2020年浙江省“三位一体”自主招生数学测试试卷(74)(有答案解析)

合集下载

2020年浙江省新高考改革单独考试招生文化考试数学试题(含参考答案)

2020年浙江省新高考改革单独考试招生文化考试数学试题(含参考答案)

A.0
B.√2
C.2
6.直线 x = √3的倾斜角为( )
D. 2√2
A.0°
B.30°
C. 60°
7.角 α 的终边上有一点 P(12,-5)则 sinα =( )
D. 90°
A.- 5
12
5 B.
12
5 C.
13
8.双曲线 x2 − y2 = 1 与直线 x - y = 1 交点的个数为( )
D. - 5
A.-2
B.-1Βιβλιοθήκη C.1D.220.设直线 y = x + m 与曲线 x2 + y2 = 1(x≥0)有公共点,则实数 m 的取值范围是 ( )
A.[-√2 , √2]
B.[ -1 , 1]
C.[-1 , √2]
D.[-√2 , 1]
二、填空题(本大题共 7 个小题,每小题 4 分,共 28 分) x2 + 1,x<2
B.第二象限
C.第三象限
D.第四象限
13.已知点 A(3,-4),B(7,6),则线段 AB 的中点坐标为( )
A.(5,1) B.(2,5)
C.(10,2)
D.(4,10)
14.若函数 y = x2 + kx +1 的图像与 x 轴没有交点,则 k 的取值范围是。( )
A.(2,+∞)
B. (-∞,-2)
1
25. 函数( 2x2 - ) 6 展开式中第 2 项的系数为
x
26. 如右图图所示,某几何体由正四棱锥和正方体构成,正四棱锥
侧棱长为√3,正方体棱长为 1,则 PB = 2
27.
已知双曲线
x2 a2
-

2020年浙江省“三位一体”中考自主招生综合测试试卷及答案解析

2020年浙江省“三位一体”中考自主招生综合测试试卷及答案解析

第1页(共17页)2020年浙江省“三位一体”中考自主招生综合测试试卷一、选择题(本大题共9小题,每小题4分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)“割圆术”是求圆周率的一种算法.公元263年左右,我国一位著名的数学家发现当圆的内接正多边形的边数无限增加时,多边形面积可无限逼近圆面积,即所谓“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.请问上述著名数学家为( )A .刘徽B .祖冲之C .杨辉D .秦九昭2.(4分)某校食堂有4元、5元、6元三种价格的饭菜供学生们选择(每人限购一份).三月份销售该三种价格饭菜的学生比例分别为25%、55%、20%,则该校三月份学生每餐购买饭菜的平均费用是( )A .4.9元B .4.95元C .5元D .5.05元3.(4分)在初中已学过的一次函数、反比例函数和二次函数等函数中,它们的图象与任意一条直线x =a (a 是任意实数)交点的个数为( )A .必有一个B .一个或两个C .至少一个D .至多一个4.(4分)同时掷两个骰子,其中向上的点数之和是5的概率是( )A .14B .16C .19D .1125.(4分)给你一列数:1,l ,2,6,24,( )请你仔细观察这列数的排列规则,然后从四个供选择单选项中选出一个你认为最合理的一项,来填补其中的空缺项,使之符合原数列的排列规律.A .48B .96C .120D .1446.(4分)已知.二次函数y =x 2﹣2x +a (a 是实数),当自变量任取x 1,x 2时,分别与之对应的函数值y l ,y 2满足y 1>y 2,则x 1,x 2应满足的关系式是( )A .x l ﹣1<x 2﹣1B .x 1﹣1>x 2﹣1C .|x 1﹣l |<|x 2﹣1|D .|x 1﹣1|>|x 2﹣1|7.(4分)在8个银元中混进了一个大小形状颜色完全一样的假银元,已知7个真银元的重量完全相同,而假银元比真银元稍轻点儿,你用一台天平最少( )次就能找出这枚假银元.A .lB .2C .3D .48.(4分)如图,P 是圆D 的直径AB 的延长线上的一点,PC 与圆D 相切于点C ,∠APC。

2020年浙江省“三位一体”自主招生数学测试试卷(72)(有答案解析)

2020年浙江省“三位一体”自主招生数学测试试卷(72)(有答案解析)

2020年浙江省“三位一体”自主招生综合测试试卷(72)一、选择题(本大题共6小题,共24.0分)1.已知当时,,那么,当时,A. B. C. D. 72.在中,,的平分线交AC于则A. sin BB. cos BC. tan BD. cot B3.四条直线,,,围成正方形现掷一个均匀且各面上标有1,2,3,4,5,6的立方体,每个面朝上的机会是均等的.连掷两次,以面朝上的数为点P的坐标第一次得到的数为横坐标,第二次得到的数为纵坐标,则点P落在正方形面上含边界的概率是A. B. C. D.4.已知函数,当时,则函数的图象可能是下图中的A. B.C. D.5.有一堆形状大小都相同的珠子,其中只有一粒比其它都轻些,其余一样重.若利用天平不用砝码最多两次就找出了这粒较轻的珠子,则这堆珠子最多有A. 8粒B. 9粒C. 10粒D. 11粒6.在中,,,且a、b、c满足:,,,则A. 1B.C. 2D.二、填空题(本大题共6小题,共30.0分)7.已知,化简______ .8.若关于x的方程有四个不同的解,则k的取值范围是______ .9.对于大于或等于2的自然数m的n次幂进行如下方式的“分裂”:仿上,的“分裂”中最大的数是______,若的“分裂”中最小数是21,则______.10.已知,则______.11.如图,在中,,为AB上一点,以O为圆心,OB为半径的圆交BC于D,且与AC相切.则D到AC的距离为______ .12.在十进制的十位数中,被9整除并且各位数字都是0或5的数有______个.三、计算题(本大题共1小题,共11.0分)13.甲,乙两辆汽车同时从同一地点A出发,沿同一方向直线行驶,每辆车最多只能带240L汽油,途中不能再加油,每升油可使一辆车前进12km,两车都必须沿原路返回出发点,但是两车相互可借用对方的油.请你设计一种方案,使其中一辆车尽可能地远离出发地点A,并求出这辆车一共行驶了多少千米?四、解答题(本大题共5小题,共55.0分)14.用1,2,3三个数字组成六位数,若每个数字用两次,相邻位不允许用相同的数字.试写出四个符合上述条件的六位数;请你计算出符合上述条件的六位数共有多少个?15.已知关于x的方程:有一个增根为b,另一根为二次函数与x轴交于P和Q两点.在此二次函数的图象上求一点M,使得面积最大.16.如图,已知锐角的外心为O,线段OA和BC的中点分别为点M,若,求的大小.17.已知实数a,b,c满足:,又,为方程的两个实根,试求的值.18.如图,已知菱形ABCD,,内一点M满足,若直线BA与CM交于点P,直线BC与AM交于点Q,求证:P,D,Q三点共线.答案和解析1.【答案】C【解析】解:把,代入得:,即把代入得:故选C.把代入解得,把当成一个整体代入后面式子即可解答.能够根据指数的意义发现代数式之间的关系,然后整体代值计算.2.【答案】A【解析】【分析】此题主要考查角平分线的性质和三角函数的定义.根据角平分线上的任意一点到角的两边距离相等计算.【解答】解:过点D作于E.则.可证≌,.,又,,,.故选A.3.【答案】D【解析】解:连掷两次,以面朝上的数为点P的坐标第一次得到的数为横坐标,第二次得到的数为纵坐标,共种;符合题意的有:共15个,概率是.故选:D.首先确定点P的坐标,根据这个坐标可求出点P落在正方形面上含边界的概率.本题将概率的求解设置于点P的坐标中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率所求情况数与总情况数之比.4.【答案】A【解析】解:因为函数,当时,所以可判断,可知,所以可知,,则,不妨设则函数为函数即则可判断与x轴的交点坐标是,,故选A.当时,,所以可判断,可知,,所以可知,,则,不妨设进而得出解析式,找出符合要求的答案.要考查了从图象上把握有用的条件,准确选择数量关系解得a,b,c的值.从条件可判断出,可知,;所以可知,,,从而可判断后一个函数图象.5.【答案】B【解析】解:这堆珠子最多有9个.将这堆珠子平均分成3组,将其中的两组放在天平的两边进行第一次测量;若天平平衡,那么较轻的珠子在没称的那堆珠子里;若天平不平衡,那么较轻的珠子就在较轻的那堆珠子里;然后将较轻的那堆珠子进行第二次测量,同第一次测量一样,将其中两个放在天平的两端;若天平平衡,那么没称的珠子就是所找的珠子;若天平不平衡,那么较轻的珠子就是所找的珠子.因此最多用两次即可找出较轻的珠子.故选B.已知最多两次就找出这粒较轻的珠子,那么第二次所测的珠子的个数最多为3个;即将其中的两个放在天平的两边,若天平平衡,那么不在天平中的珠子就是最轻的珠子,如果天平不平衡,很较轻的珠子就是所找的珠子.同理,在第一次测量中,最多可测出三组珠子,因此这堆珠子最多有9个.本题的解答关键是找出每次能测量出的珠子堆的最多的个堆数.6.【答案】C【解析】解:,,,,,,,,,这个三角形的形状是直角三角形,,故选:C.利用完全平方公式把这个式子写成平方几个非负数的和的形式,求得a,b,c的值,进而判断出三角形的形状即可.再运用三角函数定义求解即可.本题考查完全平方公式和勾股定理的逆定理在实际中的运用,注意运用几个非负数的和为0,那么这几个数均为0这个知识点是解题关键.7.【答案】【解析】解:,,原式.因为,,又,所以,即.注意当时,.8.【答案】【解析】解:关于x的方程有四个不同的解,,即,解得或,而时,的值不可能等于0,所以.故填空答案:.因为关于x的方程有四个不同的解,所以,即,解得或;又因为方程中一次项中未知数带着绝对值符号,一次项的系数不能为正数,否则等式不成立.所以当时,不符合题意,故取.本题考查了一元二次方程根的判别式的应用,也涉及了绝对值方程的应用,同时注意通过根与系数的关系求出的k值一定要代入到原方程检验,把不符合题意的值舍去.本题最后舍去是最容易出错的地方,要求具有严谨的数学思维.9.【答案】9 5【解析】解:中,最大数是;若的“分裂”中最小数是21,则,或负数舍去.根据所给的数据,不难发现:在中所分解的最大的数是;在中,所分解的最小数是根据发现的规律,则中,最大数是;若的“分裂”中最小数是21,则,或负数舍去.此题首先要根据所提供的数据具体发现规律,然后根据发现的规律求解.规律为:在中所分解的最大的数是;在中,所分解的最小数是.10.【答案】0【解析】解:,,即,整理得,.本题不应考虑直接求出与的值,而应根据已知等式的特点,用配方法进行求解.本题考查了完全平方公式,根据式子特点,等式两边都减去,转化为完全平方式是解题的关键.11.【答案】15【解析】解:连接OD、OE,则;,;,,;;因此OE即为所求的D到AC的距离.,,解得:.故D到AC的距离为15.设AC与的切点为E,连接OE、OD;在等腰和等腰中,可求得,由此可证得;由于AC与相切,所以,那么OE即为所求的D到AC的距离.在中,已知了斜边OA的长和的正弦值,即可求出OE的长.本题考查了切线的性质、等腰三角形的性质、平行线的判定、正弦的概念等知识的综合应用能力.12.【答案】9【解析】解:只能出现0或5,因此必须有9个5,0不能出现在首位,因此共有9个.故答案为9.被9整除的数,数字和一定是9的倍数.只能出现0或5,因此必须有9个5,0不能出现在首位,因此共有9个.解决本题的关键是得到被9整除的十位数的特点.13.【答案】解:设尽可能远离A地的甲汽车共走了x千米,乙汽车共走了y千米,则,且所以x最大为4320千米.设从A到尽可能的离A的距离是m千米,其中借给对方油的那辆车走了n千米后停下,那么千米那么需要用油升,那么就是走这个最远距离一次单趟需要120升油,那么可得出的方案是:甲,乙共同走720千米,乙停下等甲,并且给甲60升汽油,甲再走1440千米后回头与乙会合,乙再给甲60升汽油后,两车同时回到A地.也可画图表示为:如右图.【解析】本题中由于两车相互借对方的油,那么他们所走的距离和,他们所走的距离差由此可得出自变量的取值范围.如果要让一辆车尽可能的远离A地并同时返回,那么就必须让一辆车行驶一段后,把油给对方要刚好留下回A地的油,让对方走掉加的这些油后开始向A地返回,两者碰头后一起回A地.那么这个离A地最远的距离就应该是车行驶一段的距离停下后给对方的油量可行驶的距离要留下回A地的油根据此关系可求出走这个最远距离所需的油量,然后进行分配即可.本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.14.【答案】解:以1开头的数有等10个数;,131232,123123,123132,121323,121332,132123,132132,123213,132312,213123,213132,312123,312132,212313,213213,312312,313212,213231,312321,231213,231312,321213,321312,231231,231321,321231,321321,232131,323121则共30个符合条件的六位数.【解析】为了让相邻位不允许用相同的数字,可以依次对1、2、3进行排列.如123123,132132等;根据要求,先确定1的位置,再依次确定2,3的位置,从而求解.解决问题的关键是读懂题意,要特别注意:相邻位不允许用相同的数字.15.【答案】解:由题意可得,代入方程得.二次函数为与x轴的交点为,,当点M的横坐标为或或时,的面积可能取最大,经比较可得时,的面积取最大,此时即点,.【解析】方程可化简为方程只有时才有增根,可推出;将代入方程得即,再根据a的值求出c并确定解析式,再根据顶点坐标公式和x的取值范围确定面积最大时M点的坐标.学会巧妙地利用分式方程的性质来解决问题,同时要明确增根问题可按如下步骤进行:确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.16.【答案】解:设,则,;,,,为等腰三角形,;,,.【解析】设,则,根据三角形的外心到三角形三个顶点的距离相等,得根据等腰三角形的三线合一和等边对等角的性质和三角形的内角和定理,分别表示出和,进一步计算出发现等腰三角形则ON是OB的一半,根据直角三角形的性质可以求得度.再求得的大小.综合运用了等腰三角形和直角三角形的性质.要熟练掌握三角形和圆的有关性质才能灵活解题.17.【答案】解:,,,2ab为方程的二根,,由得,或把两组值代入原方程得到的方程相同.即,.【解析】把,2ab分别看作一个整体,利用一元二次方程根与系数的关系解答则可.本题考查了一元二次方程根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.18.【答案】证明:连接PD,DQ,由已知,,∽,∽.,.,又.,又,∽,.,,D,Q三点共线.【解析】求证:P,D,Q 三点共线就是证明平角的问题,可以求证,根据∽,∽,可以得出;进而证明∽,得出,则结论可证.本题是证明三点共线的问题,这类题目可以转化为求证平角的问题.并且本题利用相似三角形的性质,对应角相等.第11页,共11页。

2020年浙江省“三位一体”自主招生综合测试试卷(42)(有答案解析)

2020年浙江省“三位一体”自主招生综合测试试卷(42)(有答案解析)

2020年浙江省“三位一体”自主招生综合测试试卷(42)一、选择题(本大题共4小题,共16.0分)1.图是一个长为2m,宽为的长方形,用剪刀沿图中虚线对称轴剪开,把它分成四块形状和大小都一样的小长方形,然后按图那样拼成一个正方形,则中间空的部分的面积是A. 2mnB.C.D.2.若关于x的分式方程无解,则m的值为A. B. 1 C. 或2 D. 或3.如图,点A是反比例函数的图象上任意一点,轴交反比例函数的图象于点B,以AB 为边作,其中C、D在x轴上,则为A. 2B. 3C. 4D. 54.如图,过D、A、C三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,如果,那么的度数为A. B. C. D.二、填空题(本大题共8小题,共32.0分)5.若实数a,b,c满足,且,则一次函数的图象不可能经过第______ 象限.6.在平面直角坐标系中,点A是抛物线与y轴的交点,点B是这条抛物线上的另一点,且轴,则以AB为边的等边三角形ABC的周长为______.7.如图所示,A、B是边长为1的小正方形组成的网格的两个格点,在格点中任意放置点C,恰好能使的面积为1的概率是______.8.如图,菱形ABCD和菱形ECGF的边长分别为2和3,,则图中阴影部分的面积是______.9.如果关于x的不等式组的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对共有______个.10.如图,在直角坐标系中,四边形OABC是直角梯形,,分别与OA、OC、BC相切于点E、D、B,与AB交于点已知,,则______ .11.如图,正方形ABCD与正三角形AEF的顶点A重合,将绕顶点A旋转,在旋转过程中,当时,的大小可以是______.12.请你规定一种适合任意非零实数a,b的新运算“”,使得下列算式成立:,,,你规定的新运算______用a,b的一个代数式表示.三、解答题(本大题共3小题,共24.0分)13.在学校组织的游艺晚会上,掷飞标游艺区游戏规则如下:如图掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外的部分掷中一次记一个点现统计小华、小芳和小明掷中与得分情况如下:小华:77分小芳75分小明:______分求掷中A区、B区一次各得多少分?依此方法计算小明的得分为多少分?14.已知:M,N两点关于y轴对称,且点M在双曲线上,点N在直线上,设点M的坐标为,求二次函数的最值.15.如图,在平面直角坐标系中,点C的坐标为,动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转,得到线段过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点运动时间为t秒.当点B与点D重合时,求t的值;设的面积为S,当t为何值时,?连接MB,当时,如果抛物线的顶点在内部不包括边,求a的取值范围.答案和解析1.【答案】C【解析】分析先求出正方形的边长,继而得出面积,然后根据空白部分的面积正方形的面积四个长方形的面积即可得出答案.此题考查了完全平方公式的几何背景,求出正方形的边长是解答本题的关键,难度一般.详解解:由题意可得,正方形的边长为,故正方形的面积为,又四个长方形的面积为4mn,中间空的部分的面积.故选C.2.【答案】D【解析】【分析】本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型,分式方程无解,则分母为分式方程无解即是分母为0,由此可得:原分式方程中的分母为0:或,然后把分式方程化为整式方程,最后把或代入整式方程即可求出m的值.【解答】解:,方程两边都乘以,得:,整理,得:,原分式方程无解,或或,解得:或,故选D.3.【答案】D【解析】【分析】设A的纵坐标是b,则B的纵坐标也是b,即可求得A、B的横坐标,则AB的长度即可求得,然后利用平行四边形的面积公式即可求解.本题考查了是反比例函数与平行四边形的综合题,理解A、B的纵坐标是同一个值,表示出AB的长度是关键.【解答】解:设A的纵坐标是b,则B的纵坐标也是b.把代入得,,则,即A的横坐标是,同理可得:B的横坐标是:.则.则.故选:D.4.【答案】B【解析】解:连接DE,过D、A、C三点的圆的圆心为E,,过B、E、F三点的圆的圆心为D,,,,,,解得:..故选:B.首先连接DE,由过D、A、C三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,根据圆的内接四边形的性质可得:,继而可求得,又由三角形内角和定理,即可求得答案.此题考查了圆周角定理以及三角形内角和定理.此题难度适中,注意掌握辅助线的作法,注意数形结合与方程思想的应用.5.【答案】三【解析】解:实数a、b、c满足,且,,,一次函数的图象经过第一、二、四象限,不可能经过第三象限.故答案为:三.根据实数a、b、c满足,且,确定a、c的取值范围,然后确定答案.本题考查了一次函数图象与系数的关系.由于与y轴交于,当时,在y轴的正半轴上,直线与y轴交于正半轴;当时,在y轴的负半轴,直线与y轴交于负半轴.,的图象在一、二、三象限;,的图象在一、三、四象限;,的图象在一、二、四象限;,的图象在二、三、四象限.6.【答案】18【解析】解:抛物线的对称轴为,且轴,,等边的周长.故答案为:18.根据抛物线解析式求出对称轴为,再根据抛物线的对称性求出AB的长度,然后根据等边三角形三条边都相等列式求解即可.本题考查了二次函数的性质,等边三角形的周长计算,熟练掌握抛物线的对称轴与两个对称点之间的关系是解题的关键.7.【答案】【解析】解:在的网格中共有36个格点,而使得三角形面积为1的格点有8个,故使得三角形面积为1的概率为,故答案为:.在的网格中共有36个格点,找到能使得三角形ABC的面积为1的格点即可利用概率公式求解.本题考查了概率的公式,将所有情况都列举出来是解决此题的关键.8.【答案】【解析】解:如图,设BF与CE相交于点H,,∽,,即,解得,,,、GF之间的距离,阴影部分的面积.故答案为:.设BF与CE相交于点H,利用和相似,根据相似三角形对应边成比例列式求出CH,再求出DH,然后求出AB、GF之间的距离,再根据三角形的面积公式列式计算即可得解.本题考查了菱形的性质,相似三角形的判定与性质,观察图形把阴影部分的面积分成等底的两个三角形求解是解题的关键.9.【答案】6【解析】解:,由得:,由得:,不等式组的解集为:,整数解仅有1,2,,,,解得:,,,2,3,,5,整数a,b组成的有序数对共有,,,,,即6个,故答案为:6.首先解不等式组,不等式组的解集即可利用a,b表示,根据不等式组的整数解仅为1,2即可确定a,b的范围,即可确定a,b的整数解,即可求解.此题主要考查了不等式组的整数解,根据不等式组整数解的值确定a,b的取值范围是解决问题的关键.10.【答案】【解析】解:连接PB、PE.分别与OA、BC相切于点E、B,,,,、P、E在一条直线上,,,,,,,.故答案为:.先连接PB、PE,根据分别与OA、BC相切,得出,,再根据A、B点的坐标,得出AE和BE的值,从而求出,最后根据,即可得出答案.此题考查了切线的性质,用到的知识点是切线的性质、解直角三角形、圆周角定理,解题的关键是做出辅助线,构建直角三角形.11.【答案】或【解析】解:当正三角形AEF在正方形ABCD的内部时,如图1,正方形ABCD与正三角形AEF的顶点A重合,当时,,≌,,,,;当正三角形AEF在正方形ABCD的外部时.正方形ABCD与正三角形AEF的顶点A重合,当时,,,,≌,,,,故答案为:或.利用正方形的性质和等边三角形的性质证明≌,即可得解应该注意的是,正三角形AEF可以再正方形的内部也可以在正方形的外部,所以要分两种情况分别求解.本题考查了正方形的性质、等边三角形的性质、旋转的性质以及全等三角形的判定和全等三角形的性质和分类讨论的数学思想,题目的综合性不小.12.【答案】【解析】解:根据题意可得:,,,则.故答案为:.由题中的新定义,将已知的等式结果变形后,总结出一般性的规律,即可用a与b表示出新运算.此题考查了有理数的混合运算,属于新定义的题型,其中弄清题意,找出一般性的规律是解本题得关键.13.【答案】设掷到A区和B区的得分分别为x、y分,依题意得:,解得:,答:掷中A区、B区一次各得10,9分.由可知:,答:依此方法计算小明的得分为76分.【解析】首先设掷到A区和B区的得分分别为x、y分,根据图示可得等量关系:掷到A区5个的得分掷到B区3个的得分分;掷到A区3个的得分掷到B 区5个的得分分,根据等量关系列出方程组,解方程组即可得到掷中A区、B区一次各得多少分;由图示可得求的是掷到A区4个的得分掷到B区4个的得分,根据中解出的数代入计算即可.此题主要考查了二元一次方程组的应用,关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.14.【答案】解:、N两点关于y轴对称,点M的坐标为,点坐标为,点M在双曲线上,,,点N在直线上,,,二次函数解析式为,当时,函数有最大值,.【解析】可先求得N点坐标,再把M和N的坐标分别代入所满足的函数解析式,整理可求得ab和的值,代入可求得二次函数解析式,可求得其最值.本题主要考查二次函数的最值,根据点的对称及点的坐标与函数解析式的关系求得ab 和的值是解题的关键.15.【答案】解:,,.∽....由∽可知:,.当时,..当时,.,为负数,舍去.当或时,.过M作轴于N,则.当时,,.抛物线的顶点坐标为.它的顶点在直线上移动.直线交MB于点,交AB于点...【解析】由于,易证得∽;当B、D重合时,BE 的长已知即OC长,根据AC、AB的比例关系,即可得到AO、BE的比例关系,由此求得t的值.求的面积时,可以CD为底、BD为高来解,那么表示出BD的长是关键;∽,且知道AC、AB的比例关系,即可通过相似三角形的对应边成比例求出BE的长,进一步得到BD的长,在表达BD长时,应分两种情况考虑:在线段DE上,在ED的延长线上.首先将抛物线的解析式进行配方,可得到抛物线的顶点坐标,将其横坐标分别代入直线MB、AB的解析式中,可得到抛物线对称轴与这两条直线的交点坐标,根据这两个坐标即可判定出a的取值范围.考查了二次函数综合题,该题是图形的动点问题,前两问的关键在于找出相似三角形,得到关键线段的表达式,注意点在运动过程中未知数的取值范围问题.最后一问中,先得到抛物线的顶点坐标是简化解题的关键.。

2020年“三位一体”自主招生综合测试试卷(4)(含答案)

2020年“三位一体”自主招生综合测试试卷(4)(含答案)

2020年“三位一体”自主招生综合测试试卷(4)一、选择题(本大题共6小题,每小题5分,共30分)1. 已知非零实数a ,b 满足|2a −4|+|b +2|+√(a −3)b 2+4=2a ,则a +b 等于( )A. −1B. 0C. 1D. 2 2. Rt △ABC 的三个顶点A ,B ,C 均在抛物线y =x 2上,并且斜边AB 平行于x 轴.若斜边上的高为ℎ,则( )A. ℎ<1B. ℎ=1C. 1<ℎ<2D. ℎ>2 3. 如图,△ABC 中,∠A 、∠B 、∠C 所对的三边分别记为a ,b ,c ,O 是△ABC 的外心,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,则OD:OE:OF =( )A. a:b:cB. 1a :1b :1cC. cosA:cosB:cosCD. sinA:sinB:sinC 4. 若实数x ,y 满足条件2x 2−6x +y 2=0,则x 2+y 2+2x 的最大值是( )A. 14B. 15C. 16D. 不能确定 5. 如图,正方形ABCD 中,E ,F 分别是AB ,BC 上的点,DE 交AC 于M ,AF 交BD 于N ;若AF 平分∠BAC ,DE ⊥AF ;记x =BE OM ,y =BN ON ,z =CF BF ,则有( )A. x >y >zB. x =y =zC. x =y >zD. x >y =z 6. 将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y 的方程组{ax +by =3x +2y =2只有正数解的概率为( )A. 112B. 29C. 518D. 1336二、填空题(本大题共7小题,每小题5分,共35分)7. 若ab =20,bc=10,则a+bb+c的值为________.8. 已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+b(k≠0)的图象相交于点A(−2, 4),B(8, 2),如图所示,则能使y1<y2成立的x的取值范围是________.9. 已知一次函数y=(a−1)x+a(a为整数且a≠1)的图象与x轴、y轴的交点分别为A、B,且△OAB的面积是正整数,则a=________.10. 在单位正三角形中,将其内切圆及三个角切圆(与角两边及三角形内切圆都相切的圆)的内部挖去,则三角形剩下部分的面积为________.11. 如图,设AD、BE、CF为三角形ABC的三条高,若AB=6,BC=5,AE−EC=115,则线段BE的长为________245.12. 如图,在平面直角坐标系xOy中,多边形OABCDE的顶点坐标分别是O(0, 0),A(0, 6),B(4, 6),C(4, 4),D(6, 4),E(6, 0).若直线l经过点M(2, 3),且将多边形OABCDE分割成面积相等的两部分,则直线l的函数表达式是________.13. 如果函数y=b的图象与函数y=x2−3|x−1|−4x−3的图象恰有三个交点,则b的可能值是________−254.三、解答题(本大题共3小题,共55分)14. 已知抛物线y=3ax2+2bx+c.(1)若a=b=1,c=−1,求抛物线与x轴公共点的坐标;(2)若a=b=1,且当−1<x<1时,抛物线与x轴有且只有一个公共点,求c的取值范围.15. 如图,AB为⊙O的直径,C在⊙O上,并且OC⊥AB,P为⊙O上的一点,位于B、C之间,直线CP与AB相交于点Q,过点Q作直线与AB垂直,交直线AP于R.求证:BQ=QR.16. 如图,正方形ABCD中,E、F分别是BC边、CD边上的动点,满足∠EAF=45∘.(1)求证:BE+DF=EF;(2)若正方形边长为1,求△CEF内切圆半径的最大值.参考答案1. C2. B3. C4. B5. 如图,由角平分线,BNON =ABAO=√2=ACAB=CFBF,即y=z=√2,又△AME的角分线与高重合,则△AME为等腰三角形,AM=AE,作OP∥AB,交OE于P,则OP为△DBE的中位线,△OMP∽△AME,x=BEOM =BEOP=2,所以x>y=z6. D7. 210118. −2<x<89. 210. S=√34−π911. 24512. y=−13x+11313. −6、14. 此公共点一定是顶点,∴△=4−12c=0,一个交点的横坐标小于等于−1,另一交点的横坐标小于1而大于−1,∴3−2+c≤0,3+2+c>0,解得−5<c≤−1.综上所述,c的取值范围是:c=13或−5<c≤−1.15. 证明:如图,连接PB、BR,则∠APC=45∘,∠APB=90∘;故∠BPQ=180∘−∠APC−∠APB=45∘;又∵∠APB=90∘=∠BQR,∴B、Q、R、P四点共圆;于是∠BRQ=∠BPQ=45∘,从而△BQR为等腰直角三角形;∴BQ=QR.16. 证明:延长FD到G,使DG=BE,连接AG,∵在△GDA和△EBA中,{DG=BE∠GDA=∠ABE=90 AD=AB,∴△GDA≅△EBA,∴AG=AE,∠GAD=∠EAB,故∠GAF=45∘,在△GAF和△EAF中,∵{AG=AE∠GAF=∠EAF AF=AF,∴△GAF≅△EAF,∴GF=EF,即GD+DF=BE+DF=EF;令BE=a,DF=b,则EF=a+b,r=1−a+1−b−(a+b)2=1−(a+b),∵(1−a)2+(1−b)2=(a+b)2,整理得1−(a+b)=ab,而ab≤14(a+b)2,14(a+b)2+(a+b)−1≥0,解得:a+b≥−2+2√2或a+b≤−2−2√2(舍去),r=1−(a+b)≤1−(−2+2√2)=3−2√2,当且仅当a=b=√2−1时,等号成立.。

2020年普通高等学校招生统一考试数学真题(浙江卷)(含详解答案)

2020年普通高等学校招生统一考试数学真题(浙江卷)(含详解答案)

2020年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至2页;非选择题部分3至4页.满分150分.考试用时120分钟. 考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效. 参考公式:选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合P ={|14}<<x x ,{}23Q x =<<,则P Q =( ) A. {|12}x x <≤ B. {|23}x x << C. {|34}x x ≤<D. {|14}<<x x2.已知a ∈R ,若a –1+(a –2)i (i 为虚数单位)是实数,则a =( )A. 1B. –1C. 2D. –23.若实数x ,y 满足约束条件31030x y x y -+≤⎧⎨+-≥⎩,则z =2x +y 的取值范围是( )A. (,4]-∞B. [4,)+∞C. [5,)+∞D. (,)-∞+∞4.函数y =x cos x +sin x 在区间[–π,+π]的图象大致为( )A. B.C. D.5.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A.73B.143C. 3D. 66.已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件D. 既不充分也不必要条件7.已知等差数列{a n }前n 项和S n ,公差d ≠0,11a d≤.记b 1=S 2,b n+1=S n+2–S 2n ,n *∈N ,下列等式不可能成立的是( ) A. 2a 4=a 2+a 6B. 2b 4=b 2+b 6C. 2428a a a = D. 2428b b b =8.已知点O (0,0),A (–2,0),B (2,0).设点P 满足|P A |–|PB |=2,且P 为函数y=则|OP |=( )A.B.C.D.9.已知a ,b ∈R 且ab ≠0,若(x –a )(x–b )(x–2a–b )≥0在x ≥0上恒成立,则( ) A. a <0B. a >0C. b <0D. b >010.设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有两个元素,且S ,T 满足: ①对于任意x ,y ∈S ,若x ≠y ,都有xy ∈T ②对于任意x ,y ∈T ,若x <y ,则yx∈S ; 下列命题正确是( )A. 若S 有4个元素,则S ∪T 有7个元素B. 若S 有4个元素,则S ∪T 有6个元素C. 若S 有3个元素,则S ∪T 有4个元素D. 若S 有3个元素,则S ∪T 有5个元素非选择题部分(共110分)二、填空题:本大题共7小题,共36分.多空题每小题6分,单空题每小题4分.11.已知数列{a n }满足(1)=2n n n a +,则S 3=________. 12.设()2345125345612 x a a x a x a x a x a x +=+++++,则a 5=________;a 1+a 2 + a 3=________. 13.已知tan 2θ=,则cos2θ=________;πtan()4θ-=______.14.已知圆锥展开图的侧面积为2π,且为半圆,则底面半径为_______.15.设直线:(0)l y kx b k =+>,圆221:1C x y +=,222:(4)1C x y -+=,若直线l 与1C ,2C 都相切,则k =_______;b =______.16.一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为ξ,则(0)P ξ==_______;()E ξ=______.17.设1e ,2e 为单位向量,满足21|22|-≤e e ,12a e e =+,123b e e =+,设a ,b 的夹角为θ,则2cos θ的最小值为_______.的三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.在锐角△ABC 中,角A ,B ,C 对边分别为a ,b ,c,且2sin b A =. (I )求角B ;(II )求cos A +cos B +cos C 取值范围.19.如图,三棱台DEF —ABC 中,面ADFC ⊥面ABC ,∠ACB =∠ACD =45°,DC =2BC .(I )证明:EF ⊥DB ;(II )求DF 与面DBC 所成角的正弦值.20.已知数列{a n },{b n },{c n }中,1111121,,()nn n n n n n b a b c c a a c c n b +++====-=⋅∈*N . (Ⅰ)若数列{b n }为等比数列,且公比0q >,且1236b b b +=,求q 与a n 的通项公式; (Ⅱ)若数列{b n }为等差数列,且公差0d >,证明:1211n c c c d+++<+.的的21.如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点直线l 使M 为线段AB 的中点,求p 的最大值.22.已知12a <≤,函数()e xf x x a =--,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0)+∞,上有唯一零点; (Ⅱ)记x 0为函数()y f x =在(0)+∞,上的零点,证明:0x ≤≤;(ⅱ)00(e )(e 1)(1)x x f a a ≥--.参考答案1.B 【详解】(1,4)(2,3)(2,3)P Q ==故选:B2.C 【详解】因为(1)(2)a a i -+-为实数,所以202a a -=∴=,, 故选:C3.B 【详解】绘制不等式组表示的平面区域如图所示,目标函数即:1122y x z =-+, 其中z 取得最大值时,其几何意义表示直线系在y 轴上的截距最大, z 取得最小值时,其几何意义表示直线系在y 轴上的截距最小, 据此结合目标函数的几何意义可知目标函数在点A 处取得最小值, 联立直线方程:31030x y x y -+=⎧⎨+-=⎩,可得点A 的坐标为:()2,1A ,据此可知目标函数的最小值为:min 2214z =+⨯= 且目标函数没有最大值.故目标函数的取值范围是[)4,+∞. 故选:B4.A 【详解】因为()cos sin f x x x x =+,则()()cos sin f x x x x f x -=--=-, 即题中所给的函数为奇函数,函数图象关于坐标原点对称, 据此可知选项CD 错误;.且x π=时,cos sin 0y ππππ=+=-<,据此可知选项B 错误. 故选:A.5.A 【详解】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1, 棱柱的底面为等腰直角三角形,棱柱的高为2, 所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 故选:A6.B 【详解】依题意,,m n l 是空间不过同一点的三条直线, 当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件. 故选:B7.D 【详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+, ∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+. ∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-,当1a d =时,2428a a a =,C 正确;对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++,()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D8.D 【详解】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a=-=-=,即双曲线的右支方程为()22103y x x -=>,而点P还在函数y =由()22103y x x y ⎧⎪⎨->==⎪⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP == 故选:D.9.C 【详解】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 零点为123,,2x a x b x a b ===+当0a >时,则23x x <,1>0x ,要使()0f x ≥,必有2a b a +=,且0b <, 即=-b a ,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <. 综上一定有0b <. 故选:C10.A 【详解】首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8S T =,包含4个元素,排除选项D ;若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32ST =,包含5个元素,排除选项C ;若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128S T =,包含7个元素,排的除选项B ;下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21p S p ∈, 若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =, 又444231p p p p p >>>,故442232p p p p p ==,所以342p p =, 故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍.若12p ≥,则32311p p p p p <<,故322111,p p p p p p ==即323121,p p p p ==, 又44441231p p p p p p p >>>>,故441331p p p p p ==,所以441p p =, 故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆. 若q T ∈, 则31q S p ∈,故131,1,2,3,4i q p i p ==,故31,1,2,3,4i q p i +==, 即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =, 此时{}234456711111111,,,,,,,S T p p p p p p p p ⋃=即S T 中有7个元素.故A 正确. 故选:A .11.10【详解】因为()12n n n a +=,所以1231,3,6a a a ===. 即312313610S a a a =++=++=. 故答案为:10. 12. (1). 80 (2). 122【详解】5(12)x +的通项为155(2)2r r r r r r T C x C x +==,令4r =,则444455280T C x x ==,故580a =;113355135555222122a a a C C C ++=++=.故答案为:80;122 13. (1).35 (2). 13【详解】2222222222cos sin 1tan 123cos 2cos sin cos sin 1tan 125θθθθθθθθθ---=-====-+++, tan 1211tan()41tan 123πθθθ---===++,故答案为:31,53-14.1【详解】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==. 故答案为:115. (1).3(2). 3- 【详解】由题意,12,C C1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得33k b ==-.16.(1).13(2). 1 【详解】因为0ξ=对应事件为第一次拿红球或第一次拿绿球,第二次拿红球, 所以1111(0)4433P ξ==+⨯=, 随机变量0,1,2ξ=,212111211(1)434324323P ξ==⨯+⨯⨯+⨯⨯=,111(2)1333P ξ==--=,所以111()0121333E ξ=⨯+⨯+⨯=.故答案为:1;13.17.2829【详解】12|2|2e e -≤, 124412e e ∴-⋅+≤, 1234e e ∴⋅≥, 222121222121212(44)4(1)()cos (22)(106)53e e e e a b e e e e e e a bθ+⋅+⋅⋅∴===+⋅+⋅+⋅⋅12424228(1)(1)3332953534e e =-≥-=+⋅+⨯. 故答案为:2829. 18.【详解】(I )由2sin b A =结合正弦定理可得:2sin sin ,sin2B A A B =∴= △ABC 为锐角三角形,故3B π=.(II )结合(1)的结论有:12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭11cos cos 22A A A =-+11cos 22A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则sin 32A π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,113sin ,2232A π⎛⎤⎛⎫++∈ ⎥ ⎪ ⎝⎭⎝⎦.即cos cos cos A B C ++的取值范围是13,22⎛⎤⎥ ⎝⎦.19.【详解】(Ⅰ)作DH AC ⊥交AC 于H ,连接BH . ∵平面ADFC ⊥平面ABC ,而平面ADFC平面ABC AC =,DH ⊂平面ADFC ,∴DH ⊥平面ABC ,而BC ⊂平面ABC ,即有DH BC ⊥. ∵45ACB ACD ∠=∠=︒,∴2CD BC CH ==⇒=.在CBH 中,22222cos 45BH CH BC CH BC BC =+-⋅︒=,即有222BH BC CH +=,∴BH BC ⊥.由棱台的定义可知,//EF BC ,所以DH EF ⊥,BH EF ⊥,而BH DH H =,∴EF ⊥平面BHD ,而BD ⊂平面BHD ,∴EF DB ⊥.(Ⅱ)因为//DF CH ,所以DF 与平面DBC 所成角即为与CH 平面DBC 所成角. 作HG BD ⊥于G ,连接CG ,由(1)可知,BC ⊥平面BHD , 因为所以平面BCD ⊥平面BHD ,而平面BCD平面BHD BD =,HG ⊂平面BHD ,∴HG ⊥平面BCD .即CH 在平面DBC 内的射影为CG ,HCG ∠即为所求角.在Rt HGC △中,设BC a =,则CH =,BH DH HG BD ⋅===,∴sin3HG HCG CH ∠===.故DF 与平面DBC20.【详解】(I )依题意21231,,b b q b q ===,而1236b b b +=,即216q q +=,由于0q >,所以解得12q =,所以112n n b -=.所以2112n n b ++=,故11112412n n n n n c c c -++=⋅=⋅,所以数列{}n c 是首项为1,公比为4的等比数列,所以14n n c -=. 所以114n n n n a a c -+==-(*2,n n N ≥∈).所以12142144.3n n n a a --+=+++⋅⋅⋅+=(II )依题意设()111n b n d dn d =+-=+-,由于12n n n n c bc b ++=, 所以111n n n n c b c b --+=()*2,n n N ≥∈, 故13211221n n n n n c c c c c c c c c c ---=⋅⋅⋅⋅⋅1232111143n n n n n n b b b b b c b b b b b ---+-=⋅⋅⋅⋅⋅ 121111111111n n n n n n b b d b b d b b d b b +++⎛⎫⎛⎫+⎛⎫==-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 所以121223*********n nn c c c d b b b b b b +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++=+-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 11111n d b +⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭.由于10,1d b >=,所以10n b +>,所以1111111n d b d +⎛⎫⎛⎫+-<+ ⎪ ⎪⎝⎭⎝⎭. 即1211n c c c d++⋯+<+,*n N ∈. 21.【详解】(Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++,又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,?22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-=+⋅=++≥+,18p ≥,21160p ≤,p ≤ 所以,p,此时A . 法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=,所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当m t ==时,p取到最大值为40.22.【详解】(I )()1,0,1,()0,()x x f x e x e f x f x ''=->∴>∴>∴在(0,)+∞上单调递增,2212,(2)240,(0)10a f e a e f a <≤∴=--≥->=-<,所以由零点存在定理得()f x 在(0,)+∞上有唯一零点; (II )(i )000()0,0xf x e x a =∴--=,002000012(1)xxx e x x e x ≤⇔--≤≤--,令22()1(02),()1(02),2xxx g x e x x x h x e x x =---<<=---<<一方面:1()1(),xh x e x h x '=--= 1()10x h x e '=->,()(0)0,()h x h h x ''∴>=∴在(0,2)单调递增,()(0)0h x h ∴>=,2210,2(1)2xx x e x e x x ∴--->-->,另一方面:1211a a <≤∴-≤,所以当01x ≥0x ≤成立,因此只需证明当01x <<时2()10xg x e x x =---≤, 因为11()12()()20ln 2x x g x e x g x g x e x ''=--==-=⇒=, 当(0,ln 2)x ∈时,1()0g x '<,当(ln 2,1)x ∈时,1()0g x '>, 所以()max{(0),(1)},(0)0,(1)30,()0g x g g g g e g x ''''''<==-<∴<,()g x ∴在(0,1)单调递减,()(0)0g x g ∴<=,21x e x x ∴--<,综上,002000012(1),x xex x e x x ∴--≤≤--≤≤(ii )0000000()()()[(1)(2)]xa a t x x f e x f x a x e x a e ==+=-+-,00()2(1)(2)0a a t x e x a e '=-+->0x ≤,0()(2)](1)(1)2)a a a a t x t e a e e a e ∴≥=--=--+-,因为12a <≤,所以,2(1)ae e a a >≥-,0()(1)(1)2(2)a t x e a a e ∴≥--+--,只需证明22(2)(1)(1)a a e e a --≥--, 即只需证明224(2)(1)(1)ae e a -≥--,令22()4(2)(1)(1),(12)a s a e e a a =----<≤, 则22()8(2)(1)8(2)(1)0a a s a e e e e e e '=---≥--->,2()(1)4(2)0s a s e ∴>=->,即224(2)(1)(1)a e e a -≥--成立,因此()0x 0e (e 1)(1)x f a a ≥--.。

2020年浙江省“三位一体”中考自主招生模拟试卷及答案解析

2020年浙江省“三位一体”中考自主招生模拟试卷及答案解析

第1页(共15页)2020年浙江省“三位一体”中考自主招生模拟试卷一、选择题(每题6分,共30分)1.(6分)关于x 的方程x 2+|x |﹣a 2=0的所有实数根之和等于( )A .﹣1B .1C .0D .﹣a 22.(6分)抛物线y =x 2上有三点P 1、P 2、P 3,其横坐标分别为t ,t +1,t +3,则△P 1P 2P 3的面积为( )A .1B .2C .3D .43.(6分)已知a 、b 、c 为自然数,且a 2+b 2+c 2+42<4a +4b +12c ,且a 2﹣a ﹣2>0,则代数式1a +1b +1c 的值为( ) A .1 B .76 C .10 D .114.(6分)正五边形广场ABCDE 的边长为80米,甲、乙两个同学做游戏,分别从A ,C 两点处同时出发,沿A ﹣B ﹣C ﹣D ﹣E ﹣A 的方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分,则两人第一次刚走到同一条边上时( )A .甲在顶点A 处B .甲在顶点B 处C .甲在顶点C 处D .甲在顶点D 处 5.(6分)已知点A (x 1,y 1),B (x 2,y 2)均在抛物线y =ax 2+2ax +4(0<a <3)上,若x 1<x 2,x 1+x 2=1﹣a ,则( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .y 1与y 2大小不能确定二、填空题(每题6分,共36分)6.(6分)如图,E 、F 分别是▱ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =10cm 2,S △BQC =20cm 2,则阴影部分的面积为 .7.(6分)如图,是一回形图,其回形通道的宽和OB 的长均为1,回形线与射线OA 交于A 1、A 2、A 3、….若从O 点到A 1点的回形线为第一圈(长为7),从A 1点到A 2点的回形线为第二圈,…,以此类推,则第11圈的长为 .。

2020年浙江高职考数学试卷(word)

2020年浙江高职考数学试卷(word)

2020年浙江单独考试招生数学试题一、单项选择题(本大题共20小题,1—10小题每小题2分,11—20小题每小题3分,共50分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的.错涂、多涂或未涂均不得分)1.集合{}8,7,2,1=A ,集合{}8,5,3,2=B ,则=B A = A. {2} B. {3,5} C. {2,8} D.,8}{1,2,3,5,72."45"︒=α是”“22sin =α的 A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件3.函数()xx x f 21-=的定义域为A.]1,0()0,1[ -B.[-1,1]C.(0,1]D.),1[]1,(+∞--∞ 4.从2名医生、4名护士中,选出1名医生和2名护士组成三人医疗小组,选派的种数是A.8B.12C.20D.24 5.如图,正方形ABCD 的边长为1,=BD +++++AB A. 0 B. 2 C. 2 D.226.直线3=x 的倾斜角为A.0°B.30°C.60°D.90°7. 角α的终边上有一点()512-,P ,则=αsin A.125-B.125C. 135D.135- 8. 双曲线122=-y x 与直线1=-y x 交点的个数为A.0B. 1C. 2D.4 9. 下列叙述中,错误的是A.平行于同一个平面的两条直线平行B.平行于同一条直线的两条直线平行C.垂直于同一条直线的两个平面平行D.垂直于同一个平面的两条直线平行 10. 李老师每天采取"先慢跑、再慢走"的方式锻炼身身体,慢跑和慢走都是匀速的,运动的距离s (米)关于时间t (分钟)的函数图像如图所示,他慢走的速度为A.55米/分钟B.57.5米/分钟C.60米/分钟D.67.5米/分钟 11. 若直线b x y +=经过抛物线y x 42=的焦点,则b 的值是A.-2B.-1C.1D.2 12. 角2020°的终边在A.第一象限B.第二象限C.第三象限D.第四象限 13. 已知点()()6,7,4,3B A -,则线段AB 的中点坐标为A.(5,1)B.(2,5)C. (10,2)D.(4,10) 14. 若函数12++=kx x y 的图像与x 轴没有交点,则k 的取值范围是A.()+∞,2B.()2,-∞-C.()()+∞-∞-,22,D.()2,2- 15. 抛掷二枚骰子,"落点数之和为9"的概率是 A.21 B 31. C.61 D.91 16. 16.下列直线中,,与圆()()52122=++-y x 相切的是A.012=+-y xB.012=--y xC.012=++y xD.012=-+y x 17. 已知a,b,c 是实数,下列命题正确的是A.若b a >,则22b a > B.若22b a >,则b a > C.若22bc ac >,则b a > D.若b a >,则22bc ac > 18. 函x x y cos sin =的最小正周期为A.2πB. πC.π2D.1 19. 设数列{}n a 的前n 项和为n S ,若()*1112,1N n a S a n n ∈-==+,则=3aA. -2B. -1C. 1D.220. 20.设直线m x y +=与曲()0122≥=+x y x 有公共点,则实数m 的取值范围是A.[]2,2-B. []1,1-C. []2,1-D.[]1,2- 二、填空题(本大题共7小题,每小题4分,共28分)21. 已知函数()2,32,1{2≥+<+=x x x x x f ,则()[]=-2f f22. 若42,1,1++-x x x 成等差数列,则=x23. 若正数b a ,满足20=ab ,则b a 2+的最小值为 24. 函数()()x x y -++=ππcos sin 4的最大值为25. 6212⎪⎭⎫ ⎝⎛-x x 展开式中第二项的系数为26. 如图所示,某几何体由正四棱锥和正方体构成,正四棱锥侧棱长为23,正方体棱长为1,则PB =27. 已知双曲线2222by a x -的渐近线方程为x y 2±=,则该双曲线的离心率为三、解答题(本大题共8小题,共72分)(解答应写出文字说明及演算步骤) 28. (本题7分)计算:()()2210663492019202001ln12log 3log ππ-+⎪⎭⎫ ⎝⎛+-++++-!e29. (本题8分)在△ABC 中,角C B A ,,所对的边分别为c b a ,,,已知︒=∠60A ,32=a ,22=b 。

2020年浙江省“三位一体”自主招生综合测试培优数学试卷-含详细解析

2020年浙江省“三位一体”自主招生综合测试培优数学试卷-含详细解析

2020年浙江省“三位一体”自主招生综合测试培优试卷含详细解析一、填空题(本大题共20小题,共60.0分)1.如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为______.2.如图,在平面直角坐标系中,函数y=x和y=−12x的图象分别为直线l1,l2,过点A1(1,−12)作x轴的垂线交11于点A2,过点A2作y轴的垂线交l2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5,…依次进行下去,则点A2018的横坐标为______.3.实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为x cm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A的三条棱的长分别10cm,10cm,ycm(y≤15),当铁块的顶部高出水面2cm时,x,y满足的关系式是______.4.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P、Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P、Q的“相关矩形”.图为点P、Q的“相关矩形”的示意图.现在已知点A的坐标为(1,0),若点C在直线x=3上,若点A,C的“相关矩形”为正方形,则直线AC的表达式为______.5.对于坐标平面内的点,先将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5).已知点A的坐标为(1,0).如图,点M是直线l上的一点,点A关于点M的对称点为点B,点B关于直线l的对称点为点C.若点B由点A经n次斜平移后得到,且点C的坐标为(7,6),则点B的坐标为______及n的值为______.6.用m根火柴可以拼成如图1所示的x个正方形,还可以拼成如图2所示的2y个正方形,那么用含x的代数式表示y,得______.7.若y是关于x的一次函数,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值增加______.8.已知x满足−5≤x≤5,函数y1=x+1,y2=−2x+4,对任意一个x,对应的y1,y2中的较小值记作m,则m的最大值是______.9.已知梯形ABCD的四个顶点的坐标分别为A(−1,0),B(5,0),C(2,2),D(0,2),直线y=kx+2将梯形分成面积相等的两部分,则k的值为______.10.已知直线y1=x,y2=13x+1,y3=−45x+5的图象如图所示,若无论x取何值,y总取y1,y2,y3中的最小值,则y的最大值为______ .11.在平面直角坐标系中,有A(3,−2),B(4,2)两点,现另取一点C(1,n),当n=______时,AC+BC的值最小.12.对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(−5,4),B(2,−3),A⊕B=(−5+2)+(4−3)=−2,若互不重合的四点C.D,E,F,满足C⊕D=D⊕E= E⊕F=F⊕D.则C,D,E,F四点都在直线______上.13.如图,直线y=−x+4与两坐标轴交A、B两点,点P为线段OA上的动点,连接BP,过点A作AM 垂直于直线BP,垂足为M,当点P从点O运动到点A时,则点M运动路径的长为______.14.已知直线y=−(n+1)n+2x+1n+2(n为正整数)与坐标轴围成的三角形的面积为S n,则S1+S2+S3+⋯+S2012=______.15.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是______.16.对于一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则一次函数的解析式为______.17.如图,在直角坐标系中,直线y=43x+4分别交x轴,y轴于A,B两点,C为OB的中点,点D在第二象限,且四边形AOCD为矩形,P是CD上一个动点,过点P作PH⊥OA于H,Q是点B关于点A的对称点,则BP+PH+HQ的最小值为______.18.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P 顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD= 2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为______.19.对于平面直角坐标系中任意两点P1(x1,y1)、P2(x2,y2),称|x1−x2|+|y1−y2|为P1、P2两点的直角距离,记作:d(P1,P2).若P0(x0,y0)是一定点,Q(x,y)是直线y=kx+b上的一动点,称d(P0,Q)的最小值为P0到直线y=kx+b的直角距离.令P0(2,−3),O为坐标原点.则:(1)d(O,P0)=______;(2)若P(a,−3)到直线y=x+1的直角距离为6,则a=______.20.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(−y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为______,点A2014的坐标为______;若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为______.答案和解析1.【答案】y =−12x +32【解析】解:∵A(0,4),B(3,0),∴OA =4,OB =3,在Rt △OAB 中,AB =√OA 2+OB 2=5,∵△AOB 沿过点B 的直线折叠,使点A 落在x 轴上的点A′处,∴BA′=BA =5,CA′=CA ,∴OA′=BA′−OB =5−3=2,设OC =t ,则CA =CA′=4−t ,在Rt △OA′C 中,∵OC 2+OA′2=CA′2,∴t 2+22=(4−t)2,解得t =32,∴C 点坐标为(0,32),设直线BC 的解析式为y =kx +b ,把B(3,0)、C(0,32)代入得{3k +b =0b =32,解得{k =−12b =32, ∴直线BC 的解析式为y =−12x +32.故答案为:y =−12x +32.在Rt △OAB 中,OA =4,OB =3,用勾股定理计算出AB =5,再根据折叠的性质得BA′=BA =5,CA′=CA ,则OA′=BA′−OB =2,设OC =t ,则CA =CA′=4−t ,在Rt △OA′C 中,根据勾股定理得到t 2+22=(4−t)2,解得t =32,则C 点坐标为(0,32),然后利用待定系数法确定直线BC 的解析式. 本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理和待定系数法求一次函数解析式.2.【答案】4504【解析】解:由题意可得,A 1(1,−12),A 2(1,1),A 3(−2,1),A 4(−2,−2),A 5(4,−2),A 6(4,4),…,可得A 4n+2(4n ,4n )∵2018÷4=504…2,∴A 2018在第一象限,∴点A 2018的横坐标为:4504,故答案为:4504.根据题意可以发现题目中各点的坐标变化规律,从而可以解答本题.本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,找出题目中点的横坐标的变化规律.3.【答案】y=6x+105(0<x≤655)或y=120−15x2(6≤x<8)【解析】解:①当长方体实心铁块的棱长为10cm和ycm的那一面平放在长方体的容器底面时,则铁块浸在水中的高度为8cm,此时,水位上升了(8−x)cm(x<8),铁块浸在水中的体积为10×8×y=80ycm3,∴80y=30×20×(8−x),∴y=120−15x2,∵y≤15,∴x≥6,即:y=120−15x2(6≤x<8),②当长方体实心铁块的棱长为10cm和10cm的那一面平放在长方体的容器底面时,同①的方法得,y=6x+106(0<x≤656),故答案为:y=6x+105(0<x≤655)或y=120−15x2(6≤x<8)分两种情况:利用实心铁块浸在水中的体积等于容器中水位增加后的体积减去原来水的体积建立方程求解即可.此题主要考查了从实际问题列一次函数关系式,正确找出相等关系是解本题的关键.4.【答案】y=−x+1或y=x−1【解析】解:如图所示,若点C在直线x=3上,则A,C的“相关矩形”与x轴平行的边长度为2,设C(3,y),就有|y|=2,∴y=±2,当C(3,2)时,直线AC的表达式为y=x−1;当C(3,−2)时,直线AC的表达式为y=−x+1;故答案为:y=−x+1或y=x−1.依据点C在直线x=3上,即可得到A,C的“相关矩形”与x轴平行的边长度为2,设C(3,y),就有|y|=2,可得y=±2,进而得到直线AC的表达式.本题主要考查了正方形的性质以及待定系数法求一次函数解析式,解题时注意:正方形的四条边都相等,四个角都是直角.5.【答案】(5,8) 4【解析】解:连接CM,由中心对称可知:AM=BM,由轴对称可知:MB =MC ,∴AM =CM =BM ,∴∠MAC =∠ACM ,∠MBC =∠MCB ,∵∠MAC +∠ACM +∠MBC +∠MCB =180°,∴∠ACB =90°,∴△ABC 是直角三角形.延长BC 交x 轴于点E ,过点C 作CF ⊥AE 于点F ,∵A(1,0),C(7,6),∴AF =CF =6,∴△ACF 是等腰直角三角形,∵∠ACE =90°,∴∠AEC =45°,∴E 点坐标为(13,0),设直线BE 的解析式为y =kx +b ,∵点C ,E 在直线上,{13k +b =07k +b =6解得{k =−1b =13∴y =−x +13,∵点B 由点A 经n 次斜平移得到,∴点B(n +1,2n),由2n =−n −1,解得n =4,∴B(5,8).故答案为:(5,8)、4.连接CM ,根据中心对称可得:AM =BM ,由轴对称可得:MB =MC ,所以AM =CM =BM ,进而可以证明△ABC 是直角三角形,延长BC 交x 轴于点E ,过点C 作CF ⊥AE 于点F ,可以证明△ACF 是等腰直角三角形,可得E 点坐标,进而可求直线BE 的解析式,再根据点B 由点A 经n 次斜平移得到,得点B(n +1,2n),代入直线解析式即可求得n 的值,进而可得点B 的坐标.本题考查了坐标与图形的变化−旋转、坐标与图形的变化−平移、坐标与图形的变化−对称,解决本题的关键是综合运用旋转、平移、对称的知识.6.【答案】y =35x −15【解析】解:由图1可知:一个正方形有4条边,两个正方形有4+3条边,∴m =1+3x ,由图2可知:一组图形有7条边,两组图形有7+5条边,∴m =2+5y ,所以:1+3x =2+5y即y =0.6x −0.2.分别根据图1,求出组装x 个正方形用的火柴数量,即m 与x 之间的关系,再根据图2找到y 与m 之间的等量关系,最后利用m 相同写出关于x ,y 的方程,整理即可表示出y 与x 之间的关系.读懂题意,根据实际意义列出关于两个变量之间的等式是求得函数关系式的关键.本题要注意分别找到x ,y 与m 之间的相等关系,利用m 作为等量关系列方程整理即可表示.7.【答案】4【解析】解:∵y是关于x的一次函数,设y=kx+b,∵当x的值减小1,y的值就减小2,∴y−2=k(x−1)+b=kx−k+b,即y=kx−k+b+2.又∵y=kx+b,∴−k+b+2=b,即−k+2=0,∴k=2.当x的值增加2时,∴y=(x+2)k+b=kx+b+2k=kx+b+4,∴当x的值增加2时,y的值增加4.故答案为:4.先根据题意列出关于k的方程,求出k的值即可得出结论.本题考查的是一次函数的性质,先根据题意得出k的值是解答此题的关键.8.【答案】2【解析】【分析】本题考查了一次函数的性质,找出当x=1时,m取最大值是解题的关键.令y1=y2,求出x值,由该值在−5≤x≤5中即可得知,当x=1时,m取最大值,将x=1代入y1=x+ 1即可得出结论.【解答】解:令y1=y2,则x+1=−2x+4,解得:x=1,当x=1时,y1=y2=2.∵对任意一个x,对应的y1,y2中的较小值记作m,且x满足−5≤x≤5,∴m的最大值是2.故答案为:2.9.【答案】−23【解析】解:直线y=kx+2恒过(0,2)即D点,梯形的面积为:(6+2)×22=8,直线y=kx+2与x轴的交点为E(−2k,0),如图:∵直线y=kx+2将梯形分成面积相等的两部分,∴S△AED=12×AE×OD=12×(−2k+1)×2=12×8=4,∴k=−23.故答案为:−23.首先根据题目提供的点的坐标求得梯形的面积,利用直线将梯形分成相等的两部分,求得直线与梯形的边围成的三角形的面积,进而求得其解析式即可.本题考查直线的交点,梯形的面积与三角形的面积公式的应用.此题难度适中,注意掌握数形结合思想与方程思想的应用.10.【答案】3717【解析】解:如图,分别求出y1,y2,y3交点的坐标A(32,32);B(259,259);C(6017,37 17)当x<32,y=y1;当32≤x<259,y=y2;当259≤x<6017,y=y2;当x≥6017,y=y3.∵y总取y1,y2,y3中的最小值,∴y的取值为图中红线所描述的部分,则y1,y2,y3中最小值的最大值为C点的纵坐标3717,∴y最大=3717.y始终取三个函数的最小值,y最大值即求三个函数的公共部分的最大值.此题主要考查了一次函数与一次不等式的综合应用,要先画出函数的图象根据数形结合解题,锻炼了学生数形结合的思想方法.11.【答案】−25【解析】解:作点A关于x=1的对称点A′(−1,−2),连接A′B交x=1于C,可求出直线A′B的函数解析式为y=45x−65,把C的坐标(1,n)代入解析式可得n=−25.先作出点A关于x=1的对称点A′,再连接A′B,求出直线A′B的函数解析式,再把x=1代入即可得.此题主要考查轴对称--最短路线问题,综合运用了一次函数的知识.12.【答案】y=−x+k(k为常数)【解析】解:∵对于点A(x1,y1),B(x2,y2),A⊕B=(x1+x2)+(y1+y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么C⊕D=(x3+x4)+(y3+y4),D⊕E=(x4+x5)+(y4+y5),E⊕F=(x5+x6)+(y5+y6),F⊕D=(x4+x6)+(y4+y6),又∵C⊕D=D⊕E=E⊕F=F⊕D,∴(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),∴x3+y3=x4+y4=x5+y5=x6+y6,令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=−x+k(k为常数)上,∴互不重合的四点C,D,E,F在同一条直线上.故答案为y=−x+k(k为常数).如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),先根据新定义运算得出x3+y3=x4+y4=x5+y5= x6+y6,令x3+y3=x4+y4=x5+y5=x6+y6=k,则可得结果.本题考查了一次函数图象上点的坐标特征,以及学生的阅读理解能力,有一定难度.13.【答案】√2π【解析】【解答】解:∵AM垂直于直线BP,∴∠BMA=90°,∴点M的路径是以AB的中点N为圆心,AB长的一半为半径的OA⏜,连接ON,∵直线y=−x+4与两坐标轴交A、B两点,∴OA=OB=4,∴ON⊥AB,∴∠ONA=90°,∵AB=√OA2+OB2=4√2,∴ON=2√2,∴OA⏜=90π180⋅2√2=√2π.故答案为:√2π.【分析】本题考查了一次函数的综合题,涉及了两坐标轴交点坐标及点的运动轨迹,难点在于根据∠BMC=90°,判断出点M的运动路径是解题的关键,同学们要注意培养自己解答综合题的能力.根据直线与两坐标轴交点坐标的特点可得A、B两点坐标,由题意可得点M的路径是以AB的中点N为圆心,AB长的一半为半径的OA⏜,求出OA⏜的长度即可.14.【答案】5032014【解析】解:令x=0,则y=1n+2,令y=0,则−n+1n+2x+1n+2=0,解得x=1n+1,所以,S n=12⋅1n+1⋅1n+2=12(1n+1−1n+2),所以,S 1+S 2+S 3+⋯+S 2012=12(12−13+13−14+14−15+⋯+12013−12014)=12(12−12014)=5032014. 故答案为:5032014.令x =0,y =0分别求出与y 轴、x 轴的交点,然后利用三角形面积公式列式表示出S n ,再利用拆项法整理求解即可.本题考查的是一次函数图象上点的坐标特点,表示出S n ,再利用拆项法写成两个数的差是解题的关键,也是本题的难点.15.【答案】(63,32)【解析】方法一:解:∵直线y =x +1,x =0时,y =1,∴A 1B 1=1,点B 2的坐标为(3,2),∴A 1的纵坐标是:1=20,A 1的横坐标是:0=20−1,∴A 2的纵坐标是:1+1=21,A 2的横坐标是:1=21−1,∴A 3的纵坐标是:2+2=4=22,A 3的横坐标是:1+2=3=22−1,∴A 4的纵坐标是:4+4=8=23,A 4的横坐标是:1+2+4=7=23−1,即点A 4的坐标为(7,8).据此可以得到A n 的纵坐标是:2n−1,横坐标是:2n−1−1.即点A n 的坐标为(2n−1−1,2n−1).∴点A 6的坐标为(25−1,25).∴点B 6的坐标是:(26−1,25)即(63,32).故答案为:(63,32).方法二:∵B 1C 1=1,B 2C 2=2,∴q =2,a 1=1,∴B 6C 6=25=32,∴OC 1=1=21=1,OC 2=1+2=22−1,OC 3=1+2+4=23−1…OC 6=26−1=63,∴B 6(63,32).首先利用直线的解析式,分别求得A 1,A 2,A 3,A 4…的坐标,由此得到一定的规律,据此求出点A n 的坐标,即可得出点B 6的坐标.此题主要考查了一次函数图象上点的坐标性质和坐标的变化规律,正确得到点的坐标的规律是解题的关键.16.【答案】y =x +2或y =−x +7【解析】解:∵对于一次函数y =kx +b ,当1≤x ≤4时,3≤y ≤6,∴点(1,3)、(4,6)在一次函数y =kx +b 的图象上或点(1,6)、(4,3)在一次函数y =kx +b 的图象上. 当点(1,3)、(4,6)在一次函数y =kx +b 的图象上时,{k +b =34k +b =6,解得:{k =1b =2, ∴此时一次函数的解析式为y =x +2;当(1,6)、(4,3)在一次函数y =kx +b 的图象上时,{k +b =64k +b =3,解得:{k =−1b =7,此时一次函数的解析式为y=−x+7.故答案为:y=x+2或y=−x+7.由一次函数的单调性即可得知点(1,3)、(4,6)在一次函数y=kx+b的图象上或点(1,6)、(4,3)在一次函数y=kx+b的图象上,根据点的坐标利用待定系数法即可求出一次函数的解析式,此题得解.本题考查了一次函数的性质以及待定系数法求一次函数解析式,根据点的坐标利用待定系数法求出一次函数解析式是解题的关键.17.【答案】6√2+2【解析】解:如图,连接CH,x+4分别交x轴,y轴于A,B两点,∵直线y=43∴OB=4,OA=3,∵C是OB的中点,∴BC=OC=2,∵∠PHO=∠COH=∠DCO=90°,∴四边形PHOC是矩形,∴PH=OC=BC=2,∵PH//BC,∴四边形PBCH是平行四边形,∴BP=CH,∴BP+PH+HQ=CH+HQ+2,要使CH+HQ的值最小,只须C、H、Q三点共线即可,∵点Q是点B关于点A的对称点,∴Q(−6,−4),又∵点C(0,2),根据勾股定理可得CQ=√(2+4)2+62=6√2,此时,BP+PH+HQ=CH+HQ+PH=CQ+2=6√2+2,即BP+PH+HQ的最小值为6√2+2;故答案为:6√2+2.x+4先确定OA和OB的长,证明四边形PHOC是矩形,得PH=OC=BC=2,再证明根据直线y=43四边形PBCH是平行四边形,则BP=CH,在BP+PH+HQ中,PH=2是定值,所以只要CH+HQ的值最小就可以,当C、H、Q在同一直线上时,CH+HQ的值最小,利用平行四边形的性质求出即可.本题考查了一次函数点的坐标的求法、三角形面积的求法和三点共线及最值,综合性强.18.【答案】(94,94) 【解析】解:过P 作MN ⊥y 轴,交y 轴于M ,交AB 于N ,过D 作DH ⊥y 轴,交y 轴于H , ∠CMP =∠DNP =∠CPD =90°,∴∠MCP +∠CPM =90°,∠MPC +∠DPN =90°,∴∠MCP =∠DPN ,∵P(1,1),∴OM =BN =1,PM =1,在△MCP 和△NPD 中{∠CMP =∠DNP ∠MCP =∠DPN PC =PD∴△MCP≌△NPD(AAS),∴DN =PM ,PN =CM ,∵BD =2AD ,∴设AD =a ,BD =2a ,∵P(1,1),∴DN =2a −1,则2a −1=1,a =1,即BD =2.∵直线y =x ,∴AB =OB =3,在Rt △DNP 中,由勾股定理得:PC =PD =√(3−1)2+(2−1)2=√5,在Rt △MCP 中,由勾股定理得:CM =√(√5)2−12=2,则C 的坐标是(0,3),设直线CD 的解析式是y =kx +3,把D(3,2)代入得:k =−13,即直线CD 的解析式是y =−13x +3,即方程组{y =−13x +3y =x 得:{x =94y =94, 即Q 的坐标是(94,94),②当点C 在y 轴的负半轴上时,作PN ⊥AD 于N ,交y 轴于H ,此时不满足BD =2AD ,故答案为:(94,9 4 ).过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,求出∠MCP=∠DPN,证△MCP≌△NPD,推出DN=PM,PN=CM,设AD=a,求出DN=2a−1,得出2a−1=1,求出a=1,得出D的坐标,在Rt△DNP中,由勾股定理求出PC= PD=√5,在Rt△MCP中,由勾股定理求出CM=2,得出C的坐标,设直线CD的解析式是y=kx+ 3,把D(3,2)代入求出直线CD的解析式,解由两函数解析式组成的方程组,求出方程组的解即可.本题考查了用待定系数法求出一次函数的解析式,全等三角形的性质和判定,解方程组,勾股定理,旋转的性质等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力,题目比较好,但是有一定的难度.19.【答案】(1)5;(2)2或−10.【解析】解:(1)∵P0(2,−3),O为坐标原点,∴d(O,P0)=|0−2|+|0−(−3)|=5.故答案为:5;(2)∵P(a,−3)到直线y=x+1的直角距离为6,∴设直线y=x+1上一点Q(x,x+1),则d(P,Q)=6,∴|a−x|+|−3−x−1|=6,即|a−x|+|x+4|=6,当a−x≥0,x≥−4时,原式=a−x+x+4=6,解得a=2;当a−x<0,x<−4时,原式=x−a−x−4=6,解得a=−10.故答案为:2或−10.【分析】(1)根据题中所给出的两点的直角距离公式即可得出结论;(2)先根据题意得出关于x的式子,再由绝对值的几何意义即可得出结论.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上给点的坐标一定适合此函数的解析式是解答此题的关键.20.【答案】(−3,1);(0,4);−1<a<1且0<b<2【解析】解:∵A1的坐标为(3,1),∴A2(0,4),A3(−3,1),A4(0,−2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2014÷4=503余2,∴点A 2014的坐标与A 2的坐标相同,为(0,4);∵点A 1的坐标为(a,b),∴A 2(−b +1,a +1),A 3(−a,−b +2),A 4(b −1,−a +1),A 5(a,b),…,依此类推,每4个点为一个循环组依次循环,∵对于任意的正整数n ,点A n 均在x 轴上方,∴{a +1>0−a +1>0,{−b +2>0b >0, 解得−1<a <1,0<b <2.故答案为:(−3,1),(0,4);−1<a <1且0<b <2.根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2014除以4,根据商和余数的情况确定点A 2014的坐标即可;再写出点A 1(a,b)的“伴随点”,然后根据x 轴上方的点的纵坐标大于0列出不等式组求解即可.本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点.。

2020年浙江省“三位一体”自主招生综合测试试卷(47)(有答案解析)

2020年浙江省“三位一体”自主招生综合测试试卷(47)(有答案解析)

2020年浙江省“三位一体”自主招生综合测试试卷(47)一、选择题(本大题共5小题,共25.0分)1.设,则代数式的值为A. 6B. 4C.D.2.在直线上依次取5个点,它们的横坐标分别为1,2,3,4,5,在这5个点中随意取2个点,则两点在同一反比例函数的图象上的概率是A. B. C. D.3.某班同学毕业时,都将自己的照片向本班其他同学送一张留念,全班一共送了1260张,如果全班有x名同学,根据题意,列出方程为A. B.C. D.4.在中,,AB边的长为10,AC边的长度可以在5,7,10,11中取值,满足这些条件的互不全等的三角形的个数是A. 4B. 5C. 6D. 75.如图,点C在线段BD上,BC::2,与为等边三角形,AD与BE交于点F,连结FC,给出下列两个结论:则下列说法正确的是平分;::2.A. 只有成立B. 只有成立C. 都成立D. 都不成立二、填空题(本大题共4小题,共20.0分)6.实数a、b在数轴上的位置如图所示,那么1,,,这四个数据的中位数是______.7.学校进行了一次智力测试,共25题.规定答对一题得2分,答错一题扣1分,未答的题不得分也不扣分.小刚同学共得了34分,且已知他有奇数道题目未答,则他有______道题未答.8.用四根长度为1,4,4,5的线段为边作梯形,则梯形面积所有可能的值是______.9.如图,中,,,,点D,E分别在BC,AB上,,若DE把的面积平分,则______.三、解答题(本大题共2小题,共30.0分)10.定义:函数其中为关于x的两个一次函数与的生成函数.请你解答下列问题:给定两个一次函数:,.求它们的生成函数在时的函数值;判断这两个函数图象的交点是否在它们的生成函数的图象上,请说明理由;设两个一次函数与的图象的交点为P,判断点P是否在它们的生成函数的图象上,并说明理由.11.如图,已知抛物线经过原点O,它的对称轴为直线动点P从抛物线的顶点A出发,在对称轴上以每秒1个单位的速度向上运动,设动点P运动的时间为t秒.连结OP并延长交抛物线于点B,连结AO、AB.求抛物线的函数解析式;当A,O,B三点构成以OB为斜边的直角三角形时,求t的值;请你探究:当时,在点P运动过程中,的外接圆圆心M所经过的路线长度是______请在横线上直接写出答案即可.-------- 答案与解析 --------1.答案:A解析:解:,,即,.故选:A.先利用已知条件得,两边平方后得到,再把变形为,然后利用整体代入的方法计算.本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.2.答案:B解析:解:在直线上依次取5个点A、B、C、D、E,它们的横坐标分别为1,2,3,4,5,则A表示;B表示;C表示;D表示;E表示.在这5个点中随意取2个点,树状图如图所示:由图可知,共有20种情况,两点在同一反比例函数图象上的情况数有4种,所以所求的概率为,故选:B.设这5个点分别为A、B、C、D、E,先求出它们的坐标,再列举出所有情况,看两点的横纵坐标的积相等的情况数占总情况数的多少即可.本题考查了反比例函数图象上点的坐标特征,一次函数图象上点的坐标特征,列表法与树状图法,概率的求法;画出树状图得到所求的情况数是解决本题的关键.3.答案:D解析:解:全班有x名同学,每名同学要送出张;又是互送照片,总共送的张数应该是.故选:D.如果全班有x名同学,那么每名同学要送出张,共有x名学生,那么总共送的张数应该是张,即可列出方程.本题考查了由实际问题抽象出一元二次方程.计算全班共送多少张,首先确定一个人送出多少张是解题关键.4.答案:B解析:解:过A作于E,,,,即AE是A到直线BC的最短距离,当时,此时三角形有1个;当此时三角形有2个;当时,此时三角形有1个;当时,此时三角形有1个;即存在三角形个,故选:B.根据角所对的直角边等于斜边的一半以及垂线段最短的性质求出AC边的最短值,然后选择即可得解.本题考查了直角三角形角所对的直角边等于斜边的一半的性质,垂线段最短,求出AC边的最小值是解题的关键.5.答案:C解析:解:作于M,于H,和均是等边三角形,,,,,即,在和中,,≌,,,,,,即FC平分;故正确;平分,,::2,::2.故正确.故选:C.作于M,于H,证明≌,可得,,则得出,可知正确,由可得出BF::2.本题考查了全等三角形的判定与性质,等边三角形的性质与判定,角平分线的判定定理和性质定理等知识,熟练掌握各性质与判定方法是解题的关键.6.答案:解析:解:根据实数a、b在数轴上的位置可得:,把这些数从小到大排列为:1,,,,则中位数;故答案为:.根据实数a、b在数轴上的位置先判断出这四个数据的大小,再根据中位数的定义进行解答即可.此题考查了中位数,熟练掌握中位数的定义是解题的关键,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.答案:5解析:解:设小刚答对了x道题,y道题未答,则答错了道题,依题意,得:,.又为正整数,y为正奇数,且,当时,.故答案为:5.设小刚答对了x道题,y道题未答,则答错了道题,根据总分答对题目数答错题目数,即可得出关于x,y的二元一次方程,结合“x为正整数,y为正奇数,且”,即可求出结论.本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.8.答案:、10解析:解:梯形的上底为1,下底为5时,如图,两腰长均为4的等腰梯形,作,于点E、F,则得矩形AEFD,所以,所以,所以高AE为:,所以;梯形的上底为1,下底为4时,两腰长分别为5和4的直角梯形,所以;若用长为1的线段作梯形的腰时,没有符合条件的梯形.故答案为:、10.梯形的上下两底一定不能相等,因而用长为为1,4,4,5的线段为边作梯形,有梯形的上底为1,下底为5;梯形的上底为1,下底为4;又若用长为1的线段作梯形的腰,共3种情况;分3种情况进行讨论求解即可.本题考查了梯形,正确对梯形的边长进行讨论是解决本题的关键.9.答案:解析:解:,,,,,,过D作于F,把的面积平分,,,,,,∽,,,,.故答案为:.根据三角函数的定义得到,由已知条件得到,过D作于F,由DE 把的面积平分,得到,求得,通过∽,根据相似三角形的性质得到,求得,根据勾股定理即可得到结论.本题考查了相似三角形的判定和性质,三角形的面积公式,正确的作出辅助线构造相似三角形是解题的关键.10.答案:解:和的生成函数为又当时,;方程组的解为这两个函数图象的交点坐标为.当时,交点在在它们的生成函数的图象上;设点为两图象的交点则,生成函数为当时,点P在它们的生成函数的图象上,解析:根据生成函数的定义写出和的生成函数,由和得出y的值即可;解方程组得这两个函数图象的交点坐标,结合的结论即可判断这两个函数图象的交点是否在它们的生成函数的图象上,设点为两图象的交点,先代入两个一次函数,再代入其生成函数,得出当时,,即可得到答案.本题考查了两个一次函数的图象是否有交点的问题,读懂题中定义并正确地代入计算是解题的关键.11.答案:解析:解:抛物线经过原点O,且对称轴是直线,,,则、,抛物线解析式为;设点,,点,为斜边,则,解得舍或,,则直线OB解析式为,当时,,即,;当点P运动时,的外接圆圆心M在线段OA的垂直平分线上运动,点M所经过的路线是一条线段,当时,点P运动到,此时点M是OA的垂直平分线和直线的交点,点,点直线AO解析式为:,的垂直平分线的解析式为,当,,点,当时,点P运动到,,点,点,,,,,直线的解析式为:,联立方程组或点,此时的外接圆的圆心是的中点,点,故答案为.由抛物线经过原点O且对称轴是直线,知,,求得b的值即可得出答案;设点,由知,利用勾股定理和两点距离公式可求a的值,即可求t的值;当点P运动时,的外接圆圆心M在线段OA的垂直平分线上运动,则点M所经过的路线是一条线段,分别求出和时,圆心M的坐标,即可求解.本题主要考查二次函数的综合问题,解题的关键是熟练掌握待定系数法求函数解析式、勾股定理、直角三角形外接圆的性质等知识点.。

浙江省2020年“三位一体”自主招生综合测试试卷(3)(含答案)

浙江省2020年“三位一体”自主招生综合测试试卷(3)(含答案)

浙江省2020年“三位⼀体”⾃主招⽣综合测试试卷(3)(含答案)2020年浙江省“三位⼀体”⾃主招⽣综合测试试卷(3)⼀、选择题(本⼤题共9⼩题,每⼩题4分,共36分)1. 若0x这四个数中()A. 1x 最⼤,x2最⼩ B. x最⼤,1x最⼩ C. x2最⼤,√x最⼩ D. x最⼤,x2最⼩2. ⼩明和⼩亮的⼝袋⾥⾯都放有五张不同的2008年北京奥运会福娃纪念卡,他们分别从⾃⼰⼝袋⾥摸出⼀张福娃纪念卡,则摸出的福娃都是贝贝的概率是()A. 125B. 25C. 15D. 183. ⽅程(x2+x?1)x+3=1的所有整数解的个数是()A. 5个B. 4个C. 3个D. 2个4. 顶点为A(6,?6),B(?4,?3),C(?1,??7),D(9,??4)的正⽅形在第⼀象限的⾯积是()A. 25B. 36C. 49D. 305. 使⽅程2x2?5mx+2m2=5的⼀根为整数的整数m的值共有()A. 1个B. 2个C. 3个D. 4个6. 函数y=a|x|与y=x+a的图象恰有两个公共点,则实数a的取值范围是()A. a>1B. ?1C. a≥1或a≤?1D. a>1或a7. 在△ABC中,AB=AC,∠BAC=80°,P在△ABC中,∠PBC=10°,∠PCB=30°,则∠PAB的度数为()A. 50°B. 60°C. 70°D. 65°8. ⼆次函数y=?x2+2x+8的图象与x轴交于B,C两点,点D平分BC,若在x轴上侧的A点为抛物线上的动点,且∠BAC为锐⾓,则AD的取值范围是()A. 3B. 3≤AD≤9C. 4D. 3≤AD≤89. ⼀个三⾓形有⼀内⾓为48°,如果经过其⼀个顶点作直线能把其分成两个等腰三⾓形,那么它的最⼤内⾓可能值有()A. 3个B. 4个C. 5个D. 6个⼆、填空题(本⼤题共8⼩题,每⼩题4分,共32分)10. 甲、⼄、丙三⼈各有糖若⼲块,甲从⼄处取来⼀些糖,使原来有糖的块数增加⼀倍,⼄从丙处取来⼀些糖,使留下的块数增加⼀倍,丙再从甲处取来⼀些糖,也使留下的块数增加⼀倍.这时三⼈的糖块⼀样多.开始时,丙有32块糖,则⼄原来有________块糖.11. 设a?b=2+√3,b?c=2?√3,则a2+b2+c2?ab?ac?bc=________.12. 已知△ABC为钝⾓三⾓形,其最⼤边AC上有⼀点P(点P与点A,C不重合),过点P作直线l,使直线l截△ABC所得的三⾓形与原三⾓形相似,这样的直线l可作的条数是________.13. 如图,△________中,∠________的平分线交________于________,若________=6________,________=4________,∠________=60°,则________的长为________.14. 已知a是整数,⼀次函数y=10x+a的图象与两坐标轴所围成的三⾓形的⾯积数为质数,则这个质数等于________.15. 如图,△________.16. ⼩王沿街匀速⾏⾛,发现每隔6分钟从背后驶过⼀辆18路公交车,每隔3分钟从迎⾯驶来⼀辆18路公交车.假设每辆18路公交车⾏驶速度相同,⽽且18路公交车总站每隔固定时间发⼀辆车,那么发车间隔的时间是________分钟.17. 如图,以半圆中的⼀条弦BC(⾮直径)为对称轴将弧BC折叠后与直径AB交于点D,若AD BD =23,且AB=10,则CB的长为________.三、解答题(本⼤题共5⼩题,共52分,解答应写出⽂字说明、证明过程或步骤)18. 解关于x的不等式:x2+3<4|x|.19. 如图(1),由直⾓三⾓形边⾓关系,可将三⾓形⾯积公式变形得到S△ABC=12bcsinA?①即三⾓形的⾯积等于两边之长与夹⾓正弦值之积的⼀半如图,在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β∵S△ABC=S△ACD+S△BCD,由公式①得到12AC?BC?sin(α+β)=12AC?CD?sinα+12BC?CD?sinβ即AC?BC?sin(α+β)=AC?CD?sinα+BC?CD?sinβ…②你能利⽤直⾓三⾓形关系及等式基本性质,消去②中的AC、BC、CD吗?若不能,说明理由;若能,写出解决过程.并利⽤结论求出sin75°的值.20. 如图,过△ABC内⼀点M做各边的平⾏线与各边分别交于D,E,F,G,L,N各点.求证:DEBC +FGAC+LNAB=2.21. 已知⼆次函数y1=ax2+4ax+4a?1的图象是M.(1)求M关于点R(1,?0)中⼼对称的图象N的解析式y2;(2)当2≤x≤5时,y2的最⼤值为√5,求a的值.22. 证明:只存在唯⼀⼀个三⾓形,它的三边长为三个连续的正整数,并且它的三个内⾓中有⼀个内⾓为另⼀个内⾓的2倍.参考答案1. A2. 共有25种情况,摸出的福娃都是贝贝的情况有1种,概率为1253. B4. 连接OA,过A、D两点的直线⽅程是y?646=x69?6,即y=?103x+16,解得它与x轴的交点E的横坐标是x=7.8,同理求得过A、B两点的直线⽅程是y=?310x+4.2,解得它与y轴的交点E的纵坐标是y=4.2,∴ S△AOE=12×7.8×6=23.4,S△AFO=12×4.2×6=12.6,∴ S△AOE+S△AFO=23.4+12.6=36,即顶点为A(6,6),B(﹣4,3),C (﹣1,﹣7),D(9,﹣4)的正⽅形在第⼀象限的⾯积是365. D6. D7. C8. A9. C10. 4011. 1512. 3或213. ABC,A,BC,D,AB,cm,AC,cm,A,AD,12√35cm14. 515. P1OA1,△P2A1A2是等腰直⾓三⾓形,点P1,P2在函数y=4x(x>0)的图象上,斜边OA1,A1A2都在x轴上,则点A2的坐标是(4√2,?0)16. 417. 4√518. 法⼀:原不等式化为①{x ≥0x 2?4x +3<0 或②{x <0x 2+4x +3<0,∵ x 2?4x +3=(x ?1)(x ?3),x 2+4x +3=(x +1)(x +3),∴解①得,1所以,原不等式的解为:1法⼆:原不等式化为:|x|2+3<4|x|,即(|x|?1)(|x|?3)<0,∴ 1<|x|<3,∴原不等式的解为?319. ①能消去②中的AC 、BC 、CD .将AC ?BC ?sin(α+β)=AC ?CD ?sinα+BC ?CD ?sin β,两边同除以AC ?BC 得: sin (α+β)=CD BC ?sin α+CD AC ?sin β③,⼜∵ cos β=CD BC 、cos α=CD AC ,代⼊③可得:sin (α+β)=sin α?cos β+cos α?sin β.②由sin (α+β)=sin α?cos β+cos α?sin β得:sin 75°=sin (30°+45°)=sin 30°?cos 45°+cos 30°?sin 45°=12×√22+√32×√22=√2+√64. 20. 证明:根据题意,DE?//?BC ,∴△ADE ∽△ABC∴ DE BC =AD AB ;∵△BFG ∽△BAC∴ FG AC =BF AB ;∵ AFML 是平⾏四边形,∴ LM =AF ;同理,MN =BD ;则LN AB =LM+MN AB ,∴ DE BC +FG AC +LN AB =AD+BF+LM+MN AB =2AB AB =2.21. 依题得,a ≠0,且y 1=ax 2+4ax +4a ?1=a(x +2)2?1,故图象M 的顶点为A(?2,??1),由对称性可知,图象N 的顶点为B(4,?1),且其开⼝⽅向与M的相反,∴y2=?a(x?4)2+1,即y2=?ax2+8ax?16a+1.当a<0时,抛物线N的开⼝向上,对称轴为x=4,若2≤x≤5,则当x=2时,y2取得最⼤值1?4a,由1?4a=√5得,a=1?√54.22. 证明:如图,在△ABC中,设∠A=2∠B,且三边长分别为a,b,c.延长CA到点D,使AD=AB=c,则CD=b+c,由∠A=2∠B,知∠ABC=∠D.从⽽,△ABC∽△BDC,故BCDC =ACBC,即ab+c=ba于是,a2=b(b+c)①当a>c>b时,设a=n+1,c=n,b=n?1,代⼊①式,解得,n=5.此时,a=6,b=5,c=4;当c>a>b时,设c=n+1,a=n,b=n?1,解得,n=2.此时,a=2,b=1,c=3,不能构成三⾓形;同理,当a>b>c时,可得,n2?3n?1=0,n不是整数,舍去.综上所述,满⾜条件的三⾓形只有⼀个,其三边长为4,5,6.。

2020年浙江省“三位一体”自主招生综合测试试卷(76)

2020年浙江省“三位一体”自主招生综合测试试卷(76)

2020年浙江省“三位一体”自主招生综合测试试卷(76)一、选择题(每小题6分,共30分)1.(6分)将正方形ABCD 折叠,使顶点A 与CD 边上的点M 重合,折痕交AD 于E ,交BC 于F ,边AB 折叠后与BC 边交于点G (如图).如果:3:2DM MC =,则::(DE DM EM = )A .7:24:25B .3:4:5C .5:12:13D .8:15:172.(6分)假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为( ) A .8分钟B .7分钟C .6分钟D .5分钟3.(6分)已知:二次函数22(y x x a a =++为大于0的常数),当x m =时的函数值10y <;则当2x m =+时的函数值2y 与0的大小关系为( ) A .20y > B .20y < C .2y O =D .不能确定4.(6分)记200720072007200811112212221S =+++⋯+++-,则S 所在的范围为( )A .01S <<B .12S <<C .23S <<D .34S <<5.(6分)如图,点A 是函数1y x=的图象上的点,点B ,C 的坐标分别为(2B -,2)-,(2C 2).试利用性质:“函数1y x=的图象上任意一点A 都满足||2AB AC -=下面问题:作BAC ∠的角平分线AE ,过B 作AE 的垂线交AE 于F ,已知当点A 在函数1y x=的图象上运动时,点F 总在一条曲线上运动,则这条曲线为( )A.直线B.抛物线C.圆D.反比例函数的曲线二、填空题(每小题6分,共36分)6.(6分)已知关于x的不等式(2)2a b x a b->-的解是52x>,则关于x的不等式0ax b+<的解为.7.(6分)已知方格纸中的每个小方格是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,在小方格的顶点上确定一点C,连接AB,AC,BC,使ABC∆的面积为3个平方单位.则这样的点C共有个.8.(6分)直角坐标系中,点(0,0)A,(2,0)B,(0C,23),若有一三角形与ABC∆全等,且有一条边与BC重合,那么这个三角形的另一个顶点坐标是.9.(6分)n个单位小立方体叠放在桌面上,所得几何体的主视图和俯视图均如图所示.那么n的最大值与最小值的和是.10.(6分)对大于或等于2的自然数m的n次幂进行如图方式的“分裂”,仿此,36的“分裂”中最大的数是 .11.(6分)甲,乙,丙3人用擂台赛形式进行训练,每局2人进行单打比赛,另1人当裁判,每-局的输方去当下-局的裁判,而由原来的裁判向胜者挑战.半天训练结束时发现甲共打了12局,乙共打了21局,而丙共当裁判8局.那么,整个比赛的第10局的输方一定是 . A .甲B .乙C .丙三、解答题(每小题16分,共64分)12.(16分)ABC ∆和DEF ∆是两个等腰直角三角形,90A D ∠=∠=︒,DEF ∆的顶点E 位于边BC 的中点上.(1)如图1,设DE 与AB 交于点M ,EF 与AC 交于点N ,求证:BEM CNE ∆∆∽; (2)如图2,将DEF ∆绕点E 旋转,使得DE 与BA 的延长线交于点M ,EF 与AC 交于点N ,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.13.(16分)已知函数2(1)(y x b x c b =+-+,c 为常数) ,这个函数的图象与x 轴交于两个不同的点1(A x ,0)和2(B x ,0). 若1x ,2x 满足211x x ->; (1) 求证:22(2)b b c >+;(2) 若1t x <,试比较2t bt c ++与1x 的大小, 并加以证明 .14.(16分)有A 、B 、C 、D 、E 5 位同学依次站在某圆周上, 每人手上分别拿有小旗 16 、 8 、 12 、 4 、 15 面, 现要使每人手中的小旗数相等 . 要求相邻的同学之间相互调整 (不 相邻的不作相互调整) ,设A 给B 有1x 面1(0x >时即为A 给B 有1x 面;1x O <时即为B 给A 有1x 面 . 以下同) ,B 给C 有2x 面:C 给D 有3x 面,D 给E 有4x 面,E 给A 有5x 面,问1x 、2x 、3x 、4x 、5x 分别为多少时才能使调动的小旗总数12345||||||||||x x x x x ++++最小?15.(16分)如图:已知a 为常数,21(20F a -+,0),22(20F a +,0),过2F 作直线l ,点A ,B 在直线l 上,且满足12122AF AF BF BF a -=-=,M ,N 分别为△12AF F ,△12BF F 的内切圆的圆心.(1)设M e 与12F F 相切于点1P ,N e 与12F F 切于点2P ,试判断1P 与2P 的位置关系,并加以证明;(2)已知218sin 9BF F ∠=,且92MN =,试求a 的值.2020年浙江省“三位一体”自主招生综合测试试卷(76)参考答案与试题解析一、选择题(每小题6分,共30分)1.(6分)将正方形ABCD 折叠,使顶点A 与CD 边上的点M 重合,折痕交AD 于E ,交BC 于F ,边AB 折叠后与BC 边交于点G (如图).如果:3:2DM MC =,则::(DE DM EM = )A .7:24:25B .3:4:5C .5:12:13D .8:15:17【解答】解:由折叠知,EM EA =, 设5CD AD a ==,5DE a EM ∴=-,3DM a =,2MC a =, 在Rt EDM ∆中,222EM DE DM =+, 即222(5)(3)ME a ME a =-+, 解得175ME a =85ED a ∴=817:::3:8:15:1755DE DM EM a a a ∴==.故选:D .2.(6分)假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为( ) A .8分钟B .7分钟C .6分钟D .5分钟【解答】解:第一分钟通知到1个学生; 第二分钟最多可通知到123+=个学生; 第三分钟最多可通知到347+=个学生;第四分钟最多可通知到7815+=个学生; 第五分钟最多可通知到151631+=个学生; 第六分钟最多可通知到313263+=个学生; 答:至少用6分钟. 故选:C .3.(6分)已知:二次函数22(y x x a a =++为大于0的常数),当x m =时的函数值10y <;则当2x m =+时的函数值2y 与0的大小关系为( ) A .20y >B .20y <C .2y O =D .不能确定【解答】解:Q 抛物线与x 轴有两个交点∴△2240a =->,即1a <又0a >,对称轴为1x =- 据题意画草图可知当20x -<<时,0y < 而当x m =时的函数值10y < 故20m -<<则当2x m =+时,函数值2y 与0的大小关系为20y >.故选A .4.(6分)记200720072007200811112212221S =+++⋯+++-,则S 所在的范围为( )A .01S <<B .12S <<C .23S <<D .34S <<【解答】解:200720072007200811112212221S =+++⋯+++-,根据题意每个数都大于2008121-,每个数都小于200712,总共有20072个数,故20072007200820071102.2.212s <<<-,故01S <<.故选:A .5.(6分)如图,点A是函数1yx=的图象上的点,点B,C的坐标分别为(2B-,2)-,(2C,2).试利用性质:“函数1yx=的图象上任意一点A都满足||22AB AC-=”求解下面问题:作BAC∠的角平分线AE,过B作AE的垂线交AE于F,已知当点A在函数1yx=的图象上运动时,点F总在一条曲线上运动,则这条曲线为()A.直线B.抛物线C.圆D.反比例函数的曲线【解答】解:如图:延长AC交BF的延长线于G,连接OF.AF BG⊥Q,90AFB AFG∴∠=∠=︒,90BAF ABF∴∠+∠=︒,90G GAF∠+∠=︒,AEQ为BAG∠的平分线,BAF FAG∴∠=∠,ABF G∴∠=∠,AB AG∴=,AF BG⊥Q,BF FG ∴=,(B Q ,,C ,OB OC ∴=,12OF CG ∴=,AC AG CG =-Q ,AB AG =, AB AC CG ∴-=,||AB AC -=Q ,CG ∴=OF ∴=∴点F 在以O 为半径的圆上运动.故选:C .二、填空题(每小题6分,共36分)6.(6分)已知关于x 的不等式(2)2a b x a b ->-的解是52x >,则关于x 的不等式0ax b +<的解为 8x >- .【解答】解:Q 关于x 的不等式(2)2a b x a b ->-的解是52x >, 20a b ∴->,22a bx a b->- 2a b ∴>,2522a b a b -=- 24105a b a b ∴-=- 8a b ∴= 28a a ∴> 0a ∴< 0ax b +<Q ax b ∴<-b x a∴>-8a b =Q 8x ∴>-故答案为:8x >-.7.(6分)已知方格纸中的每个小方格是边长为1的正方形,A ,B 两点在小方格的顶点上,位置如图所示,在小方格的顶点上确定一点C ,连接AB ,AC ,BC ,使ABC ∆的面积为3个平方单位.则这样的点C 共有 6 个.【解答】解:如图,符合条件的点有6个.8.(6分)直角坐标系中, 点(0,0)A ,(2,0)B ,(0C ,3),若有一三角形与ABC ∆全等, 且有一条边与BC 重合, 那么这个三角形的另一个顶点坐标是 (2,23)或3)或(3)- .【解答】解:(0,0)A Q ,(2,0)B ,(0C ,3),60ABC ∴∠=︒分三种情况进行讨论:(1) 当另一是点D ,当ABC ∆≅△2D BC 时, 点A 与点D 关于BC 对称, 过点D 作DE AB ⊥于点E ,1BE ∴=,123AE =+=,22sin603D E =⨯︒=,2D ∴的坐标是3);(2) 当ABC ∆≅△1D CB 时, 当1D 在直线BC 的上面时, 则四边形ABDC 是矩形, 因而D 的坐标是(2,3);(3) 当ABC DCB ∆≅∆时, 当3D 在直线BC 的下面时, 过D 作3D F x ⊥轴, 则1AF =,3DF =,D ∴的坐标是(1,3)-.∴这个三角形的另一个顶点坐标是(2,23)或(3,3)或(1,3)-9.(6分)n 个单位小立方体叠放在桌面上,所得几何体的主视图和俯视图均如图所示.那么n 的最大值与最小值的和是 23 .【解答】解:综合主视图和俯视图,底面有3216++=个,第二层最多有5个,最少有2个,第三层最多有3个,最少有1个,那么n 的最大和最小值的和是66523123+++++=. 故答案为:23.10.(6分)对大于或等于2的自然数m 的n 次幂进行如图方式的“分裂”,仿此,36的“分裂”中最大的数是 41 .【解答】解:设最大的奇数为n ,则36216(2)(4)(6)(8)(10)n n n n n n ==+-+-+-+-+- 解得41n =, 所以最大的数为41.11.(6分)甲,乙,丙3人用擂台赛形式进行训练,每局2人进行单打比赛,另1人当裁判,每-局的输方去当下-局的裁判,而由原来的裁判向胜者挑战.半天训练结束时发现甲共打了12局,乙共打了21局,而丙共当裁判8局.那么,整个比赛的第10局的输方一定是 . A .甲B .乙C .丙【解答】解:根据题意,知丙共当裁判8局,所以甲乙之间共有8局比赛, 又甲共打了12局,乙共打了21局,所以甲和丙打了4局,乙和丙打了13局, 三个人之间总共打了(8413)25++=局,考查甲,总共打了12局,当了13次裁判,所以他输了12次.所以当n 是偶数时,第n 局比赛的输方为甲,从而整个比赛的第10局的输方必是甲. 三、解答题(每小题16分,共64分)12.(16分)ABC ∆和DEF ∆是两个等腰直角三角形,90A D ∠=∠=︒,DEF ∆的顶点E 位于边BC 的中点上.(1)如图1,设DE 与AB 交于点M ,EF 与AC 交于点N ,求证:BEM CNE ∆∆∽; (2)如图2,将DEF ∆绕点E 旋转,使得DE 与BA 的延长线交于点M ,EF 与AC 交于点N ,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.【解答】证明:(1)ABC ∆Q 是等腰直角三角形, 45MBE ∴∠=︒,135BME MEB ∴∠+∠=︒又DEF ∆Q 是等腰直角三角形,45DEF ∴∠=︒ 135NEC MEB ∴∠+∠=︒BME NEC ∴∠=∠,(4分) 而45B C ∠=∠=︒, BEM CNE ∴∆∆∽.(6分)(2)与(1)同理BEM CNE ∆∆∽,∴BE EMCN NE=.(8分) 又BE EC =Q ,∴EC EMCN NE=,(10分) 则ECN ∆与MEN ∆中有EC MECN EN=, 又45ECN MEN ∠=∠=︒, ECN MEN ∴∆∆∽.(12分)13.(16分)已知函数2(1)(y x b x c b =+-+,c 为常数) ,这个函数的图象与x 轴交于两个不同的点1(A x ,0)和2(B x ,0). 若1x ,2x 满足211x x ->; (1) 求证:22(2)b b c >+;(2) 若1t x <,试比较2t bt c ++与1x 的大小, 并加以证明 . 【解答】证明: (1)Q 令2(1)y x b x c =+-+中0y =, 得到2(1)0x b x c +-+=,2(1)(1)4b b cx --±--∴=,又211x x ->, ∴2(1)41b c -->,22141b b c ∴-+->,22(2)b b c ∴>+;(2) 由已知212(1)()()x b x c x x x x +-+=--,212()()x bx c x x x x x ∴++=--+, 212()()t bt c t x t x t ∴++=--+,2112112()()()(1)t bt c x t x t x t x t x t x ++-=--+-=--+,1t x <Q , 10t x ∴-<, 211x x ->Q , 121t x x ∴<<-, 210t x ∴-+<, 12()(1)0t x t x ∴--+>,即21t bt c x ++>.14.(16分)有A 、B 、C 、D 、E 5 位同学依次站在某圆周上, 每人手上分别拿有小旗 16 、 8 、 12 、 4 、 15 面, 现要使每人手中的小旗数相等 . 要求相邻的同学之间相互调整 (不 相邻的不作相互调整) ,设A 给B 有1x 面1(0x >时即为A 给B 有1x 面;1x O <时即为B 给A 有1x 面 . 以下同) ,B 给C 有2x 面:C 给D 有3x 面,D 给E 有4x 面,E 给A 有5x 面,问1x 、2x 、3x 、4x 、5x 分别为多少时才能使调动的小旗总数12345||||||||||x x x x x ++++最小?【解答】解: 由于共有小旗面数为1681241555++++=面, 要使每人手中的小旗面数相等, 每人均为 11 面 .由题意:1223344581112114111511x x x x x x x x +-=⎧⎪+-=⎪⎨+-=⎪⎪+-=⎩,变形得:123242523162x x x x x x x x =+⎧⎪=+⎪⎨=-⎪⎪=-⎩,123452222222222|||||||||||3||||1||6||2||3||1||||2||6|x x x x x x x x x x x x x x x ∴++++=+++++-+-=+++++-+-,设实数2x 在数轴上的对应点为P ,实数3-,1-, 0 , 2 , 6 在数轴上的对应点分别为1P ,2P ,3P ,4P ,5P ,1234512345|||||||||||||||||||x x x x x PP PP PP PP PP ∴++++=++++,当且仅当P 在线段15P P 上时15||||PP PP +有最小值 9 , 当且仅当P 在线段24P P 上时24||||PP PP +有最小值 3 , 当且仅当P 与点3P 重合时3||PP 有最小值 0 , 即当且仅当P 与点3P 重合2(0)x =时,1234512345||||||||||x x x x x PP PP PP PP PP ++++=++++有最小值 12 .当13x =,20x =,31x =,46x =-,52x =-时12345||||||||||x x x x x ++++有最小值 12 .15.(16分)如图:已知a 为常数,21(20F a -+0),22(20F a +0),过2F 作直线l ,点A ,B 在直线l 上,且满足12122AF AF BF BF a -=-=,M ,N 分别为△12AF F ,△12BF F 的内切圆的圆心.(1)设M e 与12F F 相切于点1P ,N e 与12F F 切于点2P ,试判断1P 与2P 的位置关系,并加以证明;(2)已知218sin 9BF F ∠=,且92MN =,试求a 的值.【解答】解:(1)1P 与2P 重合. 证明:由题意得AC AD =, 122AF AF a -=Q , 122CF DF a ∴-=;又111221FC F PF D F P ==Q , 11122PF PF a ∴-=,同理21222P F P F a -=, 1P ∴与2P 重合.(2)由(1)知:112MP F F ⊥,212NP F F ⊥,1P,2P 重合. M ∴,1P ,N 共线,且12MN F F ⊥,连接MN ,NE ,MD ,则90NED MDE ∠=∠=︒ 过N 作NH MD ⊥,H 为垂足;12290MPF MDF ∠=∠=︒Q ,21HMN BF F ∠=∠,218sin sin 9HMN BF F ∴∠=∠=, 又92MN =, sin 4NH MN HMN ∴=∠=,4ED ∴=;而2212DF F P F E ==, 212F P ∴=,又由(1)11122PF PF a -=, 1122PF a ∴=+,2111222220PF PF a a ∴+=++=+解得4a .。

2020年浙江省单招单考数学试卷

2020年浙江省单招单考数学试卷

2020年浙江省单独考试招生文化考试数 学 试 题 卷姓名:____________ 准考证号:____________ 本试题卷共三大题,共4页。

满分150分,考试时间150分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

一、单项选择题(本大题共20小题,1——10小题每小题2分,11——20小题每小题3分,共50分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的,错涂、多涂或未涂均不得分) 1. 集合{1278}A ,,,,集合{2358}B ,,,,则A B ( )A .{2}B .{35},C .{28},D .{123578},,,,,2. “45”是“2sin2”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件3. 函数21()x f x x的定义域为( ) A .[1,0)01](, B .[1,1]C .01](,D .(1][1,),4. 从2名医生、4名护士中,选出1名医生和2名护士组成三人医疗小组,选派的种数是( ) A .8B .12C .20D .245. 如图,正方形ABCD 的边长为1,则||AB BC CD DA AC BD ( )A .0 BC .2D . 6. 直线3x 的倾斜角为( )A .0B .30C .60D .907. 角α的终边上有一点(12,5)P ,则sin ( ) A .512B .512C .513D .5138. 双曲线221x y 与直线1x y 交点的个数为( )A .0B .1C .2D .49. 下列叙述中,错误..的是( ) A .平行于同一个平面的两条直线平行 B .平行于同一条直线的两条直线平行 C .垂直于同一条直线的两个平面平行D .垂直于同一个平面的两条直线平行10.李老师每天采取“先慢跑、再慢走”的方式锻炼身体,慢跑和 慢走都是匀速的,运动的距离s (米)关于时间t (分钟)的函 数图像如图所示,他慢走的速度为( ) A .55米/分钟 B .57.5米/分钟 C .60米/分钟 D .67.5米/分钟 11.若直线y x b 经过抛物线24x y 的焦点,则b 的值是( )A .2B .1C .1D .212. 2020角的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 13.已知点(3,4)A ,(7,6)B ,则线段AB 的中点坐标为( )A .(5,1)B .(25),C .(102),D .(410),14.若函数21y x kx 的图像与x 轴没有交点,则k 的取值范围是( )A .(2,)B .(2),C .(2)(2,),D .(2,2)15.抛掷二枚骰子,“落点数之和为9”的概率是( ) A .12B .13C .16D .1916.下列直线中,与圆22(1)(2)5x y 相切的是( )A .210xy B .210x y C .210xy D .210x y17.已知a ,b ,c 是实数,下列命题正确的是( ) A .若a b ,则22a bB .若22a b ,则a bC .若22ac bc ,则a bD .若a b ,则22ac bc18.函数sin cos y x x 的最小正周期为( )A .2B .C .2D .1 19.设数列{}n a 的前n 项和为n S ,若11a ,121nn S a (*n N ),则3a ( )A .2B .1C .1D .220.设直线y x m 与曲线2210x y x ()有公共点,则实数m 的取值范围是( ) A .[22],B .[11],C .[12],D .[21],二、填空题(本大题共7小题,每小题4分,共28分) 21.已知函数212()32x x f x x x,,,则[(2)]f f __________.22.若1x ,1x ,24x 成等差数列,则x __________.23.若正数a ,b 满足20ab ,则2a b 的最小值为__________.24.函数4sin(cos(yx x ))的最大值为__________. 25. 6212xx展开式中第二项的系数为__________.26.如图所示,某几何体由正四棱锥和正方体构成,正四棱锥侧,正方体棱长为1,则PB __________. 27.已知双曲线22221x y a b 的渐近线方程为2y x ,则该双曲线的离心率为__________.三、解答题(本大题共8小题,共72分)(解答应写出文字说明及演算步骤)28.(本题7分)计算:1226619log 3log 12ln 0!(20202019)(3)4e.29.(本题8分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知60A ,23a ,22b .(1)求∠B 的大小;(4分) (2)求边长c .(4分)30.(本题9分)已知α为锐角,且1cos 3. (1)求sin ,tan ;(4分) (2)求sin()6.(5分)31.(本题9分)已知圆M 的圆心为(4,2),半径为6,直线120l x y :.(1)写出圆M 的标准方程;(4分)(2)直线2l 与1l 平行,且截圆M 的弦长为4,求直线2l 的方程.(5分)32.(本题9分)如图所示,正方体ABCD -A ′B ′C ′D ′的棱长为6,点M 在棱DD ′上,且12D MMD . 连结MB ,MA ′,MB ′,MC ′,A ′C ′.(1)求直线BM 与平面ABCD 所成角的正切值;(4分) (2)求三棱锥M -A ′B ′C ′的体积.(5分)33.(本题10分)现有长为11的铝合金材料,用它做成如图所示的窗框,要求中间竖隔1EF ,且材料全部用完.设AB x ,窗框面积为S .(长度单位:米)(1)求S 关于x 的函数关系式;(5分)(2)若 2.3AB AD ,求S 的最大值.(5分)34.(本题10分)若椭圆22221(0)x y a b a b 的焦距为21的直线经过椭圆的左焦点,交椭圆于A ,B 两点.(1)求椭圆的标准方程;(5分) (2)求|AB |的值.(5分)35.(本题10分)随着无线通信技术的飞速发展,一种新型的天线应运而生.新型天线结构如图所示:以边长为1的正方形的4个顶点为顶点,向外作4个边长为12的正方形,构成1阶新型天线;以1阶新型天线的4个小正方形的12个外部顶点为顶点,向外作12个边长为212的正方形,构成2阶新型天线;…….按上述规则进行下去.记n a 为n 阶新型天线所有正方形个数,n b为n 阶新型天线所有正方形周长之和. (1)写出1a ,2a ,3a 和1b ,2b ,3b ;(6分) (2)求n a 与n b .(4分)。

2020年浙江省“三位一体”自主招生数学测试试卷(74)(有答案解析)

2020年浙江省“三位一体”自主招生数学测试试卷(74)(有答案解析)

2020年浙江省“三位一体”自主招生数学测试试卷(74)(有答案解析)2020年浙江省“三位一体”自主招生综合测试试卷(74)一、选择题(本大题共9小题,共36.0分)1.“割圆术”是求圆周率的一种算法.公元263年左右,我国一位著名的数学家发现当圆的内接正多边形的边数无限增加时,多边形面积可无限逼近圆面积,即所谓“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”请问上述著名数学家为A. 刘徽B. 祖冲之C. 杨辉D. 秦九昭2.某校食堂有4元、5元、6元三种价格的饭菜供学生们选择每人限购一份三月份销售该三种价格饭菜的学生比例分别为、、,则该校三月份学生每餐购买饭菜的平均费用是A. 元B. 元C. 5元D. 元3.在初中已学过的一次函数、反比例函数和二次函数等函数中,它们的图象与任意一条直线是任意实数交点的个数为A. 必有一个B. 一个或两个C. 至少一个D. 至多一个4.同时掷两个骰子,其中向上的点数之和是5的概率是A. B. C. D.5.给你一列数:1,l,2,6,24,请你仔细观察这列数的排列规则,然后从四个供选择单选项中选出一个你认为最合理的一项,来填补其中的空缺项,使之符合原数列的排列规律.A. 48B. 96C. 120D. 1446.已知.二次函数是实数,当自变量任取,时,分别与之对应的函数值,满足,则,应满足的关系式是A. B.C. D.7.在8个银元中混进了一个大小形状颜色完全一样的假银元,已知7个真银元的重量完全相同,而假银元比真银元稍轻点儿,你用一台天平最少次就能找出这枚假银元.A. lB. 2C. 3D. 48.如图,P是圆D的直径AB的延长线上的一点,PC与圆D相切于点C,的平分线交AC于点Q,则A.B.C.D.9.十进制12345678二进制110111001011101111000观察二进制为1位数、2位数、3位数时,对应的十进制的数,当二进制为6位数时,能表示十进制中的最大数是A. 61B. 62C. 63D. 64二、填空题(本大题共7小题,共21.0分)10.某校去年投资2万元购买实验器材,预计今明2年的投资总额为8万元.若该校这两年购买的实验器材的投资年平均增长率为x,则可列方程为______.11.如图,在平行四边形ABCD中,于E,于F,,且,则平行四边形ABCD的周长是______ .12.在一个木制的棱长为3的正方体的表面涂上颜色,将它的棱三等分,然后从等分点把正方体锯开,得到27个棱长为l的小正方体,将这些小正方体充分混合后,装入口袋,从这个口袋中任意取出一个小正方体,则这个小正方体的表面恰好涂有两面颜色的概率是______.13.已知关于x的一元二次方程与有一个公共实数根,则______.14.一个样本为1、3、2、2、a,b,已知这个样本的众数为3,平均数为2,那么这个样本的方差为______.15.如图,在梯形ABCD中,,,,,则该梯形的面积______.16.某计算机用户计划用不超过500元的资金购买单价分别为60元、70元的A类软件和B类软件,根据需要A类软件至少买3片,B类软件至少买2片,则不同的选购方式共有______种.三、计算题(本大题共1小题,共10.0分)17.已知,求的值.四、解答题(本大题共5小题,共53.0分)18.在凸四边形ABCD中,,且四个内角中有一个角为,求其余各角的度数.19.某商店若将进价为100元的某种商品按120元出售,一天就能卖出300个.若该商品在120元的基础上每涨价l元,一天就要少卖出10个,而每减价l完,一天赢可多卖出30个.问:为使一天内获得最大利润,商店应将该商品定价为多少?20.如图,,是等边三角形,点,在函数的图象上,点,在x轴的正半轴上,分别求,的面积.21.如图,在中,O是内心,点E,F都在大边BC上,已知,.求证:O是的外心;若,,求的大小.22.如图,正三角形ABC的边长为l,点M,N,P分别在边BC,AB上,设,,,且.试用x,y,z表示的面积求面积的最大值.答案和解析1.【答案】A【解析】解:上述著名数学家是刘徽.故选:A.根据数学史的了解进行选择.此题考查了数学常识的知识,要多读书,了解一些有关数学的故事等.2.【答案】B【解析】解:平均费用为元.故选:B.用加权平均数的计算方法计算即可.此题考查了加权平均数的知识,属于简单题目.把所有数据相加后再除以数据的个数即得平均数.3.【答案】D【解析】解:任意一条直线是任意实数是平行于y轴的一条直线,在初中已学过的一次函数、反比例函数和二次函数等函数中,只有反比例函数与时,没有交点,其他只有一个交点.它们的图象与任意一条直线交点的个数至多有一个.故选:D.根据直线是任意实数的性质,得出一次函数、反比例函数和二次函数等函数中与它的关系,直接得出答案.此题主要考查了函数图象与直线是任意实数的性质,根据已知得出任意一条直线是任意实数是平行于y轴的一条直线是解决问题的关键.4.【答案】C【解析】解:列表得:共有种等可能的结果,向上的点数之和是5的情况有4种,两个骰子向上的一面的点数和为5的概率为.故选:C.列举出所有情况,看点数之和为5的情况占总情况的多少即可.此题考查了树状图法与列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率所求情况数与总情况数之比.5.【答案】C 【解析】解:观察所给数字可知,第二个数,第三个数,第四个数,第五个数,故可知第六个数.故选:C.观察所给数字可知,第二个数,第三个数,第四个数,第五个数,故可知第六个数,继而即可得出答案.本题考查规律型中的数字变化问题,仔细观察题中所给数字,可知第n个数第个数.6.【答案】D【解析】解:,抛物线对称轴为,开口向上,离对称轴越远,函数值越大,又,满足,可得,故选:D.在利用二次函数的增减性解题时,对称轴是非常重要的.根据、、,与对称轴的大小关系,判断、、的大小关系.本题主要考查了函数的对称轴求法和函数的单调性,难度一般,解答本题的关键是正确寻找出对称轴,这是解答本题的突破口.7.【答案】B【解析】解:8个银元分成4组,将其中的两组放在天平的两边进行第一次测量,天平平衡的一组没有假银元,天平不平衡,那么假银元就在较轻的那组,再一次把较轻的一组分开放在天平的两边进行第二次测量,则较轻的是假银元,所以用一台天平最少2次就能找出这枚假银元.故选:B.可以把8个银元分成4组,将其中的两组放在天平的两边进行第一次测量,天平平衡的一组没有假银元,天平不平衡,那么假银元就在较轻的那组;再把这组分开用天平测,可找出假银元.此题考查的知识点是推理与论证,关键是首先分成4组,先找出较轻的一组,再测即得.8.【答案】B【解析】解:连接BC交PQ于E,与圆D相切于点C,,为直径,,平分,,,,.故选:B.首先连接BC交PQ于E,由PC与圆D相切于点C,根据弦切角定理,即可得,又由AB为直径,即可得,然后由PQ平分与三角形外角的性质,即可证得,则可求得的度数.此题考查了圆的切线的性质,圆周角的性质,弦切角定理,等腰直角三角形的性质,以及三角形外角的性质等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想的应用.9.【答案】C【解析】解:表示十进制中表示的数最大时,则二进制数是111111,能表示十进制是:.故选:C.根据表可以得到二进制的数转化十进制的数,,,,;表示十进制中表示的数最大时,则二进制数是111111,根据规律即可求得十进制表示的数.本题考查了有理数的计算,关键是正确观察图表,理解二进制的数写成十进制的数的方法.10.【答案】【解析】解:设该校这两年购买的实验器材的投资年平均增长率为x,今年的投资金额为:;明年的投资金额为:;所以根据题意可得出的方程:.故答案为:.本题为增长率问题,一般用增长后的量增长前的量增长率,如果该校这两年购买的实验器材的投资年平均增长率为x,根据题意可得出的方程.增长率问题,一般形式为,a为起始时间的有关数量,b为终止时间的有关数量.11.【答案】8【解析】【分析】要求平行四边形的周长就要先求出AB、AD的长,利用平行四边形的性质和勾股定理即可求出.解题关键是利用平行四边形的性质结合等角对等边、勾股定理来解决有关的计算和证明.【解答】解:,,,则,,设,则,在中,根据勾股定理可得,同理可得则平行四边形ABCD的周长是故答案为8.12.【答案】【解析】解:在27个小正方体中,恰好有三个面都涂色有颜色的共有8个,恰好有两个都涂有颜色的共12个,恰好有一个面都涂有颜色的共6个,表面没涂颜色的1个.由题意知本题是一个等可能事件的概率,试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,满足条件的事件是选出的是恰好涂有两面颜色的正方体,有12种结果,故概率为.故答案为.本题是一个等可能事件的概率,试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,满足条件的事件是选出的是表面恰好涂有两面颜色的正方体,有12种结果,根据等可能事件的概率得到结果.本题考查等可能事件的概率,考查计数原理,考查正方体的结构特征,是一个综合题目,在解题时注意分割后的小正方体一定要数清楚,本题是一个易错题.13.【答案】【解析】解:与有一个公共实数根,有一个实数根,,把代入得:.故答案为:.本题需先根据与有一个公共实数根,求出x的值,再把x的值代入原方程即可求出m的值.本题主要考查了一元二次方程的解的概念,在解题时要能够灵活应用解的概念求出结果是本题的关键.14.【答案】【解析】解:因为众数为3,可设,,c未知平均数,解得根据方差公式故填.因为众数为3,表示3的个数最多,因为2出现的次数为二,所以3的个数最少为三个,则可设a,b,c中有两个数值为另一个未知利用平均数定义求得,从而根据方差公式求方差.本题考查了众数、平均数和方差的定义.15.【答案】18【解析】解:取CD的中点E,连接BE,,是菱形,,,,,,,.四边形ABCD的面积是18.故答案为18.取CD的中点E,连接BE,从而得到进而判定四边形ABED是菱形,得到,从而得到然后得到:.本题考查了梯形的性质,解题的关键是正确地作出辅助线,熟记梯形中常用辅助线的作法对解决此类题目有很大的帮助.16.【答案】7【解析】解:设购买A、B类软件分别为x,y片,根据题意得:,,,当,时,,当,时,,当,时,,当,时,,当,时,,当,时,舍去,当,时,,当,时,舍去,当,时,舍去,当,时,,当,时,舍去,当,时,舍去,不同的选购方式共有7种.故答案为:7.首先设购买A、B类软件分别为x,y片,根据题意即可得不等式组:,解此不等式组,然后根据分类讨论的思想求解即可求得答案.此题考查了不等数组的实际应用问题.此题难度较大,解题的关键是注意理解题意,根据题意求得方程组,然后根据其性质解题,注意分类讨论思想的应用.17.【答案】解:,,原式.【解析】先化简,再代入求值即可.本题考查了二次根式的化简与求值,将二次根式的化简是解此题的关键.18.【答案】解:设,则,,,,.1、时,,,,;2、时,,,,,.3、时,,,,,4、,,,,,.【解析】可设,根据四边形内角和等于,分四种情况进行讨论,从而求解.本题考查了多边形内角与外角,四边形内角和等于,由于四个内角中有一个角为,不确定,故应该分类讨论.19.【答案】解:按120元出售,一天就能卖出300个,可获得利润:元;设涨价为x元,则可卖出个,设利润为y元,则;若设降价x元,则可以卖出个,设利润为y元,则:;,所以当售价定为115元获得最大为6750元.综上所述,当定价为115元时,商店可获得最大利润6750元.【解析】分别以120元为基础,当涨价时,大于120元,当降价时,小于120元,利用每个商品的利润卖出数量总利润分别写出函数关系式;利用配方法求得两个函数解析式的最大值,比较得出答案.此题主要考查了二次函数在实际问题中的运用,根据利润售价进价卖的件数,列出函数解析式,求最值是解题关键.20.【答案】解:分别过、作x轴的垂线,垂足分别为D、E,如图,设,.,是等边三角形,,,,,的坐标为,的坐标为,又点在函数的图象上,,解得舍去,,.点在函数的图象上,,解得,舍去,,,的面积,的面积.【解析】分别过、作x轴的垂线,垂足分别为D、E,设,根据等边三角形的性质和含30度的直角三角形三边的关系得到,,,得到的坐标为,的坐标为,然后先把的坐标代入反比例解析式求得m的值,再把的坐标代入反比例解析式得到n的值,这样就确定两等边三角形的边长,然后根据等边三角形的面积等于其边长的平方的倍计算即可.本题考查了点在反比例函数图象上,则点的横纵坐标满足其解析式.也考查了含30度的直角三角形三边的关系以及等边三角形的性质.21.【答案】解:证明:连接OA、OB、OC、OE、OF,是的内心,,在和中≌,,同理,,是的外心.是的外心,,在等腰三角形,,同理,,答:的度数是.【解析】连接OA、OB、OC、OE、OF,证≌,推出,即可;根据三角形的内角和定理求出,,再根据三角形的内角和定理求出即可.本题主要考查对三角形的内切圆与内心,三角形的外接圆与外心,全等三角形的性质和判定,三角形的内角和定理等知识点的理解和掌握,能综合运用性质进行推理是解此题的关键.22.【答案】解:正三角形ABC的边长为l,,,,,,,,;,,,当时,等号成立,.【解析】由正三角形ABC的边长为l,,,,即可求得MC,NA,PB的值,又由与,即可求得的面积;由与,即可求得的最大值,继而求得面积的最大值.此题考查了三角形的面积问题,几何不等式的应用问题,以及正三角形的性质.此题综合性较强,难度较大,解题的关键是注意数形结合思想的应用,注意几何不等式的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年浙江省“三位一体”自主招生综合测试试卷(74)一、选择题(本大题共9小题,共36.0分)1.“割圆术”是求圆周率的一种算法.公元263年左右,我国一位著名的数学家发现当圆的内接正多边形的边数无限增加时,多边形面积可无限逼近圆面积,即所谓“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”请问上述著名数学家为A. 刘徽B. 祖冲之C. 杨辉D. 秦九昭2.某校食堂有4元、5元、6元三种价格的饭菜供学生们选择每人限购一份三月份销售该三种价格饭菜的学生比例分别为、、,则该校三月份学生每餐购买饭菜的平均费用是A. 元B. 元C. 5元D. 元3.在初中已学过的一次函数、反比例函数和二次函数等函数中,它们的图象与任意一条直线是任意实数交点的个数为A. 必有一个B. 一个或两个C. 至少一个D. 至多一个4.同时掷两个骰子,其中向上的点数之和是5的概率是A. B. C. D.5.给你一列数:1,l,2,6,24,请你仔细观察这列数的排列规则,然后从四个供选择单选项中选出一个你认为最合理的一项,来填补其中的空缺项,使之符合原数列的排列规律.A. 48B. 96C. 120D. 1446.已知.二次函数是实数,当自变量任取,时,分别与之对应的函数值,满足,则,应满足的关系式是A. B.C. D.7.在8个银元中混进了一个大小形状颜色完全一样的假银元,已知7个真银元的重量完全相同,而假银元比真银元稍轻点儿,你用一台天平最少次就能找出这枚假银元.A. lB. 2C. 3D. 48.如图,P是圆D的直径AB的延长线上的一点,PC与圆D相切于点C,的平分线交AC于点Q,则A.B.C.D.9.十进制12345678二进制110111001011101111000观察二进制为1位数、2位数、3位数时,对应的十进制的数,当二进制为6位数时,能表示十进制中的最大数是A. 61B. 62C. 63D. 64二、填空题(本大题共7小题,共21.0分)10.某校去年投资2万元购买实验器材,预计今明2年的投资总额为8万元.若该校这两年购买的实验器材的投资年平均增长率为x,则可列方程为______.11.如图,在平行四边形ABCD中,于E,于F,,且,则平行四边形ABCD的周长是______ .12.在一个木制的棱长为3的正方体的表面涂上颜色,将它的棱三等分,然后从等分点把正方体锯开,得到27个棱长为l的小正方体,将这些小正方体充分混合后,装入口袋,从这个口袋中任意取出一个小正方体,则这个小正方体的表面恰好涂有两面颜色的概率是______.13.已知关于x的一元二次方程与有一个公共实数根,则______.14.一个样本为1、3、2、2、a,b,已知这个样本的众数为3,平均数为2,那么这个样本的方差为______.15.如图,在梯形ABCD中,,,,,则该梯形的面积______.16.某计算机用户计划用不超过500元的资金购买单价分别为60元、70元的A类软件和B类软件,根据需要A类软件至少买3片,B类软件至少买2片,则不同的选购方式共有______种.三、计算题(本大题共1小题,共10.0分)17.已知,求的值.四、解答题(本大题共5小题,共53.0分)18.在凸四边形ABCD中,,且四个内角中有一个角为,求其余各角的度数.19.某商店若将进价为100元的某种商品按120元出售,一天就能卖出300个.若该商品在120元的基础上每涨价l元,一天就要少卖出10个,而每减价l完,一天赢可多卖出30个.问:为使一天内获得最大利润,商店应将该商品定价为多少?20.如图,,是等边三角形,点,在函数的图象上,点,在x轴的正半轴上,分别求,的面积.21.如图,在中,O是内心,点E,F都在大边BC上,已知,.求证:O是的外心;若,,求的大小.22.如图,正三角形ABC的边长为l,点M,N,P分别在边BC,AB上,设,,,且.试用x,y,z表示的面积求面积的最大值.答案和解析1.【答案】A【解析】解:上述著名数学家是刘徽.故选:A.根据数学史的了解进行选择.此题考查了数学常识的知识,要多读书,了解一些有关数学的故事等.2.【答案】B【解析】解:平均费用为元.故选:B.用加权平均数的计算方法计算即可.此题考查了加权平均数的知识,属于简单题目.把所有数据相加后再除以数据的个数即得平均数.3.【答案】D【解析】解:任意一条直线是任意实数是平行于y轴的一条直线,在初中已学过的一次函数、反比例函数和二次函数等函数中,只有反比例函数与时,没有交点,其他只有一个交点.它们的图象与任意一条直线交点的个数至多有一个.故选:D.根据直线是任意实数的性质,得出一次函数、反比例函数和二次函数等函数中与它的关系,直接得出答案.此题主要考查了函数图象与直线是任意实数的性质,根据已知得出任意一条直线是任意实数是平行于y轴的一条直线是解决问题的关键.4.【答案】C【解析】解:列表得:共有种等可能的结果,向上的点数之和是5的情况有4种,两个骰子向上的一面的点数和为5的概率为.故选:C.列举出所有情况,看点数之和为5的情况占总情况的多少即可.此题考查了树状图法与列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率所求情况数与总情况数之比.5.【答案】C【解析】解:观察所给数字可知,第二个数,第三个数,第四个数,第五个数,故可知第六个数.故选:C.观察所给数字可知,第二个数,第三个数,第四个数,第五个数,故可知第六个数,继而即可得出答案.本题考查规律型中的数字变化问题,仔细观察题中所给数字,可知第n个数第个数.6.【答案】D【解析】解:,抛物线对称轴为,开口向上,离对称轴越远,函数值越大,又,满足,可得,故选:D.在利用二次函数的增减性解题时,对称轴是非常重要的.根据、、,与对称轴的大小关系,判断、、的大小关系.本题主要考查了函数的对称轴求法和函数的单调性,难度一般,解答本题的关键是正确寻找出对称轴,这是解答本题的突破口.7.【答案】B【解析】解:8个银元分成4组,将其中的两组放在天平的两边进行第一次测量,天平平衡的一组没有假银元,天平不平衡,那么假银元就在较轻的那组,再一次把较轻的一组分开放在天平的两边进行第二次测量,则较轻的是假银元,所以用一台天平最少2次就能找出这枚假银元.故选:B.可以把8个银元分成4组,将其中的两组放在天平的两边进行第一次测量,天平平衡的一组没有假银元,天平不平衡,那么假银元就在较轻的那组;再把这组分开用天平测,可找出假银元.此题考查的知识点是推理与论证,关键是首先分成4组,先找出较轻的一组,再测即得.8.【答案】B【解析】解:连接BC交PQ于E,与圆D相切于点C,,为直径,,平分,,,,.故选:B.首先连接BC交PQ于E,由PC与圆D相切于点C,根据弦切角定理,即可得,又由AB为直径,即可得,然后由PQ平分与三角形外角的性质,即可证得,则可求得的度数.此题考查了圆的切线的性质,圆周角的性质,弦切角定理,等腰直角三角形的性质,以及三角形外角的性质等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想的应用.9.【答案】C【解析】解:表示十进制中表示的数最大时,则二进制数是111111,能表示十进制是:.故选:C.根据表可以得到二进制的数转化十进制的数,,,,;表示十进制中表示的数最大时,则二进制数是111111,根据规律即可求得十进制表示的数.本题考查了有理数的计算,关键是正确观察图表,理解二进制的数写成十进制的数的方法.10.【答案】【解析】解:设该校这两年购买的实验器材的投资年平均增长率为x,今年的投资金额为:;明年的投资金额为:;所以根据题意可得出的方程:.故答案为:.本题为增长率问题,一般用增长后的量增长前的量增长率,如果该校这两年购买的实验器材的投资年平均增长率为x,根据题意可得出的方程.增长率问题,一般形式为,a为起始时间的有关数量,b为终止时间的有关数量.11.【答案】8【解析】【分析】要求平行四边形的周长就要先求出AB、AD的长,利用平行四边形的性质和勾股定理即可求出.解题关键是利用平行四边形的性质结合等角对等边、勾股定理来解决有关的计算和证明.【解答】解:,,,则,,设,则,在中,根据勾股定理可得,同理可得则平行四边形ABCD的周长是故答案为8.12.【答案】【解析】解:在27个小正方体中,恰好有三个面都涂色有颜色的共有8个,恰好有两个都涂有颜色的共12个,恰好有一个面都涂有颜色的共6个,表面没涂颜色的1个.由题意知本题是一个等可能事件的概率,试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,满足条件的事件是选出的是恰好涂有两面颜色的正方体,有12种结果,故概率为.故答案为.本题是一个等可能事件的概率,试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,满足条件的事件是选出的是表面恰好涂有两面颜色的正方体,有12种结果,根据等可能事件的概率得到结果.本题考查等可能事件的概率,考查计数原理,考查正方体的结构特征,是一个综合题目,在解题时注意分割后的小正方体一定要数清楚,本题是一个易错题.13.【答案】【解析】解:与有一个公共实数根,有一个实数根,,把代入得:.故答案为:.本题需先根据与有一个公共实数根,求出x的值,再把x的值代入原方程即可求出m的值.本题主要考查了一元二次方程的解的概念,在解题时要能够灵活应用解的概念求出结果是本题的关键.14.【答案】【解析】解:因为众数为3,可设,,c未知平均数,解得根据方差公式故填.因为众数为3,表示3的个数最多,因为2出现的次数为二,所以3的个数最少为三个,则可设a,b,c中有两个数值为另一个未知利用平均数定义求得,从而根据方差公式求方差.本题考查了众数、平均数和方差的定义.15.【答案】18【解析】解:取CD的中点E,连接BE,,是菱形,,,,,,,.四边形ABCD的面积是18.故答案为18.取CD的中点E,连接BE,从而得到进而判定四边形ABED是菱形,得到,从而得到然后得到:.本题考查了梯形的性质,解题的关键是正确地作出辅助线,熟记梯形中常用辅助线的作法对解决此类题目有很大的帮助.16.【答案】7【解析】解:设购买A、B类软件分别为x,y片,根据题意得:,,,当,时,,当,时,,当,时,,当,时,,当,时,,当,时,舍去,当,时,,当,时,舍去,当,时,舍去,当,时,,当,时,舍去,当,时,舍去,不同的选购方式共有7种.故答案为:7.首先设购买A、B类软件分别为x,y片,根据题意即可得不等式组:,解此不等式组,然后根据分类讨论的思想求解即可求得答案.此题考查了不等数组的实际应用问题.此题难度较大,解题的关键是注意理解题意,根据题意求得方程组,然后根据其性质解题,注意分类讨论思想的应用.17.【答案】解:,,原式.【解析】先化简,再代入求值即可.本题考查了二次根式的化简与求值,将二次根式的化简是解此题的关键.18.【答案】解:设,则,,,,.1、时,,,,;2、时,,,,,.3、时,,,,,4、,,,,,.【解析】可设,根据四边形内角和等于,分四种情况进行讨论,从而求解.本题考查了多边形内角与外角,四边形内角和等于,由于四个内角中有一个角为,不确定,故应该分类讨论.19.【答案】解:按120元出售,一天就能卖出300个,可获得利润:元;设涨价为x元,则可卖出个,设利润为y元,则;若设降价x元,则可以卖出个,设利润为y元,则:;,所以当售价定为115元获得最大为6750元.综上所述,当定价为115元时,商店可获得最大利润6750元.【解析】分别以120元为基础,当涨价时,大于120元,当降价时,小于120元,利用每个商品的利润卖出数量总利润分别写出函数关系式;利用配方法求得两个函数解析式的最大值,比较得出答案.此题主要考查了二次函数在实际问题中的运用,根据利润售价进价卖的件数,列出函数解析式,求最值是解题关键.20.【答案】解:分别过、作x轴的垂线,垂足分别为D、E,如图,设,.,是等边三角形,,,,,的坐标为,的坐标为,又点在函数的图象上,,解得舍去,,.点在函数的图象上,,解得,舍去,,,的面积,的面积.【解析】分别过、作x轴的垂线,垂足分别为D、E,设,根据等边三角形的性质和含30度的直角三角形三边的关系得到,,,得到的坐标为,的坐标为,然后先把的坐标代入反比例解析式求得m的值,再把的坐标代入反比例解析式得到n的值,这样就确定两等边三角形的边长,然后根据等边三角形的面积等于其边长的平方的倍计算即可.本题考查了点在反比例函数图象上,则点的横纵坐标满足其解析式.也考查了含30度的直角三角形三边的关系以及等边三角形的性质.21.【答案】解:证明:连接OA、OB、OC、OE、OF,是的内心,,在和中≌,,同理,,是的外心.是的外心,,在等腰三角形,,同理,,答:的度数是.【解析】连接OA、OB、OC、OE、OF,证≌,推出,即可;根据三角形的内角和定理求出,,再根据三角形的内角和定理求出即可.本题主要考查对三角形的内切圆与内心,三角形的外接圆与外心,全等三角形的性质和判定,三角形的内角和定理等知识点的理解和掌握,能综合运用性质进行推理是解此题的关键.22.【答案】解:正三角形ABC的边长为l,,,,,,,,;,,,当时,等号成立,.【解析】由正三角形ABC的边长为l,,,,即可求得MC,NA,PB的值,又由与,即可求得的面积;由与,即可求得的最大值,继而求得面积的最大值.此题考查了三角形的面积问题,几何不等式的应用问题,以及正三角形的性质.此题综合性较强,难度较大,解题的关键是注意数形结合思想的应用,注意几何不等式的应用.。

相关文档
最新文档