
12.-1
13.y
3<y
1
<y
2
14.22
三、
15.(1)∵直线y=x+m经过点A(1,0),∴0=1+m.∴m=-1.∴y=x-1.∵抛物线y=x2
+bx+c经过点∴抛物线的表达式为y
=x 2-3x+2(2)x<1或x>316.
(1)y=-35x 2+3x+1=-35(x-52)2+194.故函数的最大值是19
4,∴演员弹跳离地面的最大
高度是
194
米(2)当x=4时,y=-3
5
×42+3×4+1=3.4=BC.∴这次表演成功
17.(1)∵AB=x,∴BC=24-4x,∴S=AB·BC=x(24-4x)=-4x 2+24x(0<x<6)
(2)S=-4x 2+24x=-4(x-3)2+36,∵0<x<6,∴当x=3时,花圃的面积最大,最大为36平方米
∴4≤x<6,∴当x=4时,花圃的面积最大,最大为32平方米
18.
(2)由(1)可知当0<x≤30或x>m 时,函数值y 都是随着x 的增大而增大的,当30<x≤m 时,y=-x 2+150x=-(x-75)2+5625,∵a=-1<0,∴当x≤75时,y 随着x 的增大而增大,∴为了让收取的总费用随着团队中人数的增大而增大,m 的取值范围为30<m≤75。

相关文档
最新文档