14反比例函数
中考数学考点总动员系列专题:14反比例函数(含解析)
故另一个交点坐标为(- 1, —6.
考点:正比例函数与反比例函数 考点典例四、反比例函数与一次函数的交点问题
【例4】甘肃兰州第11题)如图,反比例函数),=± a<0与一次函数y=x + 4的图像交于A、4两点的横
X
坐标分别为-3、-1,则关于克的不等式勺<X + 4 x<0的解集为()
A. ;v<-3
两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数的性质 当k>0时”函数图像的两个分支分别在第一、三象限。在每个象限内,y随x的增大而减小。 当k<0时,函数图像的两个分支分别在第二、四象限。在每个象限内,随x的增大而增大。 4、反比例函数解析式的确定 确定及课是的方法仍是待定系数法。由于在反比例函数y =&中,只有一个待定系数,因此只需要一对对应
2
2
2
• S/.KO=S/Mf+SabcT,
.\1bD*OF=- X (EF-OE) =- X (3-OE)二』-10E二」(k,-匕)…②,
22
2
22 2
由①②两式解得OE=1,
则k「k二二2.
故选D.
考点:反比例函数图象上点的坐标特征.
【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数厂& (k为常数,kWO)的图象是双曲线,
1 .四川自贡第12题)一次函数y尸匕x+b和反比例函数九=幺(k:・k#0)的图象如图所示,若y〉y,,则x
x
的取值范围是( )
A. -2(工<0 或 x>l B. - 2<x<l 【答案】D.
C. xV-2 或 x>l
D. k<-2 或 0<x<l
第14讲 反比例函数的性质及其图象
考点二、反比例函数表达式的确定
确定解析式的方法仍是待定系数法。由于在反比例函 数y=k/x中,只有一个待定系数,因此只需要一对对应值或 图像上的一个点的坐标,即可求出k的值,从而确定其解析 式。
对于反比例函数y=3/x,下列说法正确的是( ) A.图象经过点(1,-3) B.图象在第二、四象限 C.x>0时,y随x的增大而增大 D.x<0时,y随x增大而减小 解析: A.∵反比例函数y=3/x,
在x轴的正半轴上,若点D在
(x<0)
【考点】反比例函数图象
上点的坐标特征;平行四 边形的性质.
完成过关测试:第
题.
完成课后作业:第
题.
故答案为:没有实数根.
小结:此题综合考查了反比例函数的图象与性质、一 元二次方程根的判别式.注意正确判定a的取值范围是 解决问题的关键.
【例题2】(2016·深圳市)如图,四边形ABCO是平行四
边形,OA=2,AB=6,点C在x轴的负半轴上,将▱ABCO
绕点A逆时针旋转得到▱ADEF,AD经过点O,点F恰好落
正比例函数y=6x的图象与反比例函数y=6/x的图象的交点
位于( )
A.第一象限
B.第二象限
C.第三象限
D.第一、三象限
解析:
【例题1】关于x的反比例函数 y a 4 的图象如
x
图,A,P为该图象上的点,且关于原点成中心对
称.△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于
点B.若△PAB的面积大于12,则关于x的方程 a 1 x2 x 1 0 的根的情况是 没有实数根 .
∴xy=3,故图象经过点(1,3),故此选项错误; B.∵k>0,∴图象在第 一、三象限,故此选项错误; C.∵k>0,∴x>0时,y随x增大而减小,故此选项错误; D.∵k>0,∴x<0时,y随x增大而减小,故此选项正确.
2021年九年级数学中考一轮复习知识点中考真题演练14:反比例函数(附答案)
2021年九年级数学中考一轮复习知识点中考真题演练:反比例函数(附答案)1.已知函数y=,当函数值为3时,自变量x的值为()A.﹣2B.﹣C.﹣2或﹣D.﹣2或﹣2.关于反比例函数y=的图象,下列说法正确的()A.经过点(2,3)B.分布在第二、第四象限C.关于直线y=x对称D.x越大,越接近x轴3.已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.4.如图,设直线y=kx(k<0)与双曲线y=﹣相交于A(x1,y1)B(x2,y2)两点,则x1y2﹣3x2y1的值为()A.﹣10B.﹣5C.5D.105.如图,l1是反比例函数y=在第一象限内的图象,且经过点A(1,2).l1关于x轴对称的图象为l2,那么l2的函数表达式为()A.y=(x<0)B.y=(x>0)C.y=﹣(x<0)D.y=﹣(x>0)6.如图,平行四边形OABC的顶点A在x轴的正半轴上,点D(3,2)在对角线OB上,反比例函数y=(k>0,x>0)的图象经过C、D两点.已知平行四边形OABC的面积是,则点B的坐标为()A.(4,)B.(,3)C.(5,)D.(,)7.如图,点A在反比例函数y1=(x>0)的图象上,过点A作AB⊥x轴,垂足为B,交反比例函数y2=(x>0)的图象于点C.P为y轴上一点,连接P A,PC.则△APC 的面积为()A.5B.6C.11D.128.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为()A.B.8C.10D.9.如图,▱ABCD的顶点A在反比例函数图象上,边CD落在x轴上,点B在y轴上,AD交y轴于点E,OE:EB=1:2,四边形BCDE的面积为6,则这个反比例函数的解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣10.如图,在平面直角坐标系中,函数y=(x>0)与y=x﹣1的图象交于点P(a,b),则代数式﹣的值为()A.﹣B.C.﹣D.11.将代入反比例函数中,所得函数值记为y1,又将x=y1+1代入原反比例函数中,所得函数值记为y2,再将x=y2+1代入原反比例函数中,所得函数值记为y3,…,如此继续下去,则y2020=.12.如图,一次函数与反比例的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是.13.如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数y=的图象上,则图中阴影部分的面积等于(结果保留π).14.已知反比例函数y=的图象在第一、三象限内,则k的值可以是.(写出满足条件的一个k的值即可)15.如图,点A在反比例函数y=(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若=,△AOB的面积为6,则k的值为.16.如图,在平面直角坐标系中,O是坐标原点,在△OAB中,AO=AB,AC⊥OB于点C,点A在反比例函数y=(k≠0)的图象上,若OB=4,AC=3,则k的值为.17.若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为.18.将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,其中一个点的横坐标为a,另一个点的纵坐标为b,则(a﹣1)(b+2)=.19.如图,是反比例函数y=的图象的一支.根据给出的图象回答下列问题:(1)该函数的图象位于哪几个象限?请确定m的取值范围;(2)在这个函数图象的某一支上取点A(x1,y1)、B(x2,y2).如果y1<y2,那么x1与x2有怎样的大小关系?20.如图,已知∠AOB=90°,∠OAB=30°,反比例函数y=﹣(x<0)的图象过点B (﹣3,a),反比例函数y=(x>0)的图象过点A.(1)求a和k的值;(2)过点B作BC∥x轴,与双曲线y=交于点C.求△OAC的面积.21.如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA 时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.22.如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于点A(3,a),点B (14﹣2a,2).(1)求反比例函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,求△ACD的面积.23.为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要19min;完成2间办公室和1间教室的药物喷洒要11min.(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?(2)消毒药物在一间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示:校医进行药物喷洒时y与x的函数关系式为y=2x,药物喷洒完成后y与x成反比例函数关系,两个函数图象的交点为A(m,n).当教室空气中的药物浓度不高于1mg/m3时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.24.如图,直线AB与反比例函数y=(x>0)的图象交于A,B两点,已知点A的坐标为(6,1),△AOB的面积为8.(1)填空:反比例函数的关系式为;(2)求直线AB的函数关系式;(3)动点P在y轴上运动,当线段P A与PB之差最大时,求点P的坐标.参考答案1.解:若x<2,当y=3时,﹣x+1=3,解得:x=﹣2;若x≥2,当y=3时,﹣=3,解得:x=﹣,不合题意舍去;∴x=﹣2,故选:A.2.解:A、把点(2,3)代入反比例函数y=得2.5≠3不成立,故A选项错误;B、∵k=5>0,∴它的图象在第一、三象限,故B选项错误;C、反比例函数有两条对称轴,y=x和y=﹣x;当x<0时,x越小,越接近x轴,故C选项正确;D、反比例函数有两条对称轴,y=x和y=﹣x;当x<0时,x越小,越接近x轴,故D选项错误.故选:C.3.解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a<0时,b<0,直线y=bx+a经过第二、三、四象限,故B错误,C正确.故选:C.4.解:由图象可知点A(x1,y1)B(x2,y2)关于原点对称,即x1=﹣x2,y1=﹣y2,把A(x1,y1)代入双曲线y=﹣得x1y1=﹣5,则原式=x1y2﹣3x2y1,=﹣x1y1+3x1y1,=5﹣15,=﹣10.故选:A.5.解:A(1,2)关于x轴的对称点为(1,﹣2).所以l2的解析式为:y=﹣,因为l1是反比例函数y=在第一象限内的图象,所以x>0.故选:D.6.解:∵反比例函数y=(k>0,x>0)的图象经过点D(3,2),∴2=,∴k=6,∴反比例函数y=,∵OB经过原点O,∴设OB的解析式为y=mx,∵OB经过点D(3,2),则2=3m,∴m=,∴OB的解析式为y=x,∵反比例函数y=经过点C,∴设C(a,),且a>0,∵四边形OABC是平行四边形,∴BC∥OA,S平行四边形OABC=2S△OBC,∴点B的纵坐标为,∵OB的解析式为y=x,∴B(,),∴BC=﹣a,∴S△OBC=××(﹣a),∴2×××(﹣a)=,解得:a=2或a=﹣2(舍去),∴B(,3),故选:B.7.解:连接OA和OC,∵点P在y轴上,AB∥y轴,则△AOC和△APC面积相等,∵A在上,C在上,AB⊥x轴,∴S△AOC=S△OAB﹣S△OBC=6,∴△APC的面积为6,故选:B.8.解:过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,∴∠BHC=90°,∵点D(﹣2,3),AD=5,∴DE=3,∴AE==4,∵四边形ABCD是矩形,∴AD=BC,∴∠BCD=∠ADC=90°,∴∠DCP+∠BCH=∠BCH+∠CBH=90°,∴∠CBH=∠DCH,∵∠DCP+∠CPD=∠APO+∠DAE=90°,∠CPD=∠APO,∴∠DCP=∠DAE,∴∠CBH=∠DAE,∵∠AED=∠BHC=90°,∴△ADE≌△BCH(AAS),∴BH=AE=4,∵OE=2,∴OA=2,∴AF=2,∵∠APO+∠P AO=∠BAF+∠P AO=90°,∴∠APO=∠BAF,∴△APO∽△BAF,∴,∴=,∴BF=,∴B(4,),∴k=,故选:D.9.解:∵DE∥BC,∴△EOD∽△BOC,∵OE:EB=1:2,∴=,∴=,∴=,解得:S△EOD=,∵AB∥DO,∴△ABE∽△DOE,∵=,∴=4,∴S△ABE=4×=3,∴四边形ABCD的面积为6+3=9,如图,过A作AF⊥x轴于F,则S矩形ABOF=S平行四边形ABCD=9,即|k|=9,又∵函数图象在二、四象限,∴k=﹣9,即函数解析式为:y=﹣.故选:C.10.解:由题意得,函数y=(x>0)与y=x﹣1的图象交于点P(a,b),∴ab=4,b=a﹣1,∴﹣==;故选:C.11.解:x=时,y1=﹣,x=﹣+1=﹣;x=﹣时,y2=2,x=2+1=3;x=3时,y3=﹣,x=﹣+1=;x=时,y4=﹣;按照规律,y5=2,…,我们发现,y的值三个一循环2020÷3=673........1,y2020=y1=.故答案为:﹣.12.解:一次函数与反比例的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是x<﹣1或0<x<2.13.解:由题意得,图中阴影部分的面积即为一个圆的面积.⊙A和x轴y轴相切,因而A到两轴的距离相等,即横纵坐标相等,设A的坐标是(a,a),点A在函数y=的图象上,因而a=1.故阴影部分的面积等于π.故答案为:π.14.解:由题意得,反比例函数y=的图象在第一、三象限内,则2﹣k>0,故k<2,满足条件的k可以为1,故答案为:1.15.解:过点A作AD⊥y轴于D,则△ADC∽△BOC,∴,∵=,△AOB的面积为6,∴=2,∴=1,∴△AOD的面积=3,根据反比例函数k的几何意义得,,∴|k|=6,∵k>0,∴k=6.故答案为:6.16.解:∵AO=AB,AC⊥OB,∴OC=BC=2,∵AC=3,∴A(2,3),把A(2,3)代入y=,可得k=6,故答案为6.17.解:设反比例函数的表达式为y=,∵反比例函数的图象经过点A(m,m)和B(2m,﹣1),∴k=m2=﹣2m,解得m1=﹣2,m2=0(舍去),∴k=4,∴反比例函数的表达式为.故答案为:.18.解:一次函数y=kx﹣2﹣k(k>0)的图象过定点P(1,﹣2),而点P(1,﹣2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,在没平移前是关于原点对称的,平移前,这两个点的坐标为(a﹣1,),(,b+2),∴a﹣1=﹣,∴(a﹣1)(b+2)=﹣3.故答案为:﹣3.19.解:(1)∵反比例函数图象关于原点对称,图中反比例函数图象位于第四象限,∴函数图象位于第二、四象限,则m﹣5<0,解得,m<5,即m的取值范围是m<5;(2)由(1)知,函数图象位于第二、四象限.所以在每一个象限内,函数值y随自变量x增大而增大.①当y1<y2<0时,x1<x2.②当0<y1<y2,x1<x2.③当y1<0<y2时,x2<x1.20.解:(1)∵比例函数y=﹣(x<0)的图象过点B(﹣3,a),∴a=﹣=1,∴OE=3,BE=1,分别过点A、B作AD⊥x轴于D,BE⊥x轴于E,∴∠BOE+∠OBE=90°,∵∠AOB=90°,∠OAB=30°,∴∠BOE+∠AOD=90°,tan30°==,∴∠OBE=∠AOD,∵∠OEB=∠ADO=90°,∴△BOE∽△OAD∴===,∴AD=•OE==3,OD=•BE==∴A(,3),∵反比例函数y=(x>0)的图象过点A,∴k=×=9;(2)由(1)可知AD=3,OD=,∵BC∥x轴,B(﹣3,1),∴C点的纵坐标为1,过点C作CF⊥x轴于F,∵点C在双曲线y=上,∴1=,解得x=9,∴C(9,1),∴CF=1,∴S△AOC=S△AOD+S梯形ADFC﹣S△COF=S梯形ADCF=(AD+CF)(OF﹣OD)=(3+1)(9﹣)=13.21.解:(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,∴△AOD是等腰直角三角形,∵OA=2,∴OD=AD=2,∴A(2,2),∵顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=(x>0);(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∴∠AOE=∠AEO,∵Rt△ABC中,∠ACB=90°,∴CE=AE=BE,∴∠ECB=∠EBC,∵∠AEO=∠ECB+∠EBC=2∠EBC,∵BC∥x轴,∴∠EOD=∠ECB,∴∠AOE=2∠EOD,∵∠AOD=45°,∴∠EOD=15°.22.解:(1)∵点A(3,a),点B(14﹣2a,2)在反比例函数上,∴3×a=(14﹣2a)×2,解得:a=4,则m=3×4=12,故反比例函数的表达式为:y=;(2)∵a=4,故点A、B的坐标分别为(3,4)、(6,2),设直线AB的表达式为:y=kx+b,则,解得,故一次函数的表达式为:y=﹣x+6;当x=0时,y=6,故点C(0,6),故OC=6,而点D为点C关于原点O的对称点,则CD=2OC=12,△ACD的面积=×CD•x A=×12×3=18.23.解:(1)设完成一间办公室和一间教室的药物喷洒各要xmin和ymin,则,解得,故校医完成一间办公室和一间教室的药物喷洒各要3min和5min;(2)一间教室的药物喷洒时间为5min,则11个房间需要55min,当x=5时,y=2x=10,故点A(5,10),设反比例函数表达式为:y=,将点A的坐标代入上式并解得:k=50,故反比例函数表达式为y=,当x=55时,y=<1,故一班学生能安全进入教室.24.解:(1)将点A坐标(6,1)代入反比例函数解析式y=,得k=1×6=6,则y=,故答案为:y=;(2)过点A作AC⊥x轴于点C,过B作BD⊥y轴于D,延长CA,DB交于点E,则四边形ODEC是矩形,设B(m,n),∴mn=6,∴BE=DE﹣BD=6﹣m,AE=CE﹣AC=n﹣1,∴S△ABE==,∵A、B两点均在反比例函数y=(x>0)的图象上,∴S△BOD=S△AOC==3,∴S△AOB=S矩形ODEC﹣S△AOC﹣S△BOD﹣S△ABE=6n﹣3﹣3﹣=3n﹣m,∵△AOB的面积为8,∴3n﹣m=8,∴m=6n﹣16,∵mn=6,∴3n2﹣8n﹣3=0,解得:n=3或﹣(舍),∴m=2,∴B(2,3),设直线AB的解析式为:y=kx+b,则,解得:,∴直线AB的解析式为:y=﹣x+4;(3)如图,根据“三角形两边之差小于第三边可知:当点P为直线AB与y轴的交点时,P A﹣PB有最大值是AB,把x=0代入y=﹣x+4中,得:y=4,∴P(0,4).。
第14讲 反比例函数的图像与性质
A
B
C
D
考点4:已知x(y)的范围,求y(x)的取值范围:(4分钟) 1.(2014· 天津)已知反比例函数y=10/x, 当1<x<2时,y的取值范围是 5<y<10 .
变式1:已知反比例函数y=-2/x,当x>-1时,y的 取值范围是 y>2或y<0 . 变式2:反比例函数y=k/x的图象经过点A(-1,-2). 则当y<2时,则x的取值范围 .
x
m 1
反比例函数的图像与性质 知识点梳理2:
(2)反比例函数 函数 图象 k y= k>0
x
k y= x
(k ≠ 0,k k<0 为常 数)
(k≠0,k 为常数)的图象和性质: 所在象限 性质 一、三象限 在每个象限内,y 随 (x,y 同号) x 增大而减小 二、四象限 在每个象限内,y 随 (x,y 异号) x 增大而增大
变式1:如图所示,OACB是矩形,C(a,b),点D为 BC中点,反比例函数y=4/x的图象经过点D且交 AC于点E. (1)求证:点E是AC的中点;
变式2:如图,反比例函数y=k/x(x>0)的图象经过 矩形OABC对角线的交点M,分别与AB、BC相 交于点D、E. (1)证明:△OCE与△OAD面积相等; (2)若CE:EB=1:2,求BD:BA的值; (3)若四边形ODBE面积为6,求反比例函数的解 析式.
变式3:如图,双曲线y=2/x(x>0)经过四边形 OABC的顶点A、C,∠ABC=90°,OC平分OA 与x轴正半轴的夹角,AB∥x轴,将△ABC沿AC翻 , 折后得到△AB C,B’点落在OA上,则四边形 2 OABC的面积是 .
E
D
6.(2014•遵义)如图,反比例函数y=k/x(k>0) 的图象与矩形ABCO的两边相交于E,F两点, 若E是AB的中点,S△BEF=2,则k的值为 .
反比例函数的图像与性质.
x
0
y
0
x
如图,函数y=k/x和y=-kx+1(k≠0)在同 一坐标系内的图象大致是 ( D )
6
y
6
y
4
4
2
2
-5
O
-2
5
x
-5
O
-2
5
x
A
-4
B
y
6
-4
先假设某个函数 图象已经画好, 再确定另外的是否 符合条件.
6
y
4
4
2
2
-5
O
-2
5
x
-5
O
-2
5
x
-4
C
D
-4
k 3.已知反比例函数 y (k≠0) x
k>0 当x<0时,y随x的增大而减小,
则一次函数y=kx-k的图象不经过第 二 象限
y
k>0 ,-k<0
o
x
例4:图是反比例函数y= m-5 的图象的一支.根据 x 图象回答下列问题:
(1)图象的另一支在哪个象限?常数m的取值范 围是什么? (2)在这个函数图象的某一支上任取点A(a,b)和 点B(a’,b’).如果a﹥a’,那么b和b’有怎么的大小 y 关系?
则y1与y2的大小关系(从大到小)
x
为 y1 >0>y2
.
A
y
y1
o
x2
x
B
x1
y2
4.已知点 A(-2,y ),B(-1,y ),C(4,y ) 1 2 3 4 y 都在反比例函数 的图象上 , x 则y1、y2与y3的大小关系(从大到小)
为 y3 >y1>y2
.
专题14反比例函数及其应用(知识点总结+例题讲解)-2021届中考数学一轮复习
2021年中考数学 专题14 反比例函数及其应用(知识点总结+例题讲解)一、反比例函数、图像、性质:1.反比例函数的概念: (1)定义:一般地,函数ky x(k 是常数,k ≠0)叫做反比例函数; (2)变形:反比例函数的解析式也可以写成y=kx -1或xy=k(k ≠0)的形式;(3)自变量x 的取值范围:x ≠0的一切实数,函数的取值范围也是一切非零实数。
【例题1】下列函数是y 关于x 的反比例函数的是( ) A .y =1x−1 B .y =1x 3C .y =−3xD .y =−x4【答案】C【解析】利用反比例函数定义进行分析即可.解:A 、不是y 关于x 的反比例函数,故此选项不合题意; B 、不是y 关于x 的反比例函数,故此选项不合题意; C 、是y 关于x 的反比例函数,故此选项符合题意;D 、不是y 关于x 的反比例函数,是正比例函数,故此选项不合题意;故选:C . 【变式练习1】若y =(a +1)x a2−2是反比例函数,则a 的取值为( )A .1B .﹣1C .±1D .任意实数【答案】A【解析】先根据反比例函数的定义列出关于a 的方程组,求出a 的值即可. 解:∵此函数是反比例函数,∴{a +1≠0a 2−2=−1,解得a =1.故选:A .2.反比例函数的图象:(1)反比例函数的图像是双曲线;它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限;它们关于原点对称;(2)反比例函数关于直线y=x和y=-x成轴对称;(对称中心:原点)(3)由于反比例函数中自变量x≠0,函数y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图【例题2】(2020•德州)函数y=kx象可能是( )【答案】D【解析】根据题目中函数的解析式,利用一次函数和反比例函数图象的特点解答本题.和y=﹣kx+2(k≠0)中,解:在函数y=kx的图象在第一、三象限,函数y=﹣kx+2的图象在第一、二、四当k>0时,函数y=kx象限,故选项A、B错误,选项D正确;的图象在第二、四象限,函数y=﹣kx+2的图象在第一、二、三当k<0时,函数y=kx象限,故选项C错误。
八年级同步第15讲:反比例函数的图像及性质
第15讲 反比例函数的图像及性质知识框架反比例函数是八年级数学上学期第十八章第二节内容,主要对反比例函数的图像及性质进行讲解,重点是反比例函数的性质的理解,难点是反比例函数表达式的归纳总结.通过这节课的学习为我们后期学习反比例函数的应用提供依据.15.1 反比例函数的概念反比例函数的概念(1)如果两个变量的每一组对应值的乘积是一个不等于零的常数,你们就说这两个变量成反比例.用数学式子表示两个变量x 、y 成反比例,就是xy k =,或表示为ky x=,其中k 是不等于0的常数.(2)解析式形如ky x=(k 是常数,0k ≠)的函数叫做反比例函数,其中k 称也叫做比例系数.(3)反比例函数ky x=的定义域是不等于零的一切实数.【例1】若函数231(2)m m y m x -+=-是反比例函数,则m 的值为________. 【例2】如果2212n n n n y x+++=是反比例函数,那么n 的值是________.【例3】已知y 是x 的反比例函数,且当2x =时,2y =,那么当1y =时,x的值是________.【例4】如果变量1x和变量y 成正比例,变量1y 和变量z 成反比例,那么变量x 和z 成________比例关系.【例5】已知反比例函数22++=k xk y ,求k 的值,并求当x =2时的函数值【例6】已知12y y y =+,若1y 与x 正比例,2y 与x 成反比例函数,且当2x =时,14y =,当3x =时,1293y =,求y 与x 间的函数关系式.【例7】已知12y y y =+,若1y 与1x -正比例,2y 与1x +成反比例,且当0x =时5y =-,当2x =时1y =;(1)求y 与x 间的函数关系式;(2)求当3y =-时,x 的值.【例8】已知:正比例函数与反比例函数的比例系数互为相反数,且正比例函数的图像过点-,求反比例函数的解析式.15.2 反比例函数的图像和性质一、 反比例函数的图像反比例函数ky x=(k 是常数,0k ≠)的图像叫做双曲线,它有两支. 二、 反比例函数的性质(1)当0k >时,函数图像的两支分别在第一、三象限;在每个象限内,当自变量x 的值逐渐增大时,y 的值随着逐渐减小.(2)当0k <时,函数图像的两支分别在第二、四象限;在每个象限内,当自变量x 的值逐渐增大时,y 的值随着逐渐增大.(3)图像的两支都无限接近于x 轴和y 轴,但不会与x 轴和y 轴相交,且关于原点中心对称.【例9】已知函数ky x=的图象不经过第一、三象限,则y kx =-的图象经过第________象限. 【例10】如果反比例函数ky x=(k 是常数,0k ≠)的图像在第二、四象限,那么正比例函数y kx =(k 是常数,0k ≠)的图像经过哪几个象限?【例11】若正比例函数(0)y kx k =≠,与反比例函数(0)my m x=≠的图像没有交点,那么k 与m 满足关系式可以是________.【例12】已知反比例函数1y x=-的图像上有两点11()A x y ,、22()B x y ,,且12x x <,那么下列结论正确的是( )(A )12y y <; (B )12y y >;(C )12y y =;(D )1y 与2y 的大小关系无法确定.【例13】反比例函数4y x=-的图像上一点的横坐标是3,那么这点到x 轴的距离是________.【例14】已知反比例函数21k y x+= (1)若该函数图像经过点(21)-,,求k 的值;(2)若该函数图像在每一象限内y 随x 的增大而减小,求k 的取值范围.【例15】直线y kx =(k >0)与双曲线交于11()A x y ,、22()B x y ,两点,求122127x y x y -的值.【例16】反比例函数2y x=的图像上一点A ,过A 点分别作x 轴、y 轴垂线,垂足为B 、C ; (1)求矩形ABOC 的面积;(2)当点A 沿双曲线移动时(1)中矩形面积有变化吗?为什么?【例17】若P (a ,b )是反比例函数图像上的一点,且a是b是数部分,求反比例函数的解析式.xy 4=【例18】已知:点A 、B 是函数3y x=-图像上关于原点对称的任意两点,AC ∥y 轴,BC ∥x 轴,求△ABC 的面积.【例19】反比例函数xky =(0)k <的图像经过点()A m ,过点A 作AB ⊥x 轴于点B ,△AOB 的面积为3,求k 和m 的值.【例20】已知:反比例函数的图像与正比例函数的图像相交于A ,B 两点,若点A 在第二象限,且点A 的横坐标为-3,且AD ⊥x 轴,垂足为D ,△AOD 的面积是4. (1)写出反比例函数的解析式; (2)求出点B 的坐标;(3)若点C 的坐标为(6,0),求△ABC 的面积.15.2 课堂检测1. 在同一平面直角坐标系内,分别画出下列函数的图像. ①4y x =; ②4y x =-. 求:(1)这两个函数的图像分别位于哪几个象限内?(2)在每一象限内,随着图像上的点的横坐标x 逐渐增大,纵坐标y 是怎样变化的?(3)图像的每支都向两方无限延伸,它们可能与x 轴、y 轴相交吗?为什么?2. 已知正比例函数y kx =与反比例函数xky -=6图像的一个交点坐标是(1,3),则反比例函数的解析式是________. 3. 已知反比例函数xk y 1+=,11()x y ,、22()x y ,为其图像上的两点,若当120x x <<时,12y y >,则k 的取值范围是________.4. 若点(34),是反比例函数221m m y x++=图像上一点,则此函数图像必经过点 ( )(A )(34)-,;(B )(26)-,;(C )(43)-,;(D )(26),.5. 已知M 是反比例函数ky x=(0)k ≠ (k ≠0)图像上一点,MA x ⊥轴于点A ,若 4AOM S =V ,则这个反比例函数的解析式是( )(A )8y x =; (B )8y x=-; (C )8y x =或8y x=-;(D )4y x =或4y x=-. 6. 已知122y y y =+,若1y 与(1)x +正比例,2y 与x 成反比例函数,且当1x =时,1y =-;当3x =-时,3y =,求y 与x 间的函数关系式.7. 已知第三象限内的点B (3m ,m )在反比例函数的图像上,且OB =,而点A (1,y )也在双曲线上,求反比例函数的解析式,并求出△AOB 的面积. 8.11POA ∆、212P A A ∆都是等腰直角三角形,点P 1、P 2在4y x=(x >0)的图像上,斜边OA 1、A 1A 2都在x 轴上,求点A 2的坐标.9. 两个反比例函数k y x =和1y x =在第一象限内的图像如图所示,点P 在k y x=的图像上,PC ⊥x 轴于点C ,交1y x =的图像于点A ,PD ⊥y 轴于点D ,交1y x=的图像于点B ,当点P 在ky x=的图像上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形P AOB 的面积不会发生变化; ③P A 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 (把你认为正确结论的序号都填上,少填或错填不给分).15.4 课后作业1. 已知长方形的面积为20平方厘米,它的一边长为x 厘米,求这个边的邻边长y (厘米)关于x (厘米)的函数解析式,并写出这个函数的定义域.2. 反比例函数ky x=的图像上有两点111()p x y ,,222(,)p x y ,若120x x <<,12y y >,则k ________0,图像经过第________象限.3. 在平面直角坐标系内,从反比例函数ky x=(0)k ≠上一点作x 轴、y 轴的垂线段,与x 轴、y 轴围成面积为3的矩形,求函数解析式.4. (1)已知y 与2x -成反比例,当4x =时,3y =,求5x =时,y 的值;(2)已知y 与2x 成反比例,并当3x =时,2y =,求 1.5x =时,y 的值.5. 已知12y y y =+,1y 与x 成正比例,2y 与2x 成反比例,当2x =与3x =时,19y =,求y关于x 的函数解析式.6. 点A 是反比例函数6y x=的图像上的一点,AB ⊥y 轴于点B ,求△AOB 的面积.7. 已知n 是正整数,111()P x y ,,222()P x y ,,…()n n n P x y ,,…是反比例函数图像上的一列点,其中11x =, 22x =,…,n x n =,….记112A x y =,223A x y =,…,1n n n A x y +=,…,若1A a =(a 是非零常数),求12n A A A ⋅⋅⋅K 的值(用含a 和n 的代数式表示).。
第14讲反比例函数的图像与性质
由于反比例函数图像分布在两个象限内,且随着$x$的增大或减小,$y$值会无 限趋近于0但永远不会等于0,因此其值域为所有非零实数,即${ y|y neq 0}$。
判断单调性和奇偶性技巧
判断单调性
反比例函数在其定义域内的单调性与其比例系数$k$的符号有 关。当$k > 0$时,函数在$x < 0$和$x > 0$的两个区间内 分别单调递减;当$k < 0$时,函数在$x < 0$和$x > 0$的 两个区间内分别单调递增。
。
02
图像观察法
通过观察反比例函数的图像, 可以直接判断出函数在不同区
间的单调性。
03
特殊值比较法
在函数的定义域内取特殊值进 行比较,从而判断函数的单调
性。
奇偶性判断方法
03
定义法
图像观察法
代数运算法
根据奇函数和偶函数的定义,通过判断f(x)与f(x)的关系来确定反比例函数的奇偶 性。
通过观察反比例函数的图像是否关于原点 对称来判断函数的奇偶性。
图像对称性
01
反比例函数的图像关于原点对称 ,即如果点$(x, y)$在图像上,则 点$(-x, -y)$也在图像上。
02
另外,反比例函数的图像还关于 直线$y = x$和$y = -x$对称。
03
反比例函数性质分析
单调性判断方法
01
求导判断法
通过对反比例函数求导,根据 导数的正负判断函数的单调性
判断奇偶性
反比例函数是奇函数。对于任意$x$,都有$f(-x) = -f(x)$, 即函数图像关于原点对称。
利用图像解决复杂问题策略
绘制草图
在解决与反比例函数相关的问题时,首先应根据函数的解析式绘制 出其草图,以便因此在解决一些对称性问题时 ,可以利用这一性质简化计算过程。
第14讲 反比例函数
解:(1)∵点 P(-1,n)在直线上 y=-3x 上, m-5 ∴n=-3×(-1)=3.∵点 P(-1,n)在双曲线 y= x 上, ∴m-5=-3,即 m=2. (2)∵m-5=-3<0,∴当 x<0 时,y 随 x 的增大而增大. m-5 又∵点 A(x1, 1), 2, 2)在双曲线 y= x 上, x1<x2<0, y B(x y 且 ∴y1<y2.
第14讲 │ 考点随堂练
14.某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥 湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺了若 干块木块,构筑成一条临时近道.木板对地面的压强 p(Pa)是木 板面积 S(m2)的反比例函数,其图象如图 14-6 所示. (1)请直接写出这一函数表达式和自变量取值范围; (2)当木板面积为 0.2 m2 时,压强是多少? (3)如果要求压强不超过 6000 Pa,木板的面积至少要多大?
第14讲 │ 反比例函数
第14讲 反比例函数
第14讲 │ 考点随堂练 │考点随堂练│
考点1 反比例函数的定义
k x
乘积
第14讲 │ 考点随堂练
1.下列关系中的两个量,成反比例的是( B ) A.面积一定时,矩形周长与一边长 B.压力一定时,压强与受力面积 C.读一本书,已读的页数与余下的页数 D.某人年龄与体重
[解析] 根据反比例函数图象的性质,当 2k-1<0 时,图象在 第二、四象限,即可求出 k 的取值范围,故选 B.
第14讲 │ 考点随堂练
-1 6.[2011· 怀化]函数 y=2x 与函数 y= x 在同一坐标系中的大致图象 是( B )
图 14-1
-1 [解析] y=2x 的图象过原点,经过一、三象限,而 y= x 的图象 的两个分支在二、四象限.
反比例函数的图象与性质ppt
反比例函数的周期性
总结词
反比例函数不具有周期性,但可以表现出准周期性。
详细描述
与正比例函数和余弦函数等具有明确周期的函数不同,反比例函数不具有周期性。然而,当自变量x取值范围 较大时,函数值会重复出现,这种重复现象被视为准周期性。这意味着在一定条件下,函数的值会以某种周期 性的方式重复出现。
04
优化方案设计
在工程、设计和科研等领域,反比例函数的图象可以帮助优化方案设计,如最优投入产出 比、最佳设计方案等。
用反比例函数的图象进行数学建模
01 02
建立数学模型
反比例函数是一种重要的数学模型,可以用来描述和解释许多自然和 社会现象,如物体运动的速度与时间的关系、药物在体内代谢的过程 等。
求解方程
坐标轴上的表现
详细描述
在坐标系中,反比例函数的图象会无限接近坐标轴,但永 远不会与坐标轴相交。也就是说,无论k取何值,y轴上的 截距始终为0。
数学模型
y = k/x (k ≠ 0)
图形特点
双曲线无限接近坐标轴,但永远不会与坐标轴相交。
反比例函数的图象的变化趋势
总结词:变化趋势 数学模型:y = k/x (k ≠ 0)
投资回报
在投资学中,反比例函数可以用于描述投资回报与投资金额之间的关系。当投资 金额增加时,回报率会降低;当投资金额减少时,回报率会增加。
THANKS
谢谢您的观看
《反比例函数的图象与性质ppt 》
xx年xx月xx日
contents
目录
• 反比例函数概述 • 反比例函数的图象 • 反比例函数的性质 • 反比例函数的图象的应用 • 反比例函数的应用拓展
01
反比例函数概述
反比例函数定义
反比例函数图象和性质
第14课时 反比例函数图象和性质【知识梳理】1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质3.k 的几何含义:反比例函数y =kx(k≠0)中比例系数k 的几何意义,即过双曲线y =kx(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 .【例题精讲】 例1 某汽车的功率P 为一定值,汽车行驶时的速度v (米/秒)与它所受的牵引力F (牛)之间的函数关系如右图所示: (1)这辆汽车的功率是多少?请写出这一函数的表达式;(2)当它所受牵引力为1200牛时,汽车的速度为多少千米/时? (3)如果限定汽车的速度不超过30米/秒,则F 在什么范围内?例2如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式; (2)求AOB △的面积;(3)x 为何值时,一次函数值大于反比例函数值.【当堂检测】1. 已知反比例函数的图象经过点(m ,2)和(-2,3),则m 的值为 .2.若正方形AOBC 的边OA 、OB 在坐标轴上,顶点C 在第一象限且在反比例函数y =x1的图像上,则点C 的坐标是 . 3.在反比例函数3k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是 ( )A .k >3B .k >0C .k <3D . k <0 4. 如图,反比例函数图象过点P,则它的解析式为( ) A.y =1x (x>0) B.y =-1x(x>0)C.y =1x (x<0)D.y =-1x (x<0) 5.在反比例函数12my x -=的图象上有两点A ()11,x y ,B ()22,x y ,当120x x <<时,有12y y <,则m 的取值范围是( )A .0m < B.0m > C.12m <D.12m > 6.如图,若点A 在反比例函数(0)ky k x=≠的图象上,AM x⊥轴于点M ,AMO △的面积为3,则k = .7.对于反比例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它图象上B .图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x8.反比例函数6y x=-的图象位于()A .第一、三象限B .第二、四象限C .第二、三象限D 9.如图,已知双曲线k y x=(0x >)经过矩形OABC 的边AB BC ,F E ,,且四边形OEBF 的面积为2,则k = .10.(2013•锦州)如图,直线y=mx 与双曲线y=xk交于A ,B 两点,过点A 作AM ⊥x 轴,垂足为点M , 连接BM ,若S △ABM =2,则k 的值为( )1-1yO x P 第4题图第6题图。
第十四讲反比例函数的图像和性质(2)
第十四讲 反比例函数的图像和性质(2)【基础知识精讲】反比例函数y=kx (k ≠0)中k 的几何意义:过函数 y=kx(k ≠0)的图像上任一点),(y x p 作P M ⊥x轴,P N ⊥y 轴,所得矩形PMON 的面积S =∣xy ∣=∣k ∣; 所得△POM 的面积S =21∣k ∣。
【例题巧解点拨】例1.正比例函数y=x 与反比例函数y=1x的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD•⊥x 轴于D ,如图1所示,则四边形ABCD 的为_______.(1) (2) (3)练习:如图2,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为8,则反比例函数的表达式是_____________________.例2.(2005 中考题)如图3两个反比例函数y=3x ,y=6x在第一象限内的图象如图所示,点P 1,P 2,P 3……P 2005,在反比例函数y=6x的图象上,它们的横坐标分别是x 1,x 2,x 3,…x 2005,纵坐标分别是1,3,•5•……,•共2005年连续奇数,过点P 1,P 2,P 3,…,P 2005分别作y 轴的平行线与y=3x的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2005(x 2005,y 2005),则y 2005=________.练习:1、如图:函数y=-kx (k ≠0)与y=-4x的图象交于A 、B 两点,过点A 作AC ⊥y 轴,•垂足为点C ,则△BOC 的面积为________.Y XOP (x, y)MN 第1题第2题TROxyP CBA2、.如图,正比例函数y=3x 的图象与反比例函数y=kx(k>0)的图象交于点A ,若 取k 为1,2,3,…,20,对应的Rt △AOB 的面积分别为S 1,S 2,…,S 20,则S 1+S 2+…+S 20=_________.例3.如图所示,直线122y x =+分别交x 轴、y 轴于A ,C 两点,P 是该直线上在第一象 限内的一 点,PB ⊥x 轴于B ,9ABPS=.(1)求P 点坐标; (2)双曲线ky x=经过点P ,能否在双曲线上PB 的右侧求作一点R,作RT ⊥x 轴于T,使△BRT 与△AOC 相似?如能,求出点R 坐标;若不能,说明理由.【同步达纲练习】A 组1.如图1所示,在反比例函数y=kx(k>0)的图像上有三点A 、B 、C ,过这三点分别向x 轴、y 轴作垂线,过每一点所作的两条垂线与x 轴、y•轴圈成的矩形的面积分别为S 1,S 2,S 3,则( ) A .S 1>S 2>S 3 B .S 1<S 2<S 3 C .S 1<S 2<S 3 D .S 1=S 2=S 3(1) (2) (3)2.如图2,设P (a ,b ),M (c ,d )是反比例函数y=1x在第一象限内的图像上关于直线y=x•对称的两点,过P 、M 作坐标轴的垂线,如图5所示,垂足为Q 、N , •若∠MON=•30•°,•则b da c+=________.3.如图3所示,△P1OA1、△P2A1A2是等腰直角三角形,点P1、P2在函数y=4x(x>0)的图像上,斜边OA1、A1A2都在x轴上,则点A2的坐标是___________.4. 如图所示,已知反比例函数y=12x的图像与一次函数y=kx+4的图像相交于P、•Q两点,并且P点的纵坐标是6.(1)求这个一次函数的解析式;(2)求△POQ的面积.5.通过市场调查,一段时间内某地区特种农产品的需求量y(千克)•与市场价格x(元/千克)存在下列函数关系式:y=100000x+6000(0<x<100);又已知该地区农民的这种农产品的生产数量z(千克)与市场价格x(元/千克)成正比例关系:z=400x(0<x<100),现不计其他因素影响,如果需求数量y等于生产数量z时,即供需平衡,•此时市场处于平衡状态.(1)根据以上市场调查,请你分析当市场处于平衡状态时,•该地区这种农产品的市场价格与这段时间内农民的总销售收入各是多少?(2)受国家“三农”政策支持,该地区农民运用高科技改造传统生产方式,减少产量,以大力提高产品质量.此时生产数量z与市场价格x的函数关系发生改变,•而需求函数关系未发生变化,当市场再次处于平衡状态时,市场价格已上涨了a(0<a<25)•元,问在此后的相同时间段内该地区农民的总销售收入是增加了还是减少了?变化多少?6.已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1,这条曲线是函数y=12x的图象在第一象限内的一个分支,点P•是这条曲线上任意一点,它的坐标是(a,b),由点P向x轴、y轴所作的垂线PM、PN(点M、N•为垂足)分别与直线AB相交于点E 和点F.(1)设交点E和F都在线段AB上(如图所示),分别求点E、点F的坐标(用a的代数式表示点E 的坐标,用b的代数式表示点F的坐标,只须写出答案,不要求写出计算过程).(2)求△OEF的面积(结果用a、b的代数式表示).(3)△AOF与△BOE是否一定相似,如果一定相似,请予以证明;如果不一定相似或者一定不相似,请简要说明理由.(4)当点P在曲线上移动时,△OEF随之变动,指出在△OEF的三个内角中,•大小始终保持不变的那个角和它的大小,并证明你的结论.B组如图,直线经过A (1,0),B (0,1)两点,点P 是双曲线y=12x(x>0)上任意一点,PM•⊥x 轴,PN ⊥y 轴,垂足分别为M ,N .PM 与直线AB 交于点E ,PN 的延长线与直线AB 交于点F . (1)求证:AF ●BE=1;(2)若平行于AB 的直线与双曲线只有一个公共点,求公共点的坐标.家庭作业校区: 姓名:_________ 科目: 数学 第 14 次课 作业等级:______第一部分:1.(2009河池)如图5,A 、B 是函数2y x=的图象上关于原点对称的任意两点, BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( ) A . 2S = B . 4S = C .24S << D .4S >2.(2012福州,10,4分,)如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数ky x=(x >0)的图像与△ABC 有公共点,则k 的取值范围是( ) A .2≤k ≤9 B . 2≤k ≤8 C . 2≤k ≤5 D . 5≤k ≤83.如图3,正比例函数y 1=kx 和反比例函数y 2=2k x的图像交于A (-1,2)、(1,-2)两点,若y 1 <y 2,则x 的取值范围是( )A .x <-1或x >1B . x <-1或0<x <1C . -1<x <0或 0<x <1D . -1<x <0或x >14.(2009年娄底)市一小数学课外兴趣小组的同学每人制作一个面积为200cm 2的矩形学具进行展示. 设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形长y (cm )与宽x (cm )之间的函数关系的图象大致是 ( )第二部分: 1.(2012浙江省衢州,12,4分)试写出图象位于第二、四象限的一个反比例函数的解析式 . 2.(2012贵州铜仁,5,4分)如图,正方形ABOC 的边长为2,反比例函数ky x的图象经过点A ,则k 的值是( )A .2B .-2C .4D .-43.(2009年包头)如图,已知一次函数1y x =+的图象与反比例函数ky x=的图象在第一象限相交于点A ,与x 轴相交于点C AB x ,⊥轴于点B , AOB △的面积为1,则AC 的长为 (保留根号).第三部分:① 两函数图象的交点坐标为A (2,2); ② 当x >2时,y 2>y 1;③ 直线x =1分别与两函数图象交于B 、C 两点,则 线段BC 的长为3;④ 当x 逐渐增大时,y 1的值随着x 的增大而增大,y 2的 值随着x 的增大而减小. 则其中正确的是()A .只有①②B .只有①③C .只有②④D .只有①③④2.(2012湖北襄阳,22,7分)如图9,直线y =k 1x +b 与双曲线y =2k x相交于A (1,2),B (m ,-1)两点.(1)求直线和双曲线的解析式;(2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系式; (3)观察图象,请直接写出不等式k 1x +b >2k x的解集.图9。
专题14 反比例函数【知识点清单】-2022年中考数学一轮复习精讲+热考题型(全国通用)
专题14 反比例函数【知识要点】知识点一 反比例函数的基础反比例函数的概念:一般地,形如y =k x (k 为常数,k ≠o )的函数称为反比例函数。
【注意】1)反比例函数y =k x 的自变量x ≠0,故函数图象与x 轴、y 轴无交点。
2)变式xy=k (定值)、1-=kx y 、 xky 1=(k ≠0) 反比例函数解析式的特征:1)等号左边是函数y ,等号右边是一个分式。
分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1.2)比例系数k ≠03)自变量x 的取值为一切非零实数,函数y 的取值是一切非零实数。
待定系数法求反比例函数解析式的一般步骤(考点):1)设反比例函数的解析式为y =k x (k 为常数,k ≠0);2)把已知的一对x ,y 的值带入解析式,得到一个关于待定系数k 的方程;3)解方程求出k 值,并将将k 值代入所设解析式中。
知识点二 反比例函数的图象和性质(基础)反比例函数图象的画法的画法(描点法):1)列表(自变量的取值应取绝对值相等而符号相反的一对数值,尽量多取一些数值)。
2)描点(由小到大的顺序依次连线)3)连线(用光滑的曲线连接,不能用折线)反比例函数的性质: 反比例函数图象的特征:1)反比例函数的图像是双曲线,双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。
【易错】双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论。
2)反比例函数是轴对称图形和中心对称图形。
①图象关于原点对称,即若(a ,b )在双曲线的一支上,则(-a ,-b )在双曲线的另一支上.②图象关于直线x y = 对称,即若(a ,b )在双曲线的一支上,则(b ,a )在双曲线的另一支上;③图象关于直线x y -=对称,即若(a ,b )在双曲线的一支上,则(-b ,-a )在双曲线的另一支上。
3)k 的取值与函数图象弧度之间的关系: ①|k|越大,图象的弯曲度越小,离原点越远。
高中数学 14种函数图像和性质知识解析 新人教A版必修1
高中数学 14种函数图像和性质知识解析新人教A版必修1高中不得不掌握的函数图像与常用性质高中常用函数有14种,它们是:1.正比例函数;2.反比例函数;3.根式函数;4一次函数;5.二次函数;6双勾函数.;7..双抛函数;8.指数函数;9对数函数;10.三角函数;11分段函数.;12.绝对值函数;13.超越函数;14.抽象函数。
而函数的性质常见的有:1.定义域;2.值域;3.单调性;4.奇偶性;5.周期性;6.对称性;7.有界性;8.反函数;9.连续性.高中都是从函数解析式入手画出函数图像,再利用函数图像研究其性质,下面我们就函数的图像和性质做归纳总结。
1.正比例函数解析式图像定义域:值域:单调性:奇偶性:反函数:2.反比例函数解析式图像性质定义域:值域:单调性:奇偶性:反函数:对称性:定义域:值域:单调性:对称性:3根式函数解析式图像定义域:值域:单调性:奇偶性:反函数:4一次函数解析式图像定义域:值域:1 性质性质性质用心爱心专心单调性:反函数:5二次函数解析式图像定义域:值域:单调性:对称性:定义域:值域:单调性:对称性:6.双勾函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:值域:单调性:奇偶性:对称性:7.双抛函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:性质性质性质用心爱心专心值域:单调性:奇偶性:对称性:8.指数函数解析式图像定义域:值域:单调性:9.对数函数解析式图像定义域:值域:单调性:10.三角函数解析式图像单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:11.分段函数分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。
其图像的画法是按定义域的划分分别作图。
初高中数学衔接课程教案14-耐克函数
(4)值域: (,2 ab) (2 ab,)
二、典型例题
例 1、如果函数 y kx2k
2
k 2
的图像是双曲线,且在第二,四象限内,那么的值是多少?
解析:有函数图像为双曲线则此函数为反比例函数 y 又在第二,四象限内,则 k 0 可以求出的值 答案:由反比例函数的定义,得:
k 0) ⑵反比例函数的图像是双曲线,y ( k 为常数, 中自变量 x 0 , 函数值 y 0 ,
所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不 与坐标轴相交. ⑶反比例函数的图像是是轴对称图形(对称轴是 y x 或 y x ) . ⑷反比例函数 y
k o ko
可求出 k )
5.反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即 6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函 数y
k 中的两个变量必成反比例关系. x
7.反比例函数的应用 2、耐克函数 在高中数学学习中,我们常常会碰到形如 y ax
b (a 0, b 0) 的函数,我们称这样的函 x
数为“耐克函数”,它是一种类似于反比例函数的重要的函数之一,它的性质及图像有十分鲜 明的特征和规律,其图像形如两个中心对称的对勾,故又名对号函数、对勾函数,在实际问 题中有着广泛的应用. 我们都知道,(a b) 0 , 展开就是 a 2 b 2 2ab 0 , 有 a 2 b 2 2ab , 当且仅当 a b
初高中数学衔接课程教案 14 耐克函数 一、知识点梳理 1、反比例函数 1. 定义:一般地,形如 y 以写成 y kx
1
k k ( k 为常数, k o )的函数称为反比例函数. y 还可 x x
知识点14 反比例函数图象、性质及其应用
知识点14 反比例函数图象、性质及其应用一、选择题 6.(2019·温州)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表.根据表A .y x =B .100y =C .y x =D .400y = 【答案】A【解析】从表格中的近视眼镜的度数y (度)与镜片焦距x (米)的对应数据可以知道,它们满足xy=100,因此,y 关于x 的函数表达式为100y x=.故选A. 9.(2019·株洲)如图所示,在直角坐标系xOy 中,点A 、B 、C 为反比例函数(0)ky k x=>上不同的三点,连接OA 、OB 、OC ,过点A 作AD ⊥y 轴于点D ,过点B 、C 分别作BE ,CF ⊥x 轴于点E 、F ,OC 与BE 相交于点M ,记△AOD 、△BOM 、四边形CMEF 的面积分别为S 1、S 2、S 3,则( ) A .S 1=S 2+S 3 B .S 2=S 3 C .S 3>S 2>S 1 D .S 1S 2<S 32第9题【答案】B【解析】由题意知S 1=2k ,S △BOE =S △COF =2k,因为S 2=S △BOE -S △OME ,S 3=S △COF -S △OME ,所以S 2=S 3 ,所以选B 。
9.(2019·娄底)将1y x=的图象向右平移1个单位长度,再向上平移1个单位长度所得图象如图(3).则所得图象的解析式为( )A. 111y x =++ B . 111y x =-+ C . 111y x =+- D . 111y x =-- 【答案】C .【解析】二次函数平移的规律“左加右减,上加下减”对所有函数的图象平移均适合.∵将1y x =的图象向右平移1个单位长度后所得函数关系式为11y x =-, ∴将1y x =的图象向右平移1个单位长度,再向上平移1个单位长度所得图象的解析式为111y x =+-. 故选C .7.(2019·娄底)如图(1),⊙O 的半径为2,双曲线的解析式分别为1y x =和1y x=-,则阴影部分的面积为( )A . 4πB . 3πC . 2πD . π【答案】C【解析】根据反比例函数1y x =,1y x=-及圆的中心对称性和轴对称性知,将二、四象限的阴影部分旋转到一、三象限对应部分,显然所有阴影部分的面积之和等于一、三象限内两个扇形的面积之和,也就相当于一个半径为2的半圆的面积. ∴21222S ππ=⨯=阴影. 故选C .11.(2019·衡阳)如图,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=mx(m 为常数且m ≠0)的图象,都经过A (-1,2),B (2,-1),结合图象,则不等式kx +b >mx的解集是( ). A. x <-1 B. -1<x <0 C. x <-1或0<x <2 D.-1<x <0或x >2【答案】C .【解析】由图象得,不等式kx +b >mx的解集是x <-1或0<x <2,故选C . 1. (2019·滨州)如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴的正半轴上,反比例函数y =k x(x >0)的图象经过对角线OB 的中点D 和顶点C .若菱形OABC 的面积为12,则k 的值为( )A .6B .5C .4D .3【答案】C【解析】如图,连接AC ,∵四边形OABC 是菱形,∴AC 经过点D ,且D 是AC 的中点.设点A 的坐标为(a ,0),点C 坐标为(b ,c ),则点D 坐标为(2a b +,2c ).∵点C 和点D 都在反比例函数y=kx的图象上,∴bc=2a b +×2c,∴a=3b ;∵菱形的面积为12,∴ac=12,∴3bc=12,bc=4,即k=4.故选C .法2:设点A 的坐标为(a ,0),点C 的坐标为(c ,),则,点D 的坐标为(),∴,解得,k =4,故选C .2. (2019·无锡)如图,已知A 为反比例函数ky x=(x <0)的图像上一点,过点A 作AB ⊥y 轴,垂足为B .若△OAB 的面积为2,则k 的值为( ) A.2 B. -2C. 4D.-4【答案】D【解析】如图,∵AB ⊥y 轴, S △OAB =2,而S △OAB 12|k |,∴12|k |=2,∵k <0,∴k =﹣4.故选D .3. (2019·济宁)如图,点A 的坐标是(-2,0),点B 的坐标是(0,6),C 为OB 的中点,将△ABC 绕点B 逆时针旋转90°后得到△A 'BC '.若反比例函数y =kx的图象恰好经过A 'B 的中点D ,则k 的值是( ) A .9 B .12 C .15 D .18xy -6O【答案】C【解析】取AB 的中点(-1,3),旋转后D (3,5)∴k =3×5=15,故选C.4. (2019·枣庄) 如图,在平面直角坐标系中等腰直角三角形ABC 的顶点A,B 分别在x 轴,y 轴的正半轴上,∠ABC =90°,CA ⊥x 轴,点C 在函数ky x=(x>0)的图象上,若AB =1,则k 的值为 A.1D.2【答案】A【解析】在等腰直角三角形ABC 中,AB =1,∴AC∵CA ⊥x 轴,∴y C△ABC 中,∠BAC =45°,CA ⊥x 轴,∴∠BAO =45°,∴∠ABO =45°,∴△ABO 是等腰直角三角形,∴OA,∴x C,k =x C `y C =1,故选A5. (2019·淄博)如图,11122233,,,OA B A A B A A B ∆∆∆…是分别以123,,,A A A …为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点111222333(,),(,),(,),C x y C x y C x y …均在反比例函数4y x=(x >0)的图象上,则12100y y y +++L 的值为( )A .B .6C .D .【答案】20【解析】如图,过点C 1作C 1M ⊥x 轴,∵△OC 1A 1是等腰直角三角形,∴C 1M =OM =MA 1, 设C 1的坐标是(a ,a )(a >0),,把(a ,a )代入解析式4y x=(a >0)中,得a =2, ∴y 1=2,∴A 1的坐标是(4,0),又∵△C 2A 1A 2是等腰直角三角形, ∴设C 2的纵坐标是b (b >0),则C 2的横坐标是4+b ,把(4+b ,b )代入函数解析式得b =44b+,解得b =﹣2,∴y 2=﹣2,∴A 2的坐标是(,0),设C 3的纵坐标是c (c >0),则C 3横坐标为+c ,把(+c ,c )代入函数解析式得c解得c =,∴y 3=﹣.∵y 1=﹣,y 2=﹣,y 3=,…∴y 100=∴y 1+y 2+y 3+…+y 100=2+22﹣2+2﹣22+…+2100﹣299=2100=20.6.(2019·凉山)如图,正比例函数y =kx 与反比例函数y =x4的图象相交于A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则△ABC 的面积等于( ) A.8 B.6 C.4 D .2【答案】C【解析】设A 点的坐标为(m ,4m),则C 点的坐标为(-m ,-4m),∴1414422ABC OBC OAB S S S m m m m ∆∆∆=+=⨯+-⨯-=,故选C.7. (2019·天津) 若点A(-3,y 1),B(-2,y 2),C(1,y 3)都在反比例函数xy 12-=的图像上,则y 1,y 2,y 3的大小关系是A. y 2<y 1<y 3B. y 3 <y 1 <y 2C. y 1 <y 2<y 3D. y 3 <y 2<y 1 【答案】B【解析】因为反比例函数x y 12-=的图像在二四象限, 如图,将A,B,C 三点在图像上表示,答案为B8.(2019·台州)已知某函数的图象C与函数3yx=的图象关于直线y=2对称.下列命题:①图象C与函数3yx=的图象交于点(32,2);②点(12,-2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1,y1),B(x2,y2)是图象C上任意两点,若x1>x2,则y1>y2.其中真命题是( )A.①②B.①③④C.②③④D.①②③④【答案】A【解析】令y=2,得x=32,这个点在直线y=2上,∴也在图象C上,故①正确;令x=12,得y=6,点(12,6)关于直线y =2的对称点为(12,-2),∴点(12,-2)在图象C上,②正确;经过对称变换,图象C也是类似双曲线的形状,没有最大值和最小值,故③错误;在同一支上,满足x1>x2,则y1>y2,但是没有限制时,不能保证上述结论正确,故④错误.综上所述,选A.【知识点】反比例函数图象的性质,对称变换,交点坐标,增减性9.(2019·重庆B卷)如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(10,0),sin∠COA=45.若反比例函数y=kx(k﹥0,x﹥0)经过点C,则k的值等于()【答案】C【解析】过C作CD⊥OA交x轴于D∵OABC为菱形,A(10,0)∴OC=OA=10.∵sin∠COA=45∴CDOC=45即10CD=45∴CD=8, ∴OC=6,∴C(6,8)∵反比例函数y=kx(k﹥0,x﹥0)经过点C,k=6×8=48.故选C.9题图10. (2019·重庆A 卷)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线BD∥x 轴,反比例函数y =kx(k >0,x >0)的图象经过矩形对角线的交点E .若点A (2,0),D (0,4),则k 的值为 ( )A .16B .20C .32D .40【答案】B .【解析】如图,过点B 作BF ⊥x 轴于点F ,则∠AFB =∠DOA =90°.∵四边形ABCD 是矩形, ∴ED =EB ,∠DAB =90°.∴∠OAD +∠BAF =∠BAF +∠ABF =90°. ∴∠OAD =∠FBA . ∴△AOD ∽△BF A .∴OA ODBF AF=. ∵BD ∥x 轴,A (2,0),D (0,4), ∴OA =2,OD =4=BF . ∴244AF=. ∴AF =8.∴OF =10,E (5,4). ∵双曲线y =kx过点E , ∴k =5×4=20. 故选B .yxDCOAB二、填空题 18.(2019·威海)如图,在平面直角坐标系中,点A ,B 在反比例函数()0ky k x=≠的图像上运动,且始终保持线段AB =长度不变,M 为线段AB 的中点,连接OM .则线段OM 的长度的最小值是 (用含k 的代数式表示).【解析】过点A 作x 轴⊥AC ,过点B 作y 轴⊥BD ,垂足为C ,D ,AC 与BD 相交于点F ,连接OF .当点O 、F 、M 在同一直线上时OM 最短.即OM 垂直平分AB .设点A 坐标为(a ,a +4),则点B 坐标为(a +4,a ),点F 坐标为(a ,a ).由题意可知△AFB 为等腰直角三角形, ∵AB=∴AF =BF =4, ∵点A 在反比例函数y =的图像上,∴a (a +4)=k , 解得a =2,在RT △OCF 中,OFa =2)=∴OM =OF +FM =14.(2019·山西)如图,在平面直角坐标系中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A的坐标为(-4,0),点D的坐标为(-1,4),反比例函数y=kx(x>0)的图象恰好经过点C,则k的值为________.第14题图【答案】16【解析】分别过点D,C作x轴的垂线,垂足为E,F,则AD=5,∴AB=CB=5,∴B(1,0),由△DAE≌△CBF,可得BF=AE=3,CF=DE=4,∴C(4,4),∴k=xy=16.第14题答图15.(2019·黄冈)如图,一直线经过原点0,且与反比例函数y=kx(k>0)相交于点A,点B,过点A作AC⊥y轴,垂足为C.连接B C.若△ABC的面积为8,则k=.【答案】8【解析】因为反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴∴BOC的面积=∴AOC的面积=8÷2=4,又∴A是反比例函数y=kx图象上的点,且AC∴y轴于点C,∴∴AOC的面积=12|k|,∴12|k|=2,∴k>0,∴k=8.17.(2019·益阳)反比例函数xky =的图象上有一点P(2,n),将点P 向右平移1个单位,再向下平移1个单位得到点Q.若点Q 也在该函数的图象上,则k = . 【答案】6【解析】∵P(2,n)向右平移1个单位,再向下平移1个单位得到点Q (3,n-1),且点P 、Q 均在反比例函数xky =的图象上,∴⎪⎪⎩⎪⎪⎨⎧=-=312kn k n ,∴312k k =-,解得k=6.1. (2019·潍坊)如图,Rt △AOB 中,∠AOB =90°,顶点A ,B 分别在反比例函数1(0)y x x =>与5(0)y x x-=<的图象上.则tan ∠BAO 的值为 .【解析】分别过点A 、B 作x 轴的垂线AC 和BD ,垂足为C 、D .则△BDO ∽△OCA , ∴2S =()S BDO OCA BD OAV V ∵S △BDO =52,S △ACO =12, ∴2()=5BD OA,∴tan ∠BAO =BDOA=.2. (2019·巴中)如图,反比例函数ky x=(x>0)经过A,B 两点,过点A 作AC ⊥y 轴于点C,过点B 作BD ⊥y 轴于点D,过点B 作BE ⊥x 轴于点E,连接AD,已知AC =1,BE =1,S 矩形BDOE =4,则S △ACD =________.【答案】32【解析】连接AO,由反比例函数k 的几何意义可知,S △AOC =12S 矩形BDOE =2,因为AC =1,所以CO =4,因为DO =BE =1,所以CD =3,所以S △ACD =32.3. (2019·达州) 如图,A 、B 两点在反比例函数x k y 1=的图像上,C 、D 两点在反比例函数xky 2=的图像上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC=2,BD=4,EF=3,则12k k -=___________..〈【答案】4 【解析】设A (m ,m k 1) B (m ,m k 2) C (n ,n k 1) D (n ,nk2)由题意得:m-n=3 ,212=-m k k ,421=-n kk , 联立三个式子,解得:412=-k k . 18.(2019·长沙)如图,函数ky x=(k 为常数,k >0)的图象与过原点的O 的直线相交于A ,B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①△ODM 与△OCA 的面积相等;②若BM ⊥AM 于点M ,则∠MBA=30°;③若M 点的横坐标为1,△OAM 为等边三角形,则k =23+;④若MF=25MB ,则MD=2MA .其中正确的结论的序号是 .【答案】①③④4. (2019·眉山)如图,反比例函数()0ky x x=>的图像经过矩形OABC 对角线的交点M ,分别交AB 、BC 于点D 、E ,若四边形ODBE 的面积为12,则k 的值为 .【答案】4【解析】由题意得:E 、M 、D 位于反比例函数图象上,则S △OCE =12|k|,S △OAD =12|k|,过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S 矩形ONMG =|k|,又∵M 为矩形ABCO 对角线的交点,则S 矩形ABCO =4S 矩形ONMG =4|k|,由于函数图象在第一象限,∴k >0,则12422k kk ++=,∴k=4.故选:B.5. (2019·湖州)如图,已知在平面直角坐标系xOy 中,直线y =12x -1分别交x 轴、y 轴于点A 和点B ,分别交反比例函数y 1=k x (k >0,x >0),y 2=2k x(x <0)的图像于点C 和点D ,过点C 作C E ⊥x 轴于点E ,连结OC ,OD .若△COE 的面积与△DOB 的面积相等,则k 的值是 .【答案】2.【解析】如答图,过点D 作DF ⊥y 轴于点F ,则由CE ⊥x 轴于点E 可知:S △OCE =k ,S △ODF =2k .∵△COE 的面积与△DOB 的面积相等,∴S △OBD =S △FBD .易知A (2,0),B (0,-1),从而OB =BF =1,OF =2.令D (m ,-2),则由D 点在直线y =12x -1上,得-2=12m -1,解得m =-2,故D (-2,-2),从而2k =(-2)×(-2),解得k =2.6.(2019·宁波) 如图,过原点的直线与反比例函数ky x(k>0)的图象交于A,B 两点,点A 在第一象限,点C 在x 轴正半轴上,连接AC 交反比例函数图象于点D.AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E,连接DE,若AC =3DC,△ADE 的面积为8,则k 的值为________.【答案】6【解析】连接OE,在Rt△ABE中,点O是AB的中点,∴OE=12AB=OA,∴∠OAE=∠OEA,∵AE为∠BAC的平分线,∴∠OAE=∠DAE,∴∠OEA=∠DAE,∴AD∥OE,∴S△ADE=S△ADO,过点A作AM⊥x轴于点M,过点D作DN⊥x轴于点N,易得S梯AMND=S△ADO,∵△CAM∽△CDN,CD:CA=1:3,∴S△CAM=9,延长CA交y轴于点P,易得△CAM∽△CPO,可知DC=AP,∴CM:MO=CA:AP=3:1,∴S△CAM:S△AMO=3:1,∴S△AMO=3,∵反比例函数图象在一,三象限,∴k=6.7. (2019·衢州)如图,在平面直角坐标系中,O为坐标原点,口ABCD的边AB在x轴上,顶点D在y轴的正半轴上,点C在第一象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处,点B恰好为OE的中点,DE与BC交于点F.若y=kx(k≠0)图象经过点C.且S△BEF=1,则k的值为 .【答案】24【解析】连接OC,作FM⊥AB于M,延长MF交CD于N,设BE= a,FM=b,由题意知OB=BE=a,OA=2a,FNFDC =3a ,因为四这形ABCD 为平行四边形,所以DC ∥AB ,所以△BEF ∽△CDF ,所以BE :CD =EF :DF =1:3,所以NF =3b ,OD =FM +FN =4b ,因为S △BEF =1,即12ab =1,S △CDO =12CD ·OD =123a ×4b =6ab =12,所以k =xy =2S △CDO =24.三、解答题19.(2019·嘉兴)如图,在直角坐标系中,已知点B (4,0),等边三角形OAB 的顶点A 在反比例函数y =的图象上.(1)求反比例函数的表达式.(2)把△OAB 向右平移a 个单位长度,对应得到△O 'A 'B '当这个函数图象经过△O 'A 'B '一边的中点时,求a 的值.【解题过程】(1)如图1,过点A 作AC ⊥OB 于点C ,∵△OAB 是等边三角形,∴∠AOB=60°,OC=12OB ,∵B (4,0),∴OB=OA=4∴OC=2,AC=把点(2,的坐标代入ky x=,得k =∴y =(2)(I )如图2,点D 是AB 的中点,过点D 作DE ⊥x 轴于点E ,由题意得''A B =4,'''A B C ∠=60°,在Rt△'DEB 中,'B D =2,,'B E =1,∴'O E =3.把y =y x=,得4x =.∴OE=4,∴'a OO ==1. (II )如图3,点F 是''A O 的中点,过点F 作FH ⊥x 轴于点H .由题意得''A O =4,∠'''A O B =60°,在RT △'FO H 中,,'O H =1.把y =x =4,∴OH=4,∴'a OO ==3. 综上所述,得a 的值为1或3.20.(2019浙江省杭州市,20,10分)(本题满分10分)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速股为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式.(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地.求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.【解题过程】(1)∵ vt=480,且全程速度限定为不超过120千米/小时,∴ v关于t的函数表达式为:v=480t(0≤t≤4);(2)① 8点至12点48分时间长为245小时,8点至14点时间长为6小时,将t=6代入v=480t得v=80;将t=245代入v=480t得v=100.∴小汽车行驶速度v的范围为:80≤v≤100.②方方不能在当天11点30分前到达B地.理由如下:8点至11点30分时间长为72小时,将t=72代入v=480t得v=9607>120千米/小时,超速了.故方方不能在当天11点30分前到达B地.25.(2019·苏州,25,8)如图,A为反比例函数y=kx(其中k>0)图像上的一点,在上轴正半轴上有一点B,OB=4连接OA,A B.且OA =AB (1)求K的值;(2)过点B作BC⊥OB,交反比例函数y=kx(其中k>0)的图像于点C,连接OC交AB于点D,求ADDB的值.第25题图【解题过程】解:(1)过点A作AE⊥OB于E.∵OA=AB OB=4,∴OE=BE=12OB=2,在Rt△OAE中,AE=6=,∴点A坐标为(2,6),∵点A是反比倒函数kyx=图像上的点,∴6=2k,解得k=12.第25题答图(2)记AE 与OC 的交点为F .∵OB =4且BC ⊥OB ,点C 的横坐标为4,又∵点C 为反比例函数y =12x图像上的点,∴点C 的坐标为(4,3),∴BC =3. 设直线OC 的表达式y =mx ,将C (4,3)代入可得m =34,∴直线OC 的表达式y =34x ,∵AE ⊥OB ,OE =2,∴点F 的横坐标为2.将x =2代入y =34x 可得y =32,即EF =32;∴AF =A E -EF =6 -32=92.∵AE ,BC 都与x 轴垂直,∴AE ∥BC ,∴△ADF ∽△BD C .∴32AD AF EB BC ==. 21.(2019山东威海,21,8分) (1)阅读理解如图,点A ,B 在反比例函数的图象上,连接AB ,取线段AB 的中点C ,分别过点A ,C ,B 作x 轴的垂线,垂足为E ,F ,G ,CF 交反比例函数的图象于点D ,点E ,F ,G 的横坐标分别为n -1,n ,n +1(n >1).小红通过观察反比例的图象,并运用几何知识得到结论: AE +BG =2CF ,CF >DF . 由此得出一个关于之间数量关系的命题: 若n >1,则(2)证明命题小东认为:可以通过“若≥0,则≥”的思路证明上述命题.1y x=1y x=1y x=112,,11n n n-+a b -a b小晴认为:可以通过“若>0,>0,且≥1,则≥”的思路证明上述命题. 请你选择一种方法证明(1)中的命题. 【解题过程】(1)∵A ,D ,B 都在反比例的图象上,且点E ,F ,G 的横坐标分别为n -1,n ,n +1(n >1), ∴AE =BG =DF =. 又∵AE +BG =2CF , ∴CF =又∵CF >DF ,n >1, ∴>,即>. 故答案为>. (2)选择选择小东的思路证明结论>, ∵n >1,∴>0, ∴>. 19.(2019江苏盐城卷,19,8) 如图,一次函数y =x +1的图像交y 轴于点A ,与反比例函数xky =(x >0)图像交于点B (m ,2). (1)求反比例函数的表达式. (2)求△AOB 的面积.【思路分析】(1)根据已知条件,可以求出点A 的坐标,在根据一次函数与反比例函数交于点B ,就可以求出点B 点的横坐标m ,则点B 的坐标就有了,所以就可以求出反比例函数的表达式。
第14讲 反比例函数
.
一
分 析 :}反 比 例 两 数 的 儿 何 特 妇Js, F { : 圳
JL I
3性 质 : . 当 : 0时 , 象 的 两 个 分 分 别 在 > 图 { 支 三 j 象 限 内 , 在 每 个 象 限 内 随 , 增 日. 可 r的 ; 是 o时 , 象 的 两 个 分 支 分 当 ( 图 象 限 内 , 每 个象 限 内 , 随 . 日在 r
.
( ( (
上
厶
.
Ⅱ 是 (, 得 — < )解
8, 选 I. 故 j
大 而 别 在
解 题 力 小 结 : 有 少 涉 及 反 比 例 『 法 常 柏 数 图象 与矩 形 ( t角 彤 ) 积 的 关 系 题 E, 或 面 j
L
的 增 大 而
解这 类题时 , 定要 沣意 刮 一兰 ( 一 矗为常 数 ,
/ 0) 可 表示 为 - , 此 引 出 儿何 盥 义 e ≠ 也 v = 南
4 儿 何 特 : 同 1 若V— . 如 。 B )
点 A( , ) 反 比例 是
L
C )
D ) ) , 一 4
数 y一 图 象 上 的 8— 任
J
上 C
.
S J, I .u 、
—
\ 5l4 \( ,
,
14 . . … .
r J
5H m
3
,,J J 热点提示 】 t' J '、、 ’ ’、一 ●
本 讲 知 识 在 中考 中仍 将 以 求 函 数 表 达 式 及 结 合 图 象 性 质 解 决 有 关 问 题 为 主 , 题 常 考
(+q, 1 一警 - 7帔 . 51 )- .川一 . 选D . -4 ・ ’ I
专题14反比例函数图像的对称性
专题14反比例函数图像的对称性方法技巧:①当k1+k2=0时,反比例函数与的图像关于x 轴,y 轴对称;②反比例函数的图像既是轴对称也是中心对称图形,它的对称轴是直线y=一、妙用反比例函数的图像的轴对称性1、如图l 1是反比例函数在第一象限的函数图象,且过点A (2,1),l 1与l 2关于x 轴对称,那么图像l 2的函数解析式为_______(x >0)2、双曲线的对称轴的对称轴有( ) A 、0条 B 、1条 C 、2条 D 、3条3、如图以O 为圆心,半径为2的圆与双曲线(x >0)交于A 、B 两点,若AB 的长度为,则k=______4、如图直线y=x-1交x 轴D ,交双曲线(x >0)于B ,直线y=2x 交双曲线(x >0)于A ,若OA=OB ,求k 的值。
二、妙用反比例函数的图像的中心对称性5、若直线y= -2x 与双曲线交于(1,-2),则另一个交点坐标为______6、已知直线y=kx (k <0)与双曲线交于A (x 1,y 1),B (x 2,y 2)两点,则3x 1y 2-8x 2y 1=______7、如图点P (3a ,a )是双曲线(x >0)与圆O 的一个交点,图中阴影部分的面积为10π。
(1)k=______;(2)某同学在圆O 内做随机扎针实验,针头落在阴影区域内的概率为______8、如图点A (3,5)关于原点O 的对称点为点C ,分别过点A 、C 作y 轴的平行线,与双曲线(0<k <15)交于点B 、D ,连接AD 、BC ,AD 与x 轴交于点E (-2,0)。
(1)k=______;(2)阴影部分的面积之和是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 形,则它的面积为________.
图 14-2
·新课标
第14讲 │ 归类示例
(1)比较反比例函数值的大小,在同一个象限内,根据反比例函 数的性质比较,在不同象限内,不能按其性质比较,y 值的大小只能 根据特征确定大小. (2)利用反比例函数中 k 的几何意义时,要注意点的坐标与线段 长之间的转化, 并且利用解析式和横坐标, 求各点的纵坐标是求各矩 形面积的关键.
图14-4
·新课标
第14讲 │ 归类示例
1 [解析] (1)设 A 点的坐标为(a,b),由△OAM 的面积为 1,得 ab 2 =1; (2)A 点关于 x 轴的对称点和 B 点的连线再与 x 轴的交点即为 P 点.
k 解:(1)设 A 点的坐标为(a,b),则 b=a. ∴ab=k. 1 1 ∵ ab=1,∴ k=1.∴k=2. 2 2 2 ∴反比例函数的解析式为 y=x.
1 1 S△AOB=S△AOC+S△BOC= ×2×2+ ×2×4=6. 2 2
·新课标
第14讲 │ 归类示例
1 [2011· 济宁] 如图 14-4,正比例函数 y= x 的图象与反比例 2 k 函数 y=x(k≠0)在第一象限的图象交于 A 点,过 A 点作 x 轴的垂线,垂 足为 M,已知△OAM 的面积为 1. (1)求反比例函数的解析式; (2)如果 B 为反比例函数在第一象 限图象上的点(点 B 与点 A 不重合), 且 B 点的横坐标为 1,在 x 轴上求一点 P,使 PA+PB 最小.
F [解析] 由 p= S ,当压力一定时,p 与 S 成反比例.
·新课标
第14讲 │ 考点随堂练
2.已知一个函数的关系满足下表(x 为自变量); x -4 -3 -2 -1 1 2 3 4 y 1.5 2 3 6 -6 -3 -2 -1.5 则这个函数的关系式为( C ) -x 6 6 x A.y=x B.y= 6 C.y=-x D.y=5
k [解析] 把 P(-1,4)代入 y=x(k≠0)得 k=-1× 4=-4, 故选择 D.
·新课标
第14讲 │ 归类示例
类型之二 反比例函数的图象与性质
命题角度: 1.反比例函数的图象与性质 2.反比例函数中 k 的几何意义 7 [2010· 临沂] 已知反比例函数 y=-x图象上三个点的坐标 分别是 A(-2,y1)、B(-1,y2)、C(2,y3),能正确反映 y1、y2、y3 的大小关系的是( C ) A.y1>y2>y3 B.y1>y3>y2 C.y2>y1>y3 D.y2>y3>y1
6 [解析] 由表格知 xy=-6,所以 y=-x.
·新课标
第14讲 │ 考点随堂练
3.某厂有煤 1500 吨,求得这些煤能用的天数 y 与每天用煤的吨 1500 y= x 数 x 之间的函数关系式为__________.
1500 [解析] 根据题意 xy=1500,则 y= x .
4.当 m 取什么值时,函数 y=(m-2)x3-m2 是反比例函数?
·新课标
第14讲 │ 考点随堂练
2 12.[2011· 南京]设函数 y=x与 y=x-1 的图象的交点坐标为(a,b), 1 1 1 -2 则a-b的值为__________.
y=x-1, x1=2, [解析] 解法一: 2 解得 y1=1, y=x.
x1=-1, y2=-2.
·新课标
第14讲 │ 归类示例
归类示例
类型之一 反比例函数的概念
命题角度: 1.反比例函数的概念 2.求反比例函数的解析式 k [2011· 温州] 已知点 P(-1,4)在反比例函数 y=x(k≠0)的图象 上,则 k 的值是( D ) 1 A.- 4 1 B. 4 C.4 D.-4
·新课标
第14讲 │ 归类示例
·新课标
·新课标
第14讲 │ 考点随堂练
14.某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥 湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺了若 干块木块,构筑成一条临时近道.木板对地面的压强 p(Pa)是木 板面积 S(m2)的反比例函数,其图象如图 14-6 所示. (1)请直接写出这一函数表达式和自变量取值范围; (2)当木板面积为 0.2 m2 时,压强是多少? (3)如果要求压强不超过 6000 Pa,木板的面积至少要多大?
·新课标
第14讲 │ 考点随堂练
k 解: (1)设反比例函数关系式为 y=x,因为反比例函数图象经过 点 P(-2,1). 2 所以 k=-2.即反比例函数关系式为 y=-x; 2 (2)因为点 Q(1,m)在 y=-x上,所以 m=-2.即 Q(1,-2); (3)示意图如图所示.当 x<-2 或 0<x<1 时,一次函数的值大于 反比例函数的值.
·新课标
第14讲 │ 归类示例
图14-3
·新课标
第14讲 │ 归类示例
m 解:(1)将 B(-2,-4)代入 y= x ,解得 m=8. 8 8 ∴反比例函数的解析式为 y=x,又∵点 A 在 y=x图象上, ∴a=2,即点 A 的坐标为(4,2). 将 A(4,2),B(-2,-4)代入 y=kx+b 得 2=4k+b, k=1, 解得 -4=-2k+b, b=-2. ∴一次函数的解析式为 y=x-2. (2)如图,设直线与 x 轴相交于点 C,则 C 点的坐标为(2,0).
·新课标
第14讲 │ 归类示例
类型之三 反比例函数的应用
命题角度: 1.反比例函数在实际生活中的应用 2.反比例函数与一次函数的综合运用 [2011· 綦江] 如图 14-3,已知 A(4,a),B(-2,-4)是一次 m 函数 y=kx+b 的图象和反比例函数 y= x 的图象的交点. (1)求反比例函数和一次函数的解析式; (2)求△AOB 的面积.
图 14-6
·新课标
第14讲 │ 考点随堂练
600 解:(1)p= S (S>0); 600 (2)当 S=0.2 时,p= 0.2 =3000.即压强是 3000 Pa. 600 (3)由题意知, S ≤6000, ∴S≥0.1. 即木板面积至少要有 0.1 m2.
·新课标
第14讲 │ 考点随堂练
[解析] 连接 AO、BO,则 S△ABO=S△ABO=S△APO+S△BPO= 1 1 2×|-4|+2×|2|=3.故选 A.
·新课标
第14讲 │ 考点随堂练
1 8.[2010· 孝感]如图 14-3,点 A 在双曲线 y=x上,点 B 在双曲线 y 3 =x上,且 AB∥x 轴,点 C、D 在 x 轴上,若四边形 ABCD 为矩形, 2 则它的面积为________.
·新课标
第14讲 │ 考点随堂练
7.如图 14-2,过 y 轴正半轴上的任意一点 P,作 x 轴的平行 4 2 线,分别与反比例函数 y=-x和 y=x的图象交于点 A 和点 B, 若点 C 是 x 轴上任意一点,连接 AC、BC,则△ABC 的面积为 ( A ) A.3 B.4 C.5 D.6 图 14-2
解: 由题意得,m-2≠0 且 3-m2=-1,解得 m=-2. 所以当 m=-2 时,y=(m-2)x3-m2 是反比例函数.
·新课标
第14讲 │ 考点随堂练
考点2 反比例函数的图象与性质
一、三 二、四
k
减小
增大
·新课标
第14讲 │ 考点随堂练
2k-1 5.[2011· 黄石] 若双曲线 y= x 的图象经过第二、 四象限, k 则 的取值范围是( B ) 1 1 1 A.k> B.k< C.k= D.不存在 2 2 2
·新课标
第14讲 │ 考点随堂练
考点3 反比例函数的应用
·新课标
第14讲 │ 考点随堂练
10.某闭合电路中, 电源电压为定值, 电流 I(A)与电阻 R(Ω)成反比 例,该电路中电流 I 与电阻 R 之间函数关系的图象如图 14-4 所 示,则用电阻 R 表示电流 I 的函数解析式为( A ) 6 A.I=R 3 C.I=R 6 B.I=-R 2 D.I=R
第14讲 │ 反比例函数
第14讲 反比例函数
·新课标
第14讲 │ 考点随堂练 │考点随堂练│
考点1 反比例函数的定义
k x
乘积
·新课标
第14讲 │ 考点随堂练
1.下列关系中的两个量,成反比例的是( B ) A.面积一定时,矩形周长与一边长 B.压力一定时,压强与受力面积 C.读一本书,已读的页数与余下的页数 D.某人年龄与体重
解:(1)∵点 P(-1,n)在直线上 y=-3x 上, m-5 ∴n=-3×(-1)=3.∵点 P(-1,n)在双曲线 y= x 上, ∴m-5=-3,即 m=2. (2)∵m-5=-3<0,∴当 x<0 时,y 随 x 的增大而增大. m-5 又∵点 A(x1, 1), 2, 2)在双曲线 y= x 上, x1<x2<0, y B(x y 且 ∴y1<y2.
1 1 1 则交点为(2,1)或(-1,-2).所以a-b=-2. 2 解法二:把交点(a,b)分别代入 y=x和 y=x-1 中得,ab=2, 1 1 b-a 1 b-a=-1,所以a-b= ab =-2.
·新课标
第14讲 │ 考点随堂练
13.[2011· 襄阳] 已知直线 y=-3x 与双曲线 y= P(-1,n). (1)求 m 的值; m-5 (2)若点 A(x1,y1),B(x2,y2)在双曲线 y= 上,且 x1<x2<0, x 试比较 y1,y2 的大小. m-5 质,当 2k-1<0 时,图象在 第二、四象限,即可求出 k 的取值范围,故选 B.