北师大版_梅州市2021年中考数学冲刺题及答案(一)
2021年中考数学 三轮专题冲刺:一元一次不等式(组)(含答案)
2021中考数学 三轮专题冲刺:一元一次不等式(组)一、选择题1. 一个不等式组的解集在数轴上表示出来如图,则下列符合条件的不等式组为( )A. B.2,1x x <⎧⎨>-⎩C.2,1x x <⎧⎨≥-⎩D.2,1x x <⎧⎨≤-⎩2. (2019·广安)若m n >,下列不等式不一定成立的是A .33m n +>+B .33m n -<-C .33m n> D .22m n >3. 已知点P (a -3,2-a )关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是 ( )4. 直线l 1:y =k 1x +b与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图X2-2-3,则关于x 的不等式k 1x +b <k 2x +c 的解集为( ) A .x >1 B .x <1 C .x >-2 D .x <-25. (2019•山西)不等式组13224x x ->⎧⎨-<⎩的解集是A .x>4B .x>-1C .-1<x<4D .x<-16. (2019·无锡)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为A.10 B.9 C.8 D.77. 不等式组2442xx->⎧⎪⎨≤⎪⎩的解集为A.68x≤< B.68x<≤C.28x≤<D.28x<≤8. (2019·重庆A卷)若关于x的一元一次不等式组11(42)423122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为A.0 B.1 C.4 D.6二、填空题9. 不等式321x->的解集是__________.10. 如图所示,点C位于点A、B之间(不与A、B重合),点C表示12x-,则x 的取值范围是__________.11. 在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是________.12. 不等式312(4)x x+>+的解为__________.13. 若关于x的不等式组有且只有两个整数解,则m的取值范围是.14. (2019•鄂州)若关于x、y的二元一次方程组34355x y mx y-=+⎧⎨+=⎩的解满足x+y≤0,则m的取值范围是__________.15. (2019•甘肃)不等式组2021xx x-≥⎧⎨>-⎩的最小整数解是__________.16. (2019•宜宾)若关于x的不等式组214322x xx m x--⎧<⎪⎨⎪-≤-⎩有且只有两个整数解,则m的取值范围是__________.三、解答题17. (1)解方程:x2-2x-1=0.(2)解方程组:(3)解分式方程:-1=.(4)解不等式组:并把解集在数轴上表示出来.18. 某服装店用4500元购进一批衬衫,很快售完.服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?19. (2019•河南)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的13.请设计出最省钱的购买方案,并说明理由.20. (2019·聊城)某商场的运动服装专柜,对A B,两种品牌的远动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表.(1)问A B,两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的32倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?21. 某水果商计划购进甲、乙两种水果进行销售,经了解,甲种水果的进价比乙种水果的进价每千克少4元,且用800元购进甲种水果的数量与用1000元购进乙种水果的数量相同.(1)求甲、乙两种水果的单价分别是多少元?(2)该水果商根据该水果店平常的销售情况确定,购进两种水果共200千克,其中甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元,购回后,水果商决定甲种水果的销售价定为每千克20元,乙种水果的销售价定为每千克25元,则水果商应如何进货,才能获得最大利润,最大利润是多少?2021中考数学三轮专题冲刺:一元一次不等式(组)-答案一、选择题1. 【答案】C2. 【答案】D【解析】A、不等式的两边都加3,不等号的方向不变,故A错误;B、不等式的两边都乘以-3,不等号的方向改变,故B错误;C、不等式的两边都除以3,不等号的方向不变,故C错误;D、如2223m n m n m n==-><,,,,故D正确,故选D.3. 【答案】C[解析]∵点P(a-3,2-a)关于原点对称的点在第四象限,∴点P(a-3,2-a)在第二象限,∴解得∴不等式组的解集是a<2,在数轴上表示如选项C所示.故选C.4. 【答案】B5. 【答案】A【解析】13224xx->⎧⎨-<⎩①②,由①得:x>4,由②得:x>-1,不等式组的解集为:x>4,故选A.6. 【答案】B【解析】设原计划m天完成,开工x天后3人外出培训,则有15am=2160,得到am=144,由题意得15ax+12(a+2)(m-x )<2160,即:ax+4am+8m-8x<720, ∵am=144,∴将其代入得:ax+576+8m-8x<720,即:ax+8m-8x<144, ∴ax+8m-8x<am ,∴8(m-x )<a (m-x ), ∵m>x ,∴m-x>0,∴a>8,∴a 至少为9,故选B .7. 【答案】B由①得6x >, 由②得8x ≤,∴不等式组的解集为68x <≤, 故选B .8. 【答案】B【解析】由不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩,解得5x a x ≤⎧⎨<⎩,∵解集是x≤a ,∴a<5.由关于的分式方程24111y ay y y ---=--得得2y-a+y-4=y-1,∴32ay +=,又∵非负整数解,∴a≥-3,且a=-3,a=-1(舍,此时分式方程为增根),a=1,a=3它们的和为1,故选B .二、填空题 9. 【答案】1x > 【解析】321x ->, 3x>1+2, 3x>3, x>1.故答案为:x>1.10. 【答案】102x -<< 【解析】根据题意得:1122x <-<, 解得:102x -<<, 则x 的范围是102x -<<, 故答案为:102x -<<.11. 【答案】m >2 解析:由第一象限点的坐标的特点可得⎩⎨⎧m >0,m -2>0.解得m >2.12. 【答案】7x >【解析】312(4)x x +>+,3128x x +>+,7x >.故答案为:7x >.13. 【答案】-2≤m<1[解析]解不等式①得x>-2;解不等式②得x ≤,∴不等式组的解集为-2<x ≤.∵不等式组有且只有两个整数解, ∴0≤<1,解得-2≤m<1.14. 【答案】m≤-2【解析】34355x y m x y -=+⎧⎨+=⎩①②,①+②得2x+2y=4m+8,则x+y=2m+4,根据题意得2m+4≤0,解得m≤-2. 故答案为:m≤-2.15. 【答案】0【解析】不等式组整理得:21xx≤⎧⎨>-⎩,∴不等式组的解集为-1<x≤2,则最小的整数解为0,故答案为:0.16. 【答案】-2≤m<1【解析】214322x xx m x--⎧<⎪⎨⎪-≤-⎩①②,解不等式①得:x>-2,解不等式②得:x≤23m+,∴不等式组的解集为-2<x≤23m+,∵不等式组只有两个整数解,∴0≤23m+<1,解得:-2≤m<1,故答案为:-2≤m<1.三、解答题17. 【答案】解:(1)配方法:移项,得x2-2x=1,配方,得x2-2x+1=1+1,即(x-1)2=2,开方,得x-1=±,即x1=1+,x2=1-.公式法:a=1,b=-2,c=-1,Δ=b2-4ac=4+4=8>0,故方程有两个不相等的实数根,∴x===1±,即x1=1+,x2=1-.(2)②-①,得:3x=9,解得:x=3.把x=3代入①,得:3+y=1,解得:y=-2.∴原方程组的解为(3)方程左右两边同乘以3(x -1),得 3x -3(x -1)=2x , 3x -3x +3=2x , 2x=3, x=1.5.检验:当x=1.5时,3(x -1)≠0, ∴原分式方程的解为x=1.5. (4)解不等式①,得:x>-4; 解不等式②,得:x ≤0, ∴不等式组的解集为-4<x ≤0.将这个不等式组的解集表示在数轴上如图:18. 【答案】解:(1)设第一次购进这种衬衫x 件,第二次购进这种衬衫12x 件,根据题意得:4500x =210012x+10, 解得x =30,(2分)经检验x =30是原方程的解,且符合题意, ∴12x =12×30=15.答:第一次购进这种衬衫30件,第二次购进这种衬衫15件.(4分) (2)设第二批衬衫每件销售a 元,根据题意得:30×(200-450030)+15×(a -210015)≥1950,(6分) 解得a≥170.答:第二批衬衫每件至少要售170元. (7分)19. 【答案】(1)设A 的单价为x 元,B 的单价为y 元,根据题意,得3212054210x y x y +=⎧⎨+=⎩,∴3015x y =⎧⎨=⎩, ∴A 的单价30元,B 的单价15元;(2)设购买A 奖品z 个,则购买B 奖品为(30-z )个,购买奖品的花费为W 元,由题意可知,z≥13(30-z ),∴z≥152, W=30z+15(30-z )=450+15z , 当z=8时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少.20. 【答案】(1)设A B ,两种品牌运动服的进货单价分别为x 元和y 元,根据题意,得203010200304014400x y x y +=⎧⎨+=⎩,解得240180x y =⎧⎨=⎩,经检验,方程组的解符合题意.答:A B ,两种品牌运动服的进货单价分别为240元和180元.(2)设购进A 品牌运动服m 件,则购进B 品牌运动服3(5)2m +件,∴3240180(5)213002m m ++≤,解得,40m ≤.经检验,不等式的解符合题意,∴3354056522m +≤⨯+=. 答:最多能购进65件B 品牌运动服.21. 【答案】(1)设甲种水果的单价是x 元,则乙种水果的单价是(4)x +元,80010004x x =+, 解得,16x =,经检验,16x =是原分式方程的解, ∴420x +=,答:甲、乙两种水果的单价分别是16元、20元.(2)设购进甲种水果a 千克,则购进乙种水果(200)a -千克,利润为w 元, (2016)(2520)(200)1000w a a a =-+--=-+,∵甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元, ∴3(200)1620(200)3420a a a a ≤-⎧⎨+-≤⎩, 解得,145150a ≤≤,∴当145a =时,w 取得最大值,此时855w =,20055a -=,答:水果商进货甲种水果145千克,乙种水果55千克,才能获得最大利润,最大利润是855元.。
2021年九年级中考数学 冲刺集训:概率(含答案)
2021中考数学 冲刺集训:概率一、选择题1. 从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M :“这个四边形是等腰梯形”,下列推断正确的是( )A. 事件M 是不可能事件B. 事件M 是必然事件C. 事件M 发生的概率为15D. 事件M 发生的概率为252. 同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是( )A.38B.58C.23D.123. 如图是一个可以自由转动的转盘,该转盘被平均分为8份,每份对应一种颜色,转动这个转盘,转出哪种颜色的可能性最小( )A .红色B .黄色C .绿色D .不确定4. 假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚鸟卵全部成功孵化,那么三只雏鸟中有两只雌鸟的概率是( ) A.16B.38C.58D.235. 有A ,B 两个不透明的口袋,每个口袋里装有两个相同的球,A 袋中的两个球上分别写有“细”“致”的字样,B 袋中的两个球上分别写有“信”“心”的字样,从每个口袋里各摸出一个球,刚好能组成“细心”字样的概率是( ) A.13B.14C.23D.346. 从长度分别为2,3,4,5的4条线段中任取三条,能构成直角三角形的概率为( ) A.34B.12C.13D.147. 甲、乙、丙、丁、戊五名同学参加一次节日活动,很幸运的是他们都得到了一件精美的礼物(如图),他们每人只能从其中一串的最下端取一件礼物,直到礼物取完为止,甲第一个取得礼物,然后乙、丙、丁、戊依次取得第2件到第5件礼物,他们的取法各种各样,事后他们打开这些礼物仔细比较发现礼物D 最精美,那么取得礼物D 可能性最大的同学是( )A .乙B .丙C .丁D .戊8. 定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”,如“947”就是一个“V 数”.若某三位数十位上的数字为5,从4,6,8中任选两数分别作为个位和百位上的数字,则与5组成“V 数”的概率是( ) A.16B.14C.13D.23二、填空题9. 已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是 .10. 从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球10个和白球若干个,这些球除颜色不同外,其他都一样,由此估计口袋中有________个白球.11.2018·湘西州 农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了1个,则吃到腊肉棕的概率为________.12. 同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上,一枚硬币反面向上的概率是________.13. 掷一枚硬币三次,其中有两次正面朝上、一次反面朝上的概率为________.14. 某校欲从初三年级3名女生、2名男生中任取两名学生代表学校参加全市举办的“中国梦·青春梦”演讲比赛,则恰好选中一男一女的概率是________.15. 如图,转盘中6个扇形的面积相等,任意转动转盘1次,转盘停止转动后,指针指向的数小于5的概率为________.16. 在一个不透明的袋子中装有除颜色不同外其余均相同的10个小球,其中红球有4个,黑球有6个,先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,若此时“摸出黑球”为必然事件,则m的值是________.三、解答题17. 如图,有一枚质地均匀的正二十面体形状的骰子,其中的1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”.将这枚骰子掷出后:(1)数字几朝上的概率最小?(2)奇数面朝上的概率是多少?18. (2019▪贵州毕节)某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了500名学生,条形统计图中m=225,n=25;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有425封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?19. 2020·武汉模拟为了有效保护环境,某景区要求游客将垃圾按可回收垃圾、不可回收垃圾、有害垃圾分类投放.一天,小林一家游玩了该景区后,把垃圾按要求分成三袋并随机投入三类垃圾桶中,请用画树状图的方法求三袋垃圾都投对的概率.20. 某景区7月1日~7月7日一周的天气预报如图25-2-2,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.2021中考数学 冲刺集训:概率-答案一、选择题1. 【答案】B 【解析】本题考查正多边形的性质、等腰梯形的判定以及概率的相关概念. 解题思路:先证明出符合条件的四边形是等腰梯形.所以事件M 是必然事件.故选B.2. 【答案】D [解析] 画树状图如下:所以至少有两枚硬币正面向上的概率是48=12.3. 【答案】B4. 【答案】B[解析] 从树状图(C 代表雌鸟,X 代表雄鸟)中可以看出,三只雏鸟中有两只雌鸟的概率是38.故选B.5. 【答案】B [解析] 从每个口袋里各摸出一个球,有“细信”“细心”“致信”“致心”4种等可能的结果,其中组成“细心”字样的有1种结果,故概率是14.6. 【答案】D[解析] 一共有四种可能,分别是2,3,4;2,3,5;2,4,5;3,4,5.其中只有长度分别是3,4,5的三条线段能构成直角三角形,所以能构成直角三角形的概率为14.7. 【答案】B[解析] 甲、乙、丙、丁、戊取礼物的顺序有10种, 如下:①A ,B ,C ,D ,E ;②A ,C ,D ,E ,B ; ③A ,C ,D ,B ,E ;④A ,C ,B ,D ,E ; ⑤C ,D ,E ,A ,B ;⑥C ,D ,A ,B ,E ; ⑦C ,D ,A ,E ,B ;⑧C ,A ,B ,D ,E ; ⑨C ,A ,D ,B ,E ;⑩C ,A ,D ,E ,B. 可见,取得礼物D 可能性最大的同学是丙.8. 【答案】C[解析] 根据题意,画树状图如下:共有6种等可能的结果,与5组成“V 数”的结果有2种(即658,856),所以从4,6,8中任选两数分别作为个位和百位上的数字,与5组成“V 数”的概率为26=13.二、填空题9. 【答案】 [解析]棕色糖果所占的百分比为1-20%-15%-30%-15%=1-80%=20%, 所以P (糖果的颜色为绿色或棕色)=30%+20%=50%=. 故答案为.10. 【答案】20 [解析] 摸了150次,其中有50次摸到黑球,则摸到黑球的频率是50150=13. 设口袋中有x 个白球,则10x +10=13, 解得x =20.经检验,x =20是原方程的解,故答案为20.11. 【答案】12 [解析] 一共有10种等可能的结果,其中吃到腊肉粽的结果有5种,所以吃到腊肉粽的概率为12.12. 【答案】12[解析] 同时抛掷两枚硬币共有4种等可能的结果,即正正,正反,反正,反反,其中一正一反的结果有2种, 所以所求概率=24=12.13. 【答案】38 [解析] 画树状图如下:∵共有8种等可能的结果,其中有两次正面朝上、一次反面朝上的结果有3种, ∴掷一枚硬币三次,其中有两次正面朝上、一次反面朝上的概率为38.14. 【答案】35[解析] 解法1:列表如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种, 所以恰好选中一男一女的概率P =1220=35.解法2:画树状图如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种, 所以恰好选中一男一女的概率P =1220=35.15. 【答案】23[解析] 转盘转动一次,出现6种等可能的结果,小于5的结果共有4种,故指针指向的数小于5的概率为46=23.16. 【答案】4三、解答题17. 【答案】解:(1)因为骰子有20个面,1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”,所以P(6朝上)=520=14,P(5朝上)=520=14,P(1朝上)=120,P(2朝上)=220=110,P(3朝上)=320,P(4朝上)=420=15, 所以数字1朝上的概率最小. (2)因为奇数包括了1,3,5, 所以P(奇数朝上)=1+3+520=920.18. 【答案】(1)此次调查的总人数为150÷30%=500(人), 则m=500×45%=225,n=500×5%=25, 故答案为:500,225,25;(2)C 选项人数为500×20%=100(人), 补全图形如下:(3)1×150+2×100+3×25=425.答:接受问卷调查的学生在活动中投出的信件总数至少有425封,故答案为:425; (4)由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有110000×(1﹣45%)=60500(名).19. 【答案】解:设可回收垃圾、不可回收垃圾、有害垃圾分别为A ,B ,C ,画树状图如下:由树状图可知随机投入三类垃圾桶共有6种等可能的结果,其中三袋垃圾都投对的只有1种结果,∴三袋垃圾都投对的概率为16.20. 【答案】解:(1)∵天气预报是晴的有4天,∴随机选择一天,恰好天气预报是晴的概率为47.(2)∵随机选择连续的两天的结果有晴晴,晴雨,雨阴,阴晴,晴晴,晴阴, ∴随机选择连续的两天,恰好天气预报都是晴的概率为26=13.。
2021年九年级中考数学三轮冲刺专题:《四边形综合》解答题冲刺练习(一)
2021年九年级中考数学三轮冲刺专题:《四边形综合》解答题冲刺练习(一)1.如图1,在矩形ABCD中,AB=4,BC=3,BD为对角线,将△ABD沿过点D的某条直线折叠得到△FED,直线EF分别与线段AB、BD交于点G、H.(1)求证:BG=EG;的值.(2)如图2,当点E、H、C三点共线时,请求S△DFH(3)若△DEH是等腰三角形,求tan∠DEB的值.2.已知在△ABC中,∠C=90°,BC=8,cos B=,点D是边BC上一点,过点D作DE ⊥AB,垂足为点E,点F是边AC上一点,联结DF、EF,以DF、EF为邻边作平行四边形EFDG.(1)如图1,如果CD=2,点G恰好在边BC上,求∠CDF的余切值;(2)如图2,如果AF=AE,点G在△ABC内,求线段CD的取值范围;(3)在第(2)小题的条件下,如果平行四边形EFDG是矩形,求线段CD的长.3.已知,矩形ABCD中,AB=5,AD=3,点E是射线BC上一动点,将矩形ABCD先沿直线AE翻折,点B落在点F处,展开后再将矩形ABCD沿直线BF翻折,点E落在点G 处,再将图形展开,连接EF、FG、GB,得到四边形BEFG.(1)如图1,若点F恰好落在CD边上,求线段BE的长;(2)如图2,若BE=1,直接写出点F到BC边的距离;(3)若△ADG的面积为3,直接写出四边形BEFG的面积.4.如图,在△ABC中,∠ACB=90°,BC=6;AC=8,D为边BC的中点,E为边AC的中点.点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动,到点B停止,以PD、PE为边作▱PEFD.设点P的运动时间为t(秒).(1)证明▱PEFD的面积是定值,并直接写出这个定值.(2)当▱PEFD是矩形时,求此时AP的长.(3)当▱PEFD的一条对角线和△ABC的一边垂直时,直接写出此时t的值.5.如图,正方形ABCD中,点E是边AB上一动点,点F在边AD的延长线上,且BE=DF.连接CE,CF,EF,AC,EF与AC交于点M.(1)求证:CE=CF.(2)若AM=AC,试求∠BCE的度数.(3)设EF的中点为P,连接DP.在点E的运动过程中,的值是否会发生变化?若不变,请求出它的值;若变化,请求出它的取值范围.6.如图,矩形ABCD,延长CD至点E,使DE=CD,连接AC,AE,过点C作CF∥AE交AD的延长线于点F,连接EF.(1)求证:四边形ACFE是菱形;(2)连接BE,当AC=4,∠ACB=30°时,求BE的长.7.如图,在平面直角坐标系内,A(0,4),B(4,4),C(4,0),连接OA,AB,BC,OC.(1)如图1,求证:四边形OABC为正方形;(2)如图2,若点D是OC的中点,连接AD,作DE⊥AD于点D,且DE=AD,点E 在点D的右侧,连接CE,求证:CE=OD;(3)如图3,若点D是x轴上一动点,作DE⊥AD于点D,且DE=AD,点E在点D的右侧,求BE的最小值.8.已知在菱形ABCD中,点P在CD上,连接AP.(1)在BC上取点Q,使得∠PAQ=∠B,①如图1,当AP⊥CD于点P时,线段AP与AQ之间的数量关系是.②如图2,当AP与CD不垂直时,判断①中的结论是否仍然成立,若成立,请给出证明,若不成立,则需说明理由.(2)在CD的延长线取点N,使得∠PAN=∠B,①根据描述在图3中补全图形.②若AB=4,∠B=60°,∠ANC=45°,求此时线段DN的长.9.(1)[问题背景]如图1,在△ABC中,AB=AC,∠BAC=α°,D为BC边上一点(不与点B、C重合)将线段AD绕点A逆时针旋转α°得到AE,连接EC,则∠BCE =°(用含α的式子表示),线段BC,DC,EC之间满足的等量关系式为;(2)[探究证明]如图2,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B、C重合)将线段AD绕点A逆时针旋转90°得到线段AE,连接DE,求证:BD2+CD2=2AD2;(3)[拓展延伸]如图3,在四边形ABCF中,∠ABC=∠ACB=∠AFC=45°,BF=3,CF=1.将△ABF绕点A逆时针旋转90°,试画出旋转后的图形,并求出AF的长度.(不要求尺规作图)10.我们规定:有一组邻边相等,且这组邻边的夹角为60°的凸四边形叫做“准筝形”.(1)如图1,在四边形ABCD中,∠A+∠C=270°,∠D=30°,AB=CB,求证:四边形ABCD是“准筝形”;(2)小军同学研究“准筝形”时,思索这样一道题:如图2,“准筝形”ABCD,AD=BD,∠BAD=∠BCD=60°,BC=5,CD=3,求AC的长.小军研究后发现,可以CD为边向外作等边三角形,构造手拉手全等模型,用转化的思想来求AC.请你按照小军的思路求AC的长.(3)如图3,在△ABC中,∠A=45°,∠ABC=120°,BC=2,设D是△ABC所在平面内一点,当四边形ABCD是“准筝形”时,请直接写出四边形ABCD的面积.11.如图,在平面直角坐标系中,点A,B的坐标分别为(a,0),(b,0),其中a、b满足,现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.解答下列问题:(1)直接写出点A、点B的坐标:A();B();(2)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;(3)在y轴上是否存在一点P,连接PA,PB,使S三角形PAB =S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.12.如图所示,在平行四边形ABCD中,∠DAC=60°,点E是BC边上一点,连接AE,AE=AB,点F是对角线AC边上一动点,连接EF.(1)如图1,若点F与对角线交点O重合,已知BE=4,OC:EC=5:3,求AC的长度;(2)如图2,若EC=FC,点G是AC边上一点,连接BG、EG,已知∠AEG=60°,∠AGB+∠BCD=180°,求证:BG+EG=DC.(3)如图3,若BE=4,CE=,将EF绕点E逆时针旋转90°得EF',请直接写出当AF'+BF'取得最小值时△ABF′的面积.13.将一个矩形纸片OABC放置在平面直角坐标系xOy内,边OA、OC分别在x轴、y轴上,B点坐标是(a,b)且a、b满足+(a+b﹣10)2=0,点P是线段B上的动点,将△OCP沿OP翻折得到△OC′P.(1)求点A和C的坐标;(2)如图①,当点C′落在线段AP上时,求点P的坐标;(3)如图②,当点P为线段BC中点时,求线段BC′的长度.14.如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG.(1)试猜想线段BG和AE的关系,请直接写出你得到的结论;(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由;(3)若BC=DE=2,在(2)的旋转过程中,①当AE为最大值时,则AF=.②当AE为最小值时,则AF=.15.四边形ABCD中,AD∥BC,E为射线BC上一点,AE平分∠BAD.(1)如图1,当点E在线段BC上时,若∠ABE=30°,则∠BEA=(直接写出答案);(2)如图2,当点E在线段BC延长线上时,连接DE,若∠BAD:∠CDE=12:1,∠AED=60°,∠ABC=∠ADC,求∠ABC的度数;(3)在(2)的条件下,如图3所示,F为DA延长线上一点,连接FE交AB于G,交CD于H,∠F:∠FEA=3:1,BC:CE=5:2,当BG=10时,求CH的长.参考答案1.解:(1)证明:如图1,连接BE.由折叠,得BD=ED,∠DBA=∠DEF,∴∠DBE=∠DEB,∠DBE﹣∠DBA=∠DEB﹣∠DEF,∴∠GBE=∠GEB,∴BG=EG.(2)如图2,在矩形ABCD中,∠GBC=90°.由折叠,得∠EFD=∠A=90°,DF=DA=CB=3,∵E、H、C三点共线,∴∠CFD=180°﹣∠EFD=90°=∠GBC,∵CD∥AB,∴∠FCD=∠BGC,∴△FCD≌△BGC(AAS),∴GC=CD=AB=4,∴GB=CF==;∵CD∥GB,∴△CDH∽△GBH,∴,解得CH=,∴FH=﹣=,=×3×==.∴S△DFH(3)如图3,EF的延长线交BD于点H,DE=HE.延长BA交DE于点M,作BN⊥DE于点N,则∠BNE=∠BND=90°.由折叠,得MB=HE,DE=BD==5,∴MB=BD=5,AM=5﹣4=1,∵∠DAN=90°,∴DM==,MN=DN=DM=,∴EN=5,BN==,∴tan∠DEB==;如图4,EF交BD于点H,DH=EH.作BQ⊥DE于点Q,则∠DQB=∠BQE=90°.由折叠,得∠FED=∠ABD,DE=BD=5,∵∠FED=∠QDB,∴∠QDB=∠ABD,又∵∠DQB=∠A=90°,BD=DB,∴△DQB≌△BAD,∴QD=AB=4,QB=AD=3,∴QE=5﹣4=1,∴tan∠DEB==3;如图5,当点F与点A重合时,则点G也与点A重合,点H与点B重合,此时点E、A、B在同一条直线上,∵∠DAE=90°,AE=AB=4,AD=3,∴tan∠DEB=.综上所述,tan∠DEB的值为或3或.2.解:(1)在Rt△ABC中,cos B==,又BC=8,∴AB=10,∴AC===6,∵DE⊥AB,∴在Rt△BDE中,cos B=,又CD=2,BD=6,∴BE=,∵四边形ABCD是平行四边形,∴EF∥DG,∵点G在BC上,∴EF∥BC,∴,∴,∴CF=,在Rt△CFD中,cos=;(2)∵四边形EFDG是平行四边形,∴DF∥EG,当点G恰好在AB上时,∴DF∥AB,∴,设CD=x,则,∴CF=,在Rt△BDE中,cos B=,又CD=x,则BD=8﹣x,∴BE=(8﹣x),∵AE=AF,∴,∴x=,当点G在△ABC内时,0≤CD;(3)设CD=x,则BE=(8﹣x),∴AE=10﹣(8﹣x),设矩形EFDG的对角线FG与DE相交于点O,连接OA,∵平行四边形EFDG是矩形,∴OF=OE=DE,∵AF=AE,OA=OA,∴△AFO≌△AEO(SSS),∴∠AFO=∠AEO=90°,过点E作EH⊥AC于点H,∴EH∥HF∥CB,∵OD=OE,∴CF=HF,∴EH+CD=2OF=DE,∵(8﹣x),EH=[10﹣(8﹣x)],∴[10﹣(8﹣x)]+x=(8﹣x),∴x=,∴CD=.3.解:(1)连接AF,如图1所示:∵四边形ABCD是矩形,∴CD=AB=5,BC=AD=3,∠ABC=∠C=∠D=90°,由翻折的性质得:AF=AB=5,FE=BE,∴DF===4,∴CF=CD﹣DF=1,在Rt△CEF中,由勾股定理得:CE2+CF2=FE2,即(3﹣BE)2+12=BE2,解得:BE=;(2)连接AF,过点F作MN⊥BC于N,交AD于M,如图2所示:则MN⊥AD,AM=BN,∴∠AMF=∠FNE=90°,∴∠AFM+∠FAM=90°,由翻折的性质得:AF=AB=5,∠FE=BE=1,∠AFE=∠ABE=90°,∴∠AFM+∠EFN=90°,∴∠FAM=∠EFN,∴△AMF∽△FNE,∴===5,∴BN=5FN,在Rt△NEF中,由勾股定理得:FN2+EN2=FE2,即FN2+(5FN﹣1)2=12,解得:FN=,或FN=0(舍去),即点F到BC边的距离为;(3)连接AF,过G作GH⊥AD于H,过点F作MN⊥BC于N,交AD于M,如图2所示:则MN∥GH,MN⊥AD,MN=CD=5,∵△ADG的面积=AD×GH=×3×GH=3,∴GH=2,由翻折的性质得:BG=FG,FE=BE,BG=BE,∴BG=FG=FE=BE,∴四边形BEFG是菱形,∴FG∥BC∥AD,∴四边形GHMF是平行四边形,∵GH⊥AD,∴∠GHM=90°,∴平行四边形GHMF是矩形,∴FM=GH=2,∴FN=MN﹣FM=3,AM===,同(2)得:△AMF∽△FNE,∴=,即=,∴FE=,∴BE=,∴四边形BEFG的面积=BE×FN=×3=.4.解:(1)连接DE,作EG垂直于AB与点G,由勾股定理得AB==10,∵点D、E为BC、AC中点,∴DE∥AB,DE=AB=5,AE=AC=4,∵sin A==,∴GE=AE=,∴S=DE•EG=×5×=6,△DEP=2×6=12.∴▱PEFD的面积为2S△DEP(2)①如图,当点P为AB中点时,PD,PE分别为△ABC的中位线,PD⊥PE,∴▱PDEF为矩形,∴AP=AB=5.②如图,当∠DPE为直角时,作EG、DH垂直于AB于点G、H,∵∠DPH+∠EPG=90°,∠DPH+∠HDP=90°,∴△EGP∽△PHD,∴=,∵D为BC中点,∴BD=BC=3,∵tan A===,∴AG=GE=,∵sin B===,tan B===,∴HD=BD=,BH=HD=,∴GP=AP﹣AG=5t﹣,PH=AH﹣AP=AB﹣BH﹣AP=10﹣﹣5t=﹣5t.∴=,解得t=或t=1(舍),∴AP=5t=.综上所述,AP=5或.(3)①当PF⊥AB时,PF⊥DE,∴四边形PDFE为菱形,∴PD2=PE2,∴PH2+HD2=PG2+GE2,即(﹣5t)2+()2=(5t﹣)2+()2,∴﹣5t=5t﹣,解得t=.②当PF⊥BC时,PF交DE于点O,交CD于点K,∵O为DE中点,OK∥EC,∴OK为△EDC的中位线,∴DK=CD=3,∵BK=BP=6﹣3t,∴DK=6﹣3t﹣3=3﹣3t,∴3=3﹣3t,解得t=.③当PF⊥AC时,交AC于点M,同理可得M为EC中点,∴AM=AE+EC=AC=6,∴AP=AM=,∴5t=,解得t=.综上所述,t=或或.5.(1)证明:∵四边形ABCD是正方形,∴∠CBE=∠CDF=90°,BC=DC,∵BE=DF,∴△CBE≌△CDF(SAS),∴CE=CF.(2)解:设EF交CD于T,设AE=a,BE=DF=b,则AD=AB=CD=a+b,∵AE∥CT,∴==,∴CT=2a,DT=a+b﹣2a=b﹣a,∵DT∥AE,∴=,∴=,整理得,2b2﹣2ba﹣a2=0,∴b=a(舍弃)或b=a,∴=,∴tan∠BCE===,∴∠BCE=30°.(3)解:结论:=.理由:连接PC,过点P作PH⊥AD于H.∵△CBE≌△CDF,∴∠BCE=∠DCF,∴∠ECF=∠BCD=90°,∵CE=CF,PE=PF,∴PC⊥EF,∠CFE=45°,∴∠CPT=∠FDT=90°,∵∠CTP=∠DTF,∴△CPT∽△FDT,∴=,∴=,∵∠PTD=∠CTF,∴△PTD∽△CTF,∴∠PDT∠CFT=45°,∵∠ADC=90°,∴∠PDH=90°,∵PH⊥DH,∴PD=PH,∵PE=PF,AE∥PH,∴AH=HF,∴PH=AE,∴PD=×AE,∴=.6.证明:(1)∵四边形ABCD是矩形,∴∠ADC=90°,∴AF⊥CE,又∵CD=DE,∴AE=AC,EF=CF,∴∠EAD=∠CAD,∵AE∥CF,∴∠EAD=∠AFC,∴∠CAD=∠CFA,∴AC=CF,∴AE=EF=AC=CF,∴四边形ACFE是菱形;(2)∵AC=4,∠ACB=30°,∠ABC=90°,∴AB=AC=2,BC=AB=2,∴CD=AB=2=DE,∴BE===2.7.解:(1)∵A(0,4),B(4,4),C(4,0),∴OA=AB=OC=BC=4,∠AOC=90°,∴四边形OABC为正方形;(2)如图2,作EG⊥DC于点G,∵点D是OC的中点,∴OD=OC=2,∵EG⊥DC,DE⊥AD,∴∠DGE=∠AOD=∠ADE=90°,∴∠OAD+∠ADO=∠ADO+∠EDG=90°,∴∠OAD=∠EDG,∵DE=AD,∴△OAD≌△GDE(AAS),∴OD=EG=2,DG=OA=4,∵OD=DC=2,∴CG=2,∴CG=EG,∴△ECG为等腰直角三角形,∠ECG=45°,∴CE=EG=OD;(3)情况1:如图3,点D在x负半轴上,作EH⊥DC于点H,∵EH⊥DC,DE⊥AD,∴∠ADE=∠DHE=∠AOD=90°,∵∠ADO+∠DAO=∠ADO+∠EDH=90°,∴∠DAO=∠EDH,∵AD=DE,∴△OAD≌△HDE(AAS),∴OD=EH,DH=OA=4,∵DH=DO+OH,OA=OC=OH+HC,∴DO=HC,∴EH=CH,∴△ECH为等腰直角三角形,∴∠ECH=45°∴E在直线y=x﹣4上运动,情况2:点D在是x正半轴上,如图4,与情况1同理可得:△ECH为等腰直角三角形,∴E在y=x﹣4的直线运动.如图3,图4中,作BK⊥CE,则BK为BE的最小值,∵BC=4,∠BCK=45°,∠BCK=90°,∴BK=.故BE的最小值为.8.解:(1)①AP=AQ.∵四边形ABCD是菱形,∴BC=CD,AB∥CD,∴∠B+∠QCD=180°,∵∠PAQ=∠B,∴∠PAQ+∠QCD=180°,∴∠APC+∠AQC=180°,∵AP⊥CD,∴∠APC=90°,∴∠AQC=90°,∴AQ⊥BC,=BC•AQ=CD•AP,∵S菱形ABCD∴AP=AQ;故答案为:AP=AQ;②①中的结论仍然成立.证明:如图2中,过点A作AM⊥BC于M,AN⊥CD于N.∵四边形ABCD是菱形,AM⊥BC,AN⊥CD,=BC•AM=CD•AN,∴S菱形ABCD∵BC=CD,∴AM=AN,∠AMQ=∠ANP=90°,AB∥CD,∴∠B+∠C=180°,∵∠PAQ=∠B,∴∠PAQ+∠C=180°,∴∠AQC+∠APC=180°,∵∠AQM+∠AQC=180°,∴∠AQM=∠APN,∴△AMQ≌△ANP(AAS),∴AP=AQ.(2)①补全图形如下:②如图3,过点A作AH⊥CD于点H,∵∠ANC=45°,∴∠NAH=45°,∴AH=HN,∵四边形ABCD是菱形,∠B=60°,∴∠ADC=60°,AB=AD=4,∴DH=AD=2,∴AH=DH=2,∴HN=2,∴DN=HN﹣DH=2﹣2.9.(1)解:如图1中,∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=(180°﹣α),∵∠ACB=∠B=(180°﹣α)∴∠BCE=180°﹣α,∴BC=BD+CD=CD+EC.故答案为:(180﹣α),BC=CD+EC.(2)证明:如图2,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,∴DE2=CE2+CD2,∵AD=AE,∠DAE=90°,∴DE=AD,∴2AD2=BD2+CD2.(3)如图3,将AF绕点A逆时针旋转90°至AG,连接CG、FG,则△FAG是等腰直角三角形,∴∠AFG=45°,∵∠AFC=45°,∴∠GFC=90°,同理得:△BAF≌△CAG,∴CG=BF=3,Rt△CGF中,∵CF=1,∴FG===2,∵△FAG是等腰直角三角形,∴AF==2.10.(1)证明:在四边形ABCD中,∠A+∠B+∠C+∠D=360°,∵∠A+∠C=270°,∠D=30°,∴∠B=360°﹣(∠A+∠C+∠D)=360°﹣(270°+30°)=60°,∵AB=CB,∴四边形ABCD是“准筝形”;.(2)解:以CD为边作等边△CDE,连接BE,过点E作EF⊥BC于F,如图2所示:则DE=DC=CE=3,∠CDE=∠DCE=60°,∵AB=AD,∠BAD=∠BCD=60°,∴△ABD是等边三角形,∴∠ADB=60°,AD=BD,∴∠ADB+∠BDC=∠CDE+∠BDC,即∠ADC=∠BDE,在△ADC和△BDE中,,∴△ADC≌△BDE(SAS),∴AC=BE,∵∠BCD=∠DCE=60°,∴∠ECF=180°﹣60°﹣60°=60°,∵∠EFC=90°,∴∠CEF=30°,∴CF=CE=,由勾股定理得:EF===,BF=BC+CF=5+=,在Rt△BEF中,由勾股定理得:BE===7,∴AC=BE=7.(3)解:过点C 作CH ⊥AB ,交AB 延长线于H ,如图3所示:设BH =x ,∵∠ABC =120°,CH 是△ABC 的高线,∴∠BCH =30°,∴HC =x ,BC =2BH =2x =2,∴x =, 又∵∠A =45°,∴△HAC 是等腰直角三角形,∴HA =HC =3,AB =3﹣, ∴AC =HC =3,当AB =AD =3﹣,∠BAD =60°时, 连接BD ,过点C 作CG ⊥BD ,交BD 延长线于点G ,过点A 作AK ⊥BD ,如图4所示:则BD =3﹣,∠ABD =60°,BK =AB =(3﹣),∵∠ABC =120°,∴∠CBG =60°=∠CBH ,在△CBG 和△CBH 中,,∴△CBG ≌△CBH (AAS ),∴GC =HC =3,在Rt △ABK 中,由勾股定理得:AK ===,∴S △ABD =BD •AK =×(3﹣)×=,S △CBD =BD •CG =×(3﹣)×3=,∴S 四边形ABCD =+=. ②当BC =CD =2,∠BCD =60°时,连接BD ,作CG ⊥BD 于点G ,AK ⊥BD 于K ,如图5所示:则BD=2,CG=BC=×2=3,AK=,∴S△BCD =BD•CG=×2×3=3,S△ABD=BD•AK=×2×=,∴S四边形ABCD=3+=;.③当AD=CD=AC=3,∠ADC=60°时,作DM⊥AC于M,如图6所示:则DM=AD=×3=,∴S△ABC=AB•CH=×(3﹣)×3=,S△ADC=AC•DM=×3×=,∴S四边形ABCD=+=+3,综上所述,四边形ABCD的面积为或或+3.11.解:(1)∵,(a +1)2≥0,≥0,∴a +1=0,b ﹣3=0,∴a =﹣1,b =3,∴A (﹣1,0),B (3,0),故答案为:﹣1,0;3,0; (2)∵将点A (﹣1,0),B (3,0)分别向上平移2个单位,再向右平移1个单位,对应点C ,D ,∴C (0,2),D (4,2),∴CD =AB =4,CD ∥AB ,OC =2,∴四边形ABDC 是平行四边形,∴S 四边形ABDC =AB •OC =4×2=8;(3)存在,P (0,4)或(0,﹣4).设P (0,t ),则OP =|t |,∴S 三角形PAB =AB •OP =×4|t |=2|t |,∵S 三角形PAB =S 四边形ABDC ,∴2|t |=8,∴|t |=4,∴t =±4,∴P (0,4)或(0,﹣4).12.解:(1)如图1,过点A 作AG ⊥BC ,垂足为G ,设OC =5k ,EC =3k , ∵四边形ABCD 是平行四边形,∴AD ∥BC ,AO =OC =5k ,∴∠ACG =∠DAC =60°,∴∠GAC=30°,∵AB=AE,∴BG=GE=2,∴GC=GE+EC=2+3k,在Rt△AGC中,∵∠GAC=30°,∴AC=2GC,∴10k=2(2+3k),解得:k=1,∴AC=10k=10;(2)如图2,延长BG到点M,使得GM=EG,连接CM,延长EF交AD于点N,连接CN,∵∠DAC=60°,EC=FC,∴△EFC是等边三角形,∴∠EFC=∠FEC=∠FCE=60°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAN=∠AFN=∠ANF=60°,∴△AFN是等边三角形,∴AF+FC=FN+EF,∴AC=NE,∵AD∥BC,∴四边形AECN是等腰梯形,∴AE=CN,∵四边形ABCD是平行四边形,∴CD=AB,∵AE=AB,∴AE=CD,∴CN=CD,∵AD∥BC,AE=CD,∴四边形AECD是等腰梯形,∴N与点D重合,∵四边形AECD是等腰梯形,∴∠AEC=∠DCE,∵∠FEC=∠FCE=60°,∴∠AEF=∠DCG,∵∠AEG=60°,∴∠AEF=∠CEG,∴∠CEG=∠DCG,∵∠CEG+∠EGC+∠ECG=180°,∴∠DCG+∠EGC+∠ECG=180°,∴∠EGC+∠BCD=180°,∵∠AGB+∠BCD=180°,∴∠EGC=∠AGB=∠MGC,∵EG=GM,GC=GC,∴△EGC≌△MGC(SAS),∴EC=CM,∠ECG=∠MCG=60°,∴EF=MC,∠AFE=∠BCM=120°,∵△AFN是等边三角形,四边形ABCD是平行四边形,∴AD=BC=AF,∴△AGE≌△BCM(SAS),∴AE=BM,∵AE=AB=DC,BM=BG+GM,GM=EG,∴BG+EG=DC.(3)如图3,过点A作AG⊥BC,垂足为G,∵AB=AE,BE=4,∠DAC=60°,∴BG=GE=2,GC=GE+EC=2+,由(2)知∠ACG=60°,∴∠GAC=30°,∴AG=4+2,在AG上取一点M,使得AM=4,则GM=2,∵直线AG是BE的垂直平分线,∴MB=ME,∵====,∴EM∥AC,∴∠MEG=∠ACE=60°,∴△MBE是等边三角形,∴BF′是∠MBE的角平分线,过点F'作F'H⊥BC,垂足为H,则F'H=BF′,∴AF'+F'H≥AH,∴A,F',G三点共线时,AF'+F'H最小,此时F′H=,∴△ABF′的面积为BG•AF′=×2×(4+)=4+.13.解:(1)∵+(a+b﹣10)2=0,∴.解得:,∴B(6,4),又∵四边形OABC为矩形,∴A(6,0),C(0,4);(2)由(1)可知:AO=BC=6,CO=BA=4,∵AO∥BC,∴∠CPO=∠AOP,由折叠易知:∠CPO=∠C'PO,∴∠AOP=∠C'PO,∴AO=AP=6,在Rt△ABP中,PB==.∴CP=BC﹣PB=6﹣2,∴点P坐标为:(6﹣2,4);(3)连接CC',交PO于点D,如图所示:在Rt△PCO中,OC=4,PC===3,∴OP=,由折叠易知:OP垂直平分线段CC',即D为CC'的中点,==,∴S△PCO∴CD===,在Rt△PDC中,PD===,又∵D为CC'的中点,P为BC中点,∴PD为△CC'B的中位线,∴BC'=2PD=2×=.14.解:(1)结论:BG=AE,BG⊥AE.理由:如图1,延长EA交BG于K.∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,∴AD⊥BC,BD=CD,∴∠ADB=∠ADC=90°.∵四边形DEFG是正方形,∴DE=DG.在△BDG和△ADE中,,∴△ADE≌△BDG(SAS),∴BG=AE,∠BGD=∠AED,∵∠GAK=∠DAE,∴∠AKG=∠ADE=90°,∴EA⊥BG.(2)①成立BG=AE,BG⊥AE.理由:如图2,连接AD,延长EA交BG于K,交DG于O.在Rt△BAC中,D为斜边BC中点,∴AD=BD,AD⊥BC,∴∠ADG+∠GDB=90°.∵四边形EFGD为正方形,∴DE=DG,且∠GDE=90°,∴∠ADG+∠ADE=90°,∴∠BDG=∠ADE.在△BDG和△ADE中,,∴△BDG≌△ADE(SAS),∴BG=AE,∠BGD=∠AED,∵∠GOK=∠DOE,∴∠OKG=∠ODE=90°,∴EA⊥BG.(3)①如图③,当旋转角为270°时,BG=AE,此时AE的值最大.∵BC=DE=2,∴BG=2+1=3.∴AE=3.在Rt△AEF中,由勾股定理,得AF===2,∴AF=2.故答案为:2.②如图④中,连接AF.如图②中,在△BDG中,∵BD=1,DG=2,∴2﹣1≤BG≤1+2,∴AE的最小值为1,此时如图④中,G,B,D共线,在Rt△AEF中,AF===.故答案为:.15.解:(1)∵AD∥BC,∠ABE=30°,∴∠BAD=180°﹣∠ABE=180°﹣30°=150°,而AE平分∠BAD,∴=75°,∴∠BEA=∠DAE=75°,故答案为:75°,(2)设∠CDE=α,则由题意可知∠BAD=12α,∵AD∥BC,∴∠ABC=∠ADC=180°﹣12α,又∵AE平分∠BAD,∴∠DAE==,在△AED中,由三角形内角和定理可知:∠DAE+∠ADE+∠AED=180°,即,6α+180°﹣12α+α+60°=180°,解得:α=12°,∴∠ABC=180°﹣12×12°=36°;(3)由(2)可知:∠BAD=12α,∠ABC=∠ADC=180°﹣12α,故有,∠BAD+∠ADC=12α+180°﹣12α=180°,∴AB∥CD,∴∠GBC=∠HCE,而△CEH∽△BEG,∴,又∵BC:CE=5:2,BG=10,∴,∴CH=.。
【北师大版】2021年中考数学模拟专题 《一元一次不等式(组)及应用》(含解析)
专题01一元一次不等式(组)及应用学校:__________姓名:___________班级:___________一、选择题:(共4个小题)1.【乐山】下列说法不一定成立的是( )A.若a b >,则a c b c +>+ B.若a c b c +>+,则a b >C.若a b >,则22ac bc > D.若22ac bc >,则a b >【答案】C.【解析】【考点定位】不等式的性质.2.【广安】如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为( )A.2y x =+ B.22y x =+ C.2y x =+ D.12y x =+【答案】C.【解析】 试题分析:A.2y x =+,x为任意实数,故错误;B.22y x =+,x为任意实数,故错误;C.2y x=+,20x+≥,即2x≥-,故正确;D.12yx=+,20x+≠,即2x≠-,故错误;故选C.【考点定位】1.函数自变量的取值范围;2.在数轴上表示不等式的解集.3.【绥化】关于x的不等式组1 x ax>⎧⎨>⎩的解集为x>1,则a的取值范围是( )A.a>1 B.a<1 C.a≥1 D.a≤1【答案】D.【解析】试题分析:因为不等式组1x ax>⎧⎨>⎩的解集为x>1,所以可得a≤1,故选D.【考点定位】1.不等式的解集;2.综合题.4.【淄博】一次函数3y x b=+和3y ax=-的图象如图所示,其交点为P(﹣2,﹣5),则不等式33x b ax+>-的解集在数轴上表示正确的是()A.B.C.D.【答案】C.【解析】【考点定位】1.一次函数与一元一次不等式;2.在数轴上表示不等式的解集.二、填空题:(共4个小题)5.【广安】不等式组340 12412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为.【答案】0.【解析】试题分析:340124 12xx+≥⎧⎪⎨-≤⎪⎩①②,解不等式①得:43x≥-,解不等式②得:50x≤,∴不等式组的整数解为﹣1,0,1…50,所以所有整数解的积为0,故答案为:0.【考点定位】一元一次不等式组的整数解.6.【雅安中学中考模拟】若关于x的一元一次不等式组202x mx m-<+>⎧⎨⎩有解,则m的取值范围为【答案】m>23.【解析】【考点定位】1.解一元一次不等式组;2.含字母系数的不等式;3.综合题.7.【达州】对于任意实数m、n,定义一种运运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是.【答案】45a≤<.试题分析:根据题意得:2※x=2x﹣2﹣x+3=x+1,∵a<x+1<7,即a﹣1<x<6解集中有两个整数解,∴a的范围为45a ≤<,故答案为:45a ≤<.【考点定位】1.一元一次不等式组的整数解;2.新定义;3.含待定字母的不等式(组);4.阅读型.8.【重庆市】从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a ,则使关于x 的不等式组21162212x x a -⎧≥-⎪⎨⎪-<⎩有解,且使关于x 的一元一次方程32123x a x a-++=的解为负数的概率为 .【答案】35.【解析】【考点定位】1.概率公式;2.一元一次方程的解;3.解一元一次不等式组;4.综合题;5.压轴题.三、解答题:(共2个小题)9.【遂宁】解不等式组2 6 3(1)2 5 x x x -<⎧⎨+≤+⎩①②,并将解集在数轴上表示出来.【答案】32x -<≤.试题分析:分别求出每个不等式的解集,再求出其公共解集并在数轴上表示出来即可.试题解析:2 6 3(1)2 5 x x x -<⎧⎨+≤+⎩①②,由①得,3x >-,由②得,2x ≤,故此不等式组的解集为:32x -<≤.在数轴上表示为:【考点定位】1.解一元一次不等式组;2.在数轴上表示不等式的解集.10.【内江】某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x 台,这100台家电的销售总利润为y 元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润;(3)实际进货时,厂家对电冰箱出厂价下调k (0<k <100)元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)问中条件,设计出使这100台家电销售总利润最大的进货方案. 【答案】(1)1600,2000;(2)有7种,当购进电冰箱34台,空调66台获利最大,最大利润为13300元;(3)当50<k<100时,购进电冰箱40台,空调60台销售总利润最大;当0<k<50时,购进电冰箱34台,空调66台销售总利润最大;当k=50时,每种进货方案的总利润都一样.【解析】(3)当电冰箱出厂价下调k(0<k<100)元时,则利润y=(k﹣50)x+15000,分两种情况讨论:当k﹣50>0;当k﹣50<0;利用一次函数的性质,即可解答.试题解析:(1)设每台空调的进价为x元,则每台电冰箱的进价为(x+400)元,根据题意得:8000064000400x x =+,解得:x=1600,经检验,x=1600是原方程的解,x+400=1600+400=2000,答:每台空调的进价为1600元,则每台电冰箱的进价为2000元.(2)设购进电冰箱x台,这100台家电的销售总利润为y元,则y=(2100﹣2000)x+(1750﹣1600,第1题,100﹣x)=﹣50x+15000,根据题意得:1002501500013000x x x -≤⎧⎨-+≤⎩,解得:133403x ≤≤,∵x为正整数,∴x=34,35,36,37,38,39,40,∴合理的方案共有7种,即①电冰箱34台,空调66台;②电冰箱35台,空调65台;③电冰箱36台,空调64台;④电冰箱37台,空调63台;⑤电冰箱38台,空调62台;⑥电冰箱39台,空调61台;⑦电冰箱40台,空调60台;∵y=﹣50x+15000,k=﹣50<0,∴y随x的增大而减小,∴当x=34时,y有最大值,最大值为:﹣50×34+15000=13300(元),答:当购进电冰箱34台,空调66台获利最大,最大利润为13300元.【考点定位】1.一次函数的应用;2.分式方程的应用;3.一元一次不等式组的应用;4.分类讨论;5.方案型;6.最值问题.专题02 平面直角坐标系、函数及其图像学校:___________姓名:___________班级:___________一、选择题:(共4个小题)1.【内江】函数121y x x =-+-中自变量x 的取值范围是( ) A.2x ≤ B.2x ≤且1x ≠ C.x <2且1x ≠ D.1x ≠【答案】B.【解析】试题分析:根据二次根式有意义,分式有意义得:20x -≥且10x -≠,解得:2x ≤且1x ≠.故选B.【考点定位】函数自变量的取值范围.2.【自贡】小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是( )【答案】C.【解析】试题分析:由题意,得:以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选C.【考点定位】1.函数的图象;2.分段函数.3.【宜宾】在平面直角坐标系中,任意两点A (1x ,1y ),B (2x ,2y ),规定运算:①A ⊕B =(12x x +,12y y +);②A ⊗B =1212x x y y +;③当12x x =且12y y =时,A =B ,有下列四个命题:(1)若A (1,2),B (2,﹣1),则A ⊕B =(3,1),A ⊗B =0;(2)若A ⊕B =B ⊕C ,则A =C ;(3)若A ⊗B =B ⊗C ,则A =C ;(4)对任意点A 、B 、C ,均有(A ⊕B )⊕C =A ⊕(B ⊕C )成立,其中正确命题的个数为( )A .1个 B.2个 C.3个 D.4个【答案】C .【解析】【考点定位】1.命题与定理;2.点的坐标;3.新定义;4.阅读型.4.【泸州】在平面直角坐标系中,点A (2,2),B (32,32),动点C 在x 轴上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数为( )A.2 B.3 C.4 D.5【答案】B.【解析】【考点定位】1.等腰三角形的判定;2.坐标与图形性质;3.分类讨论;4.综合题;5.压轴题.二、填空题:(共4个小题)5.【广元】若第二象限内的点P (x ,y )满足3x =,225y =,则点P 的坐标是________.【答案】(﹣3,5).【解析】 试题分析:∵3x =,225y =,∴x =±3,y =±5,∵P 在第二象限,∴点P 的坐标是(﹣3,5).故答案为:(﹣3,5).【考点定位】点的坐标.6.【2015六盘水】观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B 点,则表示B 点位置的数对是: .【答案】(2,7).【解析】试题分析:建立平面直角坐标系如图所示,点B的坐标为(2,7).故答案为:(2,7).【考点定位】坐标确定位置.7.【甘孜州】如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,AO,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,12;…)的中心均在坐标原点则顶点A20的坐标为.【答案】(5,﹣5).【解析】试题分析:∵204=5,∴A 20在第二象限,∵A 4所在正方形的边长为2,A 4的坐标为(1,﹣1),同理可得:A 8的坐标为(2,﹣2),A 12的坐标为(3,﹣3),∴A 20的坐标为(5,﹣5),故答案为:(5,﹣5).【考点定位】1.规律型:点的坐标;2.规律型;3.综合题.8.【2015资阳雁江区中考适应】如图①,在正方形ABCD 中,点P 沿边DA 从点D 开始向点A 以2cm /s 的速度移动;同时,点Q 沿边AB 、BC 从点A 开始向点C 以3cm /s 的速度移动.当点P 移动到点A 时,P 、Q 同时停止移动.设点P 出发x s 时,△PAQ 的面积为ycm 2,y 与x 的函数图像如图2 所示,则线段EF 所在的直线对应的函数关系式为 .【答案】y =-3x +18.【解析】【考点定位】1.动点问题的函数图象;2.动点型;3.综合题.三、解答题:(共2个小题)9.【丹棱县一诊】如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点都在格点上,建立平面直角坐标系.(1)点A 的坐标为 ,点C 的坐标为 .(2)将△ABC 向左平移7个单位,请画出平移后的111C B A ,若M 为△ABC 内的一点,其坐标为(a ,b )则平移后点1M 的坐标为 .(3)以原点O 为位似中心,将△ABC 缩小,使变换后的222C B A ∆与△ABC 对应边的比为1:2,请在网格内画出一个222C B A ∆,则2A 的坐标为 .【答案】(1)A (2,7),C (6,5);(2)作图见解析;(3)作图见解析.【解析】(2)平移后的△A 1B 1C 1如图所示:∵M 为△ABC 内的一点,其坐标为(a ,b ),△ABC 向左平移了7个单位,∴平移后点M 的对应点M 1的坐标为M 1(a -7,b ).(3)如图所示:△A 2B 2C 2为所求.【考点定位】1.作图-平移变换;2.作图-位似变换.10.【黔西南州】某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元. (1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元? 【答案】(1)每吨水的政府补贴优惠价为1元,市场调节价为2.5元;(2)(012)2.518 (12)x x y x x ≤≤⎧=⎨->⎩;(3)47. 【解析】答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元.(2)∵当0≤x ≤12时,y =x ;当x >12时,y =12+(x ﹣12)×2.5=2.5x ﹣18,∴所求函数关系式为: (012)2.518 (12)x x y x x ≤≤⎧=⎨->⎩;(3)∵x=26>12,∴把x=26代入y=2.5x﹣18,得:y=2.5×26﹣18=47(元).答:小英家三月份应交水费47元.【考点定位】1.一次函数的应用;2.分段函数;3.分类讨论.。
2021年广东省梅州市数学中考真题含答案解析
2021年广东省梅州市中考数学试卷一、选择题:每小题3分,共21分,每小题给出四个答案,其中只有一个是正确的.1.(3分)(2015•梅州)的相反数是( ) A.2B.﹣2C.D.﹣2.(3分)(2015•梅州)如图所示几何体的左视图为( ) A.B.C.D.3.(3分)(2015•梅州)下列计算正确的是( ) A.x+x2=x3B.x2•x3=x6C.(x3)2=x6D.x9÷x3=x34.(3分)(2015•梅州)下列说法正确的是( ) A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件 B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定 C.“明天降雨的概率为”,表示明天有半天都在降雨 D.了解一批电视机的使用寿命,适合用普查的方式5.(3分)(2015•梅州)下列命题正确的是( ) A.对角线互相垂直的四边形是菱形 B.一组对边相等,另一组对边平行的四边形是平行四边形 C.对角线相等的四边形是矩形 D.对角线互相垂直平分且相等的四边形是正方形6.(3分)(2015•梅州)如图,AB是⊙O的弦,AC是⊙O切线,A为切点,BC经过圆心.若∠B=20°,则∠C的大小等于( ) A.20°B.25°C.40°D.50°7.(3分)(2015•梅州)对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1。
②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1。
③它的图象与x轴的两个交点是(0,0)和(2,0)。
④当0<x<2时,y>0.其中正确的结论的个数为( ) A.1B.2C.3D.4二、填空题:每小题3分,共24分.8.(3分)(2015•梅州)函数中,自变量x的取值范围是 .9.(3分)(2015•梅州)分解因式:m3﹣m= .10.(3分)(2015•梅州)据统计,2021年我市常住人口约为4320000人,这个数用科学记数法表示为 .11.(3分)(2015•梅州)一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则女生当选组长的概率是 .12.(3分)(2015•梅州)已知:△ABC中,点E是AB边的中点,点F在AC边上,若以A,E,F 为顶点的三角形与△ABC相似,则需要增加的一个条件是 .(写出一个即可) 13.(3分)(2015•梅州)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于 .14.(3分)(2015•梅州)如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为 .15.(3分)(2015•梅州)若=+,对任意自然数n都成立,则a= ,b 。
2021年九年级中考数学 冲刺训练:一元二次方程及其应用(含答案)
2021中考数学 冲刺训练:一元二次方程及其应用一、选择题1. 用配方法解方程x 2-6x =4时,需要两边同时加上( ) A .3 B .4C .6D .92. 关于x的一元二次方程x 2+4kx -1=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断3. 方程3x (2x +1)=2(2x +1)的两个根为( )A .x 1=23,x 2=0 B .x 1=23,x 2=12 C .x 1=32,x 2=-12 D .x 1=23,x 2=-124. 当b +c =5时,关于x 的一元二次方程3x 2+bx -c =0的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定5. 随着生产技术的进步,某厂生产一件产品的成本从两年前的100元下降到现在的64元,求年平均下降率.设年平均下降率为x ,通过解方程得到一个根为1.8,则正确的解释是( )A .年平均下降率为80%,符合题意B .年平均下降率为18%,符合题意C .年平均下降率为1.8%,不符合题意D.年平均下降率为180%,不符合题意6. 某商场在销售一种糖果时发现,如果以20元/kg的单价销售,那么每天可售出100 kg,若这种糖果每千克的售价每增加0.5元,则每天的销售量就会减少2 kg.该商场为使每天的销售额达到1800元,销售单价应为多少?设销售单价应为x 元/kg,依题意可列方程为()A.(20+x)(100-2x)=1800B.(20+x)(100-2x0.5)=1800C.x(100-x-200.5×2)=1800D.x[100-2(x-20)]=18007. 2018·绵阳在一次酒会上,每两人都只碰一次杯,若一共碰杯55次,则参加酒会的人数为()A.9 B.10 C.11 D.128. 如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>-14B.k>-14且k≠0C.k<-14D.k≥-14且k≠0二、填空题9. 方程(3x-4)2-(3x-4)=0的根是____________.10. 如图,在一块长12 m,宽8 m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路分别与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积为77 m2,设道路的宽为x m,则根据题意,可列方程为.11. 一元二次方程4x 2=3x 的解是______________.12. 配方法解一元二次方程x 2-2 2x +1=0,所得结果是x 1=________,x 2=________.13. 已知关于x的一元二次方程(k -1)x 2-2x +1=0有两个不相等的实数根,则k的最大整数值为________.14. 小明在解方程x 2-2x -1=0时出现了错误,其解答过程如下:x 2-2x =-1.(第一步) x 2-2x +1=-1+1.(第二步) (x -1)2=0.(第三步) x 1=x 2=1.(第四步)(1)小明的解答过程是从第________步开始出现错误,其错误原因是________________;(2)请写出此题正确的解答过程.15. 已知关于x 的方程ax 2-bx +c =0(a ≠0)的一个根是12,且b 2-4ac =0,则此方程的另一个根是________.16. 在△ABC 中,BC =2,AB =2 3,AC =b ,且关于x 的方程x 2-4x +b =0有两个相等的实数根,则AC 边上的中线长为________.三、解答题17. 解方程组:222,230.x y x xy y -=⎧⎨--=⎩18. (2020·广东)已知关于x 、y 的方程组4ax x y ⎧+=-⎪⎨+=⎪⎩215x y x by -=⎧⎨+=⎩的解相同.(1)求a 、b 的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x 的方程20++=的解,试判断该三角形的形状,并说明理由.x ax b19. 如图,有一矩形的硬纸板,长为30 cm,宽为20 cm,在其四个角各剪去一个相同的小正方形,然后把四周的矩形折起,可做成一个无盖的长方体盒子,当剪去的小正方形的边长为何值时,所得长方体盒子的底面积为200 cm2?20. 已知关于x的一元二次方程x2+(2m+1)x+m2-1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.21. 已知关于x的一元二次方程(x-1)(x-4)=p2,p为实数.(1)求证:不论p为何实数,方程总有两个不相等的实数根;(2)当p为何值时,方程有整数解?(直接写出三个,不需要说明理由)22. “早黑宝”是某省农科院研制的优质新品种,在该省被广泛种植.某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“早黑宝”的种植面积达到225亩.(1)求该基地这两年“早黑宝”种植面积的年平均增长率;(2)市场调查发现,当“早黑宝”售价为20元/千克时,每天能售出200千克,每千克的售价每降低1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1800元,则每千克的售价应降低多少元?23. 某批发商以每件50元的价格购进800件T恤,第一个月以单价80元/件销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,每件每降低1元,可多售出10件,但最低单价应高于购进的价格.第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元/件,设第二个月每件降低x元.(1)填表:(不需化简)时间第一个月第二个月清仓时单价(元/件) 80 40销售量(件) 200(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少?24. 在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程x2-5x+2=0,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图①);第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D的横坐标n既为该方程的另一个实数根.(1)在图②中,按照“第四步”的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹);(2)结合图①,请证明“第三步”操作得到的m 就是方程x 2-5x +2=0的一个实数根;(3)上述操作的关键是确定两个固定点的位置.若要以此方法找到一元二次方程ax 2+bx +c =0(a ≠0,b 2-4ac ≥0)的实数根,请你直接写出一对固定点的坐标; (4)实际上,(3)中的固定点有无数对,一般地,当m 1,n 1,m 2,n 2与a ,b ,c 之间满足怎样的关系时,点P(m 1,n 1).Q(m 2,n 2)就是符合要求的一对固定点?2021中考数学 冲刺训练:一元二次方程及其应用-答案一、选择题 1. 【答案】D2. 【答案】A [解析] 在方程x 2+4kx -1=0中,Δ=b 2-4ac =(4k)2-4×1×(-1)=16k 2+4.∵16k 2+4>0, ∴方程x 2+4kx -1=0有两个不相等的实数根.故选A.3. 【答案】D[解析] 3x(2x +1)-2(2x +1)=0,(3x -2)(2x +1)=0, 3x -2=0或2x +1=0, 所以x 1=23,x 2=-12.4. 【答案】A[解析] 因为b +c =5,所以c =5-b.因为Δ=b 2-4×3×(-c)=b 2-4×3×(b -5)=(b -6)2+24>0,所以该一元二次方程有两个不相等的实数根.5. 【答案】D[解析] 设年平均下降率为x ,则可得100(1-x )2=64,解之得x 1=0.2=20%,x 2=1.8=180%.由于0<x <1,因此年平均下降率为180%不符合题意.6. 【答案】C7. 【答案】C[解析] 设参加酒会的人数为x ,根据题意,得12x (x -1)=55, 整理,得x 2-x -110=0,解得x 1=11,x 2=-10(不合题意,舍去). 故参加酒会的人数为11.8. 【答案】B二、填空题9. 【答案】x 1=43,x 2=53[解析] 原方程左边分解因式得(3x -4)[(3x -4)-1]=0,即(3x -4)(3x -5)=0.于是3x -4=0或3x -5=0.所以x 1=43,x 2=53.10. 【答案】(12-x )(8-x )=7711. 【答案】x 1=0,x 2=34[解析] 4x 2=3x , 4x 2-3x =0, x(4x -3)=0, x =0或4x -3=0, 所以x 1=0,x 2=34.12. 【答案】2-1 2+113. 【答案】0[解析] 由题意得Δ=b 2-4ac =4-4(k -1)>0,∴k<2.又∵k -1≠0,即k≠1,∴k<2且k≠1,∴k 的最大整数值为0.14. 【答案】解:(1)一移项时没有变号(2)x 2-2x =1. x 2-2x +1=1+1. (x -1)2=2.x -1=±2.所以x 1=1+2,x 2=1- 2.15. 【答案】12[解析] 由b 2-4ac =0知原方程根的判别式为0,因此原方程有两个相等的实数根.故原方程的另一个根也是12.16. 【答案】2[解析] 因为关于x 的方程x 2-4x +b =0有两个相等的实数根,所以Δ=(-4)2-4b =16-4b =0,得AC =b =4. 因为BC =2,AB =2 3, 所以BC 2+AB 2=AC 2,所以△ABC 为直角三角形,AC 为斜边,则AC 边上的中线长为斜边的一半,为2.三、解答题17. 【答案】解:⎩⎨⎧x -y =2, ①x 2-2xy -3y 2=0, ②方程①变形为y =x -2. ③把③代入②,得x 2-2x (x -2)-3(x -2)2=0. 整理,得x 2-4x +3=0.解这个方程,得x 1=1,x 2=3.将x 1=1,x 2=3代入③,分别求得y 1=-1,y 2=1.所以原方程组的解为⎩⎨⎧ x 1=1,y 1=-1或⎩⎨⎧x 2=3,y 2=1.18. 【答案】解:(1)由题意得24x y x y -=⎧⎨+=⎩,解得,31x y =⎧⎨=⎩.将31x y =⎧⎨=⎩代入ax +=-15x by +=,解得a =-12b =. (2)该三角形是等腰直角三角形,理由如下:由(1)得2120x -+=,配方得,(20x -=.解得,12x x ==∴ 该三角形的形状是等腰三角形.∵(224=,(212=,∴(((222=+∴ 该三角形的形状是等腰直角三角形19. 【答案】解:设剪去的小正方形的边长为x cm , 根据题意有:(30-2x )(20-2x )=200, 解得x 1=5,x 2=20,当x=20时,30-2x<0,20-2x<0,所以x=5.答:当剪去的小正方形的边长为5 cm 时,长方体盒子的底面积为200 cm 2.20. 【答案】解:(1)∵关于x 的一元二次方程x 2+(2m +1)x +m 2-1=0有两个不相等的实数根,∴Δ=b 2-4ac =(2m +1)2-4×1×(m 2-1)=4m +5>0,解得m >-54.(2)答案不唯一,如取m =1,此时原方程为x 2+3x =0,解得x 1=0,x 2=-3.21. 【答案】解:(1)证明:原方程可化为x 2-5x +4-p 2=0. ∵Δ=b 2-4ac =(-5)2-4(4-p 2)=4p 2+9>0, ∴不论p 为何实数,方程总有两个不相等的实数根. (2)原方程可化为x 2-5x +4-p 2=0. 由求根公式得方程的根为x =5±4p 2+92.∵方程有整数解,∴找到p 的值,使5±4p 2+92为整数即可,∴p 可取0,2,-2,10,-10等,此时方程有整数解(答案不唯一,写出三个即可).22. 【答案】解:(1)设该基地这两年“早黑宝”种植面积的年平均增长率为x , 根据题意,得100(1+x )2=225,解得x 1=0.5=50%,x 2=-2.5(不合题意,舍去).答:该基地这两年“早黑宝”种植面积的年平均增长率为50%.(2)设每千克的售价降低y元,则每天可售出(200+50y)千克,根据题意,得(20-12-y)(200+50y)=1800,整理,得y2-4y+4=0,解得y1=y2=2.答:每千克的售价应降低2元.23. 【答案】解:(1)填表如下:(2)根据题意,得200×(80-50)+(200+10x)(80-x-50)+[800-200-(200+10x)](40-50)=9000,整理,得10x2-200x+1000=0,解得x1=x2=10.当x=10时,80-x=70>50.答:第二个月的单价应是70元/件.24. 【答案】【思路分析】(1)因为点C是x轴上的一动点,且∠ACB=90°保持不变,所以由圆周角的性质得,点C必在以AB为直径的圆上,所以以AB为直径画圆,与x 轴相交于两点,除点C的另一点就是所求;(2)因为∠ACB=90°,∠AOC=90°,所以过点B作BE⊥x轴,垂足为E,则构造了一个“K”字型的基本图形,再由相似三角的性质得出比例式,化简后得m2-5m+2=0,问题得证;(3)由(2)中的证明过程可知,一个二次项系数为1的一元二次方程,一次项系数是点A的横坐标与点B的横坐标的和的相反数;常数项是点A的纵坐标与点B的纵坐标的积,先把方程ax2+bx+c=0,化为x2+ba x+ca=0,再根据上述关系写出一对固定点的坐标;(4)由(2)的证明中知,本题的关键点在“K”字型的构造,所以本小题解题的关键是要抓住图②中的“K”字型,只要P、Q两点分别在AD、BD上,过P、Q分别作x轴垂线,垂足为M、N,这样就构造出满足条件的基本图形,再应用相似三角形的性质,可得相应的关系式.图① 图②(1)解:如解图①,先作出AB 的中点O 1,以O 1为圆心,12AB 为半径画圆.x 轴上另外一个交点即为D 点;(4分)(2)证明:如解图①,过点B 作x 轴的垂线交x 轴于点E ,∵∠ADB =90°,∴∠ADO +∠BDE =90°,∵∠OAD +∠ADO =90°,∴∠OAD =∠BDE ,∵∠AOD =∠DEB =90°,∴△AOD ∽△DEB ,(6分)∴AO DE =OD EB ,即15-m=m 2, ∴m 2-5m +2=0,∴m 是x 2-5x +2=0的一个实根;(8分)(3)解:(0,1),(-b a ,c a )或(0,1a ),(-b a ,c );(10分)(4)解:在解图②中,P 在AD 上,Q 在BD 上,过P ,Q 分别作x 轴的垂线交x 轴于M ,N.由(2)知△PMD ∽△DNQ ,∴n 1m 2-x =x -m 1n 2,(12分) ∴x 2-(m 1+m 2)x +m 1m 2+n 1n 2=0与ax 2+bx +c =0同解,∴-b a =m 1+m 2;c a =m 1m 2+n 1n 2.(14分)【难点突破】本题是一道考查数形结合思想的题.本题解题的突破口要抓住∠ACB =90°保持不变的特征,构造相似三角形中的基本图形,通过数形结合的方法,以相似三角形的比例式为桥梁,以此获得关于m 的等量关系,从而使问题得以解决.。
梅州市中考数学试卷及答案(解析版)
广东省梅州市中考数学试卷一、选择题(共5小题,每小题3分,满分15分)1.(•梅州)=()A.﹣2B.2C.1D.﹣12.(•梅州)下列图形中是轴对称图形的是()A.B.C.D.3.(•梅州)某同学为了解梅州市火车站今年“五一”期间每天乘车人数,随机抽查了其中五天的乘车人数,所抽查的这五天中每天乘车人数是这个问题的()A.总体B.个体C.样本D.以上都不对4.(•梅州)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A.150°B.210°C.105°D.75°5.(•梅州)在同一直角坐标系下,直线y=x+1与双曲线的交点的个数为()A.0个B.1个C.2个D.不能确定二、填空题(共8小题,每小题3分,满分24分)6.(•梅州)使式子有意义的最小整数m是_________.7.(•梅州)若代数式﹣4x6y与x2n y是同类项,则常数n的值为_________.8.(•梅州)梅州水资源丰富,水力资源的理论发电量为775000千瓦,这个数据用科学记数法可表示为_________千瓦.9.(•梅州)正六边形的内角和为_________度.10.(•梅州)为参加“梅州市实践毕业生升学体育考试”,小峰同学进行了刻苦训练,在投掷实心球时,测得5次投掷的成绩(单位:m)8,8.5,8.8,8.5,9.2.这组数据的:①众数是_________;②中位数是_________;③方差是_________.11.(•梅州)春蕾数学兴趣小组用一块正方形木板在阳光做投影实验,这块正方形木板在地面上形成的投影是可能是_________(写出符合题意的两个图形即可)12.(•梅州)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF=_________.13.(•梅州)如图,连接在一起的两个正方形的边长都为1cm,一个微型机器人由点A开始按ABCDEFCGA…的顺序沿正方形的边循环移动.①第一次到达G点时移动了_________cm;②当微型机器人移动了cm时,它停在_________点.三、解答题(共10小题,满分81分)14.(•梅州)计算:﹣+2sin60°+()﹣1.15.(•梅州)解不等式组:,并判断﹣1、这两个数是否为该不等式组的解.16.(•梅州)为实施校园文化公园化,提升校园文化品位,在“回赠母校一颗树”活动中,我市某中学准备在校园内空地上种植桂花树、香樟树、柳树、木棉树,为了解学生喜爱的树种情况,随机调查了该校部分学生,并将调查结果整理后制成了如图统计图:请你根据统计图提供的信息,解答以下问题:(直接填写答案)(1)该中学一共随机调查了_________人;(2)条形统计图中的m=_________,n=_________;(3)如果在该学校随机抽查了一位学生,那么该学生喜爱的香樟树的概率是_________.17.(•梅州)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案)(1)点A关于点O中心对称的点的坐标为_________;(2)点A1的坐标为_________;(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为_________.18.(•梅州)解方程:.19.(•梅州)如图,AC是⊙O的直径,弦BD交AC于点E.(1)求证:△ADE∽△BCE;(2)如果AD2=AE•AC,求证:CD=CB.20.(•梅州)一辆警车在高速公路的A处加满油,以每小时60千米的速度匀速行驶.已知警车一次加满油后,油箱内的余油量y(升)与行驶时间x(小时)的函数关系的图象如图所示的直线l上的一部分.(1)求直线l的函数关系式;(2)如果警车要回到A处,且要求警车中的余油量不能少于10升,那么警车可以行驶到离A处的最远距离是多少?21.(•梅州)如图,已知△ABC,按如下步骤作图:①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;②连接MN,分别交AB、AC于点D、O;③过C作CE∥AB交MN于点E,连接AE、CD.(1)求证:四边形ADCE是菱形;(2)当∠ACB=90°,BC=6,△ADC的周长为18时,求四边形ADCE的面积.22.(•梅州)(1)已知一元二次方程x2+px+q=0(p2﹣4q≥0)的两根为x1、x2;求证:x1+x2=﹣p,x1•x2=q.(2)已知抛物线y=x2+px+q与x轴交于A、B两点,且过点(﹣1,﹣1),设线段AB的长为d,当p为何值时,d2取得最小值,并求出最小值.23.(•梅州)如图,矩形OABC中,A(6,0)、C(0,2)、D(0,3),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°.(1)①点B的坐标是_________;②∠CAO=_________度;③当点Q与点A重合时,点P的坐标为_________;(直接写出答案)(2)设OA的中心为N,PQ与线段AC相交于点M,是否存在点P,使△AMN为等腰三角形?若存在,请直接写出点P的横坐标为m;若不存在,请说明理由.(3)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.广东省梅州市中考数学试卷参考答案与试题解析一、选择题(共5小题,每小题3分,满分15分)1.(•梅州)=()A.﹣2B.2C.1D.﹣1考点:零指数幂。
【北师大版】2021年中考数学模拟专题《 一元一次方程、二元一次方程(组)及应用》(含解析)
专题01一元一次方程、二元一次方程(组)及应用学校:___________姓名:___________班级:___________一、选择题:(共4个小题)1.【成都四月模拟】某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()A.1.2×0.8x+2×0.9(60+x)=87 B.1.2×0.8x+2×0.9(60-x)=87 C.2×0.9x+1.2×0.8(60+x)=87 D.2×0.9x+1.2×0.8(60-x)=87 【答案】B.【解析】【考点定位】一元一次方程的应用.2.【巴中】若单项式22a bx y+与413a bx y--是同类项,则a,b的值分别为()A.a=3,b=1 B.a=﹣3,b=1 C.a=3,b=﹣1 D.a=﹣3,b=﹣1 【答案】A.【解析】试题分析:∵单项式22a bx y+与413a bx y--是同类项,∴24a ba b-=⎧⎨+=⎩,解得:a=3,b=1,故选A.【考点定位】1.解二元一次方程组;2.同类项.3.【绵阳】若5210a b a b+++-+=,则()2015b a-=()A.﹣1 B.1 C.20155 D.20155-【答案】A.【解析】试题分析:∵5210a b a b+++-+=,∴⎩⎨⎧=+-=++125baba,解得:⎩⎨⎧-=-=32ba,则()20152015321b a-=-+=-().故选A.【考点定位】1.解二元一次方程组;2.非负数的性质.4.【乐山】电影《刘三姐》中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱到:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?”刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.”若用数学方法解决罗秀才提出的问题,设“一少”的狗有x条,“三多”的狗有y 条,则解此问题所列关系式正确的是()A.33000300x yx y+=⎧⎨<<<⎩B.33000300x yx yx y+=⎧⎪<<<⎨⎪⎩、为奇数C.330003300x yx yx y+=⎧⎪<=<⎨⎪⎩、为奇数D.3300 0300 0300 x yxyx y+=⎧⎪<<⎪⎨<<⎪⎪⎩、为奇数【答案】B.【解析】试题分析:设“一少”的狗有x条,“三多”的狗有y条,可得:33000300x yx yx y+=⎧⎪<<<⎨⎪⎩、为奇数,故选B.【考点定位】由实际问题抽象出二元一次方程.二、填空题:(共4个小题)5.【甘孜州】已知关于x的方程332xa x-=+的解为2,则代数式221a a-+的值是.【答案】1.【解析】【考点定位】一元一次方程的解.6.【南充】已知关于x ,y 的二元一次方程组⎩⎨⎧-=+=+12,32y x k y x 的解互为相反数,则k 的值是 . 【答案】﹣1. 【解析】试题分析:解方程组⎩⎨⎧-=+=+12,32y x k y x 得:232x k y k =+⎧⎨=--⎩,因为关于x ,y 的二元一次方程组2321x y k x y +=⎧⎨+=-⎩的解互为相反数,可得:2330k k +--=,解得:1k =-.故答案为:﹣1.【考点定位】二元一次方程组的解.7.【崇左】4个数a 、b 、c 、d 排列成a bc d ,我们称之为二阶行列式,规定它的运算法则为:a b ad bcc d=-.若3 3123 3x x x x +-=-+,则x=____.【答案】1. 【解析】试题分析:根据规定可得:223 3(3)(3)12123 3x x x x x x x +-=+--==-+,整理得:1x =,故答案为:1.【考点定位】1.解一元一次方程;2.新定义.8.【龙东】某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省 元. 【答案】18或46.8. 【解析】【考点定位】1.一元一次方程的应用;2.分类讨论;3.综合题.三、解答题:(共2个小题)9.【珠海】阅读材料:善于思考的小军在解方程组2534115x yx y+=⎧⎨+=⎩①②时,采用了一种“整体代换”的解法:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为41 xy=⎧⎨=-⎩.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组325 9419x yx y-=⎧⎨-=⎩①②;(2)已知x,y满足方程组2222321247 2836x xy yx xy y⎧-+=⎪⎨++=⎪⎩①②.(i)求224x y+的值;(ii)求112x y+的值.【答案】(1)32xy=⎧⎨=⎩;(2)(i)17;(ii)54±.【解析】【考点定位】1.解二元一次方程组;2.阅读型;3.整体思想;4.综合题.10.【百色】某次知识竞赛有20道必答题,每一题答对得10分,答错或不答都扣5分,3道抢答题,每一题抢答对得10分,抢答错扣20分,抢答不到不得分也不扣分.甲乙两队决赛,甲队必答题得了170分,乙队必答题只答错了1题.(1)甲队必答题答对答错各多少题?(2)抢答赛中,乙队抢答对了第1题,又抢到了第2题,但还没作答时,甲队拉拉队队员小黄说:“我们甲队输了!”,小汪说:“小黄的话不一定对!”,请你举一例说明“小黄的话”有何不对.【答案】(1)甲队答对18道题,则甲队答错或不答的有2道题;(2)举例见试题解析.【解析】③若第2题甲队抢答错误:则甲得分:190-20=170分,第3题乙队抢答错误,则甲队最后得分:170分,乙队得分:185-20=165分,甲队获胜.试题解析:(1)设甲队答对x道题,则甲队答错或不答的有(20﹣x)道题,由题意,得:10x﹣5(20﹣x)=170,解得:x=18.∴甲队答错或不答的有2道题.答:甲队答对18道题,则甲队答错或不答的有2道题;(2)甲队现在得分:170+20=190分,乙队得分:19×10-5=185分,有以下三种情况,甲队可获胜:①若第2题甲队抢答正确:则甲得分:190+20=210分,第3题甲队不抢答,不管乙队抢答是否正确,则乙队最多得分:185+20=205分,甲队获胜;②若第2题甲队抢答错误:则甲得分:190-20=170分,第3题甲队抢答正确,则甲队最后得分:170+20=190分,乙队得分185,甲队获胜;③若第2题甲队抢答错误:则甲得分:190-20=170分,第3题乙队抢答错误,则甲队最后得分:170分,乙队得分:185-20=165分,甲队获胜.【考点定位】1.一元一次方程的应用;2.分类讨论;3.综合题.专题02一元二次方程及应用学校:___________姓名:___________班级:___________ 一、选择题:(共4个小题)1.【达州】方程21(2)304m x mx---+=有两个实数根,则m的取值范围()A.52m>B.52m≤且2m≠C.3m≥D.3m≤且2m≠【答案】B.【解析】试题分析:根据题意得:220301(3)4(2)04mmm m⎧⎪-≠⎪-≥⎨⎪⎪∆=----⨯≥⎩,解得52m≤且2m≠.故选B.【考点定位】1.根的判别式;2.一元二次方程的定义.2.【攀枝花】关于x的一元二次方程2(2)(21)20m x m x m-+++-=有两个不相等的正实数根,则m的取值范围是()A.34m>B.34m>且2m≠C.122m-<<D.324m<<【答案】D.【解析】【考点定位】1.根的判别式;2.一元二次方程的定义.3.【广安】一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A.12 B.9 C.13 D.12或9 【答案】A. 【解析】【考点定位】1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.4.【雅安中学中考模拟】关于x的方程2()0m x h k ++=(m,h,k均为常数,m≠0)的解是13x =-,22x =,则方程2(3)0m x h k +-+=,的解是 ( ) A . 16x =-,21x =- B.10x =,25x = C .13x =-,25x = D.16x =-,22x =【答案】B. 【解析】试题分析:解方程2()0m x h k ++=(m,h,k均为常数,m≠0)得kx h m =-±-,而关于x的方程2()0m x h k ++=(m,h,k均为常数,m≠0)的解是13x =-,22x =,所以3k h m ---=-,2k h m -+-=,方程2(3)0m x h k +-+=的解为3k x h m =-±-,所以1330x =-=,2325x =+=.故选B.【考点定位】1.解一元二次方程-直接开平方法;2.综合题. 二、填空题:(共4个小题)5.【泸州】设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为. 【答案】27. 【解析】 试题分析:∵1x 、2x 是一元二次方程2510x x --=的两实数根,∴125x x +=,121x x =-,∴2212x x +=21212()2x x x x +-=25+2=27,故答案为:27.【考点定位】根与系数的关系.6.【达州】新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x 元,可列方程为 . 【答案】(40﹣x)(20+2x)=1200. 【解析】【考点定位】1.由实际问题抽象出一元二次方程;2.销售问题.7.【广元】从3,0,-1,-2,-3这五个数中抽取一个敖,作为函数2(5)y m x =-和关于x的一元二次方程2(1)10m x mx +++=中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是________. 【答案】2-. 【解析】试题分析:∵所得函数的图象经过第一、三象限,∴250m ->,∴25m <,∴3,0,﹣1,﹣2,﹣3中,3和﹣3均不符合题意,将m=0代入2(1)10m x mx +++=中得,210x +=,△=﹣4<0,无实数根;将1m =-代入2(1)10m x mx +++=中得,10x -+=,1x =,有实数根,但不是一元二次方程;将2m =-代入2(1)10m x mx +++=中得,2210x x +-=,△=4+4=8>0,有实数根. 故m=2-.故答案为:2-.【考点定位】1.根的判别式;2.一次函数图象与系数的关系;3.综合题.8.【凉山州】已知实数m,n满足23650m m +-=,23650n n +-=,且m n ≠,则n mm n += .【答案】225-.【解析】试题分析:∵m n ≠时,则m,n是方程23650x x --=的两个不相等的根,∴2m n +=,53mn =-.∴原式=22m n mn +=2()2m n mn mn +-=2522()223553-⨯-=--,故答案为:225-.【考点定位】1.根与系数的关系;2.条件求值;3.压轴题. 三、解答题:(共2个小题)9.【崇左】为落实国务院房地产调控政策,使“居者有其屋”.某市加快了廉租房的建设力度,2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同. (1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房? 【答案】(1)50%;(2)18. 【解析】【考点定位】1.一元二次方程的应用;2.增长率问题.10.【广元】李明准备进行如下操作实验:把一根长40cm的铗丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于582cm,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于482cm.你认为他的说法正确吗?请说明理由.【答案】(1)12cm和28cm;(2)正确.【解析】(2)两正方形面积之和为48时,10058482+-=xx,0416402=+-x x ,∵06441614)40(2<-=⨯⨯--, ∴该方程无实数解,也就是不可能使得两正方形面积之和为48cm2,李明的说法正确.【考点定位】1.一元二次方程的应用;2.几何图形问题.。
2021年中考数学 专题冲刺:轴对称与中心对称(含答案)
2021中考数学专题冲刺:轴对称与中心对称一、选择题1. 下列四个标志是关于安全警示的标志,在这些标志中,是轴对称图形的是()2. 下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()3. 如图所示的图案中,是中心对称图形的是()4. 在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则() A.m=3,n=2 B.m=-3,n=2C.m=2,n=3 D.m=-2,n=-35. 将一张长与宽的比为2∶1的长方形纸片按图①②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④中的纸片展开铺平,所得到的图案是()6. 如图,四边形ABCD与四边形FGHE关于一个点中心对称,则这个点是() A.O1B.O2C.O3D.O47. 如图,在△ABC中,点D在BC上,将点D分别以AB,AC为对称轴,画出对称点E,F,并连接AE,AF.根据图中标示的角度,∠EAF的度数为()A.113°B.124°C.129°D.134°8. 如图,△ABC中,点D在BC上,∠B=62°,∠C=53°,将点D分别以AB,AC所在直线为对称轴,画出对称点E,F,并连接AE,AF,则∠EAF的度数为()A.124°B.115°C.130°D.106°二、填空题9. 如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE 折叠,使点C落在AB边上的F处,则CE的长为.10. 如图,直线a,b垂直相交于点O,曲线C是以点O为对称中心的中心对称图形,点A的对称点是点A′,AB⊥a于点B,A′D⊥b于点D.若OB=3,OD=2,则阴影部分的面积为________.11. 已知点P (x ,y )的坐标满足等式(x -2)2+|y -1|=0,且点P 与点P ′关于y 轴对称,则点P ′的坐标为________.12. 若将等腰直角三角形AOB 按图所示的方式放置,OB =2,则点A 关于原点对称的点的坐标为________.13. 画图:试画出下列正多边形的所有对称轴,并完成表格.根据上表,猜想正n 边形有 条对称轴.14. 定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰三角形ABC 中,∠A =80°,则它的特征值k =________.15. 如图,在△ABC 中,AC=BC=2,AB=1,将它沿AB 翻折得到△ABD ,则四边形ADBC 的形状是 形,点P ,E ,F 分别为线段AB ,AD ,DB 上的任意一点,则PE+PF 的最小值是 .16. (2019•黄冈)如图,AC BD ,在AB 的同侧,288AC BD AB ===,,,点M 为AB 的中点,若120CMD ∠=︒,则CD 的最大值是__________.三、解答题17. 已知:如图,AB=AC ,DB=DC ,点E 在直线AD 上.求证:EB=EC.18. 如图,在矩形ABCD 中,点E 在AD 上,EC 平分∠BED .(1)试判断△BEC 是不是等腰三角形,并说明理由;(2)在原图中画△FCE ,使它与△BEC 关于CE 的中点O 中心对称,此时四边形BCFE 是什么特殊平行四边形?请说明理由.19. [材料阅读]在平面直角坐标系中,以任意两点P (x 1,y 1),Q (x 2,y 2)为端点的线段的中点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22.[运用](1)已知点A (-2,1)和点B (4,-3),则线段AB 的中点坐标是________;已知点M (2,3),线段MN 的中点坐标是(-2,-1),则点N 的坐标是________. (2)已知平面上四点A (0,0),B (10,0),C (10,6),D (0,6).直线y =mx -3m +2将四边形ABCD 分成面积相等的两部分,则m 的值为________.(3)在平面直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D ,可使以点A ,B ,C ,D 为顶点的四边形为平行四边形,求点D 的坐标.20. 如图,在△ABC中,∠ACB=90°,BE 平分∠ABC 交AC 于点E ,DE 垂直平分AB 交AB 于点D.求证:BE+DE=AC.21. 如图1,△ABC 中,∠ACB=90°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E.(1)若∠BAC=50°,求∠EDA 的度数; (2)求证:直线AD 是线段CE 的垂直平分线.22. 如图1,将△ABC 纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰△BED 和等腰△DHC 的底边上的高线EF 、HG 折叠,折叠后的三个三角形拼合形成一个矩形.类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD 纸片按图2的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段________,________;S 矩形AEFG ∶S ▱ABCD =________.(2)▱ABCD 纸片还可以按图3的方式折叠成一个叠合矩形EFGH ,若EF =5,EH =12,求AD 的长.(3)如图4,四边形ABCD 纸片满足AD ∥BC ,AD <BC ,AB ⊥BC ,AB =8,CD =10.小明把该纸片折叠,得到叠合正方形...,请你帮助画出叠合正方形的示意图,并求出AD ,BC 的长.图1 图2 图3 图42021中考数学专题冲刺:轴对称与中心对称-答案一、选择题1. 【答案】D2. 【答案】C3. 【答案】D4. 【答案】B[解析] ∵点A(m,2)与点B(3,n)关于y轴对称,∴m=-3,n=2.5. 【答案】A6. 【答案】A[解析] 如图,连接HC和DE交于点O1.7. 【答案】D[解析] 连接AD.∵点D分别以AB,AC为对称轴,画出对称点E,F,∴∠EAB=∠BAD,∠FAC =∠CAD.∵∠B=62°,∠C=51°,∴∠BAC=∠BAD+∠CAD=67°.∴∠EAF=2∠BAC=134°.8. 【答案】C[解析] 连接AD,如图.∵点D分别以AB,AC所在直线为对称轴,画出对称点E,F,∴∠EAB=∠BAD,∠F AC=∠CAD.∵∠B=62°,∠C=53°,∴∠BAC=∠BAD+∠DAC=180°-62°-53°=65°.∴∠EAF=2∠BAC=130°.故选C.二、填空题9. 【答案】[解析]设CE=x,则BE=6-x.由折叠的性质可知,EF=CE=x,DF=CD=AB=10,在Rt△DAF中,AD=6,DF=10,∴AF=8,∴BF=AB-AF=10-8=2,在Rt△BEF中,BE2+BF2=EF2,即(6-x)2+22=x2,解得x=,故答案为.10. 【答案】6[解析] 如图,过点A′作A′B′⊥a,垂足为B′,由题意可知,①与②关于点O中心对称,所以阴影部分的面积可以看作四边形A′B′OD的面积.又A′D⊥b于点D,直线a,b互相垂直,可得四边形A′B′OD是矩形,所以其面积为3×2=6.11. 【答案】(-2,1)[解析] ∵(x-2)2≥0,|y-1|≥0,又(x-2)2+|y-1|=0,∴x -2=0且y-1=0,即x=2,y=1.∴点P的坐标为(2,1).那么点P关于y轴的对称点P′的坐标为(-2,1).12. 【答案】(-1,-1)[解析] 如图,过点A作AD⊥OB于点D.∵△AOB是等腰直角三角形,OB=2,∴OD=AD=1,∴A(1,1),∴点A关于原点对称的点的坐标为(-1,-1).13. 【答案】解:如图.故填3,4,5,6,n.14. 【答案】85或14[解析] ①当∠A为顶角时,等腰三角形两底角的度数为180°-80°2=50°,∴特征值k=80°50°=85.②当∠A为底角时,顶角的度数为180°-80°-80°=20°,∴特征值k=20°80°=14.综上所述,特征值k为85或14.15. 【答案】菱[解析]∵AC=BC,∴△ABC是等腰三角形.将△ABC沿AB翻折得到△ABD,∴AC=BC=AD=BD,∴四边形ADBC是菱形.∵△ABC沿AB翻折得到△ABD,∴△ABC与△ABD关于AB成轴对称.如图所示,作点E关于AB的对称点E',连接PE',根据轴对称的性质知AB垂直平分EE',∴PE=PE',∴PE+PF=PE'+PF,当E',P,F三点共线,且E'F⊥AC时,PE+PF有最小值,该最小值即为平行线AC与BD间的距离.作CM⊥AB于M,BG⊥AD于G,由题知AC=BC=2,AB=1,∠CAB=∠BAD,∴cos ∠CAB=cos ∠BAD ,即=,∴AG=, 在Rt △ABG 中,BG===,由对称性可知BG 长即为平行线AC ,BD 间的距离, ∴PE +PF 的最小值=.16. 【答案】14【解析】如图,作点A 关于CM 的对称点A',点B 关于DM 的对称点B'.∵120CMD ∠=︒,∴60AMC DMB ∠+∠=︒, ∴60CMA'DMB'∠+∠=︒, ∴60A'MB'∠=︒, ∵MA'MB'=,∴A'MB'△为等边三角形,∵14CD CA'A'B'B'D CA AM BD ≤++=++=, ∴CD 的最大值为14,故答案为:14.三、解答题17. 【答案】证明:连接BC.∵AB=AC ,DB=DC ,∴直线AD 是线段BC 的垂直平分线. 又∵点E 在直线AD 上,∴EB=EC.18. 【答案】解:(1)△BEC 是等腰三角形. 理由:∵在矩形ABCD 中,AD ∥BC ,∴∠DEC =∠BCE .∵EC 平分∠BED ,∴∠DEC =∠BEC , ∴∠BEC =∠BCE ,∴BC =BE , ∴△BEC 是等腰三角形.(2)连接BO 并延长至点F ,使OF =OB ,连接FE ,FC ,△FCE 即为所求.四边形BCFE 是菱形.理由: ∵OB =OF ,OE =OC , ∴四边形BCFE 是平行四边形. 又∵BC =BE , ∴▱BCFE 是菱形.19. 【答案】解:(1)(1,-1) (-6,-5) (2)12(3)设点D 的坐标为(x ,y).若以AB 为对角线,AC ,BC 为邻边的四边形为平行四边形,则AB ,CD 的中点重合,∴⎩⎪⎨⎪⎧1+x 2=-1+32,4+y 2=2+12,解得⎩⎨⎧x =1,y =-1;若以BC 为对角线,AB ,AC 为邻边的四边形为平行四边形,则AD ,BC 的中点重合,∴⎩⎪⎨⎪⎧-1+x 2=3+12,2+y 2=1+42,解得⎩⎨⎧x =5,y =3;若以AC 为对角线,AB ,BC 为邻边的四边形为平行四边形,则BD ,AC 的中点重合,∴⎩⎪⎨⎪⎧3+x 2=-1+12,1+y 2=2+42,解得⎩⎨⎧x =-3,y =5.综上可知,点D 的坐标为(1,-1)或(5,3)或(-3,5).20. 【答案】证明:∵∠ACB=90°,∴AC ⊥BC.又∵DE ⊥AB ,BE 平分∠ABC ,∴CE=DE.∵DE 垂直平分AB ,∴AE=BE.∵AC=AE+CE ,∴BE+DE=AC.21. 【答案】解:(1)∵∠BAC=50°,AD 平分∠BAC ,∴∠EAD=∠BAC=25°.∵DE ⊥AB ,∴∠AED=90°.∴∠EDA=90°-25°=65°.(2)证明:∵DE ⊥AB ,∴∠AED=90°=∠ACB.∵AD 平分∠BAC ,∴∠DAE=∠DAC.又∵AD=AD ,∴△AED ≌△ACD.∴AE=AC ,DE=DC.∴点A ,D 都在线段CE 的垂直平分线上.∴直线AD 是线段CE 的垂直平分线.22. 【答案】【思维教练】(2)AD=DH+AH,由折叠性质和全等三角形得出DH=HN,FN=AH,即AD=FH,由叠合矩形的概念可知∠FEH=90°,利用勾股定理求出AD;(3)观察图形的特点,可以考虑从CD的中点横向和竖向折叠或从分别从每个角的位置向内折叠构成矩形,利用构成的直角三角形求解得出结果.解:(1)AE,GF;1∶2(2分)(2)∵四边形EFGH是叠合矩形,∠FEH=90°,又EF=5,EH=12.∴FH=EF2+EH2=52+122=13.(4分)由折叠的轴对称性可知,DH=HN,AH=HM,CF=FN.易证△AEH≌△OGF,∴CF=AH.(5分)∴AD=DH+AH=HN+FN=FH=13.(6分)(3)本题有以下两种基本折法,如解图1,解图2所示.(作出一种即可)1 2按解图1的折法,则AD=1,BC=7;按解图2的折法,则AD=134,BC=374.(10分)。
2021年中考数学专题冲刺训练二次函数的图象及其性质答案解析版
2021中考数学专题冲刺训练:二次函数的图象及其性质一、选择题1. 一次函数y=ax+b与反比例函数y=的图象如图所示,则二次函数y=ax2+bx+c 的大致图象是()2. 对于函数y=-2(x-m)2,下列说法不正确的是()A.其图象开口向下B.其图象的对称轴是直线x=mC.最大值为0D.其图象与y轴不相交3. 已知二次函数y=a(x-1)2+c的图象如图,则一次函数y=ax+c的图象大致是()4. (2020·福建)10.已知()111,P x y ,()222,P x y 是抛物线22=-y ax ax 上的点,下列命题正确的是( )A.若12|1||1|->-x x ,则12>y yB.若12|1||1|->-x x ,则12<y yC.若12|1||1|-=-x x ,则12=y yD.若12=y y ,则12=x x5. 二次函数y =ax 2+bx +c (a ,b ,c 为常数且a ≠0)的图象如图所示,则一次函数y =ax +b 与反比例函数y =cx 的图象可能是( )6. 二次函数y =ax 2+bx +c 的图象如图所示,下列结论中正确的有( )①abc<0;②b 2-4ac<0;③2a>b ;④(a +c)2<b 2.A .1个B .2个C .3个D .4个7. (2020·贵阳)(3分)已知二次函数y =ax 2+bx +c 的图象经过(﹣3,0)与(1,0)两点,关于x 的方程ax 2+bx +c +m =0(m >0)有两个根,其中一个根是3.则关于x 的方程ax 2+bx +c +n =0 (0<n <m )有两个整数根,这两个整数根是( )A .﹣2或0B .﹣4或2C .﹣5或3D .﹣6或48. 某国家足球队在某次训练中,一名队员在距离球门12米处挑射,正好射中了2.4米高的球门横梁,若足球运动的路线是抛物线y =ax 2+bx +c 的一部分(如图),有下列结论:①a<-160;②-160<a<0;③a -b +c>0;④a<b<-12a.其中正确的是( )A.①③B.①④C.②③D.②④二、填空题9. 若一元二次方程ax2+bx+c=0的根为x1=2,x2=12,则二次函数y=ax2+bx+c的图象与x轴的交点坐标为______________.10. 抛物线y=12(x+3)2-2是由抛物线y=12x2先向________(填“左”或“右”)平移________个单位长度,再向________(填“上”或“下”)平移________个单位长度得到的.11. (2019•襄阳)如图,若被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)之间具有的关系为2205h t t=-,则小球从飞出到落地所用的时间为__________s.12. 将抛物线y=2x2向左平移1个单位长度,再向下平移2个单位长度,所得抛物线的解析式为________________.13. 设A,B,C三点分别是抛物线y=x2-4x-5与y轴的交点以及与x轴的两个交点,则△ABC的面积是________.14. 如图,已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点C的纵坐标为-2,现将抛物线向右平移2个单位长度,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是________.(写出所有正确结论的序号)①b>0;②a-b+c<0;③阴影部分的面积为4;④若c=-1,则b2=4a.15. 2018·湖州如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.16. 如图,在平面直角坐标系中,抛物线y=ax2(a>0)与y=a(x-2)2交于点B,抛物线y=a(x-2)2交y轴于点E,过点B作x轴的平行线与两条抛物线分别交于D,C两点.若A是x轴上两条抛物线顶点之间的一点,连接AD,AC,EC,ED,则四边形ACED的面积为________.(用含a的代数式表示)三、解答题17. 如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.18. 如图,二次函数y=-x2+bx+3的图象与x轴交于点A,B,与y轴交于点C,点A的坐标为(-1,0),点D为OC的中点,点P在抛物线上.(1)b=.(2)若点P在第一象限,过点P作PH⊥x轴,垂足为H,PH与BC,BD分别交于点M,N.是否存在这样的点P,使得PM=MN=NH,若存在,求出点P的坐标;若不存在,请说明理由.19. 在平面直角坐标系中,设二次函数y1=(x+a)(x-a-1),其中a≠0.(1)若函数y1的图象经过点(1,-2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b 满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上.若m<n,求x0的取值范围.20. 在画二次函数y=ax2+bx+c(a≠0)的图象时,甲写错了一次项的系数,列表如下: x…-1 0 1 2 3 …y甲… 6 3 2 3 6 …乙写错了常数项,列表如下:x…-1 0 1 2 3 …y乙…-2 -1 2 7 14 …通过上述信息,解决以下问题:(1)求原二次函数y=ax2+bx+c(a≠0)的表达式;(2)对于二次函数y=ax2+bx+c(a≠0),当x时,y的值随x的值增大而增大;(3)若关于x的方程ax2+bx+c=k(a≠0)有两个不相等的实数根,求k的取值范围.21. 已知抛物线l :y =(x -h )2-4(h 为常数).(1)如图22-B -2(a),当抛物线l 恰好经过点P (1,-4)时,l 与x 轴从左到右的交点为A ,B ,与y 轴交于点C .①求l 的解析式,并写出l 的对称轴及顶点坐标.②在l 上是否存在点D (与点C 不重合),使S △ABD =S △ABC ?若存在,请求出点D 的坐标;若不存在,请说明理由.③M 是l 上任意一点,过点M 作ME ⊥y 轴于点E ,交直线BC 于点D ,过点D 作x 轴的垂线,垂足为F ,连接EF ,当线段EF 的长度最短时,求出点M 的坐标.(2)设l 与直线y =35x -245有个交点的横坐标为x 0,且满足3≤x 0≤5,通过l 位置随h 变化的过程,直接写出h 的取值范围.22. 已知函数y=x 2+bx+c (b ,c 为常数)的图象经过点(-2,4).(1)求b ,c 满足的关系式;(2)设该函数图象的顶点坐标是(m ,n ),当b 的值变化时,求n 关于m 的函数解析式;(3)若该函数的图象不经过第三象限,当-5≤x ≤1时,函数的最大值与最小值之差为16,求b 的值.23. 已知直线y =3x -3分别与x 轴、y 轴交于点A ,B ,抛物线y =ax 2+2x +c 经过点A ,B .(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,点B 关于直线l 的对称点为C ,若点D 在y轴的正半轴上,且四边形ABCD 为梯形. ①求点D 的坐标;②将此抛物线向右平移,平移后抛物线的顶点为P ,其对称轴与直线y =3x -3交于点E ,若73tan =∠DPE ,求四边形BDEP 的面积.24. 如图,已知抛物线的方程C 1:1(2)()y x x m m=-+- (m >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线C 1过点M (2, 2),求实数m 的值; (2)在(1)的条件下,求△BCE 的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H 的坐标;(4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.参考答案一、选择题1. 【答案】A [解析]∵双曲线y=位于第一、三象限, ∴c>0,∴抛物线与y 轴交于正半轴.∵直线y=ax +b 经过第一、二和四象限,∴a<0,b>0,即->0, ∴抛物线y=ax 2+bx +c 开口向下,对称轴在y 轴的右侧.故选A .2. 【答案】D3. 【答案】B[解析] 根据二次函数的图象开口向上,得a >0,根据c 是二次函数图象顶点的纵坐标,得出c <0,故一次函数y =ax +c 的图象经过第一、三、四象限.故选B.4. 【答案】C【解析】本题考查了二次函数的图象和性质,∵22=-y ax ax =a (x -1)2-a ,∴抛物线的对称轴为x =1,根据二次函数的对称性知若12|1||1|-=-x x ,则12=y y ,因此本题选C .5. 【答案】C 【解析】抛物线开口向上,所以a >0,对称轴在y 轴右侧,所以a 、b 异号,所以b <0,抛物线与y 轴交于负半轴,所以c <0,所以直线y =ax +b过第一、三、四象限,反比例函数y =cx 位于第二、四象限,故答案为C.6. 【答案】A [解析] ①由抛物线的开口方向向下知a<0,由对称轴在y 轴的左侧得a ,b同号,∴b<0.由抛物线与y 轴交于正半轴得c>0,∴abc>0,故结论①错误. ②由抛物线与x 轴有两个交点得b 2-4ac>0,故结论②错误.③由图象知对称轴x =-b 2a >-1得b2a <1;由a<0,结合不等式的性质三可得b>2a ,即2a<b ,故结论③错误.④由图象知:当x =1时,y<0,即a +b +c<0;当x =-1时,y>0,即a -b +c>0, ∴(a +b +c)(a -b +c)<0,即(a +c)2-b 2<0,∴(a +c)2<b 2.故结论④正确. 故选A.7. 【答案】B .【解析】解:∵二次函数y =ax 2+bx +c 的图象经过(﹣3,0)与(1,0)两点,∴当y =0时,0=ax 2+bx +c 的两个根为﹣3和1,函数y =ax 2+bx +c 的对称轴是直线x =﹣1,又∵关于x 的方程ax 2+bx +c +m =0(m >0)有两个根,其中一个根是3.∴方程ax 2+bx +c +m =0(m >0)的另一个根为﹣5,函数y =ax 2+bx +c 的图象开口向上,∵关于x 的方程ax 2+bx +c +n =0 (0<n <m )有两个整数根,∴这两个整数根是﹣4或2, 故选:B .8. 【答案】B [解析] 用排除法判定.易知c =2.4.把(12,0)代入y =ax 2+bx +c 中,可得144a +12b +2.4=0,即12a +15+b =0.由图象可知a<0,对称轴为直线x =-b 2a ,且0<-b2a <6,∴b>0,∴12a +15<0,∴a<-160,即①成立,②不成立,故不可能选C 与D.∵-b2a <6,∴b<-12a.∵a<0,b>0,∴a<b<-12a ,∴④正确,而a -b +c 的取值不确定, ∴③不正确.故选B.二、填空题9. 【答案】(2,0),⎝ ⎛⎭⎪⎫12,010. 【答案】左3 下 2 [解析] 抛物线y =12x 2的顶点坐标为(0,0),而抛物线y =12(x +3)2-2的顶点坐标为(-3,-2),所以把抛物线y =12x 2先向左平移3个单位长度,再向下平移2个单位长度,就得到抛物线y =12(x +3)2-2.11. 【答案】4【解析】依题意,令0h =得: ∴20205t t =-, 得:(205)0t t -=, 解得:0t =(舍去)或4t =,∴即小球从飞出到落地所用的时间为4s , 故答案为:4.12. 【答案】y =2(x +1)2-213. 【答案】15[解析] 当x =0时,y =-5,∴点A 的坐标为(0,-5);当y =0时,x 2-4x -5=0,解得x 1=-1,x 2=5,不妨设点B 在点C 的左侧, ∴点B 的坐标为(-1,0),点C 的坐标为(5,0),则BC =6, ∴△ABC 的面积为12×6×5=15.14. 【答案】③④ [解析] ∵抛物线开口向上,∴a >0.又∵对称轴为直线x =-b2a >0,∴b <0,∴结论①不正确;∵当x =-1时,y >0,∴a -b +c >0,∴结论②不正确;根据抛物线的对称性,可将阴影部分的面积进行转化,从而求得阴影部分的面积=2×2=4,∴结论③正确;∵4ac -b 24a =-2,c =-1,∴b 2=4a ,∴结论④正确.综上,正确的结论是③④.15. 【答案】-2[解析] ∵四边形ABOC 是正方形,∴点B 的坐标为(-b 2a ,-b2a ). ∵抛物线y =ax 2过点B ,∴-b 2a =a (-b2a )2,解得b 1=0(舍去),b 2=-2.16. 【答案】8a[解析] ∵抛物线y =ax 2(a >0)与y =a(x -2)2交于点B ,∴BD =BC =2, ∴DC =4.∵y =a(x -2)2=ax 2-4ax +4a , ∴E(0,4a),∴S 四边形ACED =S △ACD +S △CDE =12DC·OE =12×4×4a =8a.三、解答题17. 【答案】解:(1)∵抛物线y =ax 2+2ax +1与x 轴仅有一个交点, ∴b 2-4ac =(2a)2-4a =0,解得a =1,a =0(舍去), ∴抛物线的解析式:y =x 2+2x +1.(3分)(2)设直线AB 的解析式为y =kx +b , ∵抛物线解析式y =x 2+2x +1=(x +1)2, ∴A(-1,0),(4分)过点B 作BD ⊥x 轴于点D ,如解图, ∵OC ⊥x 轴, ∴OC ∥BD ,∵C 是AB 中点, ∴O 是AD 中点, ∴AO =OD =1,(6分) ∴点B 的横坐标为1,把x =1代入抛物线中,得y =(x +1)2=(1+1)2=4, ∴B 的坐标为(1,4).(7分)把点A(-1,0) ,B(1,4)代入y =kx +b , 得⎩⎨⎧0=-k +b 4=k +b , 解得⎩⎨⎧k =2b =2,∴直线AB 的解析式为: y =2x +2.(8分)18. 【答案】解:(1)2 [解析]∵二次函数y=-x 2+bx +3的图象过点A (-1,0), ∴0=-(-1)2-b +3. ∴b=2. 故填2.(2)如图①,连接BD ,BC ,过点P 作PH ⊥x 轴于点H ,分别交BC ,BD 于点M ,N.由题意知,抛物线y=-x2+2x+3交x轴于点A(-1,0),B(3,0),交y轴于点C(0,3),且点D为OC的中点,∴D0,.易求直线BC的解析式为y=-x+3,直线BD的解析式为y=-x+.假设存在符合条件的点P(m,-m2+2m+3),则M(m,-m+3),N m,-m+.∵PM=MN=NH,∴-m+=(-m2+2m+3)-(-m+3).整理,得2m2-7m+3=0,解得m1=,m2=3(不合题意,舍去).∴P使得PM=MN=NH.19. 【答案】【思维教练】由图象过点(1,-2),将其带入y1的函数表达式中,解方程即可;(2)由y1=(x+a)(x-a-1)可得出y1过x轴上的两点的坐标,然后分两种情况讨论即可;(3)先求出y1=(x+a)(x-a-1)的对称轴,根据开口向上的二次函数,离对称轴越近,函数值越小即可得解.解:(1)∵函数y1=(x+a)(x-a-1)图象经过点(1,-2),∴把x=1,y=-2代入y1=(x+a)(x-a-1)得,-2=(1+a)(-a),(2分)化简得,a2+a-2=0,解得,a1=-2,a2=1,∴y1=x2+x-2;(4分)(2)函数y1=(x+a)(x-a-1)图象在x轴的交点为(-a,0),(a+1,0),①当函数y2=ax+b的图象经过点(-a,0)时,把x=-a,y=0代入y2=ax+b中,得a2=b;(6分)②当函数y2=ax+b的图象经过点(a+1,0)时,把x=a+1,y=0代入y2=ax+b中,得a2+a=-b;(8分)(3)∵抛物线y1=(x+a)(x-a-1)的对称轴是直线x=-a+a+12=12,m<n,∵二次项系数为1,∴抛物线的开口向上,∴抛物线上的点离对称轴的距离越大,它的纵坐标也越大,∵m<n,∴点Q离对称轴x=12的距离比P离对称轴x=12的距离大,(10分)∴|x0-12|<1-12,∴0<x0<1.(12分)20. 【答案】解:(1)根据甲同学的错误可知x=0时,y=c=3是正确的,由甲同学提供的数据,选择x=-1,y=6;x=1,y=2代入y=ax2+bx+3,得解得a=1是正确的.根据乙同学提供的数据,选择x=-1,y=-2;x=1,y=2代入y=x2+bx+c,得解得b=2是正确的,∴y=x2+2x+3.(2)≥-1[解析]抛物线y=x2+2x+3的对称轴为直线x=-1,∵二次项系数为1,故抛物线开口向上,∴当x≥-1时,y的值随x值的增大而增大.故答案为≥-1.(3)∵方程ax2+bx+c=k(a≠0)有两个不相等的实数根,即x2+2x+3-k=0有两个不相等的实数根,∴Δ=4-4(3-k)>0,解得k>2.21. 【答案】解:(1)①将P(1,-4)代入y=(x-h)2-4,得(1-h)2-4=-4,解得h=1,∴抛物线l的解析式为y=(x-1)2-4,∴抛物线l的对称轴为直线x=1,顶点坐标为(1,-4).②存在.将x=0代入y=(x-1)2-4,得y=-3,∴点C的坐标为(0,-3),∴OC=3.∵S△ABD=S△ABC,∴点D的纵坐标为3或-3.当y=-3时,(x-1)2-4=-3,解得x1=2,x2=0(舍去),∴点D的坐标为(2,-3).当y=3时,(x-1)2-4=3,解得x1=1+7,x2=1-7,∴点D的坐标为(1+7,3)或(1-7,3).综上所述,在抛物线l上存在点D(与点C不重合),使S△ABD=S△ABC,点D的坐标为(2,-3)或(1+7,3)或(1-7,3).③如图(a)所示:∵∠EOF=∠OED=∠OFD=90°,∴四边形OEDF为矩形,∴OD=EF.依据垂线段的性质可知:当OD⊥BC时,OD有最小值,即EF有最小值.把y=0代入抛物线的解析式,得(x-1)2-4=0,解得x1=-1,x2=3,∴B(3,0),∴OB=OC.又∵OD⊥BC,∴CD=BD.∴点D的坐标为(32,-32).将y=-32代入y=(x-1)2-4,得(x-1)2-4=-32,解得x1=-102+1,x2=102+1,∴点M的坐标为(-102+1,-32)或(102+1,-32).(2)∵y=(x-h)2-4,∴抛物线的顶点在直线y=-4上.对于直线y=35x-245,当3≤x0≤5时,-3≤y0≤-9 5,即抛物线l与直线y=35x-245在G(3,-3),H(5,-95)之间的一段有一个交点.当抛物线经过点G时,(3-h)2-4=-3,解得h=2或h=4.当抛物线经过点H时,(5-h)2-4=-95,解得h=5+555或h=5-555.随h的逐渐增加,l的位置随之向右平移,如图(b)所示.由函数图象可知:当2≤h≤5-555或4≤h≤5+555时,抛物线l与直线在3≤x0≤5段有一个交点.22. 【答案】解:(1)将(-2,4)代入y=x2+bx+c,得4=(-2)2-2b+c,∴c=2b,∴b,c满足的关系式是c=2b.(2)把c=2b代入y=x2+bx+c,得y=x2+bx+2b,∵顶点坐标是(m,n),∴n=m2+bm+2b,且m=-,即b=-2m,∴n=-m2-4m.∴n关于m的函数解析式为n=-m2-4m.(3)由(2)的结论,画出函数y=x2+bx+c和函数y=-x2-4x的图象.∵函数y=x2+bx+c的图象不经过第三象限,∴-4≤-≤0.①当-4≤-≤-2,即4≤b≤8时,如图①所示,当x=1时,函数取到最大值y=1+3b ,当x=-时,函数取到最小值y=,∴(1+3b )-=16,即b 2+4b -60=0,∴b 1=6,b 2=-10(舍去); ②当-2<-≤0,即0≤b<4时,如图②所示,当x=-5时,函数取到最大值y=25-3b ,当x=-时,函数取到最小值y=,∴(25-3b )-=16,即b 2-20b +36=0, ∴b 1=2,b 2=18(舍去). 综上所述,b 的值为2或6.23. 【答案】(1)直线y =3x -3与x 轴的交点为A (1,0),与y 轴的交点为B (0,-3). 将A (1,0)、B (0,-3)分别代入y =ax 2+2x +c , 得20,3.a c c ++=⎧⎨=-⎩解得1,3.a c =⎧⎨=-⎩ 所以抛物线的表达式为y =x 2+2x -3.对称轴为直线x =-1,顶点为(-1,-4).(2)①如图2,点B 关于直线l 的对称点C 的坐标为(-2,-3). 因为CD //AB ,设直线CD 的解析式为y =3x +b , 代入点C (-2,-3),可得b =3. 所以点D 的坐标为(0,3).②过点P 作PH ⊥y 轴,垂足为H ,那么∠PDH =∠DPE . 由73tan =∠DPE ,得3tan 7PH PDH DH∠==.而DH =7,所以PH =3. 因此点E 的坐标为(3,6). 所以1()242BDEP S BD EP PH =+⋅=梯形.图2 图3考点伸展第(2)①用几何法求点D 的坐标更简便: 因为CD //AB ,所以∠CDB =∠ABO .因此13BC OA BDOB==.所以BD =3BC =6,OD =3.因此D (0,3).24. 【答案】(1)将M (2, 2)代入1(2)()y x x m m=-+-,得124(2)m m=-⨯-.解得m =4.(2)当m =4时,2111(2)(4)2442y x x x x =-+-=-++.所以C (4, 0),E (0, 2).所以S △BCE =1162622BC OE ⋅=⨯⨯=.(3)如图2,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH最小.设对称轴与x 轴的交点为P ,那么HP EO CPCO=.因此234HP =.解得32HP =.所以点H 的坐标为3(1,)2.(4)①如图3,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′⊥x 轴于F ′. 由于∠BCE =∠FBC ,所以当CE BC CBBF=,即2BC CE BF =⋅时,△BCE ∽△FBC .设点F 的坐标为1(,(2)())x x x m m -+-,由''FF EO BF CO =,得1(2)()22x x m m x m+-=+. 解得x =m +2.所以F ′(m +2, 0).由'CO BF CE BF =244m BF m +=+.所以2(4)4m m BF ++=. 由2BC CE BF =⋅,得222(4)4(2)4m m m m +++=+整理,得0=16.此方程无解.图2 图3 图4②如图4,作∠CBF =45°交抛物线于F ,过点F 作FF ′⊥x 轴于F ′,由于∠EBC =∠CBF ,所以BE BC BCBF=,即2BC BE BF =⋅时,△BCE ∽△BFC .在Rt △BFF ′中,由FF ′=BF ′,得1(2)()2x x m x m+-=+.解得x =2m .所以F ′(2,0)m .所以BF ′=2m +2,2(22)BF m =+.由2BC BE BF =⋅,得2(2)222(22)m m +=+.解得222m =± 综合①、②,符合题意的m 为222+.。
2021-2022学年北师大版九年级数学中考复习压轴题专题提升训练(附答案)
2021-2022学年北师大版九年级数学中考复习压轴题专题提升训练(附答案)1.如图,在平面直角坐标系中,菱形ABCD的顶点D在第二象限,其余顶点都在第一象限,AB∥x轴,AO⊥AD,AO=AD.过点A作AE⊥CD,垂足为E,DE=4CE.反比例函数y=(x>0)的图象经过点E,与边AB交于点F,连接OE,OF,EF.若S△EOF=,则k的值为()A.B.C.7D.2.在△ABC中,AB=AC,D是边BC上一动点,连接AD,将AD绕点A逆时针旋转至AE 的位置,使得∠DAE+∠BAC=180°.(1)如图1,当∠BAC=90°时,连接BE,交AC于点F.若BE平分∠ABC,BD=2,求AF的长;(2)如图2,连接BE,取BE的中点G,连接AG.猜想AG与CD存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接DG,CE.若∠BAC=120°,当BD>CD,∠AEC =150°时,请直接写出的值.3.有公共顶点A的正方形ABCD与正方形AEGF按如图1所示放置,点E,F分别在边AB 和AD上,连接BF,DE,M是BF的中点,连接AM交DE于点N.【观察猜想】(1)线段DE与AM之间的数量关系是,位置关系是;【探究证明】(2)将图1中的正方形AEGF绕点A顺时针旋转45°,点G恰好落在边AB上,如图2,其他条件不变,线段DE与AM之间的关系是否仍然成立?并说明理由.4.在▱ABCD中,∠BAD=α,DE平分∠ADC,交对角线AC于点G,交射线AB于点E,将线段EB绕点E顺时针旋转α得线段EP.(1)如图1,当α=120°时,连接AP,请直接写出线段AP和线段AC的数量关系;(2)如图2,当α=90°时,过点B作BF⊥EP于点F,连接AF,请写出线段AF,AB,AD之间的数量关系,并说明理由;(3)当α=120°时,连接AP,若BE=AB,请直接写出△APE与△CDG面积的比值.5.已知点O是线段AB的中点,点P是直线l上的任意一点,分别过点A和点B作直线l 的垂线,垂足分别为点C和点D.我们定义垂足与中点之间的距离为“足中距”.(1)[猜想验证]如图1,当点P与点O重合时,请你猜想、验证后直接写出“足中距”OC和OD的数量关系是.(2)[探究证明]如图2,当点P是线段AB上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由.(3)[拓展延伸]如图3,①当点P是线段BA延长线上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由;②若∠COD=60°,请直接写出线段AC、BD、OC之间的数量关系.6.如图,在矩形ABCD中,AB=3cm,AD=cm.动点P从点A出发沿折线AB﹣BC向终点C运动,在边AB上以1cm/s的速度运动;在边BC上以cm/s的速度运动,过点P作线段PQ与射线DC相交于点Q,且∠PQD=60°,连接PD,BD.设点P的运动时间为x(s),△DPQ与△DBC重合部分图形的面积为y(cm2).(1)当点P与点A重合时,直接写出DQ的长;(2)当点P在边BC上运动时,直接写出BP的长(用含x的代数式表示);(3)求y关于x的函数解析式,并写出自变量x的取值范围.7.在等腰△ADE中,AE=DE,△ABC是直角三角形,∠CAB=90°,∠ABC=∠AED,连接CD、BD,点F是BD的中点,连接EF.(1)当∠EAD=45°,点B在边AE上时,如图①所示,求证:EF=CD;(2)当∠EAD=45°,把△ABC绕点A逆时针旋转,顶点B落在边AD上时,如图②所示,当∠EAD=60°,点B在边AE上时,如图③所示,猜想图②、图③中线段EF和CD又有怎样的数量关系?请直接写出你的猜想,不需证明.8.如图,已知△ABC是等边三角形,P是△ABC内部的一点,连接BP,CP.(1)如图1,以BC为直径的半圆O交AB于点Q,交AC于点R,当点P在上时,连接AP,在BC边的下方作∠BCD=∠BAP,CD=AP,连接DP,求∠CPD的度数;(2)如图2,E是BC边上一点,且EC=3BE,当BP=CP时,连接EP并延长,交AC 于点F,若AB=4BP,求证:4EF=3AB;(3)如图3,M是AC边上一点,当AM=2MC时,连接MP.若∠CMP=150°,AB =6a,MP=a,△ABC的面积为S1,△BCP的面积为S2,求S1﹣S2的值(用含a的代数式表示).9.(1)已知△ABC,△ADE如图①摆放,点B,C,D在同一条直线上,∠BAC=∠DAE =90°,∠ABC=∠ADE=45°.连接BE,过点A作AF⊥BD,垂足为点F,直线AF 交BE于点G.求证:BG=EG.(2)已知△ABC,△ADE如图②摆放,∠BAC=∠DAE=90°,∠ACB=∠ADE=30°.连接BE,CD,过点A作AF⊥BE,垂足为点F,直线AF交CD于点G.求的值.10.已知△ABC和△DEC都为等腰三角形,AB=AC,DE=DC,∠BAC=∠EDC=n°.(1)当n=60时,①如图1,当点D在AC上时,请直接写出BE与AD的数量关系:;②如图2,当点D不在AC上时,判断线段BE与AD的数量关系,并说明理由;(2)当n=90时,①如图3,探究线段BE与AD的数量关系,并说明理由;②当BE∥AC,AB=3,AD=1时,请直接写出DC的长.11.如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,垂美四边形ABCD的对角线AC,BD交于点O.猜想:AB2+CD2与AD2+BC2有什么关系?并证明你的猜想.(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连结CE,BG,GE.已知AC=4,AB=5,求GE的长.12.如图1,在正方形ABCD中,点E是边BC上一点,且点E不与点B、C重合,点F是BA的延长线上一点,且AF=CE.(1)求证:△DCE≌△DAF;(2)如图2,连接EF,交AD于点K,过点D作DH⊥EF,垂足为H,延长DH交BF 于点G,连接HB,HC.①求证:HD=HB;②若DK•HC=,求HE的长.13.综合与实践数学实践活动,是一种非常有效的学习方式,通过活动可以激发我们的学习兴趣,提高动手动脑能力,拓展思维空间,丰富数学体验,让我们一起动手来折一折、转一转、剪一剪,体会活动带给我们的乐趣.折一折:将正方形纸片ABCD折叠,使边AB、AD都落在对角线AC上,展开得折痕AE、AF,连接EF,如图1.(1)∠EAF=°,写出图中两个等腰三角形:(不需要添加字母);转一转:将图1中的∠EAF绕点A旋转,使它的两边分别交边BC、CD于点P、Q,连接PQ,如图2.(2)线段BP、PQ、DQ之间的数量关系为;(3)连接正方形对角线BD,若图2中的∠P AQ的边AP、AQ分别交对角线BD于点M、点N,如图3,则=;剪一剪:将图3中的正方形纸片沿对角线BD剪开,如图4.(4)求证:BM2+DN2=MN2.14.实践与探究操作一:如图①,已知正方形纸片ABCD,将正方形纸片沿过点A的直线折叠,使点B 落在正方形ABCD的内部,点B的对应点为点M,折痕为AE,再将纸片沿过点A的直线折叠,使AD与AM重合,折痕为AF,则∠EAF=度.操作二:如图②,将正方形纸片沿EF继续折叠,点C的对应点为点N.我们发现,当点E的位置不同时,点N的位置也不同.当点E在BC边的某一位置时,点N恰好落在折痕AE上,则∠AEF=度.在图②中,运用以上操作所得结论,解答下列问题:(1)设AM与NF的交点为点P.求证:△ANP≌△FNE;(2)若AB=,则线段AP的长为.15.【阅读理解】如图①,l1∥l2,△ABC的面积与△DBC的面积相等吗?为什么?解:相等.在△ABC和△DBC中,分别作AE⊥l2,DF⊥l2,垂足分别为E,F.∴∠AEF=∠DFC=90°,∴AE∥DF.∵l1∥l2,∴四边形AEFD是平行四边形,∴AE=DF.又S△ABC=BC•AE,S△DBC=BC•DF.∴S△ABC=S△DBC.【类比探究】如图②,在正方形ABCD的右侧作等腰△CDE,CE=DE,AD=4,连接AE,求△ADE的面积.解:过点E作EF⊥CD于点F,连接AF.请将余下的求解步骤补充完整.【拓展应用】如图③,在正方形ABCD的右侧作正方形CEFG,点B,C,E在同一直线上,AD=4,连接BD,BF,DF,直接写出△BDF的面积.16.如图①,在△ABC中,AD⊥BC于点D,BC=14,AD=8,BD=6,点E是AD上一动点(不与点A,D重合),在△ADC内作矩形EFGH,点F在DC上,点G,H在AC上,设DE=x,连接BE.(1)当矩形EFGH是正方形时,直接写出EF的长;(2)设△ABE的面积为S1,矩形EFGH的面积为S2,令y=,求y关于x的函数解析式(不要求写出自变量x的取值范围);(3)如图②,点P(a,b)是(2)中得到的函数图象上的任意一点,过点P的直线l 分别与x轴正半轴,y轴正半轴交于M,N两点,求△OMN面积的最小值,并说明理由.17.下面是某数学兴趣小组探究用不同方法作一个角的平分线的讨论片段,请仔细阅读,并完成相应的任务.小明:如图1,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)分别作线段CE,DF的垂直平分线l1,l2,交点为P,垂足分别为点G,H;(3)作射线OP,射线OP即为∠AOB的平分线.简述理由如下:由作图知,∠PGO=∠PHO=90°,OG=OH,OP=OP,所以Rt△PGO≌Rt△PHO,则∠POG=∠POH,即射线OP是∠AOB的平分线.小军:我认为小明的作图方法很有创意,但是太麻烦了,可以改进如下,如图2,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)连接DE,CF,交点为P;(3)作射线OP.射线OP即为∠AOB的平分线.……任务:(1)小明得出Rt△PGO≌Rt△PHO的依据是(填序号).①SSS②SAS③AAS④ASA⑤HL(2)小军作图得到的射线OP是∠AOB的平分线吗?请判断并说明理由.(3)如图3,已知∠AOB=60°,点E,F分别在射线OA,OB上,且OE=OF=+1.点C,D分别为射线OA,OB上的动点,且OC=OD,连接DE,CF,交点为P,当∠CPE =30°时,直接写出线段OC的长.18.如图,在四边形ABCD中,AB∥CD,AB≠CD,∠ABC=90°,点E、F分别在线段BC、AD上,且EF∥CD,AB=AF,CD=DF.(1)求证:CF⊥FB;(2)求证:以AD为直径的圆与BC相切;(3)若EF=2,∠DFE=120°,求△ADE的面积.19.已知四边形ABCD是边长为1的正方形,点E是射线BC上的动点,以AE为直角边在直线BC的上方作等腰直角三角形AEF,∠AEF=90°,设BE=m.(1)如图,若点E在线段BC上运动,EF交CD于点P,AF交CD于点Q,连接CF,①当m=时,求线段CF的长;②在△PQE中,设边QE上的高为h,请用含m的代数式表示h,并求h的最大值;(2)设过BC的中点且垂直于BC的直线被等腰直角三角形AEF截得的线段长为y,请直接写出y与m的关系式.20.【推理】如图1,在正方形ABCD中,点E是CD上一动点,将正方形沿着BE折叠,点C落在点F处,连结BE,CF,延长CF交AD于点G.(1)求证:△BCE≌△CDG.【运用】(2)如图2,在【推理】条件下,延长BF交AD于点H.若,CE=9,求线段DE的长.【拓展】(3)将正方形改成矩形,同样沿着BE折叠,连结CF,延长CF,BF交直线AD于G,H两点,若=k,=,求的值(用含k的代数式表示).21.如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC上,以点A 为中心,将线段AD顺时针旋转α得到线段AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD之间的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.22.如图1,在△ABC中,∠ACB=90°,AC=BC,点D是AB边上一点(含端点A、B),过点B作BE垂直于射线CD,垂足为E,点F在射线CD上,且EF=BE,连接AF、BF.(1)求证:△ABF∽△CBE;(2)如图2,连接AE,点P、M、N分别为线段AC、AE、EF的中点,连接PM、MN、PN.求∠PMN的度数及的值;(3)在(2)的条件下,若BC=,直接写出△PMN面积的最大值.23.某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:【观察与猜想】(1)如图1,在正方形ABCD中,点E,F分别是AB,AD上的两点,连接DE,CF,DE⊥CF,则的值为;(2)如图2,在矩形ABCD中,AD=7,CD=4,点E是AD上的一点,连接CE,BD,且CE⊥BD,则的值为;【类比探究】(3)如图3,在四边形ABCD中,∠A=∠B=90°,点E为AB上一点,连接DE,过点C作DE的垂线交ED的延长线于点G,交AD的延长线于点F,求证:DE•AB=CF•AD;【拓展延伸】(4)如图4,在Rt△ABD中,∠BAD=90°,AD=9,tan∠ADB=,将△ABD沿BD 翻折,点A落在点C处得△CBD,点E,F分别在边AB,AD上,连接DE,CF,DE⊥CF.①求的值;②连接BF,若AE=1,直接写出BF的长度.24.在平面直角坐标系中,O为原点,△OAB是等腰直角三角形,∠OBA=90°,BO=BA,顶点A(4,0),点B在第一象限,矩形OCDE的顶点E(﹣,0),点C在y轴的正半轴上,点D在第二象限,射线DC经过点B.(Ⅰ)如图①,求点B的坐标;(Ⅱ)将矩形OCDE沿x轴向右平移,得到矩形O′C′D′E′,点O,C,D,E的对应点分别为O′,C′,D′,E′.设OO′=t,矩形O′C′D′E′与△OAB重叠部分的面积为S.①如图②,当点E′在x轴正半轴上,且矩形O′C′D′E′与△OAB重叠部分为四边形时,D′E′与OB相交于点F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤t≤时,求S的取值范围(直接写出结果即可)25.如图1,在△ABC中,AB=AC,N是BC边上的一点,D为AN的中点,过点A作BC 的平行线交CD的延长线于T,且AT=BN,连接BT.(1)求证:BN=CN;(2)在图1中AN上取一点O,使AO=OC,作N关于边AC的对称点M,连接MT、MO、OC、OT、CM得图2.①求证:△TOM∽△AOC;②设TM与AC相交于点P,连接PD,求证:PD∥CM,PD=CM.26.问题提出如图(1),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=AC,EC=DC,点E在△ABC内部,直线AD与BE交于点F.线段AF,BF,CF之间存在怎样的数量关系?问题探究(1)先将问题特殊化如图(2),当点D,F重合时,直接写出一个等式,表示AF,BF,CF之间的数量关系;(2)再探究一般情形如图(1),当点D,F不重合时,证明(1)中的结论仍然成立.问题拓展如图(3),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=kAC,EC=kDC(k是常数),点E在△ABC内部,直线AD与BE交于点F.直接写出一个等式,表示线段AF,BF,CF之间的数量关系.27.【证明体验】(1)如图1,AD为△ABC的角平分线,∠ADC=60°,点E在AB上,AE=AC.求证:DE平分∠ADB.【思考探究】(2)如图2,在(1)的条件下,F为AB上一点,连结FC交AD于点G.若FB=FC,DG=2,CD=3,求BD的长.【拓展延伸】(3)如图3,在四边形ABCD中,对角线AC平分∠BAD,∠BCA=2∠DCA,点E在AC上,∠EDC=∠ABC.若BC=5,CD=2,AD=2AE,求AC的长.28.已知,在△ABC中,∠BAC=90°,AB=AC.(1)如图1,已知点D在BC边上,∠DAE=90°,AD=AE,连结CE.试探究BD与CE的关系;(2)如图2,已知点D在BC下方,∠DAE=90°,AD=AE,连结CE.若BD⊥AD,AB=2,CE=2,AD交BC于点F,求AF的长;(3)如图3,已知点D在BC下方,连结AD、BD、CD.若∠CBD=30°,∠BAD>15°,AB2=6,AD2=4+,求sin∠BCD的值.29.在平面直角坐标系中,点A的坐标为(﹣,0),点B在直线l:y=x上,过点B 作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.(1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.①若BA=BO,求证:CD=CO.②若∠CBO=45°,求四边形ABOC的面积.(2)是否存在点B,使得以A,B,C为顶点的三角形与△BCO相似?若存在,求OB 的长;若不存在,请说明理由.30.如图,△OAB的顶点坐标分别为O(0,0),A(3,4),B(6,0),动点P、Q同时从点O出发,分别沿x轴正方向和y轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点P到达点B时点P、Q同时停止运动.过点Q作MN∥OB分别交AO、AB于点M、N,连接PM、PN.设运动时间为t(秒).(1)求点M的坐标(用含t的式子表示);(2)求四边形MNBP面积的最大值或最小值;(3)是否存在这样的直线l,总能平分四边形MNBP的面积?如果存在,请求出直线l 的解析式;如果不存在,请说明理由;(4)连接AP,当∠OAP=∠BPN时,求点N到OA的距离.参考答案1.解:延长EA交x轴于点G,过点F作FH⊥x轴于点H,如图,∵AB∥x轴,AE⊥CD,AB∥CD,∴AG⊥x轴.∵AO⊥AD,∴∠DAE+∠OAG=90°.∵AE⊥CD,∴∠DAE+∠D=90°.∴∠D=∠OAG.在△DAE和△AOG中,.∴△DAE≌△AOG(AAS).∴DE=AG,AE=OG.∵四边形ABCD是菱形,DE=4CE,∴AD=CD=DE.设DE=4a,则AD=OA=5a.∴OG=AE=.∴EG=AE+AG=7a.∴E(3a,7a).∵反比例函数y=(x>0)的图象经过点E,∴k=21a2.∵AG⊥GH,FH⊥GH,AF⊥AG,∴四边形AGHF为矩形.∴HF=AG=4a.∵点F在反比例函数y=(x>0)的图象上,∴x=.∴F().∴OH=a,FH=4a.∴GH=OH﹣OG=.∵S△OEF=S△OEG+S梯形EGHF﹣S△OFH,S△EOF=,∴.××﹣=.解得:a2=.∴k=21a2=21×=.故选:A.2.解:(1)连接CE,过点F作FQ⊥BC于Q,∵BE平分∠ABC,∠BAC=90°,∴F A=FQ,∵AB=AC,∴∠ABC=∠ACB=45°,∴FQ=CF,∵∠BAC+∠DAE=180°,∴∠DAE=∠BAC=90°,∴∠BAD=∠CAE,由旋转知,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE=2,∠ABD=∠ACE=45°,∴∠BCE=90°,∴∠CBF+∠BEC=90°,∵BE平分∠ABC,∴∠ABF=∠CBF,∴∠ABF+∠BEC=90°,∵∠BAC=90°,∴∠ABF+∠AFB=90°,∴∠AFB=∠BEC,∵∠AFB=∠CFE,∴∠BEC=∠CFE,∴CF=CE=2,∴AF=FQ=CF=;(2)AG=CD,理由:延长BA至点M,使AM=AB,连接EM,∵G是BE的中点,∴AG=ME,∵∠BAC+∠DAE=∠BAC+∠CAM=180°,∴∠DAE=∠CAM,∴∠DAC=∠EAM,∵AB=AM,AB=AC,∴AC=AM,∵AD=AE,∴△ADC≌△AEM(SAS),∴CD=EM,∴AG=CD;(3)如图3,连接DE,AD与BE的交点记作点N,∵∠BAC+∠DAE=180°,∠BAC=120°,∴∠DAE=60°,∵AD=AE,∴△ADE是等边三角形,∴AE=DE,∠ADE=∠AED=60°,∵∠AEC=150°,∴∠DEC=∠AEC﹣∠AED=90°,在△ABC中,AB=AC,∠BAC=120°,∴∠ACB=∠ABC=30°,∵∠AEC=150°,∴∠ABC+∠AEC=180°,∴点A,B,C,E四点共圆,∴∠BEC=∠BAC=120°,∴∠BED=∠BEC﹣∠DEC=30°,∴∠DNE=180°﹣∠BED﹣∠ADE=90°,∵AE=DE,∴AN=DN,∴BE是AD的垂直平分线,∴AG=DG,BA=BD=AC,∴∠ABE=∠DBE=∠ABC=15°,∴∠ACE=∠ABE=15°,∴∠DCE=45°,∵∠DEC=90°,∴∠EDC=45°=∠DCE,∴DE=CE,∴AD=DE,设AG=a,则DG=a,由(2)知,AG=CD,∴CD=2AG=2a,∴CE=DE=CD=a,∴AD=a,∴DN=AD=a,过点D作DH⊥AC于H,在Rt△DHC中,∠ACB=30°,CD=2a,∴DH=a,根据勾股定理得,CH=a,在Rt△AHD中,根据勾股定理得,AH==a,∴AC=AH+CH=a+a,∴BD=a+a,∴==.3.解:(1)∵四边形ABCD和四边形AEGF都是正方形,∴AD=AB,AF=AE,∠DAE=∠BAF=90°,∴△DAE≌△BAF(SAS),∴DE=BF,∠ADE=∠ABF,∵∠ABF+∠AFB=90°,∴∠ADE+∠AFB=90°,在Rt△BAF中,M是BF的中点,∴AM=FM=BM=BF,∴DE=2AM.∵AM=FM,∴∠AFB=∠MAF,又∵∠ADE+∠AFB=90°,∴∠ADE+∠MAF=90°,∴∠AND=180°﹣(∠ADE+∠MAF)=90°,即AN⊥DN;故答案为DE=2AM,DE⊥AM.(2)仍然成立,证明如下:延长AM至点H,使得AM=MH,连接FH,∵M是BF的中点,∴BM=FM,又∵∠AMB=∠HMF,∴△AMB≌△HMF(SAS),∴AB=HF,∠ABM=∠HFM,∴AB∥HF,∴∠HFG=∠AGF,∵四边形ABCD和四边形AEGF是正方形,∴∠DAB=∠AFG=90°,AE=AF,AD=AB=FH,∠EAG=∠AGF,∴∠EAD=∠EAG+∠DAB=∠AFG+∠AGF=∠AFG+∠HFG=∠AFH,∴△EAD≌△AFH(SAS),∴DE=AH,又∵AM=MH,∴DE=AM+MH=2AM,∵△EAD≌△AFH,∴∠ADE=∠FHA,∵△AMB≌△HMF,∴∠FHA=∠BAM,∴∠ADE=∠BAM,又∵∠BAM+∠DAM=∠DAB=90°,∴∠ADE+∠DAM=90°,∴∠AND=180°﹣(∠ADE+∠DAM)=90°,即AN⊥DN.故线段DE与AM之间的数量关系是DE=2AM.线段DE与AM之间的位置关系是DE ⊥AM.4.解:(1)方法一:如图1,连接PB,PC,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AD=BC,∵α=120°,即∠BAD=120°,∴∠B=∠ADC=60°,∴∠BEP=60°=∠B,由旋转知:EP=EB,∴△BPE是等边三角形,∴BP=EP,∠EBP=∠BPE=60°,∴∠CBP=∠ABC+∠EBP=120°,∵∠AEP=180°﹣∠BEP=120°,∴∠AEP=∠CBP,∵DE平分∠ADC,∴∠ADE=∠CDE=30°,∴∠AED=∠CDE=30°=∠ADE,∴AD=AE,∴AE=BC,∴△APE≌△CPB(SAS),∴AP=CP,∠APE=∠CPB,∴∠APE+∠CPE=∠CPB+∠CPE,即∠APC=∠BPE=60°,∴△APC是等边三角形,方法二:如图1,延长PE交CD于点Q,连接AQ,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∵α=120°,即∠BAD=120°,∴∠B=∠ADC=60°,∴∠BEP=60°=∠B,∴PE∥BC∥AD,∴四边形ADQE和四边形BCQE是平行四边形,∵DE平分∠ADC,∴∠ADE=∠CDE=30°,∴∠AED=∠CDE=30°=∠ADE,∴AD=AE,∴四边形ADQE是菱形,∴∠EAQ=∠AEQ=60°,∴△AEQ是等边三角形,∴AE=AQ,∠AQE=60°,∵四边形BCQE是平行四边形,∴PE=BE=CQ,∠B=∠CQE=60°,∵∠AEP=120°,∠AQC=∠AQE+∠CQE=120°,∴∠AEP=∠AQC,∴△AEP≌△AQC(SAS),∴AP=AC;(2)AB2+AD2=2AF2,理由:如图2,连接CF,在▱ABCD中,∠BAD=90°,∴∠ADC=∠ABC=∠BAD=90°,AD=BC,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∴∠AED=∠ADE=45°,∴AE=BC,∵BF⊥EP,∴∠BFE=90°,∵∠BEF=α=∠BAD=×90°=45°,∴∠EBF=∠BEF=45°,∴BF=EF,∵∠FBC=∠FBE+∠ABC=45°+90°=135°,∠AEF=180°﹣∠FEB=135°,∴∠CBF=∠AEF,∴△BCF≌△EAF(SAS),∴CF=AF,∠CFB=∠AFE,∴∠AFC=∠AFE+∠CFE=∠CFB+∠CFE=∠BFE=90°,∴∠ACF=∠CAF=45°,∵sin∠ACF=,∴AC====AF,在Rt△ABC中,AB2+BC2=AC2,∴AB2+AD2=2AF2;(3)方法一:由(1)知,BC=AD=AE=AB﹣BE,∵BE=AB,AB=CD,∴AB=CD=2BE,设BE=a,则PE=AD=AE=a,AB=CD=2a,①当点E在AB上时,如图3,过点G作GM⊥AD于点M,作GN⊥CD于点N,过点C作CK⊥AD于点K,过点A作AH⊥PE的延长线于点H,当α=120°时,∠B=∠ADC=60°,∵DE平分∠ADC,GM⊥AD,GN⊥CD,∴GM=GN,∵S△ACD=AD•CK=a•2a•sin60°=a2,====2,∴S△CDG=2S△ADG,∴S△CDG=S△ACD=a2,由(1)知PE∥BC,∴∠AEH=∠B=60°,∵∠H=90°,∴AH=AE•sin60°=a,∴S△APE=PE•AH=a•a=a2,∴==.②如图4,当点E在AB延长线上时,由①同理可得:S△CDG=S△ACD=××2a××3a=a2,S△APE=PH•AE=×a×3a=a2,∴==,综上所述,△APE与△CDG面积的比值为或.方法二:如图3,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴△AEG∽△CDG,∴=()2,=,①当点E在AB上时,∵BE=AB,∴AE=BE=AB=CD,∴=()2=,又∵==,∴=,即=3,∴==3,当α=120°时,∠B=∠ADC=60°,∵DE平分∠ADC,∴∠ADE=30°,∴∠AED=180°﹣∠BAD﹣∠ADE=30°=∠ADE,∴AE=AD,∵EP=EB=AE,EP∥AD,∴EP=AD=AE,∠AEP=∠DAE=120°,∴△AED≌△EAP(SAS),∴S△AED=S△EAP,∴=•=•=3×=;②如图4,当点E在AB延长线上时,∵BE=AB,∴AE=AB=CD,由①知,AD=AE=CD,∵EP=BE=AE=AD,EP∥AD,∴==,∵==,∴=,∴==,∵=()2=()2=,∴=••=××=;综上所述,△APE与△CDG面积的比值为或.5.解:(1)猜想:OC=OD.理由:如图1中,∵AC⊥CD,BD⊥CD,∴∠ACO=∠BDO=90°在△AOC与△BOD中,,∴△AOC≌△BOD(AAS),∴OC=OD,故答案为:OC=OD;(2)数量关系依然成立.理由:过点O作直线EF∥CD,交AC的延长线于点E,∵EF∥CD,∴∠DCE=∠E=∠CDF=90°,∴四边形CEFD为矩形,∴∠OFD=90°,CE=DF,由(1)知,OE=OF,在△COE与△DOF中,,∴△COE≌DOF(SAS),∴OC=OD;(3)①结论成立.理由:如图3中,延长CO交BD的延长线于点E,∵AC⊥CD,BD⊥CD,∴AC∥BD,∴∠ACO=∠E,∵点O为AB的中点,∴AO=BO,又∵∠AOC=∠BOE,∴△AOC≌△BOE(AAS),∴CO=OE,∵∠CDE=90°,∴OD=OC=OE,∴OC=OD.②结论:AC+BD=OC.理由:如图3中,∵∠COD=60°,OD=OC,∴△COD是等边三角形,∴CD=OC,∠OCD=60°,∵∠CDE=90°,∴tan60°=,∴DE=CD,∵△AOC≌△BOE,∴AC=BE,∴AC+BD=BD+BE=DE=CD,∴AC+BD=OC.6.解:(1)如图,在Rt△PDQ中,AD=cm,∠PQD=60°,∴tan60°==,∴DQ=AD=1cm.(2)点P在AB上运动时间为3÷1=3(s),∴点P在BC上时PB=(x﹣3).(3)当0≤x≤3时,点P在AB上,作PM⊥CD于点M,PQ交AB于点E,作EN⊥CD 于点N,同(1)可得MQ=AD=1cm.∴DQ=DM+MQ=AP+MQ=(x+1)cm,当x+1=3时x=2,∴0≤x≤2时,点Q在DC上,∵tan∠BDC==,∴∠DBC=30°,∵∠PQD=60°,∴∠DEQ=90°.∵sin30°==,∴EQ=DQ=,∵sin60°==,∴EN=EQ=(x+1)cm,∴y=DQ•EN=(x+1)×(x+1)=(x+1)2=x2+x+(0≤x≤2).当2<x≤3时,点Q在DC延长线上,PQ交BC于点F,如图,∵CQ=DQ﹣DC=x+1﹣3=x﹣2,tan60°=,∴CF=CQ•tan60°=(x﹣2)cm,∴S△CQF=CQ•CF=(x﹣2)×(x﹣2)=(x2﹣2x+2)cm2,∴y=S△DEQ﹣S△CQF=x2+x+﹣(x2﹣2x+2)=(﹣x2+x﹣)cm2(2<x≤3).当3<x≤4时,点P在BC上,如图,∵CP=CB﹣BP=﹣(x﹣3)=(4﹣x)cm,∴y=DC•CP=×3(4﹣x)=6﹣x(3<x≤4).综上所述,y=7.(1)证明:如图①中,∵EA=ED,∠EAD=45°,∴∠EAD=∠EDA=45°,∴∠AED=90°,∵BF=FD,∴EF=DB,∵∠CAB=90°,∴∠CAD=∠BAD=45°,∵∠ABC=∠AED=45°,∴∠ACB=∠ABC=45°,∴AD垂直平分线段BC,∴DC=DB,∴EF=CD.(2)解:如图②中,结论:EF=CD.理由:取CD的中点T,连接AT,TF,ET,TE交AD于点O.∵∠CAD=90°,CT=DT,∴AT=CT=DT,∵EA=ED,∴ET垂直平分线段AD,∴AO=OD,∵∠AED=90°,∴OE=OA=OD,∵CT=TD,BF=DF,∴BC∥FT,∴∠ABC=∠OFT=45°,∵∠TOF=90°,∴∠OTF=∠OFT=45°,∴OT=OF,∴AF=ET,∵FT=TF,∠AFT=∠ETF,F A=TE,∴△AFT≌△ETF(SAS),∴EF=CD.如图③中,结论:EF=CD.理由:取AD的中点O,连接OF,OE.∵EA=ED,∠AED=60°,∴△ADE是等边三角形,∵AO=OD,∴OE⊥AD,∠AEO=∠OED=30°,∴tan∠AEO==,∴=,∵∠ABC=∠AED=30°,∠BAC=90°,∴AB=AC,∵AO=OD,BF=FD,∴OF=AB,∴=,∴=,∵OF∥AB,∴∠DOF=∠DAB,∵∠DOF+∠EOF=90°,∠DAB+∠DAC=90°,∴∠EOF=∠DAC,∴△EOF∽△DAC,∴==,∴EF=CD.8.解:(1)如图1,连接BD,∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,在△BAP和△BCD中,,∴△BAP≌△BCD(SAS),∴BP=BD,∠ABP=∠CBD,∵∠ABP+∠PBC=60°,∴∠CBD+∠PBC=60°,即∠PBD=60°,∴△BDP是等边三角形,∴∠BPD=60°,∵BC是⊙O的直径,∴∠BPC=90°,∴∠CPD=∠BPC﹣∠BPD=90°﹣60°=30°;(2)如图2,连接AP交BC于D,∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=60°,∵BP=CP,∴AD⊥BC,BD=CD=BC=AB,∴AD=AB•sin∠ABC=AB•sin60°=AB,∵AB=4BP,∴BP=AB,∴PD===AB,∴PD=AD,即点P是AD的中点,∵EC=3BE,∴BE=BC,BC=4BE,∵BD=BC,∴BE=BD,即点E是BD的中点,∴EP是△ABD的中位线,∴EF∥AB,∴△CEF∽△CBA,∴===,∴4EF=3AB;(3)如图3,过点A作AD⊥BC于点D,过点P作PE⊥BC于点E,交AC于点F,作PH⊥AC于点H,由(2)得:AD=AB=3a,∠ACB=60°,BC=AC=AB=6a,∵∠CMP=150°,∴∠PMF=180°﹣∠CMP=180°﹣150°=30°,∵∠CHP=90°,∴PH=PM•sin∠PMF=a•sin30°=a,MH=PM•cos∠PMF=a•cos30°=a,∵EF⊥BC,∴∠CEF=90°,∴∠CFE=90°﹣∠ACB=90°﹣60°=30°,∴∠CFE=∠PMF,∴PF=PM=a,∴FH=PF•cos∠PFH=a•cos30°=a,∵AM=2MC,∴CM=AC=×6a=2a,∴CF=CM++MH+HF=5a,∴EF=CF•sin∠ACB=5a•sin60°=a,∴PE=EF﹣PF=a﹣a=a,∴S1﹣S2=S△ABC﹣S△BCP=BC•AD﹣BC•PE=BC•(AD﹣PE)=×6a×(3a ﹣a)=a2.9.(1)证明:如图,连接EC,∵∠BAC=∠DAE=90°,∠ABC=∠ADE=45°,∴△ABC和△ADE为等腰直角三角形,∴AB=AC,AD=AE,∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE=45°,∴∠ACB+∠ACE=90°,则CE⊥BD,∵AF⊥BD,∴AF∥CE,BF=FC,∴==1,∴BG=EG.(2)解:如图,过点D作DM⊥AG,垂足为点M,过点C作CN⊥AG,交AG的延长线于点N,在△ABC和△AED中,∠BAC=∠DAE=90°,∠ACB=∠ADE=30°,设AE=a,AB=b,则AD=a,AC=b,∵∠1+∠EAF=90°,∠2+∠EAF=90°,∴∠1=∠2,∴sin∠1=sin∠2,∴=,即===,同理可证∠3=∠4,==,∴=,∴DM=CN,在△DGM和△CGN中,有:,∴△DGM≌△CGN(AAS),∴DG=CG,∴=1.10.解:(1)①当n=60时,△ABC和△DEC均为等边三角形,∴BC=AC,EC=DC,又∵BE=BC﹣EC,AD=AC﹣DC,∴BE=AD,故答案为:BE=AD;②BE=AD,理由如下:当点D不在AC上时,∵∠ACB=∠ACD+∠DCB=60°,∠DCE=∠BCE+∠DCB=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;(2)①BE=AD,理由如下:当n=90时,在等腰直角三角形DEC中:=sin45,在等腰直角三角形ABC中:=,∵∠ACB=∠ACE+∠ECB=45°,∠DCE=∠ACE+∠DCA=45°,∴∠ECB=∠DCA在△DCA和△ECB中,,∴△DCA∽△ECB,∴,∴BE=,②DC=5或,理由如下:当点D在△ABC外部时,设EC与AB交于点F,如图所示:∵AB=3,AD=1由上可知:AC=AB=3,BE==,又∵BE∥AC,∴∠EBF=∠CAF=90°,而∠EFB=∠CF A,∴△EFB∽△CF A,∴==,∴AF=3BF,而AB=BF+AF=3,∴BF==,在Rt△EBF中:EF===,又∵CF=3EF=3×=,∴EC=EF+CF==5(或EC=4EF=5),在等腰直角三角形DEC中,DC=EC•cos45°=5×=5.当点D在△ABC内部时,过点D作DH⊥AC于H∵AC=3,AD=1,∠DAC=45°∴AH=DH=,CH=AC﹣AH=,∴CD===,综上所述,满足条件的CD的值为5或.11.解:(1)四边形ABCD是垂美四边形.理由如下:如图2,连接AC、BD,∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)AB2+CD2=AD2+BC2,理由如下:如图1中,∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,∴AD2+BC2=AB2+CD2;(3)如图3,连接CG、BE,∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,∵∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,∵∠AME=∠BMN,∴∠ABG+∠BMN=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC===3,∵CG===4,BE===5,∴GE2=CG2+BE2﹣CB2=(4)2+(5)2﹣32=73,∴GE=.12.解:(1)∵四边形ABCD为正方形,∴CD=AD,∠DCE=∠DAF=90°,∵CE=AF,∴△DCE≌△DAF(SAS);(2)①∵△DCE≌△DAF,∴DE=DF,∠CDE=∠ADF,∴∠FDE=∠ADF+∠ADE=∠CDE+∠ADE=∠ADC=90°,∴△DFE为等腰直角三角形,∵DH⊥EF,∴点H是EF的中点,∴DH=EF,同理,由HB是Rt△EBF的中线得:HB=EF,∴HD=HB;②∵四边形ABCD为正方形,故CD=CB,∵HD=HB,CH=CH,∴△DCH≌△BCH(SSS),∴∠DCH=∠BCH=45°,∵△DEF为等腰直角三角形,∴∠DFE=45°,∴∠HCE=∠DFK,∵四边形ABCD为正方形,∴AD∥BC,∴∠DKF=∠HEC,∴△DKF∽△HEC,∴,∴DK•HC=DF•HE,在等腰直角三角形DFH中,DF=HF=HE,∴DK•HC=DF•HE=HE2=,∴HE=1.13.(1)解:如图1中,∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠BAD=90°,∴ABC,△ADC都是等腰三角形,∵∠BAE=∠CAE,∠DAF=∠CAF,∴∠EAF=(∠BAC+∠DAC)=45°,∵∠BAE=∠DAF=22.5°,∠B=∠D=90°,AB=AD,∴△BAE≌△DAF(ASA),∴BE=DF,AE=AF,∵CB=CD,∴CE=CF,∴△AEF,△CEF都是等腰三角形,故答案为:45,△AEF,△EFC,△ABC,△ADC.(2)解:结论:PQ=BP+DQ.理由:如图2中,延长CB到T,使得BT=DQ.∵AD=AB,∠ADQ=∠ABT=90°,DQ=BT,∴△ADQ≌△ABT(SAS),∴AT=AQ,∠DAQ=∠BAT,∵∠P AQ=45°,∴∠P AT=∠BAP+∠BAT=∠BAP+∠DAQ=45°,∴∠P AT=∠P AQ=45°,∵AP=AP,∴△P AT≌△P AQ(SAS),∴PQ=PT,∵PT=PB+BT=PB+DQ,∴PQ=BP+DQ.故答案为:PQ=BP+DQ.(3)解:如图3中,∵四边形ABCD是正方形,∴∠ABM=∠ACQ=∠BAC=45°,AC=AB,∵∠BAC=∠P AQ=45°,∴∠BAM=∠CAQ,∴△CAQ∽△BAM,∴==,故答案为:.(4)证明:如图4中,将△ADN绕点A顺时针旋转90°得到△ABR,连接RM.∵∠BAD=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∵∠DAN=∠BAR,∴∠BAM+∠BAR=45°,∴∠MAR=∠MAN=45°,∵AR=AN,AM=AM,∴△AMR≌△AMN(SAS),∴RM=MN,∵∠D=∠ABR=∠ABD=45°,∴∠RBM=90°,∴RM2=BR2+BM2,∵DN=BR,MN=RM,∴BM2+DN2=MN2.14.操作一:解:∵四边形ABCD是正方形,∴∠C=∠BAD=90°,由折叠的性质得:∠BAE=∠MAE,∠DAF=∠MAF,∴∠MAE+∠MAF=∠BAE+∠DAF=∠BAD=45°,即∠EAF=45°,故答案为:45;操作二:解:∵四边形ABCD是正方形,∴∠B=∠C=90°,由折叠的性质得:∠NFE=∠CFE,∠ENF=∠C=90°,∠AFD=∠AFM,∴∠ANF=180°﹣90°=90°,由操作一得:∠EAF=45°,∴△ANF是等腰直角三角形,∴∠AFN=45°,∴∠AFD=∠AFM=45°+∠NFE,∴2(45°+∠NFE)+∠CFE=180°,∴∠NFE=∠CFE=30°,∴∠AEF=90°﹣30°=60°,故答案为:60;(1)证明:∵△ANF是等腰直角三角形,∴AN=FN,∵∠AMF=∠ANF=90°,∠APN=∠FPM,∴∠NAP=∠NFE=30°,在△ANP和△FNE中,,∴△ANP≌△FNE(ASA);(2)由(1)得:△ANP≌△FNE,∴AP=FE,PN=EN,∵∠NFE=∠CFE=30°,∠ENF=∠C=90°,∴∠NEF=∠CEF=60°,∴∠AEB=60°,∵∠B=90°,∴∠BAE=30°,∴BE=AB=1,∴AE=2BE=2,设PN=EN=a,∵∠ANP=90°,∠NAP=30°,∴AN=PN=a,AP=2PN=2a,∵AN+EN=AE,∴a+a=2,解得:a=﹣1,∴AP=2a=2﹣2,故答案为:2﹣2.15.解:【类比探究】过点E作EF⊥CD于点F,连接AF,∵四边形ABCD是正方形,∴AD=CD=4,∠ADC=90°,∵DE=CE,EF⊥CD,∴DF=CF=CD=2,∠ADC=∠EFD=90°,∴AD∥EF,∴S△ADE=S△ADF,∴S△ADE=×AD×DF=×4×2=4;【拓展应用】如图③,连接CF,∵四边形ABCD和四边形CGFE都是正方形,∴∠BDC=45°,∠GCF=45°,∴∠BDC=∠GCF,∴BD∥CF,∴S△BDF=S△BCD,∴S△BDF=BC×BC=8.16.解:(1)设EF=m.∵BC=14,BD=6,∴CD=BC﹣BD=14﹣6=8,∵AD=8,∴AD=DC=8,∵AD⊥BC,∴∠ADC=90°,∴AC=AD=8,∵四边形EFGH是正方形,∴EH=FG=GH=EF=m,∠EHG=∠FGH=90°,∴∠AHE=∠FGC=90°,∵∠DAC=∠C=45°,∴∠AEH=∠EAH=45°,∠GFC=∠C=45°,∴AH=EH=m,CG=FG=m,∴3m=8,∴m=,∴EF=.(2)∵四边形EFGH是矩形,∴EF∥AC,∴∠DEF=∠DAC,∠DFE=∠C,∵∠DAC=∠C,∴∠DEF=∠DFE,∴DE=DF=x,DA=DC=8,∴AE=CF=8﹣x,∴EH=AE=(8﹣x),EF=DE=x,∴y===,∴y=(0<x<8).(3)如图②中,由(2)可知点P在y=上,设直线MN的解析式为y=kx+b,把P(a,)代入得到,=ka+b,∴b=﹣ka,∴y=kx+﹣ka,∴N(0,﹣ka),M(a﹣,0),∴ON=﹣ka,OM=a﹣∴△MON的面积=•ON•OM=×(6﹣a2k﹣)≥×(6+2)•=6,∴△MON的面积的最小值=6.解法二:过点P作PR⊥OM于M,PQ⊥ON于Q.设P(a,b),由△NQP∽△NOM,∴=,设==k,∴MO=,NQ=kON,ON=,∴S△MON=•OM•ON=•=•,∴k=时,△OMN的面积的最小值为×=6.17.解:(1)如图1,由作图得,OC=OD,OE=OF,PG垂直平分CE,PH垂直平分DF,∴∠PGO=∠PHO=90°,∵OE﹣OC=OF﹣OD,。
2021年中考三轮 临考冲刺数学训练:二次函数的实际应用(含答案)
2021中考数学临考冲刺训练:二次函数的实际应用一、选择题1. 某商品进货单价为90元/个,按100元/个出售时,能售出500个,如果这种商品每个每涨价1元,那么其销售量就减少10个,为了获得最大利润,其单价应定为()A.130元/个B.120元/个C.110元/个D.100元/个2. 如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12 m,则该梯形储料场ABCD的最大面积是()A.18 m2B.18m2C.24m2D.m23. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50 m B.100 mC.160 m D.200 m4. 如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD的总长为12 m,则该梯形储料场ABCD的最大面积是()A.18 m2B.18 3 m2 C.24 3 m2 D.45 32m25. 从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位: s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40 m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30 m时,t=1.5 s.其中正确的是()A.①④B.①②C.②③④D.②③6. 从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.有下列结论:①小球在空中经过的路程是40 m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30 m时,t=1.5 s.其中正确的是()A.①④B.①②C.②③④D.②③7. 如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x-x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A.当小球抛出高度达到7.5 m时,小球距O点水平距离为3 mB.小球距O点水平距离超过4 m时呈下降趋势C.小球落地点距O点水平距离为7 mD.斜坡的坡度为1∶28. 如图,将一个小球从斜坡上的点O处抛出,小球的抛出路线可以用二次函数y=4x-12x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是()A.当小球抛出高度达到7.5 m时,小球距点O的水平距离为3 mB.小球距点O的水平距离超过4 m后呈下降趋势C.小球落地点距点O的水平距离为7 mD.小球距点O的水平距离为2.5 m和5.5 m时的高度相同二、填空题9. 某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为________ m2.10. 如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF 分开.已知篱笆的总长为900 m(篱笆的厚度忽略不计),当AB=________m时,矩形ABCD的面积最大.11. 某种商品每件的进价为20元,经调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,则可卖出(30-x)件.若要使销售利润最大,则每件的售价应为________元.12. 竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时达到相同的最大离地高度,第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=.13. 如图所示是一座抛物线形拱桥,当水面宽为12 m时,桥拱顶部离水面4 m,以水平方向为x轴,建立平面直角坐标系.若选取点A为坐标原点时的抛物线解析式为y=-19(x-6)2+4,则选取点B为坐标原点时的抛物线解析式为________________.14. 在广安市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为y=-x2+x+,由此可知该生此次实心球训练的成绩为米.15. 如图,小明的父亲在相距2 m的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高度都是2.5 m,绳子自然下垂呈抛物线状,身高1 m的小明距较近的那棵树0.5 m时,头部刚好接触到绳子,则绳子的最低点到地面的距离为________m.16. 竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.三、解答题17. 如图,人工喷泉有一个竖直的喷水枪AB,喷水口A距地面2.25 m,喷出水流的运动路线是抛物线的一部分.水流的最高点P到喷水枪AB所在直线的距离为1 m ,且到地面的距离为3 m .求水流的落地点C 到水枪底部B 的距离.18. 如图,需在一面墙上绘制几个相同的抛物线型图案,按照图中的直角坐标系,最左边的抛物线可以用y =ax 2+bx (a ≠0)表示.已知抛物线上B ,C 两点到地面的距离均为34 m ,到墙边OA 的距离分别为12 m ,32 m.(1)求该抛物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10 m ,则最多可以连续绘制几个这样的抛物线型图案?19. 已知某商品的进价为每件40元,现售价为每件60元,每星期可卖出300件,经市场调查反映,每件每涨价1元,每星期可少卖出10件.(1)要想每星期获得6090元的利润,该商品每件的价格应定为多少元? (2)每星期能否获利7000元?试说明理由.(3)该商品每件的价格定为多少元时,每星期获利最大,最大利润是多少?20. 某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为60间,经市场调查表明,该宾馆每间标准房的价格在170~240元之间(含170元,240元)浮动时,每天入住的房间数y (间)与每间标准房的价格x (元)的数据如下表:x (元) … 190 200 210 220 … y (间) … 65 60 55 50 …(1)根据所给数据在坐标系中描出相应的点,并画出图象. (2)求y 关于x 的函数表达式,并写出自变量x 的取值范围.(3)设客房的日营业额为w (元),若不考虑其他因素,问宾馆标准房的价格定为多少元时,客房的日营业额最大?最大为多少元?21. 凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优惠方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18-10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低售价买?(2)写出该文具店一次销售x (x >10)只时,所获利润y (元)与x (只)之间的函数关系式,并写出自变量x 的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x ≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?22. 宏兴企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x 天生产的产品数量为y 件,y 与x 满足如下关系:y =⎩⎨⎧7.5x (0≤x ≤4),5x +10(4<x ≤14).(1)工人甲第几天生产的产品数量为70件?(2)设第x 天生产的产品成本为P 元/件,P 与x 之间的函数图象如图.工人甲第x 天创造的利润为W 元,求W 与x 之间的函数解析式,并求出第几天时,工人甲所创造的利润最大,最大利润是多少.23. 2018·荆州为响应荆州市“创建全国文明城市”的号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18 m,另外三边由36 m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=x m,面积为y m2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160 m2,求x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).则丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.24. 有一块形状如图所示的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B =90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.2021中考数学临考冲刺训练:二次函数的实际应用-答案一、选择题1. 【答案】B[解析] 设利润为y元,涨价x元,则有y=(100+x-90)(500-10x)=-10(x-20)2+9000,故每个商品涨价20元,即单价为120元/个时,获得最大利润.2. 【答案】C[解析]如图,过点C作CE⊥AB于E,设CD=x,则四边形ADCE为矩形,CD=AE=x,∠DCE=∠CEB=90°,∠BCE=∠BCD-∠DCE=30°,BC=12-x.在Rt△CBE中,∵∠CEB=90°,∴BE=BC=6-x,∴AD=CE=BE=6x,AB=AE+BE=x+6-x=x+6,∴梯形ABCD的面积=(CD+AB)·CE=x+x+6·6x=-x2+3x+18=-(x-4)2+24,=24,即CD长为4 m时,使梯形储料场ABCD的面积最大,∴当x=4时,S最大最大面积为24m2,故选C.3. 【答案】C[解析] 以2 m长线段所在直线为x轴,以其垂直平分线为y轴建立平面直角坐标系,求出抛物线的解析式,再求出不锈钢支柱的长度.4. 【答案】C[解析] 如图,过点C作CE⊥AB于点E,则四边形ADCE为矩形,∠DCE=∠CEB=90°,则∠BCE=∠BCD-∠DCE=30°.设CD =AE =x m ,则BC =(12-x)m.在Rt △CBE 中,∵∠CEB =90°,∠BCE =30°, ∴BE =12BC =(6-12x)m , ∴AD =CE =BC 2-BE 2=(6 3-32x)m ,AB =AE +BE =x +6-12x =(12x +6)m ,∴梯形ABCD 的面积=12(CD +AB)·CE =12(x +12x +6)·(6 3-32x) =-3 38x 2+3 3x +18 3 =-3 38(x -4)2+24 3.∴当x =4时,S 最大=24 3.即CD 的长为4 m 时,梯形储料场ABCD 的面积最大为24 3 m 2.故选C.5. 【答案】D[解析]①由图象知小球在空中达到的最大高度是40 m ,故①错误;②小球抛出3秒后,速度越来越快,故②正确; ③小球抛出3秒时达到最高点即速度为0,故③正确; ④设函数解析式为:h=a (t -3)2+40,把O (0,0)代入得0=a (0-3)2+40,解得a=-, ∴函数解析式为h=-(t -3)2+40.把h=30代入解析式得,30=-(t -3)2+40,解得t=4.5或t=1.5, ∴小球的高度h=30 m 时,t=1.5 s 或4.5 s ,故④错误,故选D .6. 【答案】D [解析] ①由图象知小球在空中达到的最大高度是40 m ,故①错误;②小球抛出3秒后,速度越来越快,故②正确;③∵小球抛出3秒时达到最高点,∴速度为0,故③正确;④设函数解析式为h =a(t -3)2+40, 把O(0,0)代入得0=a(0-3)2+40.解得a =-409,∴函数解析式为h =-409(t -3)2+40.把h =30代入解析式,得30=-409(t -3)2+40,解得t =4.5或t =1.5,∴小球的高度h =30 m 时,t =1.5 s 或4.5 s ,故④错误.故选D.7. 【答案】A[解析]根据函数图象可知,当小球抛出的高度为7.5 m 时,二次函数y=4x -x 2的函数值为7.5,即4x -x 2=7.5,解得x 1=3,x 2=5,故当抛出的高度为7.5 m 时,小球距离O 点的水平距离为3 m 或5 m ,A 结论错误;由y=4x -x 2,得y=-(x -4)2+8,则抛物线的对称轴为直线x=4,当x>4时,y 随x 值的增大而减小,B 结论正确;联立方程y=4x -x 2与y=x ,解得或则抛物线与直线的交点坐标为(0,0)或7,,C 结论正确;由点7,知坡度为∶7=1∶2也可以根据y=x 中系数的意义判断坡度为1∶2,D 结论正确.故选A .8. 【答案】A [解析] 令y =7.5,得4x -12x 2=7.5.解得x 1=3,x 2=5.可见选项A错误.由y =4x -12x 2得y =-12(x -4)2+8,∴对称轴为直线x =4,当x >4时,y 随x 的增大而减小,选项B 正确.联立y =4x -12x 2与y =12x ,解得⎩⎨⎧x =0,y =0或⎩⎪⎨⎪⎧x =7,y =72.∴抛物线与直线的交点坐标为(0,0),⎝ ⎛⎭⎪⎫7,72,可见选项C 正确.由对称性可知选项D 正确.综上所述,只有选项A 中的结论是错误的,故选A.二、填空题9. 【答案】144 【解析】∵围墙的总长为50 m ,设3间饲养室合计长x m ,则饲养室的宽=48-x 4 m ,∴总占地面积为y =x·48-x 4=-14x 2+12x(0<x <48),由y=-14x 2+12x =-14(x -24)2+144,∵x =24在0<x <48范围内,a =-14<0,∴在0<x≤24范围内,y 随x 的增大而增大,∴x =24时,y 取得最大值,y 最大=144 m 2.10. 【答案】150 [解析] 设AB =x m ,则AB =EF =CD =x m ,所以AD =BC =12(900-3x)m.设矩形ABCD 的面积为y m 2,则y =x·12(900-3x)=-32x 2+450x(0<x <300).由于二次项系数小于0,所以y 有最大值,且当x =-b2a =-4502×(-32)=150时,函数y 取得最大值.故当AB =150 m 矩形ABCD 的面积最大.11. 【答案】25[解析] 设利润为w 元,则w =(x -20)(30-x)=-(x -25)2+25.∵20≤x≤30,∴当x =25时,二次函数有最大值25.12. 【答案】1.6[解析]设各自抛出后1.1秒时达到相同的最大离地高度h ,则第一个小球的离地高度y=a (t -1.1)2+h (a ≠0), 由题意a (t -1.1)2+h=a (t -1-1.1)2+h , 解得t=1.6.故第一个小球抛出后1.6秒时在空中与第二个小球的离地高度相同.13. 【答案】y =-19(x +6)2+414. 【答案】10[解析]当y=0时,-x2+x+=0,解得,x=-2(舍去)或x=10.故答案为10.15. 【答案】0.5[解析] 以抛物线的对称轴为纵轴,向上为正,以对称轴与地面的交点为坐标原点建立平面直角坐标系,则抛物线的解析式可设为y=ax2+h.由于抛物线经过点(1,2.5)和(-0.5,1),于是求得a=2,h=0.5.16. 【答案】1.6 秒【解析】本题主要考查了二次函数的对称性问题.由题意可知,各自抛出后1.1秒时到达相同最大离地高度,即到达二次函数图象的顶点处,故此二次函数图象的对称轴为t=1.1;由于两次抛小球的时间间隔为1秒,所以当第一个小球和第二个小球到达相同高度时,则这两个小球必分居对称轴左右两侧,由于高度相同,则在该时间节点上,两小球对应时间到对称轴距离相同. 故该距离为0.5秒,所以此时第一个小球抛出后t=1.1+0.5=1.6秒时与第二个小球的离地高度相同.三、解答题17. 【答案】解:如图,以点B为坐标原点,BC所在直线为x轴,AB所在直线为y轴建立平面直角坐标系.根据题意,得抛物线的顶点P的坐标为(1,3),∴设抛物线的解析式为y=a(x-1)2+3.把A(0,2.25)代入,得2.25=a(0-1)2+3,解得a=-0.75,∴y=-0.75(x-1)2+3.令y=0,得-0.75(x-1)2+3=0,解得x1=3,x2=-1(舍去),∴BC=3 m.答:水流的落地点C到水枪底部B的距离为3 m.18. 【答案】解:(1)由题意知,抛物线y =ax 2+bx(a ≠0)经过点B(12,34),C(32,34), 则⎩⎪⎨⎪⎧14a +12b =3494a +32b =34,解得⎩⎨⎧a =-1b =2,∴抛物线的解析式是y =-x 2+2x.(3分) 根据对称性知,抛物线的对称轴是x =-b2a =1, 当x =1时,y =1, ∴顶点坐标是(1,1).答:图案最高点到地面的距离是1 m .(5分) (2)∵抛物线的对称轴是x =1,∴一个图案与地面两交点间的距离是2 m ,10÷2=5. 答:最多可以连续绘制5个这样的抛物线型图案.(8分)19. 【答案】解:设该商品每件涨价x 元时,每星期获得的总利润为y 元. (1)由题意,得(60+x -40)(300-10x)=6090, 整理得x 2-10x +9=0, 解得x 1=1,x 2=9.60+1=61(元),60+9=69(元).答:要想每星期获得6090元的利润,该商品每件的价格应定为61元或69元. (2)不能.理由:列方程,得(60+x -40)(300-10x)=7000, 整理得x 2-10x +100=0. ∵Δ=(-10)2-4×1×100<0, ∴此方程无实数解,∴销售该商品每星期不能获利7000元.(3)y =(60+x -40)(300-10x)=-10x 2+100x +6000=-10(x -5)2+6250, ∴当x =5时,y 最大=6250,60+x =65.答:该商品每件的价格定为65元时,每星期获利最大,最大利润为6250元.20. 【答案】解:(1)如图所示.(2)设y=kx +b (k ≠0),把(200,60)和(220,50)代入, 得解得∴y=-x +160(170≤x ≤240). (3)w=x ·y=x ·-x +160=-x 2+160x.∴函数w=-x 2+160x 图象的对称轴为直线x=-=160,∵-<0,∴在170≤x ≤240范围内,w 随x 的增大而减小. 故当x=170时,w 有最大值,最大值为12750元.21. 【答案】解:(1)设一次至少买x 只计算器,才能以最低售价购买,则每只降价为:0.1(x -10)元,由题意得, 20-0.1(x -10)=16, 解得x =50.答:一次至少购买50只计算器,才能以最低售价购买.(2分) 【一题多解】设一次购买x 只计算器,才能以最低售价购买,则每只降低为:0.1(x -10)元,由题意得,20-0.1(x -10)≤16,解得x ≤50, ∴最大整数x =50.答:一次至少购买50只计算器,才能以最低售价购买. (2)由题意得,当10<x ≤50时,y =[20-12-0.1(x -10)]x , 即y =-0.1x 2+9x(3分)当x >50时,则每只计算器都按16元销售. ∴y =16x -12x =4x ,综上可得y =⎩⎨⎧-0.1x 2+9x (10<x ≤50)4x (x >50).(5分)(3)由y =-0.1x 2+9x 得,其图象的对称轴为x =-b2a =-92×(-0.1)=45,∵a =-0.1<0,当x >45时,y 随x 的增大而减小,(6分)又∵50>46>45,∴当x =46时的函数值大于x =50时的函数值, 即卖46只赚的钱反而比卖50只赚的钱多.(8分)由二次函数的性质知,当x =45时,y 最大值=-0.1×452+9×45=202.5, 这时售价为20-0.1×(45-10)=16.5(元).答:店家一次应卖45只,这时的售价是16.5元.(10分)22. 【答案】解:(1)令7.5x =70,则x =283>4,不符合题意, ∴5x +10=70,解得x =12.答:工人甲第12天生产的产品数量为70件. (2)由函数图象知,当0≤x≤4时,P =40; 当4<x≤14时,设P =kx +b.将(4,40),(14,50)代入,得⎩⎨⎧4k +b =40,14k +b =50,解得⎩⎨⎧k =1,b =36.∴P =x +36.①当0≤x≤4时,W =(60-40)·7.5x =150x , ∵W 随x 的增大而增大, ∴当x =4时,W 最大=600;②当4<x≤14时,W =(60-x -36)(5x +10)=-5x 2+110x +240=-5(x -11)2+845,∴当x =11时,W 最大=845. ∵845>600,∴当x =11时,W 取得最大值,最大值为845. 综上,W 与x 之间的函数解析式为 W =⎩⎨⎧150x (0≤x≤4),-5x 2+110x +240(4<x≤14);第11天时,工人甲所创造的利润最大,最大利润是845元.23. 【答案】解:(1)y =-2x 2+36x (9≤x <18). (2)由题意得-2x 2+36x =160,解得x1=10,x2=8(不符合题意,舍去).∴x的值为10.(3)∵y=-2x2+36x=-2(x-9)2+162,∴x=9时,y有最大值162.设购买乙种绿色植物a棵,购买丙种绿色植物b棵,由题意得14(400-a-b)+16a+28b=8600,∴a+7b=1500,∴b的最大值为214,即丙种植物最多可以购买214棵,此时a=2,需要种植的面积=0.4×(400-214-2)+1×2+0.4×214=161.2(m2)<162 m2,∴这批植物可以全部栽种到这块空地上.24. 【答案】解:(1)①若所截矩形材料的一条边是BC,如图①所示:过点C作CF⊥AE于点F,则S1=AB·BC=6×5=30;②若所截矩形材料的一条边是AE,如图②所示:过点E作EF∥AB交CD于点F,过点F作FG⊥AB于点G,过点C作CH⊥FG 于点H,则四边形AEFG为矩形,四边形BCHG为矩形,∴AE=FG=6,HG=BC=5,BG=CH,∠BCH=90°.∵∠BCD=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴BG=CH=FH=FG-HG=6-5=1,∴AG=AB-BG=6-1=5,∴S2=AE·AG=6×5=30.(2)能.如图③,在CD上取点F,过点F作FM⊥AB于点M,FN⊥AE于点N,过点C 作CG⊥FM于点G,则四边形ANFM为矩形,四边形BCGM为矩形,∴MG=BC=5,BM=CG,∠BCG=90°.∵∠BCD=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴FG=CG.设AM=x,矩形AMFN的面积为S,则BM=6-x,∴FM=GM+FG=GM+CG=BC+BM=11-x,∴S=AM·FM=x(11-x)=-x2+11x=-(x-5.5)2+30.25,∴当x=5.5时,S取得最大值,最大值为30.25.故这些矩形材料面积的最大值为30.25.。
2021-2022学年广东省梅州市名校中考数学模拟精编试卷含解析
2021-2022中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图是抛物线y 1=ax 2+bx+c (a≠0)图象的一部分,其顶点坐标为A (﹣1,﹣3),与x 轴的一个交点为B (﹣3,0),直线y 2=mx+n (m≠0)与抛物线交于A ,B 两点,下列结论:①abc >0;②不等式ax 2+(b ﹣m )x+c ﹣n <0的解集为﹣3<x <﹣1;③抛物线与x 轴的另一个交点是(3,0);④方程ax 2+bx+c+3=0有两个相等的实数根;其中正确的是( )A .①③B .②③C .③④D .②④2.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <.则k 的取值范围为( ) A .1k < B .1k C .1k > D .1k <3.如图,反比例函数y =-的图象与直线y =-x 的交点为A 、B ,过点A 作y 轴的平行线与过点B 作的x 轴的平行线相交于点C ,则△ABC 的面积为( )A .8B .6C .4D .24.如图,小明为了测量河宽AB ,先在BA 延长线上取一点D ,再在同岸取一点C ,测得∠CAD=60°,∠BCA=30°,AC=15 m ,那么河AB 宽为( )A.15 m B.53m C.103m D.123m 5.如图,数轴上表示的是下列哪个不等式组的解集()A.53xx≥-⎧⎨>-⎩B.53xx>-⎧⎨≥-⎩C.53xx<⎧⎨<-⎩D.53xx<⎧⎨>-⎩6.如图是由5个大小相同的正方体组成的几何体,则该几何体的左视图是()A.B.C.D.7.如图,△ABC中,D、E分别为AB、AC的中点,已知△ADE的面积为1,那么△ABC的面积是()A.2 B.3 C.4 D.58.对于下列调查:①对从某国进口的香蕉进行检验检疫;②审查某教科书稿;③中央电视台“鸡年春晚”收视率.其中适合抽样调查的是( )A.①②B.①③C.②③D.①②③9.下列说法正确的是( )A.对角线相等且互相垂直的四边形是菱形B.对角线互相平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形10.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为()A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)11.如图,正方形内的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为.12.如图,在△ABC中,点D、E分别在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,则BC=_____.13.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率为____.14.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为__________.15.计算:(﹣2a3)2=_____.16.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为____________________.17.月球的半径约为1738000米,1738000这个数用科学记数法表示为___________.三、解答题(共7小题,满分69分)18.(10分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2,3、1.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).19.(5分)如图1,三个正方形ABCD、AEMN、CEFG,其中顶点D、C、G在同一条直线上,点E是BC边上的动点,连结AC、AM.(1)求证:△ACM∽△ABE.(2)如图2,连结BD、DM、MF、BF,求证:四边形BFMD是平行四边形.(3)若正方形ABCD的面积为36,正方形CEFG的面积为4,求五边形ABFMN的面积.20.(8分)当a3,b=2时,求代数式222222a b b aba ab b a b+--++-的值.21.(10分)为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图1和如图2所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1600名学生中,考试成绩评为“B”的学生大约有多少名?(3)如果第一组有两名女生和两名男生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.22.(10分)如图,我们把一个半圆和抛物线的一部分围成的封闭图形称为“果圆”,已知A B C D ,,,分别为“果圆”与坐标轴的交点,直线334y x =-与“果圆”中的抛物线234y x bx c =++交于B C 、两点 (1)求“果圆”中抛物线的解析式,并直接写出“果圆”被y 轴截得的线段BD 的长; (2)如图,E 为直线BC 下方“果圆”上一点,连接AE AB BE 、、,设AE 与BC 交于F ,BEF △的面积记为BEF S ,ABF 的面积即为ABF S △,求ABFBEF S S 的最小值(3)“果圆”上是否存在点P ,使APC CAB ∠=∠,如果存在,直接写出点P 坐标,如果不存在,请说明理由23.(12分)在平面直角坐标系xOy 中,点A 在x 轴的正半轴上,点B 的坐标为(0,4),BC 平分∠ABO 交x 轴于点C (2,0).点P 是线段AB 上一个动点(点P 不与点A ,B 重合),过点P 作AB 的垂线分别与x 轴交于点D ,与y轴交于点E,DF平分∠PDO交y轴于点F.设点D的横坐标为t.(1)如图1,当0<t<2时,求证:DF∥CB;(2)当t<0时,在图2中补全图形,判断直线DF与CB的位置关系,并证明你的结论;(3)若点M的坐标为(4,-1),在点P运动的过程中,当△MCE的面积等于△BCO面积的58倍时,直接写出此时点E的坐标.24.(14分)如图,已知反比例函数y=kx的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).求n和b的值;求△OAB的面积;直接写出一次函数值大于反比例函数值的自变量x的取值范围.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】①错误.由题意a>1.b>1,c<1,abc<1;②正确.因为y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,当ax2+bx+c<mx+n时,-3<x<-1;即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确;③错误.抛物线与x 轴的另一个交点是(1,1);④正确.抛物线y 1=ax 2+bx+c (a≠1)图象与直线y=-3只有一个交点,方程ax 2+bx+c+3=1有两个相等的实数根,故④正确.【详解】解:∵抛物线开口向上,∴a >1,∵抛物线交y 轴于负半轴,∴c <1,∵对称轴在y 轴左边,∴-2b a<1, ∴b >1,∴abc <1,故①错误.∵y 1=ax 2+bx+c (a≠1)图象与直线y 2=mx+n (m≠1)交于A ,B 两点,当ax 2+bx+c <mx+n 时,-3<x <-1;即不等式ax 2+(b-m )x+c-n <1的解集为-3<x <-1;故②正确,抛物线与x 轴的另一个交点是(1,1),故③错误,∵抛物线y 1=ax 2+bx+c (a≠1)图象与直线y=-3只有一个交点,∴方程ax 2+bx+c+3=1有两个相等的实数根,故④正确.故选:D .【点睛】本题考查二次函数的性质、二次函数与不等式,二次函数与一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.2、B【解析】求出不等式组的解集,根据已知得出关于k 的不等式,求出不等式的解集即可.【详解】 解:解不等式组29611x x x k +>+⎧⎨-<⎩,得21x x k <⎧⎨<+⎩. ∵不等式组29611x x x k +>+⎧⎨-<⎩的解集为x <2, ∴k +1≥2,解得k≥1.故选:B .【点睛】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k的不等式,难度适中.3、A【解析】试题解析:由于点A、B在反比例函数图象上关于原点对称,则△ABC的面积=2|k|=2×4=1.故选A.考点:反比例函数系数k的几何意义.4、A【解析】过C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=12AC=12×15=7.5m,CE=AC•cos30°=15×32=1532,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE•t an60°=1532×3=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故选A.【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.5、B【解析】根据数轴上不等式解集的表示方法得出此不等式组的解集,再对各选项进行逐一判断即可.【详解】解:由数轴上不等式解集的表示方法得出此不等式组的解集为:x≥-3,A 、不等式组53x x ≥-⎧⎨>-⎩的解集为x >-3,故A 错误; B 、不等式组53x x >-⎧⎨≥-⎩的解集为x≥-3,故B 正确; C 、不等式组53x x <⎧⎨<-⎩的解集为x <-3,故C 错误; D 、不等式组53x x <⎧⎨>-⎩的解集为-3<x <5,故D 错误. 故选B .【点睛】本题考查的是在数轴上表示一元一次不等式组的解集,根据题意得出数轴上不等式组的解集是解答此题的关键. 6、B【解析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从左面看易得下面一层有2个正方形,上面一层左边有1个正方形.故选:B .【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.7、C【解析】根据三角形的中位线定理可得DE ∥BC ,DE BC =12,即可证得△ADE ∽△ABC ,根据相似三角形面积的比等于相似比的平方可得ADE ABC S S ∆∆=14,已知△ADE 的面积为1,即可求得S △ABC =1. 【详解】∵D 、E 分别是AB 、AC 的中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,DE BC =12, ∴△ADE ∽△ABC ,∴ADE ABC S S ∆∆=(12)2=14, ∵△ADE 的面积为1,∴S △ABC =1.故选C .【点睛】本题考查了三角形的中位线定理及相似三角形的判定与性质,先证得△ADE ∽△ABC ,根据相似三角形面积的比等于相似比的平方得到ADE ABC S S ∆∆=14是解决问题的关键. 8、B【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】①对从某国进口的香蕉进行检验检疫适合抽样调查;②审查某教科书稿适合全面调查;③中央电视台“鸡年春晚”收视率适合抽样调查.故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9、D【解析】分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答.详解:A 、对角线互相平分且垂直的四边形是菱形,故错误;B 、四条边相等的四边形是菱形,故错误;C 、对角线相互平分的四边形是平行四边形,故错误;D 、对角线相等且相互平分的四边形是矩形,正确;故选D .点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理. 10、B由俯视图所标该位置上小立方块的个数可知,左侧一列有2层,右侧一列有1层.【详解】根据俯视图中的每个数字是该位置小立方块的个数,得出主视图有2列,从左到右的列数分别是2,1.故选B.【点睛】此题考查了三视图判断几何体,用到的知识点是俯视图、主视图,关键是根据三种视图之间的关系以及视图和实物之间的关系.二、填空题(共7小题,每小题3分,满分21分)11、13.【解析】试题分析:此题是求阴影部分的面积占正方形面积的几分之几,即为所求概率.阴影部分的面积为:3×1÷2×4=6,因为正方形对角线形成4个等腰直角三角形,所以边长是6÷(2=6÷18=13.考点:求随机事件的概率.12、1【解析】先由DE∥BC,可证得△ADE∽△ABC,进而可根据相似三角形得到的比例线段求得BC的长.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB,∵AD=2,DB=4,∴AB=AD+BD=6,∴1:BC=2:6,∴BC=1,故答案为:1.【点睛】考查了相似三角形的性质和判定,关键是求出相似后得出比例式,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三13、2 5【解析】解:根据题意可得:列表如下红1 红2 黄1 黄2 黄3红1 红1,红2 红1,黄1 红1,黄2 红1,黄3 红2 红2,红1 红2,黄1 红2,黄2 红2,黄3 黄1 黄1,红1 黄1,红2 黄1,黄2 黄1,黄3 黄2 黄2,红1 黄2,红2 黄2,黄1 黄2,黄3 黄3 黄3,红1 黄3,红2 黄3,黄1 黄3,黄2共有20种所有等可能的结果,其中两个颜色相同的有8种情况,故摸出两个颜色相同的小球的概率为82 205.【点睛】本题考查列表法和树状图法,掌握步骤正确列表是解题关键.14、4.1【解析】解:如图所示:∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,根据题意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=1,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(1﹣x )2=(x+2)2, 解得:x=4.1, ∴AP=4.1; 故答案为4.1.15、4a 1. 【解析】根据积的乘方运算法则进行运算即可. 【详解】 原式64.a 故答案为64.a 【点睛】考查积的乘方,掌握运算法则是解题的关键. 16、(6053,2). 【解析】根据前四次的坐标变化总结规律,从而得解. 【详解】第一次P 1(5,2),第二次P 2(8,1),第三次P 3(10,1),第四次P 4(13,1),第五次P 5(17,2),… 发现点P 的位置4次一个循环, ∵2017÷4=504余1,P 2017的纵坐标与P 1相同为2,横坐标为5+3×2016=6053, ∴P 2017(6053,2), 故答案为(6053,2).考点:坐标与图形变化﹣旋转;规律型:点的坐标. 17、1.738×1 【解析】解:将1738000用科学记数法表示为1.738×1.故答案为1.738×1.【点睛】本题考查科学记数法—表示较大的数,掌握科学计数法的计数形式,难度不大.三、解答题(共7小题,满分69分) 18、(1)23;(2)这两个数字之和是3的倍数的概率为13. 【解析】(1)在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,根据概率公式可得;(2)用列表法列出所有情况,再计算概率. 【详解】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个, ∴指针所指扇形中的数字是奇数的概率为23, 故答案为23; (2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种, 所以这两个数字之和是3的倍数的概率为39=13. 【点睛】本题考核知识点:求概率. 解题关键点:列出所有情况,熟记概率公式. 19、(1)证明见解析;(2)证明见解析;(3)74. 【解析】(1)根据四边形ABCD 和四边形AEMN 都是正方形得AB AC AC AM ==CAB=∠MAC=45°,∠BAE=∠CAM ,可证△ACM ∽△ABE ;(2)连结AC ,由△ACM ∽△ABE 得∠ACM=∠B=90°,易证∠MCD=∠BDC=45°,得BD ∥CM,由BE ,,得MF=BD ,从而可以证明四边形BFMD 是平行四边形;(3)根据S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可. 【详解】(1)证明:∵四边形ABCD和四边形AEMN都是正方形,∴12AB ACAC AM==,∠CAB=∠MAC=45°,∴∠CAB-∠CAE=∠MAC-∠CAE,∴∠BAE=∠CAM,∴△ACM∽△ABE.(2)证明:连结AC因为△ACM∽△ABE,则∠ACM=∠B=90°,因为∠ACB=∠ECF=45°,所以∠ACM+∠ACB+∠ECF=180°,所以点M,C,F在同一直线上,所以∠MCD=∠BDC=45°,所以BD平行MF,又因为MC=2BE,FC=2CE,所以MF=2BC=BD,所以四边形BFMD是平行四边形(3)S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM=62+42+12(2+6)⨯4+12⨯2⨯6=74. 【点睛】本题主要考查了正方形的性质的应用,解此题的关键是能正确作出辅助线,综合性比较强,有一定的难度. 20、1b a b++,6﹣33. 【解析】 原式=()()()()2b a b a ba b a b a b -+++-+=11b b a b a b a b++=+++, 当a=3,b=2时,原式1+23(32)336=633343+2(3+2)(32)--==---.21、(1)50(2)420(3)P=58【解析】试题分析:(1)首先根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则可求得第五组人数为:50﹣4﹣8﹣20﹣14=4(名);即可补全统计图; (2)由题意可求得130~145分所占比例,进而求出答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两名学生刚好是一名女生和一名男生的情况,再利用概率公式求解即可求得答案.试题解析:(1)根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名); 则第五组人数为:50﹣4﹣8﹣20﹣14=4(名); 如图:(2)根据题意得:考试成绩评为“B”的学生大约有1450×1600=448(名),答:考试成绩评为“B”的学生大约有448名; (3)画树状图得:∵共有16种等可能的结果,所选两名学生刚好是一名女生和一名男生的有8种情况, ∴所选两名学生刚好是一名女生和一名男生的概率为:816=12. 考点:1、树状图法与列表法求概率的知识,2、直方图与扇形统计图的知识视频22、 (1)239344y x x =--;6;(2)ABF BEFS S 有最小值54;(3)103P -(,),23P -(3,). 【解析】(1)先求出点B ,C 坐标,利用待定系数法求出抛物线解析式,进而求出点A 坐标,即可求出半圆的直径,再构造直角三角形求出点D 的坐标即可求出BD ; (2)先判断出要求ABF BEFS S的最小值,只要CG 最大即可,再求出直线EG 解析式和抛物线解析式联立成的方程只有一个交点,求出直线EG 解析式,即可求出CG ,结论得证.(3)求出线段AC ,BC 进而判断出满足条件的一个点P 和点B 重合,再利用抛物线的对称性求出另一个点P . 【详解】解:(1) 对于直线y=34x-3,令x=0, ∴y=-3, ∴B (0,-3), 令y=0, ∴34x-3=0, ∴x=4, ∴C (4,0), ∵抛物线y=34x 2+bx+c 过B ,C 两点,∴3164043b c c ⎧⨯++⎪⎨⎪-⎩== ∴943b c ⎧-⎪⎨⎪-⎩=,=∴抛物线的解析式为y=239344x x --; 令y=0, ∴239344x x --=0, ∴x=4或x=-1, ∴A (-1,0), ∴AC=5,如图2,记半圆的圆心为O',连接O'D ,∴O'A=O'D=O'C=12AC=52, ∴OO'=OC-O'C=4-52=32, 在Rt △O'OD 中,22O D OO '-'=2, ∴D (0,2), ∴BD=2-(-3)=5; (2) 如图3,∵A (-1,0),C (4,0), ∴AC=5,过点E 作EG ∥BC 交x 轴于G ,∵△ABF 的AF 边上的高和△BEF 的EF 边的高相等,设高为h , ∴S △ABF =12AF•h ,S △BEF =12EF•h , ∴ABF BEFS S =1•21•2AF hEF h = AFEF ∵ABF BEFS S的最小值,∴AFEF最小, ∵CF ∥GE , ∴AF AC 5EF CG CG== ∴5CG最小,即:CG 最大, ∴EG 和果圆的抛物线部分只有一个交点时,CG 最大,∵直线BC 的解析式为y=34x-3, 设直线EG 的解析式为y=34x+m ①,∵抛物线的解析式为y=34x 2-94x-3②,联立①②化简得,3x 2-12x-12-4m=0, ∴△=144+4×3×(12+4m )=0, ∴m=-6,∴直线EG 的解析式为y=34x-6, 令y=0,∴34x-6=0, ∴x=8, ∴CG=4, ∴ABF BEFS S=54AF AC EF CG ==; (3)103P -(,),233P -(,).理由:如图1,∵AC 是半圆的直径,∴半圆上除点A ,C 外任意一点Q ,都有∠AQC=90°, ∴点P 只能在抛物线部分上, ∵B (0,-3),C (4,0), ∴BC=5, ∵AC=5, ∴AC=BC , ∴∠BAC=∠ABC ,当∠APC=∠CAB 时,点P 和点B 重合,即:P (0,-3), 由抛物线的对称性知,另一个点P 的坐标为(3,-3), 即:使∠APC=∠CAB ,点P 坐标为(0,-3)或(3,-3). 【点睛】本题是二次函数综合题,考查待定系数法,圆的性质,勾股定理,相似三角形的判定和性质,抛物线的对称性,等腰三角形的判定和性质,判断出CG 最大时,两三角形面积之比最小是解本题的关键. 23、(1)详见解析;(2)详见解析;(3)详见解析. 【解析】(1)求出∠PBO+∠PDO=180°,根据角平分线定义得出∠CBO=12∠PBO ,∠ODF=12∠PDO ,求出∠CBO+∠ODF=90°,求出∠CBO=∠DFO,根据平行线的性质得出即可;(2)求出∠ABO=∠PDA,根据角平分线定义得出∠CBO=12∠ABO,∠CDQ=12∠PDO,求出∠CBO=∠CDQ,推出∠CDQ+∠DCQ=90°,求出∠CQD=90°,根据垂直定义得出即可;(3)分为两种情况:根据三角形面积公式求出即可.【详解】(1)证明:如图1.∵在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),∴∠AOB=90°.∵DP⊥AB于点P,∴∠DPB=90°,∵在四边形DPBO中,∠DPB+∠PBO+∠BOD+∠PDO=360°,∴∠PBO+∠PDO=180°,∵BC平分∠ABO,DF平分∠PDO,∴∠CBO=12∠PBO,∠ODF=12∠PDO,∴∠CBO+∠ODF=12(∠PBO+∠PDO)=90°,∵在△FDO中,∠OFD+∠ODF=90°,∴∠CBO=∠DFO,∴DF∥CB.(2)直线DF与CB的位置关系是:DF⊥CB,证明:延长DF交CB于点Q,如图2,∵在△ABO中,∠AOB=90°,∴∠BAO+∠ABO=90°,∵在△APD中,∠APD=90°,∴∠PAD+∠PDA=90°,∴∠ABO=∠PDA,∵BC平分∠ABO,DF平分∠PDO,∴∠CBO=12∠ABO,∠CDQ=12∠PDO,∴∠CBO=∠CDQ,∵在△CBO中,∠CBO+∠BCO=90°,∴∠CDQ+∠DCQ=90°,∴在△QCD中,∠CQD=90°,∴DF⊥CB.(3)解:过M作MN⊥y轴于N,∵M(4,-1),∴MN=4,ON=1,当E在y轴的正半轴上时,如图3,∵△MCE的面积等于△BCO面积的58倍时,∴12×2×OE+12×(2+4)×1-12×4×(1+OE)=58×12×2×4,解得:OE=72,当E在y轴的负半轴上时,如图4,1 2×(2+4)×1+12×(OE-1)×4-12×2×OE=58×12×2×4,解得:OE=32,即E的坐标是(0,72)或(0,-32).【点睛】本题考查了平行线的性质和判定,三角形内角和定理,坐标与图形性质,三角形的面积的应用,题目综合性比较强,有一定的难度.24、(1)-1;(2)52;(3)x>1或﹣4<x<0.【解析】(1)把A点坐标分别代入反比例函数与一次函数解析式,求出k和b的值,把B点坐标代入反比例函数解析式求出n的值即可;(2)设直线y=x+3与y轴的交点为C,由S△AOB=S△AOC+S△BOC,根据A、B两点坐标及C点坐标,利用三角形面积公式即可得答案;(3)利用函数图像,根据A、B两点坐标即可得答案.【详解】(1)把A点(1,4)分别代入反比例函数y=kx,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=4x的图象上,∴n=44=﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=12×3×1+12×3×4=7.5,(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.【点睛】本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=kx中k的几何意义,这里体现了数形结合的思想.。
广东省梅州市2021年中考数学试题(附答案)
广东省梅州市2021年中考数学试题(附答案)梅州市2021年初中毕业生学业考试数学试卷说明:本试卷共4页,24题,满分120分. 考试用时90分钟.注意事项:1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号,再用2B铅笔把试室号、座位号的对应数字涂黑. 2.选择题每小题选出答案后,用2B铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上. 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效. 4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 5.本试卷不用装订,考完后统一交县招生办(中招办)封存.bb4ac?b2,).参考公式:抛物线y?ax?bx?c的对称轴是直线x??,顶点是(?2a2a4a2一、选择题:每小题3分,共21分.每小题给出四个答案,其中只有一个是正确的. 1.计算(��3)+4的结果是 A.��7B.��1 C. 1D.72.若一组数据3,x,4,5,6的众数是3,则这组数据的中位数为 A.3 B.4 C.5 D.6 3.如图,几何体的俯视图是2C.A. B.3 D.4.分解因式ab?b 结果正确的是A. b(a?b)(a?b) B.b(a?b) C.b(a?b)222 D.b(a?b)25.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于 A.55° B.45°C.35° D.25°6.二次根式2?x有意义,则x的取值范围是A.x?2 B.x?2 C.x?2 D.x?2 7.对于实数a、b,定义一种新运算“?”为:a?b?算.例如:1?3?1,这里等式右边是实数运 2a?b112??x?(?2)??1的解是.则方程8x?41?32 D.x?7A. x?4 B.x?5 C.x?6 二、填空题:每小题3分,共24分. 8.比较大小:��2______��3.9.在一个不透明的口袋中,装有若干个除颜色不同外,其余都相同的小球.如果口袋中装有3个红球且从中随机摸出一个球是红球的概率为1,那么口袋中小球共有_______个. 510.流经我市的汀江,在青溪水库的正常库容是6880万立方米.6880万用科学记数法表示为__________________________.11.已知点P(3��m,m)在第二象限,则m的取值范围是____________________. 12.用一条长40cm的绳子围成一个面积为64cm2的矩形.设矩形的一边长为xcm,则可列方程为 _____________.13.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,若S?DEC?3,则S?BCF?________.14.如图,抛物线y??x?2x?3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD 是以CD为底的等腰三角形,则点P的坐标为_________. 15.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(23,0),B(0,2),则点B2021的坐标 2为______________.三、解答下列各题:本题有9小题,共75分.解答应写文字说明、推理过程或演算步骤. 16. 本题满分7分.计算:(??5)0?2cos45???3?(1)?1.217. 本题满分7分.我市某校开展了以“梦想中国”为主题的摄影大赛,要求参赛学生每人交一件作品.现将从中挑选的50件参赛作品的成绩(单位:分)统计如下:等级 A B C 合计成绩(用m表示)90≤ m ≤100 80≤ m <90 m <80 频数 x 34 12 50 频率 0.08 y 0.24 1 请根据上表提供的信息,解答下列问题:(1)表中x的值为_____________,y的值为______________;(直接填写结果)(2)将本次参赛作品获得A等级的学生依次用A1、A2、A3……表示.现该校决定从本次参赛作品获得A等级的学生中,随机抽取两名学生谈谈他们的参赛体会,则恰好抽到学生A1和A2的概率为____________.(直接填写结果) 18. 本题满分7分.如图,在平行四边形ABCD中,以点A为圆心,AB 长为半径画弧交AD于点F,再分别以点B、F为圆 1心,大于BF长为半径画弧,两弧交于一点P,连2接AP并延长交BC于点E,连接EF.(1)四边形ABEF是_______;(选填矩形、菱形、正方形、无法确定)(直接填写结果)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为________,∠ABC=________°.(直接填写结果) 19. 本题满分7分.如图,已知在平面直角坐标系中,O是坐标原点,点 A(2,5)在反比例函数y?k的图象上.一次函数y?x?b x的图象过点A,且与反比例函数图象的另一交点为B.(1)求k和b的值;(2)设反比例函数值为y1,一次函数值为y2,求y1?y2时x的取值范围. 20. 本题满分9分.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积. 21. 本题满分9分.关于x的一元二次方程x?(2k?1)x?k?1?0有两个不等实根x1、x2.(1)求实数k的取值范围;(2)若方程两实根x1、x2满足x1?x2??x1?x2,求k的值. 22. 本题满分9分.如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E、F 分别是AB、CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1 时,求AE的长.23. 本题满分10分.(为方便答题,可在答题卡上画出你认为必要的图形)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点 A匀速运动,同时动点N从点C出发,在CB 边上以每22秒3cm的速度向点B匀速运动,设运动时间为t秒(0?t?5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.24. 本题满分10分.(为方便答题,可在答题卡上画出你认为必要的图形)如图,在平面直角坐标系中,已知抛物线y?x2?bx?c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,?3),动点P在抛物线上.(1)b =_________,c =_________,点B的坐标为_____________;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.梅州市2021年初中毕业生学业考试数学试卷参考答案与评分意见一、选择题:本题共7小题,每小题3分,共21分.每小题给出四个答案,其中只有一个是正确的.1.C; 2.B; 3.D; 4.A; 5.C; 6.D; 7.B.二、填空题:本题共8小题,每小题3分,共24分.8.? ; 9.15; 10.6.88?10; 11.m?3;12.x(20?x)?64; 13.4; 14.(1?2,2);(写对一个给2分) 15.(6048,2).7三、解答下列各题:本题共9小题,共75分.解答应写出文字说明、推理过程或演算步骤. 16.解:原式=1?2?2?3?2 ………………………4分 2=1?1?3?2 ………………………6分=1.………………………7分 17.解:(1)4,0.68 ;………………………4分(每空2分)(2)1.………………………7分 618.解:(1)菱形………………………3分(2)103,120 ...........................7分(每空2分) 19.解:(1)把A(2,5)分别代入y?k和y?x?b, x?k??5 得?2, (2)分(各1分)??2?b?5 解得k?10,b?3;………………………3分(2)由(1)得,直线AB的解析式为y?x?3,反比例函数的解析式为y?分10.……………………………4x10??x?2?x??5?y?由? .……………………………5x,解得:?或??y?5?y??2??y?x?3分则点B的坐标为(?5,?2).由图象可知,当y1?y2时,x的取值范围是x??5或0?x?2.………7分20.(1)证明:连接OC.………………………1分∵AC=CD,∠ACD=120°,∴∠CAD=∠D=30°.………………………2分感谢您的阅读,祝您生活愉快。
2021年广东省梅州市中考数学模拟试卷(附答案详解)
2021年广东省梅州市中考数学模拟试卷一、选择题(本大题共10小题,共30.0分)1.下列实数是无理数的是()A. −2021B. πC. 3.14159D. 120212.2021年2月25日,全国脱贫攻坚总结表彰大会顺利召开,标志着我国脱贫攻坚战取得了全面胜利,现行标准下98990000农村贫困人口全部脱贫,创造了又一个彪炳史册的人间奇迹,数据98990000用科学记数法表示为()A. 98.99×106B. 9.899×107C. 9.899×108D. 0.9899×1083.下列几何体中,从左面看到的图形是圆的是()A. B. C. D.4.空气质量指数(简称AQI)是定量描述空气质量状况的指数,其数值越大说明空气污染状况越严重,对人体健康危害也就越大.如图,某市2021年3月7日0时到7时的空气质量指数实时监测(整点监测一次)数据绘制成的折线图,根据图示信息,这组数据的众数是()A. 23B. 24C. 25D. 265.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.6.如图,将一块含有30°角的直角三角板的两个顶点分别放在直尺的两条平行对边上,若∠α=145°,则∠β等于()A. 45°B. 60°C. 75°D. 85°7.不等式2(1−x)≥4−3x的解集在数轴上表示正确的是()A. B.C. D.8.关于x的一元二次方程x2+2x+m=0没有实数根,则抛物线y=x2+2x+m的顶点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.如图,边长为1的等边三角形A′B′C′开始在边长为2的等边三角形ABC左边,C′点与B点重合,大三角形固定不动,然后把小三角形沿BC边自左向右平移,直至移出大三角形外停止(B′点与C点重合),设小三角形移动距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A. B.C. D.10.如图,在正方形ABCD中,E是AD边上的一点,DE=4,AE=8,将正方形边CD沿CE折叠到CF,延长EF交AB于点G,连接CG,AF,如下4个结论:①∠ECD+∠BCG=45°;②G为AB中点;③AF//CG;④S△AFE=48.其中正确结论的有()5A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共7小题,共28.0分)11.因式分解:2a2−12a=______.)−1−√25=______.12.计算:(1313.已知x+y=−3,xy=2,则x2y+xy2=______.14.菱形ABCD中,AB=4,∠C=30°,以CD为直径的⊙O交BC于点E,则DE⏜的弧长为______.15.如图是按以下步骤作图:(1)在△ABC中,分别以点B,C为BC长为半径作弧,两弧相交于点M,N;(2)圆心,大于12作直线MN交AB于点D;(3)连接CD,若∠BCA=90°,AB=6,则CD的长为______.16.如图,数学学习小组要测量一棵树CE的高度,一名小组成员站在距离树10米的点B处,测得树的顶部E的仰角为34°.已知测角仪的架高AB=1米,则这棵树的高度约为______米.(结果保留一位小数,参考数据:sin34°≈0.5592,cos34°≈0.8290,tan34°≈0.6745)17.如图,四边形AOBC是正方形,曲线CP1P2P3⋅⋅⋅叫做“正方形的渐开线”,其中弧CP1,弧P1P2,弧P2P3,弧P3P4的圆心依次按点A,O,B,C循环,点A的坐标为(2,0),按此规律进行下去,则点P2021的坐标为______.三、解答题(本大题共8小题,共62.0分)18.先化简,再求值:x2−1x2−2x+1÷x+1x+1x−1,其中x=√3+1.19.2021年6月26日是第34个国际禁毒日,为了解同学们对禁毒知识的掌握情况,学校开展了禁毒知识讲座和知识竞赛,从全校1600名学生中随机抽取部分学生的竞赛试卷进行调查分析,测试结果分为“优秀”、“良好”、“合格”、“一般”四类,并绘制出如图所示的两幅不完整的统计图.请根据统计图回答下列问题:(1)本次抽取调查的学生共有______人,估计该校1600名学生中“合格”的学生有______人;(2)请补全条形统计图(提示:要标上人数);(3)被调查的学生中,前4名学生有2名男生B1,B2和2名女生G1,G2,若再从这4名学生中随机抽取2人代表学校参加教育局组织的禁毒演讲比赛,请用画树状图或列表的方法,求恰好抽到1名男生和1名女生的概率.20.如图,在等边△ABE下方作一个正方形BCDE,连接AC,AD.(1)求证:△ABC≌△AED;(2)求∠CAD的度数.=0有两个不相等的实数根21.关于x的方程mx2+(m+2)x+m4(1)求m的取值范围;(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,请说明理由.22.如图,⊙O是直径为6√5的圆,AB,CD是⊙O的直径,F为⊙O上一点,AF⊥CD于点E,AF=12,点H在CD的延长线上,AF和HB相交于点G.(1)若tanG=3,求GH的长度;2(2)若OH=15,求证:GH是⊙O的切线.23. 在抗击新冠肺炎疫情期间,市场上防护口罩出现热销,某药店购进了一批N95口罩和一次性医用外科口罩,供居民使用,第一次购买,N95口罩每个12元,一次性医用外科口罩每个2元,共花费了3200元;第二次又购买了与第一次相同数量的N95口罩和一次性医用外科口罩,由于N95口罩和一次性医用外科口罩每个价格分别下降了16和12,只花费了2500元.(1)求每次购买的N95口罩和一次性医用外科口罩分别是多少个?(2)若按照第二次购买的价格再一次购买,根据需要,购买的N95口罩数量是一次性医用外科口罩数量的2倍,现有购买资金3000元,则最多能购买一次性医用外科口罩多少个?24. 如图1,点A(0,8)、点B(m,4)在直线y =−2x +n 上,反比例函数y =k x (x >0)的图象经过点B .(1)求m和k的值;(2)将线段AB向右平移a个单位长度(a>0),得到对应线段CD,连接AC、BD.①如图2,当a=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,则DE=______.DF②连接BC,在线段AB运动过程中,△ABC能否是等腰三角形,若能,求所有满足条件a的值,若不能,请说明理由.25.如图,在四边形ABCD和Rt△EBF中,AB//CD,CD>AB,点C在EB上,∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,延长DC交EF于点M,点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s.过点P作GH⊥AB于点H,交CD于点G.设运动时间为t(s)(0< t<5).(1)作QN⊥AF于点N,若t=3(s)时,则PH=______cm;QN=______cm.(2)连接QC,QH,设三角形CQH的面积为S(cm2),求S关于t的函数关系式;(3)点Q在运动过程中,是否存在某一时刻t,使点Q在∠CAF的平分线上?若存在,求出t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:A、−2021是整数,属于有理数,故此选项不符合题意;B、π是无限不循环小数,是无理数,故此选项符合题意;C、3.14159是有限小数,属于有理数,故此选项不符合题意;D、1是分数,属于有理数,故此选项不符合题意.2021故选:B.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,初中范围内常见的无理数有三类:①π类,如2π等;②开方开不尽的数,如√3等;③虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.2.【答案】B【解析】解:98990000=9.899×107.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】解:选项A中的几何体的左视图为三角形,因此不符合题意;选项B中的几何体其左视图为等腰三角形,因此选项B不符合题意;选项C中的几何体的左视图是长方形,因此选项C不符合题意;选项D中的几何体,其左视图为圆,因此选项D符合题意,故选:D.分别得出各个几何体的左视图,进行判断即可.本题考查简单几何体的三视图,理解三视图的意义和画法,是正确解答问题的关键.4.【答案】D【解析】解:∵26出现的次数最多,出现了4次,∴这组数据的众数是26.故选:D.根据众数的定义直接解答即可.本题考查了折线统计图和众数.读懂统计图,从折线统计图中得到必要的信息和掌握好众数的定义是解决问题的关键.5.【答案】C【解析】解:A.该图形是轴对称图形,不是中心对称图形,故本选项不合题意;B.该图形不是轴对称图形,是中心对称图形,故本选项不合题意;C.该图形既是轴对称图形,又是中心对称图形,故本选项符合题意;D.该图形不是轴对称图形,也不是中心对称图形,故本选项不合题意;故选:C.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.【答案】D【解析】解:如图所示:由题意得:EC//AD,∠BAC=60°,∴∠CAD=180°−∠α=35°,∴∠β=180°−∠BAC−∠CAD=85°.故选:D.由平行线的性质可得∠CAD的度数,再结合平角性质即可求∠β的度数.本题主要考查平行线的性质,解答的关键是熟记平行线的性质并灵活运用.7.【答案】A【解析】解:2(1−x)≥4−3x,去括号,得2−2x≥4−3x,移项及合并同类项,得x≥2,该不等式组的解集在数轴上表示如下:,故选:A.根据解一元一次不等式的方法可以求得不等式的解集,然后即可将解集在数轴上表示出来,从而可以解答本题.本题考查解一元一次不等式、在数轴上表示不等式的解集,解答本题的关键是明确解一元一次不等式的方法.8.【答案】A【解析】解:∵抛物线y=x2−2x+m的对称轴是:x=−−22×1=1,∴y=x2−2x+m的顶点在y轴的右侧,又∵关于x的一元二次方程x2−2x+m=0没有实数根,∴开口向上的抛物线y=x2−2x+m与x轴没有交点,∴抛物线y=x2−2x+m的顶点一定在第一象限.故选:A.求出抛物线y=x2−2x+m的对称轴x=−−22×1=1,可知顶点在y轴的右侧,根据“关于x的一元二次方程x2−2x+m=0没有实数根”,可知开口向上的抛物线y=x2−2x+m与x轴没有交点,据此即可判断抛物线在第一象限.本题考查了抛物线与x轴的交点个数与相应一元二次方程的解的个数的关系,要熟悉二次函数的性质.9.【答案】C【解析】解:①0≤x≤1时,两个三角形重叠面积为小三角形的面积,∴y=12x⋅√32x=√34x2;②当1<x≤2时,y=√34;③当2<x≤3时,重叠三角形的边长为(2−x),高为√3(2−x)2,∴y=12(2−x)×√3(2−x)2=√34x2−√3x+√3,故选:C.根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状.本题主要考查了本题考查了动点问题的函数图象,此类题目的图象往往是几个函数的组合体.10.【答案】D【解析】解:如图,①∵将正方形边CD沿CE折叠到CF,∴△CDE≌△CFE,∴∠1=∠2,CD=CF,又∵CD=CB,∠CBG=∠CFG=90°,∴CB=CF,在Rt△CBG与Rt△CFG中,{CB=CFCG=CG,∴Rt△CBG≌Rt△CFG(HL),∴∠3=∠4,又∵∠BCD=∠1+∠2+∠3+∠4=2∠1+2∠4=90°,∴∠1+∠4=45°,即∠ECD+∠BCG=45°,故①正确;②设AG=x,则BG=12−x,∵△CBG≌△CFG,∴BG=FG=12−x,又∵△CDE≌△CFE,∴GE=FG+FE=FG+DE=12−x+4=16−x,∵∠GAE=90°,∴AE2+AG2=GE2,∴82+x2=(16−x)2,解得:x=6,故G为AB的中点,故②正确;③由△CBG≌△CFG,可知∠5=∠6,又由②可知GA=GF,∴∠7=∠8,∵∠5+∠6+∠AGF=180°,∠7+∠8+∠AGF=180°,∴∠5+∠6=∠7+∠8,∴∠5=∠7,∴AF//CG,故③正确;④过点F作FM⊥AD于M,得FM//AG,∴△EMF∽△EAG,∴FMAG =EFEG,∴FM6=410,∴FM=125,∴S△AEF=12×8×125=485,故④正确.故选:D.①正确,证明∠1=∠2,∠3=∠4即可;②正确,可以证明BG=GA=FG;③正确,证明∠5=∠7,即可;④正确,利用相似求出FM=125即可.本题主要考差了正方形的性质,翻折的性质,全等三角形的判定与性质,平行线的判定与性质,勾股定理等知识,运用参数思想,根据折叠和轴对称的性质表示出其他线段的长度,运用勾股定理列出方程是解题的关键.11.【答案】2a(a−6)【解析】解:2a2−12a=2a(a−6).故答案为:2a(a−6).运用提公因式法分解因式即可.本题考查了提公因式法分解因式,准确确定公因式是解题关键.12.【答案】−2【解析】解:原式=3−5=−2,故答案为:−2.先化简负整数指数幂,算术平方根,然后再计算.本题考查实数的运算,理解算术平方根的概念,掌握a−p=1a p(a≠0)是解题关键.13.【答案】−6【解析】解:∵x+y=−3,xy=2,∴x2y+xy2=xy(x+y)=2×(−3)=−6.故答案为−6.先将代数式分解因式,再代入计算可求解.本题主要考查因式分解的应用,将代数式分解因式是时解题的关键.14.【答案】2π3【解析】解:连接OE,如图所示:∵∠C=30°,∴∠DOE=2∠C=60°.∵菱形ABCD中,AB=4,∴CD=AB=4,∴OD=OC=2,∴DE⏜的弧长为:60π×2180=2π3;故答案为:2π3.连接OE,由圆周角定理得出∠DOE=2∠C=60°.根据菱形的性质得出CD=AB=4,那么OD=OC=2,再由弧长公式即可得出答案.本题考查了弧长公式、菱形的性质、圆周角定理等知识;求出∠DOE的度数是解决问题的关键.15.【答案】3【解析】解:由作法得MN垂直平分BC,∴DB=DC,∴∠B=∠BCD,∵∠B+∠A=90°,∠BCD+∠ACD=90°,∴∠ACD=∠A,∴DA=DC,∴CD=12AB=12×6=3.故答案为3.利用基本作图可判断MN垂直平分BC,根据线段垂直平分线的性质得到DB=DC,再证明DA=DC,从而得到CD=12AB=3.本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).16.【答案】7.7【解析】解:如图,由题意得,四边形ABCD是矩形,CD=AB=1米,在Rt△ACD中,AD=BC=10米,∠DAE=34°,∵tan∠DAE=DEAD,∴DE=AD⋅tan∠DAE≈10×0.6745≈6.7(米).∴CE=DE+CD=6.7+1=7.7(米).答:这棵树的高度约为7.7米.故答案为:7.7.在Rt△ADE中,求出ED,再利用矩形的性质得到AB=CD=1米,由此即可解决问题.本题考查解直角三角形的应用−仰角俯角问题、熟练掌握三角函数的定义是解题的关键.17.【答案】(4044,0)【解析】解:由题意可知:正方形的边长为2,∵A(2,0),B(0,2),C(2,2),P1(4,0),P2(0,−4),P3(−6,2),P4(2,10),P5(12,0),P6(0,−12)…可发现点的位置是四个一循环,每旋转一次半径增加2,2021÷4=505…1,故点P2021在x轴正半轴,OP的长度为2021×2+2=4044,即:P2021的坐标是(4044,0),故答案为:(4044,0).由题意可知,正方形的边长为2,每旋转一次半径增加2,每次旋转的角度为90°,据此解答即可.本题考查了直角坐标系内点的坐标运动变化规律,解题的关键是理解A点的坐标除符合变化之外,还由旋转半径确定,而且每旋转一次半径增加2.18.【答案】解:x2−1x2−2x+1÷x+1x+1x−1=(x+1)(x−1)(x−1)2⋅xx+1+1x−1=xx−1+1x−1=x+1x−1,当x=√3+1时,原式=√3+1+1√3+1−1=3+2√33.【解析】根据分式的除法和加法可以化简题目中的式子,然后将x的值代入化简后的式子即可.本题考查分式的化简求值,解答本题的关键是明确分式除法和加法的计算法则.19.【答案】50576【解析】解:(1)本次抽取调查的学生共有20÷40%=50(人),“合格”的人数有50−10−20−2=18(人),×1600=576(人).估计该校1600名学生中“合格”的学生有1850故答案为:50、576;(2)补全条形统计图如下:(3)列表如下:B1B2G1G2 B1(B2,B1)(G1,B1)(G2,B1)B2(B1,B2)(G1,B2)(G2,B2)G1(B1,G1)(B2,G1)(G2,G1)G2(B1,G2)(B2,G2)(G1,G2)由表知:共有12种等可能的结果,其中恰好抽到1名男生和1名女生的可能有8种,∴恰好抽到1名男生和1名女生的概率为8÷12=2.3(1)由良好人数及其所占百分比可得总人数,总人数乘以样本中合格人数所占比例即可;(2)根据以上所求结果即可补全图形;(3)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.本题考查条形统计图、扇形统计图的意义和制作方法、列表法树状图法求随机事件发生的概率,从统计图中获取数量和数量之间的关系以及列举出所有可能出现的结果数是解决问题的关键.20.【答案】(1)证明:∵四边形BCDE是正方形,∴BC=DE,∠CBE=∠DEB=90°,∵△ABE是等边三角形,∴AB=AE,∠ABE=∠AEB=60°,∴∠ABC =∠ABE +∠CBE =150°,∠AED =∠AEB +∠DEB =150°, ∴∠ABC =∠AED , 在△ABC 和△AED 中, {AB =AE∠ABC =∠AED BC =ED, ∴△ABC≌△AED(SAS);解:(2)∵四边形BCDE 是正方形, ∴BC =BE ,∵△ABE 是等边三角形, ∴AB =BE ,∠BAE =60°, ∴AB =BC , ∴∠BAC =∠BCA ,又由(1)得:∠ABC =150°,∴由三角形内角和定理可知:∠CAB =∠DAE =15°,∴∠CAD =∠BAE −∠CAB −∠DAE =60°−15°−15°=30°.【解析】(1)由四边形BCDE 是正方形,△ABE 是等边三角形,可以得出AB =AE ,BC =ED ,∠ABC =∠AED ,从而得出结论;(2)由(1)可求出∠CAB =∠DAE =15°,从而得出结论.本题考查正方形的性质,等边三角形的性质,三角形内角和定理等知识,关键是求出∠ABC =∠AED .21.【答案】解:(1)由△=(m +2)2−4m ⋅m 4>0,得m >−1又∵m ≠0∴m 的取值范围为m >−1且m ≠0;(5分)(2)不存在符合条件的实数m.(6分) 设方程两根为x 1,x 2则{ x 1+x 2=−m+2mx 1x 2=141x 1+1x 2=0,解得m =−2,此时△<0.∴原方程无解,故不存在.(12分)【解析】(1)利用方程有两根不相等的实数根可以得到△=(m+2)2−4m⋅m4>0,解得m的取值范围即可;(2)假设存在,然后利用根的判别式求得m的值,根据m的值是否能使得一元二次方程有实数根作出判断即可.本题考查了根的判别式及根与系数的关系,解题的关键是利用方程的根的情况得到m的取值范围.22.【答案】(1)解:∵AB是⊙O的直径,∴∠AFB=90°,在Rt△ABF中,BF=√AB2−AF2=√(6√5)2−122=6,在Rt△BFG中,tanG=32=BFFG,∴FG=4,∴BG=√BF2+FG2=√62+42=2√13,∵AF⊥CD,AF⊥BF,∴CD//BF,∴EGFG =HGBG,即6+44=HG2√13,∴HG=5√13,即GH的长度为5√13.(2)证明:连接OF,则OA=OF=r=3√5,又∵AF⊥CD,∴AE=12AF=6(三线合一),在Rt△AEO中,EO=√OA2−AE2=√(3√5)2−62=√9=3,∴OA OE =3√53=√5,OH OB =3√5=√5,在△AEO 和△HBO 中,{OA OE =OH OB ,∠AOE =∠HOB. ∴△AEO∽△HBO ,∴∠HBO =∠AEO =90°,∴GH 是⊙O 的切线.【解析】(1)因为AB 是⊙O 的直径,可得∠AFB =90°,根据勾股定理可得BF =√AB 2−AF 2=√(6√5)2−122=6,由锐角三角函数可得FG =4,由勾股定理可得BG =√BF 2+FG 2=√62+42=2√13,易知CD//BF ,可得EG FG =HGBG ,即可求解;(2)连接OF ,则OA =OF =r =3√5,因为AF ⊥CD ,可知AE =12AF =6(三线合一),根据勾股定理可得EO =3,从而求证△AEO∽△HBO ,可得∠HBO =∠AEO =90°,从而求证.本题主要考查了圆的综合和相似三角形的应用,熟练掌握圆的相关定理以及相似三角形判定与性质是解决问题的关键.23.【答案】解:(1)设每次购买的N95口罩x 个,一次性医用外科口罩y 个,依题意{12x +2y =320056×12x +12×2y =2500, 得:{x =225y =250. 答:每次购买的N95口罩225个,一次性医用外科口罩250个;(2)设一次性口罩买a 个,则N95口罩买2a 个,∵第二次购买的价格N95口罩是每个10元,一次性医用外科口罩每个1元,依题意:2a ⋅10+a ≤3000,解得:a ≤14267,∴最多购买一次性口罩142个.【解析】(1)设每次购买的N95口罩x 个,一次性医用外科口罩y 个,结合两次购买所花费用,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设一次性口罩买a 个,则N95口罩买2a 个,根据总价=单价×数量,结合现有购买资金3000元,即可得出关于a 的一元一次不等式,解之取其中的最大整数值即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24.【答案】35【解析】解:(1)∵点A(0,8)在直线y=−2x+n上,∴−2×0+n=8,∴n=8,∴直线AB的解析式为y=−2x+8,将点B(m,4)代入直线AB的解析式y=−2x+8上,得−2⋅m+8=4,∴m=2,∴B(2,4),将B(2,4)代入反比例函数解析式y=kx中,得k=xy=2×4=8.(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y=8x,当a=3时,∴将线段AB向右平移3个单位长度,得到对应线段CD,∴D(2+3,4),即:D(5,4),∵DF⊥x轴于点F,交反比例函数y=8x图象于点E,∴E(5,85),∴DE=4−85=125,EF=85,∴DEDF =1254=35;故答案为:35.②如图,∵将线段AB向右平移a个单位长度(a>0),得到对应线段CD,∴CD=AB,AC=BD=a,∵A(0,8),B(2,4),∴C(a,8),∵△ABC是等腰三角形,∴Ⅰ、当BC=AB时,∴点B在线段AC的垂直平分线上,∴a=2×2=4.Ⅱ、当BC=AC时,∵B(2,4),C(a,8),∴BC=√(a−2)2+(8−4)2,∴√(a−2)2+(8−4)2=a,∴a=5,Ⅲ、当AB=AC时,∴a=√(0−2)2+(8−4)2=2√5,即:△ABC是等腰三角形时,满足条件a的值为4或5或2√5.(1)用待定系数法即可求出m和k的值;(2)①根据线段AB向右平移3个单位得到CD,可以求出D的坐标,再根据反比例函数求出E的坐标,从而求出DE和DF;②分BC=AB,BC=AC,AB=AC三种种情况讨论,分别列出对应的方程即可求解.本题考查了反比例函数图象的性质,等腰三角形的判定与性质,关键是根据三角形腰的位置的不同进行分类讨论.25.【答案】185 185 【解析】解:(1)如图,∵∠ABC =∠EBF =90°,AB =BE =8cm ,BC =BF =6cm ,∴AC =√AB 2+BC 2=√64+36=10(cm),EF =√BF 2+BE 2=√64+36=10(cm),∵CE =2cm ,CM =32cm ,∴EM =√EC 2+CM 2=√4+94=52(cm),当t =3时,PA =6,MQ =3,QF =10−52−3=92(cm),∵sin∠PAH =sin∠CAB ,∴BC AC =PH AP ,∴PH =185.同理可求:QN =185. 故答案为185,185;(2)如图,∵EF =10cm ,EM =52cm ,∴MQ =t ,QF =10−52−t =152−t ,∵sin∠QFN =sin∠EFB ,∴QN QF =EB EF , ∴QN 152−t =810, ∴QN =6−45t ,∵cos∠PAH =cos∠CAB ,∴AH AP =AB AC , ∴AH2t =810, ∴AH =85t ,∵三角形CQH 的面积S △CQH =S 梯形CMFH −S △CMQ −S △HFQ ,∴12×[(14−85t)+32]×6−12×32×[6−(6−45t)]−12×(6−45t)×(14−85t)=−1625t 2+5t +92;(3)存在,理由如下:如图,连接QA ,延长AC 交EF 于K ,∵AB =BE =8cm ,BC =BF =6cm ,AC =EF =10cm ,∴△ABC≌△EBF(SSS),∴∠E =∠CAB ,又∵∠ACB =∠ECK ,∴∠ABC =∠EKC =90°,∵S △CEM =12×EC ×CM =12×EM ×CK ,∴CK =2×3252=65,∴KM =√CM 2−CK 2=√94−3625=910,∵QA 平分∠CAF ,QN ⊥AF ,QK ⊥AK ,∴QN =QK ,∴6−45t =t +910,∴t=5118,∴当t=5118时,使点Q在∠CAF的平分线上.(1)由勾股定理求出AC,EF,EM的长由锐角三角函数的定义可得出答案;(2)由锐角三角函数的定义得出QN=6−45t,AH=85t,根据三角形CQH的面积S△CQH=S梯形CMFH−S△CMQ−S△HFQ可得出答案;(3)连接QA,延长AC交EF于K,根据三角形CEM的面积可求出CK的长,由勾定理求出KM的长,列出方程6−45t=t+910可得出答案.本题是四边形综合题,考查了全等三角形的判定和性质,角平分线的性质,勾股定理,锐角三角函数,灵活运用这些性质解决问题是本题的关键.。