Transverse response of underground cavities and pipes to incident SV waves
声波曲线重构技术在火山岩储层预测中的应用
取 得 了较 好 的应 用 效 果 。
[ 键 词 ] 火 山岩 储 层 ;储 层 预 测 ; 非 均质 性 ; 曲线 重 构 ;神 经 网络 ; 二连 盆地 关
[ 要 ] 火 山岩 储 层 具 有 较 强 的 非 均 质 性 , 常规 的声 波 测 井 曲 线 约 束 反 演 由于 受 多种 因 素 的 影 响 ,不 能有 摘
效 地 反 映 火 山岩 储 层特 征 。针 对 火 山岩 这 种 特 殊 的岩 性 体 ,探 索 性 的采 用 深 、 浅 双 侧 向测 井 曲 线 重 构 声
( a s)公式 或者 阿奇 ( c i 和维利 ( le F ut Arhe ) Wyl )方 程联立 求解 ,导 出用 电阻率计 算声波 时差 的公式 , i
其 缺 陷是受地 区环境 因素 影响较 大 ,特 别是 对非 均质性 的火 山岩而 言 ,地 层参数 的选 择较难 ;统计 回归
[ 稿 日 期 ]2 1 收 0 0—0 —1 2 0 [ 者 简 介 ] 朱 超 ( 9 3一 ,男 ,2 0 作 18 ) 0 6年 大 学毕 业 ,硕 士 生 ,现 主要 从 事 地 震 反 演 及储 层 预 测 方 面 的研 究 工作 。
声 波 曲线 重 构 技 术 在 火 山岩 储 层 预 测 中 的应 用
朱 超 ( 杭州地质研究院, 江 杭州 302; 浙 103 中国石油大 ( 学 北京)资源与信息学院, 京 124) 北 2 0 9 高 先 志 ( 石油大学 ( 中国 北京)资源与信息学院, 北京 124) 2 0 9 杨德 相 ,崔俊 峰 ( 石油华北油田勘探开发 中国 研究院, 河北 任丘 025) 6 0 5
湿地中的横向扩散的紧急植被的影响
湿地中的横向扩散的紧急植被的影响邓丽君塞拉一,* Harindra J.S.费尔南多b鲁道夫·五·罗德里格斯!ıguezb一抽象:人工湿地被广泛用于各种环境中的应用,如废水处理和充电,其有效性在很大程度上取决于水动力性的flowsystem。
一个实验进行了研究,在浅水区的一个量化的横向扩散的被动物质人工湿地其特征在于,水流动虽然分布式植被的空隙。
实验装置目的是要模仿的特雷斯里奥斯人工湿地位于亚利桑那凤凰城。
主要强调的是横向扩散千吨与随机分布的植被的一个shallowzone的。
结果列的上下文中一个简单的理论模型whereKt表示在植物秸秆Dv的,特点的直径方面距离之间的plantsdv,在flowvelocity的U和的阻力coefficientCDasðKtUDvÞðdv=DvÞ¼BCD; wherebis一个无量纲的常数。
上述模型的数据拟合表明thatCD,在一般的雷诺,是一款功能数(Re)。
该数据也较由Nepf等人提出的模型。
(水,35(1999)479)。
R2003爱思唯尔有限公司保留所有权利。
1.介绍湿地是土地和水之间的过渡区机构,以及穿插淹没或浅水覆水涝的土壤紧急植被。
它们可以是自然发生,为湖泊的例子forebays,或建造人工生态系统管理的支持。
CON构建湿地被用于充电或放电地下水和调节水质的溪流和河流。
他们也很好的手段回收工业,农业和市政废水消息人士透露,与郁葱葱的创建额外的好处栖息地支持多种野生动物和植物[1 - 3]。
美国环境保护署(EPA)一个目标是每年2.5万公顷的湿地在美国各地,帮助减轻湿地损失。
湿地污染物去除的主要机制系统依赖于吸收溶解的物质的沉积物,根和植物表面之间等。
一些究已经进行字符表征去除散装参数的函数。
基材类型,水的深度和流速的影响模拟湿地系统中除锰被报告的Stark等人[1]。
中硝酸盐去除滨河湿地土壤进行了研究,一个功能的流量速率,温度,硝酸根浓度和水深Willems等[2]。
土木工程 建筑外文翻译 --基于盾构法的Istanbul地铁施工引起的地面沉降预测
中文5351字出处:Environmental Earth Sciences, 2011, 62(2): 357-365外文原文Surface settlement predictions for Istanbul Metrotunnels excavated by EPB-TBMS. G. Ercelebi • H. Copur • I. OcakAbstract In this study, short-term surface settlements are predicted for twin tunnels, which are to be excavated in the chainage of 0 ? 850 to 0 ? 900 m between the Esenler and Kirazlı stations of the Istanbul Metro line, which is 4 km in length. The total length of the excavation line is 21.2 km between Esenler and Basaksehir. Tunnels are excavated by employing two earth pressure balance (EPB) tunnel boring machines (TBMs) that have twin tubes of 6.5 m diameter and with 14 m distance from center to center. The TBM in the right tube follows about 100 m behind the other tube. Segmental lining of 1.4 m length is currently employed as the final support. Settlement predictions are performed with finite element method by using Plaxis finite element program. Excavation, ground support and face support steps in FEM analyses are simulated as applied in the field. Predictions are performed for a typicalgeological zone, which is considered as critical in terms of surface settlement. Geology in the study area is composed of fill, very stiff clay, dense sand, very dense sand and hard clay, respectively, starting from the surface. In addition to finite element modeling, the surface settlements are also predicted by using semi-theoretical (semi-empirical) and analytical methods. The results indicate that the FE model predicts well the short-term surface settlements for a given volume loss value. The results of semi-theoretical and analytical methods are found to be in good agreement with the FE model. The results of predictions are compared and verified by field measurements. It is suggested that grouting of the excavation void should be performed as fast as possible after excavation of a section as a precaution against surface settlements during excavation. Face pressure of the TBMs should be closely monitored and adjusted for different zones.Keywords Surface settlement prediction _ Finite element method _ Analytical method _ Semi-theoretical method _ EPB-TBM tunneling _Istanbul MetroIntroductionIncreasing demand on infrastructures increases attention to shallow soft ground tunneling methods in urbanized areas. Many surface and sub-surface structures make underground construction works very delicate due to the influence of grounddeformation, which should be definitely limited/controlled to acceptable levels. Independent of theexcavation method, the short- and long-term surface and sub-surface ground deformations should be predicted and remedial precautions against any damage to existing structures planned prior to construction. Tunneling cost substantially increases due to damages to structures resulting from surface settlements, which are above tolerable limits (Bilgin et al. 2009).Basic parameters affecting the ground deformations are ground conditions, technical/environmental parameters and tunneling or construction methods (O’Reilly an d New 1982; Arioglu 1992; Karakus and Fowell 2003; Tan and Ranjit 2003; Minguez et al. 2005; Ellis 2005; Suwansawat and Einstein 2006). A thorough study of the ground by site investigations should be performed to find out the physical and mechanical properties of the ground and existence ofunderground water, as well as deformation characteristics, especially the stiffness. Technical parameters include tunnel depth and geometry, tunnel diameter–line–grade, single or double track lines and neighboring structures. The construction method, which should lead to a safe and economic project, is selected based on site characteristics and technical project constraints and should be planned so that the ground movements are limited to an acceptablelevel. Excavation method, face support pressure, advance (excavation) rate, stiffness of support system, excavation sequence and ground treatment/improvement have dramatic effects on the ground deformations occurring due to tunneling operations. The primary reason for ground movements above the tunnel, also known as surface settlements, is convergence of the ground into the tunnel after excavation, which changes the in situ stress state of the ground and results in stress relief. Convergence of the ground is also known as ground loss or volume loss. The volume of the settlement on the surface is usually assumed to be equal to the ground (volume) loss inside the tunnel (O’Reilly and New 1982).Ground loss can be classified as radial loss around the tunnel periphery and axial (face) loss at the excavation face (Attewell et al. 1986; Schmidt 1974). The exact ratio of radial and axial volume losses is not fully demonstrated or generalized in any study. However, it is possible to diminish or minimize the face loss in full-face mechanized excavations by applying a face pressure as a slurry of bentonite–water mixture or foam-processed muck. The ground loss is usually more in granular soils than in cohesive soils for similar construction conditions. The width of the settlement trough on both sides of the tunnel axis is wider in the case of cohesive soils, which means lower maximum settlement for the same amount of ground loss.Time dependency of ground behavior and existence of underground water distinguish short- and long-term settlements (Attewell et al. 1986). Short-term settlements occur during or after a few days (mostly a few weeks) of excavation, assuming that undrained soil conditions are dominant. Long-term settlements are mostly due to creep, stress redistribution and consolidation of soil after drainageof the underground water and elimination of pore water pressure inside the soil, and it may take a few months to a few years to reach a stabilized level. In dry soilconditions, the long-term settlements may be considered as very limited.There are mainly three settlement prediction approaches for mechanized tunnel excavations: (1) numerical analysis such as finite element method, (2) analytical method and (3) semi-theoretical (semi-empirical) method. Among them, the numerical approaches are the most reliable ones. However, the results of all methods should be used carefully by an experienced field engineer in designing the stage of an excavation project.In this study, all three prediction methods are employed for a critical zone to predict the short-term maximum surface settlements above the twin tunnels of the chainage between 0 ? 850 and 0 ? 900 m between Esenler and Kirazlıstations of Istanbul Metro line, which is 4 km in length. Plaxis finite element modeling program is used fornumerical modeling; the method suggested by Loganathan and Poulos (1998) is used for the analytical solution. A few different semi-theoretical models are also used for predictions. The results are compared and validated by field measurements. Description of the project, site and construction methodThe first construction phase of Istanbul Metro line was started in 1992 and opened to public in 2000. This line is being extended gradually, as well as new lines are being constructed in other locations. One of these metro lines is the twin line between Esenler and Basaksehir, which is 21.2 km. The excavation of this section has been started in May 2006. Currently, around 1,400 m of excavationhas already been completed. The region is highly populated including several story buildings, industrial zones and heavy traffic. Alignment and stations of the metro line between Esenler and Basaksehir is presented in Fig. 1.Totally four earth pressure balance (EPB) tunnel boring machines (TBM) are used for excavation of the tunnels. The metro lines in the study area are excavated by a Herrenknecht EPB-TBM in the right tube and a Lovat EPB-TBM in the left tube. Right tube excavationfollows around 100 m behind the left tube. Some of the technical features of the machines are summarized in Table 1.Excavated material is removed by auger (screw conveyor) through the machine to a belt conveyor and than loaded to rail cars for transporting to the portal. Since the excavated ground bears water and includes stability problems, the excavation chamber is pressurized by 300 kPa and conditioned by applying water, foam, bentonite and polymers through the injection ports. Chamber pressure is continuously monitored by pressure sensors inside thechamber and auger. Installation of a segment ring with 1.4-m length (inner diameter of 5.7 m and outer diameter of 6.3 m) and 30-cm thickness is realized by a wing-type vacuum erector. The ring is configured as five segments plus a key segment. After installation of the ring, the excavation restarts and the void between the segment outer perimeter and excavated tunnel perimeter is grouted by300 kPa of pressure through the grout cannels in the trailing shield. This method of construction has beenproven to minimize the surface settlements.The study area includes the twin tunnels of the chainage between 0 + 850 and 0 + 900 m, between Esenler and Kirazlı stations. Gungoren Formation of th e Miosen age is found in the study area. Laboratory and in situ tests are applied to define the geotechnical features of theformations that the tunnels pass through. The name, thickness and some of the geotechnical properties of the layers are summarized in Table 2 (Ayson 2005). Fill layer of 2.5-m thick consists of sand, clay, gravel and some pieces of masonry. The very stiff clay layer of 4 m is grayish green in color, consisting of gravel and sand. The dense sand layer of 5 m is brown at the upper levels and greenish yellow at the lower levels, consisting of clay, silt and mica. Dense sand of 3 m is greenish yellow and consists of mica. The base layer of the tunnel is hard clay, which is dark green, consisting of shell. The underground water table starts at 4.5 m below the surface. The tunnel axis is 14.5 m below the surface, close to the contact between very dense sand and hard clay. This depth isquite uniform in the chainage between 0 + 850 and 0 + 900 m.Surface settlement prediction with finite element modelingPlaxis finite element code for soil and rock analysis is used to predict the surface settlement. First, the right tube is constructed, and then the left tube 100 m behind the right tube is excavated. This is based on the assumption that ground deformations caused by the excavation of the right tube are stabilized before the excavation of the left tube. The finite element mesh is shown in Fig. 2 using 15 stress point triangular elements. The FEM model consists of 1,838 elements and 15,121 nodes. In FE modeling, the Mohr–Coulomb failure criterion is applied.Staged construction is used in the FE model. Excavation of the soil and the construction of the tunnel lining are carried out in different phases. In the first phase, the soil in front of TBM is excavated, and a support pressure of 300 kPa is applied at the tunnel face to prevent failure at the face. In the first phase, TBM is modeled as shell elements. In the second phase, the tunnel lining is constructedusing prefabricated concrete ring segments, which are bolted together within the tunnel boring machine. During the erection of the lining, TBM remains stationary. Once a lining ring has been bolted, excavation is resumed until sufficient soil excavation is carried out for the next lining. The tunnel lining is modeled using volume elements. In the second phase, the lining is activated and TBM shell elements are deactivated.When applying finite element models, volume loss values are usually assumed prior to excavation. In this study, the FEM model is run with the assumption of 0.5, 0.75, 1 and 1.5% volume loss caused by the convergence of the ground into the tunnel after excavation. Figures 3 and 4 show total and vertical deformations after both tubes are constructed. The vertical ground settlement profile after theright tube construction is given in Fig. 5, which is in theshape of a Gaussian curve, and that after construction of both tubes is given in Fig. 6. Figure 7 shows the total deformation vectors.The maximum ground deformations under different volume loss assumptions are summarized in Table 3.Surface settlement prediction with semi-theoretical and analytical methodsSemi-theoretical predictions for short-term maximum settlement are performed using the Gaussian curve approach, which is a classical and conventional method. The settlement parameters used in semi-theoretical estimations and notations are presented in Fig. 8.The theoretical settlement (Gaussian) curve is presented as in Eq. 1 (O’Reilly and New 1982):)2(m a x 22i x e S S -= (1)where, S is the theoretical settlement (Gauss error function, normal probability curve), Smax is the maximum short-term (initial, undrained) settlement at the tunnel centerline (m), x is the transverse horizontal distance from the tunnel center line (m), and i is the point of inflexion (m). To determine the shape of a settlement curve, it is necessary to predict i and Smax values.There are several suggested methods for prediction of the point of inflexion (i). Estimation of i value in this studyis based on averages of some empirical approaches given in Eqs. 2–6:where, Z0 is the tunnel axis depth (m), 14.5 m in this study, and R is the radius of tunnel, 3.25 m in this study. Equation 3 was suggested by Glossop (O’Reilly and New 1982) for mostly cohesive grounds; Eq. 4 was suggested by O’Reilly and New (1982) for excavation of cohesive grounds by shielded machines; Eq. 5 was suggested by Schmidt (1969) for excavation of clays by shielded machines; Eq. 6 was suggested by Arioglu (1992) for excavation of all types of soils by shielded machines. As a result, the average i value is estimated to be 6.6 m in this study.There are several suggested empirical methods for the prediction of the maximum surface settlement (Smax).Schmidt suggested a model for the estimation of Smax value for a single tunnel in 1969 as given in Eq. 7 (through Arioglu 1992):where, K is the volume loss (%). Arioglu (1992), based on field data, found a good relationship between K and N (stability ratio) for face-pressurized TBM cases as in Eq. 8:where cn is the natural unit weight of the soil (kN/m3), the weighted averages for all the layers, which is 19 kN/m3 in this study; rS is the total surcharge pressure (kPa), assumed to be 20 kPa in this study; rT is TBM face pressure (kPa), which is 300 kPa in this study; and CU is the undrained cohesion of the soil (kPa), the weightedaverages for all the layers, which is 50 kPa in this study assuming that CU is equal to SU (undrained shear strength of the soil). Allaverages are estimated up to very dense sand, excluding hard clay, since the tunnel axis passes around the contact between very dense sand and hard clay. The model yields 17.1 mm of initial maximum surface settlement.Herzog suggested a model for the estimation of Smax value in 1985 as given in Eq. 9 for a single tunnel and Eq. 10 for twin tunnels (through Arioglu 1992):where, E is the elasticity modulus of formation (kPa), the weighted averages for all the layers, which is 30,000 kPa in this study, and a is the distance between the tunnel axes, which is 14 m in this study. The model yields 49.9 and 58.7 mm of initial maximum surface settlements for the right and the left tube tunnel, which is 100 mm behind the right tube, respectively.There are several analytical models for the prediction of short-term maximum surface settlements for shielded tunneling operations (Lee et al. 1992; Loganathan and Poulos 1998; Chi et al. 2001; Chou and Bobet 2002; Park 2004). The method suggested by Loganathan and Poulos (1998) is used in this study. In this method, a theoretical gapparameter (g) is defined based on physical gap in the void, face losses and workmanship value, and then the gap parameter is incorporated to a closed form solution to predict elastoplastic ground deformations. The undrained gap parameter (g) is estimated by Eq. 12:where Gp is the physical gap representing the geometric clearance between the outer skin of the shield and the liner, is the thickness of the tail shield, d is the clearance required for erection of the liner, U*3D is the equivalent 3D elastoplastic deformation at the tunnel face, and w is a value that takes into account the quality of workmanship.Maximum short-term surface settlement is predicted by theoretical Eq. 13 (Loganathan and Poulos 1998):where, t is undrained Poisson’s ratio, assumed to be of maximum 0.5; g is the gap parameter (m), which is estimated to be 0.0128 m in this study; and x is transversedistance from the tunnel centerline (m) and it is assumed to be 0 m for the maximum surface settlement. The model yields 23.0 mm of undrained maximum surface settlement.Other parameters of settlement such as maximum slope, maximum curvature and so on are not mentioned in this study.Verification of predictions by field measurements and discussionThe results of measurements performed on the surface monitoring points, by Istanbul Metropolitan Municipality, are presented in Table 4 for the left and right tubes. As seen, the average maximum surface settlements are around 9.6 mm for the right tube and 14.4 mm for the left tube, which excavates 100 m behind the right tube. Themaximum surface settlements measured around 15.2 mm for the right tube and 26.3 mm for the left tube. Higher settlements are expected in the left tube since the previous TBM excavation activities on the right tube overlaps the previous deformation. The effect of the left tube excavation on deformations of the right tube is presented in Fig. 9. As seen, after Lovat TBM in the right tube excavates nearby the surface monitoring point 25, maximum surface settlement reaches at around 9 mm; however, while Herrenknecht TBM in the left tube passes the same point, maximum surface settlement reaches at around 29 mm (Fig. 10).If the construction method applied to the site is considered, long-term (consolidation) settlements are expected to be low, since the tail void is grouted immediately after excavation. The results of predictions mentioned above and observed maximum surface settlements are summarized in Table 5.The methods suggested by Loganathan and Poulos (1998) and Schmidt (1969) connected with Arioglu’s suggestion (1992) can predict the maximum short-term surface settlements only for a single tunnel. Plaxis finite element and Herzog (1985) models can predict deformations for twin tubes.Herzog’s model (1985) yields higher maximum surface settlements than the observed ones. The reason for that is that the database of the model includes both shielded tunnels and NATM (New Austrian Tunneling Method) tunnels, of which surfacesettlements are usually higher compared to shielded tunnels. Schmidt (1969), along withArioglu’s suggestion (1992), yields predictions close to observed.Plaxis finite element modeling gives the most realistic results, provided there is correct assumption of volume loss parameter, which is usually difficult to predict. The model provides simulation of excavation, lining, grouting and face pressure in a realistic manner to predict surface and sub-surface settlements. The volume loss parameter is usually assumed to be \1% for excavation with facepressure-balanced tunnel boring machines. The realized volume loss in the site is around 1% for this study.Currently, there is difficulty yet in modeling the deformation behavior of twin tunnels. One of the most impressive studies on this issue was performed by Chapman et al. (2004). However, Chapman’s semi-theoretical method still requires enlargement of the database to improve the suggested model in his paper.ConclusionsIn this study, three surface settlement prediction methods for mechanized twin tunnel excavations be tween Esenler and Kirazlı stations of Istanbul Metro Line are applied. Tunnels of 6.5-m diameters with 14-m distance between their centers are excavated by EPM tunnel boring machines. The geologic structure of the area can be classified as soft ground.Settlement predictions are performed by using FE modeling, and semi-theoretical (semi-empirical) and analytical methods. The measured results after tunneling are compared to predicted results. These indicate that the FE model predicts well the short time surface settlements for a given volume loss value. The results of some semi-theoretical and analytical methods are found to be in goodagreement with the FE model, whereas some methods overestimate the measured settlements. The FE model predicted the maximum surface settlement as 15.89 mm (1% volume loss) for the right tube, while the measured maximum settlement was 15.20 mm. For the left tube (opened after the right), FE prediction was 24.34 mm, while measured maximum settlement was 26.30 mm.中文翻译基于盾构法的Istanbul地铁施工引起的地面沉降预测摘要在这项研究中,研究的是双线隧道的短期地面沉降,选取线路里程总长为4km的Istanbul地铁从Esenler站到Kirazl站方向850到900m区间为研究对象。
灰色Verhulst模型在隧道拱顶沉降预测中的应用
灰 色系 统理 论是 1 9 8 2 年 中国 学者 邓聚 龙教授创立的, 是一种研究少数据、贫信 息 不 确 定 性 问 题 的新 方 法 。 灰 色 系 统 理 论 以 概 率 统计 、 模 糊 数 学 所 难 以 解 决 的 “ 部 分信 息已 知 , 部 分 信息 未知 ” 的“ 小样 本”、 “贫 信 息 ” 不 确定 性 系 统 为研 究 对 象 , 主 要 通过 对“ 部 分” 已知 信 息的 生成 、 开发 , 提 取有价值的信息, 通过序列算子的作用探 索事物运动的现实规律, 实现对系统运行 行为、演化规律的正 确描述和有效监控。 1. 2 Ve r hul s t 模型及建模 过程介绍
Ve r h u l s t 非线 性微 分方 程模型 为:
第三 步: 数列满 足 Ve r h u l s t 非线性 微 分方程 式 1 . 1 , 参 数 a , b 求 解如 下
第四 步: 根据 求得 的参 数 a , b , 将式 1 . 2 化为
( 1. 3) 第五步:由此算出数列 中的各值的预 测值 数列 。 1. 3 模型 的评价 1 . 3 . 1 后 验差 评价法 [2] 生成 残差数列 其中 第一步:计 算原数列均值:
关键词: 灰色系统 理论 Ver hul s t 模型 拱 顶沉降量
中图 分类号:TD8 5 3. 3 4
文献标识 码:A
文章编 号:16 7 2- 3 79 1 ( 20 0 8) 0 5( a ) - 0 0 35 - 02
对于地 下隧道工程, 在施 工期间对隧 道围岩变形进行严密监测, 通过预测、预 报系统对监测数据进行处理, 并预估其最 终稳定位移, 从而确定支护的最佳工作状 态 和 支 护 结 构工 艺 参 数 是 隧 道 监 控 设 计 的 重要环节, 也是新奥法思想的三大支柱之 一。灰色预 测模型要求 的原始数据 量少, 并能 根据 新的 实测 数 据建 立等 维信 息模 型, 可随 时 对 原模 型 进 行修 正 , 因 此 具有 简 单 、经 济 、 预 测 精 度 高 、 便 于 隧 道 部 门 应 用的特点, 该方法能较好的应用于现场监 测数据的分析处理中, 并取得了不错的应 用效果。
三维地质雷达探测技术在城市道路空洞病害普查中的应用研究
doi: 10.3969/j.issn.1007-1903.2023.04.013Vol. 18 No.04 December, 2023第 18 卷 第4期 2023 年 12 月/三维地质雷达探测技术在城市道路空洞病害普查中的应用研究钱鹏1,谈顺佳2,3,王凤刚1,徐锦程1,杨志权1,龚良钢1(1.首钢地质勘查院北京金地通检测技术有限公司,北京 100043;2.东华理工大学地球物理与测控技术学院,江西 南昌 330013;3.北京睿拓立业科技发展有限公司,北京 100070)摘 要:由城市道路地下空洞、路面脱空、土体疏松等病害引起的道路塌陷事故是目前国内许多城市面临的重大安全隐患。
城市道路空洞病害具有隐伏性、突发性,造成的灾难性后果长期以来困扰着城市安全运营。
以国内多地的项目实测及验证成果为基础,对三维地质雷达探测技术方法和工作流程进行了梳理,通过分析三维地质雷达剖面数据中病害体的顶界面反射、多次波反射、边界绕射波等异常特征和三维地质雷达切片数据中病害体周边地下管、井分布特征,总结了三维地质雷达技术在城市道路地下脱空、空洞病害探测中病害体的数据异常特征。
实践研究证明,三维地质雷达探测技术以其作业高效、定位精准、抗干扰能力强、数据丰富全面等优点可有效地探测出道路下方存在的空洞等安全隐患,为城市道路病害的防患和治理提供准确、可靠的依据。
关键词:三维地质雷达;城市道路病害;地下空洞;路面脱空;探测技术Application of 3D ground penetrating radar detection technologyin urban road void disaster surveyQIAN Peng 1, TAN Shunjia 2,3, WANG Fenggang 1, XU Jincheng 1, YANG Zhiquan 1, GONG Lianggang 1(1.Beijing Jinditong Testing Technology Co., Ltd.,Shougang Geological Exploration Institute, Beijing 100144, China ;2.School of Geophysics and Measurement-Control Technology, East China University of Technology, Nanchang 330013, Jiangxi, China ;3.Beijing RTLY S&T Development Co., Ltd.,Beijing 100070, China )Abstract: Road collapse accidents caused by urban road underground cavities and voids are major safety hazards faced by many cities in China. Because of its hidden, sudden and other characteristics, the disastrous consequences resulted therefrom have long troubled city safety operation. Based on the results of project measurement and verification of many locations in China, we sorted out the method and work flow of 3D ground penetrating radar detection. By analyzing the anomaly characteristics of the top interface reflection, the multiple wave reflection, and the boundary diffraction wave of the diseased body in 3D geological ra-dar profile data, and the distribution of underground pipes and wells around the diseased body in 3D ground penetrating radar slicing data, we summarized the abnormal data characteristics of disease bodies in the detection of urban road underground cavi-收稿日期:2023-03-02;修回日期:2023-05-30第一作者简介:钱鹏(1990- ),男,硕士,工程师,主要从事地球物理方法在工程检测和工程勘查中的应用研究。
Glider Flying Handbook说明书
Glider Flying Handbook2013U.S. Department of TransportationFEDERAL AVIATION ADMINISTRATIONFlight Standards Servicei iPrefaceThe Glider Flying Handbook is designed as a technical manual for applicants who are preparing for glider category rating and for currently certificated glider pilots who wish to improve their knowledge. Certificated flight instructors will find this handbook a valuable training aid, since detailed coverage of aeronautical decision-making, components and systems, aerodynamics, flight instruments, performance limitations, ground operations, flight maneuvers, traffic patterns, emergencies, soaring weather, soaring techniques, and cross-country flight is included. Topics such as radio navigation and communication, use of flight information publications, and regulations are available in other Federal Aviation Administration (FAA) publications.The discussion and explanations reflect the most commonly used practices and principles. Occasionally, the word “must” or similar language is used where the desired action is deemed critical. The use of such language is not intended to add to, interpret, or relieve a duty imposed by Title 14 of the Code of Federal Regulations (14 CFR). Persons working towards a glider rating are advised to review the references from the applicable practical test standards (FAA-G-8082-4, Sport Pilot and Flight Instructor with a Sport Pilot Rating Knowledge Test Guide, FAA-G-8082-5, Commercial Pilot Knowledge Test Guide, and FAA-G-8082-17, Recreational Pilot and Private Pilot Knowledge Test Guide). Resources for study include FAA-H-8083-25, Pilot’s Handbook of Aeronautical Knowledge, FAA-H-8083-2, Risk Management Handbook, and Advisory Circular (AC) 00-6, Aviation Weather For Pilots and Flight Operations Personnel, AC 00-45, Aviation Weather Services, as these documents contain basic material not duplicated herein. All beginning applicants should refer to FAA-H-8083-25, Pilot’s Handbook of Aeronautical Knowledge, for study and basic library reference.It is essential for persons using this handbook to become familiar with and apply the pertinent parts of 14 CFR and the Aeronautical Information Manual (AIM). The AIM is available online at . The current Flight Standards Service airman training and testing material and learning statements for all airman certificates and ratings can be obtained from .This handbook supersedes FAA-H-8083-13, Glider Flying Handbook, dated 2003. Always select the latest edition of any publication and check the website for errata pages and listing of changes to FAA educational publications developed by the FAA’s Airman Testing Standards Branch, AFS-630.This handbook is available for download, in PDF format, from .This handbook is published by the United States Department of Transportation, Federal Aviation Administration, Airman Testing Standards Branch, AFS-630, P.O. Box 25082, Oklahoma City, OK 73125.Comments regarding this publication should be sent, in email form, to the following address:********************************************John M. AllenDirector, Flight Standards Serviceiiii vAcknowledgmentsThe Glider Flying Handbook was produced by the Federal Aviation Administration (FAA) with the assistance of Safety Research Corporation of America (SRCA). The FAA wishes to acknowledge the following contributors: Sue Telford of Telford Fishing & Hunting Services for images used in Chapter 1JerryZieba () for images used in Chapter 2Tim Mara () for images used in Chapters 2 and 12Uli Kremer of Alexander Schleicher GmbH & Co for images used in Chapter 2Richard Lancaster () for images and content used in Chapter 3Dave Nadler of Nadler & Associates for images used in Chapter 6Dave McConeghey for images used in Chapter 6John Brandon (www.raa.asn.au) for images and content used in Chapter 7Patrick Panzera () for images used in Chapter 8Jeff Haby (www.theweatherprediction) for images used in Chapter 8National Soaring Museum () for content used in Chapter 9Bill Elliot () for images used in Chapter 12.Tiffany Fidler for images used in Chapter 12.Additional appreciation is extended to the Soaring Society of America, Inc. (), the Soaring Safety Foundation, and Mr. Brad Temeyer and Mr. Bill Martin from the National Oceanic and Atmospheric Administration (NOAA) for their technical support and input.vv iPreface (iii)Acknowledgments (v)Table of Contents (vii)Chapter 1Gliders and Sailplanes ........................................1-1 Introduction....................................................................1-1 Gliders—The Early Years ..............................................1-2 Glider or Sailplane? .......................................................1-3 Glider Pilot Schools ......................................................1-4 14 CFR Part 141 Pilot Schools ...................................1-5 14 CFR Part 61 Instruction ........................................1-5 Glider Certificate Eligibility Requirements ...................1-5 Common Glider Concepts ..............................................1-6 Terminology...............................................................1-6 Converting Metric Distance to Feet ...........................1-6 Chapter 2Components and Systems .................................2-1 Introduction....................................................................2-1 Glider Design .................................................................2-2 The Fuselage ..................................................................2-4 Wings and Components .............................................2-4 Lift/Drag Devices ...........................................................2-5 Empennage .....................................................................2-6 Towhook Devices .......................................................2-7 Powerplant .....................................................................2-7 Self-Launching Gliders .............................................2-7 Sustainer Engines .......................................................2-8 Landing Gear .................................................................2-8 Wheel Brakes .............................................................2-8 Chapter 3Aerodynamics of Flight .......................................3-1 Introduction....................................................................3-1 Forces of Flight..............................................................3-2 Newton’s Third Law of Motion .................................3-2 Lift ..............................................................................3-2The Effects of Drag on a Glider .....................................3-3 Parasite Drag ..............................................................3-3 Form Drag ...............................................................3-3 Skin Friction Drag ..................................................3-3 Interference Drag ....................................................3-5 Total Drag...................................................................3-6 Wing Planform ...........................................................3-6 Elliptical Wing ........................................................3-6 Rectangular Wing ...................................................3-7 Tapered Wing .........................................................3-7 Swept-Forward Wing ..............................................3-7 Washout ..................................................................3-7 Glide Ratio .................................................................3-8 Aspect Ratio ............................................................3-9 Weight ........................................................................3-9 Thrust .........................................................................3-9 Three Axes of Rotation ..................................................3-9 Stability ........................................................................3-10 Flutter .......................................................................3-11 Lateral Stability ........................................................3-12 Turning Flight ..............................................................3-13 Load Factors .................................................................3-13 Radius of Turn ..........................................................3-14 Turn Coordination ....................................................3-15 Slips ..........................................................................3-15 Forward Slip .........................................................3-16 Sideslip .................................................................3-17 Spins .........................................................................3-17 Ground Effect ...............................................................3-19 Chapter 4Flight Instruments ...............................................4-1 Introduction....................................................................4-1 Pitot-Static Instruments ..................................................4-2 Impact and Static Pressure Lines................................4-2 Airspeed Indicator ......................................................4-2 The Effects of Altitude on the AirspeedIndicator..................................................................4-3 Types of Airspeed ...................................................4-3Table of ContentsviiAirspeed Indicator Markings ......................................4-5 Other Airspeed Limitations ........................................4-6 Altimeter .....................................................................4-6 Principles of Operation ...........................................4-6 Effect of Nonstandard Pressure andTemperature............................................................4-7 Setting the Altimeter (Kollsman Window) .............4-9 Types of Altitude ......................................................4-10 Variometer................................................................4-11 Total Energy System .............................................4-14 Netto .....................................................................4-14 Electronic Flight Computers ....................................4-15 Magnetic Compass .......................................................4-16 Yaw String ................................................................4-16 Inclinometer..............................................................4-16 Gyroscopic Instruments ...............................................4-17 G-Meter ........................................................................4-17 FLARM Collision Avoidance System .........................4-18 Chapter 5Glider Performance .............................................5-1 Introduction....................................................................5-1 Factors Affecting Performance ......................................5-2 High and Low Density Altitude Conditions ...........5-2 Atmospheric Pressure .............................................5-2 Altitude ...................................................................5-3 Temperature............................................................5-3 Wind ...........................................................................5-3 Weight ........................................................................5-5 Rate of Climb .................................................................5-7 Flight Manuals and Placards ..........................................5-8 Placards ......................................................................5-8 Performance Information ...........................................5-8 Glider Polars ...............................................................5-8 Weight and Balance Information .............................5-10 Limitations ...............................................................5-10 Weight and Balance .....................................................5-12 Center of Gravity ......................................................5-12 Problems Associated With CG Forward ofForward Limit .......................................................5-12 Problems Associated With CG Aft of Aft Limit ..5-13 Sample Weight and Balance Problems ....................5-13 Ballast ..........................................................................5-14 Chapter 6Preflight and Ground Operations .......................6-1 Introduction....................................................................6-1 Assembly and Storage Techniques ................................6-2 Trailering....................................................................6-3 Tiedown and Securing ................................................6-4Water Ballast ..............................................................6-4 Ground Handling........................................................6-4 Launch Equipment Inspection ....................................6-5 Glider Preflight Inspection .........................................6-6 Prelaunch Checklist ....................................................6-7 Glider Care .....................................................................6-7 Preventive Maintenance .............................................6-8 Chapter 7Launch and Recovery Procedures and Flight Maneuvers ............................................................7-1 Introduction....................................................................7-1 Aerotow Takeoff Procedures .........................................7-2 Signals ........................................................................7-2 Prelaunch Signals ....................................................7-2 Inflight Signals ........................................................7-3 Takeoff Procedures and Techniques ..........................7-3 Normal Assisted Takeoff............................................7-4 Unassisted Takeoff.....................................................7-5 Crosswind Takeoff .....................................................7-5 Assisted ...................................................................7-5 Unassisted...............................................................7-6 Aerotow Climb-Out ....................................................7-6 Aerotow Release.........................................................7-8 Slack Line ...................................................................7-9 Boxing the Wake ......................................................7-10 Ground Launch Takeoff Procedures ............................7-11 CG Hooks .................................................................7-11 Signals ......................................................................7-11 Prelaunch Signals (Winch/Automobile) ...............7-11 Inflight Signals ......................................................7-12 Tow Speeds ..............................................................7-12 Automobile Launch ..................................................7-14 Crosswind Takeoff and Climb .................................7-14 Normal Into-the-Wind Launch .................................7-15 Climb-Out and Release Procedures ..........................7-16 Self-Launch Takeoff Procedures ..............................7-17 Preparation and Engine Start ....................................7-17 Taxiing .....................................................................7-18 Pretakeoff Check ......................................................7-18 Normal Takeoff ........................................................7-19 Crosswind Takeoff ...................................................7-19 Climb-Out and Shutdown Procedures ......................7-19 Landing .....................................................................7-21 Gliderport/Airport Traffic Patterns and Operations .....7-22 Normal Approach and Landing ................................7-22 Crosswind Landing ..................................................7-25 Slips ..........................................................................7-25 Downwind Landing ..................................................7-27 After Landing and Securing .....................................7-27viiiPerformance Maneuvers ..............................................7-27 Straight Glides ..........................................................7-27 Turns.........................................................................7-28 Roll-In ...................................................................7-29 Roll-Out ................................................................7-30 Steep Turns ...........................................................7-31 Maneuvering at Minimum Controllable Airspeed ...7-31 Stall Recognition and Recovery ...............................7-32 Secondary Stalls ....................................................7-34 Accelerated Stalls .................................................7-34 Crossed-Control Stalls ..........................................7-35 Operating Airspeeds .....................................................7-36 Minimum Sink Airspeed ..........................................7-36 Best Glide Airspeed..................................................7-37 Speed to Fly ..............................................................7-37 Chapter 8Abnormal and Emergency Procedures .............8-1 Introduction....................................................................8-1 Porpoising ......................................................................8-2 Pilot-Induced Oscillations (PIOs) ..............................8-2 PIOs During Launch ...................................................8-2 Factors Influencing PIOs ........................................8-2 Improper Elevator Trim Setting ..............................8-3 Improper Wing Flaps Setting ..................................8-3 Pilot-Induced Roll Oscillations During Launch .........8-3 Pilot-Induced Yaw Oscillations During Launch ........8-4 Gust-Induced Oscillations ..............................................8-5 Vertical Gusts During High-Speed Cruise .................8-5 Pilot-Induced Pitch Oscillations During Landing ......8-6 Glider-Induced Oscillations ...........................................8-6 Pitch Influence of the Glider Towhook Position ........8-6 Self-Launching Glider Oscillations During Powered Flight ...........................................................8-7 Nosewheel Glider Oscillations During Launchesand Landings ..............................................................8-7 Tailwheel/Tailskid Equipped Glider Oscillations During Launches and Landings ..................................8-8 Aerotow Abnormal and Emergency Procedures ............8-8 Abnormal Procedures .................................................8-8 Towing Failures........................................................8-10 Tow Failure With Runway To Land and Stop ......8-11 Tow Failure Without Runway To Land BelowReturning Altitude ................................................8-11 Tow Failure Above Return to Runway Altitude ...8-11 Tow Failure Above 800' AGL ..............................8-12 Tow Failure Above Traffic Pattern Altitude .........8-13 Slack Line .................................................................8-13 Ground Launch Abnormal and Emergency Procedures ....................................................................8-14 Abnormal Procedures ...............................................8-14 Emergency Procedures .............................................8-14 Self-Launch Takeoff Emergency Procedures ..............8-15 Emergency Procedures .............................................8-15 Spiral Dives ..................................................................8-15 Spins .............................................................................8-15 Entry Phase ...............................................................8-17 Incipient Phase .........................................................8-17 Developed Phase ......................................................8-17 Recovery Phase ........................................................8-17 Off-Field Landing Procedures .....................................8-18 Afterlanding Off Field .............................................8-20 Off-Field Landing Without Injury ........................8-20 Off-Field Landing With Injury .............................8-20 System and Equipment Malfunctions ..........................8-20 Flight Instrument Malfunctions ................................8-20 Airspeed Indicator Malfunctions ..........................8-21 Altimeter Malfunctions .........................................8-21 Variometer Malfunctions ......................................8-21 Compass Malfunctions .........................................8-21 Glider Canopy Malfunctions ....................................8-21 Broken Glider Canopy ..........................................8-22 Frosted Glider Canopy ..........................................8-22 Water Ballast Malfunctions ......................................8-22 Retractable Landing Gear Malfunctions ..................8-22 Primary Flight Control Systems ...............................8-22 Elevator Malfunctions ..........................................8-22 Aileron Malfunctions ............................................8-23 Rudder Malfunctions ............................................8-24 Secondary Flight Controls Systems .........................8-24 Elevator Trim Malfunctions .................................8-24 Spoiler/Dive Brake Malfunctions .........................8-24 Miscellaneous Flight System Malfunctions .................8-25 Towhook Malfunctions ............................................8-25 Oxygen System Malfunctions ..................................8-25 Drogue Chute Malfunctions .....................................8-25 Self-Launching Gliders ................................................8-26 Self-Launching/Sustainer Glider Engine Failure During Takeoff or Climb ..........................................8-26 Inability to Restart a Self-Launching/SustainerGlider Engine While Airborne .................................8-27 Self-Launching Glider Propeller Malfunctions ........8-27 Self-Launching Glider Electrical System Malfunctions .............................................................8-27 In-flight Fire .............................................................8-28 Emergency Equipment and Survival Gear ...................8-28 Survival Gear Checklists ..........................................8-28 Food and Water ........................................................8-28ixClothing ....................................................................8-28 Communication ........................................................8-29 Navigation Equipment ..............................................8-29 Medical Equipment ..................................................8-29 Stowage ....................................................................8-30 Parachute ..................................................................8-30 Oxygen System Malfunctions ..................................8-30 Accident Prevention .....................................................8-30 Chapter 9Soaring Weather ..................................................9-1 Introduction....................................................................9-1 The Atmosphere .............................................................9-2 Composition ...............................................................9-2 Properties ....................................................................9-2 Temperature............................................................9-2 Density ....................................................................9-2 Pressure ...................................................................9-2 Standard Atmosphere .................................................9-3 Layers of the Atmosphere ..........................................9-4 Scale of Weather Events ................................................9-4 Thermal Soaring Weather ..............................................9-6 Thermal Shape and Structure .....................................9-6 Atmospheric Stability .................................................9-7 Air Masses Conducive to Thermal Soaring ...................9-9 Cloud Streets ..............................................................9-9 Thermal Waves...........................................................9-9 Thunderstorms..........................................................9-10 Lifted Index ..........................................................9-12 K-Index .................................................................9-12 Weather for Slope Soaring .......................................9-14 Mechanism for Wave Formation ..............................9-16 Lift Due to Convergence ..........................................9-19 Obtaining Weather Information ...................................9-21 Preflight Weather Briefing........................................9-21 Weather-ReIated Information ..................................9-21 Interpreting Weather Charts, Reports, andForecasts ......................................................................9-23 Graphic Weather Charts ...........................................9-23 Winds and Temperatures Aloft Forecast ..............9-23 Composite Moisture Stability Chart .....................9-24 Chapter 10Soaring Techniques ..........................................10-1 Introduction..................................................................10-1 Thermal Soaring ...........................................................10-2 Locating Thermals ....................................................10-2 Cumulus Clouds ...................................................10-2 Other Indicators of Thermals ................................10-3 Wind .....................................................................10-4 The Big Picture .....................................................10-5Entering a Thermal ..............................................10-5 Inside a Thermal.......................................................10-6 Bank Angle ...........................................................10-6 Speed .....................................................................10-6 Centering ...............................................................10-7 Collision Avoidance ................................................10-9 Exiting a Thermal .....................................................10-9 Atypical Thermals ..................................................10-10 Ridge/Slope Soaring ..................................................10-10 Traps ......................................................................10-10 Procedures for Safe Flying .....................................10-12 Bowls and Spurs .....................................................10-13 Slope Lift ................................................................10-13 Obstructions ...........................................................10-14 Tips and Techniques ...............................................10-15 Wave Soaring .............................................................10-16 Preflight Preparation ...............................................10-17 Getting Into the Wave ............................................10-18 Flying in the Wave .................................................10-20 Soaring Convergence Zones ...................................10-23 Combined Sources of Updrafts ..............................10-24 Chapter 11Cross-Country Soaring .....................................11-1 Introduction..................................................................11-1 Flight Preparation and Planning ...................................11-2 Personal and Special Equipment ..................................11-3 Navigation ....................................................................11-5 Using the Plotter .......................................................11-5 A Sample Cross-Country Flight ...............................11-5 Navigation Using GPS .............................................11-8 Cross-Country Techniques ...........................................11-9 Soaring Faster and Farther .........................................11-11 Height Bands ..........................................................11-11 Tips and Techniques ...............................................11-12 Special Situations .......................................................11-14 Course Deviations ..................................................11-14 Lost Procedures ......................................................11-14 Cross-Country Flight in a Self-Launching Glider .....11-15 High-Performance Glider Operations and Considerations ............................................................11-16 Glider Complexity ..................................................11-16 Water Ballast ..........................................................11-17 Cross-Country Flight Using Other Lift Sources ........11-17 Chapter 12Towing ................................................................12-1 Introduction..................................................................12-1 Equipment Inspections and Operational Checks .........12-2 Tow Hook ................................................................12-2 Schweizer Tow Hook ...........................................12-2x。
地表沉降研究方法英语作文
地表沉降研究方法英语作文Title: Research Methods for Land Subsidence。
Land subsidence, the gradual sinking of the Earth's surface, is a complex phenomenon with multifaceted causes and impacts. Understanding and mitigating land subsidence require comprehensive research methodologies. In this essay, we delve into various research methods employed to study land subsidence.1. Geodetic Surveys: Geodetic surveys involve precise measurements of the Earth's surface using techniques suchas GPS (Global Positioning System), GNSS (Global Navigation Satellite System), and leveling. These surveys provide valuable data on ground deformation over time, aiding inthe identification and monitoring of subsidence-prone areas.2. Interferometric Synthetic Aperture Radar (InSAR): InSAR is a remote sensing technique that utilizessatellite-based radar to detect ground movements withmillimeter-scale accuracy. By analyzing interferograms generated from multiple radar images, researchers can map land subsidence over large areas and monitor its spatial and temporal evolution.3. Groundwater Monitoring: Land subsidence oftenresults from excessive groundwater extraction, causing aquifer compaction and subsequent surface sinking. Groundwater monitoring involves measuring water levels in wells and aquifers to assess groundwater depletion rates and its correlation with subsidence.4. Geotechnical Investigations: Geotechnical investigations focus on understanding the subsurface soil properties and geological conditions that contribute to land subsidence. Techniques such as borehole drilling, soil sampling, and geophysical surveys help characterize the subsurface and identify potential triggers of subsidence, such as clay layer compression or underground mining activities.5. Numerical Modeling: Numerical modeling plays acrucial role in simulating and predicting land subsidence phenomena. Finite element method (FEM) and finitedifference method (FDM) are commonly used numerical techniques to simulate groundwater flow, soil deformation, and surface subsidence processes. These models integrate geospatial data, hydrogeological parameters, and mechanical properties to simulate the complex interactions driving land subsidence.6. Remote Sensing and Geographic Information Systems (GIS): Remote sensing data, including optical imagery, thermal infrared, and LiDAR (Light Detection and Ranging), provide valuable information for land subsidence analysis. GIS platforms facilitate spatial data management, visualization, and spatial analysis, enabling researchers to integrate multi-source data for comprehensive subsidence assessment.7. Satellite Altimetry: Satellite altimetry measures variations in sea surface height, which indirectly reflect changes in land elevation due to subsidence. By analyzing long-term satellite altimetry data, researchers canestimate regional land subsidence rates in coastal areas and low-lying regions affected by sea-level rise and groundwater extraction.8. Collaborative Monitoring Networks: Collaborative monitoring networks involve partnerships between government agencies, research institutions, and local communities to establish comprehensive subsidence monitoring programs. These networks leverage resources, expertise, and data-sharing mechanisms to enhance subsidence research, raise public awareness, and support informed decision-making for sustainable land use planning.In conclusion, the study of land subsidence requires a multidisciplinary approach encompassing geodesy, remote sensing, hydrogeology, geotechnical engineering, and numerical modeling. By employing an array of research methods, scientists can gain insights into the causes, mechanisms, and impacts of land subsidence, ultimately contributing to effective mitigation strategies and sustainable land management practices.。
内蒙古的腹菌
腹菌(gasteroid fungi)是指蘑菇亚门(Agari⁃comycotina)中菌体产孢组织(子实层体)常被包裹(闭果式)、传统上被称为腹菌(Gasteromycetes)的类群[1]。
腹菌子实体大多数腐生于地面或地下,有的在地下形成,成熟时露出地面,有的则永久留在地下,也有木生或粪生的,还有的与树木形成外生菌根。
许多腹菌具有重要的经济价值,如长裙竹荪Phallus indusiatus 是著名的食药兼用菌,已广为栽培。
秃马勃属Calvatia 和马勃属Lycoperdon 一些种幼嫩的子实体可食用,成熟后药用[1,2]。
早期邓叔群[3]、戴芳澜[4]和Liu [5]系统报道了我国腹菌物种资源。
目前,《中国真菌志》腹菌类已出版四卷册[6-9],共报道我国腹菌25科66属323种(含变种和变型)。
真菌在适应特殊气候(如干旱)和传媒(如啮齿类动物)等因子的演化中,大量没有亲缘关系或亲缘关系很远的类群出现了相似的结构称为趋同演化。
担子菌的腹菌化和子囊菌的块菌化就是十分典型的例证[10]。
分子生物学研究表明,在传统的腹菌中,有些种类是担子菌腹菌化的结果,如陀螺青褶伞Chlorophyllum agaricoides [≡Endoptychum agari⁃coides ][11,12]和荒漠斑褶菇Panaeolus desertorum [≡Galeropsis desertorum ][13]。
近年来,国内Li 等[14,15]和Sang 等[16]陆续发表了多种腹菌化的红菇和乳菇新种。
许雯珺等[17]在西藏自治区林芝县发现了腹菌化的氯味红菇(氯味地红菇)Russula chlorineolens Trappe &T.F.Elliott [≡Macowanites chlorinosmus A.H.Sm.&Trappe]。
王锋尖等[18]在湖北省十堰市张湾区发现了腹菌化的棱柱孢粉褶菌Entoloma prismaticum Hir.Sasaki,A.Kinosh.&K.Nara。
浅层地下空间探测中的多道面波谱分析法
第32卷7期2020年7月中国煤炭地质COAL GEOLOGY OF CHINAVol.32No.7Jul.2020doi:10.3969/j.issn.1674-1803.2020.07.11文章编号:1674-1803(2020)07-0050-05浅层地下空间探测中的多道面波谱分析法张燕生(中国煤炭地质总局勘查研究总院㊀北京㊀100039)摘㊀要:面波具有能量强㊁传播过程衰减慢㊁频散特性等特点,在浅层地下勘查领域中可以弥补其他地球物理方法的不足,受到业内的广泛关注㊂结合天然源微动和人工面源激发在勘探深度和分辨率上的各自表现,多道面波谱分析法越来越成为主流的面波勘探方法之一㊂依据城市道路路基结构模型,从面波产生机理检波器排列布设㊁数据处理流程以及工程应用中应该注意的问题等几个方面,梳理介绍了多道面波谱分析法及相关提取频率速度曲线的方法㊂关键词:多道面波谱分析法;频散曲线;面波;剪切波;观测台阵;空间自相关法;频率波数法;微动中图分类号:P631.4㊀㊀㊀㊀㊀㊀文献标识码:AMultichannel Surface Wave Spectral Analysis in Shallow Underground Space ProspectingZhang Yansheng(Exploration and Research Institute,CNACG,Beijing 100039)Abstract :Surface wave has features of intensive energy,slow attenuation in propagation process,frequency dispersion property etc.Thus in shallow underground prospecting domain can make up insufficient in other geophysical methods,thus get wide attention in the bined with natural source microtremor and artificial surface source shot respective performances on prospecting depth and resolution,the multichannel surface wave spectral analysis becomes increasingly one of mainstream surface wave prospecting methods.The paper has sorted and introduced multichannel surface wave spectral analysis and related frequency and velocity curves extraction methods from aspects of technical method principles,geophone arrangement and layout,data processing flow and issues to be noted in engineering applications.Keywords :multichannel surface wave spectral analysis;frequency dispersion curve;surface wave;shear wave;surveillance network;spatial autocorrelation method;frequency -waves method;microtremor作者简介:张燕生(1968 ),男,高级工程师,硕士,长期从事地球物理勘探工作㊂收稿日期:2020-01-05责任编辑:孙常长0㊀引言浅层地下空间(0~200m)的综合开发和利用越来越成为社会关注的重点㊂城市地下轨道交通设计㊁综合管廊建设㊁海绵城市规划都需要查明地下空间地质情况,如:岩性分层㊁基岩面埋深及起伏㊁活动断裂㊁地裂缝㊁孤石㊁空洞㊁富水性等条件㊂涉及浅层地下空间探测的方法很多,根据电磁特性目标体常用的勘探法有地质雷达㊁高密度电法㊁瞬变电磁法等;而对于具有波阻特性目标体,常采用地震波法,如反射波法㊁折射波法以及面波法等㊂这些地球物理勘探方法在不同的物性差异方面各有其优势,在探测深度及分辨率方面能力也各不相同㊂不同于地球深部勘探,在超浅层(0~100m,或称为近地表)的地下空间探测中,我们关注的目标体尺度更小及分层更为细化,因此需要更高的空间分辨率和分层能力㊂另一方面,由于人类活动对地下空间的改造,如铺路㊁桩基㊁地下商场㊁管廊建设㊁地铁等,使得超浅层地下空间的横向变化大,甚至会出现上层介质波阻抗大于下层介质波阻抗的层状地下结构,如图1所示的城市道路路基及以下岩土的层状结构㊂图1㊀城市道路路基层状结构Figure1㊀Urban road bed layered structure7期张燕生:浅层地下空间探测中的多道面波谱分析法51㊀在超浅层地下空间探测中,地质雷达可以较好地解决5m 以浅的目标体探测,但在5~50m,地震反射波法和瞬变电磁法存在着比较大的浅部探测盲区,高密度电法和其他电磁法又由于存在较大的体积效应,分辨率较低,很难满足探测精度和准确率的要求㊂近年来,面波勘探法因其所需的勘探场地小㊁施工简便快速㊁成果直观㊁分辨率较高等优点越来越受到业内的关注㊂这种方法是利用各地层间自由表面中传播的面波进行探测,因面波的能量较强㊂利用这种方法既可以克服反射地震波法的浅层勘探盲区,又可以避开折射波法要求下层波阻抗必须大于上层波阻抗的苛刻条件,非常适合解决城市环境中可能存在的上层波阻抗高于下层波阻抗的地下空间探测问题㊂采集面波信号后,通过频谱分析可以方便地解算出不同深度层的面波速度或视剪切波速度,从而获取地层的岩土动力学参数,为工程地质勘察提供依据㊂本文从技术原理㊁检波器布设㊁数据处理流程及工程中应注意的问题等几方面,介绍超浅层地下空间探测中的多道面波分析法的及其应用㊂1㊀面波的产生方式常见的面波有瑞雷波(Rayleigh Waves)和勒夫波(Love Waves)两种㊂其中,勒夫波是水平剪切波进入薄层且以大于临界角度入射到自由表面时产生的全反射并产生相干作用,在自由表面产生的干涉波,该波的质点仅在水平方向运动;而瑞雷波是当纵波和剪切波以大于临界角度入射到薄层或自由表面时,产生全反射并发生相互间的干涉,在自由表面附近形成不均匀波,这种波的质点运动轨迹是入射面内的逆进椭圆,其短轴走向与波的走向一致,长轴则垂直地面,如图2所示㊂这两种面波振幅都是以远离自由表面的距离指数地衰减,而瑞雷波能量最强㊁振幅最大㊁频率最低,容易识别也易于利用垂向单分量检波器测量,所以面波勘探一般是指瑞雷面波勘探,同时由于瑞雷波相速度与剪切波速度有一定的比例关系,可以通过面波勘探获得地层的剪切波速度信息,为进一步岩土分析提供依据㊂图2㊀瑞雷波的振动传播Figure 2㊀Rayleigh wave vibrating propagationRayleigh 在1885年通过求解沿自由表面传播的波动方程,从理论上证明了瑞雷波的存在[1]㊂从20世纪50年代开始,地球物理学家们通过波的频散特性,利用天然地震记录中的瑞雷波了解地球内部结构㊂随着认识的不断进步,人们逐步抛开天然地震面波记录分析大尺度大地构造过分依赖时间和空间的制约,寻求利用地球上无处不在的天然微动中的面波信息来推断地球浅部构造的方法,进而利用环境人文活动所产生的微小震动或是人工震源产生的面波信号进行较小勘探范围内的超浅层地下空间探测,进一步降低数据采集中对记录时间和场地面积的要求㊂针对超浅层㊁小尺度目标体探测,面波从震源来源的角度可分为主动源面波和被动源面波㊂其中被动源面波又可分为天然源面波和环境噪音源面波㊂前者是利用天然震动,如地震㊁雷电㊁潮汐以及大气变化等天然因素产生的面波;后者则利用的环境人文活动,如行驶的汽车火车㊁工业震动等所产生的面波㊂而主动源面波则常常是利用人工夯击㊁机械重锤或可控震源的方式在地面激发面波㊂无论是天然源(或环境噪音源)微动,还是采用人工激发的地表震动,在地球表面接收到的都是一种由体波和面波共同组成的混合振动波和派生波,这其中面波的能量能够占到总信号能量的70%以上[2],这为超浅层勘探中的面波利用提供了有利的条件㊂2㊀多道面波分析法面波在均匀介质中传播时速度v R 与波的频率f(或者说波长λ)无关,不会发生频散,而在非均匀介质中传播时,就具备频散特性,即面波在非均匀介质中传播的速度v R 是面波频率f 的函数,是随频率变化而变化的㊂Nazarian 等1983年提出了面波谱分析法(SASW)[3],利用一对检波器接收瑞雷波,然后通过对瑞雷波扫频分析,在频率域获得频散曲线,进而用正演模型法或最小平方法进行反演,求得随深度变化剪切波速度剖面㊂这种方法在上个世纪的工程地质领域取得到广泛的应用,随后由Miller 等人通过改进SASW 法,提出了多道面波谱分析法MASW [3],它克服了SASW 法为获得一个测点的频谱曲线需要多次重复激发和接收的缺点,大大地提高了采集效率㊁压制了噪音㊁提高了信噪比,是一种快速便捷获取各测点频散曲线的方法,已成为目前超浅层面波探测的主要技术手段之一㊂3㊀场源及排列选择根据不同的勘探深度和目标以及不同的施工场地条件,面波勘探可以选择不同的场源和排列布设方式㊂52㊀中㊀国㊀煤㊀炭㊀地㊀质第32卷根据场源不同分为两大类面波法:主动源面波法和被动源面波法,它们具有各自的特点和排列布设方式㊂3.1㊀主动源面波法主动源面波法是面波探测中最常用的一种方法,由于该方法具有明确的炮检位置关系,因此可以非常方便地利用偏移距的优化来提高频散曲线成像质量和勘探效果,利用线形的滚动观测获得最可信的面波剖面成像,其基本的观测排列方式如图3所示,其中,X 1是最小偏移距,D 是排列长度,采用线形滚动排列㊂图3㊀主动源常规观测系统Figure 3㊀Active source conventional surveillance system检波器排列长度D 与可采集的最大波长有关,它决定了最大勘探深度Z max ㊂同时由于地滚波的垂向深度大约相当于波长的一半,所以震源的激发频率也限制着最大所能达到的深度㊂另一方面,地震波只会在离震源达到或超过所期望获的波长的一半的距离时,才能以平面波的形式传播[5],所以最小偏移距应为:X 1ȡ0.5λmax ㊂道距Δx 约等于最大纵向分辨率㊂面波高频分量会在传播过程中迅速衰减,因此在更关注近地表的超浅层信息的探测中,所采用的偏移距就不能过大,以免造成远偏移距采集信噪比太弱,影响后期数据处理㊂工程中常采用道间距1米的24道/48道排列㊂采用陆地拖曳式检波器串施工可以成倍地提高野外采集效率[6]㊂在条件允许的情况下,尽可能使用可控震源,因为它可以提供更大的激发能量,更稳定的宽频信号(更低的低频截止频率),并且可以直接得到相关前的频率扫描记录㊂但是在超浅层勘探中往往不具备大型车载可控震源的使用条件,而人工锤击所能提供的冲击能量又太弱(一般只能达到30m 以浅的勘探深度)的时候,利用方便移动的机械重锤人工激发方式是一个较好的选择,它可以激发出比人工锤击主频更低的地震波信号㊂由于面波的探测深度是波长的一半,因此激发更低频率的子波,意味着利用低频检波器接收可以预期获得更深的探测深度㊂通过线形排列的滚动采集以及后期数据处理和谱分析,可以方便地得到一条测线的在深度域的剪切波速度剖面㊂3.2㊀被动源面波法由于现实施工中,主动源面波法可能会遇到探测深度达不到要求或主动震源施工条件受限等情况,因此,被动源面波法逐渐地在超浅层工程勘察中业界的关注㊂这种方法是由早期利用天然地震面波勘探大地深部构造的方法发展演变过来的,它又主要分为两种方法:一种是利用震动频率低于1Hz 的天然微动(地震㊁雷电㊁潮汐以及大气变化等产生的微弱的大地震动)作为震源的方法,另一种是利用几赫兹的人文环境震动(如路边的汽车㊁工业环境震动等)作为震源的方法㊂前者是一种远场源长波面方法,又称为长波微动法,后者是一种近场源面波方法,又称为常时微动法㊂与主动源面波法相比,虽然其震源信号的振幅和形态都随时空变化而发生改变,但在一定的时空范围内具有统计稳定性,被动源面波法就是以平稳随机过程理论为依据,杂乱的微动信号中通过空间自相关(SPAC 法)[7]或是频率-波数法(F -K 法)[8]提取瑞雷波的频散曲线㊂3.2.1㊀台阵排列布置如果具备宽阔的施工场地的条件,被动源面波法应尽量采用密集台阵的检波器布设方法,该方法相较于天然地震台阵,是尽量利用更密集的采集间距和更小尺度的场地面积,采集微动信号,然后通过后期的预处理和频谱分析获得更为精细的成像效果㊂通常采用的布阵方式如图4所示㊂图中每个规则阵列可以获得中心点位置的剪切波速度测深曲线,可以通过台阵的滚动,获取整个测区的不同深度层位的视截切波速度信息㊂如果低频检波站数量充足,可以考虑在整个测区布满台站矩阵,一次性部署㊁快速收割数据,这样可以极大地减少野外采集时间和人工成本,提高采集的效率,同时可以使得数据预处理㊁及空间自相关更加灵活,提高处理后的信噪比㊂图4㊀微动探测中常用的几种台阵布列方式Figure 4㊀Frequently used surveillance network layoutpattern in microtremor survey7期张燕生:浅层地下空间探测中的多道面波谱分析法53㊀图5㊀测区内台阵测网布置Figure5㊀Surveillance network layout in survey area 3.2.2㊀线形排列布置如在城市道路附近或其他缺少空旷施工条件的地方,可以考虑部署类似于主动源面波法所采用的线形排列或者不规则路径排列㊂这种排列所涉及的谱分析法是背景噪声互相关技术(Noise Correlation Function,NCF)㊂由于此种排列布置可以与主动源面波的排列一直,可以利用同一套设备同时采集双源信号,弥补被动源勘探浅部信息缺失或分辨率差的缺陷,后期通过处理将主动源的浅部信息和被动源的深部信息进行拼接,实现高分辨率㊁大深度的勘探效果㊂4㊀多道面波谱分析原理与流程4.1㊀多道面波谱分析法的工作流程虽然涉及的具体算法不同,但主动源和被动源面波的工作流程是接近的㊂主要包括以下几个步骤:①采集时间域多道数据记录;②估计每个测点(或台阵中心)的频率域速度曲线;③把频率速度曲线转换在线形成频率域速度剖面;④进行二维反演形成深度域速度剖面;⑤利用Surfer或其他成图软件形成三维地震成果图㊂4.2㊀谱分析方法原理主动源面波与被动源面波(微动探测)在数据处理和谱分析方面虽各有侧重和不同,但现在流行的数据处理方式都是通过对多个测道(或台站)的数据进行预处理,然后进行频率域谱分析,他们都可以归结为多道面波谱分析法(MASW)㊂4.2.1㊀频率-波数法原理针对线形排列主动源面波探测,常常用到频率波数法(F-K法)进行多道瞬态面波分析,F-K法是对在时间-空间域记录的波场进行二维傅里叶变换,在频率-波数域分析信号特征的一种方法㊂针对一个时空记录f(x,t),进行傅里叶变换,可以得到一个频率波数域的函数:Fω,t()=N k,ω()D k,ω()=12πʏ+ - ʏ+ - f x,t()exp-iωt+ikx()d t d x(1)式中,ω为角频率,k为波数,x为空间坐标,t为时间,根据分层介质中的面波理论,面波对应F(k,ω)中极点的留数贡献,留数由D(k,ω)=0决定,在频率-波数域对应面波的能量具有极大值,按照极大值频率(Ω)和波数,再由公式V R=Ω/k可以计算特定频率下的相速度,重复计算多个频率的计算就可以得到对应的频散曲线㊂4.2.2㊀空间自相关法原理在微动探测中,多用到的是空间自相关法(SPa-tial AutoCorrelation,SPAC)提取速度曲线㊂这种方法的理论基础是稳定随机过程理论㊂微动是一种随时间t和位置矢量ξ(r,θ)的变化而变化的自然现象,某一段时间的微动记录可以看成为稳定的随机过程的样本函数X(t,ξ(r,θ)),在空间上存在自相关性㊂设地表A(0,0)㊁B(r,θ)两点的微动记录分别为:X t,0,0()=ʏ+ - ʏ2π0exp iωt()dξω,Φ()X t,r,θ()=ʏ+ - ʏ2π0exp iωt+irk cosθ-Φ()() dξω,Φ()(2)定义A㊁B两点的空间自相关函数S(r,θ)为:S r,θ()=ʏ+ - ʏ2π0exp irk cosθ-Φ()()h(ω,Φ)dΦ() dω=ʏ+ - gω,r,θ()dω(3)其中gω,r,θ()=ʏ2π0exp irk cosθ-Φ()()h(ω,Φ)dΦ称为空间协方差函数,h(ω,Φ)为频率-方位密度㊂取空间协方差函数gω,r,θ()的方位平均: g-ω,r()=12πʏ2π0g(ω,r,θ)dθ=12πʏ2π0ʏ2π0exp irk cosθ-Φ()()h(ω,Φ)dΦdθ54㊀中㊀国㊀煤㊀炭㊀地㊀质第32卷=ʏ2πJ 0rk ()h ω,Φ()d Φ=g ω,0,0()J 0rk ()(4)定义ρ(ω,r )为角频率ω的空间自相关系数,则可得到:ρω,r ()=g -(ω,r )h 0(ω)=J 0(rk )(5)式其中θ为波的入射角,h 0(ω)为中心点的频率方位密度,J 0为第I 类零阶贝塞尔函数,rk =2πfr /c (f )为零阶贝塞尔函数宗量,c (f )为波的传播速度㊂首先将微动记录分成若干时间窗的数据段,剔除干扰记录,通过不同中心频率的窄带滤波提取出各个频率成分f ,在对不同f 通过方向平均后求得空间自相关系数ρ(ω,r )㊂从而求出零阶贝塞尔函数的宗量rk ,再由rk =2πfr /c (f )求出相速度c (f ),最终获得频散曲线㊂4.2.3㊀频散曲线反演频散曲线(或剖面)的反演是多道面波分析法中一个重要环节㊂为了得到更为精确的地下介质的深度域的速度信息,常常用到两类反演方式,一类是线形反演方法,如最小二乘法㊁阻尼最小二乘法㊁广义逆法以及OXAM 法等㊂另一类为非线性全局优化算法,如模拟退火法㊁遗传算法㊁人工神经网络法以及蒙特卡洛算法等㊂这些反演算法各有优缺点,根据实际需要,优选出其中之一算法,对最终成果的呈现具有非常重要的作用㊂5㊀工程中应注意的问题①要尽量避免在高落差区域使用面波法探测㊂这是由于大尺度的地表起伏(比如落差大于排列长度的10%)会对面波的传播产生巨大的阻碍作用㊂而平整或缓坡地形则比较有利于面波的传播,适宜采用面波法㊂②在条件允许的情况下,要尽量采用主动源法,这有利于利用高频信号进行超浅层成像㊂③如果施工条件不允许或还需要获得较为深部(30~100m)的地下信息,最好采用主动源与被动源结合的方式探测,这样可以更好地刻画地层信息㊂④在采用人工锤击或机械落锤作为冲击震源的主动源探测时,如果环境噪声振动比较大或是远偏移距接收信号比较弱,可以考虑采用3~5次的垂直叠加来压制环境噪声;同时注意,过多的垂叠次数必不能带来更好信噪比,反而降低数据分辨率㊂⑤在近场源面波探测中,记录时间窗口并不是越长越好,这是因为震源可能来自于不同方位,记录周期过长反而会降低数据信噪比和分辨率㊂6㊀结束语多道面波谱分析法作为目前面波勘探中最常用的方法,在浅层地下空间的探测中具有非常良好的发展前景,它为我们提供了一种简单便捷的获取地下介质中的剪切波传播速度的方法㊂随着检波器台站设备的日趋完善,今后有望出现更多的双源面波探测实例㊂参考文献:[1]Rayleigh L.On Waves Propagated along the plane surface of an elas-tic solid [J].Proceedings of the London Mathematic Society,1885,s1-17(1):4-11.[2]ToksöZ M N,Lacoss R T.Microseisms:ModeStructure and Sources[J].Science,1968,159(3817):872–873.[3]Narzarian S,Stokeo K H,Hudson W e of spectral analysis of sur-face waves method for determination of moduli and thicknesses of pavement systems [J].Transportation Research Record,1983,930:38-45.[4]Park C B,Miller R D,Jianghai Xia.Imaging dispersion curves ofsurface waves on multi -channel record [J].SEG Expanded Abstracts,1998,17(1):1377-1380.[5]K H II Stokeo,Wright J A,et al.Characterization of GeotechnicalSites by SASW method[M].Woords RD.Geophysical characterization ofsites.New York:International Science Publishers,1994:15-25.[6]Miller R D,Park K G,Ivanov J,et al.A 2‐C Towed Geophone Spread for Variable Surface Conditions[C].Symposium on the Applica-tion of Geophysics to Engineering &Environmental Problems,2003.[7]Aki K.Space and time spectra of stationary stochastic waves,with special reference to microtremors [J].Bulletin of the Earthquake Re-search Institute,1957,35:415-456.[8]Capon J.High -resolution frequency -wavenumber spectrum analysis [J].Proceedings of the IEEE,1969,57(8):1408-1418.。
培训课件学习血站质量管理规范
血液存放区 隔离血液区域 (5.2.3)
3具有安全有效的应急供电设施(5.3) 4.消防、污水处理、医疗废物处理等设施符合 国家的有关规定(5.4)
三.设备
1应能满足业务工作需要(6.1) 2.必须建立和实施设备确认、维护、校准和持续监控等 管理制度;计量器具应符合检定要求,有明显的检定合
• 质量职责(Ⅱ)
1.检查内容:是否制定了各部门、各岗位的质量职责 (应包括血站所有层级和岗位);站长是否授权主管 采供血业务和质量负责人分别承担采供血业务管理和 质量管理职责
2.检查方法:查看质量手册或其他有关各部门及岗位质 量职责的描述、站长对业务和质量管理负责人的授权 证明、员工签名的登记记录(包括其法律责任的培训 记录)、现场提问相关人员
质量目标-在质量方面所追求的目的
自愿无偿献血率100% 满足血液供应率100% 血液全部项目检验率100% 献血者服务满意率不低于95% 医院服务满意率不低于95% 血液抽检符合规定标准
非正常报废率低于1% 供血及时率100% 人员培训合格上岗率100%
质量目标一般是可以测量的预期结果
质量体系要素(WHO:QMP)
涉及血站血液安全的法律法规
• 中华人民共和国献血法 • 血站管理办法 • 血站基本标准 • 血站质量管理规范 • 血站实验室质量管理规范
1998年10月1日起实施 卫生部第44号令 卫医发[2000]448号 卫医发[2006]167号 卫医发[2006]183号
相关法律法规
▪ 《刑法》对血液领域犯罪的规定 ▪ 中华人民共和国传染病防治法 ▪ 医疗废物管理条例
训,能够胜任所分配的职责。(3.4)
4.传染病病人和经血传播疾病病原体携带者,不得从事 采血、血液成分制备、供血等业务工作(3.4) 5.员工必须制定培训和继续教育计划,保证得到持续有 效的教育和培训以及必须接受拟任岗位职责相关文件、
心脏专业名词
心底:cardiac base心尖:cardiac apex冠状沟(房室沟):coronary sulcus前室间沟:anterior interventricular groove后室间沟:posterior interventricular groove心尖切迹:cardiac apical incisure右心房:right atrium右心耳:right auricle界沟:sulcus terminalis界嵴:crista terminalis右房室口:right atrioventricular orifice腔静脉窦:sinus venarum cavarum上腔静脉口:orifice of superior vena cava下腔静脉口:orifice of inferior vena cava下腔静脉瓣:Eustachian瓣冠状窦口:orifice of coronary冠状窦瓣:Thebesian瓣卵圆窝:fossa ovalisKoch三角:冠状窦口前内缘、三尖瓣隔侧尖附着缘和Todaro腱(心内膜下的纤维索)之间的三角。
右心室:right ventricle室上嵴:supraventricular crest肉柱:trabeculae carneae乳头肌:papillary muscles节制索(隔缘肉柱):moderator band三尖瓣:tricuspid valve三尖瓣复合体:tricuspid complex动脉圆锥:conus arteriosus肺动脉口:orifice of pulmonary trunk肺动脉瓣:pulmonary valve二尖瓣环:mitral annulus二尖瓣:mitral valve二尖瓣复合体:mitral complex主动脉前庭:aortic vestibule主动脉口:aortic orifice主动脉瓣:aortic valve主动脉窦:aortic sinusus (Valsalva 窦)心纤维骨骼:fibrous skeletonTodaro腱:右纤维三角(中央纤维体)前方与室间隔膜部延续,向后发出一圆形纤维束。
喀斯特洞穴系统微生物群落对环境变化的响应
喀斯特洞穴系统微生物群落对环境变化的响应全球变暖、大气中CO<sub>2</sub>等温室气体浓度持续升高、降水量的变化和极端气候事件频繁发生等对陆地生态系统产生的影响已经成为不可争辩的事实。
喀斯特洞穴作为陆地生态系统的重要组成部分,由于黑暗,洞穴生态系统缺乏直接来自光合作用的有机质,加上地理位置相对隔离等,喀斯特洞穴通常被认为是陆地上一种寡营养的极端生态系统。
洞穴石笋在全球环境变化研究中具有重要的地位,利用洞穴石笋中的地球化学指标和类脂物指标可以实现对古环境的重建工作,进而从长时间尺度上讨论环境变化对生态系统的影响,但这急需现代过程监测工作的验证和支持。
同时,喀斯特洞穴内CO<sub>2</sub>浓度普遍偏高,是研究微生物生态系统响应大气CO<sub>2</sub>浓度升高的天然实验室。
最近有研究发现在洞穴这个黑暗的寡营养环境中也有自养微生物的存在,并有可能参与洞穴CO<sub>2</sub>的同化过程,但洞穴中的微生物功能群对CO<sub>2</sub>浓度升高的响应研究却十分匮乏,限制了人们对全球变化下洞穴微生物群落环境响应的认识。
为了全面探明喀斯特洞穴生态系统微生物群落分布特征及其对环境变化的响应,论文选取湖北清江和尚洞为研究对象,分别采用16S rRNA分子克隆、高通量测序、Biolog微生物代谢系统、微宇宙培养、cbbL 功能基因(CO<sub>2</sub>固定途径卡尔文循环中核心酶RuBisCO的编码基因)的核酸稳定同位素(DNA-SIP)及磷脂脂肪酸稳定同位素(PLFA-SIP)等技术,对洞穴各个生境中的微生物及其对环境因子的响应进行了研究,特别是滴水和石笋中微生物群落分别对温度和降水变化的响应,以及固定CO<sub>2</sub>微生物功能群对CO<sub>2</sub>浓度升高的响应,以期共同揭示洞穴微生物对以温度、降水和温室气体浓度升高为特征的环境变化指示意义。
乍得Bongor反转裂谷盆地中生界剥蚀厚度恢复及勘探启示
乍得Bongor反转裂谷盆地中生界剥蚀厚度恢复及勘探启示余朝华;肖坤叶;肖高杰;张桂林;袁志云;胡瑛;杜业波【期刊名称】《中国石油勘探》【年(卷),期】2013(000)005【摘要】综合利用泥岩声波时差法、镜质组反射率(Ro)法和地层对比法对Bongor盆地中生界剥蚀厚度进行了恢复,恢复结果表明Bongor盆地中生界的剥蚀厚度在1000~2000m之间,呈现出南北大、中间小的特征。
快速而剧烈的抬升剥蚀使得该盆地下成藏组合P组砂体的储集能力得以保存;反转期的挤压应力导致了盆地地层的褶皱变形,形成了一系列断背斜、断鼻构造,为油气成藏提供了良好的圈闭条件;反转引起的断层活化为Bongor盆地中油气的运移提供了通道。
【总页数】9页(P45-53)【作者】余朝华;肖坤叶;肖高杰;张桂林;袁志云;胡瑛;杜业波【作者单位】中国石油勘探开发研究院,北京100083;中国石油勘探开发研究院,北京100083;中国石油勘探开发研究院,北京100083; 中国地质大学北京地球科学与资源学院,北京100083;中国石油勘探开发研究院,北京100083;中国石油勘探开发研究院,北京100083;中国石油勘探开发研究院,北京100083;中国石油勘探开发研究院,北京100083【正文语种】中文【中图分类】TE121【相关文献】1.柴达木盆地北缘中生界剥蚀厚度恢复 [J], 牟中海;陈志勇;陆廷清;由福报;李德旗2.乍得Bongor强反转裂谷盆地高酸值原油成因 [J], 程顶胜;窦立荣;肖坤叶;万仑坤;刘宝全3.中非裂谷系Bongor盆地强反转裂谷构造特征及其对油气成藏的影响 [J], 肖坤叶;赵健;余朝华;盛艳敏;胡瑛;袁志云;侯福斗;张桂林4.乍得Bongor盆地反转构造特征及形成机制:来自地震剖面及沙箱模拟实验的证据 [J], 吴珍云;尹宏伟;汪伟;杜业波5.边界断层倾角和剥蚀作用对断陷盆地正反转构造演化的影响——以中非Bongor 盆地为例 [J], 吴珍云;尹宏伟;王福远;刘松;汪伟;孙彬涵;杨秀磊;钟军;黄荟源因版权原因,仅展示原文概要,查看原文内容请购买。
日本西南部与俯冲带相关的非火山成因的深部颤动
日本西南部与俯冲带相关的非火山成因的深部颤动K.Obara;王琼【摘要】在日本西南部非火山区发现长周期深部颤动. 颤动震中沿菲律宾俯冲板块走向分布, 长600 km. 颤动的平均深度约30 km, 位于莫霍面附近. 每次颤动最多持续几周. 俯冲带内颤动分布位置表明, 颤动可能是由板块脱水过程产生的流体造成的.【期刊名称】《国际地震动态》【年(卷),期】2005(000)002【总页数】3页(P10-12)【关键词】日本;颤动地震;平均深度;数据观测;板块脱水【作者】K.Obara;王琼【作者单位】无【正文语种】中文【中图分类】P315.610.2~2 s的典型周期范围内的长周期地震和颤动常常在活火山附近被观察到,反映了火山系统的内部动力过程。
一种产生颤动的可能机制是运输岩浆的通道内的流体产生的振动。
为了监测微震,日本国家地球科学和灾害防御研究所(NIED)架设了高灵敏度的地震台网(Hi-net),这个台网由覆盖整个日本的约600个台站组成。
利用这个台网,我们辨别出和研究了日本西南部非火山地区的长周期异常颤动。
这样密集分布的高灵敏度地震台站具有高水平的微震监测能力,并为我们发现和研究非常小振幅的颤动提供了机会。
因为这些颤动的振幅非常小,难以用单台或稀疏的台网识别。
我们观察到持续几分钟至几天的小振幅颤动。
几个高灵敏度的地震台同时观测到这样的颤动,这表明颤动与人为噪声无关。
这些颤动的优势频段为1~10 Hz,这比一般的相同大小的地震(10~20 Hz)的低。
我们把原始的地震图经滤波变换到均方根振幅,在35~50 min的时间窗内可以清楚的看见颤动。
不同台站的颤动包络线形状很相似。
包络线有渐变的上升时间,不同于普通地震的尖峰状包络线。
相似的包络线振幅形态似乎以4 km/s的速度传播,我们是通过随震中距增加画出的拼合线(paste-up traces)粗略估计的。
这意味着颤动位于深部,包络线不是以P波波速,而是以S波波速传播的。
稳定氧化还原前锋——形成阿萨巴斯卡盆地高品位不整合脉型铀矿的关键因素
稳定氧化还原前锋——形成阿萨巴斯卡盆地高品位不整合脉
型铀矿的关键因素
Jan Hoeve;David Quirt;涂江汉
【期刊名称】《世界核地质科学》
【年(卷),期】1989(000)003
【摘要】通过对阿萨巴斯卡红层中、以及与不整合铀矿床伴生的蚀变晕中的粘土矿物分布和成岩型式的研究,查明了红层成岩作用,围岩蚀变矿化和盆地演化之间的密切关系。
原生矿化发生在深埋环境和~200℃时高级成岩作用条件下的盆地演化的发展阶段。
分出了与进化、退化成岩作用的不同阶段和盆地构造活化期有关的3个时期的矿化、活化和主岩蚀变。
【总页数】6页(P15-20)
【作者】Jan Hoeve;David Quirt;涂江汉
【作者单位】
【正文语种】中文
【中图分类】TL2
【相关文献】
1.加拿大阿萨巴斯卡盆地Maybelle河与Sue C铀矿床特征对比 [J], 张明林;管太阳;罗毅
2.阿萨巴斯卡不整合面铀矿床勘查模式的发展 [J], 王兴无
3.阿萨巴斯卡盆地流体的活动史及其与铀矿床的关系 [J], Kotzer,T;闵光裕
4.活化断层对加拿大阿萨巴斯卡盆地\r不整合型铀矿的控制 [J], LI Zenghua;CHI Guoxiang;DENG Teng;XU Deru
5.阿萨巴斯卡盆地铀矿省(加拿大):基底和其他区域构造 [J], Strnad;J.G.;吴素珍因版权原因,仅展示原文概要,查看原文内容请购买。
基于EVS的汞污染物空间分布模拟
基于EVS的汞污染物空间分布模拟
肖丽珍;张兵;徐世光
【期刊名称】《有色金属工程》
【年(卷),期】2022(12)5
【摘要】为直观展示污染物在三维空间分布情况和界定污染土壤方量,可通过构建三维可视化模型来实现。
基于EVS软件采用三维地层建模方法,以玉溪市某堆渣场为研究对象,对污染物进行三维空间插值分析,对比Kriging、IDWS、IDWM和
NN插值模型中汞的污染范围和污染方量的差异,通过交叉验证法来评价模型精度。
研究结果表明:4种插值模型差异较大,模型精度验证中平均误差(ME)和平均绝对误
差(MAE)表现为NN>IDWS>IDWN>Kriging,均方根误差(RMSE)表现为
NN>IDWS>Kriging>IDWM,Kriging插值模型的插值精度最高。
汞污染集中分布于堆渣层中,Kriging插值模型计算污染土方量为36787.968 m^(3)。
本研究成果
在今后的土壤修复工作中具有广阔应用前景。
【总页数】8页(P149-156)
【作者】肖丽珍;张兵;徐世光
【作者单位】昆明理工大学国土资源工程学院;云南省地质矿产勘查开发局
【正文语种】中文
【中图分类】X75
【相关文献】
1.利用LUR模型模拟天津市大气污染物浓度的空间分布
2.基于CFD模拟的高密度街区交通污染物分布
3.贵州省万山汞矿区周围土壤中不同形态汞的空间分布特征
4.基于EVS的上海某化工污染场地中1,4-二氯苯空间分布模拟研究
5.贵州省万山汞矿区地表水中不同形态汞的空间分布特点
因版权原因,仅展示原文概要,查看原文内容请购买。
沙坝及人工沙坝引起海洋表面波Bragg共振反射的研究进展
沙坝及人工沙坝引起海洋表面波Bragg共振反射的研究进展刘焕文【期刊名称】《应用数学和力学》【年(卷),期】2016(37)5【摘要】在海湾或开阔海岸的天然海滩上经常会发现平行于海岸且间距近似周期变化的沙纹和沙坝地形.当来自外海的表面波在一大片沙纹或沙坝上传播时,一旦满足Bragg(布拉格)条件,即表面波波长约为相邻沙纹沙坝间距的两倍时,则沙纹沙坝地形对入射表面波可形成Bragg共振反射,将其大部分能量反射回外海.受天然沙纹沙坝地形导致的Bragg共振反射现象的启发,科学家们提出建造由一组小型、高度不高、与岸平行且等间距的人工沙坝组成的Bragg潜堤用于抵御风暴波对海岸及近岸设施的冲击.自20世纪80年代初至今的三十多年来,天然沙纹沙坝和Bragg 潜堤吸引了很多学者的关注,成为水波研究的一个热点.本文拟对三十多年来有关天然沙纹沙坝与海洋表面波相互作用的物理机制的理论研究和有关Bragg潜堤的应用研究给予一个简要的综述.【总页数】13页(P459-471)【关键词】正弦沙坝;人工沙坝;表面波;反射系数;Bragg共振【作者】刘焕文【作者单位】浙江海洋大学船舶与海洋工程学院【正文语种】中文【中图分类】O353.2【相关文献】1.改进的变水深模型在有限沙坝地形上波浪反射问题的适用性研究 [J], 吕疆川;李朋飞;邹志利2.人工水下沙坝对中海滩浴场水动力影响 [J], 匡翠萍;马悦;董博灵;戚健文3.Boussinesq类方程描述有限沙坝地形Bragg反射的性能比较 [J], 张俊;张日向;张永刚4.适用于沙坝上Bragg反射的二阶Boussinesq方程数学模型及其数值验证 [J], 刘忠波;邹志利;孙昭晨5.海洋生态文明视域下河口沙坝-潟湖生态修复思路探究 [J], 张盼;王鹏;林霞;张连杰;闫吉顺;赵博因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
See discussions, stats, and author profiles for this publication at: https:///publication/227543624Transverse response of underground cavities and pipes to incident SV wavesARTICLE in EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS · MARCH 2001Impact Factor: 2.31 · DOI: 10.1002/eqe.14CITATIONS 51READS1163 AUTHORS:Craig A. DavisLos Angeles Department of Water and P…48 PUBLICATIONS 264 CITATIONSSEE PROFILEVincent W LeeUniversity of Southern California215 PUBLICATIONS 2,534 CITATIONSSEE PROFILEJean-Pierre BardetUniversity of Texas at Arlington112 PUBLICATIONS 1,583 CITATIONSSEE PROFILEEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICSEarthquake Engng Struct.Dyn.2001;30:383–410Transverse response of underground cavities and pipes toincident SV wavesC.A.Davis1,V.W.Lee2and J.P.Bardet2;∗1Los Angeles Department of Water and Power;Los Angeles;U.S.A.2Civil Engineering Department;University of Southern California;Los Angeles;U.S.A.SUMMARYThe transverse response of underground cylindrical cavities to incident SV waves is investigated.Analyt-ical solutions are derived for unlined cavities embedded within an elastic half-space using Fourier–Bessel series and a convex approximation of the half-space free surface.The computed displacements at the half-space free surface and the tangential stresses on the cavity are compared with the results of previ-ous investigations.The analytical solutions are extended to formulate approximate solutions for assessing hoop stresses within cavity liners impinged by low-frequency waves having wavelengths much longer than the cavity diameter.The approximate solutions are compared to existing numerical solutions,and used to evaluate the dynamic response of a exible buried pipe shaken by the1994Northridge earth-quake.The proposed approximate model for cavity liners is useful for the seismic analysis of underground pipes and small-diameter tunnels.Copyright?2001John Wiley&Sons,Ltd.KEY WORDS:underground cavity;buried pipes;tunnels;earthquake analysisINTRODUCTIONUnderground pipes and tunnel linings are rarely designed to withstand the transverse loads applied by earthquake ground motions[e.g.,References1,2],mainly because there has been very few well-documented case histories of transverse failures of underground structures during past earthquakes.However,the damage to shallow underground structures observed in near-ÿeld earthquakes indicates a need for improved analysis and design methods accounting for transverse shearing forces[e.g.,References3–6].The dynamic response of unlined cylindrical cavities in a half-space to transverse shear waves(i.e.SV waves)has previously been investigated by[7–9].Wong et al.[7]used a∗Correspondence to:J.P.Bardet,Civil Engineering Department,University of Southern California,KAP210, Los Angeles,CA90089-2531,U.S.A.Contract=grant sponsor:National Science Foundation;contract=grant number:CMS9714859Received3August1999Revised15February2000 Copyright?2001John Wiley&Sons,Ltd.Accepted20June2000384C.A.DAVIS,V.W.LEE AND J.P.BARDEThybrid method combining ÿnite elements and an expanded wave function expressed in terms of Green’s functions.Lee and Karl [8]derived a closed-form solution by approximating the at free surface of the half-space as a concave surface with a large radius of curvature.Luco and De Barros [9]used an indirect boundary integral method based on two-dimensional Green’s functions.El-Akily and Datta [10;11]investigated the response of cylindrical shells in a half-space using successive re ections and matched asymptotic expansions limited to long-period motions.Datta et al .and Chin et al .[12;13]extended that type of analysis to investigate the response of pipes within a back-ÿlled trench subjected to P,SV and Rayleigh waves.The closed-form solution of Reference [8]is relatively simple,however it requires additional work to be applicable to the design of underground pipes.The other solutions [e.g.Reference 12]are more complicated and di cult to implement into design procedures.The method proposed herein for incident SV waves improves upon the solution of Reference [8]by eliminating undesirable re ections on the half-space free surface though a convex approximation.The proposed method is used to analyse the motions at the free surface and stress and displacements on unlined cavities over a broad range of frequencies.The derived solutions are extended to cavities reinforced with a exible liner,and used for determining approximate values of hoop stresses in underground pipes subjected to low-frequency seismic waves.ANALYTICAL SOLUTION FOR UNLINED CYLINDRICAL CAVITYModelFigure 1(a)shows the two-dimensional model used for this analysis.The half-space is made of an elastic and isotropic medium deÿned by the x –y co-ordinate system for y ¿0,and is uniform except for the circular cylindrical section of radius a that is removed to form an unlined cavity.The cylinder is centred at a depth h below the half-space surface.The medium properties are deÿned by the LamÃe constants and ,and mass density .The longitudinal and transverse wave speeds,denoted and ÿ,respectively,are related to Poisson’s ratio and given by=+2 ;ÿ=and ÿ= 2 1+ 1−2 (1)Figure 1(a)shows four co-ordinate systems used in the analysis.The cartesian and polarco-ordinate systems x –y and r –Âoriginate at point O ,whereas those referred to as x 1–y 1and r 1–Â1are centred at point O 1.Table I shows the co-ordinate relations.Linear elastic wave propagation theory is used [e.g.Reference 14].The cavity is subjected to incident plane SV waves having the potential i shown in Table I with an amplitude B 0,angle of incidence Âÿshown in Figure 1(a),angular frequency !,and transverse wave number k ÿ=!=ÿ.The potential satisÿes the equation of motion:∇2 +k 2ÿ =0(2)The harmonic nature of the input,which is implied hereafter,is characterized by e −i !t withi =√−1.TRANSVERSE RESPONSE OF UNDERGROUND CAVITIES AND PIPES385Figure 1.Dynamic model for an underground cavity:(a)co-ordinate systems,geometry,and materialproperties,(b)incident SV,re ected,and scattered wave potentials.The displacement vector ˜u i has in-plane horizontal u x and vertical u y components and am-plitude,respectively,given byu x =−@ i@y =B 0i k ÿcos Âÿe i k ÿ(x sin Âÿ−y cos Âÿ)(3a)u y =+@ i@x=B 0i k ÿsin Âÿe i k ÿ(x sin Âÿ−y cos Âÿ)(3b)|˜u i |=B 0k ÿ(3c)386 C.A.DAVIS,V.W.LEE AND J.P.BARDETTable I.Co-ordinate relations and potential functions for co-ordinate systemsoriginating at points O;O1,and O2.OriginO O1O2Co-ordinate x x=r sinÂx1=−r1sinÂ1x1=x x2=−r2sinÂ2 x2=x1y y=r cosÂy1=r1cosÂ1y1=h−y y2=r2cosÂ2 y2=D−y1r r=x2+y2r1=x21+y21r2=x22+y22ÂÂ=tan−1xyÂ1=tan−1−x1y1Â2=tan−1−x2y2Potential i i=B0e i kÿ(x sinÂÿ−y cosÂÿ)i=B0e−i kÿh cosÂÿe i kÿr1cos(Â1+Âÿ)r r=B1e i kÿ(x sinÂÿ+y cosÂÿ)r=B1e i kÿh cosÂÿe−i kÿr1cos(Â1−Âÿ)r r=A1e i k (x sin +y cos ) r=A1e i k h cos e−i k r1cos(Â1− )When there is no cavity,the incident plane SV wave is re ected from the free surface (y=0),generating both P and SV waves.The re ected SV wave is plane and the P wave may be either:(1)a plane body wave,if incidence is below the critical angleÂcr(Âÿ6Âcr), or(2)a surface wave ifÂÿ¿Âcr.The critical angle is[e.g.,Reference14]:Âcr=sin−1ÿ(4)Only plane body waves are considered in this analysis,i.e.the incidence angle of incoming waves is smaller thanÂcr.Figure1(b)shows the wave potentials generated at the model boundaries.At the free surface (y=0),the re ected longitudinal P and transverse SV plane waves have the potentials r and r,respectively,as shown in Table I.The P waves are characterized by the longitudinal wave number k =!= ,re ected angle ,and re ected coe cients A1and B1given by =sin−1ÿsinÂÿ(5a)A1=B0( =ÿ)2sin4Âÿsin2Âÿsin2 +( =ÿ)2cos22Âÿ(5b)B1=B0sin2Âÿsin2 −( =ÿ)2cos2Âÿsin2Âÿsin2 +( =ÿ)2cos22Âÿ(5c)TRANSVERSE RESPONSE OF UNDERGROUND CAVITIES AND PIPES387The incident SV and re ected SV and P wave potentials are expressed in terms of the r 1–Â1co-ordinate system as shown in Table I and expanded [15]in Fourier–Bessel series asi +r= i + r=∞ n =0J n (k ÿr 1)(C 0n sin nÂ1+D 0n cos nÂ1)(6a) r=∞ n =0J n (k r 1)(A 0n cos nÂ1+B 0n sin nÂ1)(6b)where J n (·)are Bessel functions of the ÿrst kind.The coe cients are determined byA 0n =A 1e i k h cos  n (−i)n cos n ;n ¿0(7a)B 0n =A 1e i k h cos  n (−i)n sin n ;n ¿0(7b)C 0n =[−B 0e −i k ÿh cos Âÿ(i)n +B 1e i k ÿh cos Âÿ(−i)n ] n sin nÂÿ;n ¿0(7c)D 0n =[B 0e −i k ÿh cos Âÿ(i)n +B 1e i k ÿh cos Âÿ(−i)n ] n cos nÂÿ;n ¿0(7d)where the coe cient 0=1and n =2for n ¿1.Analytical solutionAs shown in Figure 1(b),in the presence of the cylindrical cavity (r 1=a ),the incident waverepresented by i ,and the re ected waves represented by r and r are scattered o thecavity surface.The total SV and P waves generated at the cavity are represented by s1and s1.The cylinder vibrations are re ected o the half-space free surface generating new waves represented by s2and s 2.The potentials scattered at the cavity surface ares 1= s 1(r 1;Â1)=∞ n =0H (1)n (k r 1)(A 1n cos nÂ1+B 1n sin nÂ1)(8a) s 1= s 1(r 1;Â1)=∞n =0H (1)n (k ÿr 1)(C 1n sin nÂ1+D 1n cos nÂ1)(8b)The additional potentials scattered at the half-space free surface ares 2= s 2(r 1;Â1)=∞ n =0J n (k r 1)(A 2n cos nÂ1+B 2n sin nÂ1)(9a) s2= s 2(r 1;Â1)=∞n =0J n (k ÿr 1)(C 2n sin nÂ1+D 2n cos nÂ1)(9b)where H (1)n(·)is the Hankel function of the ÿrst kind.The resulting potentials are = r + s1+ s 2(10a) = i + r + s 1+ s2(10b)388C.A.DAVIS,V.W.LEE AND J.P.BARDETStresses and displacements in the medium can be evaluated in terms of potentials as follows [e.g.Reference 14]:rr = ∇2+2@2 @r 2+@@r 1r @ @ (11a) ÂÂ= ∇2 +2 r @ @r +1r @2 @Â2+1r @ @Â−@2@r @Â(11b) rÂ= 21r @2 @r @Â−1r 2@ @ + 1r 2@2@Â2−r @@r 1r @ @r(11c)u r =@ @r +1r @ @Âand u Â=1r @ @Â−@@r(12)The potentials in Equation (10)must satisfy the stress-free boundary conditions at the half-space and cavity surfaces:xy = yy =0at y =0andr 1Â1= r 1r 1=0at r 1=a(13)Since i , r ,and r already satisfy the stress free conditions at y =0,Equation (13)is only used to solve for the coe cients A 1n ;B 1n ;C 1n ;D 1n ;A 2n ;B 2n ;C 2n ,and D 2n for n ¿0in Equations (8)and (9).The boundary conditions are straightforward to apply at the cavity surface since the potentials are expressed in the r 1–Â1co-ordinate system.As shown in Figure 2,the stress-free conditions at y =0(i.e.Equation (13))are applied by approximating the plane half-space surface as a convex circular surface of large radius b a ,in contrast to References [15;8]who used a concave surface.The curved surface is centred about O 2at distance D (D a )above O 1.The curved half-space surface is deÿned by introducing the x 2–y 2and r 2–Â2co-ordinate systems centred at point O 2(Figure 2),which are related to each other and the x 1–y 1coordinates as shown in Table I.The cylindrical wave potentials originate from the r 2–Â2co-ordinate system and are de-scribed ass 1= s 1(r 2;Â2)=∞m =0J m (k r 2)(A ∗1m cos mÂ2+B ∗1msin mÂ2)(14a) s 1= s 1(r 2;Â2)=∞m =0J m (k ÿr 2)(C ∗1m sin mÂ2+D ∗1mcos mÂ2)(14b) s 2= s 2(r 2;Â2)=∞m =0H (1)m (k r 2)(A ∗2m cos mÂ2+B ∗2m sin mÂ2)(14c) s 2= s 2(r 2;Â2)=∞m =0H (1)m (k ÿr 2)(C ∗2m sin mÂ2+D ∗2mcos mÂ2)(14d)The wave potentials are transformed from the r 2–Â2to the r 1–Â1co-ordinate system.Equations (14)are related to the potentials in Equations (8)and (9)through the followingTRANSVERSE RESPONSE OF UNDERGROUND CAVITIES AND PIPES389Figure2.Approximation of the half-space free surface with a large curved surface.transformation[16]:Z n(k r1)cos nÂ1sin nÂ1=∞n=−∞Z m+n(k D)J m(k r2)cos mÂ2sin mÂ2for r2¡D(15)where Z n(·)stands for the Bessel J n or Hankel H(1)n functions,and k is either k or kÿdepending on whether Equation(15)is applied to P or SV waves.Applying Equation(15)leads to the following relationships between coe cients of the r1–Â1and r2–Â2co-ordinate systems:A∗1m C∗1m= m2∞n=0T+mn(k D)00T−mn(kÿD)A1nC1n(16a)B∗1m D∗1m= m2∞n=0T−mn(k D)00T+mn(kÿD)B1nD1n(16b)390C.A.DAVIS,V.W.LEE AND J.P.BARDETA 2n C 2n=n 2∞ m =0T +nm (k D )00T −nm (k ÿD )A ∗2mC ∗2m(16c)B 2n D 2n=n2∞m =0T −nm (k D )T +nm(k ÿD )B ∗2mD ∗2m(16d)where 0=1,and n =2for n¿0,andT +mn (k D )=H (1)m +n (k D )+(−1)n H (1)m −n (k D )(17a)T −mn (k D )=H (1)m +n (k D )−(−1)n H (1)m −n (k D )(17b)In Equation (17),k =k or k ÿ.Hereafter,the following matrices are introduced:[T +m p ]=T +m p (k D )00T −m p (k ÿD )and[T −m p ]=T −m p (k D )00T +m p (k ÿD )(18)The transformation formulas (Equations (16)–(18))are di erent than those in References[8;15],due to the change from a concave to a convex free-surface approximation and the new range of D values used.The change in free-surface curvature was required to eliminate the incorrect cancellation of coe cients A 1n ;B 1n ;C 1n ,and D 1n ,which resulted from using the concave surface that represented both the re ected potentials r and r and scattered potentials s2and s 2with Bessel J functions in the r 2–Â2co-ordinate system.The convex free surfacecorrects this problem by allowing s2and s 2to be represented in terms of an outgoing Hankelfunction.The stress-free boundary conditions at the half-space surface can now be written asr 2Â2= r 2r 2=0at r 2=b(19)for the potentials s 1; s 1; s 2,and s 2in Equation (14).Introducing the potentials in Equation (10)into the stress Equations (11a)and (11c)for the r 1–Â1and r 2–Â2co-ordinate systems gives the following relations:r 1r 1 r 1Â1=2r 21∞n =0[E (3)(r 1;n )]A 1nC 1n+[E (1)(r 1;n )]A 0n +A 2n C 0n +C 2nTcos nÂ100sin nÂ1+2 r 21∞ n =0 [E (3)−(r 1;n )] B 1n D 1n +[E (1)−(r 1;n )] B 0n +B 2n D 0n +D 2n T sin nÂ10cos nÂ1(20a)TRANSVERSE RESPONSE OF UNDERGROUND CAVITIES AND PIPES391r 2r 2 r 2Â2=2r 22∞n =0[E (3)(r 2;n )]A ∗1nC∗1n+[E (1)(r 2;n )]A 0n +A ∗2nC 0n+C∗2nTcos nÂ200sin nÂ2+2 r 22∞ n =0 [E (3)−(r 2;n )] B ∗1n D ∗1n +[E (1)−(r 2;n )] B 0n +B ∗2n D 0n +D ∗2nTsin nÂ200cos nÂ2(20b)where the superscript T denotes transpose.The matrices[E (l )(r;n )]=E (l )11(r;n )E (l )12(r;n )E (l )21(r;n )E (l )22(r;n )(21a)[E (l )−(r;n )]=E (l )11(r;n )−E (l )12(r;n )−E (l )21(r;n )E (l )22(r;n )(21b)have the following coe cients for r =r 1and r 2:E (l )11=(n 2+n −12(k ÿr )2)Z (l )n (k r )−k rZ (l )n −1(k r )(22a)E (l )12=n [−(n +1)Z (l )n (k ÿr )+k ÿrZ (l )n −1(k ÿr )](22b)E (l )21=n [(n +1)Z (l )n (k r )−k rZ (l )n −1(k r )](22c)E (l )22=−(n 2+n −12(k ÿr )2)Z (l )n (k ÿr )+k ÿrZ (l )n −1(k ÿr )(22d)The superscript l (l =1or 3)stands for the J n or H (1)nfunctions,such that Z (1)n(·)=J n (·)and Z (3)n (·)=H (1)n (·)(23)The equations needed to solve for the coe cients of Equation (20)have now been for-mulated.Equation (20a),which is set equal to zero by applying the boundary conditions ofEquation (13),can only have a non-trivial solution by invoking the orthogonality condition and simultaneously equating to zero the functions containing sin nÂ1and cos nÂ1terms.This decouples the A 1n ;C 1n ;A 2n ,and C 2n coe cients from the B 1n ;D 1n ;B 2n ,and D 2n coe cients with the former found from:[E (3)(a;n )]A 1n C 1n +[E (1)(a;n )] A 0n C 0n +[E (1)(a;n )] A 2nC 2n = 00(24)Similarly,the A ∗1m ;C ∗1m ;A ∗2m ,and C ∗2mcoe cients are found by applying the boundary condi-tions of Equation (19)to Equation (20b):[E (3)(b;m )] A ∗1m C ∗1m +[E (1)(b;m ] A ∗2m C ∗2m= 00(25)Solving for (A ∗2mC ∗2m)in Equation (25)and substituting into Equation (16c)gives A 2n C 2n =− n 2∞ m =0[T +nm ][E (1)(b;m )]−1[E (3)(b;m )] A ∗1m C ∗1m(26)Substituting Equation (16a)into Equation (26)givesA 2n C 2n =− n 2∞ m =0 m 2∞ p =0[T +nm ][E (1)(b;m )]−1[E (3)(b;m )][T +m p] A 1p C 1p(27)Combining Equation (27)with Equation (24)gives[E (1)(a;n )] n 2∞ m =0 m 2∞ p =0[T +nm ][E (1)(b;m )]−1[E (3)(b;m )][T +m p ]A 1pC 1p−[E (3)(a;n )]A 1n C 1n−[E (1)(a;n )]A 0n C 0n=(28)A similar matrix system of equations can be solved for in terms of (B 1nD 1n)giving [E (1)−(a;n )] n 2∞ m =0 m 2∞p =0[T −nm ][E (1)−(b;m )]−1[E (3)−(b;m )][T −m p ]B 1pD 1p−[E (3)−(a;n )] B 1n D 1n −[E (1)−(a;n )] B 0n D 0n = 00(29)Equations (28)and (29)are similar to those of Reference [8],but have di erent co-ordinate transformations.The remaining coe cients (A 2n ;B 2n ;C 2n ,and D 2n )can be solved using Equa-tion (24),and the stresses and displacements in the medium can be determined.Equations (28)and (29)form a system of equations of inÿnite dimensions,which can be approximated by truncating the matrices at order N (where p =m =n =N −1).N can be determined by truncating the series terms that do not contribute signiÿcantly to stresses and displacements computed at speciÿc locations.The selection of N depends on the prescribed error tolerance,r 1; ;Âi ;h=a ,and the dimensionless frequency Á:Á=2a ÿ=!a ÿ=k ÿa=2a ÿT p (30)where ÿis the SV wavelength and T p =2 =!is the wave period.Figure 3(a)shows theexponential increase of N with Áfor calculations performed at the cavity and half-space surfaces using h =2a; =0:3;Âÿ=0and an error tolerance of 0.005per cent.The increase in N is almost linear for 5¡N .As shown in Figure 3(a),the increases of N with Áat the cavity and half-space surfaces can be approximated for N ¿5with the following linear relation N =5Á+5and N =18Á+5,respectively.Figure 3(b),shows the linear increase of N with r 1for displacement calculations performed along the x -axis at the half-space free surface y =0,in the absence of a buried cavity.Figure3.Number of coe cients required for accurate calculations(Âÿ=0; =0:3;error=0:005%)for:(a)a given dimensionless frequencyÁ(h=2a),and(b)a given distance r1.Lower and upper bounds of free-surface radius bAs shown in Figure2,D is related to the free surface radius b and cavity depth h throughD=b+h(31) As h tends to inÿnity,so does D and the transformation matrices[T+m p]and[T−m p]in Equation (18)go to zero independently of b.The solutions of Equations(28)and(29)reduce to the full-space solution[17]when the re ected input waves are zero(i.e.A1=B1=0).As b approaches inÿnity in the case of a at free surface,D approaches inÿnity independently of h.The solutions of Equations(28)and(29)behave like those of an inÿnite space,with the incident and re ected potentials acting as input waves,without any e ects from scattered wave potentials s2and s2.Thus,b cannot be selected too large for a correct half-space solution. Meanwhile,b cannot be taken too small,otherwise the problem becomes that of two cavities in a full space.Therefore,b has upper and lower bounds.References[8;15;18–20]presented P,SV,and Rayleigh wave solutions using a curved half-space approximation.Scheidl and Zieglar[18]envisioned that convex and concave sur-faces would provide upper and lower bound solutions for any value of b or D.References [8;15;19;20]describe that D=a must be large and recommend values of506D=a6100. However,no earlier works provide guidance on the determination of an appropriate value forD.Consequently,criteria had to be established for determining D and b.Figure4.Dimensionless frequencyÁat which the large curved surface behaves as a half space(u x=B0kÿ=2)for an incident SV wave:(a)variation with angleÂ2for =1=4,and(b)variation with Poisson’s ratio forÂ2=0.An analysis was performed to determine the minimum radius b for which displacements on the curved free surface match those of a at surface in the freeÿeld.Free-ÿeld surface displacements for a vertically incident SV wave are:u x=2and u y=0.The curved free surface was modelled as a large circular cavity embedded in a full elastic space free of any other cavity.The present model was reduced to a full-space solution,by setting the transformation matrix in Equation(18)to zero,so that the displacements at y2=b can be evaluated.The radius b was increased with respect to the input SV wavelength ÿuntil free-ÿeld displacements were obtained.Figure4shows u x evaluated at angles ofÂ2=0;±10;±20;±30,and±40◦for various Poisson ratios and diameter to wavelength ratiosÁb=2b= ÿ.As shown in Figure4(a), for =1=4the curved surface behaves as a at surface for−30◦6Â26+30◦andÁb¿70. The curved surface approximation does not apply outside this range,even whenÁb is increased to500orÂ2decreased to zero.Figure4(b)compares u x atÂ2=0◦for =1=4;1=3;0:3;and0.4.As shown in Figure4(b), the maximum radius b at which the curved free surface behaves as a at surface varies with .Áb ranges from approximately60for =1=3to approximately90for =0:3and0.4.At Áb=100,the curved surface behaves as a at surface for a wide range of .Reference[17]showed similar e ects for P waves,but at much lower values ofÁb.The value b=50 ÿis the minimum radius for the curved surface to behave as a at surface for all variables,and is appropriate for long-period waves.As b increases,the e ects of s2 and s2decrease,and the minimum value should be used in the analysis.Deÿning the surface curvature in terms of ÿrequires b to decrease with smaller wavelengths.For very high-frequency waves and large cavities,b can become smaller than a.Without further analysis, it is recommended to follow the criteria similar to References[8;19]and select b=50a to 100a as a lower bound.Results were found to change very little within this range.The lower bound value of b=100a was used for all calculations presented herein.Stress and displacements in half-spaceThe radial rr and shear rÂstress can be evaluated in the medium using Equation(20). Substitution of the SV and P wave potentials of Equation(10)into Equation(11b)gives the tangential stress:Â1Â1=2r21∞n=0[E(3)31E(3)32]A1nC1n+[E(1)31E(1)32]A0n+A2nC0n+C2ncos nÂ1+2r21∞n=0[E(3)31−E(3)32]B1nD1n+[E(1)31−E(1)32]B0n+B2nD0n+D2nsin nÂ1(32)where the stress coe cient terms for the r1–Â1co-ordinate system areE(l)31=−(n2+n+12(kÿr1)2−(k r1)2)Z(l)n(k r1)+k r1Z(l)n−1(k r1)(33a)E(l)32=E(l)12=n[(n+1)Z(l)n(kÿr1)−kÿr1Z(l)n−1(kÿr1)](33b) The medium displacements are determined in the r1–Â1co-ordinate system by introducing the potentials of Equations(10)into Equations(12)givingu r1 uÂ1=1r1∞n=0[D(3)(r1;n)]A1nC1n+[D(1)(r1;n)]A0n+A2nC0n+C2nTcos nÂ100sin nÂ1+1r1∞n=0[D(3)−(r1;n)]B1nD1n+[D(1)−(r1;n)]B0n+B2nD0n+D2nTsin nÂ100cos nÂ1(34)The displacement coe cient matrices are[D(l)(r1;n)]=D(l)11(r1;n)D(l)12(r1;n)D(l)21(r1;n)D(l)22(r1;n)(35a)[D(l)−(r1;n)]=D(l)11(r1;n)−D(l)12(r1;n)−D(l)21(r1;n)D(l)22(r1;n)(35b)and have the following coe cients:D(l)11=k r1Z(l)n−1(k r1)−nZ(l)n(k r1);D(l)12=nZ(l)n(kÿr1)(36a)D(l)21=−nZ(l)n(k r1);D(l)22=nZ(l)n(kÿr1)−kÿr1Z(l)n−1(kÿr1)(36b) where Z(l)n(·)is deÿned by Equation(23).Results and comparison with previous modelsFigure5shows normalized ÂÂ,u r,and uÂresults on the cavity surface r1=a using the present unlined cavity model.The results are shown for0:0016Á¡10atÂ1=15,45,75,90, 120,and150◦using the particular values =0:25,h=a=2,andÂÿ=0◦. ÂÂis normalized by the incident shear stress amplitude B0 k2ÿand u r and uÂare normalized by the incident displacement amplitude B0kÿ.As shown in Figure5(a),at high frequencies(i.e.Á¿0:3) ÂÂ, u r,and uÂvary widely withÂ1andÁ.At low frequencies the variation decreases asÁdecreases and u r and uÂbecome uniform atÁ¡0:01.The results of the present solution are now compared to those of previous analyses in terms of Poisson’s ratio ,embedment ratio h=a,incident angleÂÿ,and dimensionless frequencyÁ. Figure6compares the total horizontal surface displacement u x normalized by the magnitude of the incident displacement B0kÿfor the present model and that of Lee and Karl[8],who used a concave free surface.The results are presented for =0:25,h=a=2,Á=2,andÂÿ=0 and30◦.As shown in Figure6,the two solutions have similar shapes but di erent magnitude, which results from di erent coordinate transformations.Figure7compares the tangential stress ÂÂon the cavity surface with that found by Luco and De Barros[9],who used a boundary integral method based on two-dimensional Green’s functions in a viscoelastic half space for =1=3,h=a=5,Á=0:5,andÂÿ=0◦. ÂÂis normalized by the magnitude of the incident shear stress B0 k2ÿ.The present elastic model cannot be compared exactly to the viscoelastic model of Reference[9].The small amount of viscous damping in Reference[9]attenuates stress with distance and changes the coupling between scattered P and SV waves through the ratio =ÿ.However,as shown in Figure7,the present results compare favourably with those of Reference[9].Figure8compares the normalized vertical displacements on the half-space free surface with those found by Wong et al.[7]and Luco and De Barros[9]for incident SV waves.As shown in Figure8(a),using the same properties as in Figure7,the maximum surface dis-placements for the present model are smaller than that of Reference[9].Figure8(b)compares。