勾股定理培优分类精选

合集下载

勾股定理的培优专题

勾股定理的培优专题

1勾股定理培优专题一、本节基础知识1、勾股定理:直角三角形 的平方和等于 的平方,即:a 2+b 2=c 2。

公式变形:a 2 = ; b 2= 。

( a=22b c - ;22b c b -=;22b a c +=)2、勾股定理的逆定理:如果三角形的三边长:a 、b 、c 满足 ,那么这个三角形是直角三角形。

3、满足222c b a =+的三个 ,称为勾股数。

请你写出几组勾股数:___________,_________,____________,____________,_______________,4、巩固练习:1.如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是_________三角形,我们把这个定理叫做勾股定理的_________.2.分别以下列四组数为一个三角形的边长:(1)6、8,10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有_________.(填序号) 3.若△ABC 中,(b -a )(b +a )=c 2,则∠B =_________;4.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是________三角形.5.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为________.二、经典例题、针对训练、考点一 证明三角形是直角三角形例1、已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,满足a 2+b 2+c 2+338=10a+24b+26c.试判断△ABC 的形状.例2:(如图) 在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且EC=41BC ,求证:∠EFA=90︒.AB DCFE2例3:已知△ABC 中,AB=20,AC=15,BC 边上的高为12,求△ABC 的周长。

例4:一直角三角形的一直角边长为7,另两条边长为两连续整数,求这个直角三角形的周长。

八年级勾股定理培优题型归纳总结

八年级勾股定理培优题型归纳总结

勾股定理培优题型归纳总结一、巧解几何图形折叠问题折叠图形的主要特征是折叠前后的两个图形绕着折线翻折能够完全重合,解答折叠问题就是巧用轴对称及全等的性质解答折叠中的变化规律.利用勾股定理解答折叠问题的一般步骤:(1)运用折叠图形的性质找出相等的线段或角;(2)在图形中找到一个直角三角形,然后设图形中某一线段的长为x,将此直角三角形的三边长用数或含有x的代数式表示出来;(3)利用勾股定理列方程求出x;(4)进行相关计算解决问题.考点1、巧用对称法求折叠中图形的面积1、将长方形ABCD沿直线BD折叠,使点C落在点C′处,BC′交AD于E,AD=8,AB=4,求△BED面积.来【解析】由题意易知AD∥BC,∴∠2=∠3.∵△BC′D与△BCD关于直线BD对称,∴∠1=∠2.∴∠1=∠3.∴EB=ED.设EB=x,则ED=x,AE=AD-ED=8-x.在R t△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.∴x=5.∴DE=5.∴S∴BED=12DE·AB=12×5×4=10.考点2、巧用全等法求折叠中线段的长1、如图①是一直角三角形纸片,∠A=30°,BC=4 cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将图②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为()A.83c m B.2 3 c m C.2 2 c m D.3 c m【答案】A考点3、巧用折叠探究线段之间的数量关系1、如图,将长方形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC 于点F,连接CE.(1)求证:AE=AF=CE=CF(2)设AE=a,ED=b,DC=c,请写出一个a,b,c三者之间的数量关系式.(1)证明:由题意知,AF=CF,AE=CE,∠AFE=∠CFE,又四边形ABCD是长方形,故AD∥B C,∴∠AEF=∠CFE.∴∠AFE=∠AEF.∴AE=AF=EC=CF.(2)【解析】由题意知,AE=EC=a,E D=b,DC=c,由∠D=90°知,ED2+DC2=CE2,即b2+c2=a2考点4、巧用方程思想求折叠中线段的长1、如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G,连接AG.(1)求证:△ABG≌△AFG;2)求BG的长.(1)证明:在正方形ABCD中,AD=AB,∠D=∠B=90°.∵将△ADE沿AE对折至△AFE,∴AD=AF,∠D=∠AFE=90°.∴AB=AF,∠B=∠AFG=90°.又∵AG=AG,∴R t△ABG≌R t△AFG(HL).(2)【解析】∵△ABG≌△AFG,∴BG=FG.设BG=FG=x,则GC=6-x,∵E为CD的中点,∴CE=DE=EF=3,∴EG=3+x.∴在R t△CEG中,32+(6-x)2=(3+x)2,解得x=2.∴BG=2.专题二、勾股定理求最短路径长度问题求最短距离的问题,第一种是通过计算比较解最短问题;第二种是平面图形,将分散的条件通过几何变换(平移或轴对称)进行集中,然后借助勾股定理解决;第三种是立体图形,将立体图形展开为平面图形,在平面图形中将路程转化为两点间的距离,然后借助直角三角形利用勾股定理求出最短路程(距离).考点1、通过计算比较解最短问题1、小明听说“武黄城际列车”已经开通,便设计了如下问题:如图,以往从黄石A坐客车到武昌客运站B,现在可以在黄石A坐“武黄城际列车”到武汉青山站C,再从青山站C坐市内公共汽车到武昌客运站B.设AB=80 km,BC=20 km,∠ABC=120°.请你帮助小明解决以下问题:(1)求A,C之间的距离.(参考数据:21≈4.6)(2)若客车的平均速度是60 km/h,市内的公共汽车的平均速度为40 km/h,“武黄城际列车”的平均速度为180 km/h,为了在最短时间内到达武昌客运站,小明应选择哪种乘车方案?请说明理由.(不计候车时间)【解析】(1)如图,过点C作AB的垂线,交AB的延长线于点E.∵∠ABC=120°,∴∠BCE=30°.在R t△CBE中,∵BC=20 km,∴BE=10 km.由勾股定理可得CE=10 3 km.在R t △ACE 中,∵AC 2=AE 2+CE 2=(AB +BE )2+CE 2=8 100+300=8 400,∴AC =2021≈20×4.6=92(km ).(2)选择乘“武黄城际列车”.理由如下:乘客车所需时间为8060=113(h ), 乘“武黄城际列车”所需时间约为92180+2040=1190(h ).∵113>1190,∴选择乘“武黄城际列车”. 2、如图,学校有一块长方形花圃,有极少数人从A 走到B ,为了避免拐角C 走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步路(假设2步为1 m ),却踩伤了花草.【答案】4考点2、用平移法求平面中最短问题1、如图是一个三级台阶,它的每一级的长、宽和高分别是50 cm ,30 cm ,10 cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只壁虎,它想到B 点去吃可口的食物,请你想一想,这只壁虎从A 点出发,沿着台阶面爬到B 点,至少需爬( )A .13 cmB .40 cmC .130 cmD .169 cm【解析】将台阶面展开,连接AB ,如图,线段AB 即为壁虎所爬的最短路线.因为BC =30×3+10×3=120(c m ),AC =50 c m ,在R t △ABC 中,根据勾股定理, 得AB 2=AC 2+BC 2=16 900,所以AB =130 c m .所以壁虎至少爬行130 c m .2、如图,已知∠B =∠C =∠D =∠E =90°,且AB =CD =3,BC =4,DE =EF =2,则AF的长是________.【答案】10考点3、用对称法求平面中最短问题1、如图,正方形ABCD的边长为8,点M在DC上且DM=2,N是AC上的一动点,求DN+MN最小值【解析】如图所示,∵正方形是轴对称图形,点B与点D是关于直线AC为对称轴的对称点∴连接BN,BD,则直线AC即为BD的垂直平分线,∴BN=ND.,∴DN+MN=BN+MN. 连接BM交AC于点P,∵点N为AC上的动点,∴由三角形两边之和大于第三边,知当点N运动到点P时,DN+MN=BP+PM=BM,DN+MN的最小值为BM的长度.∵四边形ABCD为正方形,∴BC=CD=8,C M=8-2=6,∠B C M=90°,BM=BC2+CM2=82+62=10.即D N+MN的最小值为10.2、高速公路的同一侧有A,B两城镇,如图,它们到高速公路所在直线MN的距离分别为AA′=2 km,BB′=4 km,A′B′=8 km.要在高速公路上A′,B′之间建一个出口P,使A,B两城镇到P的距离之和最小.求这个最短距离.【解析】如图,作点B关于直线MN的对称点C,连接AC交MN于点P,则点P即为所建的出口.此时A ,B 两城镇到出口P 的距离之和最小,最短距离为AC 的长.作AD ⊥BB ′于点D ,在R t △ADC 中,AD =A ′B ′=8 km ,DC =6 km .,∴AC =AD 2+DC 2=10 km ,∴这个最短距离为10 km .考点4、用展开法求圆柱中的最短问题 如图,已知圆柱体底面圆的半径为2π,高为2,AB ,CD 分别是两底面的直径.若一只小虫从A 点出发,沿圆柱侧面爬行到C 点,则小虫爬行的最短路线的长度是________(结果保留根号).【解析】将圆柱体的侧面沿AD 剪开并铺平得长方形AA ′D ′D ,连接AC ,如图.线段AC 就是小虫爬行的最短路线.AB =2π×2π×12=2.在R t △ABC 中,由勾股定理得AC 2=AB 2+BC 2=22+22=8,∴AC =8=2 2.考点5、用展开法求圆锥中的最短问题已知:如图,观察图形回答下面的问题:(1)此图形的名称为________.(2)请你与同伴一起做一个这样的物体,并把它沿AS 剪开,铺在桌面上,则它的侧面展开图是一个________.(3)如果点C 是SA 的中点,在A 处有一只蜗牛,在C 处恰好有蜗牛想吃的食品,但它又不能直接沿AC 爬到C 处,只能沿此立体图形的表面爬行,你能在侧面展开图中画出蜗牛爬行的最短路线吗?(4)SA 的长为10,侧面展开图的圆心角为90°,请你求出蜗牛爬行的最短路程.【解析】(1)圆锥(2)扇形(3)把此立体图形的侧面展开,如图所示,AC为蜗牛爬行的最短路线(4)在R t△ASC中,由勾股定理,得AC2=102+52=125,∴AC=125=55,故蜗牛爬行的最短路程为5 5.考点6、用展开法求正方体中的最短问题如图,一个正方体木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你在正方体木柜的表面展开图中画出蚂蚁能够最快到达目的地的可能路径;(2)当正方体木柜的棱长为4时,求蚂蚁爬过的最短路径的长.【解析】(1)蚂蚁能够最快到达目的地的可能路径有如图的AC′1和AC1.(2)如图,AC′1=AC1=(4+4)2+42=4 5.所以蚂蚁爬过的最短路径的长是4 5.考点7、用展开法求长方体中的最短问题如图,长方体盒子的长、宽、高分别是12 cm,8 cm,30 cm,在AB的中点C处有一滴蜜糖,一只小虫从E处沿盒子表面爬到C处去吃,求小虫爬行的最短路程.【解析】分为三种情况:(1)如图①,连接EC ,在R t △EBC 中,EB =12+8=20(c m ),BC =12×30=15(c m ).由勾股定理, 得EC =202+152=25(c m ).(2)如图②,连接EC .根据勾股定理同理可求CE =673 c m >25 c m .(3)如图③,连接EC ,根据勾股定理可求CE =122+(30+8+15)2= 2 953(c m )>25 c m . 综上可知,小虫爬行的最短路程是25 c m .。

勾股定理培优

勾股定理培优

<勾股定理 >复习培优1.勾股定理勾股定理:直角三角形两条直角边的平方和等于斜边的 .即:对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为 c ,那么一定有 .勾股定理表达式的常见变形:a 2=c 2-b 2, b 2=c 2-a 2,c =a 2+b 2,a =c 2-b 2,b =c 2-a 2.勾股定理分类计算:如果已知直角三角形的两边是a 、b(且a >b),那么,当第三边c 是斜边时,c = ;当a 是斜边时,第三边c =2.勾股定理的验证据说验证勾股定理的方法有五百多种,其中很多是用平面图形的面积来进行验证的,比如我国古代的数学家赵爽就用了下面的方法:如图14-1,以a 、b 为直角边(b>a)、以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于 .把这四个直角三角形拼成如图14-1所示的正方形ABCD ,它是一个边长为c 的正方形,它的面积等于 .而四边形EFGH 是一个边长为 的正方形,它的面积等于 .∵四个直角三角形与中间的小正方形拼成了一个大正方形,∴4×12ab +(b -a)2=c 2, ∴a 2+b 2=c 2.3.勾股定理的逆定理如果三角形的三边长a 、b 、c 有关系:a 2+b 2= ,那么这个三角形是直角三角形. 利用此定理判定直角三角形的一般步骤:(1)确定最大边;(2)算出最大边的平方与另两边的 ;(3)比较最大边的平方与另两边的平方和是否相等,若相等,则说明这个三角形是 三角形.到目前为止判定直角三角形的方法有:(1)说明三角形中有一个角是 ;(2)说明三角形中有两边互相;(3)用勾股定理的逆定理.[注意] 运用勾股定理的逆定理时,要防止出现一开始就写出a2+b2=c2之类的错误.4.勾股数能够成为直角三角形三条边长的三个数,称为勾股数,即满足的三个数a、b、c,称为勾股数.[注意] 勾股数都是正整数.5.勾股定理的应用应用勾股定理及其逆定理可解决如下问题:(1)已知三角形的任意两边,求第三边长或图形周长、面积的问题;(2)说明线段的平方关系问题;(3)在上作表示2、3、5等数的点的问题;(4)解决实际问题.一些实际问题,如解决圆柱侧面两点间距离问题、航海问题、折叠问题、梯子下滑问题等,常直接或间接运用勾股定理及其逆定理.6.勾股定理中的思想(1)分类的思想,斜边不确定时,要分类讨论;(2)数形结合的思想,通过边的数量判断三角形的形状,反之也可以;(3)方程的思想,建立方程,求边;(4)转化思想,把实际问题转化为勾股定理的问题来解决.考点攻略考点一勾股定理例1在△ABC中,已知BD是高,∠B=90°,∠A、∠B、∠C的对边分别是a、b、c,且a=6,b=8,求BD的长.考点二勾股定理的逆定理例2已知在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1),判断△ABC是否为直角三角形.考点三勾股定理在数学中的应用例3已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的斜边长的平方是________.例4如图14-3所示,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图14-3所示),问怎样走路线最短?最短路线长为多少?考点五方程思想在勾股定理中的应用例6如图14-6,有一张直角三角形纸片,两直角边AC=6 cm,BC=8 cm,将△ABC折叠,使点B与点A重合,折痕是DE,求CD的长.例7如图14-11,有一个高为4,底面直径为6的圆锥,现有一只蚂蚁在圆锥的顶部A,它想吃到圆锥底部B的食物,蚂蚁需要爬行的最短路线长是多少?例8如图14-14所示,某住宅社区在相邻两楼之间修建一个上方是一个半圆,下方是长方形的仿古通道,现有一辆卡车装满家具后,高4米,宽2.8米,请问这辆送家具的卡车能否通过这个通道?专项练习:1.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法,如图14-16,火柴盒的一个侧面ABCD倒下到AB′C′D′的位置,连结CC′,设AB=a,BC=b,AC=c,请利用四边形BCC′D′的面积证明勾股定理:a2+b2=c2.2现有一张矩形纸片ABCD(如图14-12),其中AB =4 cm ,BC =6 cm, 点E 是BC 的中点,将纸片沿直线AE 折叠,点B 落在四边形AECD 内,记为点B ′,求线段B ′C 的长.3已知:四边形ABCD 中,BD 、AC 相交于O ,且BD 垂直AC ,求证:AB CD AD BC 2222+=+。

勾股定理的培优专题

勾股定理的培优专题

勾股定理的培优专题勾股定理培优专题一、基础知识1.勾股定理的逆定理是:如果三角形的三边长 a、b、c 满足 a+b=c,那么这个三角形是直角三角形。

2.勾股定理的逆定理和勾股定理的题设和结论相反,被称为互逆命题。

3.如果一个定理的逆命题经过证明是正确的,它也是一个定理,称这两个定理互为逆定理。

4.能够成为直角三角形三条边长的三个正整数3、4、5 等,称为勾股数。

巩固练:1.如果三角形的三边长 a、b、c 满足 a+b=c,那么这个三角形是直角三角形,这个定理叫做勾股定理的逆定理。

2.如果两个命题中,第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题。

如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。

3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有 1、2、3 号。

4.若△ABC 中,(b-a)(b+a)=c,则∠B=90°。

5.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是直角三角形。

6.若一个三角形的三边长分别为1、a、8(其中a为正整数),则以 a-2、a、a+2 为边的三角形的面积为 6(a-1)。

7.写出下列命题的逆命题,并判断逆命题的真假。

1) 两直线平行,同位角相等。

逆命题为:同位角相等,则两直线平行。

真。

2) 若 a>b,则 a>b。

逆命题为:若a≤b,则a≤b。

假。

二、例题和训练考点一:证明三角形是直角三角形例1:已知:如图,在△ABC 中,CD 是 AB 边上的高,且 CD=AD·BD。

求证:△ABC 是直角三角形。

训练:已知:在△ABC 中,∠A、∠B、∠C 的对边分别是 a、b、c,满足a+b+c+3√3=10a+24b+26c。

试判断△ABC 的形状。

例2:如图,在直角△ABC 中,∠B=90°,BD 垂直于AC,且 AD=CD。

(学生) 勾股定理 培优

(学生)  勾股定理 培优

第1讲勾股定理(逆定理) 知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。

也就是说:如果直角三角形的两直角边为a 、b ,斜边为c ,那么a 2+b 2=c 2。

公式的变形:a 2=c 2-b 2,b 2=c 2-a 2。

2、勾股定理的逆定理如果三角形ABC 的三边长分别是a ,b ,c ,且满足a 2+b 2=c 2,那么三角形ABC 是直角三角形。

这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:① 已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。

考点一:利用勾股定理求面积1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.2、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。

3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是()=+S 2=S 3+S 3<=S 14、在直线l 上依次摆放着七个正方形(如图4所示)。

已知斜放置的三个正方形的面S 3S 2S 1积分别是1、2、3,正放置的四个正方形的面积依次是S S、、12、,则+++=_____________。

S S S S S S341234考点二:在直角三角形中,已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为.2、已知直角三角形两直角边长分别为5和12,求斜边上的高.3、在Rt△ABC中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则Rt△ABC的面积是=________。

勾股定理培优题

勾股定理培优题

勾股定理一、知识要点1、勾股定理勾股定理在西方又被称为毕达哥拉斯定理,它有着悠久的历史,蕴含着丰富的文化价值,勾股定理是数学史上的一个伟大的定理,在现实生活中有着广泛的应用,被人誉为“千古第一定理” .勾股定理反映了直角三角形(三边分别为a 、b 、c ,其中c 为斜边)的三边关系,即a 2+b 2=c 2,它的变形式为c 2-a 2=b 2或c 2-b 2=a 2.勾股定理是平面几何中最重要的几何定理之一,在几何图形的计算和论证方面,有着重要的应用,它沟通了形与数,将几何论证转化为代数计算,是一种重要的数学方法. 2、勾股定理的逆定理如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,则这个三角形是以c 为斜边的直角三角形.勾股定理的逆定理给出了判定一个三角形是直角三角形的方法,这种方法与前面学过的一些判定方法不同,它是通过代数运算“算”出来的,实际上利用计算证明几何问题在几何里也是很重要的,这是里体现了数学中的重要思想——数形结合思想,突破了利用角与角之间的转化计算直角的方法,建立了通过求边与边的关系来判断直角的新方法,它将数形之间的联系体现得淋漓尽致.因此也有人称勾股定理的逆定理为“数形结合的第一定理”.二、基本知识过关测试1.如果直角三角形的两边为3,4,则第三边a 的值是 .2.如图,图形A 是以直角三角形直角边a 为直径的半圆,阴影S A = .3.如图,有一个圆柱的高等于12cm ,底面半径3cm ,一只蚂蚁要从下底面上B 点处爬至上底与B 点相对的A 点处,所需爬行的最短路程是 .4.如图.在 △ABC 中,CD ⊥AB 于D ,AB =5,CD=BCD =30° ,则AC = . 5.的线段.6.在下列各组数中 ①5,12,13 ;②7,24,25;③32,42,52;④3a ,4a ,5a ;⑤a 2+1,a 2-1,2a (a >1);⑥m 2-n 2,2mn ,m 2+n 2(m >n >0)可作直角三角形三边长的有 组.7.如图,四边形ABCD 中,AB =1,BC =2,CD =2,AD =3,AB ⊥BC ,则四边形ABCD 的面积是 .第2题图 第3题图 第4题图 第7题图8.如图,在正方形ABCD 中,F 为DC 中点,E 为BC 上一点,且EC =14BC ,试判断△ AEF 的形状.三、综合.提高.创新BADCBADCBAFE DCB A【例1】(1)在三角形纸片ABC 中,∠C =90°,∠A =30°,AC =3,折叠该纸片,使点A 与点B 重合,折痕与AB 、AC 分别相交于点D 和点E (如图),折痕DE 的长是多少?(2)如图,在矩形ABCD 中,AB =8,AD =10,按如图所示折叠,使点D 落在BC 上的点E 处,求折痕AF 的长.(3)如图,正三角形ABC 的边长为2,M 是AB 边上的中点,P 是BC 边上任意一点,PA +PM 的最大值和最小值分别记作S 和T ,求S 2-T 2的值.【练】如图,四边形ABCD 是长方形,把△ACD 沿AC 折叠到△ACD ′,AD ′与BC 交于E ,若AD =4,DC =3,求BE .【例2】(1)如图,△ABC 中,∠C =60°,AB =70,AC =30,求BC 的长.EDC BAFEDCBAPMCAD 'EDCB A(2)如图,在四边形ABCD 中,AB =2,CD =1,∠A =60°, ∠B =∠D =90°,求四边形ABCD 的面积.【练】如图,△ABC 中,A =150°,AB =2,BCAC 的长.【例3】(1)如图,△ABC 中,AB =AC =20,BC =32,D 为BC 上一点,AD ⊥AB ,求CD .(2)如图,在Rt △ABC 中,∠C =90°,D 、E 分别是BC 、AC 中点,AD =5,BE=,求AB .【例4】如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,设AC =b ,BC =a ,AB =c ,CD =h ,求证:CBADCBACBADCBAEDC BA(1)222111a b h +=; (2)a +b <c +h ;(3)以a +b ,h 和c +h 为边的三角形是直角三角形.【例5】(1)如图,ABCD 为矩形,P 为矩形ABCD 所在平面上一点,求证:PA 2-PB 2=PD 2 -PC 2.(2)锐角△ABC 中,AD ⊥BC 于D ,若∠B =2∠C ,求证:AC 2=AB 2+AB ·BC .变式:如图,AM 是△ABC 的BC 边上的中线,求证:AB 2+AC 2=2(AM 2+BM 2).(3)如图,△ABC 中,AB =AC ,P 为线段BC 上一动点,试猜想AB 2,AP 2, PB ,PC 有何关系,并加以证明.D CBAPDCB ADCBAM BA变式:若点P 在BC 的延长线上,如图,(3)中结论是否仍然成立?并证明.(4)在等腰Rt △ABC 的斜边AB 所在的直线上取点P 并设s =AP 2+BP 2,试探求P 点位置变化时,s 与2CP 2的大小关系,并证明.变式:若点P 在BA 的延长线上,如图中,(4)中结论是否仍然成立?并证明.【例6】(1)如图,△ABC 中,D 为BC 边上的中点,以D 为顶点作∠EDF =90°,DE 、DF 分别交AB 、AC 于E 、F ,且BE 2+FC 2=EF 2,求证:∠BAC =90°.P CB APC APCBACBAFED(2)在Rt△ABC中,∠BAC=90°,AB=AC,E,F分别是BC上两点,若∠EAF=45°,试推断BE,CF,EF之间的关系,并证明.AB C变式一:将(2)中△AEF旋转至如图所示,上述结论是否仍然成立?试证明.AE变式二:如图,△AEF中∠EAF=45°,AG⊥EF于G,且GF=2,GE=3,求S△AEF.AG【例7】(1)在△ABC中,∠ACB=90°,AC=BC,P为△ABC内一点,且PA=3,PB=1,PC=2,求∠BPC的度数.(2)如图,在四边形ABCD 中,∠ABC =30°,∠ADC =60°,AD =CD ,求证BD 2=AB 2+BC 2.【例8】在等腰△ABC 中,AB =AC ,边AB 绕点A 逆时针旋转角度m ,得到线段AD . (1)如图1,若∠BAC =30°,30°<m <80°,连接BD ,请用含m 的式子表示∠DBC ;(2)如图2,若∠BAC =90°,0°<m <360°,射线AD 与直线BC 相交于点E ,是否存在旋转角度m,使AEBE若存在,求出所有符合条件的m 的值;若不存在,请说明理由.【例9】(1)已知点P 在一、三象限的角平分线上,且点P 到点A (3,6)的距离为PA =15,求点P 的坐标;PCBADCBADCB AE DCBA(2)已知直角坐标平面内的△ABC三个顶点的坐标分别为A(-1,4),B(-4,-2),C(2,-2),试判断△ABC的形状;(3的最小值;(4)已知a>0,b>0.自我归纳:四、课后练习1.如图,一艘货轮向正北方向航行,在点A处测得灯塔M在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B处,测得灯塔M在北偏西45°,问该货轮到达灯塔正东方向D处时,货轮与灯塔M的距离是多少?2.在△ABC 中,A =30°,B =45°,BC =10cm ,求AB ,AC 及△ABC 的面积.3.(1)如图,把长方形沿ABCD 对角线折叠,重合部分为△EBD . 1)求证和:△EBD 为等腰三角形; 2)若AB =2,BC =8,求AE .(2)如图,折叠长方形ABCD 的一边AD ,使点D 落在BC 边上,已知AB =8cm ,CE =4cm ,求AD .4.如图,△ABC 是等腰三角形,∠BAC =90°,AB =AC ,D .E .是BC 上的两点,且∠DAE =45°,若BD =6,EC =8,求DE 的长.MDB A北C 'EDCB AFED CBA5.如图,在等腰三角形中,AB=AC,D是斜边BC的中点,E、F分别为AB,AC边上的点,且DE⊥DF. (1)求证:BE2+CF2=EF2;(2)若BE=12,CF=5,试求△DEF的面积.6.如图,等腰Rt△ABC中,∠A=90°,P为△ABC内一点,PA=1,PB=3,PC,求∠CPA.7.(1)如图1,已知点P是矩形ABCD内一点,求证:PA2+PC2=PB2+PD2. (2)①如果点P移动到矩形的一边或顶点时,如图2,(1)中结论仍成立;C BAEDFC BAEPCB AAB CDP②如果点P移动到矩形ABCD的外部时,如图3,(1)中结论仍成立.请在以上两个结论中任选一个并给出证明.归纳结论:8.如图,△ABC中,AD是BC边的中点,AE是BC边上的高,求证:AB2-AC2=2BC·DE.9.10.试判断,三边长分别为2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是否为直角三角形?11.已知a,b,x,y.PDCBAPDCBAED C BA12.如图,Rt△ABC的两直角边AB=4,AC=3,△ABC内有一点P,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,且AB PF+AC PE +BCPD=12,求PD、PE、PF的长.PFED CBA欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

初中数学培优教材勾股定理专题(附答案-全面、精选)

初中数学培优教材勾股定理专题(附答案-全面、精选)

初中数学勾股定理培优教材一、探索勾股定理【知识点1】勾股定理定理内容:在RT△中,勾股定理的应用:在RT△中,知两边求第三边,关键在于确定斜边或直角典型题型1、对勾股定理的理解(1)已知直角三角形的两条直角边长分别为a, b,斜边长c,则下列关于a,b,c的关系不成立的是()A、c²- a²=b²B、c²- b²=a²C、a²- c²=b²D、a²+b²= c²(2)在直角三角形中,∠A=90°,则下列各式中不成立的是()A、BC²- AB²=AC²B、BC²- AC²=AB²C、AB²+AC²= BC²D、AC²+BC²= AB²2、应用勾股定理求边长(3)已知在直角三角形ABC中,AB=10 cm, BC=8 cm, 求AC的长.(4)在直角△中,若两直角边长为a、b,且满足,则该直角三角形的斜边长为.3、利用勾股定理求面积(5)已知以直角△的三边为直径作半圆,其中两个半圆的面积为25π,16π,求另一个半圆的面积。

(6)如图(1),图中的数字代表正方形的面积,则正方形A的面积为。

(7)如图(2),三角形中未知边x与y的长度分别是x=,y=。

(8)在Rt△ABC中,∠C=90°,若AC=6,BC=8,则AB的长为()A、6B、8C、10D、12 (9)在直线l上依次摆放着七个正方形(如图4所示)。

已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S12、、S S S S S S341234、,则+++=_____________。

【知识点2】勾股定理的验证推导勾股定理的关键在于找面积相等,由面积之间的等量关系并结合图形利用代数式恒等变形进行推导。

(精编)八年级数学培优专题讲解《勾股定理》

(精编)八年级数学培优专题讲解《勾股定理》

八年级数学培优专题讲解《勾股定理》【培优图解】【技法透析】勾股定理是几何中重要的定理之一,它是把直角三角形的“形”与三边关系这一“数”结合起来,是数形结合思想方法的典范.1.勾股定理反逆定理的应用主要用于计算和证明等.2.勾股数的推算公式①若任取两个正整数m、 n(m>n),那么 m 2 -n,2mn,m+n是一组勾股数.2 2 2k 2 1,k2 1是一组勾股数.②如果 k是大于 1 的奇数,那么 k,2 22 2k k③如果 k是大于 2 的偶数,那么 k,1,1是一组勾股数,2 2④如果 a,b,c是勾股数,那么 na,nb,nc(n是正整数 )也是勾股数.3.创设勾股定理运用条件当勾股定理不能直接运用时,常需要通过等线段代换、作辅助线段等途径,为勾股定理的运用创造必要的条件,有时又需要由线段的数量关系去判断线段的位置关系.在有等边三角形、正方形的条件下,可将图形旋转60°或 90°,旋转过程中角度、线段的长度保持不变,在新的位置上分散条件相对集中,以便挖掘隐含条件,探求解题思路.【名题精讲】考点 1运用勾股定理解有关"折叠"问题例 1 如图,折叠长方形 ABCD一边,点 D落在 BC边的点 F处,若 AB=8cm,BC =10 cm,求 EC 的长.【切题技巧】由图形易知△ ADF≌△ AFE,从而 AD=AF,DE=EF.先在 Rt△ABF中用勾股定理求出 BF,再在 Rt△EFC中由勾骰定理列方程可求EC 的长.【规范解答】【借题发挥】图形折叠问题一般是“全等形”,或“等腰三角形”等对称图形问题,勾股定理是常常用到的计算方法,体现了勾股定理作为主要计算工具在解决与直角三角形相关图形变换的综合题中的具体应用.【同类拓展】 1.把一张长方形纸片 (长方形 ABCD)按如图 17-2所示的方式折叠,使顶点 B和点 D重合,折痕为 EF.若 AB=3cm,BC=5cm,则重叠部分△ DEF 的面积是2_______cm.考点 2运用勾股定理的逆定理求角度例 2 如图,在正方形 ABCD中, PA= 1,PB=2,PC=3,P在正方形内部,试求∠APB 的度数.【切题技巧】【规范解答】【借题发挥】旋转变换后再运用勾股定理及逆定理是求三角形角的度数的常见方法,即用恰当的旋转变换方式来构建直角三角形.能够使用旋转法的条件是旋转后的图形与原图形有边相等能够重合.2.如图,等边△ ABC内有一点 P,若点 P到顶点 A、B、C 的距离分别为 3、4、5,求∠ APB 的度数.考点 3求立体图形中的两点之间的最短距离例 3 如图所示,一只蚂蚁如果沿长方体的表面从A点爬到 B'点,那么沿哪条路线最短?最短路程是多少?已知长方体的长为2cm、宽为 1cm、高为 4cm.【切题技巧】由于蚂蚁沿长方体的表面爬行,故需把长方体展开成平面图形,根据两点之间线段最短和“勾股定理”可求解.【规范解答】【借题发挥】“最短路线”是勾股定理在实际生活中的具体应用,一般地,求“最短路线”要“立体问题”转化为“平面问题”,这类问题涉及到的几何体主要有长方体、同正方体、圆柱、圆锥等.在将几何体的表面展开时,要注意确定展开图中两点的相应位置.时,由于将几何体的表面展开时可能有几种不同的情况,因此,有些问题可能会求得几个不同的结果,这就需要通过分析比较后才能确定适合题意的答案.【同类拓展】3.如图是一个三级台阶,它的每一级的长、宽和高分别等于5cm、3cm和 lcm,A和 B是这个台阶的两个相对的端点, A点上有一只蚂蚁,它想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短路线的长是多少?考点 4勾股定理反其逆定理的综合运用1 例 4如图所示,正方形 ABCD中, E是 AD中点,点 F在 DC上,且 DF= DC,4试判断 BE和 EF 的位置关系?并说明你的理由.【切题技巧】观察图,会给我们BE与 EF垂直的直观印象.若直接证明BE与 EF 垂直,则十分困难.若连接BF,设 DF= a,利用勾股定理及其逆定理证明△BEF为直角三角形,得到 BE⊥EF.【规范解答】BF和 EF 的位置关系是: BE⊥EF.【借题发挥】勾股定理及其逆定理在解决一些实际问题或具体的几何问题时是密不可分的,通常既要通过勾股定理求出三角形边长,又要通过逆定理判断一个三角形是直角三角形,两者相辅相成.4.如图,在四边形 ABCD中,∠ ABC=30°,∠ ADC=60°, AD=CD,求证: BD 2 =AB+BC.2 2考点 5勾股定理在实际问题中应用例 5如图 (1),护城河在 CC'处直角转弯,宽度保持4米,从 A处往 B处,经过两座桥: DD'、EE'.设护城河是东西——南北方向的,A、B在东西向相距 64米,南北方向_______米.相距 84米,恰当地架河可使 AD、D'E'、EB 的路程最短,这个最短距离是【切题技巧】要判断最短路程,需先确定两座桥的位置,确定桥的位置后,再根据护城河的直角转弯形成的直角三角形利用勾股定理求解.【规范解答】如图 (2),作 AA'⊥CD,AA'=DD',BB'⊥CE,BB'=EE',则折线 ADD'E'EB 的长度等于折线AA,D'E'B'B 的长度,即等于折线A'D'E'B' 的长度+ AA'+BB'.而折线A'D'E'B'以线段 A'B'最短,故题目所求最短路程S=A'B'+ 8,而 A'、B'在东西方向上相距为 64-4=60(米),在南北方向上相距 84-8=80(米)2 米,=由勾股定理可知, A'B'=60 802=100( ) S 108(米)【借题发挥】实际问题中,最短路程问题等常常在构造直角三角形后,利用勾股定理计算求解.5.如图所示的长方体是某种饮料的纸质包装盒,规格为 5×6× 10(单位: cm),在上盖中开有一孔便于插吸管,吸管长为13cm,小孔到图中边 AB距离为 1cm,到上盖中与 AB相邻的的两边距离相等,设插入吸管后露在盒外面的长为hcm,则 h 的最小值大约为 _______cm.(精确到个位,参考数据:2= 1.4,3=1.7,5=2.2).考点 6勾股定理与函数的综合问题4 x例 6如图①,在平面直角坐标系中,双曲线y=与直线 y=交于点 A、B.(1)x 4求 AB 的长. (2)若点 P是第一象限双曲线上一动点,如图②所示,BC⊥AP于点 C,交 xAE2 BF 2轴于点 F,AP交 y轴于点 E,试判断的值是否为定值?并加以证明.EF 2【切题技巧】 (1)因为 A 、B 为双曲线与直线 的交点,所以只需将两个已知函数 的解AE 2 BF 2 EF 2析式成方程组,它们 的解即交点 A 、B 的坐标. (2)从结论 入手,联想勾股定理, 通过作辅助线将 AE 、BF 、EF 这三条线段转移到同一直角三角形中.【规范解答】【借题发挥】 (1)当题目中涉及线段平方时应联想到勾股定理,若这些线段不在直角 三角形中则应添加辅助线,将分散 的线段集中在同一直角三角形中, 本题还可以过点 B 作 BN ∥AE 交 y 轴于点 N ,将三条线段收集在 Rt △ BNF 中,如图 17-11③所示. (2)利用“中 点”能构成多种辅助线,要根据题目 的需要进行构造.【同类拓展】 6.已知△ OMN 中, OM =ON ,∠ MON =90°,点 B 为 MN 的延长线上一点, OC ⊥OB .且 OC =OB ,OG ⊥ BC 于 G ,交 MN 于点 A . (1)如图①所示,①求证:∠ CMB =90°;②求证: AM 2+BN =AB 2 2 ; (2)如图②,在条件 (1)上,过 A 作 AE ⊥OM 于 E ,过 B 作 BF ⊥ ON 于 F ,EA 、BF 的延长线交于点 P ,则 PA 、AE 、BF 之间 的数量关系为 _______;△ AME 、△ PAB 、△ BFN 的面积之间 的关系为 _______.k (3)如图③,在条件 (2)下,分别以 OM 、ON 为 x 轴和 y 轴建立坐标系,双曲线 y =经 x过点 P ,若 MN =2 2,求 k 的值.参考答案1.5.12.150°3.13cm4.略5.26.(1)略 (2)(2)AE +BF =PA2.2 2 S△AME+S△BFN=S△PAB .。

专题勾股定理培优版(综合)

专题勾股定理培优版(综合)

专题 勾股定理在动态几何中的应用一.勾股定理与对称变换 (一)动点证明题1.如图,在△ABC 中,AB =AC ,(1)若P 为边BC 上的中点,连结AP ,求证:BP ×CP =AB 2-AP 2;(2)若P 是BC 边上任意一点,上面的结论还成立吗?若成立请证明,若不成立请说明理由;(3)若P 是BC 边延长线上一点,线段AB 、AP 、BP 、CP 之间有什么样的关系?请证明你的结论.(二)最值问题2.如图,E 为正方形ABCD 的边AB 上一点,AE =3 ,BE =1,P 为AC 上的动点,则PB +PE 的最小值是ABPCBCPADPED C C将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM. (1)求证:△AMB ≌△ENB ;(2)①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由;(3)当AM +BM +CM 的最小值为13 时,求正方形的边长.D C CD C C长.小明同学的解题思路是:利用轴对称,把△ADC 进行翻折,再经过推理、计算使问题得到解决. (1)请你回答:图中BD 的长为 ;(2)参考小明的思路,探究并解答问题:如图②,在△ABC 中,D 是BC 边上的一点,若∠BAD=∠C=2∠DAC=30°,DC=2,求BD 和AB 的长.图① 图②DB C图2图1A'PPA ABCBC5.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB=2,AC=4,以BC 为边在BC 的下方作等边△PBC ,求AP 的最大值。

小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B 为旋转中心将△ABP 逆时针旋转60°得到△A ’BC,连接A A ',当点A 落在C A '上时,此题可解(如图2).请你回答:AP 的最大值是 .参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt △ABC .边AB=4,P 为△ABC 内部一点, 则AP+BP+CP 的最小值是 .(结果可以不化简)6.如图,P 是等边三角形ABC 内一点,AP=3,BP=4,CP=5,求∠APB的度数. BAC图3CABP变式1:∆ABC 中, ∠ACB=90º,AC=BC ,点P 是∆ABC 内一点,且PA=6,PB=2,PC=4,求∠BPC 的度数变式2:问题:如图1,P 为正方形ABCD 内一点,且PA ∶PB ∶PC =1∶2∶3,求∠APB 的度数.小娜同学的想法是:不妨设PA=1, PB=2,PC=3,设法把PA 、PB 、PC 相对集中,于是他将△BCP 绕点B 顺时针旋转90°得到△BAE (如图2),然后连结PE ,问题得以解决. 请你回答:图2中∠APB 的度数为 . 请你参考小娜同学的思路,解决下列问题:如图3,P 是等边三角形ABC 内一点,已知∠APB=115°,∠BPC=125°.(1)在图3中画出并指明以PA 、PB 、PC 的长度为三边长的一个三角形(保留画图痕迹); (2)求出以PA 、PB 、PC 的长度为三边长的三角形的各内角的度数分别等于 .EDDPPPCCCBBBAAA图1 图2 图3CBAPCA BEF MN图① 7. 已知Rt △ABC 中,∠ACB =90°,CA =CB ,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .(1)当扇形CEF 绕点C 在∠ACE 的内部旋转时,如图①,求证:222BN AM MN +=;(2)当扇形CEF 绕点C 旋转至图②的位置时,关系式222BN AM MN +=是否仍然成立?若成立,请证明;若不成立,请说明理由.变式1:如图,在Rt ABC ∆中, 90,,45BAC AC AB DAE ∠=︒=∠=︒ 且3BD =,4CE =,则DE =变式2:如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕 点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论: ①△AED ≌△AEF ; ②△ABE ≌△ACD ; ③BE DC DE +=;④222BE DC DE +=其中正确的是( ) CABE F MN 图②BCDEFA(三)其它应用7. 在ABC △中,AB 、BC 、AC 三边的长分别为5、10、13,求这个三角形的面积.小宝同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC △(即ABC △三个顶点都在小正方形的顶点处),如图1所示.这样不需求ABC △的高,而借用网格就能计算出它的面积.(1)请你将ABC △的面积直接填写在横线上__________________; 思维拓展:(2)我们把上述求ABC △面积的方法叫做构图法....若ABC △三边的长分别为2a 、13a 、17a (0a >),请利用图2的正方形网格(每个小正方形的边长为a )画出相应的ABC △,并求出它的面积填写在横线上__________________; 探索创新:(3)若ABC △中有两边的长分别为2a 、10a (0a >),且ABC △的面积为22a ,试运用构图..法.在图3的正方形网格(每个小正方形的边长为a )中画出所有符合题意的ABC △(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上__________________.8.已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连结QE并延长交BP于点F.(1)如图1,若AB=32,点A、E、P恰好在一条直线上时,求此时EF的长(直接写出结果);(2)如图2,当点P为射线BC上任意一点时,猜想EF与图中的哪条线段相等(不能添加辅助线产生新的线段),并加以证明;(3)若AB=32,设BP=x,以QF为边的等边三角形的面积y,求y关于x的关系式.。

八年级数学寒假培优资料---勾股定理1

八年级数学寒假培优资料---勾股定理1

勾股定理培优训练1知识要点一:勾股定理勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2 = c2.即直角三角形两直角的平方和等于斜边的平方.因此,在运用勾股定理计算三角形的边长时,要注意如下三点:(1)注意勾股定理的使用条件:只对直角三角形适用,而不适用于锐角三角形和钝角三角形;(2)注意分清斜边和直角边,避免盲目代入公式致错;(3)注意勾股定理公式的变形:在直角三角形中,已知任意两边,可求第三边长.即c2= a2+b2,a2= c2-b2,b2= c2-a2.二:学会用拼图法验证勾股定理拼图法验证勾股定理的基本思想是:借助于图形的面积来验证,依据是对图形经过割补、拼接后面积不变的原理.如,利用四个如图1所示的直角三角形三角形,拼出如图2所示的三个图形.请读者证明.(2)(3)如上图示,在图(1)中,利用图1边长为a ,b ,c 的四个直角三角形拼成的一个以c 为边长的正方形,则图2(1)中的小正方形的边长为(b -a ),面积为(b -a )2,四个直角三角形的面积为4×21ab = 2ab .由图(1)可知,大正方形的面积 =四个直角三角形的面积+小正方形的的面积,即c 2 =(b -a )2+2ab ,则a 2+b 2 = c 2问题得证.请自己证明图(2)、(3).三:在数轴上表示无理数将在数轴上表示无理数的问题转化为化长为无理数的线段长问题.第一步:利用勾股定理拆分出哪两条线段长的平方和等于所画线段(斜边)长的平方,注意一般其中一条线段的长是整数;第二步:以数轴原点为直角三角形斜边的顶点,构造直角三角形;第三步:以数轴原点圆心,以斜边长为半径画弧,即可在数轴上找到表示该无理数的点.四:直角三角形边与面积的关系及应用直角三角形有许多属性,除边与边、边与角、角与角的关系外,边与面积也有内的联系.设a 、b 为直角三角形的两条直角边,c 为斜边,S ∆为面积,于是有:222()2a b a ab b +=++,222a b c +=,12442ab ab S ∆=⨯=, 所以22()4a b c S ∆+=+.即221[()]4S a b c ∆=+-. 也就是说,直角三角形的面积等于两直角边和的平方与斜边平方差的四分之一.利用该公式来计算直角三角形的有关面积、周长、斜边上的高等问题,显得十分简便.五:熟练掌握勾股定理的各种表达形式.AB C如图2,在Rt ABC ∆中,90=∠C 0,∠A 、∠B 、∠C 的对边分别为a 、b 、c,则c 2=a 2+b 2, a 2=c 2-b 2 , b 2=c 2-a 2,六:勾股定理的应用(1)已知直角三角形的两条边,求第三边;(2)已知直角三角形的一边,求另两条边的关系;(3)用于推导线段平方关系的问题等.(4)用勾股定理,在数轴上作出表示2、3、5的点,即作出长为n 的线段.基础训练1.下列说法正确的是( )A .若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2B .若 a 、b 、c 是Rt △ABC 的三边,则a 2+b 2=c 2C .若 a 、b 、c 是Rt △ABC 的三边, 90=∠A ,则a 2+b 2=c 2D .若 a 、b 、c 是Rt △ABC 的三边, 90=∠C ,则a 2+b 2=c 22.一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )A .斜边长为25B .三角形周长为25C .斜边长为5D .三角形面积为203.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是( )A . 0B . 1C . 2D . 3 4.如图,数轴上的点A 所表示的数为x,则x 2—10的立方根为( )A -10B .-10C .2D .-25.把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的()A. 2倍B. 4倍C. 6倍D. 8倍6.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1 m,当它把绳子的下端拉开5 m后,发现下端刚好接触地面,则旗杆的高为()A.8cm B.10cm C.12cm D.14cm7.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42 或 32 D.37 或 338.如图,直线l上有三个正方形a b c,,,若a c,的面积分别为5和11,则b的面积为()(A)4 (B)6 (C)16 (D)559.已知直角三角形的周长为2,斜边上的中线为1,求它的面积.10.直角三角形的面积为120,斜边长为26,求它的周长.11.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AB=13cm,AC于BC之和等于17cm,求CD的长.经典例题与练习例1 已知一直角三角形的斜边长是2,周长是,求这个三角形的面积.练习11.已知:如图,AD=4,CD=3,∠ADC=90°,AB=13,∠ACB=90°,•求图形中阴影部分的面积.l例2 如图,把一张长方形纸片ABCD 折叠起来,使其对角顶点A 、C 重合,•若其长BC 为a ,宽AB 为b ,则折叠后不重合部分的面积是多少?练习21.如图2-3,把矩形ABCD 沿直线BD 向上折叠,使点C 落在C ′的位置上,已知AB=•3,BC=7,重合部分△EBD的面积为________.2.如图,一架长2.5m 的梯子,斜放在墙上,梯子的底部B•离墙脚O 的距离是0.7m ,当梯子的顶部A向下滑0.4m 到A ′时,梯子的底部向外移动多少米?3.如图2-5,长方形ABCD 中,AB=3,BC=4,若将该矩形折叠,使C 点与A 点重合,•则折叠后痕迹EF 的长为( )A .3.74B .3.75C .3.76D .3.77练习31.若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+50=6a+8b+10c ,则△ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形2.如图2-6,在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且EC=BC ,猜想AF•与EF 的位置关系,并说明理由. 例4 已知:如图所示,△ABC 中,D 是AB 的中点,若AC=12,BC=5,CD=6.5.求证:△ABC 是直角三角形.2-3 14练习41.如图2-8,△ABC 的三边分别为AC=5,BC=12,AB=13,将△ABC 沿AD 折叠,使AC 落在AB 上,求折痕AD 的长.3.如图2-9,△ABC 中,∠ACB=90°,AC=BC ,P 是△ABC 内一点,满足PA=3,PB=1,•PC=2,求∠BPC 的度数.例5 如图,△ABC 中,是BC 上一点,且AD ⊥AC ,求BD 练习51.如图2-12,△ABC 中,∠MD ⊥AB 于D .求证:A D 2=AC 2+BD 22.已知:如图,在ABC ∆中,∠的中线,AB DE ⊥于E ,求证:2AC 3.如图2-13,AB ⊥AD ,AB=3,求四边形ABCD 的面积.4.如图,长方体的高为3cm ,现有绳子从A 出发,沿长方形表面到达C 处,问绳子最短是多少厘米?B D E(五)实际应用例5:台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30º方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响.(1)该城市是否会受到台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市持续时间有多少?(3)该城市受到台风影响的最大风力为几级?。

勾股定理经典培优题及答案

勾股定理经典培优题及答案

勾股定理经典培优题类型之一勾股定理的验证1.小明利用如图17-X -1①所示的图形(三个正方形和一个直角三角形)验证勾股定理验证勾股定理,,他的方法如下:过点D 作直线FG ∥AC ,过点E 作直线GH ∥BC ,直线FG 与直线GH 交于点G ,与直线BC 交于点F ,直线GH 与直线AC 交于点H ,如图②所示.请你回答:(1)△ABC 与△BDF ,△DEG ,△EAH 有什么关系?为什么?(2)用含a ,b 的代数式表示正方形CFGH 的面积;(3)你能否根据图形面积之间的关系找到a ,b ,c 之间的数量关系?(4)你能得到什么结论?图17-X -1 2.勾股定理神秘而美妙勾股定理神秘而美妙,,它的证法多样它的证法多样,,其巧妙各有不同其巧妙各有不同,,其中的“面积法”给了小明灵感其中的“面积法”给了小明灵感,,他惊喜地发现他惊喜地发现,,当四个全等的直角三角形如图17-X -2摆放时摆放时,,可以用“面积法”来证明a 2+b 2=c 2.(请你写出证明过程) 图17-X -2 类型之二勾股定理及其应用3.等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为() A .7 B .6 C .5 D .4 4.我国汉代数学家赵爽为了证明勾股定理我国汉代数学家赵爽为了证明勾股定理,,创制了一幅“弦图”创制了一幅“弦图”,,后人称其为“赵爽弦图”.如图17-X -3是由弦图变化得到的是由弦图变化得到的,,它由八个全等的直角三角形拼接而成.记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1,S 2,S 3.若正方形EFGH 的边长为2,则S 1+S 2+S 3=________. 图17-X -3 图17-X -4 5.图17-X -4①是我国古代著名的“赵爽弦图”的示意图①是我国古代著名的“赵爽弦图”的示意图,,它是由四个全等的直角三角形围成的.若AC =12,BC =10,将四个直角三角形中边长为12的直角边分别向外延长一倍的直角边分别向外延长一倍,,得到图②所示的数学“风车”得到图②所示的数学“风车”,,则这个数学“风车”的外围周长是________.6.知识回顾:在学习《二次根式》时知识回顾:在学习《二次根式》时,,我们知道:2+3≠5; 在学习《勾股定理》时在学习《勾股定理》时,,由于2,3,5满足(2)2+(3)2=(5)2,因此以2,3,5为三边长能构成直角三角形.三角形.探索思考:请通过构造图形来说明:a +b ≠a +b (a >0,b >0).(画出图形并进行解释) 7.在△ABC 中,AB =15,AC =20,D 是直线BC 上的一个动点上的一个动点,,连接AD ,如果线段AD 的长度最短是12,请你求△ABC 的面积.的面积.类型之三 勾股定理的逆定理及其应用8.已知三组数据:①2,3,4;②3,4,5;③1,3,2.分别以每组数据中的三个数为三角形的三边长分别以每组数据中的三个数为三角形的三边长,,能构成直角三角形的有( ) A .②B .①②.①②C .①③.①③D .②③.②③ 9.如果△ABC 的三边长分别是m 2-1,m 2+1,2m (m >1),那么下列说法中正确的是( ) A .△ABC 是直角三角形是直角三角形,,且斜边长为m 2+1 B .△ABC 是直角三角形是直角三角形,,且斜边长为2m C .△ABC 是直角三角形是直角三角形,,且斜边长为m 2-1 D .△ABC 不是直角三角形不是直角三角形10.若△ABC 的三边长a ,b ,c 满足关系式(a +2b -60)2+|b -18|+c -30=0,则△ABC 是________三角形.类型之四 勾股定理及其逆定理的综合应用图17-X -5 11.如图17-X -5,E 是正方形ABCD 内的一点内的一点,,连接AE ,BE ,CE ,将△ABE 绕点B 顺时针旋转90°到△CBE ′的位置.若AE =1,BE =2,CE =3,则∠BE ′C =________°. 12.如图17-X -6,在4×3的正方形网格中有从点A 出发的四条线段AB ,AC ,AD ,AE ,它们的另一个端点B ,C ,D ,E 均在格点上(正方形网格的交点).(1)若每个正方形的边长都是1,分别求出AB ,AC ,AD ,AE 的长度(结果可以保留根号);(2)在AB ,AC ,AD ,AE 四条线段中四条线段中,,是否存在三条线段是否存在三条线段,,它们能构成直角三角形?如果存在它们能构成直角三角形?如果存在,,请指出是哪三条线段条线段,,并说明理由.并说明理由.图17-X -6 类型之五 勾股定理在实际生活中的应用图17-X -7 13.如图17-X -7是矗立在高速公路旁水平地面上的交通警示牌是矗立在高速公路旁水平地面上的交通警示牌,,经测量得到如下数据:AM =4米,AB =8米,∠MAD =45°,∠MBC =30°,则警示牌的高CD 为________米(结果精确到0.1米,参考数据:2≈1.41,3≈1.73).14.如图17-X -8,A ,B 两地之间有一座山两地之间有一座山,,汽车原来从A 地到B 地需经过C 地沿折线ACB 行驶行驶,,现开通隧道后隧道后,,汽车直接沿直线AB 行驶.已知AC =10千米千米,,∠A =30°,∠B =45°则隧道开通后则隧道开通后,,汽车从A 地到B 地比原来少走多少千米?(结果保留根号) 图17-X -8 。

培优专题11 勾股定理与折叠问题

培优专题11 勾股定理与折叠问题
= CF = CE = AE .
(2)设 AE = a , ED = b , DC = c .请写出一个 a , b , c 三者之间的数量关系式.
◉答案 解:(2) a , b , c 三者之间的数量关系式为 a2= b2+ c2.理
由:由(1)得 CE = AE . 因为四边形 ABCD 是长方形,所以∠ D =
A. 1cm
A )
B. 1.5cm
C. 2cm
D. 3cm
第1题图
2. (烟台莱州期中)如图,Rt△ ABC 中, AB =9, BC =6,∠ B =90°,将△
ABC 折叠,使 A 点与 BC 的中点 D 重合,折痕为 MN ,则线段 BN 的长为 4
第2题图
.

3. 如图,在边长为6的正方形 ABCD 中, E 是边 CD 的中点,将△ ADE 沿 AE 对折至
90°.因为 AE = a , ED = b , DC = c ,所以 CE = AE = a .在Rt△
DCE 中, CE2= ED2+ DC2,所以 a , b , c 三者之间的数量关系式
为 a2= b2+ c2.
FG = x ,则 GC =6- x .因为 E 为 CD 的中点,所以 CE = DE = EF
=3,所以 EG =3+ x .在Rt△ CEG 中,32+(6- x )2=(3+ x )2,
解得 x =2,所以 BG 的长为2.
类型二:巧用折叠求图形面积
4. (威海文登区期中)如图,在四边形 ABCD 中,∠ A =90°, AB =4cm, AD =
第三章 勾股定理
培 优 专 题 11 : 勾 股 定 理 与 折 叠 问 题
类型一:巧用折叠求线段长

初二培优学案3勾股定理

初二培优学案3勾股定理

初二培优学案(3)勾股定理本章常用知识点:1、勾股定理:直角三角形两直角边的 等于斜边的 。

如果用字母a,b,c 分别表示直角三角形的两直角边和斜边,那么勾股定理可以表示为: 。

2、勾股数:满足a 2+b 2=c 2的三个 ,称为勾股数。

常见勾股数如下:3121112=; 144122=; 169132=; 196142=; 225152=;256162=289172=; 324182=; 361192=; 400202=;441212=; 484222= 529232=; 576242=; 625252=; 676262=;729272=专题归类:专题一、勾股定理与面积1、、在Rt ▲ABC 中,∠C=︒90,a=5,c=3.,则Rt ▲ABC 的面积S= 。

2、一个直角三角形周长为12米,斜边长为5米,则这个三角形的面积为: 。

3、直线l 上有三个正方形a 、b 、c ,若a 和c 的面积分别为5和11,则b 的面积为4、在直线l 上依次摆放着七个正方形(如图所示)。

已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4, 则S 1+S 2+S 3+S 4等于 。

5、三条边分别是5,12,13的三角形的面积是。

6、如果一个三角形的三边长分别为a,b,c 且满足:a 2+b 2+c 2+50=6a+8b+10c,则这个三角形的面积为 。

7、如图1,︒=∠90ACB ,BC=8,AB=10,CD 是斜边的高,求CD 的长?l 321S 4S 3S 2S 17、如下图,在∆ABC 中,︒=∠90ABC ,AB=8cm ,BC=15cm ,P 是到∆ABC 三边距离相等的点,求点P 到∆ABC 三边的距离。

8、有一块土地形状如图3所示,︒=∠=∠90D B ,AB=20米,BC=15米,CD=7米,请计算这块土地的面积。

(添加辅助线构造直角三角形)9、如右图:在四边形ABCD 中,AB=2,CD=1,∠A=60°,求四边形ABCD 的面积。

勾股定理培优分类精选

勾股定理培优分类精选

根据对称求最小值根本模型:点A、B为直线m同侧的两个点,请在直线m上找一点M,使得AM+BM 有最小值.1、边长为4的正三角形ABC上一点E, AE=1 , ADLBC于D,请在AD上找一点N, 使得EN+BN有最小值,并求出最小值.2、.边长为4的正方形ABCD上一点E, AE=1,请在对角线AC上找一点N, 使得EN+BN有最小值,并求出最小值.3、如图,直线a//b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3, AB=2 ^'30 .试在直线a上找一点M ,在直线b上找一点N,满足MN La且AM+MN+NB 的长度和最短,那么此时AM+NB=( )A. 6B. 8C. 10D. 124、AB=20, DALAB 于点A, CB^AB 于点B, DA=10, CB=5.(1)在AB上找一点E,使EC=ED,并求出EA的长;(2)在AB上找一点F,使FC+FD最小,并求出这个最小值5、如图,在梯形ABCD 中,/C=45° , /BAD=/B=90°, AD=3 , CD=2 2 2 ,M为BC上一动点,那么^ AMD 周长的最小值为 .6、如图,等边△ ABC的边长为6, AD是BC边上的中线,M是AD上的动点,E是AB 边上一点,那么EM+BM 的最小值为 .7、如图/AOB = 45 0 , P是/AOB内一点,PO = 10, Q、R分别是OA、OB上的动点, 求4PQR周长的最小值.8.如下图,正方形ABCD的面积为12, AABE是等边三角形,点E在正方形ABCD内, 在对角线AC 上有一点P,使PD+PE的和最小,那么这个最小值为( )A. 2B. 2 而C. 3D. 669、在边长为2 cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点, 连接PB、PQ,那么APEQ周长的最小值为cm10、在长方形ABCD中,AB=4,BC=8,E为CD边的中点,假设P、Q是BC边上的两动点,且PQ=2,当四边形APQE的周长最小时,求BP的长.几何体展开求最短路径1、如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm, 3dm, 2dm, A和B是这个台阶两相对的端点,A点有一只昆虫想到B点去吃可口的食物,那么昆虫沿着台阶爬到 B 点的最短路程是多少dm2、如图:一圆柱体的底面周长为20cm,高A B为4cm, B C是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.3、如图,一个高18m,周长5m的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长(建议:拿一张白纸动手操作,你一定会发现其中的微妙)4、如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的外表爬到对角顶点C1处(三条棱长如下图),问怎样走路线最短最短路线长为多少5、如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B 处有一蚊子,此时一只壁虎正好在容器外壁, 离容器上沿0.3m与蚊子相对的点A处,求壁虎捕捉蚊子的最短距离.折叠问题1、如下图,折叠矩形的一边AD,使点D落在BC边的点F处,AB=8cm, BC=10cm, 求EF的长.2、如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B'处,点A落在点A'处;〔1〕求证:B'E=BF;〔2〕设AE= a , AB= b , BF=c ,试猜测a、b、c之间的一种关系,并给予证实3、如图,有一张直角三角形纸片,两直角边AC=6cm, BC=8cm,将△ ABC折叠, 使点B与点A重合,折痕为DE,那么CD= .4、如图,折叠长方形ABCD的一边AD,点D落在BC边的D'处,AE是折痕,CD=6cm,CD'=2cm,那么AD的长为.5、如图,在RtAABC 中,/ ABC=90° , / C=60° , AC=10,将BC 向BA 方向翻折过去,使点C落在BA上的点C',折痕为BE,那么EC的长度是〔〕A、5 8B、5\3 -5C、10—5^3D、5 + <3 6、如图,把矩形ABCD沿直线BD向上折叠,使点C落在C'的位置上,AB=?3, BC=7,求重合局部△ EBD的面积.弦图有关问题1、如图,直线l上有三个正方形a、b、c ,假设a、c的面积分别为5和11,那么b的面积为〔〕A、4B、6C、16D、552、2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的?勾股圆方图? ,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形〔如下图〕.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a,较长直角边为b,那么〔a+b〕2的值为〔〕A、13B、19C、25D、1693、如图,直角三角形三边上的半圆的面积依次从小到大记作S1、S 2、S 3,那么S1、S2、S3之间的关系是〔〕A、S1+S 2>S3B、S1+S 2<S3C、S1 +S2=S3D、S12 +S22 =S324、如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成,假设图中大小正方形的面积分别为52和4,那么直角三角形的两条直角边的长分别为.5、:如图,以RtAABC的三边为斜边分别向外作等腰直角三角形.假设斜边AB=3,那么图中阴影局部的面积为.6、如图,RtAABC的周长为〔5+3 而〕cm,以AB、AC为边向外作正方形ABPQ和正方形ACMN .假设这两个正方形的面积之和为25cm2,那么AABC的面积是cm2.7、在直线l上依次摆放着七个正方形〔如图〕.斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形白^面积依次是S1、9、S3、S4,那么S1+ S2+S3+S4= .8、我国汉代数学家赵爽为了证实勾股定理,创制了一幅“弦图〞 ,后人称其为“赵爽弦图〞 .如图是由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1 , S2, S3. 假设S〔+S2+S3=10,那么S2的值是.9、如图,△ ABC中,/ ABC = 90° ,AB = BC,三角形的顶点在相互平行的三条直线|1、12、13上,且|1、12之间的距离为2 , 12、13之间的距离为3,求AC的长.勾股定理的证实1、将直角边长分别为 a 、b,斜边长为c 的四个直角三角形拼成一个边长为c 的正方形,请利用该图形证实勾股定理. 2、将直角边长分别为 a 、b,斜边长为c 的四个直角三角形拼成一个边长为a+b 的正方形,请利用该 图形证实勾股定理.3、以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,把这两个直角三角形拼成如下图形状, 使A 、E 、B 三点在一条直线上.请利用该图形证实勾股定理.4、,如下图,正方形ABCD 的边长为1, G 为CD 边上的一个动点〔点 G 与C 、D 不重合〕, 以CG 为一边向正方形 ABCD 外作正方形 GCEF,连接DE 交BG 的延长线于点 H.〔1〕求证:① A BCG^A DCE ②HB, DE〔2〕试问当G 点运动到什么位置时,BH 垂直平分DE?请说明理由.勾股定理中考典型题目练习1、〔2021?山东枣庄〕图①所示的正方体木块棱长为 6cm,沿其相邻三个面的对角线〔图中虚线〕剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体外表从顶点 A 爬行到顶点B 的最 短距离为 cm.2、〔2021?山东潍坊〕我国古代有这样一道数学问题: “枯木一根直立地上‘高二丈周三尺,有葛藤自根缠 绕而上,五周而达其顶,问葛藤之长几何,题意是:如下图,把枯木看作一个圆柱体,因一丈是十尺,那么该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处.那么问题中葛藤的最短长度是 尺. 3、〔2021?乐山〕如图,4ABC 的顶点A 、B 、C 在边长为1的正方形网格的格点上, BDXAC 于点D.那么 CD 的长为〔 〕2.5 A. 33.5 4 . 5 2,5 B. 4 C 5 D. 5A. 4 及 dmB. 2 K 2 dmC. 2 V 5 dmD. 4 J 5 dm 5、〔2021?黑龙江牡丹江〕如图,在等月ABC 中,AB=AC , BC 边上的高 AD=6 cm,腰AB 上的高 CE=8cm, 那么^ABC 的周长等于 cm. 6、〔 2021?安徽省〕如图, RtAABC 中,AB=9 , BC=6 , / B=90 ° ,将^ ABC 折叠,使 A 点与 BC 的 中点D 重合,折痕为 MN ,那么线段BN 的长为 .7、〔2021年山东泰安〕如图①是一个直角三角形纸片,/A=30° , BC=4cm,将其折叠,使点 C 落在 斜边上的点 C 处,折痕为BD,如图②,再将②沿 DE 折叠,使点A 落在DC'的延长线上的点 A'处 如图③,那么折痕 DE的长. 8、〔2021山东荷泽〕如图,边长为6的大正方形中有两个小正方形,假设两个小正方形的面积分别为S 、S 2,那么S 1+S 2的值为〔 〕A. 16B. 17C. 18D. 199、〔2021渐疆〕如图, RtAABC 中,/ ACB=90 ° , / ABC=60 ° , BC=2cm , D 为 BC 中点,假设动点E 以1cm /s 的速度从A 点出发,沿着 A-B-A 的方向运动,设 E 点的运动时间为 t 秒〔0Wt<6〕,连接DE,当^ BDE 是直角三角形时,t 的值为〔 〕A. 2B. 2.5 或 3.5C. 3.5 或 4.5 D, 2 或 3.5 或 4.510. 〔2021湖北省鄂州市〕如图,直线all b,且a 与b 之间的距离为4,点A 到直线a 的距离为2, 点B 到直线b 的距离为3, AB=2 J30 .试在直线 a 上找一点M,在直线b 上找一点N,满足MN La 且AM+MN+NB 的长度和最短,那么此时 AM+NB=(A. 6B. 8 4、〔2021?胡北荆门〕如图,圆柱底面的周长为 点C嵌有一圈金属丝,那么这圈金属丝的周长最小为〔4dm,圆柱高为 2dm,在圆柱的侧面上,过点 A 和 〕 D. 2C. 1011、〔2021 湖北省鄂州市,〕如图,△ AOB 中,Z AOB=90 ° , AO=3 , BO=6, △ AOB 绕顶点O 逆时针旋转到△A'OB'处,此时线段A'B'与BO的交点E为BO的中点,那么线段B'E的长度为 . 12、〔2021四川省南充市〕如图,四边形ABCD中,/ BAD= Z BCD=90 ° , AB=AD ,假设四边形ABCD的面积是24cm2,那么AC长是cm.13、〔2021重庆某江〕一个正方体物体沿斜坡向下滑动,其截面如下图.正方形DEFH的边长为2米,坡角/ A = 30° ,/B=90° ,BC = 6米.当正方形DEFH运动到什么位置,即当AE= 米时,有DC 2 = AE 2+BC2 .14、〔2021内蒙古呼和浩特市〕如下图,四边形ABCD中,DC//AB, BC=1 , AB=AC=AD=2.那么BD的长为〔〕A. . 14B. .. 15C. 3 2D. 2.315、〔2021贵州遵义〕如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到△ ABC ,那么^ ABC中BC边上的高是.16、〔2021辽宁丹东市〕△ ABC是边长为1的等腰直角三角形,以RtAABC的斜边AC为直角边, 画第二个等腰RtAACD ,再以RtAACD的斜边AD为直角边,画第三个等腰RtAADE ,…,依此类推, 第n个等腰直角三角形的斜边长是 .17、〔2021浙江省温州〕勾股定理有着悠久的历史,它曾引起很多人的兴趣. l955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中,/ ACB=90 ° , / BAC=30 ° , AB=4 .作△ PQR使得/ R=90 °,点H在边QR上,点D, E在边PR 上,点G、F在边PQ上,那么△ PQR的周长等于 .18、〔2021年山东青岛市〕如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm;如果从点A开始经过4个侧面缠绕n 圈到达点B,那么所用细线最短需要cm.19、如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH, EH=12厘米,EF=16厘米,那么边AD的长是〔〕A. 12厘米B, 16厘米 C. 20厘米 D. 28厘米20、如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF 折叠,点B、D 恰好都将在点G处,BE=1 ,那么EF的长为〔〕C. 9D, 3421、在△ ABC中, AB=20,AC=15,BC 边上白^高AD为12,求△ ABC的面积.22、如图,公路MN和公路PQ在点P处交汇,且/ QPN = 30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响请说明理由,如果受影响,拖拉机的速度为18km/h,那么学校受影响的时间为多少秒23、如图,将边长为8cm的正方形ABCD折叠,使点落在BC边的中点E处,点A落在F处, 折痕为MN ,求折痕MN的长度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

根据对称求最小值基本模型:已知点A、B为直线m 同侧的两个点,请在直线m上找一点M,使得AM+BM有最小值。

1、已知边长为4的正三角形ABC上一点E,AE=1,AD⊥BC于D,请在AD上找一点N,使得EN+BN有最小值,并求出最小值。

2、.已知边长为4的正方形ABCD上一点E,AE=1,请在对角线AC上找一点N,使得EN+BN有最小值,并求出最小值。

3、如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=230.试在直线a上找一点M,在直线b上找一点N,满足MN ⊥a且AM+MN+NB的长度和最短,则此时AM+NB=()A.6 B.8 C.10 D.124、已知AB=20,DA⊥AB于点A,CB⊥AB于点B,DA=10,CB=5.(1)在AB上找一点E,使EC=ED,并求出EA的长;(2)在AB上找一点F,使FC+FD最小,并求出这个最小值5、如图,在梯形ABCD 中,∠C=45°,∠BAD=∠B=90°,AD=3 ,CD=2 2,M为 BC上一动点,则△AMD 周长的最小值为.6、如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AB边上一点,则EM+BM的最小值为.7、如图∠AOB = 45°,P是∠AOB内一点,PO = 10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.8.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2 B.2 6 C.3 D.69、在边长为2 cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为____________cm10、在长方形ABCD中,AB=4,BC=8,E为CD边的中点,若P、Q是BC边上的两动点,且PQ=2,当四边形APQE的周长最小时,求BP的长.几何体展开求最短路径1、如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm,3dm,2dm,A和B是这个台阶两相对的端点,A点有一只昆虫想到B点去吃可口的食物,则昆虫沿着台阶爬到B点的最短路程是多少dm?2、如图:一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.3、如图,一个高18m,周长5m的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长?(建议:拿一张白纸动手操作,你一定会发现其中的奥妙)4、如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少?5、如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B 处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,求壁虎捕捉蚊子的最短距离。

折叠问题1、如图所示,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EF的长。

2、如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处;(1)求证:B'E=BF;(2)设AE=a,AB=b,BF=c,试猜想a、b、c之间的一种关系,并给予证明3、如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE,则CD= 。

4、如图,折叠长方形ABCD的一边AD,点D落在BC边的D′处,AE是折痕,已知CD=6cm,CD'=2cm,则AD的长为 .5、如图,在Rt△ABC中,∠ABC=90°,∠C=60°,AC=10,将BC向BA方向翻折过去,使点C落在BA上的点C′,折痕为BE,则EC的长度是()A、53B、53-5C、10-53D、5 +36、如图,把矩形ABCD沿直线BD向上折叠,使点C落在C′的位置上,已知AB=•3,BC=7,求重合部分△EBD的面积。

弦图有关问题1、如图,直线 l上有三个正方形a、b、c,若a、c的面积分别为5和11,则b的面积为()A、4B、6C、16D、552、2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a,较长直角边为b,那么(a+b)2的值为()A、13B、19C、25D、1693、如图,直角三角形三边上的半圆的面积依次从小到大记作S1、S2、S3,则S1、S2、S3之间的关系是()A、S1+S2>S3B、S1+S2<S3C、S1+S2=S3D、S12 +S22 =S324、如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两条直角边的长分别为。

5、已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为.6、如图,Rt△ABC 的周长为(5+3 5) cm,以 AB、 AC为边向外作正方形ABPQ 和正方形ACMN .若这两个正方形的面积之和为25cm2,则△ABC的面积是cm2.7、在直线 l上依次摆放着七个正方形(如图).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4= .8、我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1 ,S2,S3.若S1+S2+S3=10,则S2的值是。

9、如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1、l2、l3上,且l1、l2之间的距离为2 , l2、l3之间的距离为3 ,求AC的长。

勾股定理的证明1、将直角边长分别为a、b,斜边长为c的四个直角三角形拼成一个边长为c的正方形,请利用该图形证明勾股定理。

2、将直角边长分别为a、b,斜边长为c的四个直角三角形拼成一个边长为a+b的正方形,请利用该图形证明勾股定理。

3、以a、b为直角边,以c 为斜边作两个全等的直角三角形,把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.请利用该图形证明勾股定理。

4、已知,如图所示,正方形ABCD的边长为1, G为CD边上的一个动点(点G与C、D不重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DE交BG的延长线于点H.(1)求证:①ΔBCG≌ΔDCE ②HB⊥DE(2)试问当G点运动到什么位置时, BH垂直平分DE?请说明理由.勾股定理中考典型题目练习1、(2014?山东枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B 的最短距离为cm.2、(2014?山东潍坊)我国古代有这样一道数学问题:“枯木一根直立地上'高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是__________尺.3、(2014?乐山)如图,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC 于点D.则CD的长为()A.352B.453C.554D.5524、(2014?湖北荆门)如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.4 2dm B.2 2dm C.2 5dm D.45dm5、(2014?黑龙江牡丹江)如图,在等腰△ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则△ABC的周长等于cm.6、( 2014?安徽省)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为。

7、(2014年山东泰安)如图①是一个直角三角形纸片,∠A=30°,BC=4cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将②沿DE折叠,使点A落在DC′的延长线上的点A′处如图③,则折痕DE的长。

8、(2013山东菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.199、(2013?新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC中点,若动点E以1cm /s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为()A. 2 B.2.5或3.5 C.3.5或4.5 D.2或3.5或4.510.(2013湖北省鄂州市)如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a 的距离为2,点B到直线b的距离为3,AB=230.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=()A.6 B.8 C.10 D.211、(2013湖北省鄂州市,)如图,△AOB中,∠AOB=90°,AO=3,BO=6,△AOB绕顶点O 逆时针旋转到△A'OB'处,此时线段A'B'与BO的交点E为BO的中点,则线段B'E的长度为.12、(2012四川省南充市)如图,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD的面积是24cm2,则AC长是 cm.13、(2011重庆綦江) 一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米. 当正方形DEFH运动到什么位置,即当AE=米时,有DC 2=AE 2+BC2 .14、(2011内蒙古呼和浩特市)如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A. 14B. 15C. 3 2D. 2315、(2011贵州遵义)如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到△ABC,则△ABC中BC边上的高是。

相关文档
最新文档