第4章 圆与方程单元测试卷(4) 菁优网

合集下载

人教A版高中数学必修2第四章《圆与方程》测试题(含答案)

人教A版高中数学必修2第四章《圆与方程》测试题(含答案)
(2)由(1)可知M的轨迹是以点 为圆心, 为半径的圆.
由于 ,故O在线段PM的垂直平分线上,又P在圆N上,从而 .
因为ON的斜率为3,所以 的斜率为 ,故 的方程为 .
又 ,O到 的距离为 , ,所以 的面积为 .
21.(1).由已知得过点 的圆的切线斜率的存在,
设切线方程为 ,即 .
则圆心 到直线的距离为 ,
A. B.
C. D.
5.一条光线从点 射出,经 轴反射后与圆 相切,则反射光线所在直线的斜率为()
A. 或 B. 或 C. 或 D. 或
6.已知圆 截直线 所得线段的长度是 ,则圆 与圆 的位置关系是( )
A.内切B.相交C.外切D.相离
7.已知方程 ,则 的最大值是( )
A.14- B.14+ C.9D.14
A.4B.6C. D.
12.已知直线 : 是圆 的对称轴.过点 作圆 的一条切线,切点为 ,则 ( )
A.2B. C.6D.
二、填空题
13.已知两点 ,以线段 为直径的圆的方程为________________.
14.方程x2+y2-x+y+m=0表示一个圆,则m的取值范围是_______
15.已知 为直线 上一点,过 作圆 的切线,则切线长最短时的切线方程为__________.
当 的斜率不存在, 的斜率等于0时, 与圆 不相交, 与圆 不相交.
当 、 的斜率存在且都不等于0,两条直线分别与两圆相交时,设 、 的方程分别为 ,即 .
因为 到 的距离 ,
到 的距离 ,所以 到 的距离与 到 的距离相等.
所以圆 与圆 的半径相等,所以 被圆 截得的弦长与 被圆 截得的弦长恒相等.
综上所述,过点 任作互相垂直的两条直线分别与两圆相交,所得弦长恒相等.

箐优数学网初中中考试卷

箐优数学网初中中考试卷

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()。

A. √-1B. πC. 0.1010010001...D. 2/32. 若x² - 5x + 6 = 0,则x的值为()。

A. 2 或 3B. 1 或 4C. 2 或 -3D. 1 或 -43. 在等腰三角形ABC中,若AB = AC,且∠BAC = 60°,则∠B =()。

A. 30°B. 45°C. 60°D. 90°4. 已知函数f(x) = 2x + 1,若f(3) = 7,则x的值为()。

A. 2B. 3C. 4D. 55. 若a、b、c是等差数列的连续三项,且a + b + c = 12,则b的值为()。

A. 4B. 6C. 8D. 106. 在直角坐标系中,点P(2, -3)关于y轴的对称点为()。

A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)7. 下列图形中,是轴对称图形的是()。

A. 矩形B. 菱形C. 正方形D. 以上都是8. 若|a| = 5,|b| = 3,则|a + b|的最大值为()。

A. 8B. 5C. 3D. 29. 在等腰直角三角形中,若斜边长为10cm,则腰长为()。

A. 5cmB. 10cmC. 15cmD. 20cm10. 若sinα = 1/2,则α的度数为()。

A. 30°B. 45°C. 60°D. 90°二、填空题(每题5分,共50分)11. 已知x² - 4x + 3 = 0,则x的值为______。

12. 在等腰三角形ABC中,若AB = AC,且∠B = 50°,则∠C的度数为______。

13. 函数f(x) = -2x + 5在x = 3时的值为______。

14. 等差数列{an}的前三项分别为1,4,7,则第10项an的值为______。

人教高中数学必修二第四章-圆的方程单元测试

人教高中数学必修二第四章-圆的方程单元测试

人教高中数学必修二第四章-圆与方程单元测试题 9月16日用一.选择题(本大题共12小题,每小题5分,共60分)1.已知A (-4,-5)、B (6,-1),则以线段AB 为直径的圆的方程是( )A .(x +1)2+(y -3)2=29B .(x -1)2+(y +3)2=29C .(x +1)2+(y -3)2=116D .(x -1)2+(y +3)2=1162.过三点O(0,0),A(1,1),B(4,2)的圆的方程是( )A .x 2+y 2+8x -2y -20=0B .x 2+y 2-4x +2y -20=0C .x 2+y 2-8x +6y =0D .x 2+y 2-8x -6y =03.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( )(A) 10<<a (B)11<<-a (C) 11>-<a a 或 (D) 1±=a4.若直线y=kx+1与圆x 2+y 2=1相交于P,Q 两点,且∠POQ=120°(其中O 为坐标原点),则k 的值为( )A .2B .-1C .1或-1D .15.在空间直角坐标系中,点P(-2,1,4)关于xOy 平面的对称点的坐标是( )A.(-2,1,-4)B.(-2,-1,-4)C.(2,-1,4)D.(2,1,-4)6.与圆x 2+y 2-4x +6y +3=0同圆心,且与直线x-2y-3=0相切的圆的方程( )A .x 2+y 2-4x +6y -8=0B .x 2+y 2-4x +6y +8=0C .x 2+y 2+4x -6y -8=0D .x 2+y 2+4x -6y +8=07.在空间直角坐标系中,点P(2,3,4)到y 轴的距离是( ) A.5 B.13 C.52 D.298.圆x 2+y 2-2x -5=0和圆x 2+y 2+2x -4y -4=0的交点为A 、B ,则线段AB 的垂直平分线方程为( )A .x +y -1=0B .2x -y +1=0C .x -2y +1=0D .x -y +1=09.已知圆C 1:(x +1)2+(y -3)2=25,圆C 2与圆C 1关于直线3x-2y-4=0对称,则圆C 2的方程是( )A .(x -3)2+(y -5)2=25B .(x -5)2+(y +1)2=25C .(x -1)2+(y -4)2=25D .(x -3)2+(y +2)2=2510.设点M(x 0 ,1),若在圆O:x 2+y 2=1上存在点N ,使得∠OMN=45°,则x 0 的取值范围是()A.[-1,1]B.),1[]1,(+∞⋃--∞C.]2,1[-D.]2,2[-11.若过点A (4,0)的直线l 与曲线(x -2)2+y 2=1有公共点,则直线l 的斜率的取值范围为( )A .(-3,3)B .[-3,3] C. )33,33(- D. ]33,33[- 12.圆A:x 2+y 2+2x-15=0,直线l 过点B(1,0),且与x 轴不重合,直线l 交圆A 于点C ,D 两点,过点B 作AC 的平行线交AD 于点E ,则|EA|+|EB|=( )A .1B .6C .2D .4二、填空题(本大题共4小题,每小题5分,共20分)13.x 2+y 2+4x+2by+b 2=0与x 轴相切,则b =________.14.在空间直角坐标系中,点A(1,2,-1),B(1,0,2),而点A '与点A 关于x 轴对称,则|A 'B|=________.15.已知直线l:x-3y+6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 两点分别作直线l 的垂线与x 轴交于C ,D 两点,则|CD|是________..16.圆1C :221x y +=和圆2C :22(4)()25x y a ++-=相切,实数a 的可能取值为三、解答题(本大题共4小题,每小题12分,共48分)17.已知圆O 以原点为圆心,且与圆22:68210C x y x y ++-+=外切,(1)求圆O 的方程; (2)求直线230x y +-=与圆O 相交所截得的弦长.18.过点P (3,1)作圆C:x 2+y 2-2x =0的两条切线,设切点分别为A ,B ,(1)求切线的方程;(2)求出直线AB 的方程.19.已知点M(-1,0),N(1,0),曲线E 上任意一点到点M 的距离是到点N 距离的3倍。

人教版数学九年级上册 第4章 圆单元测试试题(一)(含答案)

人教版数学九年级上册 第4章 圆单元测试试题(一)(含答案)

人教版九年级上册数学第4章圆单元复习试卷一.选择题1.一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O 与AC相交于点E,则AE的长为()A.1B.2﹣C.D.2.如图,AB是⊙O的直径,C、D为⊙O上的点,弧AD=弧CD,若∠CAB=40°,则∠CAD=()A.30°B.40°C.50°D.25°3.如图,从一块半径为20cm的圆形铁皮上剪出一个圆心角是60°的扇形ABC,则此扇形围成的圆锥的侧面积为()A.200πcm2B.100πcm2C.100πcm2D.50πcm24.下面说法正确的个数有()①若m>n,则ma2>nb2;②由三条线段首尾顺次相接所组成的图形叫做三角形;③有两个角互余的三角形一定是直角三角形;④各边都相等的多边形是正多边形;⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形一定是钝角三角形.A.1 个B.2 个C.3 个D.4 个5.有一圆锥,它的高为8cm,底面半径为6cm,则这个圆锥的侧面积是()A.30πB.48πC.60πD.80π6.如图,在△ABC中,∠ACB=90°,AC=3,BC=4.以B为圆心作圆与AC相切,则该圆的半径等于()A.2.5B.3C.4D.57.如图,P A、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=78°,则∠ACB的度数为()A.102°B.51°C.41°D.39°8.如图,AB是⊙O的直径,CD为⊙O的弦,且CD⊥AB于点E,点F为圆上一点,若AE =BF,,OE=1,则BC的长为()A.2B.3C.4D.59.对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆上所有的点到圆心的距离相等”的原理10.如图,△OAC按顺时针方向旋转,点O在坐标原点上,OA边在x轴上,OA=8,AC =4,把△OAC绕点A按顺时针方向转到△O′AC′,使得点O′的坐标是(4,4)则在这次旋转过程中线段OC扫过部分(阴影部分)的面积为()A.8πB.πC.2πD.48π二.填空题11.如图,△ABC内接于⊙O,AB=AC,∠BAC=120°,CD为⊙O的直径,连接BD,若AD=12,则线段BD的长是.12.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,则AB长为.13.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=23°,则∠OCB=°.14.如图,圆O的直径AB过弦CD的中点E,若∠C=39°,则∠D=.15.如图,⊙O是ΔABC的外接圆,∠ABC=30°,AC=8,则优弧ABC的长为.三.解答题16.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=BD=2,求AB的长.17.如图,⊙O中的弦AB=CD,AB与CD相交于点E.求证:(1)AC=BD;(2)CE=BE.18.如图,点P为⊙O外一点,P A、PB与⊙O相切于点A、B,BE为⊙O的直径,连PE 交⊙O于点F.(1)若AF∥BE,求证:∠APB=2∠E.(2)BE与P A的延长线相交于点C,若∠C=∠BPE,OC=12,求⊙O的半径.19.如图,在⊙O中,AB是直径,P为AB上一点,过点P作弦MN,∠NPB=45°.(1)若AP=2,BP=6,求MN的长;(2)若MP=3,NP=5,求AB的长;(3)当P在AB上运动时(∠NPB=45°不变),的值是否发生变化?若不变,请求出其值;若变化,请求出其范围.参考答案与试题解析一.选择题1.【解答】解:连接OC,并过点O作OF⊥CE于F,∵△ABC为等边三角形,边长为4,∴∠ACB=60°,高为2,∵等边三角形ABC与⊙O等高,∴OC=,∵⊙O与BC相切于点C,∴∠OCB=90°,∴∠OCF=30°,在Rt△OFC中,可得FC=OC cos30°=,∵OF过圆心,且OF⊥CE,根据垂径定理易知CE=2FC=3,∴AE=AC﹣CE=4﹣3=1,故选:A.2.【解答】解:连接OD、OC,如图,∵OA=OC,∴∠OCA=∠OAC=40°,∴∠AOC=180°﹣40°﹣40°=100°,∵=,∴∠AOD=∠COD=∠AOB=50°,∴∠CAD=∠COD=25°.故选:D.3.【解答】解:作OD⊥AB于D,如图,则AD=BD,∵∠OAD=∠BAC=30°,∴OD=OA=10,AD=OD=10,∴AB=2AD=20,∴扇形围成的圆锥的侧面积==200π(cm2).故选:A.4.【解答】解:①若m>n,则ma2>nb2,当a=0时错误;故不符合题意;②由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形,故不符合题意;③有两个角互余的三角形一定是直角三角形,故符合题意;④各边都相等,各角也相等的多边形是正多边形,故不符合题意.⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形是钝角三角形或直角三角形,故不符合题意;故选:A.5.【解答】解:圆锥的母线==10(cm),圆锥的底面周长2πr=12π(cm),圆锥的侧面积=lR=×12π×10=60π(cm2).故选:C.6.【解答】解:∵∠ACB=90°,即BC⊥AC,∴当圆的半径等于BC=4时,以B为圆心作圆与AC相切,故选:C.7.【解答】解:连接OA、OB,∵P A、PB分别与⊙O相切于A、B两点,∴OA⊥P A,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB=180°﹣∠P=180°﹣78°=102°,∴∠ACB=∠AOB=×102°=51°.故选:B.8.【解答】解:如图,连接OC交AF于J,设BC交AF于T,过点T作TH⊥AB于H.∵AB⊥CD,∴=,∵=,∴=,∴OC⊥AF,∴∠AJO=∠CEO=90°,∵∠AOJ=∠COE,OA=OC,∴△AJO≌△CEO(AAS),∴OJ=OE,∴AE=CJ,∵AB是直径,∴∠F=∠CJT=90°,∵AE=BF,∴BF=CJ,∵∠CTJ=∠BTF,∴△CTJ≌△BTF(AAS),∴CT=BT,∵TH⊥AB,CD⊥AB,∴TH∥CE,∴EH=BH,∵=,∴∠TBF=∠TBH,∵∠F=∠THB=90°,BT=BT,∴△BTF≌△BTH(AAS),∴BF=BH,∵AE=BF,∴AE=BH,∵OA=OB,∴OE=OH=1,∴EH=BH=2,∴AE=BH=2,∴AB=6,OC=OB=3,∴EC===2,∴BC===2,故选:A.9.【解答】解:A、把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理,所以A选项说法正确;B、木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“两点确定一条直线”的原理,所以B选项的说法错误;C 、将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理,所以C 选项说法正确;D 、将车轮设计为圆形是运用了“圆上所有的点到圆心的距离相等”的原理,所以D 选项说法正确.故选:B .10.【解答】解:过O ′作O ′M ⊥OA 于M ,则∠O ′MA =90°,∵点O ′的坐标是(4,4), ∴O ′M =4,OM =4, ∵AO =8,∴AM =8﹣4=4,∴tan ∠O ′AM ==, ∴∠O ′AM =60°,即旋转角为60°,∴∠CAC ′=∠OAO ′=60°,∵把△OAC 绕点A 按顺时针方向旋转到△O ′AC ′,∴S △OAC =S △O ′AC ′,∴阴影部分的面积S =S扇形OAO ′+S △O ′AC ′﹣S △OAC ﹣S 扇形CAC ′=S 扇形OAO ′﹣S 扇形CAC ′=﹣=8π,故选:A .二.填空题11.【解答】解:∵AB =AC ,∠BAC =120°,∴∠ABC =∠ACB =30°,∴∠ADC =∠ABC =30°,∠ADB =∠ACB =30°,∵CD 为⊙O 的直径,∴∠CAD=∠CBD=90°,在Rt△ADC中,∵∠ADC=30°,∴AC=AD=12×=4,∵∠DCB=∠ADC,∴=,∴BD=AC=4.故答案为4.12.【解答】解:∵AB=BC,∠ABC=120°,∴∠ACB=30°,∴∠ADB=30°,∵AD为⊙O的直径,∴∠ABD=90°,∴AB=AD=×6=3.故答案为3.13.【解答】解:连接OB,∵BC是⊙O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=23°,∴∠OAB=∠OBA=23°,∴∠APO=∠CBP=67°,∵∠APO=∠CPB,∴∠CPB=∠APO=67°,∴∠OCB=180°﹣67°﹣67°=46°,故答案为:46.14.【解答】解:∵E点为CD的中点,∴OE⊥CD,∴∠AED=90°,∵∠A=∠C=39°,∴∠D=90°﹣39°=51°.故答案为51°.15.【解答】解:如图,连接OA,OC.∵∠AOC=2∠ABC,∠ABC=30°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=OC=AC=8,∴优弧ABC的长==,故答案为.三.解答题16.【解答】解:∵AB⊥CD,∴CH=DH=CD=1,在Rt△BDH中,∵sin B=,∴∠B=30°,连接OD,如图,∵∠HOD=2∠B=60°,∴OH=DH=,∴OD=2OH=,∴AB=2OD=.17.【解答】证明:(1)∵AB=CD,∴=,即+=+,∴=,∴AC=BD;(2)∵=,∴∠ADC=∠DAB,∴EA=ED,∵AB=CD,即AE+BE=CE+DE,∴CE=BE.18.【解答】(1)连接OA、F A、BA,如下图所示:∵P A、PB与⊙O相切于点A、B,∴∠PBO=∠P AO=90°,∴∠APB+∠BOA=180°,∵∠APB=∠EOA,∵OB=OA,∴∠OBA=∠OAB,∴∠APB=2∠OBA,∵AF∥BE,∴∠E=∠EF A(两直线平行,内错角相等),∵∠EF A=∠OBA(圆周角定理),∴∠APB=2∠E;(2)连接OA,如下图所示,∵在直角三角形OAC中,tan∠C=,∵在直角三角形BPE中,tan∠BPE=,∵∠C=∠BPE,∴=,∵EB=2OA,∴PB=2AC,∵P A、PB与⊙O相切于点A、B,∴P A=PB=2AC,在直角三角形PBC中,sin∠C===,在直角三角形OAC中,sin∠C=.,∴=,∵OC=12,∴OA=×12=8,∴⊙O的半径为8.19.【解答】解:(1)作OH⊥MN于H,连接ON,∵AP=2,BP=6,∴AB=8,∴OA=4,OP=2,在Rt△POH中,∵∠OPH=45°,∴OH=OP=,在Rt△OHN中,∵ON=4,OH=,∴NH===,∵OH⊥MN,∴HM=HN,∴MN=2NH=2;(2)作OH⊥MN于H,连接ON,则HM=HN,∵MP=3,NP=5,∴MN=8,∴HM=HN=4,∴PH=1,在Rt△POH中,∵∠OPH=45°,∴OH=1,在Rt△OHN中,∵HN=4,OH=1,∴ON==,∴AB=2ON=2;(3)的值不发生变化,为定值。

菁优网初中数学竞赛试卷

菁优网初中数学竞赛试卷

一、选择题(每题5分,共25分)1. 下列各数中,绝对值最小的是:A. -3B. 2C. -1.5D. 0.52. 已知a > 0,b < 0,则下列不等式中正确的是:A. a + b > 0B. a - b > 0C. a - b < 0D. a + b < 03. 若一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的面积是:A. 24cm²B. 32cm²C. 48cm²D. 64cm²4. 下列函数中,是反比例函数的是:A. y = 2x + 3B. y = x²C. y = 1/xD. y = x³5. 在直角坐标系中,点A(-2,3)关于原点的对称点是:A. (2,-3)B. (-2,-3)C. (3,-2)D. (-3,2)二、填空题(每题5分,共25分)6. 已知a、b、c是等差数列,且a + b + c = 15,a + c = 9,则b = ______。

7. 在等腰三角形ABC中,底边BC=10cm,腰AB=AC=12cm,则三角形ABC的周长是______cm。

8. 若一个二次函数的图象开口向上,且顶点坐标为(-1,2),则该二次函数的解析式为 ______。

9. 在直角坐标系中,点P(2,-3)到直线y = 2x的距离是 ______。

10. 已知等比数列{an}的公比q > 1,且a1 = 2,则数列{an}的前5项和S5 =______。

三、解答题(每题15分,共30分)11. (15分)已知等差数列{an}的前n项和为Sn,且a1 = 3,公差d = 2,求Sn 的表达式。

12. (15分)在△ABC中,∠A=30°,∠B=45°,∠C=105°,若AB=8cm,求AC 的长度。

四、附加题(每题20分,共40分)13. (20分)已知函数f(x) = ax² + bx + c,且f(1) = 3,f(2) = 7,f(3) = 11,求a、b、c的值。

菁优网期末数学试卷

菁优网期末数学试卷

一、选择题(每题5分,共50分)1. 下列各数中,有理数是:A. √2B. πC. -√3D. √-12. 已知a、b是实数,且a + b = 0,则下列结论正确的是:A. a > 0,b < 0B. a < 0,b > 0C. a、b同号D. a、b异号3. 下列各函数中,一次函数是:A. y = 2x^2 + 3B. y = 3x + 4C. y = √x + 1D. y = x^3 - 2x4. 在直角坐标系中,点P(3,-2)关于y轴的对称点坐标是:A. (-3,-2)B. (3,2)C. (-3,2)D. (3,-2)5. 已知等差数列{an}的首项为2,公差为3,则第10项an的值为:A. 25B. 28C. 31D. 346. 若直角三角形的两直角边分别为3和4,则斜边的长度是:A. 5B. 6C. 7D. 87. 下列方程中,无解的是:A. 2x + 3 = 7B. 3x - 5 = 2C. 5x + 2 = 0D. 4x - 6 = 08. 下列函数中,反比例函数是:A. y = 2x + 3B. y = 2/xC. y = x^2 + 1D. y = 3x^2 - 49. 在△ABC中,若∠A = 45°,∠B = 60°,则∠C的度数是:A. 45°B. 60°C. 75°D. 90°10. 下列各数中,绝对值最小的是:A. -3B. -2C. 0D. 1二、填空题(每题5分,共50分)1. 若x + y = 5,且x - y = 1,则x = ______,y = ______。

2. 若等差数列{an}的首项为1,公差为2,则第n项an = ______。

3. 在直角坐标系中,点P(-2,3)关于x轴的对称点坐标是 ______。

4. 若等腰三角形的底边长为6,腰长为8,则该三角形的周长为 ______。

圆与方程练习题 菁优网

圆与方程练习题 菁优网

圆与方程练习题一.选择题(共27小题) 1.(2014•山西模拟)圆C 过坐标原点,在两坐标轴上截得的线段长相等,且与直线x+y=4相切,则圆C 的方程不可能是( )A . (x+1)2+(y+1)2=18B . (x ﹣2)2+(y+2)2=8C . (x ﹣1)2+(y ﹣1)2=2 D . (x+2)2+(y ﹣2)2=82.(2014•浦东新区三模)若当P (m ,n )为圆x 2+(y ﹣1)2=1上任意一点时,不等式m+n+c ≥0恒成立,则c 的取值范围是( ) A . ﹣1﹣≤c ≤﹣1 B . ﹣1≤c ≤+1 C . c ≤﹣﹣1D . c ≥﹣13.(2014•安徽模拟)设圆x 2+y 2=4的一条切线与x 轴、y 轴分别交于点A 、B ,则|AB|的最小值为( ) A . 4 B . 4 C . 6 D . 84.(2014•上海模拟)设有一组圆C k :(x ﹣k+1)2+(y ﹣3k )2=2k 4(k ∈N *).下列四个命题,正确的有几个( ) ①存在一条定直线与所有的圆均相切; ②存在一条定直线与所有的圆均相交; ③存在一条定直线与所有的圆均不相交; ④所有的圆均不经过原点. A . 1 B . 2 C . 3 D . 45.(2014•福建模拟)与直线x+y+4=0相切,与曲线(x >0)有公共点且面积最小的圆的方程为( )A . x 2+y 2=8B . (x ﹣1)2+(y ﹣1)2=18C . x 2+y 2=4D . (x+1)2+(y+1)2=26.(2014•茂名一模)若圆x 2+y 2+2x ﹣4y+1=0上的任意一点关于直线2ax ﹣by+2=0(a ,b ∈R +)的对称点仍在圆上,则+最小值为( ) A . 4B .2C . 3+2D . 3+47.(2014•安徽)过点P (﹣,﹣1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A . (0,]B . (0,]C . [0,]D .[0,] 8.(2014•江西)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x+y ﹣4=0相切,则圆C 面积的最小值为( ) A . π B . π C . (6﹣2)π D .π9.(2014•北京)已知圆C :(x ﹣3)2+(y ﹣4)2=1和两点A (﹣m ,0),B (m ,0)(m >0),若圆C 上存在点P ,使得∠APB=90°,则m 的最大值为( ) A . 7 B . 6 C . 5 D . 410.(2014•潍坊模拟)已知圆C 1:x 2+y 2+4ax+4a 2﹣4=0和圆C 2:x 2+y 2﹣2by+b 2﹣1=0只有一条公切线,若a ,b ∈R且ab ≠0,则+的最小值为( )A.2B.4C.8D.911.(2014•四川二模)设m,n∈R,若直线(m﹣1)x+(n﹣1)y+2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n 的取值范围是()A.B.C.D.12.(2014•郑州一模)已知圆O的半径为2,PA、PB为该圆的两条切线,A、B为两切点,设∠APO=α,那么2S△PAB•的最小值为()A.﹣16+4B.﹣12+4C.﹣16+8D.﹣12+813.(2014•天津一模)点P(2,﹣1)为圆(x﹣1)2+y2=25的弦AB的中点,则直线AB的方程为()A.x+y﹣1=0 B.2x+y﹣3=0 C.x﹣y﹣3=0 D.2x﹣y﹣5=014.(2014•余姚市模拟)已知直线x+y=1与圆x2+y2=a交于A、B两点,O是原点,C是圆上一点,若,则a的值为()A.1B.C.2D.415.(2014•陕西模拟)过点(1,1)的直线与圆x2+y2﹣4x﹣6y+4=0相交于A,B两点,则|AB|的最小值为()A.2B.4C.2D.516.(2014•浙江二模)若实数x,y满足:3x+4y﹣12=0,则x2+y2+2x的最小值是()A.2B.3C.5D.817.(2014•南宁二模)将圆x2+y2=1按向量平移后,恰好与直线x﹣y+b=0相切,则实数b的值为()A.B.﹣C.D.﹣18.(2014•宜昌模拟)已知圆心(a,b)(a<0,b<0)在直线y=2x+1上的圆,若其圆心到x轴的距离恰好等于圆的半径,在y轴上截得的弦长为,则圆的方程为()A.(x+2)2+(y+3)2=9 B.(x+3)2+(y+5)2=25C.D.19.(2014•肇庆二模)已知直线l:y=x+b,圆x2+y2=4上恰有3个点到直线l的距离都等于1,则b=()A.B.﹣C.±D.±220.(2014•重庆三模)已知x2+y2=1,则的取值范围是()A.B.C.D.21.(2013•江西)过点()引直线l与曲线y=相交于A,B两点,O为坐标原点,当△ABO的面积取得最大值时,直线l的斜率等于()A.B.C.D.22.(2013•浙江二模)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的取值范围是()A.B.k<0或C.D.k≤0或23.(2014•淮南一模)直线y=kx+3与圆(x﹣2)2+(y﹣3)2=4相交于M,N两点,若|MN|≥2,则k的取值范围是()A.[﹣1,1]B.C.D.24.(2012•湖北)过点P(1,1)的直线,将圆形区域{(x,y )|x2+y2≤4}分两部分,使得这两部分的面积之差最大,则该直线的方程为()A.x+y﹣2=0 B.y﹣1=0 C.x﹣y=0 D.x+3y﹣4=025.(2012•宁德模拟)若直线kx﹣y﹣2=0与曲线有两个不同的交点,则实数k的取值范围是()A.B.C.D.26.(2012•深圳二模)如图,直线l和圆c ,当l从l0开始在平面上绕点O按逆时针方向匀速转动(转动角度不超过90度)时,它扫过的圆内阴影部分的面积S是时间t的函数,这个函数的图象大致是()A.B.C.D.27.(2011•黄浦区二模)已知直线l:ax+by=1,点P(a,b)在圆C:x2+y2=1外,则直线l与圆C的位置关系是()A.相交B.相切C.相离D.不能确定圆与方程练习题参考答案与试题解析一.选择题(共27小题) 1.(2014•山西模拟)圆C 过坐标原点,在两坐标轴上截得的线段长相等,且与直线x+y=4相切,则圆C 的方程不可能是( )A . (x+1)2+(y+1)2=18B . (x ﹣2)2+(y+2)2=8C . (x ﹣1)2+(y ﹣1)2=2D . (x+2)2+(y ﹣2)2=8考点: 圆的标准方程.专题: 直线与圆. 分析:把坐标原点分别代入A ,B ,C ,D 四个圆的方程,只有A 不成立,由排除法得到圆C 的方程不可能是A . 解答:解:把坐标原点分别代入A ,B ,C ,D 四个圆的方程,只有A 不成立, ∴圆C 的方程不可能是A . 故选:A . 点评:本题考查满足条件的圆的标准方程的求法,是基础题,解题时要认真审题,注意排除法的合理运用.2.(2014•浦东新区三模)若当P (m ,n )为圆x 2+(y ﹣1)2=1上任意一点时,不等式m+n+c ≥0恒成立,则c 的取值范围是( ) A . ﹣1﹣≤c ≤﹣1 B . ﹣1≤c ≤+1 C . c ≤﹣﹣1D . c ≥﹣1考点: 圆的标准方程.专题: 直线与圆. 分析:令m=cos θ,n=sin θ+1,由条件可得c ≥﹣m ﹣n 恒成立.求得﹣m﹣n=﹣sin(θ+)﹣1 的最大值,可得c的范围.解答:解:由题意可得,m2+(n﹣1)2=1,令m=cosθ,n=sinθ+1,∵m+n+c≥0恒成立,∴c≥﹣m﹣n恒成立.∵﹣m﹣n=﹣cosθ﹣sinθ﹣1=﹣sin(θ+)﹣1的最大值为﹣1,∴c≥﹣1,故选:D.点评:本题主要考查圆的标准方程,三角函数的恒等变换,正弦函数的最值,属于中档题.3.(2014•安徽模拟)设圆x2+y2=4的一条切线与x轴、y轴分别交于点A、B,则|AB|的最小值为()A.4B.4C.6D.8考点:圆的标准方程.专题:直线与圆.分析:设切线方程为=1,由圆心到直线的距离等于半径得2≤,令t=,则t2﹣4t≥0,由此求得t的最小值为4,即为所求.解答:解:设切线方程为=1,即bx+ay﹣ab=0,由圆心到直线的距离等于半径得=2,∴|a||b|=2≤,令t=,则t2﹣4t≥0,t≥4,故t的最小值为4.由题意知t=|AB|,故答案为:4.点评:本题考查点到直线的距离公式和基本不等式的应用,体现了换元的思想,属于中档题.4.(2014•上海模拟)设有一组圆C k:(x﹣k+1)2+(y﹣3k)2=2k4(k∈N*).下列四个命题,正确的有几个()①存在一条定直线与所有的圆均相切;②存在一条定直线与所有的圆均相交;③存在一条定直线与所有的圆均不相交;④所有的圆均不经过原点.A.1B.2C.3D.4考点:圆的标准方程.专题:计算题;直线与圆.分析:根据圆的方程找出圆心坐标,发现满足条件的所有圆的圆心在一条直线上,所以这条直线与所有的圆都相交,②正确;根据图象可知这些圆互相内含,不存在一条定直线与所有的圆均相切,不存在一条定直线与所有的圆均不相交,所以①③错;利用反证法,假设经过原点,将(0,0)代入圆的方程,因为左边为奇数,右边为偶数,故不存在k使上式成立,假设错误,则圆不经过原点,④正确.解答:解:根据题意得:圆心(k﹣1,3k),圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项②正确;考虑两圆的位置关系,圆k:圆心(k﹣1,3k),半径为k2,圆k+1:圆心(k﹣1+1,3(k+1)),即(k,3k+3),半径为(k+1)2,两圆的圆心距d==,两圆的半径之差R﹣r=(k+1)2﹣k2=2k+,任取k=1或2时,(R﹣r>d),C k含于C k+1之中,选项①错误;若k取无穷大,则可以认为所有直线都与圆相交,选项③错误;将(0,0)带入圆的方程,则有(﹣k+1)2+9k2=2k4,即10k2﹣2k+1=2k4(k∈N*),因为左边为奇数,右边为偶数,故不存在k使上式成立,即所有圆不过原点,选项④正确.则正确命题是②④.故选:B.点评:本题考查圆的方程,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题.5.(2014•福建模拟)与直线x+y+4=0相切,与曲线(x>0)有公共点且面积最小的圆的方程为()A.x2+y2=8 B.(x﹣1)2+(y﹣1)2=18 C.x2+y2=4 D.(x+1)2+(y+1)2=2考点:圆的一般方程.专题:直线与圆.分析:根据题意,画出图形,要使所求圆的面积最小即为半径最小,利用图形分析得出圆心坐标与半径的大小,从而写出圆的方程.解答:解:如图;根据题意得,曲线(x>0)关于直线y=x对称,与y=x的交点是P(2,2),直线y=x与x+y+4=0垂直,且垂足为Q(﹣2,﹣2),所求圆的圆心为PQ的中点O(0,0),半径为r=|PQ|==2;∴所求圆的方程为:x2+y2=8;故答案为:A.点评:本题考查了直线与圆相切时满足的条件以及点到直线的距离公式的问题,是综合题.6.(2014•茂名一模)若圆x2+y2+2x﹣4y+1=0上的任意一点关于直线2ax﹣by+2=0(a,b∈R+)的对称点仍在圆上,则+最小值为()A.4B.2C.3+2D.3+4考点:圆的一般方程.专题:直线与圆.分析:由题意可得直线2ax﹣by+2=0过圆心(﹣1,2),即a+b=1,再根据+=(+)(a+b)=3++,利用基本不等式求得它的最小值.解答:解:∵圆x2+y2+2x﹣4y+1=0上的任意一点关于直线2ax﹣by+2=0的对称点仍在圆上,则直线2ax﹣by+2=0过圆心(﹣1,2),即a+b=1,则+=(+)(a+b)=3++≥3+2,当且仅当=时,取等号,故选:C.点评:本题主要考查圆的一般方程,圆关于直线对称问题,属于中档题.7.(2014•安徽)过点P(﹣,﹣1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是()A.(0,]B.(0,]C.[0,]D.[0,]考点:直线与圆的位置关系.分析:用点斜式设出直线方程,根据直线和圆有交点、圆心到直线的距离小于或等于半径可得≤1,由此求得斜率k的范围,可得倾斜角的范围.解答:解:由题意可得,要求的直线的斜率存在,设为k,则直线方程为y+1=k(x+),即kx﹣y+k﹣1=0.根据直线和圆有交点、圆心到直线的距离小于或等于半径可得≤1,即3k2﹣2k+1≤k2+1,解得0≤k≤,故直线l的倾斜角的取值范围是[0,],故选:D.点评:本题主要考查用点斜式求直线方程,点到直线的距离公式的应用,体现了转化的数学思想,属于中档题.8.(2014•江西)在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y﹣4=0相切,则圆C面积的最小值为()A.πB.πC.(6﹣2)πD.π考点:直线与圆的位置关系.专题:空间位置关系与距离.分析:根据AB为直径,∠AOB=90°,推断O点必在圆C上,由O向直线做垂线,垂足为D,则当D恰为圆与直线的切点时,此时圆C的半径最小,即面积最小,利用点到直线的距离求得O到直线的距离,则圆的半径可求,进而可求得此时圆C的面积.解答:解:∵AB为直径,∠AOB=90°,∴O点必在圆C上,由O向直线做垂线,垂足为D,则当D恰为圆与直线的切点时,此时圆C的半径最小,即面积最小此时圆的直径为O到直线的距离为,则圆C的面积为:π×()2=.故选A.点评:本题主要考查了直线与圆的位置关系.用数形结合的思想,解决问题较为直观.9.(2014•北京)已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7B.6C.5D.4考点:直线与圆的位置关系.专题:直线与圆.分析:根据圆心C到O(0,0)的距离为5,可得圆C上的点到点O的距离的最大值为6.再由∠APB=90°,可得PO=AB=m,可得m≤6,从而得到答案.解答:解:圆C:(x﹣3)2+(y﹣4)2=1的圆心C(3,4),半径为1,∵圆心C到O(0,0)的距离为5,∴圆C上的点到点O的距离的最大值为6.再由∠APB=90°,以AB为直径的圆和圆C有交点,可得PO=AB=m,故有m≤6,故选:B.点评:本题主要直线和圆的位置关系,求得圆C上的点到点O的距离的最大值为6,是解题的关键,属于中档题.10.(2014•潍坊模拟)已知圆C1:x2+y2+4ax+4a2﹣4=0和圆C2:x2+y2﹣2by+b2﹣1=0只有一条公切线,若a,b∈R且ab≠0,则+的最小值为()A.2B.4C.8D.9考点:圆的切线方程.专题:综合题;直线与圆.分析:由题意可得两圆相外切,根据两圆的标准方程求出圆心和半径,可得4a2+b2=1,再利用“1”的代换,使用基本不等式求得+的最小值.解答:解:由题意可得两圆相内切,两圆的标准方程分别为(x+2a)2+y2=4,x2+(y﹣b)2=1,圆心分别为(﹣2a,0),(0,b),半径分别为2和1,故有=1,∴4a2+b2=1,∴+=(+)(4a2+b2)=5++≥5+4=9,当且仅当=时,等号成立,∴+的最小值为9.故选:D.点评:本题考查两圆的位置关系,两圆相内切的性质,圆的标准方程的特征,基本不等式的应用,得到4a2+b2=1是解题的关键和难点.11.(2014•四川二模)设m,n∈R,若直线(m﹣1)x+(n﹣1)y+2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n 的取值范围是()A.B.C.D.考点:圆的切线方程.专题:综合题;直线与圆.分析:由圆的标准方程找出圆心坐标和半径r,由直线与圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关系式,整理后利用基本不等式变形,设m+n=x,得到关于x的不等式,求出不等式的解集得到x的范围,即为m+n的范围.解答:解:由圆的方程(x﹣1)2+(y﹣1)2=1,得到圆心坐标为(1,1),半径r=1,∵直线(m﹣1)x+(n﹣1)y+2=0与圆相切,∴圆心到直线的距离d==1,整理得:mn=﹣m﹣n+1,设m+n=x,则有mn≤,∴﹣x+1≤∵x2+4x﹣4≥0,∴不等式变形得:(x+2﹣2)(x+2+2)≥0,解得:x≥﹣2+2或x≤﹣2﹣2,则m+n的取值范围为(﹣∞,﹣2﹣2]∪[﹣2+2,+∞).故选:C.点评:此题考查了直线与圆的位置关系,涉及的知识有:点到直线的距离公式,基本不等式,以及一元二次不等式的解法,利用了转化及换元的思想,当直线与圆相切时,圆心到直线的距离等于圆的半径,熟练掌握此性质是解本题的关键.12.(2014•郑州一模)已知圆O的半径为2,PA、PB为该圆的两条切线,A、B为两切点,设∠APO=α,那么2S△PAB•的最小值为()A.﹣16+4B.﹣12+4C.﹣16+8D.﹣12+8考点:圆的切线方程.专题:直线与圆.分析:由题意画出图形,求出PA,PO,A到PO的距离为AC,PC,求出S△PAB.得到2S△PAB•,化简利用基本不等式求出最小值.解答:解:由题意PA=,PO=A到PO的距离为AC=2cosα,PC=•cosα所以S△PAB=2×PC•AC=•2cosα•cosα.2S△PAB•=•2cosα•cosα•===﹣12+8sin2α≥﹣12+8,当且仅当sin4α=时,取等号.故选:D.点评:本题考查直线与圆的位置关系,三角形的面积的求法,三角函数的化简以及基本不等式的应用,考查计算能力.13.(2014•天津一模)点P(2,﹣1)为圆(x﹣1)2+y2=25的弦AB的中点,则直线AB的方程为()A.x+y﹣1=0 B.2x+y﹣3=0 C.x﹣y﹣3=0 D.2x﹣y﹣5=0考点:直线与圆相交的性质.专题:计算题;直线与圆.分析:由垂径定理,得AB中点与圆心C的连线与AB互相垂直,由此算出AB的斜率k=1,结合直线方程的点斜式列式,即可得到直线AB的方程.解答:解:∵AB是圆(x﹣1)2+y2=25的弦,圆心为C(1,0)∴设AB的中点是P(2,﹣1)满足AB⊥CP因此,PQ的斜率k===1可得直线PQ的方程是y+1=x﹣2,化简得x﹣y﹣3=0故选:C点评:本题给出圆的方程,求圆以某点为中点的弦所在直线方程,着重考查了直线与圆的方程、直线与圆的位置关系等知识,属于基础题.14.(2014•余姚市模拟)已知直线x+y=1与圆x2+y2=a交于A、B两点,O是原点,C是圆上一点,若,则a的值为()A.1B.C.2D.4考点:直线与圆相交的性质.专题:综合题;平面向量及应用;直线与圆.分析:由A,B,C均在圆上可得=,结合,利用平方法,可得∠AOB=120°,求出圆心0到直线AB的距离,结合点到直线距离公式,可得a的方程,解得答案.解答:解:∵A,B,C均为圆x2+y2=a上的点,∴=,∵,∴2+2+2=2,∴2a+2acos∠AOB=a,∴∠AOB=120°∴圆心0到直线AB的距离d=•cos60°=∴a=2故选C.点评:本题考查直线与圆相交的性质,其中求出∠AOB=120°,圆心0到直线AB的距离是解答的关键.15.(2014•陕西模拟)过点(1,1)的直线与圆x2+y2﹣4x﹣6y+4=0相交于A,B两点,则|AB|的最小值为()A.2B.4C.2D.5考点:直线与圆相交的性质.专题:直线与圆.分析:把圆的方程化为标准方程,求得圆心和半径,求得弦心距d的最大值,可得|AB|的最小值.解答:解:圆x2+y2﹣4x﹣6y+4=0 即(x﹣2)2+(y﹣3)2=9,表示以C(2,3)为圆心、半径等于3的圆,要使弦长最小,只有弦心距最大.而弦心距d的最大值为=,∴|AB|的最小值为2=2=4,故选:B.点评:本题主要考查直线和圆的位置关系,两点间的距离公式,弦长公式的应用,属于中档题.16.(2014•浙江二模)若实数x,y满足:3x+4y﹣12=0,则x2+y2+2x的最小值是()A.2B.3C.5D.8考点:直线与圆的位置关系.专题:直线与圆.分析:化简x2+y2+2x=()2﹣1,利用两点间距离公式的几何意义,可判断出x2+y2+2x的最小值为点(﹣1,0)到直线3x+4y﹣12=0的距离的平方减1,代入公式计算即可.解答:解:∵x2+y2+2x=[(x+1)2+y2]﹣1=()2﹣1,∴x2+y2+2x的最小值可看做为:点(﹣1,0)与点(x,y)的距离又∵点(﹣1,0)到直线3x+4y﹣,∴的最小值为3,∴x2+y2+2x的最小值为32﹣1=8.故选:D.点评:本题考查两点距离公式的理解,点到直线间距离公式的应用,属于基础题.17.(2014•南宁二模)将圆x2+y2=1按向量平移后,恰好与直线x﹣y+b=0相切,则实数b的值为()A.B.﹣C.D.﹣考点:直线与圆的位置关系.专题:计算题.分析:先求出平移后圆的方程,并根据方程求出圆心坐标和圆的半径,利用此圆和直线x﹣y+b=0相切,圆心到直线的距离等于半径,建立等式,解方程求出实数b的值.解答:解:将圆x2+y2=1按向量平移后得到的圆方程为(x﹣2)2+(y+1)2=1,表示圆心在(2,﹣1),半径等于1的圆,由此圆y+b=0相切,圆心到直线的距离等于半径得:=1,∴b=﹣3±,故选B .点评:本题考查曲线的平移问题以及直线和圆相切的条件.18.(2014•宜昌模拟)已知圆心(a ,b )(a <0,b <0)在直线y=2x+1上的圆,若其圆心到x 轴的距离恰好等于圆的半径,在y 轴上截得的弦长为,则圆的方程为( )A . (x+2)2+(y+3)2=9B . (x+3)2+(y+5)2=25C .D .考点:直线与圆的位置关系. 专题:压轴题;数形结合. 分析: 根据题意画出图形,过M 作MA 垂直于x轴,MB 垂直于y 轴,连接MC ,由垂径定理得到B 为CD 中点,由|CD|求出|BC|,由圆与x轴垂直得到圆与x 轴相切,所以MA 和MC 为圆M 的半径,在直角三角形MBC 中,由|MB|=|a|,|MC|=|MA|=|b|及|BC|,利用勾股定理列出关于a 与b 的方程,再把M 的坐标代入到直线y=2x+1中,又得到关于a 与b 的另一个方即可求出a与b的值,从而确定出圆心M的坐标,及圆的半径,根据圆心坐标和半径写出圆的方程即可.解答:解:根据题意画出图形,如图所示:过M作MA⊥x轴,MB⊥y轴,连接MC,由垂径定理得到B为CD中点,又|CD|=2,∴|CB|=,由题意可知圆的半径|MA|=|MC|=|b|,|MB|=|a|,在直角三角形BC中,根据勾股定理得:b2=a2+()2,①又把圆心(a,b)代入y=2x+1中,得b=2a+1,②联立①②,解得:a=﹣2,b=﹣3,所以圆心坐标为(﹣2,﹣3),半径r=|﹣3|=3,则所求圆的方程为:(x+2)2+(y+3)2=9.故选A点评:此题考查了直线与圆的位置关系,垂径定理及勾股定理.根据圆心到x轴的距离恰好等于圆的半径得到所求的圆与x轴相切,进而求出圆的半径为|b|是解本题的关键,同时运用了数形结合的思想解决数学问题,培养了学生发现问题,分析问题,解决问题的能力.19.(2014•肇庆二模)已知直线l:y=x+b,圆x2+y2=4上恰有3个点到直线l的距离都等于1,则b=()A.B.﹣C.±D.±2考点:直线与圆的位置关系.专题:直线与圆.分析:由题意可得圆心(0,0)到直线的距离等于半径的一半,即=1,解得b的值.解答:解:∵圆x2+y2=4上恰有3个点到直线l的距离都等于1,∴圆心(0,0)到直线径的一半,即=1,解得b=±,故选:C.点评:本题主要考查直线和圆的位置关系,点到直线的距离公式,判断圆心(0,0)到直线的距离等于半径的一半是解题的关键,属于中档题.20.(2014•重庆三模)已知x2+y2=1,则的取值范围是()A.B.C.D.考点:圆方程的综合应用.专题:直线与圆.分析:的几何意义是(x,y)与(﹣2,0)连线的斜率,设出直线方程,利用圆心到直线的距离为,即可得出结论.解答:解:的几何意义是(x,y)与(﹣2,0)连线的斜率设过(﹣2,0)的直线方程为y=k(x+2),即kx﹣y+2k=0∵x2+y2=1,∴圆心到直线的∴故选D.点评:本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题.21.(2013•江西)过点()引直线l与曲线y=相交于A,B两点,O为坐标原点,当△ABO的面积取得最大值时,直线l的斜率等于()A.B.C.D.考点:直线与圆的位置关系;直线的斜率.专题:压轴题;直线与圆.分析:由题意可知曲线为单位圆在x轴上方部分(含与x轴的交点),由此可得到过C点的直线与曲线相交时k的范围,设出直线方程,由点到直线的距离公式求出原点到直线的距离,由勾股定理求出直线被圆所截半弦长,写出面积后利用配方法转化为求二次函数的最值.解答:解:由y=,得x2+y2=1(y≥0).y=表示单位圆在x轴上方的部分(含与x轴的交点),设直线l的斜率为k,要保证直线l与曲线有两个交点,且直线不与x轴重合,则﹣1<k<0,直线l的方程为y﹣0=,即.则原点O到l的距离d=,l被半圆截得的半弦长为.则===.令,则,当,即时,S△ABO有最大值为.此时由,解得k=﹣.故答案为B.点评:本题考查了直线的斜率,考查了直线与圆的关系,考查了学生的运算能力,考查了配方法及二次函数求最值,解答此题的关键在于把面积表达式转化为二次函数求最值,是中档题.22.(2013•浙江二模)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的取值范围是()A.B.k<0或C.D.k≤0或考点:直线与圆的位置关系.专题:计算题.分析:将圆C的方程整理为标准形式,找出圆心C的坐标与半径r,根据直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,得到以C为圆圆与直线y=kx﹣2有公共点,即圆心到直线y=kx﹣2的距离小于等于2,利用点到直线的距离公式列出关于k的不等式求出不等式的解集即可得到k的范围.解答:解:将圆C的方程整理为标准方程得:(x﹣4)2+y2=1,∴圆心C(4,0),半径r=1,∵直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′(x﹣4)2+y2=4与y=kx﹣2有公共点,∵圆心(4,0)到直线y=kx﹣2的距离d=≤2,解得:0≤k≤.故选A点评:此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,点到直线的距离公式,其中当d<r时,直线与圆相交;当d>r时,直线与圆相离;当d=r时,直线与圆相切(d为圆心到为圆的半径).23.(2014•淮南一模)直线y=kx+3与圆(x﹣2)2+(y﹣3)2=4相交于M,N两点,若|MN|≥2,则k的取值范围是()A.[﹣1,1]B.C.D.考点:直线与圆的位置关系.专题:计算题;直线与圆.分析:由弦长公式得,当圆心到直线的距离等于1时,弦长等于2,故当弦长大于或等于2时,圆心到直线的距离小于或等于,解此不等式求出k的取值范围.解答:解:圆(x﹣2)2+(y﹣3)2=4,圆心(2,3),半径为2,由弦长公式得,圆心到直线的距离小于或等于,即≤,可得k2≤1,∴﹣1≤k≤1,故选A.点评:本题考查圆形到直线的距离公式的应用,以及弦长公式的应用,考查计算能力.24.(2012•湖北)过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分两部分,使得这两部分的面积之差最大,则该直线的方程为()A.x+y﹣2=0 B.y﹣1=0 C.x﹣y=0 D.x+3y﹣4=0考点:直线与圆相交的性质.专题:计算题.分析:由扇形的面积公式可知,劣弧所的扇形的面积=2α,则S2=4π﹣2α(∠AOB=α)要求面积差的最大值,即求α的最小值,根据直线与圆相交的性质可知,只要当OP⊥AB时,α最小,可求解答:解:设过点P(1,1)的直线与圆分别交于点A,B,且圆被AB所分的两部分的面积分别为S1,S2且S1≤S2劣弧所对的圆心角∠AOB=α,则=2α,S2=4π﹣2α(0<α≤π)∴S△AOB+S2﹣(S1﹣S△AOB)=4π﹣4α+要求面积差的最大值,即求α的最小值,根据直线与圆相交的性质可知,只要当OP⊥AB时,α最小此时K AB=﹣1,直线AB的方程为y﹣1=﹣(x﹣1)即x+y﹣2=0故选A解:要使直线将圆形区域分成两部分的面积之差最大,必须使过点P的圆的弦长达到最小,所以需该直线与直线OP垂直即可.又已知点P(1,1),则K OP=1,故所求直线的斜率为﹣1.又所求直线过点P(1,1),由点斜式得,所求直线的方程为y﹣1=﹣(x﹣1),即.x+y﹣2=0故选A点评:本题主要考查了直线与圆相交性质的应用,解题的关键是根据扇形的面积公式把所要求解的两面积表示出来25.(2012•宁德模拟)若直线kx﹣y﹣2=0与曲线有两个不同的交点,则实数k的取值范围是()A.B.C.D.考点:直线与圆相交的性质.专题:计算题.分析:将直线化成斜截式,可得直线经过点(0,﹣2),将曲线方程化简整理,得该曲线是以(1,1)为圆心,半径为1的圆位于直线x=1右侧的部分.作出图形,观察直线的斜率k的变化,再结合计算即可得到实数k的取值范围.解答:解:直线kx﹣y﹣2=0化成y=kx﹣2,可得它必定经过点(0,﹣2)而曲线,可变形整理为(x﹣1)2+(y﹣1)2=1(x≥1)∴该曲线是以(1,1)为圆心,半径为1的圆位于直线x=1右侧的部分设直线在圆下方与圆相切时的斜率为k1,直线过点(1,0)与圆有两个交点时的斜率为k2.可得当直线kx﹣y﹣2=0与曲线有两个不同的交点时,斜率k满足k1<k≤k2.由点(1,1)到直线kx﹣y﹣2=0的距离d=,解得k1=而k2==2,由此可得<k≤2故选A点评:本题给出动直线与半圆有两个不同的交点,求直线斜率k的取值范围,着重考查了曲线与方程的化简和直线与圆的位置关系等知识,属于基础题.26.(2012•深圳二模)如图,直线l和圆c,当l从l0开始在平面上绕点O按逆时针方向匀速转动(转动角度不超过90度)时,它扫过的圆内阴影部分的面积S是时间t的函数,这个函数的图象大致是()A.B.C.D.考点:直线与圆相交的性质.专题:图表型;规律型;数形结合法.分析:由图象可以看出,阴影部分的面积一开始增加得较慢,面积变化情况是先慢后快然后再变慢,由此规律找出正确选项解答:解:观察可知面积S变化情况为“一直增加,先慢后快,过圆心后又变慢”对应的函数的图象是变化率先变大再变小,由此知D符合要求故选D点评:本题考查直线与圆相交的性质,解答本题的关键是根据所给的图形得出直线扫过的阴影部分的面积变化规律,利用函数的思想找出正确答案,本题考查识图的能力以及根据实际问题选择函数模型的能力.27.(2011•黄浦区二模)已知直线l:ax+by=1,点P(a,b)在圆C:x2+y2=1外,则直线l与圆C的位置关系是()A.相交B.相切C.相离D.不能确定考点:直线与圆的位置关系.专题:计算题.分析:由圆的方程找出圆心C的坐标与圆的半径r,由点P在圆外得到圆心到P的距离大于半径r,得出a与b的不等式,然后利用点到直线的距离公式表示出圆心C到直线l的距离d,由求出a与b的不等式即可判断出d与r的大小关系,进而得到直线l与圆C的位置关系.解答:解:由圆的方程x2+y2=1,得到圆心C坐标为(0,0),圆的半径r=1,因为点P(a,b)在圆外,所以|CP|=>1,则圆心C到直线l的距离d=<1,所以直线l与圆C的位置关系是相交.故选A点评:此题考查学生掌握点到圆及直线到圆的位置关系的判别方法,灵活运用两点间及点到直线的距离公式化简求值,是一道基础题.。

人教版高一数学必修二第四章圆与方程单元测试含答案

人教版高一数学必修二第四章圆与方程单元测试含答案

圆及方程姓名:班级: .一、选择题〔共8小题;共40分〕1. 圆x2+y2−4x+6y=0的圆心坐标是( )A. (2,3)B. (−2,3)C. (−2,−3)D. (2,−3)2. ⊙O的直径是3,直线l及⊙O相交,圆心O到直线l的距离是d,那么d应满足( )A. d>3B. 1.5<d<3C. 0≤d<1.5D. d<03. 圆(x−2)2+(y−1)2=4及圆(x+1)2+(y−2)2=9的公切线有( )条A. 1B. 2C. 3D. 44. 从原点向圆x2+y2−12y+27=0作两条切线,那么该圆夹在两条切线间的劣弧长为( )A. πB. 2πC. 4πD. 6π5. 过点(1,1)的直线及圆(x−2)2+(y−3)2=9相交于A,B两点,那么∣AB∣的最小值为( )A. 2√3B. 4C. 2√5D. 56. 圆C的半径为2,圆心在x轴的正半轴上,直线3x+4y+4=0及圆C相切,那么圆C的方程为( )A. x2+y2−2x−3=0B. x2+y2+4x=0C. x2+y2+2x−3=0D. x2+y2−4x=07. 要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水.假设每个喷水龙头的喷洒范围都是半径为6米的圆面,那么需安装这种喷水龙头的个数最少是( )A. 6B. 5C. 4D. 38. 圆:C1:(x−2)2+(y−3)3=1,圆:C2:(x−3)2+(y−4)2=9,M、N分别是圆C1、C2上的动点,P为x轴上的动点,那么∣PM∣+∣PN∣的最小值为( )A. 5√2−4B. √17−1C. 6−2√2D. √17二、填空题〔共7小题;共35分〕9. 过点A(3,−4)及圆x2+y2=25相切的直线方程是.10. 如果单位圆x2+y2=1及圆C:(x−a)2+(y−a)2=4相交,那么实数a的取值范围为.11. 在空间直角坐标系中,点A(1,0,2),B(1,−3,1),点M在y轴上,且M到A及到B的距离相等,那么点M的坐标是.12. 圆C:(x−2)2+y2=1.假设直线y=k(x+1)上存在点P,使得过P向圆C所作的两条切线,那么实数k的取值范围所成的角为π3为.13. 如图,以棱长为a的正方体的三条棱所在的直线为坐标轴建立空间直角坐标系,假设点P为对角线AB的中点,点Q在棱CD上运动,那么PQ的最小值为.14. 在圆C:(x−2)2+(y−2)2=8内,过点P(1,0)的最长的弦为AB,最短的弦为DE,那么四边形ADBE的面积为.15. 据气象台预报:在A城正东方300km的海面B处有一台风中心,正以每小时40km的速度向西北方向移动,在距台风中心250km以内的地区将受其影响.从现在起经过约h,台风将影响A城,持续时间约为h.〔结果准确到0.1h〕三、解答题〔共5小题;共65分〕16. 假设关于x,y的方程x2+y2−4x+4y+m=0表示圆C.〔1〕求实数m的取值范围;〔2〕假设圆C及圆M:x2+y2=2相离,求m的取值范围.17. 圆C:x2+y2+4x+4y+m=0,直线l:x+y+2=0.〔1〕假设圆C及直线l相离,求m的取值范围;〔2〕假设圆D过点P(1,1),且及圆C关于直线l对称,求圆D的方程.18. 如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x−4.设圆C的半径为1,圆心在l上.〔1〕假设圆心C也在直线y=x−1上,过点A作圆C的切线,求切线的方程;〔2〕假设圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.19. 直线l的方程为2x+(1+m)y+2m=0,m∈R,点P的坐标为(−1,0).〔1〕求证:直线l恒过定点,并求出定点坐标;〔2〕求点P到直线l的距离的最大值;〔3〕设点P在直线l上的射影为点M,N的坐标为(2,1),求线段MN长的取值范围.20. 在平面直角坐标系xOy中,圆C1:(x+3)2+(y−1)2=4和圆C2:(x−4)2+(y−5)2=4.〔1〕假设直线l过点A(4,0),且被圆C1截得的弦长为2√3,求直线l的方程;〔2〕设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别及圆C1和圆C2相交,且直线l1被圆C1截得的弦长及直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标.答案第一局部1. D2. C3. B4. B5. B6. D7.C 8. A第二局部9. 3x−4y=25 10. −3√22<a<−√22或√22<a<3√2211. (0,−1,0) 12. [−2√55,2√55] 13. √22a 14. 4√615. 2.0;6.6第三局部16. 〔1〕圆C化简为(x−2)2+(y+2)2=8−m,所以8−m>0,即m<8.〔2〕圆C的圆心为(2,−2),半径为√8−m〔m<8〕,圆M的圆心为(0,0),半径为√2,由题意,得圆心距大于两圆的半径和,那么√22+22>√8−m+√2,解得6<m<8.17. 〔1〕圆C:x2+y2+4x+4y+m=0即(x+2)2+(y+2)2= 8−m.圆心C(−2,−2)到直线l的距离d=√2=√2,假设圆C及直线l相离,那么d>r,所以r2=8−m<2即m>6又r2=8−m>0即m<8.故m的取值范围是(6,8).〔2〕设圆D的圆心D的坐标为(x0,y0),由于圆C的圆心C(−2,−2),依题意知点D和点C关于直线l对称,那么有 {x 0−22+y 0−22+2=0y 0+2x 0+2×(−1)=−1,解得 {x 0=0y 0=0.所以 圆 D 的方程为 x 2+y 2=r 2,而 r =∣DP ∣=√2,因此,圆 D 的方程为 x 2+y 2=2.18. 〔1〕 由题设,圆心 C 是直线 y =2x −4 和 y =x −1 的交点, 解得点 C (3,2),于是切线的斜率必存在. 设过 A (0,3) 的圆 C 的切线方程为y =kx +3.由题意,得∣3k +1∣√k 2+1=1,解得:k =0或−34.故所求切线方程为y =3或3x +4y −12=0.〔2〕 因为圆心在直线 y =2x −4 上,所以圆 C 的方程为(x −a )2+[y −2(a −2)]2=1.设点 M (x,y ),因为 MA =2MO ,所以√x 2+(y −3)2=2√x 2+y 2,化简得x 2+y 2+2y −3=0,即x 2+(y +1)2=4,所以点 M 在以 D (0,−1) 为圆心,2 为半径的圆上.由题意,点 M (x,y ) 在圆 C 上,所以圆 C 及圆 D 有公共点,那么∣2−1∣≤CD ≤2+1,即1≤√a 2+(2a −3)2≤3.整理,得−8≤5a 2−12a ≤0.由 5a 2−12a +8≥0,得a ∈R;由 5a 2−12a ≤0,得0≤a ≤125.所以点 C 的横坐标 a 的取值范围为 [0,125].19. 〔1〕 由 2x +(1+m )y +2m =0 得 2x +y +m (y +2)=0, 所以直线 l 恒过直线 2x +y =0 及直线 y +2=0 交点 Q . 解方程组 {2x +y =0,y +2=0. 得 Q (1,−2),所以直线 l 恒过定点,且定点为 Q (1,−2).〔2〕 设点 P 在直线 l 上的射影为点 M ,那么 ∣PM∣≤∣PQ∣∣,当且仅当直线 l 及 PQ 垂直时,等号成立,所以点 P 到直线 l 的距离的最大值即为线段 PQ 的长度为 2√2. 〔3〕 因为直线 l 绕着点 Q (1,−2) 旋转,所以点 M 在以线段 PQ 为直径的圆上,其圆心为点 C (0,−1),半径为 √2,因为 N 的坐标为 (2,1),所以∣CN∣=2√2,从而√2≤∣MN∣≤3√2.20. 〔1〕由于直线x=4及圆C1不相交,所以直线l的斜率存在.设直线l的方程为y=k(x−4),圆C1的圆心到直线l的距离为d,又因为直线l被圆C1截得的弦长为2√3,所以d=√22−(√3)2=1.由点到直线的距离公式得d=∣1−k(−3−4)∣√1+k2,从而k(24k+7)=0,即k=0或k=−7 24 ,所以直线l的方程为y=0或7x+24y−28=0.〔2〕设点P(a,b)满足条件,不妨设直线l1的方程为y−b=k(x−a),k≠0,那么直线l2的方程为y−b=−1k(x−a).因为圆C1和C2的半径相等,及直线l1被圆C1截得的弦长及直线l2被圆C2截得的弦长相等,所以圆C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等,即∣1−k (−3−a )−b∣√1+k 2=∣∣5+1k (4−a )−b ∣∣√1+1k 2,整理得 ∣1+3k +ak −b∣=∣5k +4−a −bk∣,从而1+3k +ak −b =5k +4−a −bk, 或1+3k +ak −b =−5k −4+a +bk.即(a +b −2)k =b −a +3,或(a −b +8)k =a +b −5.因为 k 的取值有无穷多个,所以{a +b −2=0,b −a +3=0,或{a −b +8=0,a +b −5=0.解得{a =52,b =−12,或{a =−32,b =132.这样点 P 只可能是点 P 1(52,−12) 或点 P 2(−32,132). 经检验点 P 1 和 P 2 满足题目条件.。

初中数学试卷菁优网

初中数学试卷菁优网

一、选择题(每题4分,共20分)1. 下列数中,有理数是()A. √3B. πC. -1/2D. 2.52. 下列各数中,正数是()A. -3B. 0C. 2D. -√43. 下列各数中,绝对值最大的是()A. -5B. -4C. 0D. 34. 下列各数中,无理数是()A. √9B. 2/3C. πD. 1.4145. 已知a=2,b=-3,则a²+b²的值是()A. 13B. 11C. 7D. 9二、填空题(每题4分,共20分)6. 若x=3,则2x-5的值是______。

7. 若a=-2,b=5,则a²-b²的值是______。

8. 下列等式中,正确的是()A. (-3)²=9B. (-3)³=-27C. (-3)⁴=81D. (-3)⁵=-2439. 已知√x=6,则x的值是______。

10. 若a=5,b=-3,则a²-b²的值是______。

三、解答题(每题10分,共30分)11. 解下列方程:(1)2x+5=11(2)5(x-2)=3x+712. 解下列不等式:(1)3x-4>2(2)2(x+1)≤513. 已知三角形的三边长分别为3,4,5,求该三角形的面积。

四、证明题(每题10分,共20分)14. 证明:若a,b,c是等差数列的连续三项,则a²+b²+c²=3bc。

15. 证明:若a,b,c是等比数列的连续三项,则abc²=(ab+bc+ca)²。

答案:一、选择题1. C2. C3. A4. C5. A二、填空题6. 17. -218. B9. 3610. 64三、解答题11. (1)x=3(2)x=412. (1)x>2(2)x≤113. 三角形面积为6√3。

四、证明题14. 证明:由等差数列的定义可知,b=a+d,c=a+2d。

将b、c代入a²+b²+c²=3bc 得:a²+(a+d)²+(a+2d)²=3a(a+d)(a+2d)a²+a²+2ad+d²+a²+4ad+4d²=3a³+6a²d+3ad²3a²+6ad+5d²=3a³+6a²d+3ad²3a²+6ad+5d²-3a³-6a²d-3ad²=03(a²-2ad+d²)-3a(a²-2ad+d²)=03(a-d)²=3a(a-d)(a-d)²=a(a-d)a²-2ad+d²=a²-adad-d²=-ad2ad=2d²a=d所以,a²+b²+c²=3bc。

人教版六年级上册《第4章 圆的周长和面积》2013年单元测试卷 - 小学数学 - 菁优网

人教版六年级上册《第4章 圆的周长和面积》2013年单元测试卷 - 小学数学 - 菁优网

显示解析
下载试题
平方分米.
6.在一个正方形里面画一个最大的圆,这个圆的周长是6.28厘米,这正方形的面积是
显示解析
下载试题
平方厘米.剩下的面积是
平方厘米.
7.大圆半径是3分米,小圆半径是2分米,小圆面积是大圆面积的 .
显示解析
下载试题
8.有大小两个圆,大圆直径是小圆半径的4倍,大圆周长是小圆的 ,大圆面积是小圆的 .
C.9倍
显示解析
下载试题
27.以正方形的边长为半径的圆,它的面积是正方形的( )正确答案是:
A.4倍
B.3.5倍
C.3.14倍
D.3倍
★★★★★ ★★★★★ ★★★★★ ★★★★★ ★★★☆☆ ★★☆☆☆
★☆☆☆☆
★★★☆☆
显示解析
下载试题
28.在下面各圆中,面积最大的圆是( ),面积相等的圆是( )和( )
评论/纠错
北师大版六年级上册《第2章 百分数》2014年单元测试卷(1) 北师大版六年级上册《第1章 圆》2014年单元测试卷(7) 新人教版六年级上册《第3章 分数除法》2014年单元测试卷(4) 新人教版六年级上册《第4章 圆》2014年单元测试卷(5) 北师大版六年级上册《第1章 圆》2014年单元测试卷(4)
下载试题
☆☆☆☆☆
★☆☆☆☆ ☆☆☆☆☆ ☆☆☆☆☆
33.一辆自行车的车轮半径是40厘米,车轮每分钟转100圈,要通过2512米的桥,大约需要几分钟?
显示解析
下载试题
34.在一个圆形喷水池的周长是62.8米,绕着这个水池修一条宽2米的水泥路.求路面的面积.
显示解析
下载试题
35.一个圆形养鱼池,直径是4米,这个养鱼池的周长是多少米?占地面积是多少平方米?

新人教版初中数学九年级数学上册第四单元《圆》测试卷(有答案解析)(5)

新人教版初中数学九年级数学上册第四单元《圆》测试卷(有答案解析)(5)

一、选择题1.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在⊙O 上,点D 在优弧ADB 上,DA DB =,则AOD ∠的度数为( )A .165°B .155°C .145°D .135° 2.如图,在平面直角坐标系中,P 是直线y =2上的一个动点,⊙P 的半径为1,直线OQ 切⊙P 于点Q ,则线段OQ 的最小值为( )A .1B .2C .3D .53.2020年温州市实验中学数学文化节征稿文化节LOGO ,小明利用古希腊医学家希波克拉底所画图形进行设计.如图ABC 内接于一个半径为5的半圆,90ACB ∠=︒,分别以AB ,BC ,AC 为直径向外作半圆.若阴影部分图形面积之和是空白部分图形面积之和的3倍,则ABC 的面积为( )A .5πB .7.5πC .253πD .10π 4.如图,AB 是半圆O 的直径,20BAC =︒∠,则D ∠的度数是( )A.70°B.100°C.110°D.120°5.如图在ABC中,∠B=90°,AC=10,作ABC的内切圆圆O,分别与AB、BC、AC相切于点D、E、F,设AD=x,ABC的面积为S,则S关于x的函数图像大致为()A.B.C.D.6.如图,一条公路的拐弯处是一段圆弧AB,点O是这段弧所在的圆的圆心,AB=,点C是AB的中点,点D是AB的中点,且5cm20cmCD=,则这段弯路所在圆的半径为()A .10cmB .12.5cmC .15cmD .17cm 7.在平面直角坐标系中,以点()3,4-为圆心,半径为5作圆,则原点一定( ) A .与圆相切 B .在圆外 C .在圆上 D .在圆内 8.给出下列说法:①圆是轴对称图形,对称轴是圆的每一条直径;②三角形的外心到三角形各顶点的距离相等;③经过三个点一定可以画一个圆;④平分弦的直径垂直于弦;⑤垂直于弦的直径平分弦,并且平分弦所对的两条弧.正确的有( )A .4B .3C .2D .1 9.已知O 的半径为5,若4PO =,则点P 与O 的位置关系是( ) A .点P 在O 内 B .点P 在O 上 C .点P 在O 外 D .无法判断 10.如图,PA 切O 于点,A PB 切O 于点B PO ,交O 于点C ,下列结论中不一定成立的是( )A .PA PB =B .PO 平分APB ∠C .AB OP ⊥D .2PAB APO ∠=∠ 11.如图,AB 为圆O 的直径,点C 在圆O 上,若∠OCA =50°,OB =2,则弧BC 的长为( )A .103πB .59π C .109π D .518π 12.如图,点M 是矩形ABCD 的边BC 、CD 上的点,过点B 作BN ⊥AM 于点P ,交矩形ABCD 的边于点N ,连接DP ,若AB=6,AD=4,则DP 的长的最小值为( )A .2B .1213C .4D .5二、填空题13.如图,30ACB ∠=︒,点O 是CB 上的一点,且6OC =,则以4为半径的O 与直线CA 的公共点的个数______.14.如图,四边形ABCD 是O 的内接四边形,对角线AC ,BD 交于点E ,且AC BD AB ==,若70AEB ∠=︒,则AOB ∠等于______︒.15.如图,点A 、D 、G 、M 在半圆上,四边形ABOC 、DEOF 、HMNO 均为矩形,设BC a =,EF b =,NH c =,则a ,b ,c 之间的大小关系是_________________.(用“>”、“<”、“=”连接)16.已知O 的直径10AB =cm ,CD 是O 的弦,AE CD ⊥,垂足为点E ,BF CD ⊥,垂足为点F ,且8CD =cm ,则BF AE -的长为________cm .17.如图,在半径为3的⊙O 中,AB 是直径,AC 是弦,D 是AC 的中点,AC 与BD 交于点E .若E 是BD 的中点,则AC 的长是____________.18.如图,正五边形ABCDE 内接于⊙O ,点F 在DE 上,则∠CFD =_____度.19.如图,MN 是O 的直径,2MN =,点A 在O 上,30AMN ∠=︒,B 为弧AN 的中点,点P 是直径MN 上的一个动点,则PA PB +的最小值为_______.20.如图,已知空间站A 与星球B 距离为a ,信号飞船C 在星球B 附近沿圆形轨道行驶,B ,C 之间的距离为b .数据S 表示飞船C 与空间站A 的实时距离,那么S 的最小值________.三、解答题21.如图,在⊙O 中,C 是AB 的中点,∠ACB=∠AOB .求证:四边形OACB 是菱形.22.如图,以Rt ABC 的AC 边为直径作O 交斜边AB 于点E ,连接EO 并延长交BC 的延长线于点D ,点P 为BC 的中点,连接EP ,AD .(1)求证:PE 是O 的切线; (2)若O 的半径为3,30B ∠=︒,求P 点到直线AD 的距离. 23.如图,AB 是O 的弦,CD 是O 的直径,CD AB ⊥,垂足为E .1CE =,3ED =.(1)求O 的半径.(2)求AB 的长.24.如图,在平面直角坐标系中,点A 的坐标为()3,2-,点B 的坐标为()0,2. (1)画出将绕点O 顺时针旋转90后的图形,记为A OB ''△;(2)在题(1)旋转过程中线段OA 扫过的面积为_______(直接写出答案)25.对于平面上两点,A B ,给出如下定义:以点A 或B 为圆心,AB 长为半径的圆称为点,A B 的“共径圆”.点,A B 的“共径圆”的示意图如图所示.(1)已知点A 的坐标为(0,0),点B 的坐标为(3,4),则点,A B 的“共径圆”的面积为_______________;(2)已知点A 在以坐标原点为圆心,以1为半径的圆上,点B 在直线4y x =-+上,求点,A B 的“共径圆”的半径最小值;(3)已知点A 的坐标为(0,0),点B 是x 轴及x 轴上方的点,如果直线y x b =+上存在两个点B ,使得点,A B 的“共径圆”的面积为4π,直接写出满足条件的b 的取值范围.26.如图,已知,MON ∠点A 在射线OM 上.根据下列方法画图(用尺规作图). ①以O 为圆心,OA 长为半径画圆,交ON 于点B ,交射线OM 的反向延长线于点C ,连接BC ;②以OA 为边,在MON ∠的内部,画AOP OCB ∠=∠;③连接AB ,交OP 于点E ;④过点A 作O 的切线,交OP 于点F .()1依题意补全图形;()2求证MOP PON ∠=∠;()3若60,10MON OF ∠=︒=,求AE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】连接OB ,根据平行四边形的性质可得∠OAB=∠C=45°,再根据等腰三角形的等边对等角得∠OBA=∠OAB=45°,则∠AOB=90°,由DA=DB 得∠AOD=∠BOD ,进而可求得∠AOD 的度数.【详解】解:连接OB ,∵四边形ABCO 是平行四边形,∴∠OAB=∠C=45°,∵OA=OB ,∴∠OBA=∠OAB=45°,∴∠AOB=90°,∵DA=DA ,∴∠AOD=∠BOD=12(360°﹣90°)=135°, 故选:D .【点睛】本题考查平行四边形的性质,等腰三角形的性质,圆心角、弧、弦的关系等知识,熟练掌握平行四边形的性质和等腰三角形的性质,熟知等弦所对的圆心角相等是解答的关键. 2.C解析:C【分析】连接PQ 、OP ,如图,根据切线的性质得:PQ ⊥OQ ,再利用勾股定理得出OQ ,利用垂线段最短,当OP 最小时,OQ 最小,即可求解.【详解】连接PQ 、OP ,如图,∵直线OQ 切⊙P 于点Q ,∴PQ ⊥OQ ,在直角OPQ △中,2221OQ OP PQ OP --,当OP 最小时,OQ 最小,当OP ⊥直线y =2时,OP 有最小值2,∴OQ 2213-=故选:C .【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径,也考查了勾股定理,熟练掌握切线的性质以及勾股定理是解答本题的关键.3.B解析:B【分析】设AC=a ,BC=b ,由勾股定理可求得a 2+b 2=102,由三角形的面积公式和圆的面积公式分别求出空白部分图形面积和阴影部分图形面积,利用阴影部分图形面积之和是空白部分图形面积之和的3倍可求得ab ,进而可求得△ABC 的面积.【详解】解:设AC=a ,BC=b ,由题意,AB=10,∴a 2+b 2=102, 由图可知,空白部分面积为(25122ab π-), 阴影部分面积= 22111251()()2222222a b ab ab πππ⨯+⨯⨯+-+ = 22()2582a b ab ππ+-+ =1002582ab ππ-+ = ab , ∵阴影部分图形面积之和是空白部分图形面积之和的3倍,∴ab =3(25122ab π-), 解得:15ab π=,∴△ABC=12ab =7.5π, 故选:B .【点睛】 本题考查了圆的面积公式、三角形的面积公式、勾股定理、解方程等知识,熟记面积公式,利用割补法和整体思想解决问题是解答的关键.4.C解析:C【分析】先根据圆周角定理可得90ACB ∠=︒,再根据直角三角形的性质可得70B ∠=︒,然后根据圆内接四边形的性质即可得.【详解】AB 是半圆O 的直径,90ACB ∴∠=︒,20BAC ∠=︒,9070B BAC ∴∠=︒-∠=︒, 又四边形ABCD 是圆O 内接四边形,180110D B ∴∠=︒-∠=︒,故选:C .【点睛】本题考查了圆周角定理、直角三角形的性质、圆内接四边形的性质,熟练掌握圆周角定理是解题关键.5.A解析:A【分析】连接OD 、OE ,根据三角形内切圆证得四边形DBEO 是正方形,在根据勾股定理即可得解;【详解】连接OD 、OE ,如图,O 的半径为r ,∵△ABC 的内切圆O 分别于AB 、BC 、AC 相切与点D 、E 、F ,∴⊥OD AB ,OE BC ⊥,AF=AD=x ,CE=CF=10-x ,易得四边形DBEO 是正方形,∴DB BE OD r ===, ∵()()2△1110101022ABC S r AB BC AC r x r r x r r =++=+++-+=+,∵222AB BC AC +=,∴()()2221010x r x r ++-+=, ∴221010r r x x +=-+, ∴()2210525S x x x =-+=--+(0<x <10). 故答案选A .【点睛】本题主要考查了切线的性质,三角形的内切圆与圆心,函数图像,准确分析判断是解题的关键.6.B解析:B【分析】根据题意,可以推出AD=BD=10,若设半径为r,则OD=r﹣5,OA=r,结合勾股定理可推出半径r的值.【详解】解:∵OC⊥AB,AB=20,∴AD=DB=10,在Rt AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣5)2+102,解得:r=12.5,∴这段弯路的半径为12.5,故选:B.【点睛】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r后,用r表示出OD、OA的长度.7.C解析:C【分析】设点(-3,4)为点P,原点为点O,先计算出OP的长,然后根据点与圆的位置关系的判定方法求解.【详解】解:∵设点(-3,4)为点P,原点为点O,∴OP5,而⊙P的半径为5,∴OP等于圆的半径,∴点O在⊙P上.故选:C.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.8.C解析:C【分析】根据对称轴是一条直线,即可判断①;根据外心的性质即可判断②;利用确定圆的条件即可判断③;根据弦不是直径时,平分弦的直径才垂直于弦,即可判断④;根据垂径定理的推论,即可判断⑤.【详解】∵圆是轴对称图形,直径所在直线是它的对称轴,∴①错误;∵三角形的外心到三角形的三个顶点的距离相等,∴②正确;∵经过不在同一直线上的三点确定一个圆,∴③错误;∵平分弦(弦不是直径)的直径垂直于弦,∴④错误;∵垂直于弦的直径平分弦,且平分弦所对的弧,∴⑤正确;综上,正确的是②⑤,共2个,故选:C.【点睛】本题考查了垂径定理及其推论,三角形的外接圆与外心等知识点的应用,正确把握相关定义是解题关键.9.A解析:A【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d 时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.【详解】∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙O内,故选:A.【点睛】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.10.D解析:D【分析】利用切线长定理证明△PAG≌△PBG即可得出.【详解】解:连接OA,OB,AB,AB交PO于点G,由切线长定理可得:∠APO=∠BPO,PA=PB,又∵PG=PG ,∴△PAG ≌△PBG ,从而AB ⊥OP .因此A .B .C 都正确.无法得出AB =PA =PB ,可知:D 是错误的.综上可知:只有D 是错误的.故选:D .【点睛】本题考查了切线长定理、全等三角形的判定和性质,关键是利用切线长定理解答. 11.C解析:C【分析】先根据等腰三角形的性质求出∠A ,再利用圆周角定理求得∠BOC ,最后根据弧长公式求求解即可.【详解】解:∵∠OCA =50°,OA =OC ,∴∠A =50°,∴∠BOC =100°∵BO =2, ∴1002101809BC l ππ⨯==. 故答案为C .【点睛】 本题主要考查了弧长公式应用以及圆周角定理,根据题意求得∠BOC 是解答本题的关键. 12.A解析:A【分析】易证∠APB =90°,则P 点的运动轨迹是以AB 为直径,在AB 上方的半圆,取AB 的中点为O ,连接OD ,OD 与半圆的交点P′就是DP 的长的最小值时的位置,OP′=OA =12AB =3,OD =5,DP′=OD−OP′=2,即可得出结果.【详解】解:∵BN ⊥AM ,∴∠APB =90°,∵AB =6为定长,则P 点的运动轨迹是以AB 为直径,在AB 上方的半圆,取AB 的中点为O ,连接OD ,OD 与半圆的交点P′就是DP 长的最小值时的位置,如图所示:∵AB =6,AD =4,∴OP′=OA =12AB =3, OD =22AD +OA =224+3=5,∴DP′=OD−OP′=5−3=2,∴DP 的长的最小值为2,故选:A .【点睛】本题考查了矩形的性质、勾股定理、轨迹等知识;判断出P 点的运动轨迹,找出DP 长的最小值时的位置是解题的关键.二、填空题13.2个【分析】如图(见解析)先利用直角三角形的性质可得再根据直线与圆的位置关系即可得【详解】如图过O 作于点D ∵∴∴以4为半径的与直线CA 相交公共点的个数为2个故答案为:2个【点睛】本题考查了直角三角形 解析:2个【分析】如图(见解析),先利用直角三角形的性质可得132OD OC ==,再根据直线与圆的位置关系即可得.【详解】如图,过O 作OD OA ⊥于点D ,∵30,6ACB OC ∠=︒=,∴1342OD OC ==<, ∴以4为半径的O 与直线CA 相交,∴公共点的个数为2个,故答案为:2个.【点睛】本题考查了直角三角形的性质、直线与圆的位置关系,熟练掌握直线与圆的位置关系是解题关键.14.125【分析】根据题意先求出∠ABE=∠BAE=55°然后由等腰三角形的定义和三角形的内角和定理求出∠C=625°即可求出的度数【详解】解:根据题意∵在圆中有∴∴∴在△ABE 中∴在等腰△ABC 中则∴解析:125【分析】根据题意,先求出∠ABE=∠BAE=55°,然后由等腰三角形的定义和三角形的内角和定理,求出∠C=62.5°,即可求出AOB ∠的度数.【详解】解:根据题意,∵在圆中,有AC BD AB ==,∴AC BD =,∴AD BC =,∴ABD BAC ∠=∠,在△ABE 中,70AEB ∠=︒, ∴1(18070)552ABD BAC ∠=∠=⨯︒-︒=︒, 在等腰△ABC 中,AC AB =则1(18055)62.52C ∠=⨯︒-︒=︒, ∴2125AOB C ∠=∠=︒;故答案为:125.【点睛】本题考查了圆内接四边形的性质,圆周角定理,三角形的内角和定理,等腰三角形的定义,解题的关键是熟练掌握所学的知识,正确的进行解题.15.【分析】连接OAODOM 则OA=OD=OM 由矩形的性质得出OA=BC=aOD=EF=bOM=NH=c 即可得出a=b=c 【详解】解:连接OMODOA 根据矩形的对角线相等得BC=OAEF=ODNH=OM解析:a b c ==【分析】连接OA 、OD 、OM ,则OA=OD=OM ,由矩形的性质得出OA=BC=a ,OD=EF=b ,OM=NH=c ,即可得出a=b=c .【详解】解:连接OM 、OD 、OA 、根据矩形的对角线相等,得BC=OA ,EF=OD ,NH=OM .再根据同圆的半径相等,得a=b=c.故答案是:a=b=c.【点睛】此题主要能够根据矩形的对角线相等把线段进行转换,根据同圆的半径相等即本题考查了矩形的性质、同圆的半径相等的性质;熟练掌握矩形的性质,并能进行推理论证是解决问题的关键.16.6【分析】如图作OH⊥CD于H连接AH延长AH交BF于K连接OC证明AE=FK利用勾股定理求出OH再利用三角形的中位线定理求出BK即可解决问题【详解】解:如图作OH⊥CD于H连接AH延长AH交BF于解析:6【分析】如图,作OH⊥CD于H,连接AH,延长AH交BF于K,连接OC.证明AE=FK,利用勾股定理求出OH,再利用三角形的中位线定理求出BK即可解决问题.【详解】解:如图,作OH⊥CD于H,连接AH,延长AH交BF于K,连接OC.∵OH⊥CD,∴CH=DH=4(cm),∠CHO=90°,∴2222-=-=3(cm),54OC CH∵AE⊥CD,BF⊥CD,∴AE∥OH∥BF,∵OA=OB,∴EH=FH,∵∠AEH=∠KFH=90°,∠AHE=∠FHK,∴△AEH≌△KFH(AAS),∴AH=HK,AE=FK,∵AO=OB,∴OH=1BK,2∴BK=6(cm ),∴BF-AE=BF-FK=BK=6(cm ).故答案为6.【点睛】本题考查了垂径定理,勾股定理,三角形的中位线定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.17.【分析】连接DO 交AC 于点F 由垂径定理得F 是AC 中点再由中位线定理得接着证明得到DF=CB 就可以求出OF 的长就得到BC 的长最后用勾股定理求出AC 的长【详解】解:如图连接DO 交AC 于点F ∵D 是的中点∴ 解析:42【分析】连接DO ,交AC 于点F ,由垂径定理得F 是AC 中点,再由中位线定理得12OF BC =,接着证明()EFD ECB AAS ≅,得到DF=CB ,就可以求出OF 的长,就得到BC 的长,最后用勾股定理求出AC 的长.【详解】解:如图,连接DO ,交AC 于点F ,∵D 是AC 的中点,∴OD AC ⊥,AF CF =,∴90DFE ∠=︒,∵OA OB =,AF CF =,∴12OF BC =, ∵AB 是直径, ∴90ACB ∠=︒,在EFD △和ECB 中,90DFE BCE DEF BECDE BE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴()EFD ECB AAS ≅,∴DF BC =, ∴12OF DF =, ∵3OD =, ∴1OF =,∴2BC =,在Rt ABC 中,2242AC AB BC =-=.故答案是:42.【点睛】 本题考查垂径定理,解题的关键是熟练运用垂径定理. 18.36【分析】连接OCOD 求出∠COD 的度数再根据圆周角定理即可解决问题【详解】如图连接OCOD ∵五边形ABCDE 是正五边形∴∠COD==72°∴∠CFD=∠COD=36°故答案为:36【点睛】本题考解析:36.【分析】连接OC ,OD .求出∠COD 的度数,再根据圆周角定理即可解决问题.【详解】如图,连接OC ,OD .∵五边形ABCDE 是正五边形,∴∠COD =3605︒=72°, ∴∠CFD =12∠COD =36°, 故答案为:36.【点睛】本题考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识. 19.【分析】作点A 的对称点根据中位线可知最小时P 正好在上在根据圆周角定理和等弧所对圆心角相等求得再利用勾股定理即可求解【详解】如图作点关于的垂线交圆与连接交于点连接则此时的值最小∵∴∵点是的中点∴∵关于 2【分析】作点A 的对称点,根据中位线可知PA PA =' ,PA PB +最小时P 正好在A B '上,在根据圆周角定理和等弧所对圆心角相等求得90AOB ∠'=︒,再利用勾股定理即可求解.【详解】如图,作点A 关于MN 的垂线交圆与A ' ,连接A B ' 交MN 于点P ,连接AP OB OA OA '、、、 ,则此时AP BP + 的值最小A B =' ,∵30AMN ∠=︒,∴60AON ∠=︒,∵点B 是AN 的中点,∴30BON ∠=︒ ,∵A A '、 关于MN 对称,∴60AON AON ∠'=∠=︒,∴306090AOB ∠'=︒+︒=︒,又∵112122OA OB MN '===⨯=, 在RT A OB '△中 ∴221+1=2A B '=AP BP + 的值最小2 2.【点睛】本题主要考查了圆心角、弧、弦之间的关系、圆周角定理、垂直平分线定理、勾股定理等.在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.本题是与圆有关的将军饮马模型. 20.a-b 【分析】根据圆外一点到圆的最大距离是过圆心的直线与圆相交的最远的点到圆的最小距离是点与圆心的连线与圆相交的最近点求解即可【详解】解:空间站A 与星球B 飞船C 在同一直线上时S 取到最小值a-b 故答案 解析:a-b【分析】根据圆外一点到圆的最大距离是过圆心的直线与圆相交的最远的点,到圆的最小距离是点与圆心的连线与圆相交的最近点求解即可.【详解】解:空间站A 与星球B 、飞船C 在同一直线上时,S 取到最小值a-b .故答案为:a-b .【点睛】本题考查了圆外一点到圆的最大距离和最短距离,最大距离和最短距离都在过圆心的直线上.属于基础知识.三、解答题21.见解析【分析】如图,连接OC .欲证明四边形OACB 是菱形,只需推知====AC BC OC OA OB 即可.【详解】证明:如图,连接OC . C 是AB 的中点,∴AC BC =,AC BC ∴=,在AOC ∆和BOC ∆中,AC BC OA OB OC OC =⎧⎪=⎨⎪=⎩,()AOC BOC SSS ∴∆≅∆. 12ACO BCO ACB ∴∠=∠=∠,12AOC BOC AOB ∠=∠=∠. 又ACB AOB ∠=∠.ACO BCO AOC BOC ∴∠=∠=∠=∠.AC BC OC OA OB ∴====,∴四边形OACB 是菱形.【点睛】此题考查了圆周角定理,菱形的判定,以及圆心角、弧、弦间的关系,难度不大. 22.(1)证明见解析;(2)12217【分析】(1)连接CE ,由AC 是⊙O 的直径,得出CE ⊥AE ,由P 为BC 的中点,可得EP=BP=CP ,可得∠PEC=∠PCE , 再由∠ACB=90°,即可得到结论.(2)设P 点到直线AD 的距离为d ,根据三角形的面积得到PD AC d AD = ①由勾股定理得63BC =,根据平行线的性质得到∠OPC=∠B=30°,推出OEA △为等边三角形,得到∠EOA=60°,在Rt ACD △中,由勾股定理得:2237AD AC CD =+=,将以上数据代入①得即可得到结论.【详解】证明:(1)连接CE ,如图所示:∵AC 为⊙O 的直径,∴∠AEC=90°.∴∠BEC=90°.∵点P 为BC 的中点,∴EP=BP=CP .∴∠PEC=∠PCE .∵OE=OC ,∴∠OEC=∠OCE .∵∠PCE+∠OCE=∠ACB=90°,∴∠PEC+∠OEC=∠OEP=90°.E 在O 上,∴EP 是⊙O 的切线;(2)解:设P 点到直线AD 的距离为d ,连接,AP OP , 则有:1122PAD S AD d PD AC ==,∴PD ACd AD = ①∵⊙O 的半径为3,∠B=30°,∴∠BAC=60°,AC=6,AB=12,由勾股定理得:63BC =, ∴33PC =,∵O ,P 分别是AC ,BC 的中点,∴//OP AB ,∴∠OPC=∠B=30°,∵OE=OA ,∠OAE=60°,∴OEA △为等边三角形,∴∠EOA=60°,∴∠ODC=90°-∠COD=90°-∠EOA=30°,∴∠ODC=∠OPC=30°,∴OP=OD ,∵OC ⊥PD ,∴33CD PC ==,在Rt ACD △中,由勾股定理得:2237AD AC CD =+=,将以上数据代入①得: 631221737PD AC d AD ⨯===. 【点睛】本题考查了圆周角定理,切线的判定,勾股定理,等腰三角形,等边三角形的判定和性质,直角三角形斜边上的中线等于斜边的一半,含30的直角三角形的性质,等面积法,掌握以上知识是解题的关键.23.(1)2;(2)23.【分析】(1)求出CD ,即可得出答案;(2)求出OA 、OE ,根据勾股定理求出AE ,根据垂径定理求出AB=2AE ,即可求出答案.【详解】解:(1)∵CE=1,ED=3,∴CD=CE+DE=4,∴⊙O 的半径为2;(2)∵直径CD ⊥AB ,∴AB=2AE ,∠OEA=90°,连接OA ,则OA=OC=2,OE=OC-CE=2-1=1,在Rt △OEA 中,由勾股定理得:AE=2222213OA OE -=-=,∴AB=2AE=23.【点睛】本题考查了勾股定理,垂径定理的应用,能根据垂径定理求出AB=2AE 是解此题的关键. 24.(1)答案见解析;(2)134π. 【分析】(1)根据旋转要求找出A′,B′ 点连接即可.(2)根据旋转知道OA 扫过的面积即为以OA 为半径的圆的面积的四分之一,计算即可.【详解】(1)(2)∵OA 扫过的面积即为以OA 为半径的圆的面积的四分之一,∴根据点A 的坐标为 (−3,2) ,点B 的坐标为 (0,2) ,求得OA 2=13,则以OA 为半径的圆的面积为13π,∴OA 扫过的面积为:134π. 【点睛】此题考查了旋转过程中图形及坐标的变化,难度一般.25.(1) 25π;(2)221;(3)222b ≤<【分析】(1)由点A 、B 的坐标知,22345,=+=AB 由圆的面积公式得:“共径圆”的面积πr 2=25π;(2)如下图,当O 、A 、B 三点共线,且OB ⊥直线l 时,共径圆”的半径最小,即可求解; (3)设点B 的坐标为(x ,x+b ),设AB 之间的距离为r ,则πr 2=4π,解得r=2(负值已舍去),则AB=x 2+(x+b )2=22=4,满足条件的B 点有2个,故△=(2b )2-2×4(b 2-4)>0,进而求解.【详解】解:(1)A 的坐标为(0,0),点B 的坐标为(3,4), ∴22345,=+=AB由圆的面积公式得:“共径圆”的面积πr 2=25π,故答案为25π;(2)作OB ⊥直线l 于B 交圆O 于点A ,此时点,A B 的“共径圆”的半径最小值; 设直线4y x =-+与,x y 轴交于点,M N .()4,00,4()M N ∴,),则ON=OM=4,∴ MON △等腰直角三角形,∴224244=+=MN∴О点到直线MN 的距离为22A 点在O 上,B 点在直线4y x =-+上,A B ∴间的最短距离是221-即,A B 的“共径圆”的最小半径是221-(3)设点B 的坐标为(x ,x+b ),设AB 之间的距离为r ,则πr 2=4π,解得r=2(负值已舍去),则AB=x 2+(x+b )2=22=4,化简得:2x 2+2bx+b 2-4=0,∵满足条件的B 点有2个,故△=(2b )2-2×4(b 2-4)>0,解得:22,-<<b∵点B 是x 轴及x 轴上方的点,故b >0,而当b=2时,点B 在x 轴上,∴222b ≤<【点睛】本题为圆的综合题,涉及到一次函数的性质、根的判别式等,这种新定义类的题目,通常按照题设的顺序逐次求解,一般比较容易解答.26.(1)见解析;(2)见解析;(3)53AE =【分析】(1)根据题意画出图形即可;(2)根据圆周角定理解答即可;(3)根据切线的性质和含30°的直角三角形的性质解答.【详解】解:(1)如图所示:(2)2,MON OCB ∠=∠,AOP OCB ∠=∠,BOP OCB AOP ∴∠=∠=∠即MOP PON ∠=∠;(3)60MON ∠=︒,30,AOP ∴∠=︒ FA 是O 的切线,,FA OA ∴⊥10,OF =53OA ∴=,,OA OB =OAB ∴∆是等边三角形,,MOP PON ∠=∠,OE AB ∴⊥53∴=AE . 【点睛】本题主要考查了作图−复杂作图,关键是根据切线的性质,圆周角定理,等腰三角形、等边三角形的性质等知识解答.。

直线与方程、 圆与方程单元测试卷(1)菁优网

直线与方程、 圆与方程单元测试卷(1)菁优网

直线与方程、圆与方程单元测试卷(1)一、选择题:本大题共l2小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)平行直线x﹣y+1=0,x﹣y﹣1=0间的距离是()A.B.C. 2 D.2.(5分)已知直线l1:x+ay+1=0与直线l2:x﹣2y+2=0垂直,则a的值为()A.2 B.﹣2 C.﹣D.3.(5分)已知直线l过点M(﹣1,0),并且斜率为1,则直线l的方程是()A.x+y+1=0 B. x﹣y+1=0 C. x+y﹣1=0 D.x﹣y﹣1=04.(5分)直线x﹣ay+=0(a>0且a≠1)与圆x2+y2=1的位置关系是()A.相交B.相切C.相离D.不能确定5.(5分)已知直线l1和l2的夹角平分线为y=x,如果l1的方程是ax+by+c=0,那么直线l2的方程为() A. bx+ay+c=0 B. ax﹣by+c=0 C. bx+ay﹣c=0 D. bx﹣ay+c=06.(5分)如果直线y=ax+2与直线y=3x﹣b关于直线y=x对称,那么()A.a=,b=6 B.a=,b=﹣6C. a=3,b=﹣2 D. a=3,b=67.(5分)过定点(1,3)可作两条直线与圆x2+y2+2kx+2y+k2﹣24=0相切,则k的取值范围是() A. k>2 B. k<﹣4 C. k>2或k<﹣4 D.﹣4<k<28.(5分)(2014•重庆模拟)一束光线从点A(﹣1,1)出发,经x轴反射到圆C:(x﹣2)2+(y﹣3)2=1上的最短路程是()A.3﹣1 B.2C. 4 D.59.(5分)不论k为何实数,直线(2k﹣1)x﹣(k+3)y﹣(k﹣11)=0恒通过一个定点,这个定点的坐标是() A.(5,2)B.(2,3)C.(5,9)D.(﹣,3)10.(5分)曲线与直线y=k(x﹣1)+2有两个交点时,实数k的取值范围是()A.≤k>1 B.C.≥K≥1D.1≥k<11.(5分)与三条直线y=0,y=x+2,y=﹣x+4都相切的圆的圆心是()A.(1,2+2)B.(1,2﹣3)C.(1,3﹣3)D.(1,﹣3﹣3)12.(5分)M(x0,y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x0x+y0y=a2与该圆的位置关系为() A.相切B.相交C.相离D.相切或相交二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)设a+b=2,则直线系ax+by=1恒过定点的坐标为_________.14.(4分)已知两点A(2+x,2+y)、B(y﹣4,6﹣x)关于点C(1,﹣1)对称,则实数x、y的值分别为_________.15.(4分)直线xcosα+y+b=0(α、b∈R)的倾斜角范围是_________.16.(4分)已知A(3,7)、B(﹣2,5),线段AC、BC的中点都在坐标轴上,则C的坐标为_________.三、解答题:本大题共6小题,共74分.17.(12分)求圆心在直线3x+4y﹣1=0上,且过两圆x2+y2﹣x+y﹣2=0与x2+y2=5交点的圆的方程.18.(12分)设a、b、c都是整数,过圆x2+y2=(3a+1)2外一点P(b3﹣b,c3﹣c)向圆引两条切线,试证明:过这两切点的直线上的任意一点都不是格点(所谓格点是指:横、纵坐标都是整数的点).19.(12分)已知圆C与圆x2+y2﹣2x=0相外切,并且与直线相切于点,求圆C的方程.20.(12分)已知以C(2,0)为圆心的圆C和两条射线y=±x,(x≥0)都相切,设动直线L与圆C相切,并交两条射线于A、B,求线段AB中点M的轨迹方程.21.(12分)已知过点A(1,1)且斜率为﹣m(m>0)的直线l与x轴、y轴分别交于P、Q,过P、Q作直线2x+y=0的垂线,垂足为R、S,求四边形PRSQ面积的最小值.22.(14分)已知圆C:x2+y2﹣6x﹣4y+4=0,直线l1被圆所截得的弦的中点为P(5,3).①求直线l1的方程.②若直线l2:x+y+b=0与圆C相交,求b的取值范围.③是否存在常数b,使得直线l2被圆C所截得的弦的中点落在直线l1上?若存在,求出b的值;若不存在,说明理由.直线与方程、圆与方程单元测试卷(1)参考答案与试题解析一、选择题:本大题共l2小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)平行直线x﹣y+1=0,x﹣y﹣1=0间的距离是()A.B.C.2D.考点:两条平行直线间的距离.专题:计算题.分析:直接利用平行直线间的距离公式,即可求得结论.解答:解:利用平行直线间的距离公式可得:故选B.点评:本题重点考查平行直线间的距离公式,掌握公式是关键,属于基础题.2.(5分)已知直线l1:x+ay+1=0与直线l2:x﹣2y+2=0垂直,则a的值为()D.A.2B.﹣2 C.﹣考点:直线的一般式方程与直线的垂直关系.专题:计算题.分析:直接利用两直线垂直的等价条件(1)若K1,K2均存在则K1•K2=﹣1(2)一个斜率为0另一个斜率不存在讨论计算即可.解答:解:∵直线l1:x+ay+1=0与直线l2:x﹣2y+2=0∴直线l2:y=x+1∴K2=∴直线l1:x+ay+1=0的斜率存在∴a≠0且K1=﹣∵直线l1:x+ay+1=0与直线l2:x﹣2y+2=0垂直∴K1•K2==﹣1∴a=故选D点评:本题主要考察了两直线垂直关系的应用,属基础题,较易.解题的关键是透彻理解两直线垂直的等价条件(1)若K1,K2均存在则K1•K2=﹣1(2)一个斜率为0另一个斜率不存在!3.(5分)已知直线l过点M(﹣1,0),并且斜率为1,则直线l的方程是()A.x+y+1=0 B.x﹣y+1=0 C.x+y﹣1=0 D.x﹣y﹣1=0考点:直线的点斜式方程.专题:计算题.分析:根据直线l过点M(﹣1,0),并且斜率为1,利用点斜式,写出方程,再化简即可.解答:解:∵直线l过点M(﹣1,0),并且斜率为1,∴直线l的方程是y﹣0=1×(x+1)即x﹣y+1=0故选B.点评:本题重点考查直线的方程,考查方程的化简,属于基础题.4.(5分)直线x﹣ay+=0(a>0且a≠1)与圆x2+y2=1的位置关系是()A.相交B.相切C.相离D.不能确定考点:直线与圆的位置关系.专题:计算题.分析:由圆的方程找出圆心坐标和半径r,利用点到直线的距离公式表示出圆心到已知直线的距离d,利用基本不等式及不等式的性质变形后,得到d小于r,可得直线与圆相交.解答:解:由圆x2+y2=1的圆心坐标为(0,0),半径r=1,∵a>0且a≠1,∴a2+1>2a,∴圆心到直线x﹣ay+=0的距离d=<=1=r,则直线与圆的位置关系是相交.故选A点评:此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,基本不等式,以及点到直线的距离公式,直线与圆的位置关系可以用d与r的大小来判断:当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交.5.(5分)已知直线l1和l2的夹角平分线为y=x,如果l1的方程是ax+by+c=0,那么直线l2的方程为()A.b x+ay+c=0 B.a x﹣by+c=0 C.b x+ay﹣c=0 D.b x﹣ay+c=0考点:与直线关于点、直线对称的直线方程.专题:计算题.分析:因为由题意知,直线l1和l2关于直线y=x对称,故把l1的方程中的x 和y交换位置即得直线l2的方程.解答:解:因为夹角平分线为y=x,所以直线l1和l2关于直线y=x对称,故l2的方程为bx+ay+c=0.故选A.点评:本题考查求对称直线的方程的方法,当两直线关于直线y=x对称时,把其中一个方程中的x 和y交换位置,即得另一条直线的方程.6.(5分)如果直线y=ax+2与直线y=3x﹣b关于直线y=x对称,那么()A.a=,b=6 B.a=,b=﹣6C.a=3,b=﹣2 D.a=3,b=6考点:反函数.分析:本题考查对互为反函数的两个函数图象之间的关系、反函数的求法等相关知识;本题可有两种方法,其一,求出y=ax+2的反函数令其与y=3x﹣b的对应系数相等获得,其二由互为反函数图象上的点之间的对称关系,通过在图象上取特殊点求解.解答:解:法一:由题意,函数y=3x﹣b的反函数为y=,与y=ax+2对照可得a=,b=6;法二:在y=ax+2上取点(0,2),则点(2,0)在y=3x﹣b上,故得b=6;又y=3x﹣6上有点(0,﹣6),则点(﹣6,0)在y=ax+2上,代入得a=,由此可得a=,b=6答案:a=,b=6点评:本题解题思路清晰,方向明确,运算量也小,属于容易题目.这里提供了两种方法,比较可见各有特点,直接求反函数过程简捷,较为简单,特值代入,小巧易行,过程稍繁.7.(5分)过定点(1,3)可作两条直线与圆x2+y2+2kx+2y+k2﹣24=0相切,则k的取值范围是()A.k>2 B.k<﹣4 C.k>2或k<﹣4 D.﹣4<k<2考点:圆的切线方程.专题:计算题.分析:把圆的方程化为标准方程后,由过已知点总可以作圆的两条切线,得到点在圆外,故把点的坐标代入圆的方程中得到一个关系式,让其大于0列出关于k的不等式,求出不等式的解集,求出两解集的并集即为实数k的取值范围.解答:解:把圆的方程化为标准方程得:(x+k)2+(y+1)2=25由过定点(1,3)可作圆的2条切线可知点(1,3)应在已知圆的外部,把点代入圆方程得:(1+k)2+(3+1)2>25∴k>2或k<﹣4则实数k的取值范围是(2,+∞)∪(﹣∞,﹣4).故选C点评:此题考查了点与圆的位置关系,一元二次不等式的解法.理解过已知点总利用作圆的两条切线,得到把点坐标代入圆方程其值大于0是解本题的关键.8.(5分)(2014•重庆模拟)一束光线从点A(﹣1,1)出发,经x轴反射到圆C:(x﹣2)2+(y﹣3)2=1上的最短路程是()A.3﹣1 B.2C.4D.5考点:直线与圆的位置关系;图形的对称性.专题:综合题;数形结合.分析:先作出圆C关于x轴的对称的圆C′,问题转化为求点A到圆C′上的点的最短路径,方法是连接AC′与圆交于B点,则AB为最短的路线,利用两点间的距离公式求出AC′,然后减去半径即可求出.解答:解:先作出已知圆C关于x轴对称的圆C′,则圆C′的方程为:(x﹣2)2+(y+3)2=1,所以圆C′的圆心坐标为(2,﹣3),半径为1,则最短距离d=|AC′|﹣r=﹣1=5﹣1=4.故选C.点评:本题考查学生会利用对称的方法求最短距离,灵活运用两点间的距离公式化简求值,掌握数形结合的数学思想解决实际问题.是一道综合题.9.(5分)不论k为何实数,直线(2k﹣1)x﹣(k+3)y﹣(k﹣11)=0恒通过一个定点,这个定点的坐标是()A.(5,2)B.(2,3)C.(5,9)D.(﹣,3)考点:恒过定点的直线.专题:计算题.分析:直线方程即k(2x+y﹣1)+(﹣x+3y+11)=0,一定经过2x﹣y﹣1=0和﹣x﹣3y+11=0 的交点,联立方程组可求定点的坐标.解答:解:直线(2k﹣1)x﹣(k+3)y﹣(k﹣11)=0即k(2x﹣y﹣1)+(﹣x﹣3y+11)=0,根据k的任意性可得,解得,∴不论k取什么实数时,直线(2k﹣1)x+(k+3)y﹣(k﹣11)=0都经过一个定点(2,3).故选B点评:本题考查经过两直线交点的直线系方程形式,直线k(ax+by+c)+(mx+ny+p)=0 表示过ax+by+c=0和mx+ny+p=0的交点的一组相交直线,但不包括ax+by+c=0这一条.10.(5分)曲线与直线y=k(x﹣1)+2有两个交点时,实数k的取值范围是()A.≤k>1 B.C.≥K≥1D.1≥k<考点:直线与圆的位置关系.专题:计算题.分析:数形结合来求,因为曲线y=表示的曲线为圆心在原点,半径是1的圆在x轴以及x轴上方的部分,y=k(x﹣1)+2是过定点(1,2)的直线,只要把该直线平行移动,看k为何时直线与曲线y=有两个交点即可.解答:解:∵y=表示的曲线为圆心在原点,半径是1的圆在x轴以及x轴上方的部分,作出曲线y=的图象,在同一坐标系中,再作出过定点(1,2)的直线,由左向右逆时针转动,可发现,直线先与圆相切,切点为N(如图),直线l从AN开始逆时针转动,l与曲线有二个交点,到AM结束,∵O到切线AN的距离d==1,∴k=,又直线AM的斜率为:k AM==1,∴实数k的取值范围是则<k≤1.故选B.点评:本题考查直线与圆的位置关系,着重考查了数形结合求直线与曲线交点个数的问题,属于中档题.11.(5分)与三条直线y=0,y=x+2,y=﹣x+4都相切的圆的圆心是()A.(1,2+2) B.(1,2﹣3)C.(1,3﹣3)D.(1,﹣3﹣3)考点:圆的切线方程.专题:计算题.分析:由题意可求出直线y=x+2与y=0的交点A(﹣2,0),直线y=﹣x+4与y=0的交点B(4,0),直线y=x+2,y=﹣x+4的交点C(1,3),且可知AB=6,AC=3,BC=3,AB2=AC2+BC2,从而可得三角形ABC内切圆的圆心O'必在AB边的高CD上,设O'(1,r),由三角形面积得=代入可求解答:解:设直线y=x+2与y=0的交点A(﹣2,0),直线y=﹣x+4与y=0的交点B(4,0),直线y=x+2,y=﹣x+4的交点C(1,3),由题意可得直线y=x+2与y=﹣x+4垂直且AB=6,AC=3,BC=3∴AB2=AC2+BC2∴三角形ABC为等腰直角三角形,三角形ABC内切圆的圆心O'必在AB边的高CD上,设O'(1,r),连接O'A,O'B,O'C,由三角形面积得=∴解得r==所以直线y=x+2,y=﹣x+4及x轴围成的三角形的内切圆的圆心坐标是(1,3)故选C点评:本题主要考查了利用分割法求解面积,进而求解三角形的内切圆的半径,属于平面几何知识的综合应用12.(5分)M(x0,y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x0x+y0y=a2与该圆的位置关系为()A.相切B.相交C.相离D.相切或相交考点:直线与圆的位置关系.专题:计算题.分析:由圆的方程找出圆心坐标与半径,因为M为圆内一点,所以M到圆心的距离小于圆的半径,利用两点间的距离公式表示出一个不等式,然后利用点到直线的距离公式表示出圆心到已知直线的距离d,根据求出的不等式即可得到d大于半径r,得到直线与圆的位置关系是相离.解答:解:由圆的方程得到圆心坐标为(0,0),半径r=a,由M为圆内一点得到:<a,则圆心到已知直线的距离d=>=a=r,所以直线与圆的位置关系为:相离.故选C点评:此题考查小时掌握点与圆的位置关系及直线与圆的位置关系的判断方法,灵活运用两点间的距离公式及点到直线的距离公式化简求值,是一道综合题.二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)设a+b=2,则直线系ax+by=1恒过定点的坐标为.考点:恒过定点的直线.专题:计算题.分析:根据条件方程可化为a(x﹣y)+2y﹣1=0,直线恒过定点,则可得方程组,求出方程组的解,即可得到结论.解答:解:∵a+b=2,∴b=2﹣a∴直线系ax+by=1可化为ax+(2﹣a)y=1,即a(x﹣y)+2y﹣1=0由题意,,∴∴直线系ax+by=1恒过定点的坐标为故答案为:点评:本题考查恒过定点的直线系问题,方程a(x﹣y)+2y﹣1=0要使a∈R,则必须x﹣y=0且2y﹣1=0.14.(4分)已知两点A(2+x,2+y)、B(y﹣4,6﹣x)关于点C(1,﹣1)对称,则实数x、y的值分别为x=7,y=﹣3.考点:中点坐标公式.专题:计算题.分析:由题意根据线段的中点公式可得,解方程组求得实数x、y的值.解答:解:∵两点A(2+x,2+y)、B(y﹣4,6﹣x)关于点C(1,﹣1)对称,∴,解得,故答案为x=7,y=﹣3.点评:本题主要考查线段的中点公式的应用,属于基础题.15.(4分)直线xcosα+y+b=0(α、b∈R)的倾斜角范围是[0,]∪[,π].考点:直线的倾斜角.专题:计算题.分析:由题意可得直线的斜率为﹣cosα,设直线xcosα+y+b=0(α、b∈R)的倾斜角是θ,则﹣1≤tanθ≤1,由此求得倾斜角θ的范围.解答:解:直线xcosα+y+b=0(α、b∈R)的斜率为﹣cosα,∵﹣1≤cosα≤1,∴﹣1≤﹣cosα≤1.设直线xcosα+y+b=0(α、b∈R)的倾斜角是θ,则﹣1≤tanθ≤1.再由0≤θ<π,可得θ∈[0,]∪[,π],故答案为[0,]∪[,π].点评:本题主要考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小,属于基础题.16.(4分)已知A(3,7)、B(﹣2,5),线段AC、BC的中点都在坐标轴上,则C的坐标为(﹣3,﹣5)或(2,﹣7).考点:中点坐标公式.专题:计算题.分析:设C的坐标为(x.y),则线段AC的中点M(,),线段BC的中点N(,).再根据题意分四种情况讨论:①当M点在x轴上,N在x轴上时,②当M点在x轴上,N在y轴上时,③当M点在y轴上,N在x轴上时,④当M点在x轴上,N在x轴上时,即可解决问题.解答:解:设C的坐标为(x.y),则线段AC的中点M(,)线段BC的中点N(,).①当M点在x轴上,N在x轴上时,有,这不可能;②当M点在x轴上,N在y轴上时,有,,解得;③当M点在y轴上,N在x轴上时,有,,解得;④当M点在x轴上,N在x轴上时,有,这不可能;则C的坐标为(﹣3,﹣5)或(2,﹣7).故答案为:(﹣3,﹣5)或(2,﹣7).点评:本小题主要考查中点坐标公式、方程组的解法等基础知识,考查运算求解能力,考查数形结合思想、方程思想.属于基础题.三、解答题:本大题共6小题,共74分.17.(12分)求圆心在直线3x+4y﹣1=0上,且过两圆x2+y2﹣x+y﹣2=0与x2+y2=5交点的圆的方程.考点:圆的一般方程.专题:计算题.分析:利用“圆系”方程的概念求圆的方程,方法为:可设所求圆的方程为(x2+y2﹣x+y﹣2)+m(x2+y2﹣5)=0,整理后得到其圆心坐标,再代入3x+4y﹣1=0中,可得出m的值,反代入圆系方程化简得出圆的方程来.解答:解:根据题意设所求圆的方程为(x2+y2﹣x+y﹣2)+m(x2+y2﹣5)=0,整理得:(1+m)x2+(1+m)y2﹣x+y﹣2﹣5m=0,即x2+y2﹣x+y﹣=0,∴圆心坐标为(,﹣),又圆心在直线3x+4y﹣1=0上,∴3•﹣4•﹣1=0,解得:m=﹣,则所求圆的方程为x2+y2+2x﹣2y﹣11=0.点评:此题考查了圆的一般方程,涉及的知识有:圆系方程的定义,圆的标准方程,利用了转化的思想,是高考中常考的题型.18.(12分)设a、b、c都是整数,过圆x2+y2=(3a+1)2外一点P(b3﹣b,c3﹣c)向圆引两条切线,试证明:过这两切点的直线上的任意一点都不是格点(所谓格点是指:横、纵坐标都是整数的点).考点:圆的切线方程.专题:证明题.分析:由P和原点O的坐标,利用中点坐标公式求出线段OP的中点坐标,再利用两点间的距离公式求出此中点到原点的距离,得到以OP为直径的圆的圆心坐标和半径,写出以OP为直径的圆的方程,记作(1),把已知圆x2+y2=(3a+1)2代入(1),整理后得到(b3﹣b)x+(c3﹣c)y=(3a+1)2,即为过P作的两条切线的方程,假设此切线方程有格点,把b3﹣b及c3﹣c弦利用提取公因式的方法分解因式,再利用平方差公式分解因式后,得到两式都为三个连续数的乘积,显然能被3整除,可得(3a+1)2能被3整除,即3a+1能被3整除,而3a+1不能被3整除,矛盾,假设错误,故过这两切点的直线上的任意一点都不是格点,得证.解答:解:∵P(b3﹣b,c3﹣c),O(0,0),∴线段OP的中点的坐标为((b3﹣b),(c3﹣c)),∴以OP为直径的圆的方程为:[x﹣(b3﹣b)]2+[y﹣(c3﹣c)]2=(b3﹣b)2+(c3﹣c)2,(1)将x2+y2=(3a+1)2代入(1)得:(b3﹣b)x+(c3﹣c)y=(3a+1)2,它就是过两切点的直线方程,假设此切线方程存在格点,由b3﹣b=b(b﹣1)(b+1),得到它为三个连续数的乘积,显然能被3整除,同理,c3﹣c亦能被3整除,∴(3a+1)2能被3整除,∴3a+1也必须能被3整除,显然这是不可能的,则过这两切点的直线上的任意一点都不是格点.点评:此题考查了圆的切线方程,圆的标准方程,以及反证法的运用,是一道证明题.其中根据题意表示出过圆x2+y2=(3a+1)2外一点P(b3﹣b,c3﹣c)向圆引两条切线方程是解本题的关键.19.(12分)已知圆C与圆x2+y2﹣2x=0相外切,并且与直线相切于点,求圆C的方程.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:计算题.分析:设圆C的圆心为(a,b ),由圆C与圆x2+y2﹣2x=0相外切,并且与直线相切于点,可以构造关于a,b的方程,解方程求出a,b,r,即可得到圆C的方程.解答:解:∵圆C与圆x2+y2﹣2x=0相外切,故两个圆心之间的距离等于半径的和,又∵圆C与直线相切于点,可得圆心与点的连线与直线垂直,其斜率为设圆C的圆心为(a,b ),则,解得a=4,b=0,r=2或a=0,b=,r=6,∴圆C的方程为(x﹣4)2+y2=4或.点评:本题考查的知识点是圆与圆的位置关系及其判定,直线与圆的位置关系,其中由已知构造关于圆心坐标a,b的方程组是解答本题的关键.20.(12分)已知以C(2,0)为圆心的圆C和两条射线y=±x,(x≥0)都相切,设动直线L与圆C相切,并交两条射线于A、B,求线段AB中点M的轨迹方程.考点:轨迹方程.专题:计算题;函数思想.分析:设直线L的方程为y=kx+b.A(x1,y1),B(x2,y2),M(x,y),通过得求出A,通过得B,利用中点坐标公式得:k=,b=,通过圆C与y=±x都相切,推出(y2﹣x2)+4x(y2﹣x2)﹣2(y2﹣x2)=0,推出轨迹方程.解答:解:设直线L的方程为y=kx+b.A(x1,y1),B(x2,y2),M(x,y),由得A(),(k≠1)由得B(),∴由①②得:k=,b=③∵圆C与y=±x都相切∴圆C的半径r=.∵AB:kx﹣y+b=0与圆C相切,∴=,即2k2+4kb+b2﹣=0 ④将③代入④(y2﹣x2)+4x(y2﹣x2)﹣2(y2﹣x2)=0∵y2≠x2,∴y2﹣x2+4x﹣2=0即(x﹣2)2﹣y2=2.(y≠0)当L⊥x轴时,线段AB的中点M(2±,0)也符合上面的方程,其轨迹在∠AOB内.点评:本题考查轨迹方程的求法,考查分析问题解决问题的能力,恰当消元利用已知条件是解题的关键,考查计算能力.21.(12分)已知过点A(1,1)且斜率为﹣m(m>0)的直线l与x轴、y轴分别交于P、Q,过P、Q作直线2x+y=0的垂线,垂足为R、S,求四边形PRSQ面积的最小值.考点:直线的点斜式方程.专题:常规题型;计算题.分析:设l的方程,求出P、Q的坐标,得到PR和QS的方程,利用平行线间的距离公式求出|RS|,由四边形PRSQ为梯形,代入梯形的面积公式,再使用基本不等式可求四边形PRSQ的面积的最小值.解答:解:设l的方程为y﹣1=﹣m(x﹣1),则P(1+,0),Q(0,1+m).从而可得直线PR和QS的方程分别为x﹣2y﹣=0和x﹣2y+2(m+1)=0.又PR∥QS,∴|RS|==.又|PR|=,|QS|=,四边形PRSQ为梯形,S四边形PRSQ&nbsp;=[+]•=(m++)2﹣≥(2+)2﹣=3.6.∴四边形PRSQ的面积的最小值为3.6.点评:本题考查直线方程的应用,2条平行线间的距离公式的应用,使用基本不等式求式子的最小值.22.(14分)已知圆C:x2+y2﹣6x﹣4y+4=0,直线l1被圆所截得的弦的中点为P(5,3).①求直线l1的方程.②若直线l2:x+y+b=0与圆C相交,求b的取值范围.③是否存在常数b,使得直线l2被圆C所截得的弦的中点落在直线l1上?若存在,求出b的值;若不存在,说明理由.考点:直线和圆的方程的应用;直线与圆的位置关系.专题:计算题;综合题.分析:(1)设直线l1的斜率为则k,由题意可得圆心C(3,2),又弦的中点为P(5,3),可求得k PC=,由k•k PC=﹣1可求k,从而可求直线l1的方程;(2)若直线l2:x+y+b=0与圆C相交,圆心到直线l2的距离小于半径,从而可求得b的取值范围;(3)设直线l2被圆C解得的弦的中点为M(x°,y°),由直线l2与CM垂直,可得x°﹣y°﹣1=0,与x°+y°+b=0联立可求得x0,y0,代入直线l1的方程,求得b,验证即可.解答:解:①∵圆C的方程化标准方程为:(x﹣3)2+(y﹣2)2=9,∴圆心C(3,2),半径r=3.设直线l1的斜率为则k,则k=﹣=﹣=﹣2.∴直线l1的方程为:y﹣3=﹣2(x﹣5)即2x+y﹣13=0.②∵圆的半径r=3,∴要使直线l2与圆C相交则须有:<3,∴|5|<3于是b的取值范围是:﹣3﹣5<b<3﹣5.③设直线l2被圆C解得的弦的中点为M(x°,y°),则直线l2与CM垂直,于是有:=1,整理可得:x°﹣y°﹣1=0.又∵点M(x°,y°)在直线l2上,∴x°+y°+b=0∴由解得:代入直线l1的方程得:1﹣b﹣﹣13=0,∴b=﹣∈(﹣3﹣5,3﹣5),故存在满足条件的常数b.点评:本题考查直线和圆的方程的应用,着重考查通过圆心到直线间的距离与圆的半径的大小判断二者的位置关系,属于中档题.参与本试卷答题和审题的老师有:邢新丽;刘长柏;caoqz;蔡华侨;wfy814;lily2011;qiss;sllwyn;liuerq;吕静;翔宇老师(排名不分先后)菁优网2014年9月30日。

人教版初中数学九年级数学上册第四单元《圆》测试(含答案解析)

人教版初中数学九年级数学上册第四单元《圆》测试(含答案解析)

一、选择题1.如图,AB 是⊙O 的弦,AO 的延长线交过点B 的⊙O 的切线于点C ,如果∠ABO =30°,则∠C 的度数是( )A .70°B .45°C .30°D .20°2.如图,AB 是半圆O 的直径,20BAC =︒∠,则D ∠的度数是( )A .70°B .100°C .110°D .120° 3.点P 到圆上各点的最大距离为10cm ,最小距离为6cm ,则此圆的半径为( ) A .8cmB .5cm 或3cmC .8cm 或2cmD .3cm 4.在平面直角坐标系中,以点()3,4-为圆心,半径为5作圆,则原点一定( ) A .与圆相切 B .在圆外 C .在圆上 D .在圆内 5.如图,在三角形ABC 中,AB=22,∠B=30°,∠C=45°,以A 为圆心,以AC 长为半径作弧与AB 相交于点E ,与BC 相交于点F ,则弧EF 的长为( )A .6πB .2πC .23πD .π6.已知△ABC 的外心为O ,连结BO ,若∠OBA=18°,则∠C 的度数为( )A .60°B .68°C .70°D .72°7.如图,AB 圆O 的直径,弦CD AB ⊥,垂足为M ,下列结论不成立的是( )A .CM DM =B .CB BD =C .ACD ADC ∠=∠ D .OM MB = 8.下列说法正确的有( )①垂直平分弦的直线经过圆心;②平分弦的直径一定垂直于弦;③相等的圆周角所对的弧相等;④等弧所对的弦相等;⑤等弦所对的弧相等A .1个B .2个C .3个D .4个9.如图,在等边ABC 中,点O 在边AB 上,O 过点B 且分别与边AB BC 、相交于点D 、E ,F 是AC 上的点,判断下列说法错误的是( )A .若EF AC ⊥,则EF 是O 的切线B .若EF 是O 的切线,则EF AC ⊥ C .若32BE EC =,则AC 是O 的切线 D .若BE EC =,则AC 是O 的切线 10.如图,PA 切O 于点,A PB 切O 于点B PO ,交O 于点C ,下列结论中不一定成立的是( )A .PA PB =B .PO 平分APB ∠C .AB OP ⊥D .2PAB APO ∠=∠11.如图,在菱形ABCD 中,60A ∠=︒ ,3AB = ,A ,B 的半径分别为2和1,P ,E ,F 分别是CD 边、A 和B 上的动点,则PE PF +的最小值是( )A .333-B .2C .3D .33 12.如图,P 与y 轴交于点()0,4M -,()0,10N -,圆心P 的横坐标为4-,则P 的半径为( )A .3B .4C .5D .6二、填空题13.下列说法:①弦是圆上任意两点之间的部分;②平分弦的直径垂直于弦;③垂直于弦的直线平分弦所对的两条弧;④直径是最长的弦;⑤弦的垂直平分线经过圆心;⑥直径是圆的对称轴.其中正确的是________.14.如图,用一张半径为10cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8cm ,那么这张扇形纸板的弧长是_______cm ,制作这个帽子需要的纸板的面积为_______cm 2.15.如图,在平面直角坐标系xOy 中,点,,A B C 的坐标分别是(0,),(22,0),()4,0,M是ABC ∆的外接圆,则圆心M 的坐标为__________________,M 的半径为_______________________.16.如图,PA ,PB 分别与O 相切于A 、B 两点,点C 为劣弧AB 上任意一点,过点C 的切线分别交AP ,BP 于D ,E 两点.若8AP =,则PDE △的周长为______.17.在ABC 中,90,3,4C AC BC ∠===,则ABC 的内切圆的周长为___________.18.如图,△ABC 中,∠A=60°,若O 为△ABC 的内心,则∠BOC 的度数为______度.19.小明用一张扇形纸片做一个圆锥的侧面,已知该扇形的半径是10cm ,弧长是12πcm 2,那么这个圆锥的高是________cm .参考答案20.如图,已知AD 为半圆形O 的直径,点B ,C 在半圆形上,AB BC =,30BAC ∠=︒,8AD =,则AC 的长为________.三、解答题21.如图,在平面直角坐标系xOy 中,点A (3,3),点B (4,0),点C (0,﹣1). (1)以点C 为中心,把△ABC 逆时针旋转90°,画出旋转后的图形△A′B′C ;(2)在(1)中的条件下,①点A 经过的路径1AA 的长为 (结果保留π);②写出点B′的坐标为 .22.如图,四边形ABCD 内接于⊙O ,AC 是⊙O 的直径,E 是AB 上一点,30AEO DAC ∠=∠=︒,连接BD .(1)求证:OAE CDB △≌△;(2)连接DE ,若DE AB ⊥,2OA =,求BC 的长.23.如图,AB 为O 的弦,,C D 是直线AB 上两点,且AC BD =,求证:C D ∠=∠.24.如图,AB 是O 的一条弦,⊥OD AB ,垂足为C ,OD 交O 于点D ,点E 在O 上,若50AOD .(1)求DEB ∠的度数:(2)若3OC =,5OA =,①求弦AB 的长;②求劣弧AB 的长.25.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上,点C 的坐标为()2,1-.(1)画出将ABC 关于y 轴对称的111A B C △;(2)画出ABC 绕点O 的逆时针旋转90°得到的图形222A B C △,并求出在此旋转过程中点A 运动到点2A 所经过路径的长.26.在学习《圆》这一章时,老师给同学们布置了一道尺规作图题.尺规作图:过圆外一点作圆的切线.已知:P 为O 外一点.求作:经过点P 的O 的切线. 小敏的作法如下:①连接OP ,作线段OP 的垂直平分线MN 交OP 于点C ;②以点C 为圆心,CO 的长为半径作圆,交O 于,A B 两点; ③作直线,PA PB .所以直线,PA PB 就是所求作的切线.根据小敏设计的尺规作图过程.(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:由作图可知点,A B 在以C 为圆心,CO 为半径的圆上, OAP OBP ∴∠=∠= ︒.( )(填推理的依据),PA OA PB OB ∴⊥⊥,OA OB 为O 的半径∴直线,PA PB 是O 的切线,( )(填推理的依据)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由BC 是⊙O 的切线,OB 是⊙O 的半径,得到∠OBC =90°,根据等腰三角形的性质得到∠A =∠ABO =30°,由外角的性质得到∠BOC =60°,即可求得∠C =30°.【详解】∵BC 是⊙O 的切线,OB 是⊙O 的半径,∴∠OBC =90°,∵OA =OB ,∴∠A =∠ABO =30°,∴∠BOC =60°,∴∠C =30°.故选:C .【点睛】本题考查了切线的性质,等腰三角形的性质,三角形的外角性质,解题的关键是灵活运用所学知识解决问题.2.C解析:C【分析】先根据圆周角定理可得90ACB ∠=︒,再根据直角三角形的性质可得70B ∠=︒,然后根据圆内接四边形的性质即可得.【详解】AB 是半圆O 的直径,90ACB ∴∠=︒,20BAC ∠=︒,9070B BAC ∴∠=︒-∠=︒, 又四边形ABCD 是圆O 内接四边形,∴∠=︒-∠=︒,D B180110故选:C.【点睛】本题考查了圆周角定理、直角三角形的性质、圆内接四边形的性质,熟练掌握圆周角定理是解题关键.3.C解析:C【分析】分析题意,本题应分两种情况讨论:(1)点P在圆内;(2)点P在圆外;根据“一个点到圆的最大距离和最短距离都在过圆心的直线上”可知,点P到圆的最大距离与最小距离的和或差即是圆的直径,进而即可得出半径的长.【详解】当点P在圆内时,圆的直径是10+6=16cm,所以半径是8cm.当点P在圆外时,圆的直径是10-6=4cm,所以半径是2cm.故选C.【点睛】本题考查了圆的有关性质,熟知一个点到圆的最大距离和最短距离都在过圆心的直线上是解题的关键.4.C解析:C【分析】设点(-3,4)为点P,原点为点O,先计算出OP的长,然后根据点与圆的位置关系的判定方法求解.【详解】解:∵设点(-3,4)为点P,原点为点O,∴OP5,而⊙P的半径为5,∴OP等于圆的半径,∴点O在⊙P上.故选:C.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.5.A解析:A【分析】过A作AD⊥BC,连接AF,求出∠FAE,再利用弧长计算公式计算EF的长即可.【详解】解:过A 作AD 垂直BC ,连接AF ,如图,∵22,30,45AB B C =∠=︒∠=︒,可得AD=CD=2∴AC=2,∵AC=AF∴∠AFC=∠C=45°,∴∠FAE=∠AFC-∠B=45°-30°=15°∴EF 的长为:152180π⨯=6π 故选:A【点睛】此题主要考查了弧长的计算,关键是掌握弧长计算公式. 6.D解析:D【分析】连接OA ,则OA=OB ,可得∠OBA=∠OAB ,再结合∠OBA=18°即可求得∠AOB=144°,再根据圆周角的性质即可求得∠C=72°.【详解】解:如图,连接OA ,∵点O 为ABC 的外心,∴OA=OB ,∴∠OBA=∠OAB ,又∵∠OBA=18°,∴∠OAB=∠OBA=18°,∴∠AOB=180°-∠OAB-∠OBA=144°,∴∠C=12∠AOB=72°, 故选:D .【点睛】本题考查了三角形的外心,圆周角定理,熟练掌握相关定义及性质是解决本题的关键.7.D解析:D【分析】根据垂径定理得到CM=DM,BC BD=,然后根据圆周角定理得=,AC AD∠ACD=∠ADC,而对于OM与MB的大小关系不能判断.【详解】解:∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,BC BD=,AC AD=,∴∠ACD=∠ADC.而无法比较OM,MB的大小,故选:D.【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.8.B解析:B【分析】根据垂径定理及其推论即可判定①正确,②错误;根据弧、弦、圆周角之间的关系可知③⑤错误,④正确.【详解】解:①根据垂径定理的推论可知,垂直平分弦的直线经过圆心;故本选项正确;②直径是最长的弦,任意两条直径互相平分,但不一定互相垂直,故被平分弦不能是直径;故本选项错误;③在同圆或等圆中,相等的圆周角所对的弧相等,故本选项错误;④相等的弧所对的弦一定相等,故本选项正确;⑤∵在一个圆中一条弦所对的弧有两条,∴等弦所对的弧不一定相等,故本选项错误.故选:B.【点睛】本题考查的是垂径定理及其推论、圆周角、弧、弦的关系,解题的关键是正确理解各知识点.9.D解析:D【分析】A、如图1,连接OE,根据同圆的半径相等得到OB=OE,根据等边三角形的性质得到∠BOE=∠BAC,求得OE∥AC,于是得到A选项正确;B、由于EF是⊙O的切线,得到OE⊥EF,根据平行线的性质得到B选项正确;C、根据等边三角形的性质和圆的性质得到AO=OB,如图2,过O作OH⊥AC于H,根据三角函数得到,于是得到C选项正确;由于C正确,D自然就错误了.【详解】解:A、如图,连接OE,则OB=OE,∵∠B=60°∴∠BOE=60°,∵∠BAC=60°,∴∠BOE=∠BAC,∴OE∥AC,∵EF⊥AC,∴OE⊥EF,∴EF是⊙O的切线∴A选项正确B、∵EF是⊙O的切线,∴OE⊥EF,由A知:OE∥AC,∴AC⊥EF,∴B选项正确;C、如图,∵BE=32,∴CE=33BE,∵AB=BC,BO=BE,∴23OB,∴3,∴AC是⊙O的切线,∴C选项正确.D、∵∠B=60°,OB=OE,∴BE=OB,∵BE=CE,∴BC=AB=2BO,∴AO=OB,如图,过O作OH⊥AC于H,∵∠BAC=60°,∴OH=3AO≠OB,∴D选项错误;故选:D.【点睛】本题考查了切线的判定和性质,等边三角形的性质,正确的作出辅助线是解题的关键.10.D解析:D【分析】利用切线长定理证明△PAG≌△PBG即可得出.【详解】解:连接OA,OB,AB,AB交PO于点G,由切线长定理可得:∠APO=∠BPO,PA=PB,又∵PG=PG,∴△PAG≌△PBG,从而AB⊥OP.因此A.B.C都正确.无法得出AB=PA=PB,可知:D是错误的.综上可知:只有D是错误的.故选:D.【点睛】本题考查了切线长定理、全等三角形的判定和性质,关键是利用切线长定理解答.11.C解析:C【分析】的最小值,进而求解即可.利用菱形的性质及相切两圆的性质得出P与D重合时PE PF【详解】解:作点A关于直线CD的对称点A´,连接BD,DA´,∵四边形ABCD是菱形,∴AB=AD,∵∠BAD=60°,∴△ABD是等边三角形,∴∠ADB=60°,∵∠BDC=∠ADB=60°,∴∠ADN =60°,∴∠A´DN=60°,∴∠ADB+∠ADA´=180°,∴A´,D,B在一条直线上,+最小,由此可得:当点P和点D重合,E点在AD上,F点在BD上,此时PE PF∵在菱形ABCD中,∠A=60°,∴AB=AD,则△ABD为等边三角形,∴BD=AB=AD=3,∵⊙A,⊙B的半径分别为2和1,∴PE=1,DF=2,+的最小值为3.∴PE PF故选C.【点睛】本题考查了菱形的性质,等边三角形的性质,点与圆的位置关系等知识.根据题意得出点P位置是解题的关键.12.C解析:C【分析】过点P作PD⊥MN,连接PM,由垂径定理得DM=3,在Rt△PMD中,由勾股定理可求得PM为5即可.【详解】解:过点P作PD⊥MN,连接PM,如图所示:∵⊙P 与y 轴交于M (0,−4),N (0,−10)两点,∴OM =4,ON =10,∴MN =6,∵PD ⊥MN ,∴DM =DN =12MN =3, ∴OD =7,∵点P 的横坐标为−4,即PD =4,∴PM 22PD DM +2243+5,即⊙P 的半径为5,故选:C .【点睛】本题考查了垂径定理、坐标与图形性质、勾股定理等知识;熟练掌握垂径定理和勾股定理是解题的关键. 二、填空题13.④⑤【分析】根据弦的定义垂径定理圆的对称性即可求解【详解】解:①连接圆上两点间的线段才是弦故原说法错误;②平分弦(不是直径)的直径垂直于弦故原说法错误;③垂直于弦的直径平分弦所对的两条弧故原说法错误解析:④⑤.【分析】根据弦的定义、垂径定理、圆的对称性即可求解.【详解】解:①、连接圆上两点间的线段才是弦,故原说法错误;②平分弦(不是直径)的直径垂直于弦,故原说法错误;③垂直于弦的直径平分弦所对的两条弧,故原说法错误;④直径是最长的弦,正确;⑤弦的垂直平分线经过圆心,正确;⑥直径所在的直线是圆的对称轴,故原说法错误;所以,正确的结论有④⑤.故答案为:④⑤.【点睛】本题考查了圆的对称性,垂径定理的应用,主要考查学生的理解能力和辨析能力,熟练掌握垂径定理是解决问题的关键.14.12π60π【分析】首先根据底面半径求得圆锥的底面的周长从而求得扇形的弧长和面积;【详解】∵扇形的半径为10cm 做成的圆锥形帽子的高为8cm ∴圆锥的底面半径为∴底面周长为∴这张扇形纸板的弧长是扇形的解析:12π 60π【分析】首先根据底面半径求得圆锥的底面的周长,从而求得扇形的弧长和面积;【详解】∵扇形的半径为10cm ,做成的圆锥形帽子的高为8cm ,∴6=,∴底面周长为2612cm ππ⨯=,∴这张扇形纸板的弧长是12cm π, 扇形的面积为21110126022lr cm ππ=⨯⨯=. 故答案是:12π;60π.【点睛】本题主要考查了扇形弧长计算和面积计算,准确分析计算是解题的关键.15.【分析】M 点为BC 和AB 的垂直平分线的交点利用点ABC 坐标易得BC 的垂直平分线为直线x=3AB 的垂直平分线为直线y=x 从而得到M 点的坐标然后计算MB 得到⊙M 的半径【详解】解:∵点ABC 的坐标分别是(解析:()3,3【分析】M 点为BC 和AB 的垂直平分线的交点,利用点A 、B 、C 坐标易得BC 的垂直平分线为直线x=3,AB 的垂直平分线为直线y=x ,从而得到M 点的坐标,然后计算MB 得到⊙M 的半径.【详解】解:∵点A ,B ,C 的坐标分别是(0,2),(2,0),(4,0),∴BC 的垂直平分线为直线x=3,∵OA=OB ,∴△OAB 为等腰直角三角形,∴AB 的垂直平分线为第一、三象限的角平分线,即直线y=x ,∵直线x=3与直线y=x 的交点为M 点,∴M 点的坐标为(3,3),∵MB ==∴⊙M .故答案为(3,3.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了坐标与图形的性质.16.16【分析】根据切线的性质和切线长定理得到DA=DCBE=ECAP=BP 然后根据三角形周长公式等量代换线段和差解答即可【详解】解:∵DADCEBECAPPB 分别是的切线∴DA=DCEB=ECPA=P解析:16【分析】根据切线的性质和切线长定理得到DA=DC 、BE=EC 、AP=BP ,然后根据三角形周长公式、等量代换、线段和差解答即可.【详解】解: ∵DA 、DC 、EB 、EC 、AP 、PB 分别是O 的切线,8AP = ∴DA=DC ,EB=EC ,PA=PB=8,∵DE=EC+CD∴DE=BE+DA ,∴PDE △的周长为PD+PE+DE=PD+DA+PE+BE=PA+PB=16.故答案为:16.【点睛】本题主要考查了切线的性质、切线长定理等知识点,掌握切线长定理是解答本题的关键. 17.【分析】先根据勾股定理求出斜边AB 的长再根据直角三角形内切圆的半径公式求出半径再算出周长【详解】解:根据勾股定理内切圆半径内切圆周长故答案是:【点睛】本题考查三角形的内切圆解题的关键是掌握直角三角形 解析:2π【分析】先根据勾股定理求出斜边AB 的长,再根据直角三角形内切圆的半径公式求出半径,再算出周长.【详解】解:根据勾股定理,5AB ==, 内切圆半径345122AC BC AB +-+-===, 内切圆周长22r ππ==.故答案是:2π.【点睛】本题考查三角形的内切圆,解题的关键是掌握直角三角形内切圆半径的求解方法. 18.120【分析】根据三角形的内心是三角形角平分线的交点结合公式求出即可【详解】解:为的内心故答案是:120【点睛】注意此题中的结论:若是内心则熟记公式可简化计算解析:120【分析】 根据三角形的内心是三角形角平分线的交点,结合公式1902BOC A ∠=+∠︒求出即可. 【详解】解:60A ∠=︒,O 为ABC ∆的内心, 1190906012022BOC A , 故答案是:120.【点睛】注意此题中的结论:若O 是内心,则1902BOC A ∠=+∠︒.熟记公式可简化计算. 19.8【分析】设圆锥的底面半径为利用圆锥的侧面展开图为一个扇形这个扇形的弧长等于圆锥底面的周长圆的周长公式计算出然后利用勾股定理计算出圆锥的高【详解】解:设圆锥底面圆的半径为则有∴圆锥的高为故答案是:【 解析:8【分析】设圆锥的底面半径为r ,利用圆锥的侧面展开图为一个扇形、这个扇形的弧长等于圆锥底面的周长、圆的周长公式计算出r ,然后利用勾股定理计算出圆锥的高.【详解】解:设圆锥底面圆的半径为r ,则有,212r ππ= 6r =∴8cm =.故答案是:8【点睛】本题考查了平面图形与立体图形之间的互相转化、求圆锥的底面半径、圆的周长公式以及勾股定理等相关知识,能够利用“扇形的弧长等于圆锥底面的周长”求得圆锥的底面半径是解题的关键.20.【分析】连接CD 由已知可以得到∠B=120°所以∠D=60°然后在Rt △ACD 中计算AC 即可【详解】解:如图所示连接CD ∵∴∠B=120°∴∠D=60°∵AD 为直径∴∠ACD=90°∴CD=4∴AC解析:【分析】连接CD ,由已知可以得到∠B=120°,所以∠D=60°,然后在Rt △ACD 中计算AC 即可.【详解】解:如图所示,连接CD∵AB BC =,30BAC ∠=︒∴∠B=120°∴∠D=60°∵AD 为直径∴∠ACD=90°∴CD=4 ∴AC=43【点睛】本题主要考查圆的内接四边形对角性质,掌握直径所对的圆周角是90°和圆的内接四边形对角互补是解题的关键.三、解答题21.(1)见解析;(2)①52π;②(﹣1,3) . 【分析】(1)根据旋转的定义作出点A 、B 绕点C 逆时针旋转90°得到的对应点,再顺次连接即可;(2)①根据弧长公式列式计算即可;②根据(1)中所作图形可得点B '的坐标;【详解】(1)如图所示,△A B C ''即为所求;(2)① ∵AC 2234=5+,∠ACA′=90°,∴点A 经过的路径ACA ' 的长为90551802ππ⨯⨯= , 故答案为:52π ; ②由图知点B '的坐标为(﹣1,3),故答案为:(﹣1,3).【点睛】本题主要考查作图-旋转变换,解题的关键是根据旋转角度、旋转方向、旋转中心作出对应点;22.(1)见解析;(2)27. 【分析】(1)借助同圆中,同弧上的圆周角相等,利用AAS 证明全等;(2) 过O 作OH AB ⊥,利用三角形全等,勾股定理,建立一元二次方程求解即可.【详解】解:(1)证明:∵AC 是O 的直径, ∴90ADC ∠=︒.∵30CAD ∠=︒,∴2AC CD =.∵2AC OA =,∴OA CD =.∵BC BC =,CD CD =,∴EAO CDB ∠=∠,CAD CBD ∠=∠.∵AEO DAC ∠=∠,∴AEO CBD ∠=∠.∴OAE CDB △≌△;(2)解:连接DE ,过O 作OH AB ⊥于H ,∴AH HB =.∵AO OC =,∴2BC OH =.设OH x =,∵30OEA CAD ∠=∠=︒, ∴HE =.由(1)知OAE CDB △≌△,∴AE DB =.∵AD AD =,∴60ABD ACD ∠=∠=︒.∵DE AB ⊥,∴30BDE ∠=︒.∴2DB BE =,AE DB =.∴2AE BE =.设AH HB y ==,则AE y =+,BE y =-.∴()2y y =.∴y =.在Rt OAH 中,2OA =,AH =,OH x =,222OH AH OA +=,()2222x +=.解得17x =,27x =-(舍去).∴7OH =.∴27BC OH ==. 【点睛】本题考查了圆周角的性质,垂径定理,勾股定理,方程思想,熟练运用圆周角定理,作辅助线,构造垂径定理是解题的关键.23.见解析【分析】过O 作OH ⊥AB 于H ,则AH =BH ;再根据线段的和差关系可得:CH =DH ,即OH 是CD 的线段垂直平分线,所以OC =OD ,继而即可求证结论.【详解】证明:如图过点O 作OH ⊥AB ,于点H .∵AB 为O 的弦,∴AH =BH 又∵AC =BD∴AC +AH =BD +BH ,即CH DH =又OH ⊥AB ,∴OC =OD ,∴∠C =∠D .【点睛】本题考查了垂径定理,解答本题的关键是作辅助线,利用垂径定理和线段垂直平分线的性质证明OC =OD .24.(1)25°;(2)①8;②25π9 【分析】(1)根据垂径定理和圆周角定理求解即可;(2)①根据勾股定理和垂径定理求解即可;②先求出100AOB ∠=︒,再根据弧长公式计算即可.【详解】解:(1)∵⊥OD AB ,∴AD BD =, ∴11502522DEB AOD ∠=∠=⨯︒=︒; (2)①∵3OC =,5OA =,⊥OD AB , ∴22534AC =-=,∴AB=2AC=8;②∵50AOD ,AD BD =,∴100AOB ∠=︒, ∵5OA =,∴弧AB 的长π1005π25π1801809n r ⨯===. 【点睛】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,以及弧长公式,熟练掌握各知识点是解答本题的关键.25.(1)见解析;(2)图见解析,52π【分析】(1)依据轴对称的性质,即可得到△ABC 关于y 轴对称的△A 1B 1C 1;(2)依据旋转中心、旋转方向和旋转角度,即可得到△A 2B 2C 2,再根据弧长计算公式,即可得出旋转过程中点A 运动到点A 2所经过路径的长.【详解】解:(1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,△A 2B 2C 2即为所求;∵OA=22345+=,∠AOA 2=90°,∴在此旋转过程中点A 运动到点A 2所经过路径的长为:90551802ππ⨯⨯=. 【点睛】本题主要考查了利用轴对称变换以及旋转变换进行作图,勾股定理,以及弧长公式,熟练掌握旋转变换与轴对称变换的定义和性质是解题的关键.26.(1)见解析;(2)90;直径所对的圆周角是直角;经过半径外端,且与半径垂直的直线是圆的切线.【分析】(1)根据题意画图即可;(2)分别利用圆周角定理以及切线的判定方法得出答案.【详解】(1)如图(2)如图,连接OA ,OB 后,由作图可知点,A B在以C为圆心,CO为半径的圆上,∴∠=∠=90︒.(直径所对的圆周角是直角)OAP OBPPA OA PB OB∴⊥⊥,OA OB为O的半径,PA PB是O的切线,(经过半径外端,且与半径垂直的直线是圆的切线)∴直线,【点睛】此题主要考查了切线的判定以及圆周角定理,正确把握切线的判定方法是解题关键.。

吉安市九年级数学上册第四单元《圆》检测题(包含答案解析)

吉安市九年级数学上册第四单元《圆》检测题(包含答案解析)

一、选择题1.如图,A 是B 上任意一点,点C 在B 外,已知2AB =,4BC =,ACD △是等边三角形,则BCD △的面积的最大值为( )A .434+B .43C .438+D .63 2.如图,四个水平放置正方形的边长都为4,顶点A 、B 、C 是圆上的点,则此圆的面积为( )A .72πB .85πC .100πD .104π 3.如图,AB 是半圆O 的直径,20BAC =︒∠,则D ∠的度数是( )A .70°B .100°C .110°D .120° 4.如图,ABC 为O 的一个内接三角形,过点B 作O 的切线PB 与OA 的延长线交于点P .已知34ACB ∠=︒,则P ∠等于( )A .17°B .27°C .32°D .22°5.如图在ABC 中,∠B=90°,AC=10,作ABC 的内切圆圆O ,分别与AB 、BC 、AC 相切于点D 、E 、F ,设AD=x ,ABC 的面积为S ,则S 关于x 的函数图像大致为( )A .B .C .D .6.如图,AB 圆O 的直径,弦CD AB ⊥,垂足为M ,下列结论不成立的是( )A .CM DM =B .CB BD =C .ACD ADC ∠=∠ D .OM MB = 7.如图,正六边形ABCDEF 内接于O ,过点O 作OM ⊥弦BC 于点M ,若O 的半径为4,则弦心距OM 的长为( )A .23B .3C .2D .22 8.如图所示,AB 是O 的直径,点C ,D 在O 上,21BDC ∠=︒,则AOC ∠的度数是( )A .136°B .137°C .138°D .139° 9.已知O 的半径为5,若4PO =,则点P 与O 的位置关系是( ) A .点P 在O 内 B .点P 在O 上 C .点P 在O 外 D .无法判断 10.如图,PA 、PB 、CD 是O 的切线,切点分别是A 、B 、E ,CD 分别交PA 、PB 于C 、D 两点,若60APB ∠=︒,则COD ∠的度数( )A .50°B .60°C .70°D .75°11.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,同勾中 容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步?”该问题的答案是( )A .8.5B .17C .3D .6 12.已知AB 是经过圆心O 的直线,P 为O 上的任意一点,则点P 关于直线AB 的对称点P '与O 的位置关系是( ) A .点P '在⊙○内 B .点P '在O 外 C .点P '在O 上 D .无法确定二、填空题13.如图,四边形ABCD 是O 的内接四边形,对角线AC 是O 的直径,2AB =,45ADB ∠=︒,则O 的半径长为_______.14.如图,点A ,B ,C 在O 上,顺次连接A ,B ,C ,O .若四边形ABCO 为平行四边形,则AOC ∠=________︒.15.已知一个圆锥形纸帽的底面半径为5cm ,母线长为10cm ,则该圆锥的侧面积为_____cm 2(结果保留π)16.如图,把边长为12的正三角形ABC 纸板剪去三个小正三角形(阴影部分),得到正六边形DEFGHK ,则剪去的小正三角形的边长为__________________.17.如图,四边形ABCD 内接于O ,若76A ∠=︒,则C ∠=_______ °.18.如图,直线33y x =+x 轴于点A ,交y 轴于点B .以A 为圆心,以AB 为半径作弧交x 轴于点A 1;过点A 1作x 轴的垂线,交直线 AB 于点B 1,以A 为圆心,以AB 1为半径作弧交x 轴于点 A 2;…,如此作下去,则点n A 的坐标为___________;19.如图,AB 是O 的直径,O 交BC 的中点于D ,DE AC ⊥于E ,连接AD ,则下列结论正确的有______(填序号) ①AD BC ⊥;②EDA B ∠=∠;③12OA AC =;④DE 是O 的切线.20.如图所示,在⊙O 中,AB 为弦,交AB 于AB 点D ,且OD=DC ,P 为⊙O 上任意一点,连接PA ,PB ,若⊙O 的半径为1,则S △PAB 的最大值为_____.三、解答题21.如图,以Rt ABC 的AC 边为直径作O 交斜边AB 于点E ,连接EO 并延长交BC 的延长线于点D ,点P 为BC 的中点,连接EP ,AD .(1)求证:PE 是O 的切线; (2)若O 的半径为3,30B ∠=︒,求P 点到直线AD 的距离.22.已知PA ,PB 分别与⊙O 相切于点A ,B ,∠APB =80°,C 为⊙O 上一点.(Ⅰ)如图①,求∠ACB 的大小;(Ⅱ)如图②,AE 为⊙O 的直径,AE 与BC 相交于点D .若AB =AD ,求∠EAC 的大小.23.如图,在直角坐标系中,A (0,4)、B (4,4)、C (6,2),(1)写出经过A 、B 、C 三点的圆弧所在圆的圆心M 的坐标:______;(2)判断点()5,2D -与圆M 的位置关系.24.如图,AC 为O 的直径,4AC =,B 、D 分别在AC 两侧的圆上,60BAD ∠=︒,BD 与AC 的交点为E .(1)求点O 到BD 的距离及OBD ∠的度数;(2)若2DE BE =,求cos OED ∠的值和CD 的长.25.如图,O 中,AB CD =,A C ∠=∠,AB 与CD 交于点P .求证=DP BP .26.如图,O 是ABC 的外接圆,且AB AC =,点D 在弧BC 上运动,过点D 作//DE BC ,DE 交AB 的延长线于点E ,连接AD 、BD .(1)求证:ADB E ∠=∠;(2)当6AB =,3BE =时,求AD 的长?(3)当点D 运动到什么位置时,DE 是O 的切线?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】以BC 为边作等边BCM ,连接DM ,则DCM CAB ≅△△,根据全等三角形的性质得到DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232+,根据三角形的面积即可得到结论.【详解】解:以BC 为边作等边BCM ,连接DM ,∵60DCA MCB ==∠∠,∴DCM ACB =∠∠,∵DC=AC ,MC=BC ,∴DCM CAB ≅△△(SAS ),∴DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232+,此时面积为:434+故选:A【点睛】本题考查了等边三角形的性质,三角形面积的计算,找出点D 的位置是解题的关键. 2.B解析:B【分析】连接BC ,作AB ,BC 的垂直平分线,交点为点O ,连接OB ,OC ,根据垂直平分线可得AE=BE=2,DE=4×4=16,DC=4+2=6,设OD=x ,则OE=16-x ,再根据OB=OC 即可列出方程求得x=7,最后再根据圆的面积公式计算即可.【详解】解:如图,连接BC ,作AB ,BC 的垂直平分线,交点为点O ,连接OB ,OC ,则OB=OC ,AE=BE=2,DE=4×4=16,DC=4+2=6,设OD=x ,则OE=16-x ,∵OB=OC ,∴OB 2=OC 2,∴22+(16-x) 2=62+x 2,解得x=7,∴r 2=OB 2=22+92=85,∴圆的面积S=πr 2=85π,故选:B .【点睛】本题考查了作三角形的外心,垂径定理的应用,圆的面积公式,熟练掌握垂径定理是解决本题的关键.3.C解析:C【分析】先根据圆周角定理可得90ACB ∠=︒,再根据直角三角形的性质可得70B ∠=︒,然后根据圆内接四边形的性质即可得.【详解】AB 是半圆O 的直径,90ACB ∴∠=︒,20BAC ∠=︒,9070B BAC ∴∠=︒-∠=︒, 又四边形ABCD 是圆O 内接四边形,180110D B ∴∠=︒-∠=︒,故选:C .【点睛】本题考查了圆周角定理、直角三角形的性质、圆内接四边形的性质,熟练掌握圆周角定理是解题关键.4.D解析:D【分析】连接OB ,利用圆周角定理求得∠AOB ,再根据切线性质证得∠OBP=90°,利用直角三角形的两锐角互余即可求解.【详解】解:连接OB ,∵∠ACB=34°,∴∠AOB=2∠ACB=68°,∵PB 为O 的切线,∴OB ⊥PB ,即∠OBP=90°,∴∠P=90°﹣∠AOB=22°,故选:D .【点睛】本题考查了切线的性质、圆周角定理、直角三角形的两锐角互余,熟练掌握切线的性质和圆周角定理是解答的关键.5.A解析:A【分析】连接OD 、OE ,根据三角形内切圆证得四边形DBEO 是正方形,在根据勾股定理即可得解;【详解】连接OD 、OE ,如图,O 的半径为r ,∵△ABC 的内切圆O 分别于AB 、BC 、AC 相切与点D 、E 、F ,∴⊥OD AB ,OE BC ⊥,AF=AD=x ,CE=CF=10-x ,易得四边形DBEO 是正方形,∴DB BE OD r ===, ∵()()2△1110101022ABC S r AB BC AC r x r r x r r =++=+++-+=+,∵222AB BC AC +=,∴()()2221010x r x r ++-+=, ∴221010r r x x +=-+, ∴()2210525S x x x =-+=--+(0<x <10). 故答案选A .【点睛】本题主要考查了切线的性质,三角形的内切圆与圆心,函数图像,准确分析判断是解题的关键.6.D解析:D【分析】根据垂径定理得到CM=DM ,BC BD =,AC AD =,然后根据圆周角定理得∠ACD=∠ADC ,而对于OM 与MB 的大小关系不能判断.【详解】解:∵AB 是⊙O 的直径,弦CD ⊥AB ,∴CM=DM ,BC BD =,AC AD =,∴∠ACD=∠ADC .而无法比较OM ,MB 的大小,故选:D .【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.7.A解析:A【分析】如图,连接OB、OC.首先证明△OBC是等边三角形,求出BC、BM,根据勾股定理即可求出OM.【详解】解:如图,连接OB、OC.∵ABCDEF是正六边形,∴∠BOC=60°,OB=OC=4,∴△OBC是等边三角形,∴BC=OB=OC=4,∵OM⊥BC,∴BM=CM=2,在Rt△OBM中,2222-=-=,OM OB BM4223故选:A.【点睛】本题考查正多边形与圆、等边三角形的性质、勾股定理、弧长公式等知识,解题的关键是记住等边三角形的性质,弧长公式,属于基础题,中考常考题型.8.C解析:C【分析】利用圆周角定理求出∠BOC即可解决问题.【详解】解:∵∠BOC=2∠BDC,∠BDC=21°,∴∠BOC=42°,∴∠AOC=180°-42°=138°.故选:C.【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理,属于中考常考题型.解析:A【分析】已知圆O 的半径为r ,点P 到圆心O 的距离是d ,①当r >d 时,点P 在⊙O 内,②当r=d 时,点P 在⊙O 上,③当r <d 时,点P 在⊙O 外,根据以上内容判断即可.【详解】∵⊙O 的半径为5,若PO=4,∴4<5,∴点P 与⊙O 的位置关系是点P 在⊙O 内,故选:A .【点睛】本题考查了点与圆的位置关系的应用,注意:已知圆O 的半径为r ,点P 到圆心O 的距离是d ,①当r >d 时,点P 在⊙O 内,②当r=d 时,点P 在⊙O 上,③当r <d 时,点P 在⊙O 外.10.B解析:B【分析】连接AO ,BO ,OE 由切线的性质可得90PAO PBO ︒∠=∠=,结合已知条件和四边形的内角和为360°可求出AOB 的度数,再由切线长定理即可求出COD 的度数.【详解】如图,连接AO ,BO ,OE ,∵PA 、PB 是O 的切线,∴∠PAO =∠PBO =90∘,∵60APB ∠=︒,∴36029060120AOB ∠=︒-⨯︒-︒=︒,∵PA 、PB 、CD 是⊙O 的切线,∴∠ACO =∠ECO ,∠DBO =∠DEO ,∴∠AOC =∠EOC ,∠EOD =∠BOD , ∴1602COD COE EOD AOB ∠=∠+∠=∠=︒, 故选B.【点睛】本题考查了切线的性质及切线长定理,解答本题的关键是熟练掌握:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.解析:D【分析】先根据勾股定理求出斜边长,再根据直角三角形内切圆半径公式求出半径,从而得到直径.【详解】17=, 直角三角形的内切圆半径8151732+-==, ∴直径是6.故选:D .【点睛】本题考查三角形的内切圆,解题的关键是掌握直角三角形内切圆半径的求解方法. 12.C解析:C【分析】圆是轴对称图形,直径所在的直线就是对称轴,从而得到圆上的点关于对称轴对称的点都在圆上求解.【详解】解:∵圆是轴对称图形,直径所在的直线就是对称轴,∴点P 关于AB 的对称点P′与⊙O 的位置为:在⊙O 上,故选:C .【点睛】本题考查了点与圆的位置关系,利用了圆的对称性求解.二、填空题13.【分析】先根据圆周角定理可得再根据等腰直角三角形的判定与性质勾股定理可得由此即可得【详解】是的直径是等腰直角三角形则的半径长为故答案为:【点睛】本题考查了圆周角定理等腰直角三角形的判定与性质勾股定理【分析】先根据圆周角定理可得90,45ABC ACB ADB ∠=︒∠=∠=︒,再根据等腰直角三角形的判定与性质、勾股定理可得AC =【详解】 AC 是O 的直径,90ABC ∴∠=︒,45ADB ∠=︒,45ACB ADB ∴∠=∠=︒,Rt ABC ∴是等腰直角三角形,2BC AB ==, 2222AC AB BC ∴=+=,则O 的半径长为122AC =, 故答案为:2.【点睛】本题考查了圆周角定理、等腰直角三角形的判定与性质、勾股定理,熟练掌握圆周角定理是解题关键.14.120【分析】连接OB 先证明四边形ABCD 是菱形然后再说明△AOB △OBC 为等边三角形最后根据等边三角形的性质即可解答【详解】解:如图:连接OB ∵点在上∴OA=OC=OB ∵四边形为平行四边形∴四边形解析:120【分析】连接OB ,先证明四边形ABCD 是菱形,然后再说明△AOB 、△OBC 为等边三角形,最后根据等边三角形的性质即可解答.【详解】解:如图:连接OB∵点A ,B ,C 在O 上∴OA=OC=OB∵四边形ABCO 为平行四边形∴四边形ABCO 是菱形∴OA=OC=OB=AB=BC∴△AOB 、△OBC 为等边三角形∴∠AOB=∠BOC=60°∴∠AOC=120°.故答案为120.【点睛】本题主要考查了圆的性质和等边三角形的性质,根据题意证得△AOB 、△OBC 为等边三角形是解答本题的关键.15.50π【分析】首先求得圆锥的底面周长然后利用扇形的面积公式即可求解【详解】解:圆锥的底面周长是:2×5π=10π则圆锥的侧面积是:×10π×10=50π(cm2)故答案是:50π【点睛】本题主要考查解析:50π【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式即可求解.【详解】解:圆锥的底面周长是:2×5π=10π,则圆锥的侧面积是:12×10π×10=50π(cm2).故答案是:50π.【点睛】本题主要考查了圆锥侧面积的求法,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16.4【分析】由题意可知剪去的三个三角形是全等的等边三角形可知得到剪去的小正三角的边长为4【详解】解:∵剪去三个三角形∴AD=AE=DEBK=BH=HKCG=CF=GF∵六边形DEFGHK是正六边形∴D解析:4【分析】由题意可知剪去的三个三角形是全等的等边三角形,可知得到剪去的小正三角的边长为4.【详解】解:∵剪去三个三角形∴AD=AE=DE,BK=BH=HK,CG=CF=GF,∵六边形DEFGHK是正六边形,∴DE=DK=HK=GH=GF=EF,∴剪去的三个三角形是全等的等边三角形;∴AD=DK=BK=123=4,∴剪去的小正三角形的边长4.故答案为:4.【点睛】本题考查了等边三角形以及正六边形的定义,熟练掌握定义是解题的关键.17.104【分析】根据圆内接四边形的对角互补列式计算即可【详解】解:∵四边形ABCD内接于⊙O∴∠A+∠C=180°∴∠C=180°﹣∠A=180°﹣76°=104°故答案为:104【点睛】本题考查的是解析:104【分析】根据圆内接四边形的对角互补列式计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∴∠C=180°﹣∠A=180°﹣76°=104°,故答案为:104.【点睛】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.18.(2n﹣10)【分析】根据题意先求出点AB的坐标再利用勾股定理求出AA1AA2AA3……AAn的长可得到点A1A2A3……An的坐标找到规律即可解答【详解】解:当x=0时y=当y=0时x=﹣1∴A(解析:(2n﹣1,0)【分析】根据题意,先求出点A、B的坐标,再利用勾股定理求出AA1、AA2、AA3……AA n的长,可得到点A1、A2、A3……A n的坐标,找到规律即可解答.【详解】解:当x=0时,y=0时,x=﹣1,∴A(﹣1,0),B(0,∴AA=,则点A1(1,0),B1(1,,12∴AA=,则点A2(3,0),B2(3,,2=AB14∴AA=,则点A3(7,0),B3(7,,3=AB28……∴可以得到A n的坐标为(2n﹣1,0),故答案为:(2n﹣1,0).【点睛】本题考查了一次函数图象上的点的坐标特征、图形的规律探究、圆的基本知识、勾股定理,解答的关键是利用勾股定理求得AA1、AA2、AA3……AA n的长,进而得到A1、A2、A3……A n的坐标的变化规律.19.①②③④【分析】根据题意易得∠ADB=90°可得①进而根据线段垂直平分线的性质可得AC=AB连接OD然后根据圆的基本性质及切线的判定定理可求解【详解】解:∵是的直径∴∠ADB=90°∴AD⊥BC故①解析:①②③④【分析】根据题意易得∠ADB=90°,可得①,进而根据线段垂直平分线的性质可得AC=AB,连接OD ,然后根据圆的基本性质及切线的判定定理可求解.【详解】解:∵AB 是O 的直径, ∴∠ADB=90°,∴AD ⊥BC ,故①正确;∵点D 是BC 的中点,∴AC=AB ,∴△ABC 是等腰三角形,∴∠B=∠C ,∠CAD=∠BAD ,∵DE ⊥AC ,∠CDA=90°,∴∠EDA+∠EAD=90°,∠CAD+∠C=90°,∴EDA C ∠=∠,∴EDA B ∠=∠,故②正确; ∵12OA AB =, ∴12OA AC =,故③正确; 连接OD ,如图所示:∵OD=OA ,∴∠ADO=∠DAO ,∴∠ADO=∠EAD ,∴∠ADO+∠EDA=90°,∴ED 是⊙O 的切线,故④正确;∴正确的有①②③④;故答案为①②③④.【点睛】本题主要考查切线的判定定理及等腰三角形的性质与判定,熟练掌握切线的判定定理及等腰三角形的性质与判定是解题的关键.20.【分析】作直径CE 连OAAEBE 利用垂经定理的AD=BD 在利用勾股定理计算出AD 则AB=2AD 当点P 与点E 重合时P 点到AB 的距离最大然后根据三角形面积公式求解即可【详解】延长CD 交⊙O 于点E 连接OA解析:4【分析】作直径CE ,连OA 、AE 、BE ,利用垂经定理的AD=BD ,在利用勾股定理计算出AD ,则AB=2AD ,当点P 与点E 重合时,P 点到AB 的距离最大,然后根据三角形面积公式求解即可.【详解】延长CD 交⊙O 于点E ,连接OA ,AE ,BE 如图,∵OA=OC=1,OD=CD ,∴OD=CD=12OC=12, ∵OC ⊥AB ,∴2=, AD=BD=12AB ,,∴sin ∠OAD=12OD OA =, ∴∠OAD=30º, ∴∠AOD =90º-∠OAD =60º,∵OA =OE ,∴∠OAE=∠OEA ,∵∠AOD=∠OAE+∠OEA ,∴∠OAE=∠OEA=30º,∵CE ⊥AB ,∴AE=BE ,∴∠OEB=∠OEA=30º,∴∠AEB=∠OEB+∠OEA=60º,∴△ABE 是等边三角形,∴32=, S △ABE =1332AB DE =, ∵在△ABP 中,当点P 与点E 重合时,AB 边上的高取最大值,此时△ABP 的面积最大,∴S △ABP 的最大值=4.故答案为:334.【点睛】本题考查三角形面积,掌握垂经定理,勾股定理,和引辅助线构造图形,找到当点P 与点E 重合时,P 点到AB 的距离最大,然后根据三角形面积公式求解是解题关键.三、解答题21.(1)证明见解析;(2)1221.7 【分析】(1)连接CE ,由AC 是⊙O 的直径,得出CE ⊥AE ,由P 为BC 的中点,可得EP=BP=CP ,可得∠PEC=∠PCE , 再由∠ACB=90°,即可得到结论.(2)设P 点到直线AD 的距离为d ,根据三角形的面积得到PD AC d AD= ①由勾股定理得63BC =,根据平行线的性质得到∠OPC=∠B=30°,推出OEA △为等边三角形,得到∠EOA=60°,在Rt ACD △中,由勾股定理得:2237AD AC CD =+=,将以上数据代入①得即可得到结论.【详解】证明:(1)连接CE ,如图所示:∵AC 为⊙O 的直径,∴∠AEC=90°.∴∠BEC=90°.∵点P 为BC 的中点,∴EP=BP=CP .∴∠PEC=∠PCE .∵OE=OC ,∴∠OEC=∠OCE .∵∠PCE+∠OCE=∠ACB=90°,∴∠PEC+∠OEC=∠OEP=90°. E 在O 上,∴EP 是⊙O 的切线;(2)解:设P 点到直线AD 的距离为d , 连接,AP OP ,则有:1122PAD SAD d PD AC ==, ∴PD AC d AD= ①∵⊙O 的半径为3,∠B=30°,∴∠BAC=60°,AC=6,AB=12,由勾股定理得:3BC =∴33PC =∵O ,P 分别是AC ,BC 的中点,∴//OP AB ,∴∠OPC=∠B=30°,∵OE=OA ,∠OAE=60°,∴OEA △为等边三角形,∴∠EOA=60°,∴∠ODC=90°-∠COD=90°-∠EOA=30°,∴∠ODC=∠OPC=30°,∴OP=OD ,∵OC ⊥PD ,∴33CD PC ==,在Rt ACD △中,由勾股定理得:2237AD AC CD +=将以上数据代入①得: 631221737PD AC d AD ===. 【点睛】本题考查了圆周角定理,切线的判定,勾股定理,等腰三角形,等边三角形的判定和性质,直角三角形斜边上的中线等于斜边的一半,含30的直角三角形的性质,等面积法,掌握以上知识是解题的关键.22.(Ⅰ)50°;(Ⅱ)20°【分析】(I)连接OA、OB,根据切线的性质可得∠OAP=∠OBP=90°,利用四边形内角和即可求解;(II)连接CE,根据直径所对的圆周角是直角可得∠ACE=90°,利用圆周角定理即可得到∠BAE=∠BCE=40°,再根据等腰三角形的性质和三角形外角的性质即可求解.【详解】解:(Ⅰ)连接OA、OB,∵PA,PB是⊙O的切线,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣80°=100°,由圆周角定理得,∠ACB=12∠AOB=50°;(Ⅱ)连接CE,∵AE为⊙O的直径,∴∠ACE=90°,∵∠ACB=50°,∴∠BCE=90°﹣50°=40°,∴∠BAE=∠BCE=40°,∵AB=AD,∴∠ABD=∠ADB=70°,∴∠EAC=∠ADB﹣∠ACB=20°.【点睛】本题考查切线的性质、圆周角定理、等腰三角形的性质、三角形外角的性质等内容,作出合适的辅助线是解题的关键.23.(1)(2,0);(2)在圆内.【分析】(1)由网格容易得出AB 的垂直平分线和BC 的垂直平分线,它们的交点即为点M ,根据图形即可得出点M 的坐标;(2)用两点间距离公式求出圆的半径和线段DM 的长,当DM 小于圆的半径时点D 在圆内.【详解】(1)如图1,点M 就是要找的圆心;圆心M 的坐标为(2,0).故答案为(2,0);(2)圆的半径AM 2224+=25线段MD 22(52)2-+1325D 在⊙M 内.【点睛】本题考查的是点与圆的位置关系,坐标与图形性质以及垂径定理,利用网格结构得到圆心M 的坐标是解题的关键.24.(1)1,30º;(2)12,2【分析】(1)作OF ⊥BD 于点F ,连接OD ,根据圆周角定理可得出∠DOB=120º,再由OB=OD=12AC=2,可得出∠OBD 的度数,也可以得出OF 的长度, (2)设BF=2x ,则可表示出DF 、EF 的长度,从而可解出x 的值,在Rt △OEF 中,利用三角函数值的知识可求出∠OED 的度数,也可得出cos ∠OED 的值,判断出DO ⊥AC ,然后利用等腰直角三角形的性质可得出CD 的长度.【详解】(1)作OF ⊥BD 于点F ,连接OD ,∵∠BAD=60º,∴∠BOD=2∠BAD=120º,又∵OB=OD ,∴∠OBD=30º,∵AC 为⊙O 的直径,AC=4,∴OB=OC=2,在Rt △BOF 中,∵∠OFB=90º,OB=2,∠OBF=30º,∴OF=12OB=1,即点O到BD的距离等于1,(2)∵OB=OD,OF⊥BD于点F,∴BF=DF,由DE=2BE,设BE=2x,则DE=4x,BD=6x,EF =x,BF=3x,∵BF=OB•co3∴33x EF==,在Rt△OEF中,∠OFE=90º,∵tan∠OED=OF=3 EF∴∠OED=60º,cos∠OED=12,∴∠BOC=∠OED-∠OBD=30º,∴∠DOC=∠DOE-∠BOE=90º,∴∠C=45º,∴2OC=22【点睛】本题考查属于圆的综合题,涉及等腰三角形的性质,三角函数值,及勾股定理等知识,解答此类综合性题目,要求我们熟悉掌握一些小知识,做到将所学的知识融会贯通,难度较大.25.见解析.【分析】根据已知条件和圆周角定理证明△APD≌△CPB即可得到DP=BP.【详解】证明:∵AB CD=,∴CD = AB,∴ CD- CA= AB - AC ,∴ AD = BC.又∵∠A=∠C ,∠APD=∠CPB ,∴△APD ≌△CPB.∴DP=BP .【点睛】本题考查了全等三角形的判定以及圆心角定理:在同圆或等圆中圆心角相等,弧相等,弦相等,弦心距相等,在这几组相等关系中,只要有一组成立,则另外几组一定成立.26.(1)见解析;(2)AD =3)理由见解析.【分析】(1)根据圆周角定理及平行线的性质不难求解;(2)根据题意证明ABD ADE ∼,列出比例式即可求解;(3)要使DE 是圆的切线,那么D 就是切点,AD ⊥DE ,又根据AD 过圆心O ,BC ∥ED ,根据垂径定理可得出D 应是弧BC 的中点.【详解】(1)在ABC 中,∵AB AC =,∴ABC C ∠=∠.∵//DE BC ,∴ABC E ∠=∠,∴E C ∠=∠.又∵ADB C ∠=∠,∴ADB E ∠=∠.(2)解:∵ABC AED ∠=∠,A ABC CB =∠∠,ADB ACB ∠=∠,∴ADB E ∠=∠,BAD BAD ∠=∠,∴ABD ADE ∼, ∴AB AD AD AE=, 又6AB =,3BE =,∴AD =.(3)当点D 是弧BC 的中点时,DE 是O 的切线. ∵当点D 是弧BC 的中点时,AD BC ⊥,且AD 过圆心O , 又∵//DE BC ,∴AD ED ⊥.∴DE 是O 的切线. 【点睛】本题主要考查了圆周角定理,切线的判定,平行线的性质,垂径定理相似三角形的判定与性质等知识点,正确运用好圆心角,弧,弦的关系是解题的关键.。

圆与方程测试题(含答案)

圆与方程测试题(含答案)

圆与方程测试题(师)一、选择题1、圆心在),4,3(-C 且经过点M (5,1)的方程为( C )A.73)4()3(22=++-y xB.73)1()5(22=-+-y xC.73)4()3(22=-++y xD.73)1()5(22=+++y x2、点M (3,-6)在圆:16)2()3(22=++-y x 的(A )A 、圆上B 、圆外C 、圆内D 、以上都不是3、方程x 2+y 2-4x+4y+4=0的圆心、半径分别是:( C )(A )圆心(2,4); 半径:2; (B )圆心(-4,4);半径:4;(C )圆心(2,-2);半径:2; (D )圆心(2,4); 半径:4;4、过点A (1,-1)、B (-1,1)且圆心在直线x+y-2=0上的圆的方程是(C )A 、(x-3)2+(y+1)2=4B 、(x+3)2+(y-1)2=4C 、(x-1)2+(y-1)2=4D 、(x+1)2+(y+1)2=45、直线02024322=-+=++x y x y x 与的位置关系为( A )A 、相切B 、相交C 、相离D 、以上都可能6、直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( C ) (A)22 (B)4 (C)24 (D)2分析:涉及都弦长的要注意那个直角三角形(由半径、圆心距、弦长的一半组成的那个)。

7、过点A (1,-1)、B (-1,1)且圆心在直线x+y-2=0上的圆的方程是( C )A 、(x-3)2+(y+1)2=4B 、(x+3)2+(y-1)2=4C 、(x-1)2+(y-1)2=4D 、(x+1)2+(y+1)2=4 分析:看选项找答案 8 圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( B ) A 2 B 21+ C 221+ D 221+ 分析:最大距离,就是圆心到直线的距离加上半径9、过0422=-+y x 与圆0124422=-+-+y x y x 交点的直线为( C )A 、03=-+y xB 、03=+-y xC 、 02=+-y xD 、04=-+y x 分析:两个方程相减,整理得所求直线10、两圆229x y +=和228690x y x y +-++=的位置关系是( B )A 相离B 相交C 内切D 外切分析: 设圆O 1的半径为r 1,圆O 2的半径为r 2,则两圆相离 ⇔|O 1O 2|>r 1+ r 2, 外切⇔ |O 1O 2|= r 1+ r 2,内切 ⇔|O 1O 2| =|r 1 - r 2 |, 内含⇔ |O 1O 2|<|r 1- r 2|,相交 ⇔|r 1 -r 2|<|O 1O 2|<|r 1+ r 2|11、 圆1)1(22=+-y x 的圆心到直线x y 33=的距离是( A ) A 21 B 23 C 1 D 3 分析:2200B A C By Ax d +++= 12、点P(1,2,3)关于x 轴对称的点的坐标( B )A 、(-1,2,-3)B 、(1,-2,-3)C 、(-1,-2, 3)D 、(-1,-2,-3)分析:关于什么轴对称,什么轴就不变,其他都变。

(常考题)人教版初中数学九年级数学上册第四单元《圆》测试(有答案解析)

(常考题)人教版初中数学九年级数学上册第四单元《圆》测试(有答案解析)

一、选择题1.如图,在平面直角坐标系中,P 是直线y =2上的一个动点,⊙P 的半径为1,直线OQ 切⊙P 于点Q ,则线段OQ 的最小值为( )A .1B .2C .3D .52.下列说法不正确的是( )A .不在同一直线上的三点确定一个圆B .90°的圆周角所对的弦是直径C .平分弦的直径垂直于这条弦D .等弧所对的圆周角相等 3.如图,A 是B 上任意一点,点C 在B 外,已知2AB =,4BC =,ACD △是等边三角形,则BCD △的面积的最大值为( )A .434+B .43C .438+D .634.如图,AB 、AC 是⊙O 的切线,B 、C 为切点,∠A =50°,点P 是圆上异于B 、C 的点,则∠BPC 的度数是( )A .65°B .115°C .115°或65°D .130°或65° 5.如图,AB 为O 的直径,C 为O 上一点,其中6AB =,120AOC ∠=︒,P 为O 上的动点,连AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为( )A .37B .3272+C .237+D .337226.已知⊙O ,如图,(1)作⊙O 的直径AB ;(2)以点A 为圆心,AO 长为半径画弧,交⊙O 于C ,D 两点;(3)连接CD 交AB 于点E ,连接AC ,BC .根据以上作图过程及所作图形,有下面三个推断:①CE DE =;②3BE AE =;③2BC CE =.其中正确的推断的个数是( )A .0个B .1个C .2个D .3个7.下列事件属于确定事件的为( )A .氧化物中一定含有氧元素B .弦相等,则所对的圆周角也相等C .戴了口罩一定不会感染新冠肺炎D .物体不受任何力的时候保持静止状态 8.如图,PA 切O 于点,A PB 切O 于点B PO ,交O 于点C ,下列结论中不一定成立的是( )A .PA PB =B .PO 平分APB ∠C .AB OP ⊥D .2PAB APO ∠=∠ 9.如图,AB 是⊙的直径,DB 、DE 分别切⊙O 于点B 、C ,若∠ACE =35°,则∠D 的度数是( )A .65°B .55°C .60°D .70°10.如图,大半圆中有n 个小半圆,若大半圆弧长为1L ,n 个小半圆弧长的和为2L ,大半圆的弦AB ,BC ,CD 的长度和为3L .则( )A .123L L L =>B .123L L L =<C .无法比较1L 、2L 、3L 间的大小关系D .132L L L >>11.已知圆锥的底面半径为3cm ,母线长为6cm ,则圆锥的侧面积是( )A .18cm 2B .218cm πC .27cm 2D .227cm π 12.如图,△ABC 内接于☉O ,若☉O 的半径为6,∠A=60°,则BC 的长为( )A .2πB .4πC .6πD .8π二、填空题13.一排水管截面如图所示,截面半径13dm OA =,水面宽10dm AB =,则圆心O 到水面的距离OC =______dm .14.如图,在平面直角坐标系中,点()3,4A ,()3,0B ,以A 为圆心,2为半径作A ,点P 为A 上一动点,M 为OP 的中点,连接BM ,设BM 的最大值为m ,最小值为n ,则m n -的值为_________.15.在直径为10cm的⊙O中,弦AB=5cm,则∠AOB的度数为_______.16.如图,正六边形ABCDEF的边长为2,分别以点A,D为圆心,以AB,DC为半径作扇形ABF,扇形DCE.则图中阴影部分的面积是______.17.如图,半径为10的扇形AOB中,∠AOB=90°,C为AB上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE=36°,则图中阴影部分的面积为____.18.如图,在平面直角坐标系xOy中,A(8,0),⊙O半径为3,B为⊙O上任意一点,P 是AB的中点,则OP的最小值是____.19.在平面直角坐标系xOy中,A(5,6),B(5,2),C(3,0),△ABC的外接圆的圆心坐标为____.20.如图,半径为3的⊙O与边长为8的等边三角形ABC的两边AB、BC都相切,连接OC,则OC=_____.三、解答题21.如图,在Rt△ABC中,∠ACB=90°,D为AB边上的一点,以AD为直径的⊙O交BC 于点E,过点C作CG⊥AB交AB于点G,交AE于点F,过点E作EP⊥AB交AB于点P,∠EAD=∠DEB.(1)求证:BC是⊙O的切线;(2)求证:CE=EP;(3)若CG=12,AC=15,求四边形CFPE的面积.22.如图,在等腰直角ABC中,=90ACB∠,12AB=,P是AB上一个动点,连结CP,以CP为斜边构造等腰直角CPQ(C、Q、P按逆时针方向),射线PQ与CA交于点D.(1)证明:2=CP CD CA⋅.(2)若12QDDP=,求CP的长.(3)连接AQ,记Q关于直线AC的对称点为Q',若APC△的外接圆经过Q',则APQ的面积为________(直接写出答案).23.已知△ABC ,请按以下要求完成本题:(1)请作出△ABC 的外接圆⊙O (尺规作图,保留作图痕迹);(2)若在△ABC 中,∠ABC =70°,∠ACB =40°,⊙O 的直径AD 交CB 于E ,则∠DEC = .24.已知点A 、B 在半径为2的⊙O 上,直线AC 与⊙O 相切,OC OB ,连接AB 交OC 于点D .(1)如图①,若60ACO ︒∠=,求B :(2)如图②,OC 与⊙O 交于点E ,若//BE OA ,求AB 的长.25.对于平面上两点,A B ,给出如下定义:以点A 或B 为圆心,AB 长为半径的圆称为点,A B 的“共径圆”.点,A B 的“共径圆”的示意图如图所示.(1)已知点A 的坐标为(0,0),点B 的坐标为(3,4),则点,A B 的“共径圆”的面积为_______________;(2)已知点A 在以坐标原点为圆心,以1为半径的圆上,点B 在直线4y x =-+上,求点,A B 的“共径圆”的半径最小值;(3)已知点A 的坐标为(0,0),点B 是x 轴及x 轴上方的点,如果直线y x b =+上存在两个点B ,使得点,A B 的“共径圆”的面积为4π,直接写出满足条件的b 的取值范围.26.图①、图②均为 4×4 的正方形网格,线段 AB 、BC 的端点均在格点上,按要求在图①、图②中作图并计算其面积.(1)在图①中画一个四边形 ABCD ,点D 在格点上,使四边形 ABCD 有一组对角相等,并求=四边形ABCD S .(2)在图②中画一个四边形 ABCE ,点E 在格点上,使四边形 ABCE 有一组对角互补,并求ABCE S =四边形 .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】连接PQ 、OP ,如图,根据切线的性质得:PQ ⊥OQ ,再利用勾股定理得出OQ ,利用垂线段最短,当OP 最小时,OQ 最小,即可求解.【详解】连接PQ 、OP ,如图,∵直线OQ 切⊙P 于点Q ,∴PQ ⊥OQ ,在直角OPQ △中,2221OQ OP PQ OP =-=-,当OP 最小时,OQ 最小,当OP ⊥直线y =2时,OP 有最小值2,∴OQ 的最小值为2213-=,故选:C .【点睛】 本题考查了切线的性质:圆的切线垂直于经过切点的半径,也考查了勾股定理,熟练掌握切线的性质以及勾股定理是解答本题的关键.2.C解析:C【分析】根据确定圆的条件对A 进行判断;根据垂径定理的推论对C 进行判断;根据圆周角定理及其推论对B 、D 进行判断.【详解】解:A.不在同一直线上的三点确定一个圆,说法正确;B. 90°的圆周角所对的弦是直径,说法正确;C. 平分弦(非直径)的直径垂直于弦,所以B 选项错误;D. 等弧所对的圆周角相等,说法正确;故选:C 【点睛】此题主要考查了圆的相关知识的掌握.解答此题的关键是要熟悉课本中的性质定理. 3.A解析:A【分析】以BC 为边作等边BCM ,连接DM ,则DCM CAB ≅△△,根据全等三角形的性质得到DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232,根据三角形的面积即可得到结论.【详解】解:以BC 为边作等边BCM ,连接DM ,∵60DCA MCB ==∠∠,∴DCM ACB =∠∠,∵DC=AC ,MC=BC ,∴DCM CAB ≅△△(SAS ),∴DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232+,此时面积为:434+故选:A【点睛】本题考查了等边三角形的性质,三角形面积的计算,找出点D 的位置是解题的关键. 4.C解析:C【分析】根据切线的性质得到OB ⊥AB ,OC ⊥AC ,求出∠BOC ,分点P 在优弧BC 上、点P 在劣弧BC 上两种情况,根据圆周角定理、圆内接四边形的性质计算即可.【详解】解:∵AB 、AC 是⊙O 的切线,∴OB ⊥AB ,OC ⊥AC ,∴∠OBA =90°,∠OCA =90°∵∠A =50°,∴∠BOC =360°﹣90°﹣90°﹣50°=130°,如图,当点P 在优弧BPC 上时,∠BPC =12∠BOC =65°, 当点P ′在劣弧BC 上时,∠BP ′C =180°﹣65°=115°,故选:C .【点睛】本题考查的是切线的性质、圆周角定理、圆内接四边形的性质,掌握圆的切线垂直于经过切点的半径及圆周角定理是解题的关键.5.D解析:D【分析】如图,连接OQ ,作CH ⊥AB 于H .首先证明点Q 的运动轨迹为以AO 为直径的⊙K ,连接CK ,当点Q 在CK 的延长线上时,CQ 的值最大,利用勾股定理求出CK 即可解决问题;【详解】如图,连接OQ ,作CH ⊥AB 于H .∵AQ =QP ,∴OQ ⊥PA ,∴∠AQO =90°,∴点Q 的运动轨迹为以AO 为直径的⊙K ,连接CK ,当点Q 在CK 的延长线上时,CQ 的值最大,∵120AOC ∠=︒∴∠COH =60°在Rt △OCH 中,∵∠COH =60°,OC=12AB=3, ∴OH =12OC =32,CH 22332OC OH +=, 在Rt △CKH 中,CK 223332⎛⎫+= ⎪ ⎪⎝⎭372 ∴CQ 的最大值为33722 故选:D .【点睛】本题考查圆周角定理、轨迹、勾股定理、点与圆的位置关系等知识,解题的关键是正确寻找点Q 的运动轨迹,学会构造辅助圆解决问题,属于中考填空题中的压轴题. 6.D解析:D【分析】①根据作图过程可得AC AD =,根据垂径定理可判断;②连接OC,根据作图过程可证得△AOC为等边三角形,由等边三角形的性质即可判断;③根据直角三角形中30°角所对的直角边等于斜边的一半即可判断.【详解】解:①∵以点A为圆心,AO长为半径画弧,交⊙O于C,D两点,∴AC AD,根据垂径定理可知,AB⊥CE,CE=DE,∴①正确;②连接OC,∵AC=OA=OC,∴△AOC为直角三角形,∵AB⊥CE,∴AE=OE,∴BE=BO+OE=3AE,∴②正确;③∵AB为直径,∴∠ACB=90°,∵∠CAB=60°,∴∠ABC=30°,∴BC=2CE,∴③正确,故选:D.【点睛】本题考查了垂径定理、圆周角定理、等边三角形的判定与性质、含30°角的直角三角形的性质,理解基本作图知识,熟练掌握各基本性质和综合运用是解答的关键.7.A解析:A【分析】根据确定事件的概念,可知需找出必然事件或不可能事件即可.【详解】A、氧化物是含有两种元素其中一种是氧元素的化合物,必然事件;B、在同圆或等圆中,弦相等所对的圆周角相等或互补,不确定事件;C、戴了口罩一定不会感染新冠肺炎,不确定事件;D、物体不受任何力的时候保持静止状态或匀速运动,不确定事件.故选A.【点睛】本题考查事件的划分,必然事件和不可能事件统称为确定事件,确定事件中,必然出现的事情称为必然事件;不可能出现的事情称为不可能事件.8.D解析:D【分析】利用切线长定理证明△PAG≌△PBG即可得出.【详解】解:连接OA,OB,AB,AB交PO于点G,由切线长定理可得:∠APO=∠BPO,PA=PB,又∵PG=PG,∴△PAG≌△PBG,从而AB⊥OP.因此A.B.C都正确.无法得出AB=PA=PB,可知:D是错误的.综上可知:只有D是错误的.故选:D.【点睛】本题考查了切线长定理、全等三角形的判定和性质,关键是利用切线长定理解答.9.D解析:D【分析】连结BC,则由已知可以求得∠BCD与∠CBD的度数,最后由三角形的内角和定理可以得到∠D的度数.【详解】解:如图,连结BC,则由弦切角定理可知:∠ABC=∠ACE=35°,∵DB与⊙O相切,∴∠CBD=90°-∠ABC=90°-35°=55°,∵AB 是⊙的直径,∴∠ACB=90°,∴∠BCD=180°-∠ACE-∠90°=55°,∴∠D=180°-∠BCD-∠CBD=70°,故选D .【点睛】本题考查圆的应用,灵活运用直线与圆相切的性质求解是解题关键.10.A解析:A【分析】利用圆周长公式计算1L 和2L 的长.根据圆周长公式分别写出1L 和2L 的表达式进行比较,再根据“两点之间线段最短的性质”得出13L L >,即可选出答案.【详解】解:设n 个小半圆半径依次为1r ,2r ,⋯,n r .则大圆半径为()12n r r r ++⋯+()112n L r r r π∴=++⋯+,212n L r r r πππ=++⋯+()12n r r r π=++⋯+,12L L ∴=;根据“两点之间线段最短的性质”可得:13L L >,123L L L ∴=>..故选A .【点睛】本题考查了半圆弧长的计算,两点之间线段最短的性质,是基础题,难度不大. 11.B解析:B【分析】已知底面半径即可求得底面周长,即展开图中,扇形的弧长,然后根据扇形的面积公式即可求解.【详解】解:底面周长是2×3π=6π, 则圆锥的侧面积是:12×6π×6=18π(cm 2).故选:B .【点睛】本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解.12.B解析:B【分析】连接OB ,OC ,根据圆周角定理求出∠BOC 度数,再由弧长公式即可得出结论.【详解】解:连接OB ,OC ,∵∠A=60°,∴∠BOC=2∠A=120°,∴BC =208161π⨯=4π. 故选:B .【点睛】 本题考查了三角形的外接圆与外心,根据题意作出辅助线,利用圆周角定理及弧长公式求解是解题的关键.二、填空题13.12【分析】根据垂径定理求出AC=5dm 再根据勾股定理求出OC 即可【详解】∵OC ⊥AB ∴AC=5dm 在Rt △AOC 中∴OC==12dm 故答案为:12【点睛】此题考查垂径定理勾股定理熟记垂径定理是解题解析:12【分析】根据垂径定理求出AC=5dm ,再根据勾股定理求出OC 即可.【详解】∵OC ⊥AB ,10dm AB =,∴AC=5dm ,在Rt △AOC 中,13dm OA =,∴2222135OA AC -=-,故答案为:12【点睛】此题考查垂径定理,勾股定理,熟记垂径定理是解题的关键.14.2【分析】方法一:在轴上取一点连接可求由可得由点在上运动可知共线时可以取得最大值或最小值最大值最小值由最大值与最小值求出即可;方法二:连接取中点连接利用三角形三边关系有可得作差计算即可【详解】解:方 解析:2【分析】方法一:在x 轴上取一点()6,0E ,连接PE ,可求3OB BE ==,22345AE =+=,由OM PM =,OB BE =,可得12BM PE =,由点P 在A 上运动,可知P 、A 、B 共线时,可以取得最大值或最小值,最大值'527EP ==+=,最小值''523EP =-=,由最大值与最小值求出72m =,32n =即可;方法二:连接PA 、OA ,取OA 中点N ,连接MN 、BN ,利用三角形三边关系有BN MN BM BN MN -≤≤+,可得m BN MN =+,n BN MN =-,作差计算22m n MN PA -===即可.【详解】解:方法一:在x 轴上取一点()6,0E ,连接PE ,∵()3,0B ,()3,4A ,∴3OB BE ==,22345AE =+=,∵OM PM =,OB BE =,∴12BM PE =, ∵点P 在A 上运动, ∴P 、A 、B 共线时,可以取得最大值或最小值,最大值'527EP ==+=,最小值''523EP =-=,∴72m =,32n =, ∴2m n -=,故答案为2.方法二:连接PA 、OA ,取OA 中点N ,连接MN 、BN ,BN MN BM BN MN -≤≤+,m BN MN=+,n BN MN=-,22m n MN PA-===.故答案为:2.【点睛】本题考查三角形的中位线,勾股定理,三角形三边关系,线段和差,掌握三角形的中位线,勾股定理,三角形三边关系,线段和差,引辅助线构造准确图形是解题关键.15.60°【分析】如图连接OAOB根据等边三角形的性质求出∠AOB的度数【详解】解:如图在⊙O中直径为10cm弦AB=5cm∴OA=OB=5cm∴OA=OB=AB∴△OAB是等边三角形∴∠AOB=60°解析:60°【分析】如图,连接OA、OB,根据等边三角形的性质,求出∠AOB的度数.【详解】解:如图,在⊙O中,直径为10cm,弦AB=5cm,∴OA=OB=5cm,,∴OA=OB=AB∴△OAB是等边三角形,∴∠AOB=60°,故答案为:60°.【点睛】考查了圆的性质以及等边三角形的性质,熟练掌握运算性质定理是解题的关键.16.﹣【分析】根据题意和图形可知阴影部分的面积是正六边形的面积减去两个扇形的面积从而可以解答本题【详解】解:∵正六边形ABCDEF的边长为2∴正六边形ABCDEF的面积是:6××22=∠FAB=∠EDC解析:38 3π【分析】根据题意和图形可知阴影部分的面积是正六边形的面积减去两个扇形的面积,从而可以解答本题.【详解】解:∵正六边形ABCDEF 的边长为2,∴正六边形ABCDEF 的面积是:6×3×22=63,∠FAB =∠EDC =120°, ∴图中阴影部分的面积是:63﹣2×21202360π⋅⋅=63﹣83π, 故答案为:63﹣83π. 【点睛】本题考查正多边形和圆、扇形面积的计算,解答本题的关键是明确题意,利用数形结合的思想解答. 17.10π【分析】连接OC 易得△ODE ≌△ECO 所以扇形OBC 的面积就是图中阴影部分的面积因此求得扇形OBC 的面积即可【详解】解:如下图连接OC ∵∠AOB=90°CD ⊥OACE ⊥OB ∴四边形ODCE 为矩解析:10π【分析】连接OC ,易得△ODE ≌△ECO ,所以扇形OBC 的面积就是图中阴影部分的面积,因此求得扇形OBC 的面积即可.【详解】解:如下图连接OC ,∵∠AOB=90°、CD ⊥OA 、CE ⊥OB∴四边形ODCE 为矩形∴OD=CE ,OE 为公共边∴△ODE ≌△ECO∴△ODE 的面积=△ECO 的面积∴图中阴影部分的面积=2236361010360360O BC SOB πππ-==⨯=. 故答案为:10π.【点睛】本题考查扇形面积的计算和矩形的性质.其关键是用矩形性质对阴影部分进行等积变换,发现△ODE 的面积=△ECO 的面积.18.【分析】作点A 关于y 轴的对称点C 连接BC 由题意可得若OP 取最小值则BC 也为最小因此可根据圆外的点到圆上的距离为最小只需过圆心即可求解【详解】解:作点A 关于y 轴的对称点C 连接BC 如图所示:∴点O 为AC 解析:52【分析】作点A 关于y 轴的对称点C ,连接BC ,由题意可得12OP BC =,若OP 取最小值,则BC 也为最小,因此可根据圆外的点到圆上的距离为最小只需过圆心即可求解.【详解】解:作点A 关于y 轴的对称点C ,连接BC ,如图所示:∴点O 为AC 的中点,∵点P 为AB 的中点,∴12OP BC =,//OP BC , 当OP 取最小值,则BC 也取最小值,∵()8,0A ,OB=3,∴OA=OC=8,当点C 、O 、B 三点共线时,BC 的长为最小,即为:835BC =-=,∴52OP =,即OP 的最小值为52; 故答案为52. 【点睛】本题主要考查圆的最值问题,关键是根据三角形的中位线得到线段的最值问题,然后根据点与圆的位置关系进行求解即可.19.(14)【分析】如图作AB 和BC 的垂直平分线它们的交点为△ABC 的外接圆的圆心然后直接读出△ABC 的外接圆的圆心坐标【详解】解:如图所示:点P 即为所求;所以点P 的坐标为(14)故答案为(14)【点睛解析:(1,4)【分析】如图,作AB和BC的垂直平分线,它们的交点为△ABC的外接圆的圆心,然后直接读出△ABC的外接圆的圆心坐标.【详解】解:如图所示:点P即为所求;所以点P的坐标为(1,4).故答案为(1,4).【点睛】本题主要考查了三角形的外接圆与外心,掌握三角形外接圆的圆心是三角形三条边垂直平分线的交点是解答本题的关键.20.【分析】连接OB作OD⊥BC于D由等边三角形的性质得∠ABC=60°BC=8由⊙O与等边三角形ABC的两边ABBC都相切得出OD是⊙O的半径∠OBC=∠OBA=30°应用三角函数求出BD=3CD=B解析:7【分析】连接OB,作OD⊥BC于D,由等边三角形的性质得∠ABC=60°,BC=8,由⊙O与等边三角形ABC的两边AB、BC都相切,得出OD是⊙O的半径,∠OBC=∠OBA=30°,应用三角函数求出BD=3,CD=BC−BD=5,由勾股定理得出OC,即可得出答案.【详解】连接OB,作OD⊥BC于D,∵△ABC是边长为8的等边三角形,∴∠ABC=60°,BC=8,∵⊙O与等边三角形ABC的两边AB、BC都相切,∠ABC=30°,∴OD是⊙O的半径,∠OBC=∠OBA=12∵tan∠OBC=OD,BD∴BD=ODtan30=33=3,∴CD=BC−BD=8−3=5,OC=22OD+CD=()223+5=27,故填:27.【点睛】本题考查了切线的性质、等边三角形的性质、勾股定理、三角函数等知识;熟练掌握切线的性质是解题的关键.三、解答题21.(1)见解析;(2)见解析;(3)面积是45【分析】(1)由等腰三角形的性质和直径定理可得∠AED=90°,∠OED=∠ADE,由余角的性质可得∠DEB+∠OED=90°,进而可得∠BEO=90°,可得结论;(2)由平行线的性质和等腰三角形的性质可证AE为∠CAB的角平分线,由角平分线的性质可得CE=EP;(3)连接PF,先证四边形CFPE是菱形,可得CF=EP=CE=PF,由“AAS”可证△ACE≌△APE,可得AP=AC=15,由勾股定理可求CF的长,即可求解.【详解】证明:(1)连接OE,∵OE=OD,∴∠OED=∠ADE,∵AD是直径,∴∠AED=90°,∴∠EAD+∠ADE=90°,又∵∠DEB=∠EAD,∴∠DEB+∠OED=90°,∴∠BEO=90°,∴OE⊥BC,∴BC是⊙O的切线.(2)∵∠BEO=∠ACB=90°,∴AC∥OE,∴∠CAE=∠OEA,∵OA=OE,∴∠EAO=∠AEO,∴∠CAE=∠EAO,∴AE为∠CAB的角平分线,又∵EP⊥AB,∠ACB=90°,∴CE=EP;(3)连接PF,∵CG=12,AC=15,∴AG22-9,AC CG-225144∵∠CAE=∠EAP,∴∠AEC=∠AFG=∠CFE,∴CF=CE,∵CE=EP,∴CF=PE,∵CG⊥AB,EP⊥AB,∴CF∥EP,∴四边形CFPE是平行四边形,又∵CE=PE,∴四边形CFPE是菱形,∴CF=EP=CE=PF,∵∠CAE=∠EAP,∠EPA=∠ACE=90°,CE=EP,∴△ACE≌△APE(AAS),∴AP=AC=15,∴PG=AP﹣AG=15﹣9=6,∵PF2=FG2+GP2,∴CF2=(12﹣CF)2+36,∴CF=152,∴四边形CFPE的面积=CF×GP=152×6=45.【点睛】本题考查了圆的综合题,切线的判定和性质,全等三角形的判定和性质,勾股定理,菱形的判定和性质,垂径定理,正确的作出辅助线是解题的关键.22.(1)ACP PCD∆∆;(2)CP=3)6【分析】(1)根据已知条件证明△ACP∽△PCD即可求解;(2)根据等腰直角△ABC求出,设QD=x,得到DP=2x,QP=3x=CQ,利用勾股定理求出PC,CD,代入2=CP CD CA⋅求出x即可求解;(3)根据题意可知△APC的外接圆是以点Q为圆心,PQ为半径的圆,求出△AQQ’、△CQQ’均为等边三角形,再分别求出APQ的底和高,即可求解.【详解】(1)∵ABC和CPQ是等腰直角三角形∴∠A=∠CPQ=45°又∠ACP=∠PCD∴△ACP∽△PCD∴CP CDCA CP=∴2=CP CD CA⋅;(2)∵在等腰直角△ABC中,∠ACB=90°,AB=12∴AB2=AC2+BC2=2AC2∴设QD=x∵12 QD DP=∴DP=2x,QP=3x=CQ∴=,=∵2=CP CD CA⋅∴()21032=62x x⋅解得x=25∴CP=2532210⨯=;(3)∵∠CAB=45°,△PCQ是等腰直角三角形∴△APC的外接圆是以点Q为圆心,PQ为半径的圆∵Q关于直线AC的对称点为Q',∴QC=QQ’=QP=QA=Q’A=CQ’∴△AQQ’、△CQQ’均为等边三角形,故△AQC为等腰三角形,设AC,QQ’交于H点,AQ’,PQ交于G点根据对称性可知QQ’⊥AC,AQ’⊥PQ,AH=12AC=32,∵∠QAC=12(180°-120°)=30°∴QH=12AQ,∴AQ2=QH2+AH2=14AQ2+AH2解得AQ=26∴PQ=AQ=26=AQ’∵AG=12AQ’=6∴APQ的面积为12QP×AG=12×26×6=6.故答案为:6.【点睛】此题主要考查圆的综合问题,解题的关键是熟知圆周角定理、相似三角形的判定与性质、等腰直角三角形的性质.23.(1)见解析;(2)60°【分析】(1)分别作出AB 与AC 的垂直平分线,进而得出圆心的位置,再利用圆心到三角形顶点的距离为半径得出圆O 即可;(2)连接BD .根据圆周角定理求出∠ABD=90°,∠D=∠ACB=40°,则∠DBC=∠ABD-∠ABC=20°,再利用三角形外角的性质即可求出∠DEC .【详解】解:(1)如图所示:(2)连接BD .∵AD 是直径,∴∠ABD=90°,∴∠DBC=∠ABD-∠ABC=90°-70°=20°,又∵∠D=∠ACB=40°,∴∠DEC =∠D+∠DBC=40°+20°=60°.【点睛】本题主要考查了三角形外接圆的作法,圆周角定理,三角形外角的性质,熟练掌握相关的定理是解题关键.24.(1)30°;(2)222+【分析】(1)由切线的性质可知∠OAC=90°,由三角形的内角和定理可知∠AOC=30°,由∠AOB=∠AOC+∠BOC 可得出∠AOB 的度数,结合OA=OB 可得出∠B=30°;(2)过B 作BH AO ⊥交AO 的延长线于H ,由BE ∥OA 可得出ABE OAB ∠=∠,结合等腰直角三角形的性质可得出45OBE ︒∠=,根据勾股定理得出2OH BH ==再结合勾股定理即可得出结论.【详解】解:(1))∵AC 与⊙O 相切,∴∠OAC=90°∵∠OCA=60°∴∠AOC=30°∵OC ⊥OB ,∴∠AOB=∠AOC+∠BOC=120°∵OA=OB ,∴180120302B ︒︒︒-∴∠==; (2)过B 作BH AO ⊥交AO 的延长线于H//BE OAABE OAB ∴∠=∠,90OB OE BOE ︒=∠=45OBE ︒∴∠=45HO B OAB OBA ABE OBA OBE ︒∴∠=∠+∠=∠+∠=∠=2OA OB ==2OH BH ∴==2222(22)(2)AB AH BH ∴=+=++842222=+=+【点睛】本题考查了切线的性质,勾股定理,等腰三角形的性质,熟练掌握切线的性质是解本题的关键.25.(1) 25π;(2)221;(3)222b ≤<【分析】(1)由点A 、B 的坐标知,22345,=+=AB 由圆的面积公式得:“共径圆”的面积πr 2=25π;(2)如下图,当O 、A 、B 三点共线,且OB ⊥直线l 时,共径圆”的半径最小,即可求解; (3)设点B 的坐标为(x ,x+b ),设AB 之间的距离为r ,则πr 2=4π,解得r=2(负值已舍去),则AB=x 2+(x+b )2=22=4,满足条件的B 点有2个,故△=(2b )2-2×4(b 2-4)>0,进而求解.【详解】解:(1)A 的坐标为(0,0),点B 的坐标为(3,4),∴22345,=+=AB由圆的面积公式得:“共径圆”的面积πr 2=25π,故答案为25π;(2)作OB ⊥直线l 于B 交圆O 于点A ,此时点,A B 的“共径圆”的半径最小值;设直线4y x =-+与,x y 轴交于点,M N .()4,00,4()M N ∴,),则ON=OM=4,∴ MON △等腰直角三角形, ∴224244=+=MN∴О点到直线MN 的距离为22A 点在O 上,B 点在直线4y x =-+上,A B ∴间的最短距离是221-即,A B 的“共径圆”的最小半径是221-(3)设点B 的坐标为(x ,x+b ),设AB 之间的距离为r ,则πr 2=4π,解得r=2(负值已舍去),则AB=x 2+(x+b )2=22=4,化简得:2x 2+2bx+b 2-4=0,∵满足条件的B 点有2个,故△=(2b )2-2×4(b 2-4)>0,解得:22,-<<b∵点B 是x 轴及x 轴上方的点,故b >0,而当b=2时,点B 在x 轴上,∴222b ≤<【点睛】本题为圆的综合题,涉及到一次函数的性质、根的判别式等,这种新定义类的题目,通常按照题设的顺序逐次求解,一般比较容易解答.26.(1)图见详解,6 ;(2)图见详解,4.5【分析】(1)过C 画AB 的平行线,过A 画BC 的平行线,两线交于一点D ,根据平行四边形的判定定理可得四边形ABCD 是平行四边形,由平行四边形的性质可知∠CBA=∠CDA ,然后用用割补法求出面积即可;(2)根据图中正方形网格和∠B 的特点,作出∠E 与∠B 互补,然后用割补法求面积即可.【详解】解:(1)如图,S四边形ABCD=3×4-122⨯×2-222⨯-112⨯=6;(2)如图,S四边形ABCE=3×3-122⨯×2-222⨯-112⨯=92.【点睛】此题主要考查了应用设计作图,首先要理解题意,弄清问题中对所作图形的要求,然后利用割补法求面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章圆与方程单元测试卷(4)一、选择题(共4小题,每小题4分,满分16分)1.(4分)以点(2,﹣1)为圆心且与直线3x﹣4y+5=0相切的圆的方程为()A.(x﹣2)2+(y+1)2=3 B.(x+2)2+(y﹣1)2=3 C.(x﹣2)2+(y+1)2=9 D.(x+2)2+(y﹣1)2=32.(4分)直线x+y=1与圆x2+y2﹣2ay=0(a>0)没有公共点,则a的取值范围是()A.(0,)B.(,)C.(,D.(0,))3.(4分)直线x+y+1=0与圆x2+y2+2x+4y﹣3=0的位置关系是()B.相交且过圆心C.相离D.相切A.相交且不过圆心4.(4分)圆x2+y2﹣4x﹣4y﹣10=0上的点到直线x+y﹣14=0的最大距离与最小距离的差是()A.36 B.18 C.D.二、填空题(共2小题,每小题5分,满分10分)5.(5分)圆x2+y2+x﹣6y+3=0上两点P、Q关于直线kx﹣y+4=0对称,则k=_________6.(5分)动圆x2+y2﹣(4m+2)x﹣2my+4m2+4m+1=0的圆心的轨迹方程是_________.三、解答题(共16小题,满分0分)7.求过三点O(0,0)、M1(1,1)、M2(4,2)的圆的方程,并求圆的半径长和圆心坐标.8.求过点A(1,﹣1),B(﹣1,1)且圆心在直线x+y﹣2=0上的圆的方程.9.已知点P(10,0),Q为圆x2+y2=16上一点动点,当Q在圆上运动时,求PQ的中点M的轨迹方程.10.已知线段AB的端点B的坐标是(4,3),端点A在圆(x+1)2+y2=4上运动,求线段AB的中点轨迹方程.11.由动点P向x2+y2=1引两条切线PA、PB,切点分别为A、B,∠APB=60°,求动点P的轨迹方程.12.已知圆的方程是x2+y2=r2,求经过圆上一点M(x0,y0)的切线方程.13.求由下列条件所决定圆x2+y2=4的圆的切线方程:(1)经过点,(2)经过点Q(3,0),(3)斜率为﹣1.14.已知圆的方程为x2+y2+ax+2y+a2=0,一定点为A(1,2),要使过定点A(1,2)作圆的切线有两条,求a的取值范围.115.已知圆C1:x2+y2+2x﹣6y+1=0,圆C2:x2+y2﹣4x+2y﹣11=0,求两圆的公共弦所在的直线方程及公共弦长.16.求过点A(0,6)且与圆C:x2+y2+10x+10y=0切于原点的圆的方程.17.已知直线l:y=2x﹣2,圆C:x2+y2+2x+4y+1=0,请判断直线l与圆C的位置关系,若相交,则求直线l被圆C 所截的线段长.18.圆x2+y2=8内有一点P0(﹣1,2),AB为过点P0且倾斜角为α的弦;(1)当时,求AB的长;(2)当弦AB被点P0平分时,求直线AB的方程.19.过点M(﹣3,﹣3)的直线l被圆x2+y2+4y﹣21=0所截得的弦长为,求直线l方程.20.已知实数x、y满足方程x2+y2﹣4x+1=0.求(1)的最大值和最小值;(2)y﹣x的最小值;(3)x2+y2的最大值和最小值.21.自点A(﹣3,3)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2﹣4x﹣4y+7=0相切,求光线L所在直线的方程.22.求圆x2+y2+4x﹣12y+39=0关于直线3x﹣4y+5=0 的对称圆方程.3第4章圆与方程单元测试卷(4)参考答案与试题解析一、选择题(共4小题,每小题4分,满分16分)1.(4分)(2006•重庆)以点(2,﹣1)为圆心且与直线3x﹣4y+5=0相切的圆的方程为()A.(x﹣2)2+(y+1)2=3 B.(x+2)2+(y﹣1)2=3C.(x﹣2)2+(y+1)2=9D.(x+2)2+(y﹣1)2=3考点:直线与圆的位置关系.分析:求出半径即可求得圆的方程.解答:解:r==3,所求圆的方程为(x﹣2)2+(y+1)2=9故选C.点评:本题考查直线与圆的位置关系,求圆的方程,是基础题.2.(4分)直线x+y=1与圆x2+y2﹣2ay=0(a>0)没有公共点,则a的取值范围是()A.(0,)B.(,)C.(,)D.(0,)考点:直线与圆的位置关系.专题:计算题.分析:根据直线与圆没有公共点得到直线与圆的位置关系是相离,则根据圆心到直线的距离大于半径列出关于a的不等式,讨论a与1的大小分别求出不等式的解集即可得到a的范围.解答:解:把圆x2+y2﹣2ay=0(a>0)化为标准方程为x2+(y﹣a)2=a2,所以圆心(0,a),半径r=a,由直线与圆没有公共点得到:圆心(0,a)到直线x+y=1的距离d=>r=a,当a﹣1>0即a>1时,化简为a﹣1>a,即a(1﹣)>1,因为a>0,无解;当a﹣1<0即0<a<1时,化简为﹣a+1>a,即(+1)a<1,a<=﹣1,所以a的范围是(0,﹣1)故选A点评:此题考查学生掌握直线与圆相离时所满足的条件,灵活运用点到直线的距离公式化简求值,会利用分类讨论的方法求绝对值不等式的解集,是一道中档题.3.(4分)直线x+y+1=0与圆x2+y2+2x+4y﹣3=0的位置关系是()A.相交且不过圆B.相交且过圆心C.相离D.相切心5考点:直线与圆的位置关系.专题:综合题.分析:把圆的方程化为标准方程后,找出圆心坐标与圆的半径r,然后利用点到直线的距离公式求出圆心到已知直线的距离d,然后比较d与r的大小即可得到直线与圆的位置关系,然后把圆心坐标代入已知直线即可判断已知直线是否过圆心.解答:解:由圆的方程x2+y2+2x+4y﹣3=0化为标准方程得:(x+1)2+(y+2)2=8,所以圆心坐标为(﹣1,﹣2),圆的半径r=2,则圆心到直线x+y+1=0的距离d==<r=2,所以直线与圆相交,且圆心坐标(﹣1,﹣2)不在直线x+y+1=0上,所以直线与圆的位置关系是相交且不过圆心.故选A点评:此题考查学生掌握判断直线与圆位置关系的方法,灵活运用点到直线的距离公式化简求值,是一道综合题.4.(4分)(2006•湖南)圆x2+y2﹣4x﹣4y﹣10=0上的点到直线x+y﹣14=0的最大距离与最小距离的差是()A.36 B.18 C.D.考点:直线与圆相交的性质.分析:先看直线与圆的位置关系,如果相切或相离最大距离与最小距离的差是直径;相交时,圆心到直线的距离加上半径为所求.解答:解:圆x2+y2﹣4x﹣4y﹣10=0的圆心为(2,2),半径为3,圆心到到直线x+y﹣14=0的距离为>3,圆上的点到直线的最大距离与最小距离的差是2R=6,故选D.点评:本题考查直线与圆相交的性质,点到直线的距离,是基础题.二、填空题(共2小题,每小题5分,满分10分)5.(5分)圆x2+y2+x﹣6y+3=0上两点P、Q关于直线kx﹣y+4=0对称,则k=2考点:与直线关于点、直线对称的直线方程.专题:计算题;分类讨论.分析:圆x2+y2+x﹣6y+3=0上两点P、Q关于直线kx﹣y+4=0对称,说明直线过圆心,求出圆心坐标,可解k的值.解答:解:圆x2+y2+x﹣6y+3=0的圆心(﹣,3),圆心在直线上,所以圆心坐标适合kx﹣y+4=0,得k=2.故答案为:2点评:本题考查与直线关于点、直线对称的直线方程有关知识,是基础题.6.(5分)动圆x2+y2﹣(4m+2)x﹣2my+4m2+4m+1=0的圆心的轨迹方程是x﹣2y﹣1=0(x≠1).7考点:圆的标准方程;轨迹方程.专题:计算题.分析:把圆化为标准方程后得到:圆心为(2m+1,m),r=|m|,(m≠0),令x=2m+1,y=m,消去m即可得到y与x的解析式.解答:解:把圆的方程化为标准方程得[x﹣(2m+1)]2+(y﹣m)2=m2(m≠0)则圆心坐标为,因为m≠0,得到x≠1,所以消去m可得x=2y+1即x﹣2y﹣1=0故答案为:x﹣2y﹣1=0(x≠1)点评:此题考查学生会将圆的方程变为标准方程,会把直线的参数方程化为一般方程.做题时注意m的范围.三、解答题(共16小题,满分0分)7.求过三点O(0,0)、M1(1,1)、M2(4,2)的圆的方程,并求圆的半径长和圆心坐标.考点:圆的标准方程.专题:综合题.分析:根据垂径定理可知圆心在圆中弦的垂直平分线上,所以利用中点坐标公式分别找出弦OM1和OM2的中点坐标和各自的斜率,然后根据两直线垂直时斜率乘积为﹣1找出弦OM1和OM2的垂直平分线的斜率,即可写出两垂直平分线的方程,然后联立两直线方程求出两垂直平分线的交点坐标即为圆心的坐标,再然后利用两点间的距离公式求出圆心到O点的距离即为圆的半径.解答:解:OM1的中点坐标为(,),直线OM1的斜率为=1,所以垂直平分线的斜率为﹣1则线段OM1的垂直平分线方程为y﹣=﹣(x﹣)化简得x+y﹣1=0①;同理得到OM2的中点坐标为(2,1),直线OM2的斜率为=,所以垂直平分线的斜率为﹣2则线段OM2的垂直平分线方程为y﹣1=﹣2(x﹣2)化简得2x+y﹣5=0②.联立①②解得,则圆心坐标为(4,﹣3),圆的半径r==5则圆的标准方程为:(x﹣4)2+(y+3)2=25点评:此题考查学生会利用中点坐标公式求线段的中点坐标,掌握两直线垂直时斜率满足的关系,会根据一点和斜率写出直线的方程,灵活运用两点间的距离公式化简求值,会根据圆心坐标与半径写出圆的标准方程,是一道中档题.8.求过点A(1,﹣1),B(﹣1,1)且圆心在直线x+y﹣2=0上的圆的方程.考点:圆的标准方程.专题:计算题.分析:先设出圆的标准方程为(x﹣a)2+(y﹣b)2=r2,然后把A和B的坐标代入到圆方程中得到①和9②,又因为圆心在直线x+y﹣2=0上,所以代入得到③,联立①②③,求出a,b,r的值即可得到圆的方程.解答:解:设圆的标准方程为(x﹣a)2+(y﹣b)2=r2,根据已知条件可得(1﹣a)2+(﹣1﹣b)2=r2,①(﹣1﹣a)2+(1﹣b)2=r2,②a+b﹣2=0,③联立①,②,③,解得a=1,b=1,r=2.所以所求圆的标准方程为(x﹣1)2+(y﹣1)2=4.点评:考查学生会利用待定系数法求函数的解析式,会解三元一次方程组,会根据圆心和半径写出圆的标准方程.9.已知点P(10,0),Q为圆x2+y2=16上一点动点,当Q在圆上运动时,求PQ的中点M的轨迹方程.考点:轨迹方程.专题:转化思想;综合法.分析:本题宜用代入法求轨迹方程,设M(x,y),Q(a,b)由于PQ的中点是M,点P(10,0),故可由中点坐标公式得到a=2x﹣10,b=2y,又Q(a,b)为圆x2+y2=16上一点动点,将a=2x﹣10,b=2y代入x2+y2=16得到M(x,y)点的坐标所满足的方程,整理即得点M的轨迹方程.11 解答: 解:设M (x ,y ),Q (a ,b )由P (10,0),M 是PQ 的中点故有a=2x ﹣10,b=2y又Q 为圆x 2+y 2=16上一动点,∴(2x ﹣10)2+(2y )2=16整理得(x ﹣5)2+y 2=4故PQ 的中点M 的轨迹方程是(x ﹣5)2+y 2=4. 点评: 本题的考点是轨迹方程,考查用代入法求支点的轨迹方程,代入法适合求动点与另外已知轨迹方程的点有固定关系的点的轨迹方程,用要求轨迹方程的点的坐标表示出已知轨迹方程的点的坐标,再代入已知的轨迹方程,从而求出动点的坐标所满足的方程.题后要好好总结代入法求轨迹的规律与步骤.10.已知线段AB 的端点B 的坐标是(4,3),端点A 在圆(x+1)2+y 2=4上运动,求线段AB 的中点轨迹方程.考点: 轨迹方程.专题:计算题.分析:利用M、N为AB、PB的中点,根据三角形中位线定理得出:MN∥PA且MN=PA=1,从而动点M的轨迹为以N为圆心,半径长为1的圆.最后写出其轨迹方程即可.解答:解:圆(x+1)2+y2=4的圆心为P(﹣1,0),半径长为2,(4分)线段AB中点为M(x,y)(5分)取PB中点N,其坐标为(,),即N(,)(7分)∵M、N为AB、PB的中点,∴MN∥PA且MN=PA=1.(9分)∴动点M的轨迹为以N为圆心,半径长为1的圆.所求轨迹方程为:(12分)点评:本题考查轨迹方程,利用的是定义法,定义法是若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.11.由动点P向x2+y2=1引两条切线PA、PB,切点分别为A、B,∠APB=60°,求动点P的轨迹方程.考点:轨迹方程.分析:由∠APO(O为圆心)=∠APB=30°,知PO=2OA=2.所以P的轨迹是一个以原点为圆心,半径为2的圆,由此可知点P的轨迹方程.解答:解:∵∠APO(O为圆心)=∠APB=30°,∴PO=2OA=2.∴P的轨迹是一个以原点为圆心,半径为2的圆,轨迹方程为x2+y2=4.点评:本题考查轨迹方程的求法,解题时注意分析题条件,寻找数量间的相互关系,合理建立方程.12.已知圆的方程是x2+y2=r2,求经过圆上一点M(x0,y0)的切线方程.考点:圆的切线方程.专题:计算题.分析:分两种情况考虑:当切线方程的斜率不存在时,显然切线方程为x=x0;当切线方程的斜率存在时,要求过M的切线方程,就要求直线的斜率,先根据O和M的坐标求出直线OM的斜率,根据直线与圆相切时切线垂直与经过切点的半径13得到直线OM与切线垂直,即可求出切线的斜率,得到切线方程.解答:解:当切线方程的斜率不存在时,切线方程为:x=x0;当切线方程的斜率存在时,由x2+y2=r2,可知圆心为原点(0,0),M(x0,y0),所以直线OM的斜率k=,根据所求切线与直线OM垂直得到切线的斜率k′=﹣,则切线方程为y﹣y0=﹣(x﹣x0);即x0x+y0y﹣x02﹣y02=0,综上,所求切线方程为x=x0或x0x+y0y﹣x02﹣y02=0.点评:考查学生灵活运用圆切线的性质定理,掌握两直线垂直时所满足的条件,会根据一点坐标与斜率写出直线的方程.13.求由下列条件所决定圆x2+y2=4的圆的切线方程:(1)经过点,(2)经过点Q(3,0),(3)斜率为﹣1.考点:圆的切线方程.专题:计算题.分析:(1)当切线斜率不存在时,直线与圆位置关系是相交,不合题意,所以设切线方程的斜率为k,根据P的坐标写出切线的方程,然后根据直线与圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式表示出圆心到直线的距离d,让d等于半径r列出关于k的方程,求出方程的解即可得到k的值,根据求出的k的值和P的坐标写出切线方程即可;(2)当切线斜率不存在时,直线与圆位置关系是外离,不合题意,所以设出切线方程的斜率为k,根据直线与圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式表示出圆心到直线的距离d,让d等于圆的半径r列出关于k的方程,求出方程的解即可得到k的值,由k的值和Q的坐标写出切线方程即可;(3)设出切点的坐标为(a,b),根据已知的斜率为﹣1,表示出切线的方程,然后利用点到直线的距离公式表示出圆心到所设直线的距离d,让d等于圆的半径r列出关于a与b的绝对值关系式,经讨论得到关于a与b的两关系式,分别记作①和②,把切点的坐标代入圆的方程,得到关于a与b的关系式,记作③,把①③联立,②③联立,分别求出两对a与b的值,得到切点的坐标有两个,根据求出的切点坐标和已知的切线的斜率写出切线方程即可.解答:解:(1)经判断,得到点P在圆上,当斜率k不存在时,直线与圆相交,不合题意,所以设切线方程的斜率为k,则切线方程为:y﹣1=k(x﹣),所以圆心(0,0)到直线的距离d==r=2,化简得:=0,解得k=﹣,所以切线方程为:y=﹣x+4;(2)当直线斜率不存在时,直线与圆外离,不合题意,设过点Q的切线方程的斜率为k,则切线方程为y=k(x﹣3),所以圆心到直线的距离d==r=2,化简得:k=±,所以切线方程为:y=x﹣或y=﹣x+;(3)设切点坐标为(a,b),则切线方程为:y15﹣a=﹣(x﹣b),即x+y﹣a﹣b=0,所以圆心到直线的距离d==2,即a+b=2①或a+b=﹣2②,又把切点坐标代入圆的方程得:a2+b2=4③,由①得:a=2﹣b,代入③得:a=b=;由②得:a=﹣2﹣b,代入③得:a=b=﹣,所以切点坐标分别为(,)或(﹣,﹣),则切线方程为:y﹣=﹣(x﹣)或y+=﹣(x+),即x+y﹣2=0或x+y+2=0.点评:此题考查学生掌握直线与圆相切时圆心到直线的距离等于圆的半径,灵活运用点到直线的距离公式化简求值,是一道中档题.14.已知圆的方程为x2+y2+ax+2y+a2=0,一定点为A(1,2),要使过定点A(1,2)作圆的切线有两条,求a的取值范围.考点:圆的切线方程;直线和圆的方程的应用.专题:计算题;综合题.分析:圆的方程化为标准方程,求出圆心和半径,过定点A(1,2)作圆的切线有两条,点A必在圆外,推出不等式,然后解答不等式即可.解答:解:将圆的方程配方得(x+)2+(y+1)2=,圆心C的坐标为(﹣,﹣1),半径r=,条件是4﹣3a2>0,过点A(1,2)所作圆的切线有两条,则点A必在圆外,即>.化简得a2+a+9>0.由4﹣3a2>0,a2+a+9>0,解之得﹣<a<,a∈R.∴﹣<a<.故a的取值范围是(﹣,).点评:本题考查圆的切线方程,直线和圆的方程的应用,考查一元二次不等式的解法,逻辑思维能力,是中档17题.15.已知圆C1:x2+y2+2x﹣6y+1=0,圆C2:x2+y2﹣4x+2y﹣11=0,求两圆的公共弦所在的直线方程及公共弦长.考点:相交弦所在直线的方程.专题:计算题.分析:对两圆的方程作差即可得出两圆的公共弦所在的直线方程,再由点到直线的距离公式求出一个圆的圆心到该弦的距离,用弦心距、弦的一半,半径建立的直角三角形求出弦的一半,即得其长.解答:解:两圆的方程作差得6x﹣8y+12=0,即3x﹣4y+6=0,∵圆C1:(x+1)2+(y﹣3)2=9,故其圆心为(﹣1,3),r=3圆到弦所在直线的距离为d==弦长的一半是=故弦长为综上,公式弦所在直线方程为3x﹣4y+6=0,弦长为.点评:本题考查圆与圆的位置关系,两圆相交弦所在直线方程的求法、公共弦长的求法.16.求过点A(0,6)且与圆C:x2+y2+10x+10y=0切于原点的圆的方程.考点:圆的标准方程.专题:计算题.分析:先设出要求的圆的标准方程,也将已知圆转化为标准方程,由“圆C与圆D切于原点”,“圆D过点A(0,6)和原点”三个条件求得圆的标准方程.解答:解:圆C:(x+5)2+(y+5)2=50设:所求圆D:(x﹣a)2+(y﹣b)2=r2∵圆C与圆D切于原点∴a=b∴圆D:(x﹣a)2+(y﹣a)2=r2∵圆D过点A(0,6)和原点∴a2+a2=r2,a2+(6﹣a)2=r2∴a=3,r2=2×9=18圆D:(x﹣3)2+(y﹣3)2=18点评:本题主要考查圆的标准方程的求法,这里涉及到圆与圆的位置,点与圆的位置关系,在涉及到圆心和半径时一般要用标准方程.17.已知直线l:y=2x﹣2,圆C:x2+y2+2x+4y+1=0,请判断直线l与圆C的位置关系,若相交,则求直线l被圆C 所截的线段长.考点:直线与圆的位置关系.专题:计算题.19分析:先把圆方程整理成标准方程,求得圆的圆心和半径,进而根据点到直线的距离求得圆心到直线l的距离结果小于半径,进而推断直线与圆相交,设出被截的线段长为a,根据勾股定理求得a.解答:解:整理圆方程得(x+1)2+(y+2)2=4∴圆心坐标为(﹣1,﹣2),半径r=2圆心到直线l的距离d==<2∴直线与圆相交,设弦长为a,则+=4解得a=即直线l被圆C所截的线段长为.点评:本题主要考查了直线与圆的位置关系.常用圆心到直线的距离来判断直线与圆的位置关系.18.圆x2+y2=8内有一点P0(﹣1,2),AB为过点P0且倾斜角为α的弦;(1)当时,求AB的长;(2)当弦AB被点P0平分时,求直线AB的方程.考点:直线和圆的方程的应用;直线的倾斜角;直线的一般式方程.专题:计算题.分析:(1)根据直线的倾斜角求出斜率.因为直线AB过P0(﹣1,2),可表示出直线AB的解析式,利用点到直线的距离公式求出圆心到弦的距离,根据勾股定理求出弦的一半,乘以2得到弦AB的长;(2)因为弦AB被点P0平分,先求出OP0的斜率,然后根据垂径定理得到OP0⊥AB,由垂直得到两条直线斜率乘积为﹣1,求出直线AB的斜率,然后写出直线的方程.解答:解:(1)直线AB的斜率k=tan=﹣1,∴直线AB的方程为y﹣2=﹣(x+1),即x+y﹣1=0∵圆心O(0,0)到直线AB的距离d==∴弦长|AB|=2=2=.(2)∵P0为AB的中点,OA=OB=r,∴OP0⊥AB又==﹣2,∴k AB=∴直线AB的方程为y﹣2=(x+1),即x﹣2y+5=0点评:考查学生会根据倾斜角求出直线的斜率,综合运用直线与圆方程的能力,会根据一个点和斜率写出直线的方程.19.过点M(﹣3,﹣3)的直线l被圆x2+y2+4y﹣21=0所截得的弦长为,求直线l方程.考点:直线与圆相交的性质;直线的一般式方程.专题:计算题.分析:把圆的方程化为标准式,求出圆心坐标和半径,求出弦心距的值,设出直线l的方程,由弦心距的值求出直线的斜率,即得直线l的方程.21解答:解:圆方程x2+y2+4y﹣21=0,即x2+(y+2)2=25,圆心坐标为(0,﹣2),半径r=5.因为直线l被圆所截得的弦长是,所以弦心距为,因为直线l过点M(﹣3,﹣3),所以可设所求直线l的方程为y+3=k(x+3),即kx﹣y+3k﹣3=0.依设得.故所求直线有两条,它们分别为或y+3=2(x+3),即x+2y+9=0,或2x﹣y+3=0.点评:本题考查圆的标准方程,弦长公式以及点到直线的距离公式.20.已知实数x、y满足方程x2+y2﹣4x+1=0.求(1)的最大值和最小值;(2)y﹣x的最小值;(3)x2+y2的最大值和最小值.考点:圆方程的综合应用.专题:计算题;数形结合.分析:(1)整理方程可知,方程表示以点(2,0)为圆心,以为半径的圆,设=k,进而根据圆心(2,0)到y=kx的距离为半径时直线与圆相切,斜率取得最大、最小值.(2)设y﹣x=b,仅当直线y=x+b与圆切于第四象限时,纵轴截距b取最小值.进而利用点到直线的距离求得y﹣x的最小值;(3)x2+y2是圆上点与原点距离之平方,故连接OC,与圆交于B点,并延长交圆于C′,进而可知x2+y2的最大值和最小值分别为|OC′|和|OB|,答案可得.解答:解:(1)如图,方程x2+y2﹣4x+1=0表示以点(2,0)为圆心,以为半径的圆.设=k,即y=kx,由圆心(2,0)到y=kx的距离为半径时直线与圆相切,斜率取得最大、最小值.由=,解得k2=3.所以k max=,k min=﹣.(2)设y﹣x=b,则y=x+b,仅当直线y=x+b与圆切于第四象限时,纵轴截距b取最小值.由点到直线的距离公式,得=,即23b=﹣2±,故(y﹣x)min=﹣2﹣.(3)x2+y2是圆上点与原点距离之平方,故连接OC,与圆交于B点,并延长交圆于C′,可知B到原点的距离最近,点C′到原点的距离最大,此时有OB==2﹣,OC′==2+,则(x2+y2)max=|OC′|2=7+4,(x2+y2)min=|OB|2=7﹣4.点评:本题主要考查了圆的方程的综合运用.考查了学生转化和化归的思想和数形结合的思想.21.自点A(﹣3,3)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2﹣4x﹣4y+7=0相切,求光线L所在直线的方程.考点:直线和圆的方程的应用;关于点、直线对称的圆的方程.分析:化简圆的方程为标准方程,求出关于x轴对称的圆的方程,设l的斜率为k,利用相切求出k的值即可得到l的方程.解答:解:已知圆的标准方程是(x﹣2)2+(y﹣2)2=1,它关于x轴的对称圆的方程是(x﹣2)2+(y+2)2=1,设光线L所在直线的方程是y﹣3=k(x+3)(其中斜率k待定)由题设知对称圆的圆心C'(2,﹣2)到这条直线的距离等于1,即.整理得:12k2+25k+12=0,解得:,或.故所求的直线方程是,或,即3x+4y﹣3=0,或4x+3y+3=0.点评:本题考查点、直线和圆的对称问题,直线与圆的关系,是基础题,解答简洁值得借鉴.22.求圆x2+y2+4x﹣12y+39=0关于直线3x﹣4y+5=0 的对称圆方程.25考点:关于点、直线对称的圆的方程.专题:计算题.分析:只要求出已知圆的圆心坐标关于直线3x﹣4y+5=0的对称点的坐标,求出半径就可以得到对称圆的方程.解答:解:圆x2+y2+4x﹣12y+39=0化为:(x+2)2+(y﹣6)2=1圆心0坐标是0(﹣2,6)半径R=1直线3x﹣4y+5=0,与这条直线的垂线斜率为﹣垂线的方程应该是y=﹣x+c将0(﹣2,6)代入方程得到经过O点到直线3x﹣4y+5=0的垂线方程是y=﹣x+垂足是a(1,2)那么对称点o的坐标是o(4,﹣2)所以求出对称圆的圆心坐标o(4,﹣2)半径r=R=1得到对称圆方程:(x﹣4)2+(y+2)2=1点评:本题是基础题,考查对称圆的方程问题,重点在于求出对称圆的圆心坐标和半径,本题考查函数和方程的思想,注意垂直条件的应用.参与本试卷答题和审题的老师有:sllwyn;zhwsd;qiss;xintrl;caoqz;wodeqing;yhx01248;zlzhan(排名不分先后)菁优网2014年10月2日。

相关文档
最新文档