三视图及其表面积体积
高考数学一轮复习-81-空间几何体的三视图-直观图-表面积与体积课件-新人教A
=172a2.所以 S 球=4πR2=4π×172a2=73πa2.
(2)这个几何体是一个圆台被轴截面割出来的一半.
根据图中数据可知圆台的上底面半径为 1,下底面半径为 2,高为 3,母线长为 2,几何体的表面积是两个半圆的面 积、圆台侧面积的一半和轴截面的面积之和,故这个几何 体的表面积为 S=12π×12+12π×22+12π×(1+2)×2+12 ×(2+4)× 3=112π+3 3. 答案 (1)B (2)112π+3 3
可能是圆柱,排除选项C;又由俯视图可知,该几何体
不可能是棱柱或棱台,排除选项A,B,故选D.
(2)如图,在原图形OABC中, 应有 OD=2O′D′=2×2 2 =4 2(cm), CD=C′D′=2 cm. ∴OC= OD2+CD2 = (4 2)2+22=6(cm), ∴OA=OC, 故四边形 OABC 是菱形. 答案 (1)D (2)C
诊断自测
1.判断正误(在括号内打“√”或“×”) 精彩PPT展示
(1)有两个面平行,其余各面都是平行四边形的几何体是
棱柱.
(×)
(2)有一个面是多边形,其余各面都是三角形的几何体是
棱锥.
( ×)
(3)正方体、球、圆锥各自的三视图中,三视图均相同.
(×)
(4)圆柱的侧面展开图是矩形.
(√)
2.(2014·福建卷)某空间几何体的正视图是三角形,则该几
(2)画出坐标系 x′O′y′,作出△OAB 的 直观图 O′A′B′(如图).D′为 O′A′的中 点.易知 D′B′=12DB(D 为 OA 的中点), ∴S△O′A′B′=12× 22S△OAB= 42× 43a2= 166a2.
利用三视图求几何体的表面积与体积
圆锥的表面积:S圆锥 r(rl)
圆台的表面积: S(r 2 r '2 r l r 'l) 圆台
球的表面积:
S 4R2 球
柱体的体积:V Sh
柱
锥体的体积: V 1Sh
锥3
台体的体积:V1(S S'SS')h
台3
球的体积:
4R3
V
球
3
例1.已知一几何体的三视图如下图,试求其表面积与 体积.
1
1
长对正 高平齐 宽相等
正视图
侧视图
俯视图
(2)所求多面体的体积
V V 长 方 体 V 三 棱 锥 4 4 6 1 3 1 2 2 2 2 2 8 3 4 c m 3
长对正 高平齐 宽相等
练习
一个几何体的正视图为一个三角形,则这个几何体可能是下列 几何体中的_______(填入所有可能的几何体前的编号) ①三棱锥 ②四棱锥 ③三棱柱 ④四棱柱 ⑤圆锥 ⑥圆柱 一个长方体去掉一个小长方体,所得几何体的正视图与侧(左) 视图分别如右图所示,则该几何体的俯视图为:
1
主视图
侧视图
2
2 236cm2, 3cm3
俯视图
直观图
长对正 高平齐 宽相等
练习 长对正 高平齐 宽相等
已知某个几何体的三视图如图(主视图中的弧线是半圆),
根据图中标出的尺寸(单位:cm),可得这个几何体的体积
A 是() Leabharlann m3 .1A.8
B.8 2
3
3 2
C.12
D.12 2
3
2 主视图
侧视图
2
俯视图
练习
如右图为一个几何体的三视图,尺寸如图所示,则该几何
2019数学(理)二轮精选讲义专题五 立体几何 第一讲空间几何体的三视图、表面积与体积 含答案
专题五立体几何第一讲空间几何体的三视图、表面积与体积考点一空间几何体的三视图与直观图1.三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.原图形面积S与其直观图面积S′之间的关系S′=错误!S。
[对点训练]1.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()[解析]两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A.故选A。
[答案]A2.(2018·河北衡水中学调研)正方体ABCD-A1B1C1D1中,E 为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()[解析]过点A,E,C1的截面为AEC1F,如图,则剩余几何体的左视图为选项C中的图形.故选C。
[答案]C3.(2018·江西南昌二中模拟)一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为()A.8 B.4 C.4错误!D.4错误![解析]由三视图可知该几何体的直观图如图所示,由三视图特征可知,P A⊥平面ABC,DB⊥平面ABC,AB⊥AC,P A=AB =AC=4,DB=2,则易得S△P AC=S△ABC=8,S△CPD=12,S梯形ABDP =12,S△BCD=错误!×4错误!×2=4错误!,故选D。
[答案]D4.如图所示,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积为________.[解析]直观图的面积S′=错误!×(1+1+错误!)×错误!=错误!.故原平面图形的面积S=错误!=2+错误!.[答案]2+错误![快速审题](1)看到三视图,想到常见几何体的三视图,进而还原空间几何体.(2)看到平面图形直观图的面积计算,想到斜二侧画法,想到原图形与直观图的面积比为错误!.由三视图还原到直观图的3步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.考点二空间几何体的表面积与体积1.柱体、锥体、台体的侧面积公式(1)S柱侧=ch(c为底面周长,h为高);(2)S锥侧=错误!ch′(c为底面周长,h′为斜高);(3)S台侧=错误!(c+c′)h′(c′,c分别为上下底面的周长,h′为斜高).2.柱体、锥体、台体的体积公式(1)V柱体=Sh(S为底面面积,h为高);(2)V锥体=错误!Sh(S为底面面积,h为高);(3)V台=错误!(S+错误!+S′)h(不要求记忆).3.球的表面积和体积公式S表=4πR2(R为球的半径),V球=43πR3(R为球的半径).[对点训练]1.(2018·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4 C.6 D.8[解析]由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上,下底边的长分别为1 cm,2 cm,高为2 cm,直四棱柱的高为2 cm.故直四棱柱的体积V=1+22×2×2=6 cm3.[答案]C2.(2018·哈尔滨师范大学附中、东北师范大学附中联考)某几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积是()A.错误!+2B.错误!+2C.错误!+3 D。
第8讲三视图
第8讲三视图,体积与表面积的计算[知识梳理]1.空间几何体的结构特征2.空间几何体的三视图1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的表面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.柱、锥、台和球的表面积和体积3.常见几何体的侧面展开图及侧面积题型一空间几何体的三视图(高频考点题,多角度突破)考向一已知几何体,识别三视图1.(东北四市联考)如图,在正方体ABCDA1B1C1C1中,P是线段CD的中点,则三棱锥PA1B1A的侧视图为()考向二已知三视图,判断几何体的形状2.一个几何体的三视图如图所示,则该几何体的直观图可以是()考向三已知三视图中的两个视图,判断第三个视图3.(石家庄质检)一个三棱锥的正视图和俯视图如图所示,则该棱锥的侧视图可能为()【针对补偿】1.(济南模拟)如图,多面体ABCDEFG的底面ABCD为正方形,FC=GD=2EA,其俯视图如图所示,则其正视图和侧视图正确的是()2.(北京)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.32B.2 3 C.22D.23.(南昌一模)如图,在正四棱柱ABCDA1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥PBCD的正视图与侧视图的面积之比为()A.1∶1 B.2∶1 C.2∶3 D.3∶2[知识自测]1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π2.(全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π3.正三棱柱ABC A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A B 1DC 1的体积为______.题型一 空间几何体的表面积与侧面积(基础拿分题,自主练透)(1)(课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16(2)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为______.【针对补偿】1.(全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )A.17π B.18π C.20π D.28π2.(黑龙江省大庆中学期中)一个体积为123的正三棱柱的三视图如图所示,则这个三棱柱的侧视图的面积为()A.6 3 B.8 C.8 3 D.12题型二空间几何体的体积(高频考点题,多角突破)考向一求以三视图为背景的几何体的体积1.(课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()A.90π B.63π C.42π D.36π考向二不规则几何体的体积3.如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF 均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A.23 B.33 C.43 D.32考向三 柱体与锥体的内接问题4.(2015·湖南卷)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为⎝ ⎛⎭⎪⎫材料利用率=新工件的体积原工件的体积( )A.89πB.827π C.24(2-1)3π D.8(2-1)3π【针对补偿】3.(新课标全国Ⅱ卷)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.134.(山东)由一个长方体和两个14圆柱体构成的几何体的三视图如下图,则该几何体的体积为______.题型三 球与几何体的切接问题 考向一 正方体(长方体)的外接球1.(天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为______.考向二 直三棱柱的外接球2.已知直三棱柱ABC A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310【针对补偿】5.(广州市综合测试)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( )A .20π B.205π3C .5πD.55π6[A 基础巩固练]1.(浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1B.π2+3C.3π2+1 D.3π2+3 2.(山西省高三考前质量检测)某几何体的三视图如图所示,若该几何体的体积为37,则侧视图中线段的长度x 的值是( )A.7 B .27 C .4D .53.(课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π45.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .28+6 5B .30+6 5C .56+12 5D .60+125。
人教版九年级数学下册第3课时 由三视图确定几何体的表面积或体积
2. 如图是一个几何体的三视图,则这个几何体
的A侧.18面cm积2 是( A )
B.20cm2
C. 18 6
3 4
10 2
2
cm
D. 18
75 2
3
解析:由三视图可得,几何体是三棱柱,几何体的侧面积 是三个矩形的面积和,矩形的长为3cm,宽为2cm,∴侧面 积为3×3×2=18cm2.
=
300
240
1 2
=36000(cm2
)
S侧面面积= 300 200=60000(cm2 )
S帐篷表面积=36000 +60000 =96000(cm2)
课堂小结
由三视图确定几何体的表面积或体积,一般步骤为: ① 想象:根据各视图想象从各个方向看到的几何体形状; ② 定形:综合确定几何体(或实物原型)的形状; ③ 展开图:画出展开图,求展开面积。
由三视图描述实物形状,画出物体表面展开图
由三视图确定几何体的表面积或是体积, 首先要确定该几何体的形状。
1.根据下列几何体的三视图,画出它们的展开图。
(1)
(2)
(3)
典例解析
例1 某工厂要加工一批密封罐,设计者给出了密封
罐的三视图,请你按照三视图确定制作每个密封罐所
需钢板的面积.
50
100 50
第3课时 由三视图确定几何体的 表面积或体积
R·九年级下册
复习导入
由三视图描述几何体(或实物原型),一般先根据各视图想象从 各个方向看到的几何体形状, 然后综合起来确定几何体(或实物原 型)的形状, 再根据三视图“长对正、高平齐、宽相等”的关系, 确定轮廓线的位置,以及各个方向的尺寸.
课题:由三视图求几何体的表面积和体积 (2)
课题:由三视图求几何体的表面积和体积【学习目标】1.了解立体图形展开图的概念.2.会利用三视图计算立体图形的侧面积和表面积.【学习重点】利用三视图想象立体图形.【学习难点】画出立体图形的展开图并进行有关计算.情景导入生成问题旧知回顾:1.长宽高分别是5,4,3的长方体表面积为94.2.半径为5的球体的表面积为100π.自学互研生成能力知识模块一根据三视图求几何体的表面积【自主探究】长方体的主视图与俯视图如图所示,则这个长方体的体积是(C)A.52B.32C.24D.9【合作探究】教材P99例5:归纳:①由三视图还原出几何体;②按题目要求求出侧面积、底面积和全面积.知识模块二根据三视图求物体的体积【自主探究】如图所示是某几何体的三视图.(1)指出该几何体的名称;(2)求出该几何体侧面展开图的面积;(3)求出该几何体的体积.解:(1)六棱柱;(2)48cm2;(3)243cm3.【合作探究】如图是某几何体的展开图.(1)这个几何体的名称是;(2)画出这个几何体的三视图;(3)求出这个几何体的体积.(π取3.14)解:(1)圆柱;(2)三视图为:(3)体积为V=πr2h=3.14×52×20=1570.交流展示生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一 根据三视图求几何体的表面积知识模块二 根据三视图求物体的体积检测反馈 达成目标【当堂检测】1.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为24.2.如图是一个几何体的三视图,已知左视图是一个等边三角形,根据图中尺寸(单位:cm ),求该几何体的表面积.解:该几何体是正三棱柱,由正视图知正三棱柱的高为3cm ,底面三角形的高为3cm ,则底面边长为2,故S 底面面积=12×2×3=3(cm 2),S 侧面面积=2×3×3=18(cm 2),故这个几何体的表面积S =2S 底面面积+S 侧面面积=23+18(cm 2).【课后检测】见学生用书课后反思 查漏补缺1.这节课的学习,你的收获是:________________________________________________________________________2.存在困惑:________________________________________________________________________。
三视图、体积、表面积
《三视图、体积、表面积》知识要点:一、空间几何体的三视图和直观图1.投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
2.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形; 正视图——光线从几何体的前面向后面正投影,得到的投影图; 侧视图——光线从几何体的左面向右面正投影,得到的投影图; 正视图——光线从几何体的上面向下面正投影,得到的投影图; 注:(1)俯视图画在正视图的下方,“长度”与正视图相等;侧视图画在正视图的右边,“高度”与正视图相等,“宽度”与俯视图。
(简记为“正、侧一样高,正、俯一样长,俯、侧一样宽”.直(2)正视图,侧视图,俯视图都是平面图形,而不是观图。
3.直观图:直观图——是观察着站在某一点观察一个空间几何体而画出的图形。
直观图通常是在平行投影下画出的空间图形。
斜二测法: (1)在已知图形中取互相垂直的轴Ox 、Oy ,(即取90xoy ∠=︒ );(2)画直观图时,把它画成对应的轴'',''o x o y ,取'''45(135)x o y ∠=︒︒或,它们确定的平面表示水平平面;(3)在坐标系'''x o y 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。
结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的24倍. 解决两种常见的题型时应注意:(1)由几何体的三视图画直观图时,一般先考虑“俯视图”.(2)由几何体的直观图画三视图时,能看见的轮廓线和棱画成实线,不能看见的轮廓线和棱画成虚线。
二、空间几何体的表面积与体积(一 )空间几何体的表面积1.棱柱、棱锥的表面积: 各个面面积之和2 .圆柱的表面积3 .圆锥的表面积2r rl S ππ+= 4 .圆台的表面积22R Rl r rl S ππππ+++= 5 .球的表面积24R S π=222r rl S ππ+=(二)空间几何体的体积1.柱体的体积 h S V ⨯=底2.锥体的体积 h S V ⨯=底313.台体的体积 h S S S S V ⨯++=)31下下上上( 4.球体的体积 334R V π=典型例题:【例1】下列几何体各自的三视图中,有且仅有两个视图相同的是( )A .①②B .①③C .①④D .②④【例2】利用斜二测画法可以得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形,以上结论正确的是( ) A .①②B .①C .③④D .①②③④【例3】 (2009·天津)如上图是一个几何体的三视图.若它的体积是33,则a =________.【例4】 (2010·山东青岛调研)已知一个四棱锥的正视图(主视图)和侧视图(左视图)为两个完全相同的等腰直角三角形(如图所示),腰长为1,则该四棱锥的体积为( )正(侧)视图A.23B.13C.26D.16【例6】若某几何体的三视图(单位:cm)如上图所示,则此几何体的体积是________ cm 3.【例7】一个空间几何体的三视图及其相关数据如上图所示,则这个空间几何体的表面积是( )A.11π2B.11π2+6 C .11π D.11π2+33 【例8】如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE 、△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23 B.33 C.43 D.32强化训练:1.(2009·福建)如下图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )2. (2010·广东中山调研)已知一个空间几何体的三视图及其尺寸如图所示,则该空间几何体的体积是( )A.143B.73C .14D .7 3.(2010·江苏南京调研)如下图是一个几何体的三视图(单位:m),则几何体的体积为________.4.有一个正三棱柱的三视图如下图所示(俯视图为正三角形),则这个三棱柱的高和底面边长分别为________.5.一个几何体的三视图如下图所示,则该几何体的体积等于________.6.如图是一个长方体截去一个角所得多面体的直观图和三视图. (1)求该多面体的体积;(2)在所给直观图中连结BC ′,证明:BC ′∥面EFG.。
根据三视图求几何体的表面积和体积
想象
医学资料
• 仅供参考,用药方面谨遵医嘱
根据三视图求几何体的表面 积和体积
学习目标
• 1、能想象出几何体的展开图 •描述实物形状,画出物体表面展开图
由三视图描述实物形状,画出物体表面展开图
练习
根据几何体的三视图画出它的表面展开图:
实 物
展 开 图
展
开
实
图
物
实 物
展 开 图
C
2.一个机器零件的三视图如图所示(单位:cm),这个机器零件 是一个什么样的立体图形?它的表面积是多少?
15
15
10 主视图
12 左视图
10 俯视图
圆柱的表面积: S圆柱 2r22π rh
柱体的体积: V柱S底h
S 圆锥的表面积: 圆锥 r2 r母 l
锥体的体积:
V锥
1 3S底h
C A
例6 某工厂要加工一批密封罐,设计者给出了密封 罐的三视图,请你按照三视图确定制作每个密封罐 所需钢板的面积.
50
50
100
100
解:由三视图可知,密封罐的形状是正六棱柱.
密封罐的高为50mm,店面正六边形的直径为 100mm,边长为50mm,图是它的展开图. 由展开图可知,制作一个密封罐所需钢板的面积 为
高考数学 高频考点归类分析 由三视图判别立体图形和表面积、体积的计算(真题为例)
典型例题:例1. (2012年全国课标卷理5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为【 】()A 6 ()B 9 ()C 12 ()D 18【答案】B 。
【考点】由三视图判断几何体。
【解析】由三视图可知,该几何体是三棱锥,底面是俯视图,高为3。
因此此几何体的体积为:11633932V =⨯⨯⨯⨯=。
故选B 。
例2. (2012年北京市理5分)某三梭锥的三视图如图所示,该三梭锥的表面积是【 】 A. 2865+ B. 3065+ C. 56125+ D. 60125+【答案】 B 。
【考点】三棱锥的三视图问题。
【解析】如下图所示。
图中蓝色数字所表示的为直接从题目所给三视图中读出的长度,黑色数字代表通过勾股定理的计算得到的边长。
本题所求表面积应为三棱锥四个面的面积之和。
利用垂直关系、等腰三角形的性质和三角形面积公式,可得:()1S =234=102⋅+⋅底,()()()22111S =234=10S =45=10S =25415=65222⋅+⋅⋅⋅⋅⋅-后左右,,这里有两个直角三角形,一个等腰三角形。
∴该三梭锥的表面积是3065+。
故选B 。
例3. (2012年广东省理5分)某几何体的三视图如图所示,它的体积为【 】A .12π B.45π C.57π D.81π 【答案】C 。
【考点】由三视图求体积。
【解析】由三视图可知,此组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱,几何体的直观图如图所示。
圆锥的高221534PO 几何体的体积1=9594573V V V 圆柱圆锥。
故选C 。
例4. (2012年广东省文5分)某几何体的三视图如图所示,它的体积为【 】A . 72πB . 48πC . 30πD . 24π 【答案】C 。
【考点】由三视图求体积。
【解析】由图知,该几何体是圆锥和半球体的组合体,球的半径是3,圆锥底面圆的半径是3,圆锥母线长为5,由圆锥的几何特征可求得圆锥的高为4, 则它的体积2311434330323V V V πππ=+=⋅⋅+⋅⋅=半球体圆锥。
空间几何体三视图、表面积及体积
面积,h为高);
4 3 (7)球的表面积和体积公式:S=4πR ,V= πR (R为球的半径). 3
2
知识回扣 小题速解
解题绝招
限时速解训练
首页
上页 下页
尾页
知识 回扣
必记知识 重要结论
1.一个物体的三视图的排列规则 俯视图放在正视图的下面,长度与正视图的长度一样,侧(左)视图放在 正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽 度一样,即“长对正、高平齐、宽相等”.
知识回扣 小题速解
解题绝招
限时速解训练
首页
上页 下页
尾页
小题 速解
类型一
三视图与直观图的辨识和画法
[ 例1]
某几何体的正视图和侧视图均如图所示,则该几何体的俯视图 )
不可能是(
(基本法) 从正视图和侧视图想像直观图,再检验答案. 若下部分是圆柱,上部分可以是圆柱或者棱柱,A、B、C适合题意, 若是D答案,其正视图应为(如右图)中间有虚线.
2 1 3 到的,根据三视图可知其表面积为6 2 - ×1×1 +2× ×( 2 4
知识回扣 小题速解
解题绝招
限时速解训练
首页
上页 下页
尾页
知识 回扣
必记知识 重要结论
2.(1)设长方体的相邻的三条棱长为a、b、c则对角线长为 a2+b2+c2 (2)棱长为a的正方体的体对角线长等于外接球的直径,即 3a=2R. (3)若球面上四点P、A、B、C构成的线段PA、PB、PC两两垂直,且PA =a,PB=b,PC=c,则4R2=a2+b2+c2,把有关元素“补形”成为 一个球内接长方体(或其他图).
知识回扣 小题速解
解题绝招
高考数学立体几何专题1空间立体几何的三视图、表面积和体积
专题1空间立体几何的三视图、表面积和体积【考点点击】1.以选择、填空题形式考查空间位置关系的判断,及文字语言、图形语言、符号语言的转换,难度适中;2.以熟悉的几何体为背景,考查多面体或旋转体的侧面积、表面积和体积计算,间接考查空间位置关系的判断及转化思想等,常以三视图形式给出几何体,辅以考查识图、用图能力及空间想象能力,难度中等.3.几何体的三视图与表(侧)面积、体积计算结合;【重点知识】一、空间几何体1.柱体、锥体、台体、球的结构特征名称几何特征棱柱①有两个面互相平行(底面可以是任意多边形);②其余各面都是平行四边形,并且每相邻两个四边形的公共边互相平行棱锥①有一个面是多边形(底面);②其余各面是有公共顶点的三角形.棱台①底面互相平行;②所有侧棱延长后交于一点(即原棱锥的顶点)圆柱①有两个互相平行的圆面(底面);②有一个侧面是曲面(母线绕轴旋转一周形成的),且母线与底面垂直圆台①底面互相平行;②有一个侧面是曲面,可以看成母线绕轴旋转一周形成的球①有一个曲面是球面;②有一个球心和一条半径长R,球是一个几何体(包括内部),可以看成半圆以它的直径所在直线为旋转轴旋转一周形成的2.柱体、锥体、台体、球的表面积与体积名称体积表面积棱柱V棱柱=Sh(S为底面积,h为高)S棱柱=2S底面+S侧面棱锥V棱锥=13Sh(S为底面积,h为高)S棱锥=S底面+S侧面棱台V棱台=13h(S+SS′+S′)S棱台=S上底+S下底+S侧面圆柱V圆柱=πr2h(r为底面半径,h为高)S圆柱=2πrl+2πr2(r为底面半径,l为母线长)圆锥V圆锥=13πr2h(r为底面半径,h为高)S圆锥=πrl+πr2(r为底面半径,l为母线长)圆台V圆台=13πh(r2+rr′+r′2)S圆台=π(r+r′)l+πr2+πr′2球V球=43πR3(R为球的半径)S球=4πR2(R为球的半径)3.空间几何体的三视图和直观图(1)空间几何体的三视图三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,三视图的画法规则为“长对正、高平齐、宽相等”.(2)空间几何体的直观图空间几何体直观图的画法常采用斜二测画法.用斜二测画法画平面图形的直观图规则为“轴夹角45°(或135°),平行长不变,垂直长减半”.4.几何体沿表面某两点的最短距离问题一般用展开图解决;不规则几何体求体积一般用割补法和等积法求解;三视图问题要特别留意各种视图与观察者的相对位置关系.【考点分析】考点一空间几何体的结构【例1】已知正三棱锥PABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.【答案】33【解析】正三棱锥PABC 可看作由正方体PADCBEFG 截得,如图所示,PF 为三棱锥PABC 的外接球的直径,且PF ⊥平面ABC.设正方体棱长为a ,则22,2,1232=====BC AC AB a a ,3223222221=⨯⨯⨯=∆ABC S ,由,PAC B ABC P V V --=得222213131⨯⨯⨯⨯=⋅∆ABC S h ,所以332=h 因此球心到平面ABC 得距离为33考点二三视图、直观图【例2】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A )20π(B )24π(C )28π(D )32π【答案】C【解析】由题意可知,圆柱的侧面积为12π2416πS =⋅⋅=,圆锥的侧面积为2π248πS =⋅⋅=,圆柱的底面面积为23π24πS =⋅=,故该几何体的表面积为12328πS S S S =++=,故选C.【例3】某三棱锥的三视图如图所示,则该三棱锥的表面积是()A .2+5B .4+5C .2+25D .5【答案】C【解析】该三棱锥的直观图如图所示:过D 作DE ⊥BC ,交BC 于E ,连接AE ,则BC =2,EC =1,AD =1,ED =2,ABCABD ACD BCD S S S S S ∆∆∆∆+++=表5225221152115212221+=⨯⨯+⨯⨯+⨯⨯+⨯⨯=考点三几何体的表面积【例4】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为【答案】14π.【解析】球的直径是长方体的体对角线,所以222232114,4π14π.R S R =++===【例5】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是()(A )17π(B )18π(C )20π(D )28π【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的81,设球的半径为R ,则32834873ππ=⨯=R V ,解得R 2=,所以它的表面积是87的球面面积和三个扇形面积之和πππ172413248722=⨯⨯+⨯⨯=S 故选A .考点四几何体的体积【例6.】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A .πB .3π4C .π2D .π4【答案】B【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2AC AB ==,结合勾股定理,底面半径2213122r ⎛⎫=-= ⎪⎝⎭,由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h ⎛==⨯⨯= ⎝⎭,故选B.考点五与球的组合体问题纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.【例7】棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为()A .22B .1C .212+D .2解:由题意可知,球为正方体的外接球.平面11AA DD 截面所得圆面的半径12,22AD R ==11EF AA DD ⊂ 面,∴直线EF 被球O 截得的线段为球的截面圆的直径22R =.【例8】正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最值,为.【例9】在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是.解:如图,正三棱锥对棱相互垂直,即,AC SB ⊥又,,,.SB MN MN AC MN AM MN SAC ∴⊥⊥∴⊥∥又平面于是,,,SB SAC SB SA SB SC ⊥∴⊥⊥平面从而.SA SC ⊥此时正三棱锥S ABC -的三条侧棱互相垂直并且相等,故将正三棱锥补形为正方体.球的半径23,3,436.2R SA R S R ππ=∴=∴==【例10】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()A .12πB .C .3πD .【答案】C【解析】把原来的几何体补成以DA DC DP 、、为长、宽、高的长方体,原几何体四棱锥与长方体是同一个外接球,2=R l ,=2R ,234434S R πππ==⨯=球.【例11】在三棱锥P -ABC 中,PA =,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为()A .πB.3π C.4πD.43π解:如图所示,过P 点作底面ABC 的垂线,垂足为O ,设H 为外接球的球心,连接,,AH AO 因60,PAO PA ∠== 故2AO =,32PO =又△AHO 为直角三角形,222,,AH PH r AH AO OH ==∴=+22233344(),1,1.2233r r r V ππ∴=+-∴=∴=⨯=【例12】矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积是()A.π12125 B.π9125C.π6125D.π3125解:由题意分析可知,四面体ABCD 的外接球的球心落在AC 的中点,此时满足,OA OD OB OC ===522AC R ∴==,343V R π=1256π=.【总结归纳】1个特征——三视图的长度特征“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。
2021届高考数学 8.1空间几何体的三视图、直观图、表面积与体积配套文档 理
§8.1空间几何体的三视图、直观图、表面积与体积1.多面体的结构特点2.3.空间几何体的直观图经常使用斜二测画法来画,其规那么:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中维持原长度不变,平行于y轴的线段长度在直观图中长度为原先的一半.4.空间几何体的三视图(1)三视图的主视图、俯视图、左视图别离是从物体的正前方、正上方、正左方看到的物体轮廓线的正投影围成的平面图形.(2)三视图的特点:三视图知足“长对正、高平齐、宽相等”或说“主左一样高、主俯一样长、俯左一样宽”.5.柱、锥、台和球的侧面积和体积1. (1)有两个面平行,其余各面都是平行四边形的几何体是棱柱. ( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)用斜二测画法画水平放置的∠A 时,假设∠A 的两边别离平行于x 轴和y 轴,且∠A =90°,那么在直观图中,∠A =45°.( × ) (4)正方体、球、圆锥各自的三视图中,三视图均相同. ( × ) (5)圆柱的侧面展开图是矩形.( √ ) (6)台体的体积可转化为两个锥体的体积之差来计算.( √ )2. (2021·四川)一个几何体的三视图如下图,那么该几何体的直观图能够是 ( )答案 D解析 由三视图可知上部是一个圆台,下部是一个圆柱,选D.3. (2021·课标全国Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,若是不计容器的厚度,那么球的体积为( )A.500π3cm 3B.866π3cm 3C.1 372π3 cm 3D.2 048π3cm 3答案 A解析 作出该球轴截面的图象如下图,依题意BE =2,AE =CE =4,设DE =x ,故AD =2+x ,因为AD 2=AE 2+DE 2,解得x =3,故该球的半径AD =5, 因此V =43πR 3=500π3. 4. 一个三角形在其直观图中对应一个边长为1的正三角形,原三角形的面积为________.答案62解析 由斜二测画法,知直观图是边长为1的正三角形,其原图是一个底为1,高为6的三角形,因此原三角形的面积为62.5. 假设一个圆锥的侧面展开图是面积为2π的半圆面,那么该圆锥的体积为________.答案33π 解析 侧面展开图扇形的半径为2,圆锥底面半径为1, ∴h =22-1=3,∴V =13π×1×3=33π.题型一 空间几何体的结构特点 例1 (1)以下说法正确的选项是( )A .有两个平面相互平行,其余各面都是平行四边形的多面体是棱柱B .四棱锥的四个侧面都能够是直角三角形C .有两个平面相互平行,其余各面都是梯形的多面体是棱台D .棱台的各侧棱延长后不必然交于一点 (2)给出以下命题:①在圆柱的上、下底面的圆周上各取一点,那么这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面能够不相似,但侧棱长必然相等. 其中正确命题的个数是( )A .0B .1C .2D .3思维启发 从多面体、旋转体的概念入手,能够借助实例或几何模型明白得几何体的结构特点. 答案 (1)B (2)A解析 (1)A 错,如图1;B 正确,如图2,其中底面ABCD 是矩形,可证明∠PAB ,∠PCB 都是直角,如此四个侧面都是直角三角形;C 错,如图3;D 错,由棱台的概念知,其侧棱必相交于同一点.(2)①不必然,只有这两点的连线平行于轴时才是母线;②不必然,因为“其余各面都是三角形”并非等价于“其余各面都是有一个公共极点的三角形”,如图1所示;③不必然,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,可是侧棱长不必然相等. 思维升华 (1)有两个面相互平行,其余各面都是平行四边形的几何体不必然是棱柱. (2)既然棱台是由棱锥概念的,因此在解决棱台问题时,要注意“还台为锥”的解题策略. (3)旋转体的形成不仅要看由何种图形旋转取得,还要看旋转轴是哪条直线.如图是一个无盖的正方体盒子展开后的平面图,A ,B ,C是展开图上的三点,那么在正方体盒子中,∠ABC 的值为 ( )A .30°B .45°C .60°D .90°答案 C解析 还原正方体,如下图,连接AB ,BC ,AC ,可得△ABC 是正三角形,那么∠ABC =60°. 题型二 空间几何体的三视图和直观图例2 (1)如图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,那么该几何体的俯视图能够是( )(2)正三角形AOB 的边长为a ,成立如下图的直角坐标系xOy ,那么它的直观图的面积是________.思维启发 (1)由主视图和左视图可知该几何体的高是1,由体积是12可求出底面积.由底面积的大小可判定其俯视图是哪个.(2)依照直观图画法规那么确信平面图形和其直观图面积的关系. 答案 (1)C (2)616a 2解析 (1)由该几何体的主视图和左视图可知该几何体是柱体,且其高为1,由其体积是12可知该几何体的底面积是12,由图知A 的面积是1,B 的面积是π4,C 的面积是12,D 的面积是π4,应选C.(2)画出坐标系x ′O ′y ′,作出△OAB 的直观图O ′A ′B ′(如图).D ′为O ′A ′的中点. 易知D ′B ′=12DB (D 为OA 的中点),∴S △O ′A ′B ′=12×22S △OAB =24×34a 2=616a 2.思维升华 (1)三视图中,主视图和左视图一样高,主视图和俯视图一样长,左视图和俯视图一样宽.即“长对正,宽相等,高平齐”.(2)解决有关“斜二测画法”问题时,一样在已知图形中成立直角坐标系,尽可能运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.(1)(2021·湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,那么该正方体的主视图的面积不可能等于( )A .1 B.2 C.2-12D.2+12(2)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,那么原图形是 ( ) A .正方形 B .矩形C .菱形D .一样的平行四边形答案 (1)C (2)C解析 (1)由俯视图知正方体的底面水平放置,其主视图为矩形,以正方体的高为一边长,另一边长最小为1,最大为2,面积范围应为[1,2],不可能等于2-12.(2)如图,在原图形OABC 中, 应有OD =2O ′D ′=2×22=42 cm ,CD =C ′D ′=2 cm.∴OC =OD 2+CD 2=422+22=6 cm ,∴OA =OC ,故四边形OABC 是菱形. 题型三 空间几何体的表面积与体积例3 (1)一个空间几何体的三视图如下图,那么该几何体的表面积为 ( )A .48B .32+817C .48+817D .80(2)已知某几何体的三视图如下图,其中主视图、左视图均由直角三角形与半圆组成,俯视图由圆与内接三角形组成,依照图中的数据可得几何体的体积为 ( ) A.2π3+12B.4π3+16 C.2π6+16D.2π3+12思维启发 先由三视图确信几何体的组成及气宇,然后求表面积或体积. 答案 (1)C (2)C解析 (1)由三视图知该几何体的直观图如下图,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12=17.因此S表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.(2)由三视图确信该几何体是一个半球体与三棱锥组成的组合体,如图,其中AP ,AB ,AC 两两垂直,且AP =AB =AC =1,故AP ⊥平面ABC ,S △ABC =12AB ×AC =12,因此三棱锥P -ABC 的体积V 1=13×S △ABC ×AP =13×12×1=16,又Rt△ABC 是半球底面的内接三角形,因此球的直径2R =BC =2,解得R =22,因此半球的体积V 2=12×4π3×(22)3=2π6,故所求几何体的体积V =V 1+V 2=16+2π6.思维升华 解决此类问题需先由三视图确信几何体的结构特点,判定是不是为组合体,由哪些简单几何体组成,并准确判定这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积.(2021·课标全国)已知三棱锥S -ABC 的所有极点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,那么此棱锥的体积为 ( ) A.26 B.36 C.23 D.22答案 A解析 由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,因此三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍. 在三棱锥O -ABC 中,其棱长都是1,如下图, S △ABC =34×AB 2=34,高OD = 12-⎝ ⎛⎭⎪⎪⎫332=63, ∴V S -ABC =2V O -ABC =2×13×34×63=26.转化思想在立体几何计算中的应用典例:(12分)如图,在直棱柱ABC —A ′B ′C ′中,底面是边长为3的等边三角形,AA ′=4,M 为AA ′的中点,P 是BC 上一点,且由P 沿 棱柱侧面通过棱CC ′到M 的最短线路长为29,设这条最短线路与CC ′的交点为N ,求:(1)该三棱柱的侧面展开图的对角线长; (2)PC 与NC 的长;(3)三棱锥C —MNP 的体积.思维启发 (1)侧面展开图从哪里剪开展平;(2)MN +NP 最短在展开图上呈现如何的形式;(3)三棱锥以谁做底好. 标准解答解 (1)该三棱柱的侧面展开图为一边长别离为4和9的矩形,故对角线长为42+92=97.[2分](2)将该三棱柱的侧面沿棱BB ′展开,如以下图,设PC =x ,那么MP 2=MA 2+(AC +x )2. ∵MP =29,MA =2,AC =3,∴x =2,即PC =2.又NC ∥AM ,故PC PA =NCAM ,即25=NC 2.∴NC =45.[8分](3)S △PCN =12×CP ×CN =12×2×45=45.在三棱锥M —PCN 中,M 到面PCN 的距离, 即h =32×3=332.∴V C —MNP =V M —PCN =13·h ·S △PCN=13×332×45=235.[12分] 温馨提示 (1)解决空间几何体表面上的最值问题的全然思路是“展开”,即将空间几何体的“面”展开后铺在一个平面上,将问题转化为平面上的最值问题.(2)若是已知的空间几何体是多面体,那么依照问题的具体情形能够将那个多面体沿多面体中某条棱或两个面的交线展开,把不在一个平面上的问题转化到一个平面上.若是是圆柱、圆锥那么可沿母线展开,把曲面上的问题转化为平面上的问题.(3)此题的易错点是,不明白从哪条侧棱剪开展平,不能正确地画出侧面展开图.缺乏空间图形向平面图形的转化意识.方式与技术1.棱柱、棱锥要把握各部份的结构特点,计算问题往往转化到一个三角形中进行解决.2.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状.3.三视图画法:(1)实虚线的画法:分界限和可见轮廓线用实线,看不见的轮廓线用虚线;(2)明白得“长对正、宽平齐、高相等”.4.直观图画法:平行性、长度两个要素.5.求几何体的体积,要注意分割与补形.将不规那么的几何体通过度割或补形将其转化为规那么的几何体求解.6.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确信有关元素间的数量关系,并作出适合的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的极点均在球面上,正方体的体对角线长等于球的直径.失误与防范1.台体能够看成是由锥体截得的,但必然强调截面与底面平行.2.注意空间几何体的不同放置对三视图的阻碍.3.几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.A组专项基础训练(时刻:40分钟)一、选择题1.正五棱柱中,不同在任何侧面且不同在任何底面的两极点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( )A.20 B.15C.12 D.10答案D解析如图,在正五棱柱ABCDE-A1B1C1D1E1中,从极点A动身的对角线有两条:AC1,AD1,同理从B,C,D,E点动身的对角线均有两条,共2×5=10(条).2.(2021·福建)一个几何体的三视图形状都相同、大小均相等,那么那个几何体不能够是( )A .球B .三棱锥C .正方体D .圆柱答案 D解析 考虑选项中几何体的三视图的形状、大小,分析可得. 球、正方体的三视图形状都相同、大小均相等,第一排除选项A 和C. 关于如下图三棱锥O -ABC ,当OA 、OB 、OC 两两垂直且OA =OB =OC 时, 其三视图的形状都相同,大小均相等,故排除选项B. 不论圆柱如何设置,其三视图的形状都可不能完全相同, 故答案选D.3. (2021·重庆)某几何体的三视图如下图,那么该几何体的体积为( )A.5603B.5803 C .200 D .240答案 C解析 由三视图知该几何体为直四棱柱,其底面为等腰梯形,上底长为2,下底长为8,高为4,故面积为S =2+8×42=20.又棱柱的高为10,因此体积V =Sh =20×10=200.4. 如图是一个物体的三视图,那么此三视图所描述物体的直观图是( ) 答案 D解析 由俯视图可知是B 和D 中的一个,由主视图和左视图可知B 错.5. 某几何体的三视图如下图,其中俯视图是个半圆,那么该几何体的表面积为( )A.32π B .π+3C.32π+ 3D.52π+3答案 C解析 由三视图可知该几何体为一个半圆锥,底面半径为1,高为3,∴表面积S =12×2×3+12×π×12+12×π×1×2=3+3π2.二、填空题6. 如下图,E 、F 别离为正方体ABCD —A 1B 1C 1D 1的面ADD 1A 1、面BCC 1B 1的中心,那么四边形BFD 1E 在该正方体的面DCC 1D 1上的正投影是________.(填序号)答案 ②解析 四边形在面DCC 1D 1上的正投影为②:B 在面DCC 1D 1上的正投影为C ,F 、E 在面DCC 1D 1上的投影应在边CC 1与DD 1上,而不在四边形的内部,故①③④错误.7. 已知三棱锥A —BCD 的所有棱长都为2,那么该三棱锥的外接球的表面积为________. 答案 3π 解析 如图,构造正方体ANDM —FBEC .因为三棱锥A —BCD 的所有棱长都为2,因此正方体ANDM —FBEC 的棱长为1.因此该正方体的外接球的半径为32. 易知三棱锥A —BCD 的外接球确实是正方体ANDM —FBEC 的外接球,因此三棱锥A —BCD 的外接球的半径为32.因此三棱锥A —BCD 的外接球的表面积为S 球=4π⎝ ⎛⎭⎪⎪⎫322=3π. 8. (2021·江苏)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 别离是AB ,AC ,AA 1的中点,设三棱锥F -ADE的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,那么V 1∶V 2=________.答案 1∶24解析 设三棱锥F -ADE 的高为h ,则V 1V 2=13h ⎝ ⎛⎭⎪⎫12AD ·AE ·sin∠DAE 2h 122AD 2AE sin∠DAE=124. 三、解答题9.一个几何体的三视图及其相关数据如下图,求那个几何体的表面积.解 那个几何体是一个圆台被轴截面割出来的一半.依照图中数据可知圆台的上底面半径为1,下底面半径为2,高为3,母线长为2,几何体的表面积是两个半圆的面积、圆台侧面积的一半和轴截面的面积之和,故那个几何体的表面积为S =12π×12+12π×22+12π×(1+2)×2+12×(2+4)×3=11π2+3 3.10.已知一个正三棱台的两底面边长别离为30 cm 和20 cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如下图,三棱台ABC —A 1B 1C 1中,O 、O 1别离为两底面中心,D 、D 1别离为BC和B 1C 1的中点,那么DD 1为棱台的斜高.由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033, 由S 侧=S 上+S 下,得12×(20+30)×3DD 1=34×(202+302), 解得DD 1=1333,在直角梯形O 1ODD 1中,O 1O =DD 21-OD -O 1D 12=43,因此棱台的高为4 3 cm. B 组 专项能力提升(时刻:30分钟)1. 在四棱锥E —ABCD 中,底面ABCD 为梯形,AB ∥CD,2AB =3CD ,M 为AE 的中点,设E —ABCD 的体积为V ,那么三棱锥M —EBC 的体积为( )A.25VB.13VC.23VD.310V 答案 D解析 设点B 到平面EMC 的距离为h 1,点D 到平面EMC 的距离为h 2.连接MD .因为M 是AE 的中点,因此V M —ABCD =12V . 因此V E —MBC =12V -V E —MDC . 而V E —MBC =V B —EMC ,V E —MDC =V D —EMC ,因此V E —MBCV E —MDC =V B —EMC V D —EMC =h 1h 2.因为B ,D 到平面EMC 的距离即为到平面EAC 的距离,而AB ∥CD ,且2AB =3CD ,因此h 1h 2=32. 因此V E —MBC =V M -EBC =310V .2. 某三棱锥的三视图如下图,该三棱锥的表面积是( ) A .28+6 5 B .30+65C .56+125 D .60+125 答案 B 解析 由几何体的三视图可知,该三棱锥的直观图如下图,其中AE ⊥平面BCD ,CD ⊥BD ,且CD =4,BD =5,BE =2,ED =3,AE =4.∵AE =4,ED =3,∴AD =5.又CD ⊥BD ,CD ⊥AE ,则CD ⊥平面ABD ,故CD ⊥AD ,因此AC =41且S △ACD =10.在Rt△ABE 中,AE =4,BE =2,故AB =25. 在Rt△BCD 中,BD =5,CD =4,故S △BCD =10,且BC =41.在△ABD 中,AE =4,BD =5,故S △ABD =10.在△ABC 中,AB =25,BC =AC =41,则AB 边上的高h =6,故S △ABC =12×25×6=6 5. 因此,该三棱锥的表面积为S =30+65. 3. 表面积为3π的圆锥,它的侧面展开图是一个半圆,那么该圆锥的底面直径为________.答案 2解析 设圆锥的母线为l ,圆锥底面半径为r .那么12πl 2+πr 2=3π,πl =2πr ,∴r =1,即圆锥的底面直径为2.4. 如图,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直,图为该四棱锥的主视图和左视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)依照图所给的主视图、左视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA .解 (1)该四棱锥的俯视图为(内含对角线),边长为6 cm 的正方形,如图,其面积为36 cm 2.(2)由左视图可求得PD =PC 2+CD 2=62+62=6 2.由主视图可知AD =6,且AD ⊥PD ,因此在Rt△APD 中,PA =PD 2+AD 2=622+62=6 3 cm.5. 在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,PA =PC =2a ,假设在那个四棱锥内放一球,求此球的最大半径.解 当球内切于四棱锥,即与四棱锥各面均相切时球半径最大,设球的半径为r ,球心为O ,连接OP 、OA 、OB 、OC 、OD ,那么把此四棱锥分割成四个三棱锥和一个四棱锥,这些小棱锥的高都是r ,底面别离为原四棱锥的侧面和底面,则V P -ABCD =13r (S △PAB +S △PBC +S △PCD +S △PAD +S 正方形ABCD )=13r (2+2)a 2.由题意,知PD ⊥底面ABCD ,∴V P -ABCD =13S 正方形ABCD ·PD =13a 3. 由体积相等, 得13r (2+2)a 2=13a 3,解得r =12(2-2)a .。
利用三视图求几何体的表面积和体积
6
5
由三视图求几何体的体积和表面积的思路
1、由三视图确定几何体的形状 (1)由俯视图确定几何体的底面 (2)根据正视图或侧视图确定几何体侧棱与侧面特征,调整 实线和虚线所对应的棱、面的位置 (3)确定几何体直观图形状 2、由题目中的数据进行代入公式求解
布置作业:
《优化设计》p22-基础巩固3,4,6,7 P24例2,变式训练2, P25-基础巩固7,9
积等于
.
解析:该几何体如图所示,挖去的圆锥的母线长为
62 22 2 10
则圆锥的侧面积等于 4 10 圆柱的侧面积为2π×2×6=24π,圆柱的一个底面面 积为 22 4 ,所以组合体的表面积
为 4 10 24 4 4 10 28 .
答案: 4 10 28
题型二:三视图有关的体积计算
1 3Байду номын сангаас
(S
SS' S')h
题型一:三视图有关面积计算
例1.已知一个几何体的三视图如图所示,则这个几何体的表面积为( )
A.72 B.66 C.60 D.30
解析:由所给三视图可知该几何体为一个三棱柱,且底面为
直角三角形,直角边长分别为3和4,斜边长为5,三棱柱的高为5,
如图所示,所以表面积为
2
温故知新
1、三视图
画三视图的三大原则
正俯一样长,正侧一样高,侧俯一样宽
温故知新
面积
圆柱的表面积:S圆柱 2r(r l) 圆锥的表面积:S圆锥 r(r l) 圆台的表面积:S圆台 (r 2 r'2 rl r'l)
体积
柱体的体积:V柱 Sh
锥体的体积:V锥
1 Sh 3
台体的体积:V台
§8.1 空间几何体的三视图、表面积与体积(讲解部分)
在已知图形中过点O作z轴垂直于平面xOy,在直观图中画出对应的z'轴,垂 直于平面x'O'y',已知图形中平行于z轴的线段,在直观图中平行于z'轴且 ⑩ 长度不变 .
考点二 空间几何体的体积
名称
体积
柱体 锥体
V=Sh
1
V= 3Sh
台体
1
V= 3(S+S'+ SS' )h
球体
4
V=3 πR3
考点三 空间几何体的表面积
112.5.
(2)包装盒子的体积V=(a-2x)(b-2x)x=x[ab-2(a+b)x+4x2],x∈
0,
b 2
,b≤60,V=x
[ab-2(a+b)x+4x2]≤x(ab-4 ab x+4x2)=x(3 600-240x+4x2)=4x3-240x2+3 600x.当
且仅当a=b=60时等号成立,设f(x)=4x3-240x2+3 600x,x∈(0,30),则f '(x)=12(x-
②半径:r= a2 b2 c2 (a,b,c为长方体的长、宽、高).
2
(2)正方体的外接球、内切球及与各条棱都相切的球:
①外接球:球心是正方体的中心,半径r= 3 a(a为正方体的棱长);
2
②内切球:球心是正方体的中心,半径r= a (a为正方体的棱长);
2
③与各条棱都相切的球:球心是正方体的中心,半径r= 2 a(a为正方体的棱
考点清单
考点一 三视图与直观图
1.多面体的结构特征
名称
棱柱
棱锥
棱台
图形
结构特征 (1)有两个面互相平行,其余各个 有一个面(即底面)是多边 用一个平行于棱锥底面
立体几何三视图及体积表面积的求解
立体几何三视图及体积表面积的求解一、空间几何体与三视图1. (吉林省实验中学2021—2021年度高三上学期第四次时期检测)一个长方体截去两个三棱锥,取得的几何体如图1所示,那么该几何体的三视图为( )A B C D【答案】C【解析】正视图是含有一条左下到右上实对角线的矩形;侧视图是含有一条从左上到右下的实对角线的矩形,故选C2. (广州2021届高三七校第二次联考)如图为几何体的三视图,依照三视图能够判定那个几何体为( ) A .圆锥B .三棱锥C .三棱柱D .三棱台【答案】C【解析】由三视图知,这是一个横放的三棱柱3.(黄冈中学2021届高三十月月考数学试卷)如图,一个棱柱的正视图和侧视图别离是矩形和正三角形,那么那个三棱柱的俯视图为( )【答案】:D【解析】:由正视图和侧视图可知,这是一个水平放置的一个正三棱柱,底面三角形的高为,底面边长为。
4. (江西省稳派名校学术联盟2021届高三12月调研考试)如下图是一个几何体的三视图,假设该几何322A32 B32 C22 D2体的体积为,那么主视图中三角形的高x 的值为( )A. B. C. 1 D.【答案】C 【解析】5.(石家庄2021届高三第一次教学质量检测)用一个平面去截正方体,有可能截得的是以下平面图形中的 .(写出知足条件的图形序号)(1)正三角形 (2)梯形 (3)直角三角形 (4)矩形 【答案】(1)(2)(4) 【解析】6.(黄冈中学2021届高三十月月考数学试卷)一个底面是等腰直角三角形的直棱柱,侧棱长与底面三角形的腰长相等,其体积为4,它的三视图中俯视图如右图所示,侧视图是一个矩形,那么那个矩形的对角线长为 .12123432【答案】【解析】:设底面的等腰直角三角形的腰长为,那么侧棱长也为,那么,解得,,宽为二、空间几何体的体积和表面积1.(湖北省黄冈中学2014届高三数学(文)期末考试)某空间组合体的三视图如下图,那么该组合体的体积为( )A .48B .56C .64D .72【答案】C【解析】该组合体由两个棱柱组成,上面的棱柱体积为24540,下面的棱柱体积为46124,故组合体的体积为642.(四川省泸州市2021届高三数学第一次教学质量诊断性考试)一个几何体的三视图如下图,其中俯视图是菱形,那么该几何体的侧面积为( ) A .B .C .D .a a 3142V a ==2a =2=3. (2021年福建宁德市一般高中毕业班单科质量检查)一个几何体的三视图如下图,那么该几何体的侧面积为()A.8+B.10C.8+D.12211242,高为3. (承德市联校2021-2021年第一学期期末联考)把边长为2的正方形ABCD沿对角线BD折起,连结AC,取得三棱锥C-ABD,其正视图、俯视图均为全等的等腰直角三角形(如下图),那么其侧视图的面积为()A.32B.12C.1 D.22【答案】B【解析】由两个视图能够取得三棱锥如图:其侧视图的面积即t R ACE 的面积,由正方形的边长为2得==1AE CE ,故侧视图面积为 125. (安徽省六校教育研究会2021届高三2月联考)某三棱椎的三视图如下图,该三棱锥的四个面的面积中,最大的面积是( )(A) (B ) (C )(D )【答案】D【解析】由三视图可得三棱锥如下图: 底面是边长为4的正三角形,ADBDC 平面,故四个面的面积中,最大的面积是ABC 的面积为22144234724. (宁夏银川一中2021届高三年级月考)如图是一个几何体的三视图,正视图和侧视图均为矩形,俯视图中曲线部份为半圆,尺寸如图,那么该几何体的全面积为( )A .2+3B .2+2C .8+5D .6+38π+π+π+π+【答案】A【解析】由三视图可知,该几何体是半个圆柱和侧棱垂直于底面的三棱柱组成的组合体,该几何体的表面积.5. (湖南省2021届高三第五次联考数学)已知三棱锥的三视图如下图,那么它的外接球表面积为( ) A. 16 B. 4 C. 8 D. 27.(西安铁一中2021届高三11月模拟考试试题)一个几何体的三视图如下图,那么其外接球的表面积是( )A. B. C.D.【答案】B【解析】由三视图知:该几何体为长方体,长方体的棱长别离为3、4、5,因此长方体的体对角线为1212(1)2S ππ=⨯⨯++32π=+25π50π33,所之外接球的半径为,所之外接球的表面积为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三视图及其表面积体积一、选择题1.一只蚂蚁从正方体1111ABCD A B C D 的顶点A 处出发,经正方体的表面,按最短路线爬行到达顶点1C 位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是( )A.①②B.①③C.③④D.②④2.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为2的两个全等的等腰直角三角形,则该几何体的外接球的表面积是( )A .38B .π34C .π12D .π338 3.某空间几何体的三视图如图所示,该空间几何体的体积是( )A. 320B. 10C. 340D. 350 4.已知某锥体的正视图和侧视图如图,其体积为233,则该锥体的俯视图可以是( )A .B .C .D .5.若某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的表面积为( )A.π23B.3+πC.323+πD.325+π 6.已知一几何体的三视图如图所示,俯视图由一个直角三角形与一个半圆组成,则该几何体的体积为( )A .126+πB .246+πC .1212+πD .1224+π7.某空间几何体的三视图中,有一个是正方形,则该空间几何体不可能是( )A .圆柱B .圆锥C .棱锥D .棱柱8.一个机器零件的三视图如图所示,其中俯视图是一个半圆内切于边长为2的正方形,则该机器零件的体积为A .8π3+B .8π23+C .8π83+ D .8π163+ 9.某几何体的三视图如图所示,图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是( )A .320B .316C .68π- D .38π-10.一个三棱锥的三视图如图所示,则该三棱锥的表面积为( )A .22514++B .16214+C .8214+D .814+11.已知某几何体的三视图如图所示,则该几何体的表面积为( )A.16B.26C.32D.252034+12.某空间几何体的三视图中,有一个是正方形,则该空间几何体不可能是() A .圆柱 B .圆锥C .棱锥D .棱柱13.已知某棱锥的三视图如图所示,则该棱锥的表面积为( )A .25+B .532+C .52+D .35+ 14.已知几何体的三视图及其尺寸如图(单位:cm ),则该几何体的表面积和体积分別为( )A.2324,12cm cm ππB.2315,12cm cm ππ C.2324,36cm cm ππ D.以上都不正确15.正方体ABCD ﹣A 1B 1C 1D 1中E 为棱BB 1的中点(如图),用过点A ,E ,C 1的平面截去该正方体的上半部分,则剩余几何体的左视图为( )A .B .C .D .16.如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位:cm),)A.82cm B.432cm C.122cm D.4432cm17.已知某三棱锥的三视图如图所示,则该三棱锥的体积为()A.8 B.24 C.325D.96518.三棱锥S﹣ABC及其三视图中的正视图和侧视图如图所示,则棱SB的长为()A.11B.3C38D.219.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( )A.球B.三棱锥C.正方体D.圆柱20.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()俯视图主视图左视图A.1B.2C.3D.421.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )A .①②B .①C .③④D .①②③④评卷人 得分 二、解答题22.已知平面五边形ADCEF 是轴对称图形(如图1),BC 为对称轴,AD ⊥CD ,AD=AB=1,3CD BC ==,将此五边形沿BC 折叠,使平面ABCD ⊥平面BCEF ,得到如图2所示的空间图形,对此空间图形解答下列问题.(1)证明:AF ∥平面DEC ;(2)求二面角E AD B --的余弦值.23.一个几何体的三视图如图所示(单位长度为:cm )(1)求该几何体的体积;(2)求该几何体的表面积.三、填空题24.已知正ABC ∆的边长为a ,那么的平面直观图C B A '''∆的面积为 .参考答案1.D【解析】试题分析:最短距离是正方体侧面展开图,即矩形111ABCC B A A 的对角线1AC (经过1BB )、或矩形11ABCC D DA 的对角线1AC (经过CD ),故视图为②④.考点:最短距离.2.C【解析】试题分析:由三视图可知该几何体为四棱锥,底面为正方形,边长为2,有一侧棱垂直于底面,侧棱为2,因此外切球直径为r =2412S r ππ==考点:三视图与几何体体积3.C【解析】试题分析:此几何体是 三棱锥,底面是直角三角形面积为104521=⨯⨯=S ,三棱锥的高是4,所以几何体的体积34041031=⨯⨯=V ,故选C. 考点:三视图4.C【解析】试题分析:选项C 的体积112232V =⨯⨯⨯= C. 考点:1、三视图;2、锥体的体积.【方法点晴】本题主要考查三视图和锥体的体积,计算量较大,属于中等题型.应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐 (简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称.此外本题应注意掌握锥体的面积公式.5.C【解析】试题分析: 由三视图可知该几何体为一个半圆锥,即由一个圆锥沿中轴线切去一半面得11222S =⨯1321322πππ⨯+⨯⨯=+,故选C. 考点:1、三视图;2、表面积.【方法点晴】本题主要考查三视图和表面积,计算量较大,属于中等题型.应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐 (简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称.此外本题应注意掌握球 和锥体的表面积公式.6.A【解析】试题分析:由三视图可知,该几何体为一组合体,它由半个圆柱和一个底面是直角三角形的直棱柱组成,故该几何体的体积2112324361222V ππ=⨯⨯⨯+⨯⨯⨯=+,故选A. 考点:1.三视图;2.多面体与旋转体的体积.7.B【解析】试题分析:当棱锥和棱柱分别为正四棱锥和正四棱柱时,会出现正方形;圆柱的横截面为长方形,当其底面直径和高相等时,就是正方形;对于圆锥,三视图可能出现的有:圆、三角形.所以选B .考点:三视图.8.A【解析】此几何体为组合体,下面是正方体,上面是球的41,且球的半径为1,所以体积314π222π18433V =⨯⨯+⨯⨯=+,故选A. 9.A【解析】试题分析:由三视图知原几何体是一个棱长为2的正方体挖去一四棱锥得到的,该四棱锥的底为正方体的上底,高为1,如图所示,∴该几何体的体积为3203481231223=-=⨯⨯-,故选A . 考点:由三视图求面积、体积.10.C【解析】试题分析:由三视图作出三棱锥的直观图,如图, ,ABC ADC ∆∆是全等的直角三角形,0==90ABC ADC ∠∠,==543,2ABC AD BC +==,故12332ABC ADC S S ∆∆==⨯⨯=,在Rt BCD ∆中, 2BC CD ==,0=90BCD ∠,所以12222BCD S ∆=⨯⨯=,在ABD ∆中, AB AD =,高927AE =-=,所以1227142BAD S ∆=⨯=故表面积为所以33214814+++=,选D.考点:由三视图求表面积.11.C【解析】试题分析:由图可知,该几何体为三棱锥,直观图故下图所示,由图可知,表面积为11114534345432222ABC ACD BCD ABD S S S S ∆∆∆∆+++=⋅⋅+⋅⋅+⋅⋅+⋅⋅=. 54345B D CA12.B【解析】试题分析:当棱锥和棱柱分别为正四棱锥和正四棱柱时,会出现正方形;圆柱的横截面为长方形,当其底面直径和高相等时,就是正方形;对于圆锥,三视图可能出现的有:圆、三角形.所以选A .考点:三视图.13.D【解析】 试题分析:根据三视图可知,几何体是一条侧棱垂直于底面的四棱锥,底面是边长为1的正方形,如下图所示,该几何体的四个侧面均为直角三角形,侧面积11=2(1512)=2+522S ⋅⋅⋅⋅侧=1S 底,所以该几何体的表面积为35S = D.考点:三视图与表面积.【易错点睛】本题考查三视图与表面积,首先应根据三视图还原几何体,需要一定的空间想象能力,另外解本题时,也可以将几何体置于正方体中,这样便于理解、观察和计算.根据三视图求表面积一定要弄清点、线、面的平行和垂直关系,能根据三视图中的数据找出直观图中的数据,从而进行求解,考查学生空间想象能力和计算能力.14.A【解析】试题分析:根据三视图可知该几何体是圆锥,其底面半径为3r =,母线长为5,高为224h l r =-=,所以该几何体的表面积为215S rl cm ππ==,体积为231123V r h cm ππ==,故选A.考点:三视图与几何体的表面积与体积.【方法点晴】本题主要考查了三视图与几何体的表面积与体积,属于中档题.三视图往往需要根据三个视图还原几何体,该几何体为圆锥,这是解题的关键,根据三视图的规则,主俯同长,左俯同宽,主左同高,据此可知圆锥的底面半径为3r =,母线长5l =,根据轴截面可得圆锥的高h ,根据圆锥的表面积和体积公式求解即可.15.C【解析】试题分析:过点1,,C E A 的平面截去该正方体的上半部分后,剩余部分的直观图如图,则该几何体的左视图为C.所以C 选项是正确的.考点:三视图.16.C【解析】试题分析:由已知可得:该几何体是一个四棱锥,侧高和底面的棱长均为2,故此几何体的表面积2122242212S cm =⨯+⨯⨯⨯=,故选:C . 考点:棱柱、棱锥、棱台的体积;由三视图求面积、体积.17.C【解析】试题分析:由三视图知,该几何体是一个以俯视图为底面的三棱锥,底面面积1125625S =⨯⨯=,高2212164()55h =-=,所以该几何体的体积13235V Sh ==,故选C . 考点:1、三棱锥的三视图书馆2、三棱锥的体积.【方法点睛】解答此类问题的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.18.D【解析】试题分析:由已知中的三视图可得SC ⊥平面ABC ,且底面△ABC 为等腰三角形,在△ABC 中AC=4,AC 边上的高为23, 故BC=4,在Rt △SBC 中,由SC=4,可得SB= 42考点:简单空间图形的三视图19.D【解析】试题分析:球的三视图都是圆,如果是同一点出发的三条侧棱两两垂直,并且长度相等的三棱锥的三视图是全等的等腰直角三角形,正方体的三视图可以是正方形,但圆柱的三视图中有两个视图是矩形,有一个是圆,所以圆柱不满足条件,故选D.考点:三视图20.B【解析】试题分析:由三视图可知,这是一个三棱柱,内切球在正视图的投影是正视图的内切圆,设其半径为r ,根据三角形面积公式有()11681068,222r r ++=⋅⋅=. 考点:几何体的内切球.21.A【解析】试题分析:由斜二测画法的规则可知:根据平行性不变,所以①正确;根据平行性不变,所以②是正确的;正方形的直观图是平行四边形,所以③错误;因为平行与y 轴的线段长度减半,平行于x 轴的线段长度不变,所以④是错误的,故选A .考点:斜二测画法.22.见解析【解析】(1)如图,过D 作DG ⊥BC 于点G ,连接GE ,因为BC 为对称轴,所以AB ⊥BC ,则有AB ∥DG ,又AB ⊂平面ABF ,所以DG ∥平面ABF ,同理EG ∥平面ABF.又DG∩EG=G,所以平面DGE ∥平面ABF.又平面AFED∩平面ABF=AF ,平面AFED∩平面DGE=DE ,所以AF ∥DE ,又DE ⊂平面DEC ,所以AF ∥平面DEC.(2)如图,过G 作GH ⊥AD 于点H ,连接HE.由(1)知EG ⊥BC ,又平面ABCD ⊥平面BCEF ,平面ABCD∩平面BCEF=BC ,所以EG ⊥平面ABCD ,所以EG ⊥AD.又EG∩HG=G,所以AD ⊥平面EHG ,则AD ⊥HE ,则∠EHG 即为二面角E AD B --的平面角.由AD ⊥CD ,AD=AB=1,3CD BC ==,得G 为BC 的中点,33GH =,32EG =,37EH =. 因为EGH △为直角三角形,所以21cos EHG ∠=, 则二面角E AD B --的余弦值为217.23.(1)2243V =;(2)80162S =+. 【解析】试题分析:(1)由图知该几何体是一个上面是正四棱锥,下面是一个正方体的组合体.由此求得几何体的体积为2243V =;(2)正方体部分一共5个面,面积是44580⨯⨯=.四棱锥的侧面三角形的高222222h =+=,所以四棱锥侧面积为144221622⨯⨯⨯= ,所以表面积为80162+. 试题解析:(1)由图知该几何体是一个上面是正四棱锥,下面是一个正方体的组合体.且正四棱锥的底面边长为4,四棱锥的高为2,所以体积122444244433V =⨯⨯⨯+⨯⨯=. (2)由三视图知,四棱锥的侧面三角形的高222222h =+=. 该几何体表面积为154424422801622S =⨯⨯⨯+⨯⨯⨯=+.考点:三视图,立体几何求表面积和体积.24.26a 【解析】试题分析:如图所示是实际图形和直观图,由图可知,13,O C 24A B AB a OC a ''''====,在图中作C D A B ''''⊥,垂足为D ',则26C D O C 2a ''''==.2C 1166C D 22A B S A B a a a '''∆''''∴=⨯=⨯⨯=.考点:斜二测画法.【方法点晴】本题主要考查斜二测画法,属于中等题型.应注意以下步骤:取O点为原点,以水平方向的直线为x轴,竖直方向的直线为y轴,取任一点'O,画出相应的'x轴、'y轴,使'''45∠=.(1)在已知图形中,取互x O y相垂直的x轴和y轴,两轴相交于点O,画直观图时,把它们画成对应的'x和'y轴,两轴相交于点'O,且使'''45∠=(或0x O y135),它们确定的平面表示水平面;(2)在已知图形中平行于x轴、y轴的线段,在直观图中分别画成平行于'x轴或'y轴的线段;(3)在已知图形中平行于x轴的线段,在直观图中保持长度不变;平行于y轴的线段,长度为原来的一半;(4)如需第三维则在已知图形中平行于z轴的线段,在直观图中保持长度不变.如有侵权请联系告知删除,感谢你们的配合!。