2011届高考数学第一轮巩固与练习题61

合集下载

2011届高三数学一轮巩固与练习:数列

2011届高三数学一轮巩固与练习:数列

巩固1.下列说法正确的是( ) A .数列1,3,5,7可表示为{1,3,5,7}B .数列1,0,-1,-2与数列-2,-1,0,1是相同的数列C .数列{n +1n }的第k 项为1+1k D .数列0,2,4,6,…可记为{2n }解析:选C.由数列的定义可知A 、B 错误;数列{n +1n }的第k 项为k +1k =1+1k ,故C 正确;数列0,2,4,6,…的通项公式为a n =2n -2,故D 错.综上可知,应选C.2.已知数列{a n }中,a 1=1,a n +1=a n2a n +3,则a 5=( )A .108 B.1108 C .161 D.1161解析:选D.a 1=1,a 2=a 12a 1+3=15,a 3=a 22a 2+3=117,a 4=a 32a 3+3=153,a 5=a 42a 4+3=1161.3.(2008年高考江西卷)在数列{a n }中,a 1=2,a n +1=a n +ln(1+1n ),则a n =( )A .2+ln nB .2+(n -1)ln nC .2+n ln nD .1+n +ln n解析:选A.因为a n +1=a n +ln(1+1n ), 从而有a n =a n -1+ln nn -1a n -1=a n -2+ln n -1n -2⋮ ⋮ a 2=a 1+ln2累加得a n +1=a 1+ln(n +1n .n n -1.n -1n -2 (2)1)=2+ln(n +1), ∴a n =2+ln n ,故应选A.4.数列{a n }满足a 1=0,a n +1=a n +2n ,则{a n }的通项公式a n =________.解析:由已知,a n +1-a n =2n ,故a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=0+2+4+…+2(n -1)=n (n -1).答案:n (n -1)5.数列53,108,17a +b ,a -b 24,…中,有序数对(a ,b )可以是________.解析:从上面的规律可以看出⎩⎪⎨⎪⎧a +b =15a -b =26,解上式得⎩⎪⎨⎪⎧a =412b =-112.答案:(412,-112)6.写出满足条件的数列的前4项,并归纳出通项公式: (1)a 1=0,a n +1=a n +(2n -1)(n ∈N *); (2)a 1=3,a n +1=3a n (n ∈N *).解:(1)由条件得a 1=0,a 2=0+1=1=12, a 3=1+(2×2-1)=4=22, a 4=4+(2×3-1)=9=32, 归纳通项公式为a n =(n -1)2.(2)由条件得a 1=3,a 2=3a 1=3, a 3=3a 2=33,a 4=3a 3=34, 归纳通项公式为a n =3n .练习1.已知数列3,7,11,15,…,则53是数列的( ) A .第18项 B .第19项 C .第17项 D .第20项 解析:选B.∵7-3=11-7=15-11=4, 即a n 2-a n -12=4,∴a n 2=3+(n -1)×4=4n -1, 令4n -1=75,则n =19.故选B.2.已知数列的通项a n =⎩⎪⎨⎪⎧3n +1 (n 为奇数)2n -1 (n 为偶数),则a 2009-a 2010等于( )A .2007B .2008C .2009D .2010 解析:选C.a 2009=3×2009+1=6028; a 2010=2×2010-1=4019.故a 2009-a 2010=6028-4019=2009.故应选C. 3.下面有四个命题:①如果已知一个数列的递推公式及其首项,那么可以写出这个数列的任何一项;②数列23,34,45,56,…的通项公式是a n =nn +1;③数列的图象是一群孤立的点;④数列1,-1,1,-1,…与数列-1,1,-1,1,…是同一数列. 其中正确命题的个数是( )A .1B .2C .3D .4解析:选A.①错误,如a n +2=a n +a n +1,a 1=1就无法写出a 2; ②错误,a n =n +1n +2;③正确;④两数列是不同的有序数列.故应选A.4.在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则a 3a 5的值是( )A.1516B.158C.34D.38 解析:选C.由已知得a 2=1+(-1)2=2, ∴a 3·a 2=a 2+(-1)3,∴a 3=12, ∴12a 4=12+(-1)4, ∴a 4=3,∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34.5.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 等于( )A .9B .8C .7D .6解析:选B.a n =⎩⎪⎨⎪⎧S 1 (n =1),S n -S n -1 (n ≥2),=⎩⎪⎨⎪⎧-8 (n =1),-10+2n (n ≥2).∵n =1时适合a n =2n -10,∴a n =2n -10. ∵5<a k <8,∴5<2k -10<8, ∴152<k <9,又∵k ∈N +,∴k =8,故选B.6.若数列{a n }满足a 1=1,a 2=2,a n =a n -1a n -2(n ≥3且n ∈N *),则a 17=( )A .1B .2 C.12 D .2-987解析:选 C.由已知得a 1=1,a 2=2,a 3=2,a 4=1,a 5=12,a 6=12,a 7=1,a 8=2,a 9=2,a 10=1,a 11=12,a 12=12,即a n 的值以6为周期重复出现,故a 17=12.7.已知数列{a n }的通项a n =nanb +c (a ,b ,c 均为正实数),则a n 与a n +1的大小关系是________.解析:∵a n =na nb +c=a b +c n,cn 是减函数, ∴a n =ab +c n 是增函数,∴a n <a n +1.答案:a n <a n +18.设数列{a n }的前n 项和为S n ,S n =a 1(3n -1)2(对n ≥1恒成立)且a 4=54,则a 1=________.解析:法一:由S 4=S 3+a 4,得a 1(34-1)2=a 1(33-1)2+54, 即a 1(34-33)2=54,解得a 1=2. 法二:由S n -S n -1=a n (n ≥2)可得a n =a 1(3n -1)2-a 1(3n -1-1)2=a 1(3n -3n -1)2=a 1·3n -1, ∴a 4=a 1·33,∴a 1=5427=2. 答案:29.已知数列{a n }的前n 项的乘积为T n =5n 2,n ∈N *,则数列{a n }的通项公式为________.解析:当n =1时,a 1=T 1=512=5;当n ≥2时,a n =T n T n -1=5n 25(n -1)2=52n -1(n ∈N *). 当n =1时,也适合上式, 所以当n ∈N *时,a n =52n -1. 答案:a n =52n -1(n ∈N *)10.已知数列{a n }中,a n ∈(0,12),a n =38+12a 2n -1,其中n ≥2,n ∈N +,求证:对一切正整数n 都有a n <a n +1成立.证明:a n +1-a n =38+12a n 2-a n=12(a n -1)2-18,∵0<a n <12,∴-1<a n -1<-12. ∴18<12(a n -1)2<12. ∴12(a n -1)2-18>0.∴a n +1-a n >0,即a n <a n +1对一切正整数n 都成立.11.(2010年邯郸模拟)已知数列{a n }满足前n 项和S n =n +1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的增减性.解:(1)a 1=2,a n =S n -S n -1=2n -1(n ≥2). ∴b n =⎩⎪⎨⎪⎧1n (n ≥2),23(n =1).(2)∴c n =b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1<0,∴{c n }是递减数列.12.已知数列{a n }的前n 项和为S n =n 2+pn ,数列{b n }的前n 项和为T n =3n 2-2n .(1)若a 10=b 10,求p 的值.(2)取数列{b n }的第1项,第3项,第5项,…,构成一个新数列{c n },求数列{c n }的通项公式.解:(1)由已知,a n =S n -S n -1=(n 2+pn )-[(n -1)2+p (n -1)] =2n -1+p (n ≥2),b n =T n -T n -1=(3n 2-2n )-[3(n -1)2-2(n -1)] =6n -5(n ≥2). ∴a 10=19+p ,b 10=55. 由a 10=b 10,得19+p =55, ∴p =36.(2)b 1=T 1=1,满足b n =6n -5. ∴数列{b n }的通项公式为b n =6n -5.取{b n}中的奇数项,所组成的数列的通项公式为b2k-1=6(2k-1)-5=12k-11.∴c n=12n-11.。

2011届高考数学第一轮复习精品试题:圆锥曲线

2011届高考数学第一轮复习精品试题:圆锥曲线

2011届高考数学第一轮复习精品试题:圆锥曲线选修1-1 第2章圆锥曲线与方程考纲总要求:①了解圆锥曲线的实际背景,了解在刻画现实世界和解决实际问题中的作用.②掌握椭圆的定义、几何图形、标准方程及简单几何性质.③了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质.④理解数形结合的思想.⑤了解圆锥曲线的简单应用.§2.1-2椭圆重难点:建立并掌握椭圆的标准方程,经典例题:已知A 、B 为椭圆22a x +22925a y =158a ,AB1Ac a (a>c>0)的点的轨迹是椭圆2)23,25(-,则椭圆方程是() C .18422=+x y D .161022=+y xk 的取值范围为 ()C .(1,+∞)D .(0,1)4.设定点F1(0,-3)、F2(0,3),动点P 满足条件)0(921>+=+a a a PF PF ,则点P 的轨迹是() A .椭圆 B .线段C .不存在 D .椭圆或线段5.椭圆12222=+b y a x 和k b y a x =+2222()0>k 具有 () A .相同的离心率 B .相同的焦点 C .相同的顶点 D .相同的长、短轴6.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为 ()A .41B .22C .42D .217.已知P 是椭圆13610022=+y x 上的一点,若P 到椭圆右准线的距离是217,则点P 到左焦点的距离()A .516B .566C .875D .8778.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是()A .3B .11C 9.在椭圆13422=+y x 内有一点P (1,-1),F A .25B .27 10.过点22=+y x m.21 D .-21 )3的椭圆标准方程为___________.12(-3,2)的椭圆方程为_______________.13y x +的取值范围是________________.14.15.已知椭圆的对称轴为坐标轴,离心率32=e ,短轴长为58,求椭圆的方程.16.过椭圆4:),(148:220022=+=+y x O y x P y x C 向圆上一点引两条切线PA 、PB 、A 、B 为切点,如直线AB 与x 轴、y 轴交于M 、N 两点.(1)若0=⋅PB PA ,求P 点坐标;(2)求直线AB 的方程(用00,y x 表示);(3)求△MON 面积的最小值.(O 为原点)17.椭圆12222=+b y a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O 为坐标原点. (1)求2211b a+的值; (2)若椭圆的离心率e 满足33e 2218.一条变动的直线L 与椭圆42x +2y 2=1交于P 、Q .若L 在变动过程中始终保持其斜率等于1选修1-1 第2§2.3重难点:建立并掌握双曲线的标准方程,经典例题:已知不论b 取何实数,直线y=kx+b k 的取.双曲线 D .两条射线k 的取值范围是() .0≥k D .1>k 或1-<k1=的焦距是 ()A .4B .22C .8D .与m 有关4.已知mx -y+n=0与nx2+my2=mn 所表示的曲线可6.焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是 ()A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x7.若a k <<0,双曲线12222=+--k b y k a x 与双曲线12222=-b y a x 有 ()A .相同的虚轴B .相同的实轴C .相同的渐近线D .相同的焦点8.过双曲线191622=-y x 左焦点F1的弦AB 长为6,则2ABF ∆(F2为右焦点)的周长是()A .28B .22C .14D .129.已知双曲线方程为1422=-y x ,过P (1,0A .4条B .3条10.给出下列曲线:①4x+2y -1=0;②y=-2x -3A .①③ B .②④ 122=-y x12.13B A ,两点,则AB =__________________.1422=-y x 的弦所在直线方程为.15)0,4的双曲线标准方程,并求此双曲线的离心率.16.2,P 为双曲线上任意一点,求证:21PF PO PF 、、成等比数列(O 为坐标原点).17.已知动点P 与双曲线x2-y2=1的两个焦点F1,F2的距离之和为定值,且cos ∠F1PF2的最小值为-.(1)求动点P 的轨迹方程;(2)设M(0,-1),若斜率为k(k ≠0)的直线l 与P 点的轨迹交于不同的两点A 、B ,若要使|MA|=|MB|,试求k 的取值范围.18.某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s.已知各观测点到该中心的距离都是1020m.试确定该巨响发生的位置.(假定当时声音传播的速度为340m/s:相关各点均在同一平面上).选修1-1 第2章圆锥曲线与方程§2.4抛物线重难点:建立并掌握抛物线的标准方程,能根据已知条件求抛物线的标准方程;掌握抛物线的简单几何性质,能运用抛物线的几何性质处理一些简单的实际问题.经典例题:如图,直线y=21x 与抛物线y=81x2-4交于A 、B 两点,线段AB 的垂直平分线与直线y=-5交于Q 点.(1)求点Q 的坐标;(2)当P 为抛物线上位于线段AB 下方(含A 、B )的动点时,求ΔOPQ 面积的最大值.当堂练习:1.抛物线22x y =A .)0,1(B .)0,41( C .)81,0( D .)41,0(2.已知抛物线的顶点在原点,焦点在yA .y x 82=B .y x 42= 3.抛物线x y 122=截直线B .x y 292-=或y x 342= .x y 292-=R t ∈)上的点的最短距离为 ()C .2D .2 6.抛物线)3三点,F 是它的焦点,若CF BF AF ,,成等差数列,A .321,,x x x 成等差数列B .231,,x x x 成等差数列C .321,,y y y 成等差数列D .231,,y y y 成等差数列7.若点A 的坐标为(3,2),F 为抛物线x y 22=的焦点,点P 是抛物线上的一动点,则PF PA +取得最小值时点P 的坐标是() A .(0,0) B .(1,1) C .(2,2) D .)1,21(8.已知抛物线)0(22>=p px y 的焦点弦AB 的两端点为),(11y x A ,),(22y x B ,则关系式2121x x y y 的值一定等于()A .4pB .-4pC .p2D .-p 9.过抛物线)0(2>=a ax y 的焦点F 作一直线交抛物线于P ,Q 两点,若线段PF 与FQ 的长分别是q p ,,则q p 11+ ()A .a 2B .a 21410.若AB 为抛物线y2=2px(p>0)的动弦,且() A .21a B .21p C .2111.抛物线x y =212.已知圆07622=--+x y x ,与抛物线2=y .13.如果过两点)0,(a A 和),0(a B2,1).______.15px y 22=上,△ABC 的重心与此抛物F 的坐标;M 的坐标;.16x+y=0对称的相异两点,求a 的取值范围. 17L 交抛物线A 、B 两点,再以AF 、BF 为邻边R 的轨迹方程.18.已知抛物线C :2742++=x x y ,过C 上一点M ,且与M 处的切线垂直的直线称为C 在点M 的法线.(1)若C 在点M 的法线的斜率为21-,求点M 的坐标(x0,y0);(2)设P (-2,a )为C 对称轴上的一点,在C 上是否存在点,使得C 在该点的法线通过点P ?若有,求出这些点,以及C 在这些点的法线方程;若没有,请说明理由.选修1-1第2章圆锥曲线与方程§2.5圆锥曲线单元测试1)如果实数y x ,满足等式3)2(22=+-y x ,那么x y的最大值是() A 、21B 、33C 、23D 、32)若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为() A 、1,1-B 、2,2-C 、1D 、1-3)已知椭圆125222=+y ax )5(>a 的两个焦点为1F 、2的周(A )10(B )20(4)椭圆13610022=+y x 上的点P(A )15(B )5)椭圆12522=+y x022=-+y 的最大距离是()C )22(D )102的双曲线方程是()(B )222=-x y (D )222=-y x 或222=-x y 8)双曲线916右支点上的一点P 到右焦点的距离为2,则P 点到左准线的距离为()(A )6(B )8(C )10(D )129)过双曲线822=-y x 的右焦点F2有一条弦PQ ,|PQ|=7,F1是左焦点,那么△F1PQ 的周长为() (A )28(B )2814-(C )2814+(D )2810)双曲线虚轴上的一个端点为M,两个焦点为F1、F2,︒=∠12021MF F ,则双曲线的离心率为()(A )3(B )26(C )36(D )3311)过抛物线2y ax =(a>0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别为p 、q ,则11p q +等于() (A )2a (B )12a (C )4a (D )4a12)如果椭圆193622=+y x 的弦被点(4,2)(A )02=-y x (B )042=-+y x (13)与椭圆22143x y +=14)离心率35=e 15垂直。

2011届高考数学一轮复习测评卷13.4

2011届高考数学一轮复习测评卷13.4

2011年《新高考全案》高考总复习第一轮复习测评卷第十三章 第四讲一、选择题1.若变量y 与x 之间的相关系数r =-0.936 2,查表得到相关系数临界值r 0.05=0.801 3,则变量y 与x 之间( )A .不具有线性相关关系B .具有线性相关关系C .它们的线性关系还要进一步确定D .不确定 [答案] B2.如果有95%的把握说事件A 和B 有关系,那么具体计算出的数据( )A .K 2>3.841B .K 2<3.841C .K 2>6.635D .K 2<6.635[解析] 比较K 2的值和临界值的大小,95%的把握则K 2>3.841,K 2>6.635就约有99%的把握.[答案] A3.实验测得四组(x ,y )的值为(1,2),(2,3),(3,4),(4,5),则y 与x 之间的线性回归方程为( )A.y ∧=x +1 B.y ∧=x +2 C.y ∧=2x +1D.y ∧=x -1[解析] 画散点图,四点都在直线y ∧=x +1上. [答案] A4.如下图所示,4个散点图中,不适合用线性回归模型拟合其中两个变量的是( )[解析]图A中的点不成线性排列,故两个变量不适合线性回归模型,故选A.[答案] A5.观察下列各图,其中两个分类变量关系最强的是()[解析]D选项中主对角线上两个柱形高度之积与副对角线上两个柱形高度之积相差最大,选D.[答案] D6.一位母亲记录了儿子3~9岁的身高,数据如下表.由此建立的身高与年龄的回归模型为y=7.19x+73.93.用这个模型预测这个孩子10岁时的身高,则正确的叙述是() 年龄/岁3456789身高/cm94.8104.2108.7117.8124.3130.8139.0 A.C.身高在145.83 cm左右D.身高在145.83 cm以下[解析]将x=10代入得y=145.83,但这种预测不一定准确,应该在这个值的左右.故选C.[答案] C二、填空题7.下列命题:①用相关指数R 2来刻画回归的效果时,R 2的值越大,说明模型拟合的效果越好; ②对分类变量X 与Y 的随机变量K 2的观测值k 来说,k 越小,“X 与Y 有关系”可信程度越大;③两个随机变量相关性越强,则相关系数的绝对值越接近1;④三维柱形图中柱的高度表示的是各分类变量的频数.其中正确命题的序号是________.(写出所有正确命题的序号)[答案] ①③④8.若两个分类变量x 和y 的列联表为:则x 与y [解析] x 2=(5+15+40+10)(5×10-40×15)2(5+15)(40+10)(5+40)(15+10)≈18.822,查表知P (x 2≥6.635)≈0.1,∴x 与y 之间有关系的概率约为1-0.1=0.99. [答案] 0.999.若施化肥量x 与水稻产量y 的回归直线方程为y ∧=5x +250,当施化肥量为80 kg 时,预计水稻产量为________.[答案] 650 kg10.根据下面的列联表:得到如下的判断:99%的把握认为患肝病与嗜酒有关;③认为患肝病与嗜酒有关的出错的可能为1%;④认为患肝病与嗜酒有关的出错的可能为10%.其中正确的命题为________.[解析] 正确命题为②③. [答案] ②③ 三、解答题11.某体育训练队共有队员40人,下表为跳远和跳高成绩的统计表,成绩分为1~5共5个档次,例如表中所示跳高成绩为4分、跳远成绩为2分的队员为5人,将全部队员的姓名卡混合在一起,任取一张,得该卡对应队员的跳高成绩为x 分,跳远成绩为y 分,设x ,y 为随机变量.(注:没有相同姓名的队员)(1)跳高成绩是否“优秀”与跳远是否“优秀”有没有关系?(2)若跳远成绩相等和跳高成绩相等的人数分别为m 、n .试问:m 、n 是否具有线性相关关系?若有,求出回归直线方程.若没有,请说明理由.(回归相关系数r =∑i =1n(x i -x )(y i -y )∑i =1n (x i -x )2∑i =1n(y i -y )2)[解] (1)根据题中条件,对两变量进行分类,先看跳远成绩“优”的队员有10人,“一般”的有30人;跳高“优”的有15人,“一般”的有25人;于是,列联表如下:假设跳高“优则K 2=80×(15×30-10×25)240×40×25×55=1.455<2.706,显然,没有充分的证据显示跳高“优”与跳远“优”有关. (2)将跳远、跳高成绩及人数整理如下表:易得m =8,n =8,∑i =1k(m i -m)2=30,∑i =1k(n i -n )2=22,∑i =1k(m i -m )(n i -n )=5,那么r =∑i =1k(m i -m )(n i -n )∑i =1k(m i -m)2·∑i =1k (n i -n )2=530×22≈0.194 6,可见变量n 与m 不具有线性相关性.12.某数学教师为了研究学生的性别与喜欢数学之间的关系,随机抽测了20名学生,得到如下数据:(2)根据题(1)系?(3)按下面的方法从这20名学生中抽取1名学生来核查测量数据的误差:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取学生的序号.试求:①抽到12号的概率;②抽到“无效序号(超过20号)”的概率.参考公式:K 2=n ×(ad -bc )2(a +b )(c +d )(a +c )(b +d )参考数据:P (K 2≥k )0.025 0.010 0.005 k5.0246.6357.879[解] (1)根据题中表格数据可得2×2列联表如下:男生 女生 合计 喜欢数学 5 3 8 不喜欢数学 1 11 12 合计61420(2)提出假设H 0:性别与是否喜欢数学之间没有关系.根据上述列联表可以求得K 2的观测值为k =20×(5×11-1×3)26×14×8×12≈6.7063.当H 0成立时,P (K 2≥6.635)≈0.010=1%,而这里6.7063>6.635. ∴认为性别与是否喜欢数学之间没有关系的概率是1%,∴该数学教师有99%的把握认为:性别与是否喜欢数学之间有关系.(3)将一个骰子连续投掷两次,事件“朝上的两个数字的乘积”有6×6=36种. ①∵朝上的两个数字的乘积为12的事件有4种:2×6,3×4,6×2,4×3. ∴抽到12号的概率为P 1=436=19.②∵朝上的两个数字的乘积为“无效序号(超过20号)”的事件有6种:4×6,5×5,5×6,6×4,6×5,6×6,∴抽到“无效序号(超过20号)”的概率为P 2=636=16.亲爱的同学请你写上学习心得________________________________________________________________________________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________。

2011届高考数学一轮达标精品试卷 (16)

2011届高考数学一轮达标精品试卷 (16)

2010届高考数学一轮达标精品试卷(十一)第十一单元 排列组合、二项式定理(时量:120分钟 150分)一、选择题:本大题共18小题,每小题5分,共90分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.5人排一个5天的值日表,每天排一人值日,每人可以排多天或不排,但相邻两天不能排同一人,值日表排法的总数为 A .120B .324C .720D .12802.一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是 A .40B .74C .84D .2003.以三棱柱的六个顶点中的四个顶点为顶点的三棱锥有 A .18个B .15个C .12个D .9个4.从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和弦,若有一个音键不同,则发出不同的和弦,则这样的不同的和弦种数是 A .512B .968C .1013D .10245.如果(n x +的展开式中所有奇数项的系数和等于512,则展开式的中间项是A .6810C xB .510C xC .468C xD .611C x6.用0,3,4,5,6排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是 A .36B .32C .24D .207.若n 是奇数,则112217777n n n n n n n C C C ---+++⋯⋯+被9除的余数是A .0B .2C .7D .88.现有一个碱基A ,2个碱基C ,3个碱基G ,由这6个碱基组成的不同的碱基序列有A .20个B .60个C .120个D .90个9.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个节目插入原节目单中,那么不同的插法种数为 A .504B .210C .336D .12010.在342005(1)(1)(1)x x x ++++⋯⋯++的展开式中,x 3的系数等于A .42005CB .42006CC .32005CD .32006C11.现有男女学生共8人,从男生中选2人,从女生中选1人,分别参加数理化三科竞赛,共有90种不同方案,则男、女生人数可能是 A .2男6女B .3男5女C .5男3女D .6男2女12.若x ∈R ,n ∈N + ,定义n x M =x (x +1)(x +2)…(x +n -1),例如55M -=(-5)(-4)(-3)(-2)(-1)=-120,则函数199()x f x xM -=的奇偶性为 A .是偶函数而不是奇函数 B .是奇函数而不是偶函数 C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数13.由等式43243212341234(1)(1)(1)(1),x a x a x a x a x b x b x b x b ++++=++++++++定义映射12341234:(,,,)(,,,),f a a a a b b b b →则f (4,3,2,1)等于A .(1,2,3,4)B .(0,3,4,0)C .(-1,0,2,-2)D .(0,-3,4,-1)14.已知集合A ={1,2,3},B ={4,5,6},从A 到B 的映射f (x ),B 中有且仅有2个元素有原象,则这样的映射个数为 A .8B .9C .24D .2715.有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,又不与乙相邻,而不同的站法有 A .24种B .36种C .60种D .66种16.等腰三角形的三边均为正数,它们周长不大于10,这样不同形状的三角形的种数为A .8B .9C .10D .1117.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有 A .36种B .42种C .50种D .72种18.若1021022012100210139),()()x a a x a x a x a a a a a a =+++⋯+++⋯+-++⋯+则 的值为 A .0B .2C .-1D .1二、填空题:本大题共6小题,每小题4分,共24分.把答案填在横线上.19.某电子器件的电路中,在A ,B 之间有C ,D ,E ,F 四个焊点(如图),如果焊点脱落,则可能导致电路不通.今发现A ,B 间电路不通,则焊点脱落的不同情况有 种. 20.设f (x )=x 5-5x 4+10x 3-10x 2+5x +1,则f (x )的反函数f -1(x )= .21.正整数a 1a 2…a n …a 2n -2a 2n -1称为凹数,如果a 1>a 2>…a n ,且a 2n -1>a 2n -2>…>a n ,其中a i (i =1,2,3,…)∈{0,1,2,…,9},请回答三位凹数a 1a 2a 3(a 1≠a 3)共有 个(用数字作答). 22.如果a 1(x -1)4+a 2(x -1)3+a 3(x -1)2+a 4(x -1)+a 5=x 4,那么a 2-a 3+a 4 .23.一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,则满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数有 .24.已知(x +1)6(ax -1)2的展开式中,x 3的系数是56,则实数a 的值为 . 三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 25.(本小题满分12分)将7个相同的小球任意放入四个不同的盒子中,每个盒子都不空,共有多少种不同的方法? 26.(本小题满分12分)已知(41x+3x 2)n 展开式中的倒数第三项的系数为45,求: ⑴含x 3的项; ⑵系数最大的项.27.(本小题满分12分)求证:123114710(31)(32)2.nn n n n n C C C n C n -++++⋯++=+⋅第十一单元 排列组合、二项式定理参考答案提示1.D 分五步:5×4×4×4×4=1280.2.B 分三步:33425154545474.C C C C C C ++=3.C 46312.C -= 4.B 分8类:3451001210012101010101010101010101010()2(11045)968.C C C C C C C C C C C +++⋯+=+++⋯+-++=-++=5.B 12512,10,n n -=∴=中间项为555561010T C x C x ==6.D 按首位数字的奇偶性分两类:2332223322()20A A A A A +-=7.C 原式=(7+1)n -1=(9-1)2-1=9k -2=9k ’+7(k 和k ’均为正整数).8.B 分三步:12365360C C C =9.A 939966504,504.A A A ==或10.B 原式=11.B 设有男生x 人,则2138390,(1)(8)30x x C C A x x x -=--=即,检验知B 正确.12.A 2222()(9)(8)(9191)(1)(4)(81).f x x x x x x x x x =--⋯-+-=--⋯-13.D 比较等式两边x 3的系数,得4=4+b 1,则b 1=0,故排除A ,C ;再比较等式两边的常数项,有1=1+b 1+b 2+b 3+b 4,∴b 1+b 2+b 3+b 4=0.14.D 223327.C =15.B 先排甲、乙外的3人,有33A 种排法,再插入甲、乙两人,有24A 种方法,又甲排乙的左边和甲排乙的右边各占12 ,故所求不同和站法有3234136().2A A =种16.C 共有(1,1,1),(1,2,2),(1,3,3),(1,4,4),(2,2,2),(2,2,3),(2,3,3),(2,4,4),(3,3,3)(3,3,4)10种.17.B 每人值班2天的排法或减去甲值周一或乙值周六的排法,再加上甲值周一且乙值周六的排法,共有2212264544242().C C A C A -+=种18.D 设f (x )=(2-x )10,则(a 0+a 2+…+a 10)2-(a 1+a 3+…+a 9)2=(a 0+a 1+…+a 10)(a 0-a 1+a 2-…-a 9+a 10)=f (1)f (-1)=(2+1)10(2-1)10=1。

2011届高考数学一轮单元达标精品试卷六)

2011届高考数学一轮单元达标精品试卷六)

2011届高考数学一轮单元达标精品试卷(六)第三单元 [不等]符号定,比较技巧深(时量:120分钟 150分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.不等式(1+x )(1-|x |)>0的解集是 A .{x |0≤x <1} B .{x |x <0且x ≠-1} C .{x |-1<x <1}D .{x |x <1且x ≠-1}2.直角三角形ABC 的斜边AB =2,内切圆半径为r ,则r 的最大值是 A . 2B .1C .22D .2-13.给出下列三个命题 ①若1->≥b a ,则bba a +≥+11 ②若正整数m 和n 满足n m ≤,则2)(n m n m ≤- ③设),(11y x P 为圆9:221=+y x O 上任一点,圆2O 以),(b a Q 为圆心且半径为1. 当1)()(2121=-+-y b x a 时,圆1O 与圆2O 相切 其中假命题的个数为 A .0B .1C .2D .34.不等式|2x -log 2x |<2x +|log 2x |的解集为 A .(1,2) B .(0,1)C .(1,+∞)D .(2,+∞)5.如果x ,y 是实数,那么“xy <0”是“|x -y |=|x |+|y |”的 A .充分条件但不是必要条件 B .必要条件但不是充分条件 C .充要条件D .非充分条件非必要条件6.若a =ln22,b =ln33,c =ln55,则A .a <b <cB .c <b <aC .c <a <bD .b <a <c7.已知a 、b 、c 满足c b a <<,且ac <0,那么下列选项中不一定成立的是 A .ab ac > B .c b a ()-<0 C .cb ab 22< D .0)(<-c a ac 8.设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是 A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)9.某工厂第一年年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x ,则 A .x =2ba + B .x ≤2b a + C .x >2b a + D .x ≥2ba + 10.设方程2x +x +2=0和方程log 2x +x +2=0的根分别为p 和q ,函数f (x )=(x +p )(x +q )+2,则A .f (2)=f (0)<f (3)B .f (0)<f (2)<f (3)C .f (3)<f (0)=f (2)D .f (0)<f (3)<f (2)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在横线上. 11.对于-1<a <1,使不等式(12)2x ax +<(12)2x +a -1成立的x 的取值范围是_______ .12.若正整数m 满足m m 102105121<<-,则m = .(lg2≈0.3010)13.已知{1,0,()1,0,x f x x ≥=-<则不等式)2()2(+⋅++x f x x ≤5的解集是 .14.已知a >0,b >0,且2212b a +=,则的最大值是 . 15.对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaa a 111++< ④aaa a111++> 其中成立的是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本题满分l2分)设函数f (x )|1||1|2--+=x x ,求使f (x )≥22的x 取值范围.17.(本题满分12分)已知函数2()2sin sin 2,[0,2].f x x x x π=+∈求使()f x 为正值的x 的集合.18.(本题满分14分)⑴已知,a b 是正常数,a b ≠,,(0,)x y ∈+∞,求证:222()a b a b x y x y++≥+,指出等号成立的条件;⑵利用⑴的结论求函数29()12f x x x =+-(1(0,)2x ∈)的最小值,指出取最小值时x 的值.19.(本题满分14分)设函数f(x)=|x-m|-mx,其中m为常数且m<0.⑴解关于x的不等式f(x)<0;⑵试探求f(x)存在最小值的充要条件,并求出相应的最小值.20.(本题满分14分)已知a>0,函数f(x)=ax-bx2.⑴当b>0时,若对任意x∈R都有f(x)≤1,证明a≤2b;⑵当b>1时,证明对任意x∈[0,1],都有|f(x)|≤1的充要条件是b-1≤a≤2b;⑶当0<b≤1时,讨论:对任意x∈[0,1],都有|f(x)|≤1的充要条件.21.(本题满分14分)⑴设函数)10( )1(log )1(log )(22<<--+=x x x x x x f ,求)(x f 的最小值; ⑵设正数n p p p p 2321,,,, 满足12321=++++n p p p p ,证明 n p p p p p p p p n n -≥++++222323222121log log log log .[不等]符号定,比较技巧深参考答案一、选择题二、填空题11.x ≤0或x ≥2; 12.155;13.]23,(-∞; 14; 15.②④三、解答题16.解:由于y =2x 是增函数,f (x )≥22等价于|x +1|-|x -1|≥32, ① (2)分(i)当x ≥1时,|x +1|-|x -1|=2。

高中数学必修一巩固提升训练题(含答案)

高中数学必修一巩固提升训练题(含答案)

高中数学必修一巩固提升训练题(含答案)一、选择题(本题共计 12 小题,每题 5 分,共计60分,)1. 若用C、R、I分别表示复数集、实数集、纯虚数集,则有()A.C=R∪IB.R∩I={0}C..∁C R=C∩ID.R∩I=⌀2. 已知函数f(x)满足3f(x)−f(1x)=2x,则f(x)=()A.1 4x +3x4B.14x−3x4C.−14x−3x4D.−14x+3x43. 下列各式中,正确的是()A.2√3⊆{x|x<4}B.2√3∈{x|x<4}C.{2√3}∈{x|x<4}D.{2√3}⊆{x|x<3}4. 设f,g都是由A到A的映射,其对应法则如下表(从上到下):表1映射f的对应法则则与f[g(1)]相同的是()A.g[f(1)]B.g[f(2)]C.g[f(3)]D.g[f(4)]5. 设函数f(x)=3+x+√1−x2⋅2x−12x+1的最大值为M,最小值为N,则M+N的值是()A.3B.2C.6D.46. 若集合A、B、C,满足A∩B=A,B∪C=C,则A与C之间的关系为()A.A⊊CB.C⊊AC.A⊆CD.C⊆A7. 函数f(x)=x ln|x|的图像大致是( )A. B.C. D.8. 设集合M ={x|x+3x−1≤0},N ={x||x +1|≤2},P ={x|(12)x 2+2x−3≥1}则有( )A.M ⊆N =PB.M ⊆N ⊆PC.M =P ⊆ND.M =N =P9. 已知函数f(x)={18x −8x ≤10x >1,g(x)=log 2x ,则f(x)与g(x)两函数的图象的交点个数为( )A.1B.2C.3D.410. 已知定义在实数集R 上的函数f(x)的图象经过点(−1,−2),且满足f(−x)=f(x),当 0≤a <b 时不等式f(b)−f(a)b−a>0恒成立,则不等式f(x −1)+2<0的解集为( )A.(0,2)B.(−2,0)C.(−∞,0)∪(2,+∞)D.(−∞,−2)∪(0,+∞)11. 已知集合A ={(x, y)|y =|x −1|, x, y ∈R },B ={(x, y)|y =ax +2, x, y ∈R },若集合A ∩B 有且只有一个元素,则实数a 的取值范围是________.12. 下列函数既是偶函数,又在(−∞,0) 上单调递减的是( ) A.y =(12)|x|B.y =x −23C.y =1x −xD.y =ln (x 2+1)二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 , )13. 集合A ={x|2≤x <7, x ∈N}中的元素个数是________个.14. 下列四个集合中,是空集的是________ ①{x|x +3=3};②{(x, y)|y 2=−x 2, x, y ∈R};③{x|x 2≤0}④{x|x 2−x +1=0, x ∈R}.15. 满足条件{1, 3}∪M ={1, 3, 5}的一个可能的集合M 是________.(写出一个即可)16. 已知集合A =[1, 4),B =(−∞, a),若A ∩B =A ,则实数a 的取值范围为________.17. 已知全集U =R ,M ={y|y =12x −1},则C u M =________.(1)y=3x−1(2)y=x2+ax+b (3)y=−2x(4)y=−log2x (5)y=√x.上述函数中满足对定义域内任意的x1,x2,都有f(x1+x22)≤f(x1)+f(x2)2,成立的函数的序号为________.三、解答题(本题共计 6 小题,每题 10 分,共计60分,)19. 已知全集U=R,集合A={x|x2−4x−5≤0},B={x|2≤x≤4}.(1)求A∩(∁U B);(2)若集合C={x|a≤x≤4a, a>0},满足C∪A=A,C∩B=B,求实数a的取值范围.20. 设集合A={x|y=√x−1+√2−x},B=[3, 4](1)求A;(2)若f(x)=ax是A到B的一个函数,求实数a的取值范围.21. 若函数f(x)的定义域为[1, 4],求函数f(x2)的定义域.22. 求下列函数的值域:(1)y=x+12x;(2)y=2x2+4x−3.23. 已知函数f(x)=x2+x−1.(1)求f(2),f(a)的值;(2)若f(a)=11,求a的值.24. 已知函数f(x)=x−2m2+m+3(m∈Z)为偶函数,且在(0, +∞)上为增函数.(1)求m的值,并确定f(x)的解析式;(2)若g(x)=loga[f(x)−ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2, 3]上的最大值为2,若存在,求出a的值,若不存在,请说明理由.参考答案与试题解析高中数学必修一巩固提升训练题(含答案)一、选择题(本题共计 12 小题,每题 5 分,共计60分)1.【答案】D【解答】解:复数系的构成是复数z=a+bi(a、b∈R).{实数(b=0)虚数(b≠0){纯虚数(a=0)非纯虚数(a≠0).A、R∪I={实数, 纯虚数},故本选项错误;B、R∩I=⌀,故本选项错误;C、∁C R={虚数},C∩I={非纯虚数},则∁C R=C∩I不成立,故本选项错误;D、R∩I=⌀,故本选项正确;故选:D.2.【答案】A【解答】解:∵3f(x)−f(1x)=2x,∴3f(1x )−f(x)=2×1x;∴8f(x)=6x+2×1x;故f(x)=34x+14×1x;故选A.3.【答案】B【解答】解:利用元素与集合关系,用∈,集合与集合关系,用⊆,可得B正确.故选:B.4.【答案】A【解答】解:由题意知,g(1)=4,f[g(1)]=f(4)=1,对于A:g[f(1)]=g[3]=1,故A正确;对于B:g[f(2)]=g[4]=2,故A不正确;对于C:g[f(3)]=g[2]=3,故A不正确;对于D:g[f(4)]=g[1]=4,故A不正确;【答案】C【解答】,解:由题意,令函数g(x)=x+√1−x2⋅2x−12x+1则g(−x)=−x+√1−x2⋅2−x−12−x+1=−x+√1−x2⋅1−2x,2x+1∴g(−x)+g(x)=0,∵g(x)定义域为[−1,1],∴g(x)为奇函数,图象关于原点对称,∴g(x)最大值与最小值也关于原点对称,∴M+N=g(x)+3+g(−x)+3=6.故选C.6.【答案】C【解答】解:根据题意,A∩B=A⇒A⊆B;B∪C=C⇒B⊆C;从而:A⊆C.对于A,由A⊆C,可得出A=C,不一定A⊊C,排除(A);A⊆C,可排除(B),(D).从而得出正确的选项只能是(C).故选C.7.【答案】A【解答】解:∵函数f(x)=x ln|x|,可得f(−x)=−f(x),∴f(x)是奇函数,其图象关于原点对称,排除B;因为函数f(x)的定义域为(−∞,0)∪(0,+∞) ,所以排除C;当x>0时,f(x)=x ln x,当x>1时,f(x)>0,当0<x<1时,f(x)<0,排除D. 故选A.8.【答案】A【解答】解:∵M={x|x+3x−1≤0}={x|(x+3)(x−1)≤0, 且x≠1}={x|−3≤x≤1},N={x||x+1|≤2}={x|−3≤x≤1},P={x|(12)x2+2x−3≥1}={x|x2+2x−3≤0}={x|−3≤x≤1},∴M⊆N=P.故选:A.9.【答案】B【解答】解:由题意可知函数f(x)与g(x)的图象为:由图象可知只需要判断在(0, 1)上两函数的图象交点个数即可.设y=18x−8−log2x又∵当x=18时,y=−328=−4<0,结合对数函数的变化规律易知,图象有两个交点.故选B.10.【答案】A【解答】解:由f(−x)=f(x)可知f(x)为偶函数,且f(−1)=−2,∵当0≤a<b时不等式f(b)−f(a)b−a>0恒成立,∴f(x)在[0,+∞)上单调递增,根据偶函数的对称性可知,函数在(−∞,0)上单调递减,且f(1)=f(−1)=−2,∵f(x−1)+2<0,∴ f(x−1)<−2=f(1)=f(−1),∴|x−1|<1,解得:0<x<2.故选A.11.【答案】【解答】解:集合A中的点构成函数y=|x−1|的图象,集合B中的点是一条过定点(0, 2),斜率为a的直线,如图,∵集合A∩B有且只有一个元素∴函数y=|x−1|的图象与直线y=ax+2有且只有一个交点,数形结合可得a≥1或a≤−1.故答案为:a≥1或a≤−1.12.【答案】D【解答】解:函数y=(12)|x|,是偶函数,在区间(−∞,0)上单调递增,故A错误;函数y=x−23,是奇函数,故B错误;函数y=1x−x,奇函数,故C错误;函数y=ln(x2+1),是偶函数,在区间(0,+∞)上单调递增,在区间(−∞,0)上单调递减,故D正确.故选D.二、填空题(本题共计 6 小题,每题 5 分,共计30分)13.【答案】5【解答】解:∵A={x|2≤x<7, x∈N},∴A={2, 3, 4, 5, 6},∴集合A={x|2≤x<7, x∈N}中的元素个数是5个,故答案为:514.【答案】④【解答】故①{x|x+3=3}={0}≠⌀若y2=−x2,则y=x=0故②{(x, y)|y2=−x2, x, y∈R}={(0, 0)}≠⌀若x2≤0,则x=0故③{x|x2≤0}={0}≠⌀∵方程x2−x+1=0的△=−3<0,故方程无实根故④{x|x2−x+1=0, x∈R}=⌀故答案为:④15.【答案】{1, 3, 5}或{5}或{5, 1}或{5, 3}【解答】解:∵{1, 3}∪M={1, 3, 5},∴5∈M,且M⊆{1, 3, 5}故M={1, 3, 5}或{5}或{5, 1}或{5, 3},故答案为:{1, 3, 5}或{5}或{5, 1}或{5, 3}16.【答案】a≥4【解答】解:因为A∩B=A,所以A⊆B,又A=[1, 4),B=(−∞, a),所以a≥4.故答案为a≥4.17.【答案】{y|−1≤y≤0}.【解答】解:∵2x>0,∴2x−1>−1,∴12x−1>0或12x−1<−1,即M={y|y=12x−1}={y|y>0或y<−1},∴C u M={y|−1≤y≤0}.故填:{y|−1≤y≤0}.18.【答案】(1),(2),(4).【解答】解:如图所示:f(x1+x22)表示取x1,x2中点时对应的函数图象上的函数值,而f(x1)+f(x2)2表示f(x1)与f(x2)两函数值的中点值,只有函数图象下凹或为直线才能满足题意,根据所给5个函数图象的特征知,符合条件的函数为:(1),(2),(4).三、解答题(本题共计 6 小题,每题 10 分,共计60分)19.【答案】由题A={x|−1≤x≤5},∁U B={x|x<2或x>4},∴A∩(∁U B)={x|−1≤x<2或4<x≤5}.由C∪A=A得C⊆A,解得−1≤a≤5,4由C∩B=B得B⊆C,解得1≤a≤2.}.从而实数a的取值范围为{a|1≤a≤54【解答】由题A={x|−1≤x≤5},∁U B={x|x<2或x>4},∴A∩(∁U B)={x|−1≤x<2或4<x≤5}.,由C∪A=A得C⊆A,解得−1≤a≤54由C∩B=B得B⊆C,解得1≤a≤2.}.从而实数a的取值范围为{a|1≤a≤5420.【答案】}解:(1)A={x|y=√x−1√2−x}={x|{x−1≥02−x>0={x|1≤x<2};是A到B的一个函数,A=[1, 2),B=[3, 4],(2)若f(x)=ax∴a≤4且a>3,无解.2【解答】}解:(1)A={x|y=√x−1√2−x}={x|{x−1≥02−x>0={x|1≤x<2};(2)若f(x)=a是A到B的一个函数,A=[1, 2),B=[3, 4],xa21.【答案】解:因为函数y =f(x)的定义域是[1, 4],所以函数 y =f(x 2)中1≤x 2≤4,即−2≤x ≤−1或1≤x ≤2.所求函数的定义域为:[−2, −1]∪[1, 2]【解答】解:因为函数y =f(x)的定义域是[1, 4],所以函数 y =f(x 2)中1≤x 2≤4,即−2≤x ≤−1或1≤x ≤2.所求函数的定义域为:[−2, −1]∪[1, 2]22.【答案】解:(1)∵ y =x+12x∴ 2xy =x +1∴ (2y −1)x =1∴ x =12y−1由2y −1≠0得y ≠12故函数y =x+12x 的值域是{y|y ≠12} (2)∵ y =2x 2+4x −3=y =2(x +1)2−5≥−5故函数y =2x 2+4x −3的值域为{y|y ≥−5}【解答】解:(1)∵ y =x+12x∴ 2xy =x +1∴ (2y −1)x =1∴ x =12y−1由2y −1≠0得y ≠12故函数y =x+12x 的值域是{y|y ≠12} (2)∵ y =2x 2+4x −3=y =2(x +1)2−5≥−5故函数y =2x 2+4x −3的值域为{y|y ≥−5}23.【答案】解:(1)∵ f(x)=x 2+x −1,∴ f(2)=4+2−1=5,f(a)=a 2+a −1;(2)若f(a)=11,即f(a)=a 2+a −1=11,则a 2+a −12=0,解得a=3或a=−4.【解答】解:(1)∵f(x)=x2+x−1,∴f(2)=4+2−1=5,f(a)=a2+a−1;(2)若f(a)=11,即f(a)=a2+a−1=11,则a2+a−12=0,解得a=3或a=−4.24.【答案】解:(1)由函数f(x)=x−2m2+m+3(m∈Z)在(0, +∞)上为增函数,得到−2m2+m+3>0解得−1<m<32,又因为m∈Z,所以m=0或1.又因为函数f(x)是偶函数当m=0时,f(x)=x3,不满足f(x)为偶函数;当m=1时,f(x)=x2,满足f(x)为偶函数;所以f(x)=x2;(2)g(x)=loga(x2−ax),令ℎ(x)=x2−ax,由ℎ(x)>0得:x∈(−∞, 0)∪(a, +∞)∵g(x)在[2, 3]上有定义,∴0<a<2且a≠1,∴ℎ(x)=x2−ax在[2, 3]上为增函数.当1<a<2时,g(x)max=g(3)=log a(9−3a)=2,a2+3a−9=0⇒a=−3±3√52因为1<a<2,所以a=−3+3√52.当0<a<1时,g(x)max=g(2)=log a(4−2a)=2,∴a2+2a−4=0,解得a=−1±√5,∵0<a<1,∴此种情况不存在,综上,存在实数a=−3+3√52,使g(x)在区间[2, 3]上的最大值为2.【解答】解:(1)由函数f(x)=x−2m2+m+3(m∈Z)在(0, +∞)上为增函数,得到−2m2+m+3>0解得−1<m<32,又因为m∈Z,所以m=0或1.又因为函数f(x)是偶函数当m=0时,f(x)=x3,不满足f(x)为偶函数;当m=1时,f(x)=x2,满足f(x)为偶函数;所以f(x)=x2;(2)g(x)=loga(x2−ax),令ℎ(x)=x2−ax,由ℎ(x)>0得:x∈(−∞, 0)∪(a, +∞)∵g(x)在[2, 3]上有定义,∴0<a<2且a≠1,∴ℎ(x)=x2−ax在[2, 3]上为增函数.当1<a<2时,g(x)max=g(3)=log a(9−3a)=2,a2+3a−9=0⇒a=−3±3√52因为1<a<2,所以a=−3+3√52.当0<a<1时,g(x)max=g(2)=log a(4−2a)=2,∴a2+2a−4=0,解得a=−1±√5,∵0<a<1,∴此种情况不存在,综上,存在实数a=−3+3√52,使g(x)在区间[2, 3]上的最大值为2.。

2011届高考数学第一轮复习精品试题:圆锥曲线

2011届高考数学第一轮复习精品试题:圆锥曲线

2011届高考数学第一轮复习精品试题:圆锥曲线第2章 圆锥曲线与方程考纲总要求:①了解圆锥曲线的实际背景,了解在刻画现实世界和解决实际问题中的作用. ②掌握椭圆的定义、几何图形、标准方程与简单几何性质.③了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质. ④理解数形结合的思想. ⑤了解圆锥曲线的简单应用. §重难点:建立并掌握椭圆的标准方程,能根据条件求椭圆的标准方程;掌握椭圆的简单几何性质,能运用椭圆的几何性质处理一些简单的实际问题.经典例题:A 、B 为椭圆22a x +22925a y =1上两点,F2为椭圆的右焦点,假如|AF2|+|BF2|=58a ,AB 中点到椭圆左准线的距离为23,求该椭圆方程.当堂练习:1.如下命题是真命题的是〔 〕A .到两定点距离之和为常数的点的轨迹是椭圆B .到定直线c a x 2=和定点F(c ,0)的距离之比为a c的点的轨迹是椭圆C .到定点F(-c ,0)和定直线ca x 2-=的距离之比为a c(a>c>0)的点的轨迹 是左半个椭圆D .到定直线c a x 2=和定点F(c ,0)的距离之比为ca(a>c>0)的点的轨迹是椭圆2.假如椭圆的两焦点为〔-2,0〕和〔2,0〕,且椭圆过点)23,25(-,如此椭圆方程是〔 〕A .14822=+x yB .161022=+x yC .18422=+x yD .161022=+y x 3.假如方程x2+ky2=2表示焦点在y 轴上的椭圆,如此实数k 的取值X 围为〔 〕A .〔0,+∞〕B .〔0,2〕C .〔1,+∞〕D .〔0,1〕4.设定点F1〔0,-3〕、F2〔0,3〕,动点P 满足条件)0(921>+=+a a a PF PF ,如此点P的轨迹是〔 〕A .椭圆B .线段C .不存在D .椭圆或线段 5.椭圆12222=+b y a x 和k b y a x =+2222()0>k 具有〔 〕 A .一样的离心率 B .一样的焦点C .一样的顶点D .一样的长、短轴6.假如椭圆两准线间的距离等于焦距的4倍,如此这个椭圆的离心率为〔 〕 A .41B .22C .42D . 217.P 是椭圆13610022=+y x 上的一点,假如P 到椭圆右准线的距离是217,如此点P 到左焦点的距离〔 〕A .516B .566C .875D .8778.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是〔 〕A .3B .11C .22D .109.在椭圆13422=+y x 内有一点P 〔1,-1〕,F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,如此这一最小值是〔 〕A .25B .27C .3D .410.过点M 〔-2,0〕的直线m 与椭圆1222=+y x 交于P1,P2,线段P1P2的中点为P ,设直线m 的斜率为k1〔01≠k 〕,直线OP 的斜率为k2,如此k1k2的值为〔 〕A .2B .-2C .21D .-2111.离心率21=e ,一个焦点是()3,0-F 的椭圆标准方程为 ___________ .12.与椭圆 4 x 2 + 9 y 2 = 36 有一样的焦点,且过点(-3,2)的椭圆方程为_______________.13.()y x P ,是椭圆12514422=+y x 上的点,如此y x +的取值X 围是________________ . 14.椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,如此椭圆E的离心率等于__________________.15.椭圆的对称轴为坐标轴,离心率32=e ,短轴长为58,求椭圆的方程.16.过椭圆4:),(148:220022=+=+y x O y x P y x C 向圆上一点引两条切线PA 、PB 、A 、B 为切点,如直线AB 与x 轴、y 轴交于M 、N 两点. 〔1〕假如0=⋅PB PA ,求P 点坐标; 〔2〕求直线AB 的方程〔用00,y x 表示〕;〔3〕求△MON 面积的最小值.〔O 为原点〕17.椭圆12222=+b y a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O 为坐标原点.〔1〕求2211b a+的值; 〔2〕假如椭圆的离心率e 满足33≤e ≤22,求椭圆长轴的取值X 围.18.一条变动的直线L 与椭圆42x +2y 2=1交于P 、Q 两点,M 是L 上的动点,满足关系|MP|·|MQ|=2.假如直线L 在变动过程中始终保持其斜率等于1.求动点M 的轨迹方程,并说明曲线的形状.第2章 圆锥曲线与方程 §重难点:建立并掌握双曲线的标准方程,能根据条件求双曲线的标准方程;掌握双曲线的简单几何性质,能运用双曲线的几何性质处理一些简单的实际问题.经典例题:不论b 取何实数,直线y=kx+b 与双曲线1222=-y x 总有公共点,试某某数k 的取值X 围.当堂练习:1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 〔 〕 A .椭圆B .线段C .双曲线D .两条射线2.方程11122=-++k y k x 表示双曲线,如此k 的取值X 围是〔 〕A .11<<-kB .0>kC .0≥kD .1>k 或1-<k 3. 双曲线14122222=--+m y m x 的焦距是〔 〕A .4B .22C .8D .与m 有关4.m,n 为两个不相等的非零实数,如此方程mx -y+n=0与nx2+my2=mn 所表示的曲线可A B C D 5. 双曲线的两条准线将实轴三等分,如此它的离心率为〔 〕A .23B .3C .34D . 36.焦点为()6,0,且与双曲线1222=-y x 有一样的渐近线的双曲线方程是〔 〕A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x7.假如a k <<0,双曲线12222=+--k b y k a x 与双曲线12222=-b y a x 有〔 〕A .一样的虚轴B .一样的实轴C .一样的渐近线D . 一样的焦点8.过双曲线191622=-y x 左焦点F1的弦AB 长为6,如此2ABF ∆〔F2为右焦点〕的周长是〔 〕A .28B .22C .14D .129.双曲线方程为1422=-y x ,过P 〔1,0〕的直线L 与双曲线只有一个公共点,如此L 的条数共有 〔 〕A .4条B .3条C .2条D .1条10.给出如下曲线:①4x+2y -1=0;②x2+y2=3;③1222=+y x ④1222=-y x ,其中与直线y=-2x -3有交点的所有曲线是〔 〕 A .①③B .②④C .①②③D .②③④11.双曲线17922=-y x 的右焦点到右准线的距离为__________________________.12.与椭圆1251622=+y x 有一样的焦点,且两准线间的距离为310的双曲线方程为____________.13.直线1+=x y 与双曲线13222=-y x 相交于B A ,两点,如此AB =__________________.14.过点)1,3(-M 且被点M 平分的双曲线1422=-y x 的弦所在直线方程为 .15.求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率.16.双曲线()0222>=-a a y x 的两个焦点分别为21,F F ,P 为双曲线上任意一点,求证:21PF PO PF 、、成等比数列〔O 为坐标原点〕.17.动点P 与双曲线x2-y2=1的两个焦点F1,F2的距离之和为定值,且cos ∠F1PF2的最小值为-13.〔1〕求动点P 的轨迹方程;〔2〕设M(0,-1),假如斜率为k(k ≠0)的直线l 与P 点的轨迹交于不同的两点A 、B ,假如要使|MA|=|MB|,试求k 的取值X 围.18.某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上).第2章 圆锥曲线与方程 §重难点:建立并掌握抛物线的标准方程,能根据条件求抛物线的标准方程;掌握抛物线的简单几何性质,能运用抛物线的几何性质处理一些简单的实际问题.经典例题:如图, 直线y=21x 与抛物线y=81x2-4交于A 、B 两点, 线段AB 的垂直平分线与直线y=-5交于Q 点. 〔1〕求点Q 的坐标;〔2〕当P 为抛物线上位于线段AB 下方〔含A 、B 〕的动点时, 求ΔOPQ 面积的最大值.当堂练习:1.抛物线22x y =的焦点坐标是 〔 〕 A .)0,1(B .)0,41(C .)81,0(D . )41,0(2.抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,如此抛物线方程为〔 〕A .y x 82=B .y x 42=C .y x 42-=D .y x 82-=3.抛物线x y 122=截直线12+=x y 所得弦长等于 〔 〕A .15B .152C .215D .154.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),如此它的方程是 〔 〕A .yx 292-=或x y 342=B .x y 292-=或y x 342= C .y x 342=D .xy 292-= 5.点)0,1(P 到曲线⎩⎨⎧==t y t x 22〔其中参数R t ∈〕上的点的最短距离为〔 〕A .0B .1C .2D .26.抛物线)0(22>=p px y 上有),,(),,(2211y x B y x A ),(33y x C 三点,F 是它的焦点,假如CFBF AF ,, 成等差数列,如此 〔 〕A .321,,x x x 成等差数列B .231,,x x x 成等差数列C .321,,y y y 成等差数列D .231,,y y y 成等差数列7.假如点A 的坐标为〔3,2〕,F 为抛物线x y 22=的焦点,点P 是抛物线上的一动点,如此PF PA + 取得最小值时点P 的坐标是 〔 〕A .〔0,0〕B .〔1,1〕C .〔2,2〕D .)1,21(8.抛物线)0(22>=p px y 的焦点弦AB 的两端点为),(11y x A ,),(22y x B ,如此关系式2121x x y y 的值一定等于 〔 〕A .4pB .-4pC .p2D .-p9.过抛物线)0(2>=a ax y 的焦点F 作一直线交抛物线于P ,Q 两点,假如线段PF 与FQ 的长分别是q p ,,如此qp 11+〔 〕 A .a 2B .a21C .a 4D .a410.假如AB 为抛物线y2=2px (p>0)的动弦,且|AB|=a (a>2p),如此AB 的中点M 到y 轴的最近距离是 〔 〕A .21aB .21pC .21a +21pD .21a -21p11.抛物线x y =2上到其准线和顶点距离相等的点的坐标为 ______________. 12.圆07622=--+x y x ,与抛物线)0(22>=p px y 的准线相切,如此=p ___________. 13.如果过两点)0,(a A 和),0(a B 的直线与抛物线322--=x x y 没有交点,那么实数a 的取值X 围是 .14.对于顶点在原点的抛物线,给出如下条件; 〔1〕焦点在y 轴上; 〔2〕焦点在x 轴上; 〔3〕抛物线上横坐标为1的点到焦点的距离等于6;〔4〕抛物线的通径的长为5; 〔5〕由原点向过焦点的某条直线作垂线,垂足坐标为〔2,1〕.其中适合抛物线y2=10x 的条件是(要求填写适宜条件的序号〕 ______.15.点A 〔2,8〕,B 〔x1,y1〕,C 〔x2,y2〕在抛物线px y 22=上,△ABC 的重心与此抛物线的焦点F 重合〔如图〕〔1〕写出该抛物线的方程和焦点F 的坐标; 〔2〕求线段BC 中点M 的坐标; 〔3〕求BC 所在直线的方程.16.抛物线y=ax2-1上恒有关于直线x+y=0对称的相异两点,求a 的取值X 围.17.抛物线x2=4y 的焦点为F ,过点(0,-1)作直线L 交抛物线A 、B 两点,再以AF 、BF 为邻边作平行四边形FARB ,试求动点R 的轨迹方程.18.抛物线C :2742++=x x y ,过C 上一点M ,且与M 处的切线垂直的直线称为C 在点M 的法线.〔1〕假如C 在点M 的法线的斜率为21-,求点M 的坐标〔x0,y0〕;〔2〕设P 〔-2,a 〕为C 对称轴上的一点,在C 上是否存在点,使得C 在该点的法线通过点P ?假如有,求出这些点,以与C 在这些点的法线方程;假如没有,请说明理由.第2章 圆锥曲线与方程 §1)如果实数y x ,满足等式3)2(22=+-y x ,那么x y的最大值是〔 〕A 、21B 、33C 、23D 、32)假如直线01)1(=+++y x a 与圆0222=-+x y x 相切,如此a 的值为〔 〕 A 、1,1- B 、2,2- C 、1 D 、1-3)椭圆125222=+y ax )5(>a 的两个焦点为1F 、2F ,且8||21=F F ,弦AB 过点1F ,如此△2ABF 的周长为〔 〕〔A 〕10 〔B 〕20 〔C 〕241〔D 〕 4144)椭圆13610022=+y x 上的点P 到它的左准线的距离是10,那么点P 到它的右焦点的距离是〔 〕〔A 〕15 〔B 〕12 〔C 〕10 〔D 〕85)椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,21PF PF⊥,如此△21PF F 的面积为〔 〕〔A 〕9 〔B 〕12 〔C 〕10 〔D 〕86)椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是〔 〕〔A 〕3〔B 〕11〔C 〕22〔D 〕107)以坐标轴为对称轴、渐近线互相垂直、两准线间距离为2的双曲线方程是〔 〕〔A 〕222=-y x 〔B 〕222=-x y 〔C 〕422=-y x 或422=-x y 〔D 〕222=-y x 或222=-x y 8)双曲线191622=-y x 右支点上的一点P 到右焦点的距离为2,如此P 点到左准线的距离为〔 〕〔A 〕6 〔B 〕8 〔C 〕10 〔D 〕129)过双曲线822=-y x 的右焦点F2有一条弦PQ ,|PQ|=7,F1是左焦点,那么△F1PQ 的周长为〔 〕〔A 〕28 〔B 〕2814-〔C 〕2814+〔D 〕2810)双曲线虚轴上的一个端点为M,两个焦点为F1、F2,︒=∠12021MF F ,如此双曲线的离心率为〔 〕〔A 〕3〔B 〕26〔C 〕36〔D 〕3311)过抛物线2y ax =(a>0)的焦点F 作一直线交抛物线于P 、Q 两点,假如线段PF 与FQ 的长分别为p 、q ,如此11p q +等于〔 〕〔A 〕2a 〔B 〕12a 〔C 〕4a 〔D 〕4a12) 如果椭圆193622=+y x 的弦被点(4,2)平分,如此这条弦所在的直线方程是〔 〕〔A 〕02=-y x 〔B 〕042=-+y x 〔C 〕01232=-+y x 〔D 〕082=-+y x13)与椭圆22143x y +=具有一样的离心率且过点〔2,14〕离心率35=e ,一条准线为3=x 的椭圆的标准方程是 。

2011届高考数学一轮复习 精品题集之数列

2011届高考数学一轮复习 精品题集之数列

2011届高考数学一轮复习精品题集之数列第2章数列§2.1数列的概念与简单表示重难点:理解数列的概念,认识数列是反映自然规律的基本数学模型,探索并掌握数列的几种间单的表示法(列表、图象、通项公式);了解数列是一种特殊的函数;发现数列规律找出可能的通项公式.考纲要求:①了解数列的概念和几种简单的表示方法(列表、图像、通项公式).②了解数列是自变量巍峨正整数的一类函数.经典例题:假设你正在某公司打工,根据表现,老板给你两个加薪的方案:(Ⅰ)每年年末加1000元;(Ⅱ)每半年结束时加300元。

请你选择:(1)如果在该公司干10年,问两种方案各加薪多少元?(2)对于你而言,你会选择其中的哪一种?当堂练习:1. 下列说法中,正确的是( )A.数列1,2,3与数列3,2,1是同一个数列.B.数列l, 2,3与数列1,2,3,4是同一个数列.C.数列1,2,3,4,…的一个通项公式是an=n.D.以上说法均不正确.2巳知数列{ an}的首项a1=1,且an+1=2 an+1,(n≥2),则a5为( )A.7.B.15 C.30 D.31.3.数列{ an}的前n项和为Sn=2n2+1,则a1,a5的值依次为( )A.2,14 B.2,18 C.3,4.D.3,18.4.已知数列{ an}的前n项和为Sn=4n2 -n+2,则该数列的通项公式为( )A.an=8n+5(n∈N*) B.an=8n-5(n∈N*)C.an=8n+5(n≥2) D.⎪⎩⎪⎨⎧∈≥-==),2(58)1(5+nNnnnna5.已知数列{ an}的前n项和公式Sn=n2+2n+5,则a6+a7+a8= ( )A.40.B.45 C.50 D.55.6.若数列}{n a前8项的值各异,且n8naa=+对任意的*Nn∈都成立,则下列数列中可取遍}{n a前8项值的数列为()A.}{12+ka B.}{13+ka C.}{14+ka D.}{16+ka7.在数列{ an}中,已知an=2,an= an+2n,则a4 +a6 +a8的值为.8.已知数列{ an}满足a1=1 ,an+1=c an+b, 且a2 =3,a4=15,则常数c,b 的值为.9.已知数列{ an}的前n项和公式Sn=n2+2n+5,则a6+a7+a8= .10.设{}na是首项为1的正项数列,且()011221=+-+++nnnnaanaan(n=1,2,3,…),则它的通项公式是na=________.11. 下面分别是数列{ an}的前n项和an的公式,求数列{ an}的通项公式:(1)Sn=2n2-3n;(2)Sn=3n-212. 已知数列{ an}中a1=1,nn a n n a 11+=+ (1)写出数列的前5项;(2)猜想数列的通项公式.13. 已知数列{ an}满足a1=0,an +1+Sn=n2+2n(n ∈N*),其中Sn 为{ an}的前n 项和,求此数列的通项公式.艳荡芦花湾/s2460/ 奀莒咾14. 已知数列{ an}的通项公式an 与前n 项和公式Sn 之间满足关系Sn=2-3an (1)求a1;(2)求an 与an (n ≥2,n ∈N*)的递推关系; (3)求Sn 与Sn (n ≥2,n ∈N*)的递推关系,第2章 数列 §2.2等差数列、等比数列重难点:理解等差数列、等比数列的概念,掌握等差数列、等比数列的通项公式与前n 项和公式,能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题. 考纲要求:①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前n 项和公式.③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题. ④了解等差数列与一次函数、等比数列与指数函数的关系.经典例题:已知一个数列{an}的各项是1或3.首项为1,且在第k 个1和第k+1个1之间有2k-1个3,即1,3,1,3,3,3,1,3,3,3,3,3,1,…,记该数列的前n 项的和为Sn . (1)试问第2006个1为该数列的第几项? (2)求a2006;(3)求该数列的前2006项的和S2006;当堂练习:1,…则是该数列的( )A .第6项B .第7项C .第10项D .第11项2.方程2640x x -+=的两根的等比中项是( )A .3B .2± C. D .2 3. 已知12,,,n a a a …为各项都大于零的等比数列,公比1q ≠,则( ) A .1845a a a a +>+ B .1845a a a a +<+C .1845a a a a +=+D .18a a +和45a a +的大小关系不能由已知条件确定4.一个有限项的等差数列,前4项之和为40,最后4项之和是80,所有项之和是210,则此数列的项数为( )A .12B .14C .16D .185.若a 、b 、c 成等差数列,b 、c 、d 成等比数列,111,,c d e 成等差数列,则a 、c 、e 成( ) A .等差数列 B .等比数列C .既成等差数列又成等比数列D .以上答案都不是 6.在等差数列{an}中,14812152a a a a a ---+=,则313a a +=( ) A .4 B .4- C .8 D .8-7.两等差数列{an}、{bn}的前n 项和的比'5327n n S n S n +=+,则55a b 的值是( )A .2817B .4825C .5327D .2315 8.{an}是等差数列,10110,0S S ><,则使0n a <的最小的n 值是( ) A .5 B .6 C .7 D .89.{an}是实数构成的等比数列,n S 是其前n 项和,则数列{n S } 中( ) A .任一项均不为0 B .必有一项为0C .至多有一项为0D .或无一项为0,或无穷多项为0 10.某数列既成等差数列也成等比数列,那么该数列一定是( ) A .公差为0的等差数列 B .公比为1的等比数列 C .常数数列1,1,1,… D .以上都不对11.已知等差数列{an}的公差d≠0,且a1、a3、a9成等比数列,则1392410a a a a a a ++++的值是 .12.由正数构成的等比数列{an},若132423249a a a a a a ++=,则23a a += .13.已知数列{an}中,122nn n a a a +=+对任意正整数n 都成立,且712a =,则5a = .14.在等差数列{an}中,若100a =,则有等式()*12121919,n n a a a a a a n n -+++=+++<∈N …… 成立,类比上述性质,相应地:在等比数列{bn}中,若91b =,则有等式 15. 已知数列{2n-1an }的前n 项和96n S n =-. ⑴求数列{an}的通项公式;⑵设2||3log 3nn a b n ⎛⎫=- ⎪⎝⎭,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和.16.已知数列{an}是等差数列,且11232,12a a a a =++=. ⑴求数列{an}的通项公式;⑵令()n n n b a x x =∈R ,求数列{bn}前n 项和的公式.17. 甲、乙两人连续6年对某县农村养鸡业规模进行调查,提供两个不同的信息图如图所示.甲调查表明:从第1年每个养鸡场出产1万只鸡上升到第6年平均每个鸡场出产2万只鸡.乙调查表明:由第1年养鸡场个数30个减少到第6年10个. 请您根据提供的信息说明:⑴第2年养鸡场的个数及全县出产鸡的总只数;⑵到第6年这个县的养鸡业比第1年是扩大了还是 缩小了?请说明理由;⑶哪一年的规模最大?请说明理由.18.已知数列{an}为等差数列,公差0d ≠,{an}的部分项组成的数列12,,,k k k na a a …恰为等比数列,其中1231,5,17k k k ===,求12n k k k +++….第2章 数列 §2.3等差数列、等比数列综合运用1、设{}n a 是等比数列,有下列四个命题:①2{}n a 是等比数列;②1{}n n a a +是等比数列; ③1{}n a 是等比数列;④{lg ||}n a 是等比数列。

2011全国数学高考试题及答案

2011全国数学高考试题及答案

2011年普通高等学校夏季招生全国统一考试数学(全国卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第Ⅰ卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.一、选择题:本大题共12小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z =1+i ,z 为z 的共轭复数,则1zz z --= ( ) A .-2i B .-i C .i D .2i 2.函数y =2x (x ≥0)的反函数为( )A .24x y = (x ∈R )B .24x y = (x ≥0)C .y =4x 2(x ∈R )D .y =4x 2(x ≥0)3.下面四个条件中,使a >b 成立的充分而不必要的条件是( ) A .a >b +1 B .a >b -1 C .a 2>b 2 D .a 3>b 34.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( ) A .8 B .7 C .6 D .5 5.设函数f (x )=cos ωx (ω>0),将y =f (x )的图像向右平移π3个单位长度后,所得的图像与原图像重合,则ω的最小值等于( )A.13B .3C .6D .9 6.已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足,B ∈β,BD ⊥l ,D 为垂足,若AB =2,AC =BD =1,则D 到平面ABC 的距离等于( )A.3 B C D .1 7.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )A .4种B .10种C .18种D .20种8.曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A.13 B .12 C .23 D .1 9.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f (-52)=( )A .12-B .14-C .14D .1210.已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =( )A.45 B .35 C .35- D .45- 11.已知平面α截一球面得圆M ,过圆心M 且与α成60°二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为( )A .7πB .9πC .11πD .13π12.设向量a ,b ,c 满足|a |=|b |=1,1·2=-a b ,〈a -c ,b -c 〉=60°,则|c |的最大值等于( )A .2 BCD .1第Ⅱ卷第Ⅱ卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.20(1的二项展开式中,x 的系数与x 9的系数之差为______.14.已知π(,π)2α∈,sin α=,则tan2α=______. 15.已知F 1、F 2分别为双曲线C :22=1927x y -的左、右焦点,点A ∈C ,点M 的坐标为(2,0),AM 为∠F 1AF 2的平分线,则|AF 2|=______.16.已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则面AEF 与面ABC 所成的二面角的正切值等于______.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知A -C =90°,a c +,求C .18.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2) X 表示该地的100位车主中,甲、乙两种保险都不购买的车主数.求X 的期望.19.如图,四棱锥S -ABCD 中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形.AB =BC =2,CD =SD =1.(1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成的角的大小. 20.设数列{a n }满足a 1=0且111111n na a +-=--.(1)求{a n }的通项公式; (2)设n b =,记1nn kk S b==∑,证明:S n <1.21.已知O 为坐标原点,F 为椭圆C :2212y x +=在y 轴正半轴上的焦点,过F 且斜率为l 与C 交于A ,B 两点,点P 满足OA OB OP ++=0.(1)证明:点P 在C 上;(2)设点P 关于点O 的对称点为Q ,证明:A ,P ,B ,Q 四点在同一圆上. 22.(1)设函数2()ln(1)2xf x x x '=-++,证明:当x >0时,f (x )>0; (2)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为p .证明:19291()10ep <<.参考答案1.B 2.B 3.A 4.D 5.C 6.C 7.B 8. A 9.A 10.D11.D 12.A 13.答案:0 14.答案:43- 15.答案:616.答案:317.解:由a +及正弦定理可得sin sin A C B +=.又由于A -C =90°,B =180°-(A +C ),故cos sin )2)C C A C C C ++=+ .cos 222C C C +=,cos(45)cos2C C -= . 因为0°<C <90°, 所以2C =45°-C ,C =15°.18.解:记A 表示事件:该地的1位车主购买甲种保险;B 表示事件:该地的1位车主购买乙种保险但不购买甲种保险;C 表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;D 表示事件:该地的1位车主甲、乙两种保险都不购买. (1)P (A )=0.5,P (B )=0.3,C =A +B , P (C )=P (A +B )=P (A )+P (B )=0.8.(2)D C =,P (D )=1-P (C )=1-0.8=0.2, X ~B (100,0.2),即X 服从二项分布, 所以期望EX =100×0.2=20.19.解法一:(1)取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2. 连结SE ,则SE ⊥AB ,SE =又SD =1,故ED 2=SE 2+SD 2, 所以∠DSE 为直角.由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E ,得AB ⊥平面SDE ,所以AB ⊥SD . SD 与两条相交直线AB 、SE 都垂直.。

高考理科数学基础知识巩固强化练习试题11版含解析

高考理科数学基础知识巩固强化练习试题11版含解析

0
0
=π2+kπ(k∈N),于是 p 是 q 的充分不必要条件.故选 A.
2.[2019 ·广东七校联考 ]由曲线 xy=1,直线 y=x,y=3 所围成
的平面图形的面积为 ( )
32 A. 9
B.2- ln3
C.4+ln3 D.4-ln3
答案: D
解析:
= 4-ln3,故选 D. 3. [2019 ·福建连城二中模拟 ]若 a= 2x2dx, b= 2x3dx, c= 2
2x2-
x4 4
0
2 0
= 8.
故选 B.
7.如图,阴影部分的面积是 ( )
A.32 B.16
32
8
C. 3
D.3
答案: C
解析: 由题意得,阴影部分的面积
1
-13x3- x2+ 3x
-3
32 = 3.
1
S=
(3 - x2-2x)dx =
-3
8.[2019 ·河南商丘一中模拟 ]若 f(x) =x2+2 1 f(x) dx,则 1 f(x) dx
答案: C
解析: 根据定积分的几何意义, 2 4-x2dx 表示以原点为圆心,
0
以 2 为半径的四分之一圆的面积,所以 2 4-x2dx= π.所以 a2 013+a2
0
015=π.因为数列 {an} 为等差数列,所以 a2 013 +a2 015= 2a2 014= a2 012+ a2 016=π,所以 a2 014(a2 012+ 2a2 014+ a2 016)= π2×2π= π2.故选 C.
8 ∴ 1-cos2<3<4,故 c<a<b.故选 D.
4. [2019 ·湖北鄂南高中月考 ]已知数列 {an} 为等差数列,且 a2 013

2011届高考数学第一轮巩固与练习题25

2011届高考数学第一轮巩固与练习题25

巩固1.(原创题)设4名学生报名参加同一时间安排的3项课外活动方案有a种,这4名学生在运动会上共同争夺100米、跳远、铅球3项比赛的冠军的可能结果有b种,则(a,b)为()A.(34,34) B.(43,34)C.(34,43) D.(A43,A43)解析:选C.每名学生报名有3种选择,4名学生有34种选择,每项冠军有4种可能归属,3项冠军有43种可能结果.2.(2010年苏南四市调研)设P、Q是两个非空集合,定义P*Q ={(a,b)|a∈P,b∈Q}.若P={0,1,2},Q={1,2,3,4},则P*Q中元素的个数是()A.4个B.7个C.12个D.16个解析:选C.a有3种选法,b有4种取法,由乘法原理,有3×4=12(种)不同取法,生成12个不同元素.3.(2008年高考全国卷Ⅱ)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种B.12种C.24种D.30种解析:选C.甲、乙所选的课程中恰有1门相同的选法为C42×2C21=24种.4.若x、y∈N*,且x+y≤6,则有序自然数对(x,y)共有________个.解析:当x=1,2,3,4,5时,y值依次有5,4,3,2,1个,由分类计数原理,不同的数对(x,y)共有5+4+3+2+1=15(个).答案:155.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有________种.(用数字作答)解析:可分两步解决.第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的3人中选1人当文娱委员,有3种选法.第二步,从剩下的4人中选学习委员和体育委员,又可分两步进行:第一步,先选学习委员有4种选法,第二步选体育委员有3种选法.由分步乘法计数原理可得,不同的选法共有3×4×3=36(种). 答案:366.某体育彩票规定,从01到36共36个号中抽出的7个号为一注,每注2元.某人想先选定吉利号18,然后从01至17中选3个连续的号,从19至29中选2个连续的号,从30至36中选1个号组成一注.若这个人要把符合这种要求的号全买下,至少要花多少元钱?解:第1步:从01到17中选3个连续号有15种选法; 第2步:从19到29中选2个连续号有10种选法;第3步:从30到36中选1个号有7种选法.由分步乘法计数原理可知:满足要求的注数共有15×10×7=1050注,故至少要花1050×2=2100元.练习1.某城市的电话号码,由六位升为七位(首位数字均不为零),则该城市可增加的电话部数是( )A .9×8×7×6×5×4×3B .8×96C .9×106D .81×105解析:选D.电话号码是六位数字时,该城市可安装电话9×105部,同理升为七位时为9×106.∴可增加的电话部数是9×106-9×105=81×105.2.从长度分别为1,2,3,4的四条线段中任取三条的不同取法共有n 种.在这些取法中,以取出的三条线段为边可组成的三角形的个数为m ,则m n =( )A .0 B.14C.12D.34解析:选 B.n =4,在“1,2,3,4”这四条线段中,由三角形的性质“两边之和大于第三边,两边之差小于第三边”知可组成三角形的有“2,3,4”,即m =1,所以m n =14.3.已知I ={1,2,3},A 、B 是集合I 的两个非空子集,且A 中所有数的和大于B 中所有数的和,则集合A 、B 共有( )A .12对B .15对C .18对D .20对解析:选D.依题意,当A 、B 均有一个元素时,有3对;当B 有一个元素,A 有两个元素时,有8对;当B 有一个元素,A 有三个元素时,有3对;当B 有两个元素,A 有三个元素时,有3对;当A 、B 均有两个元素时,有3对.共20对,故选D.4.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a ,b ,组成复数a +b i ,其中虚数有( )A .36个B .42个C .30个D .35个解析:选 A.由于a ,b 互不相等且为虚数,所有b 只能从{1,2,3,4,5,6}中选一个有6种,a 从剩余的6个选一个有6种,根据分步计数原理知虚数有6×6=36(个).5.三边长均为正整数,且最大边长为11的三角形的个数为( )A .25B .26C .36D .37解析:选C.另两边长用x ,y 表示,且不妨设1≤x ≤y ≤11,要构成三角形,必须x +y ≥12.当y 取值11时,x =1,2,3,…,11,可有11个三角形;当y 取值10时,x =2,3,…,10,可有9个三角形;…当y 取值6时,x 只能取6,只有一个三角形.∴所求三角形的个数为11+9+7+5+3+1=36.6.在1,2,3,4,5这五个数字所组成的允许有重复数字的三位数中,其各个数字之和为9的三位数共有()A.16个B.18个C.19个D.21个解析:选C.若取三个完全不同的数字为1,3,5或2,3,4.其中每种可排3×2×1=6(个)数.若取有两个相同的数字,为1,4,4或2,2,5.每种可排3个数.若取三个相同的数字,为3,3,3,可排一个数,所以共可排6×2+3×2+1=19(个)数.7.如右图所示为一电路图,若只闭合一条线路,从A到B共有______条不同的线路可通电.解析:∵按上、中、下三条线路可分为三类,上线路中有3种,中线路中有一种,下线路中有2×2=4(种).根据分类计数原理,共有3+1+4=8(种).答案:88.山东省某中学,为了满足新课改的需要,要开设9门课程供学生选修,其中A、B、C三门由于上课时间相同,至多选一门,学校规定,每位同学选修4门,共有________种不同的选修方案.(用数值作答)解析:第一类,若从A、B、C三门选一门有C31·C63=60(种),第二类,若从其他六门中选4门有C64=15(种),∴共有60+15=75种不同的方法.答案:759.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,可组成不同的二次函数共有________个,其中不同的偶函数共有________个.(用数字作答)解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理,知共有二次函数3×3×2=18(个).若二次函数为偶函数,则b=0.同上共有3×2=6(个).答案:18 610.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人.(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1人去献血,有多少种不同的选法?解:从O型血的人中选1人有28种不同的选法,从A型血中选1人有7种不同的选法,从B型血的人中选1人有9种不同的选法,从AB型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型的哪一个人,这件“任选1人去献血”的事情都可以完成,所以用分类计数原理.有28+7+9+3=47种不同选法.(2)要从四种血型的人中各选1人,即要在每种血型的人中依次选出1人后,这种“各选1人去献血”的事情才完成,所以用分步计数原理.有28×7×9×3=5292种不同选法.11.有0、1、2、…、8这9个数字.用五张卡片,正反两面分别写上0、8;1、7;2、5;3、4;6、6;且6可作9用.这五张卡片共能拼成多少个不同的四位数?解:由于正反两面可用,且一张卡片在拼一个四位数的过程中至多出现在一个数位上,同时首位不可为0,6可作9用,∴首位有9种拼法,百位有8种拼法,十位有6种拼法,个位有4种拼法.∴共能拼成9×8×6×4=1728(个)不同的四位数.12.用n种不同颜色为下侧两块广告牌着色(如图甲、乙所示),要求在①、②、③、④四个区域中相邻(有公共边界)的区域不用同一种颜色.(1)若n=6,为甲着色时共有多少种不同方法?(2)若为乙着色时共有120种不同方法,求n.解:完成着色这件事,共分四个步骤,可依次考虑为①、②、③、④着色时各自的方法数,再由分步计数原理确定总的着色方法数,因此:(1)为①着色有6种方法,为②着色有5种方法,为③着色有4种方法,为④着色也只有4种方法.∴共有着色方法6×5×4×4=480种.(2)与(1)的区别在于与④相邻的区域由两块变成了三块,同理,不同的着色方法数是n(n-1)(n-2)(n-3).由n(n-1)(n-2)(n-3)=120,∴(n2-3n)(n2-3n+2)-120=0,即(n2-3n)2+2(n2-3n)-12×10=0,∴n2-3n-10=0,∴n=5.。

2011届高考数学一轮复习基础强化训练题排列

2011届高考数学一轮复习基础强化训练题排列

2011届高考数学一轮复习基础强化训练试题排列组合二项式定理概率统计一.选择题: (每小题5分,共计65分)1.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )A .95B .94C .2111D .2110 2.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A .12513B .12516C .12518 D .12519 3.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( )A .56个B .57个C .58个D .60个4.一台X 型号的自动机床在一小时内不需要工人照看的概率为0.8000,有四台这种型号的自动机床各自独立工作,则一小时内至多有2台机床需要工人照看的概率是( )(A)0.1536 (B)0.1808 (C)0.5632 (D)0.97285.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为( )(A)0.6小时 (B)0.9小时 (C)1.0小时 (D)1.5小时6.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上和概率是 ( )(A)5216 (B)25216 (C)31216 (D)912167.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180 个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销焦点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②,则完成①、②这两项调查宜采用的抽样方法依次是( )(A )分层抽样,系统抽样法 (B )分层抽样法,简单随机抽样法(C )系统抽样法,分层抽样法 (D )简随机抽样法,分层抽样法8. 将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子里,每个盒内放一个球,恰好3个球的标号与其在盒子的标号不.一致的放入方法种数为( ) A .120 B .240 C .360 D .7209. 已知盒中装有3只螺口与7只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯炮的概率为( )A .2140B .1740C .310D .712010. 某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:( ) A.110 B.120 C.140 D.112011. 甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是了( )A .21p pB .)1()1(1221p p p p -+-C .211p p -D .)1)(1(121p p ---12. 有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不.左右相邻,那么不同排法的种数是( ) A .234 B .346 C .350 D .36313. 从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种二.填空题: (每小题5分,共计20分)14. 某校有老师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n 的样本;已知从女学生中抽取的人数为80人,则n= .15. 某班委由4名男生和3名女生组成,现从中选出2人担任正副班长。

高考数学一轮复习经典习题集

高考数学一轮复习经典习题集

第一章集合与逻辑用语(附参考答案)第1讲 集合的含义与基本关系1.(2011年江西)若全集U ={1,2,3,4,5,6},M ={2,3},N ={1,4},则集合{5,6}等于( ) A .M ∪N B .M ∩NC .(∁U M )∪(∁U N )D .(∁U M )∩(∁U N )2.(2011年湖南)设全集U =M ∪N ={1,2,3,4,5},M ∩∁U N ={2,4},则N =( ) A .{1,2,3} B .{1,3,5} C .{1,4,5} D .{2,3,4}3.已知集合A ={1,2a },B ={a ,b },若A ∩B =⎩⎨⎧⎭⎬⎫12,则A ∪B 为( )A.⎩⎨⎧⎭⎬⎫12,1,bB.⎩⎨⎧⎭⎬⎫-1,12 C.⎩⎨⎧⎭⎬⎫1,12 D.⎩⎨⎧⎭⎬⎫-1,12,1 4.已知全集U =R ,集合M ={x |-2≤x -1≤2}和N ={x |x =2k -1,k =1,2,…}的关系的韦恩(Venn)图如图K1-1-1所示,则阴影部分所示的集合的元素共有( )图K1-1-1A .3个B .2个C .1个D .无穷多个5.(2011年广东)已知集合A ={(x ,y )|x ,y 为实数,且x 2+y 2=1},B ={(x ,y )|x 、y 为实数,且y =x },则A ∩B 的元素个数为( )A .0B .1C .2D .36.(2011年湖北)已知U ={y |y =log 2x ,x >1},P =⎩⎨⎧⎭⎬⎫y ⎪⎪y =1x ,x >2,则∁U P =( ) A.⎣⎡⎭⎫12,+∞ B.⎝⎛⎭⎫0,12 C.()0,+∞D.()-∞,0∪⎣⎡⎭⎫12,+∞ 7.(2011年上海)若全集U =R ,集合A ={x |x ≥1}∪{x |x ≤0},则∁U A =________________. 8.(2011年北京)已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是____________.9.(2011年安徽合肥一模)A ={1,2,3},B ={x ∈R |x 2-ax +b =0,a ∈A ,b ∈A },求A ∩B=B 的概率.10.(2011届江西赣州联考)已知函数y =ln(2-x )[x -(3m +1)]的定义域为集合A ,集合B =⎩⎨⎧⎭⎬⎫x |x -(m 2+1)x -m <0. (1)当m =3时,求A ∩B ;(2)求使B ⊆A 的实数m 的取值范围.第2讲 命题及其关系、充分条件与必要条件1.(2011年湖南)设集合M ={1,2},N ={a 2},则“a =1”是“N ⊆M ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件2.(2010年陕西)“a >0”是“|a |>0”的( ) A .充分不必要条件 B.必要不充分条件 C .充要条件 D .既不充分也不必要条件3.a 、b 为非零向量,“a ⊥b ”是“函数f (x )=(a x +b )·(x b -a )为一次函数”的( ) A .充分而不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件4.(2010年广东)“m <14”是“一元二次方程x 2+x +m =0”有实数解的( )A .充分非必要条件B .充分必要条件C .必要非充分条件D .非充分必要条件 5.对任意实数a ,b ,c ,给出下列命题: ①“a =b ”是“ac =bc ”的充要条件;②“a +5是无理数”是“a 是无理数”的充要条件; ③“a >b ”是“a 2>b 2”的充分条件; ④“a <5”是“a <3”的必要条件. 其中真命题的个数是( ) A .1 B .2 C .3 D .46.(2011年山东)已知a ,b ,c ∈R ,命题“若a +b +c =3,则a 2+b 2+c 2≥3”的否命题是( )A .若a +b +c ≠3,则a 2+b 2+c 2<3B .若a +b +c =3,则a 2+b 2+c 2<3C .若a +b +c ≠3,则a 2+b 2+c 2≥3D .若a 2+b 2+c 2≥3,则a +b +c =37.(2010年上海)“x =2k π+π4(k ∈Z )”是“tan x =1”成立的( )A .充分不必要条件B .必要不充分条件C .充分条件D .既不充分也不必要条件 8.给定下列命题:①若k >0,则方程x 2+2x -k =0有实数根; ②“若a >b ,则a +c >b +c ”的否命题; ③“矩形的对角线相等”的逆命题;④“若xy =0,则x ,y 中至少有一个为0”的否命题. 其中真命题的序号是________.9.已知p:|x-4|≤6,q:x2-2x+1-m2≤0(m>0),且綈p是綈q的必要不充分条件,求实数m的取值范围.10.已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b)”.(1)写出逆命题,判断其真假,并证明你的结论;(2)写出逆否命题,判断其真假,并证明你的结论.第3讲 简单的逻辑联结词、全称量词与存在量词1.(2011年北京)若p 是真命题,q 是假命题,则( ) A .p ∧q 是真命题 B .p ∨q 是假命题 C .綈p 是真命题 D .綈q 是真命题2.(2010年湖南)下列命题中的假命题是( ) A .∃x ∈R ,lg x =0 B .∃x ∈R ,tan x =1 C .∀x ∈R ,x 3>0 D .∀x ∈R,2x >0 3.下列四个命题中的真命题为( ) A .若sin A =sin B ,则∠A =∠B B .若lg x 2=0,则x =1C .若a >b ,且ab >0,则1a <1bD .若b 2=ac ,则a ,b ,c 成等比数列4.若函数f (x )=x 2+ax (a ∈R ),则下列结论正确的是( ) A .∃a ∈R ,f (x )是偶函数 B .∃a ∈R ,f (x )是奇函数C .∀a ∈R ,f (x )在(0,+∞)上是增函数D .∀a ∈R ,f (x )在(0,+∞)上是减函数5.(2011年广东揭阳市二模)已知命题p :∃x ∈R ,cos x =54;命题q :∀x ∈R ,x 2-x +1>0.则下列结论正确的是( )A .命题p ∧q 是真命题B .命题p ∧綈q 是真命题C .命题綈p ∧q 是真命题D .命题綈p ∧綈q 是假命题6.(2011届广东汕头水平测试)命题“∀x >0,都有x 2-x ≤0”的否定是( ) A .∃x >0,使得x 2-x ≤0 B .∃x >0,使得x 2-x >0 C .∀x >0,都有x 2-x >0 D .∀x ≤0,都有x 2-x >07.如果命题P :∅∈{∅},命题Q :∅⊆{∅},那么下列结论不正确的是( ) A .“P 或Q ”为真 B .“P 且Q ”为假 C .“非P ”为假 D .“非Q ”为假8.(2010年四川)设S 为实数集R 的非空子集.若对任意x ,y ∈S ,都有x +y ,x -y ,xy ∈S ,则称S 为封闭集.下列命题:①集合S ={a +b 3|a ,b 为整数}为封闭集; ②若S 为封闭集,则一定有0∈S ; ③封闭集一定是无限集;④若S 为封闭集,则满足S ⊆T ⊆R 的任意集合T 也是封闭集. 其中的真命题是________(写出所有真命题的序号).9.设函数f (x )=x 2-2x +m .(1)若∀x ∈[0,3],f (x )≥0恒成立,求m 的取值范围; (2)若∃x ∈[0,3],f (x )≥0成立,求m 的取值范围.10.已知m ∈R ,设命题P :|m -5|≤3;命题Q :函数f (x )=3x 2+2mx +m +43有两个不同的零点.求使命题“P 或Q ”为真命题的实数的取值范围.第二章 函数第1讲 函数与映射的概念1.下列函数中,与函数y =1x 有相同定义域的是( )A .f (x )=ln xB .f (x )=1xC .f (x )=|x |D .f (x )=e x2.(2010年重庆)函数y =16-4x 的值域是( ) A .[0,+∞) B .[0,4] C .[0,4) D .(0,4)3.(2010年广东)函数f (x )=lg(x -1)的定义域是( ) A .(2,+∞) B .(1,+∞) C .[1,+∞) D .[2,+∞)4.给定集合P ={x |0≤x ≤2},Q ={y |0≤y ≤4},下列从P 到Q 的对应关系f 中,不是映射的为( )A .f :x →y =2xB .f :x →y =x 2C .f :x →y =52x D .f :x →y =2x5.若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是( )A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)6.若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是__________. 7.已知函数f (x ),g (x )分别由下表给出:x 1 2 3 f (x ) 1 3 1x 1 2 3 g (x ) 3 2 1则f [g (1)]的值为________;满足f [g (x )]>g [f (x )]的x 的值是________.8.(2011年广东广州综合测试二)将正整数12分解成两个正整数的乘积有1×12,2×6,3×4三种,其中3×4是这三种分解中,两数差的绝对值最小的,我们称3×4为12的最佳分解.当p ×q (p ≤q 且p ,q ∈N *)是正整数n 的最佳分解时,我们规定函数f (n )=pq,例如f (12)=34.关于函数f (n )有下列叙述:①f (7)=17;②f (24)=38;③f (28)=47;④f (144)=916.其中正确的序号为________(填入所有正确的序号).9.(1)求函数f (x )=lg (x 2-2x )9-x 2的定义域; (2)已知函数f (2x )的定义域是[-1,1],求f (log 2x )的定义域.10.等腰梯形ABCD 的两底分别为AD =2a ,BC =a ,∠BAD =45°,作直线MN ⊥AD 交AD 于M ,交折线ABCD 于N ,记AM =x ,试将梯形ABCD 位于直线MN 左侧的面积y 表示为x 的函数,并写出函数的定义域.第2讲 函数的表示法1.设f (x +2)=2x +3,则f (x )=( ) A .2x +1 B .2x -1 C .2x -3 D .2x +72.(2011年浙江)已知f (x )=⎩⎪⎨⎪⎧x 2(x >0),f (x +1)(x ≤0),则f (2)+f (-2)的值为( )A .6B .5C .4D .23.设f ,g 都是由A 到A 的映射,其对应关系如下表(从上到下):原象 1 2 3 4 象 3 4 2 1原象 1 2 3 4 象 4 3 1 2则与f [g (1)]值相同的是( A .g [f (1)] B .g [f (2)] C .g [f (3)] D .f [f (4)]4.(2010届广州海珠区第一次测试)直角梯形ABCD 如图K2-2-1(1),动点P 从点B 出发,由B →C →D →A 沿边运动,设点P 运动的路程为x ,△ABP 的面积为f (x ).如果函数y =f (x )的图象如图(2),则△ABC 的面积为( )(1) (2)图K2-2-1A .10B .32C .18D .165.(2011年福建)已知函数f (x )=⎩⎪⎨⎪⎧2x (x >0),x +1 (x ≤0),f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .36.已知f (x )=x +1x -1(x ≠±1),则( )A .f (x )·f (-x )=1B .f (-x )+f (x )=0C .f (x )·f (-x )=-1D .f (-x )+f (x )=17.(2010年陕西)已知函数f (x )=⎩⎪⎨⎪⎧3x +2 (x <1),x 2+ax (x ≥1),若f [f (0)]=4a ,则实数a =________.8.(2011年广东广州调研)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1),x 2,x ∈[1,+∞).若f (x )>4,则x 的取值范围是____________.9.二次函数f (x )满足f (x +1)-f (x )=2x +3,且f (0)=2. (1)求f (x )的解析式;(2)求f (x )在[-3,4]上的值域;(3)若函数f (x +m )为偶函数,求f [f (m )]的值; (4)求f (x )在[m ,m +2]上的最小值.10.定义:如果函数y =f (x )在定义域内给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点.如y =x 4是[-1,1]上的平均值函数,0就是它的均值点.(1)判断函数f (x )=-x 2+4x 在区间[0,9]上是否为平均值函数?若是,求出它的均值点;若不是,请说明理由;(2)若函数f (x )=-x 2+mx +1是区间[-1,1]上的平均值函数,试确定实数m 的取值范围.第3讲 函数的奇偶性与周期性1.已知函数f (x )=ax 2+bx +3a +b 是定义域为[a -1,2a ]的偶函数,则a +b 的值是( )A .0 B.13C .1D .-12.(2010年重庆)函数f (x )=4x +12x 的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称3.(2011年广东)设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( )A .f (x )+|g (x )|是偶函数B .f (x )-|g (x )|是奇函数C .|f (x )|+g (x )是偶函数D .|f (x )|-g (x )是奇函数4.(2011年湖北)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( )A .e x -e -x B.e x +e -x 2 C.e -x -e x 2 D.e x-e -x 25.(2010年山东)设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)=( )A .-3B .-1C .1D .36.(2011年辽宁)若函数f (x )=x(2x +1)(x -a )为奇函数,则a =( )A.12B.23C.34D .1 7.(2011年湖南)已知f (x )为奇函数,g (x )=f (x )+9,g (-2)=3,则f (2)=________.8.函数f (x )对于任意实数x 满足条件f (x +2)f (x )=1,若f (1)=-5,则f (-5)=________.9.已知函数f (x ),当x >0时,f (x )=x 2-2x -1. (1)若f (x )为R 上的奇函数,求f (x )的解析式;(2)若f (x )为R 上的偶函数,能确定f (x )的解析式吗?请说明理由.10.已知定义在R 上的函数f (x )=-2x +a2x +1+b(a ,b 为实常数).(1)当a =b =1时,证明:f (x )不是奇函数; (2)设f (x )是奇函数,求a 与b 的值;(3)当f (x )是奇函数时,证明对任何实数x ,c 都有f (x )<c 2-3c +3成立.第4讲 函数的单调性与最值1.(2011年全国)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A .y =x 3 B .y =|x |+1C .y =-x 2+1D .y =2-|x |2.(2011届广东惠州调研)已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0.则a 的取值范围是( )A .(3,10)B .(2 2,3)C .(2 2,4)D .(-2,3)3.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)4.(2010年北京)给定函数①y =x 12;②y =log 12(x +1);③y =|x -1|;④y =2x +1,其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④5.(2011届上海十三校联考)设函数y =f (x )在R 内有定义,对于给定的正数k ,定义函数f k (x )=⎩⎪⎨⎪⎧f (x ) (f (x )≤k ),k (f (x )>k ).取函数f (x )=log 2|x |.当k =12时,函数f k (x )的单调递增区间为________.6.(2011年江苏)函数f (x )=log 5(2x +1)的单调增区间是__________.7.(2011年上海)设g (x )是定义在R 上、以1为周期的函数,若f (x )=x +g (x )在[3,4]上的值域为[-2,5],则f (x )在区间[-10,10]上的值域为____________.8.(2011年北京)已知函数f (x )=⎩⎪⎨⎪⎧2x (x ≥2),(x -1)3 (x <2),若关于x 的方程f (x )=k 有两个不同的实根,则数k 的取值范围是________.9.已知函数f (x )=x 2+ax +4x(x ≠0).(1)若f (x )为奇函数,求a 的值;(2)若f (x )在[3,+∞)上恒大于0,求a 的取值范围.10.(2011年广东广州综合测试)已知函数f (x )=ax 2+bx +c (a ≠0)满足f (0)=0,对于任意x ∈R 都有f (x )≥x ,且f ⎝⎛⎭⎫-12+x =f ⎝⎛⎭⎫-12-x ,令g (x )=f (x )-|λx -1|(λ>0). (1)求函数f (x )的表达式; (2)求函数g (x )的单调区间.第三章 基本初等函数(Ⅰ)第1讲 指数式与指数函数1.(2011年山东)若点(a,9)在函数y =3x 的图象上,则tan a π6的值为( )A .0 B.33C .1 D. 32.函数y =(a 2-3a +3)a x 是指数函数,则a 的值为( ) A .1或2 B .1C .2D .a >0且a ≠1的所有实数 3.下列函数中值域为正实数的是( ) A .y =-5xB .y =⎝⎛⎭⎫131-xC .y =⎝⎛⎭⎫12x-2 D .y =1-2x4.若函数f (x )=a x +b -1(a >0且a ≠1)的图象经过第二、三、四象限,则一定有( ) A .0<a <1且b >1 B .a >1且b >0 C .0<a <1且b <0 D .a >1且b <05.设函数f (x )=1221(0), (>0)x x x x -⎧-≤⎪⎨⎪⎩若f (x 0)>1,则x 0的取值范围是( )A .(-1,1)B .(-1,+∞)C .(-∞,-2)∪(0,+∞)D .(-∞,-1)∪(1,+∞)6.已知命题p :关于x 的函数y =x 2-3ax +4在[1,+∞)上是增函数,命题q :函数y =(2a -1)x 为减函数,若p ∧q 为真命题,则实数m 的取值范围是( )A .a ≤23B .0<a <12 C.12<a ≤23 D.12<a <17.方程2x +x 2=3实数解的个数为______. 8.关于x 的不等式2·32x -3x +a 2-a -3>0,当0≤x ≤1时恒成立,则实数a 的取值范围为________________________________________________________________________.9.已知函数f (x )=2x-12x +1.(1)求f (x )的定义域; (2)求f (x )的值域;(3)证明f (x )在(-∞,+∞)上是增函数.10.已知函数f (x )是定义在R 上的偶函数,且x ≥0时,f (x )=⎝⎛⎭⎫12x.(1)求f (-1)的值;(2)求函数f (x )的值域A ;(3)设函数g (x )=-x 2+(a -1)x +a 的定义域为集合B ,若A ⊆B ,求实数a 的取值范围.第2讲 对数式与对数函数1.(2010年浙江)已知函数f (x )=log 2(x +1),若f (a )=1,a =( )A .0B .1C .2D .3 2.(2011年北京)如果12log x <12log y <0,那么( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x3.(2010年山东)函数f (x )=log 2(3x +1)的值域为( ) A .(0,+∞) B .[0,+∞) C .(1,+∞) D .[1,+∞) 4.已知A ={x |2≤x ≤π},定义在A 上的函数y =log a x (a >0且a ≠1)的最大值比最小值大1,则底数a 的值为( )A.2πB.π2 C .π-2 D.π2或2π5.(2011年天津)已知a =log 23.6,b =log 43.2,c =log 43.6,则( ) A .a >b >c B .a >c >b C .b >a >c D .c >a >b6.(2011年广东佛山质量检测)已知函数f (x )=⎩⎪⎨⎪⎧2x (x ≤0),log 2x (x >0),则f [f (-1)]=( )A .-2B .-1C .1D .27.(2011年辽宁)设函数f (x )=⎩⎪⎨⎪⎧21-x (x ≤1),1-log 2x (x >1),则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)8.(2011年湖北)里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级.9级地震的最大振幅是5级地震最大振幅的______倍.9.已知函数f (x )=lg(ax 2+2x +1).(1)若f (x )的定义域为R ,求实数a 的范围; (2)若f (x )的值域为R ,求实数a 的范围.10.若方程lg(-x 2+3x -m )=lg(3-x )在x ∈(0,3)内有唯一解,求实数m 的取值范围.第3讲 一次函数、二次函数1.设二次函数f (x )=ax 2+bx +c (a ≠0),如果f (x 1)=f (x 2)(其中x 1≠x 2),则f ⎝⎛⎭⎫x 1+x 22等于( )A .-b 2aB .-ba C .c D.4ac -b 24a2.已知二次函数f (x )的图象如图K3-3-1所示,则其导函数f ′(x )的图象大致形状是( )图K3-3-13.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( ) A .(-1,0)∪(0,1) B .(-1,0)∪(0,1] C .(0,1) D .(0,1]4.设b >0,二次函数y =ax 2+bx +a 2-1的图象为图K3-3-2所示四个图中的一个,则a 的值为( )图K3-3-2A .1B.-1C.-1-52D.-1+525.函数y =x -2x -1的图象是( )6.已知函数f (x )是R 上的增函数,A (0,-1),B (3,1)是其图象上的两点,那么|f (x +1)|<1的解集是( )A .(1,4)B .(-1,2)C .(-∞,1)∪[4,+∞)D .(-∞,-1)∪[2,+∞) 7.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=__________.8.设函数y=x2+(a+2)x+3,x∈[a,b]的图象关于直线x=1对称,则b=______.9.已知函数f(x)=x2+2ax+2,x∈[-5,5].(1)当a=-1时,求f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.10.定义:已知函数f(x)在[m,n](m<n)上的最小值为t,若t≤m恒成立,则称函数f(x)在[m,n](m<n)上具有“DK”性质.(1)判断函数f(x)=x2-2x+2在[1,2]上是否具有“DK”性质,说明理由;(2)若f(x)=x2-ax+2在[a,a+1]上具有“DK”性质,求a的取值范围.第4讲 幂函数1.下列结论中正确的个数有( )①幂函数的图象不可能过第四象限; ②幂函数的图象过定点(0,1)和(1,1);③幂函数y =x α,当α>0时,幂函数是增函数;当α<0时,幂函数是减函数; ④当α=0时,y =x α的图象是一条直线. A .0个 B .1个 C .2个 D .3个2.设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α的值为( )A .1,3B .-1,1C .-1,3D .-1,1,33.在同一坐标系内,函数y =x a (a ≠0)和y =ax -1a的图象可能是 ( )4.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A .3B .2C .1D .05.已知函数f (x )=a x ,g (x )=x a ,h (x )=log a x (a >0且a ≠1),在同一直角坐标系中画出其中两个函数在第一象限内的图象,其中正确的是( )6.(2010年安徽)设a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是( ) A .a >c >b B .a >b >c C .c >a >b D .b >c >a7.(2011年广东揭阳一模)已知α∈⎩⎨⎧⎭⎬⎫-1,12,1,2,则使函数y =x α在[0,+∞)上单调递增的所有α值为_______________________________________________.8.请把图K3-4-1所示幂函数图象的代号填入表格内.图K3-4-1①y =x23;②y =x -2;③y =x 12;④y =x -1;⑤y =x 13;⑥y =x 43;⑦y =x 12-;⑧y =x 53. 函数代号 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ 图象代号9.将下列各数从小到大排列起来:⎝⎛⎭⎫2313-,⎝⎛⎭⎫3512,323,⎝⎛⎭⎫2512, ⎝⎛⎭⎫3223,⎝⎛⎭⎫560,(-2)3,⎝⎛⎭⎫5313-.10.已知函数f (x )=(m 2-m -1)x -5m -3,m 为何值时,f (x )是: (1)幂函数;(2)幂函数,且是(0,+∞)上的增函数; (3)正比例函数; (4)反比例函数; (5)二次函数.第5讲 函数的图象1.(2011年安徽)若点(a ,b )在y =lg x 图象上,a ≠1,则下列点也在此图象上的是( ) A.⎝⎛⎭⎫1a ,b B .(10a,1-b ) C.⎝⎛⎭⎫10a ,b +1 D .(a 2,2b ) 2.下列四个函数中,图象如图K3-5-1所示的只能是( )图K3-5-1A .y =x +lg xB .y =x -lg xC .y =-x +lg xD .y =-x -lg x3.(2011年陕西)方程|x |=cos x 在(-∞,+∞)内( ) A .没有根 B .有且仅有一个根 C .有且仅有两个根 D .有无穷多个根4.与函数y =0.1lg(2x -1)的图象相同的函数是( )A .y =2x -1⎝⎛⎭⎫x >12B .y =12x -1C .y =12x -1⎝⎛⎭⎫x >12 D .y =⎪⎪⎪⎪12x -1 5.(2011年陕西)设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则函数y =f (x )的图象是( )A BC D 6.方程lg x =sin x 的实根的个数为( )A .1个B .2个C .3个D .4个7.在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数f (x )的图象恰好通过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数.有下列函数:①f (x )=sin2x ;②g (x )=x 3;③h (x )=⎝⎛⎭⎫13x;④φ(x )=ln x . 其中是一阶整点函数的是( )A .①②③④B .①③④C .①④D .④8.关于x 的方程|x 2-4x +3|-a =0有三个不相等的实数根,则实数a 的值是____.9.(2011年陕西3月模拟)已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -2 (x ≤-1),(x -2)(|x |-1) (x >-1),如果方程f (x )=a有四个不同的实数根,求实数a的取值范围.10.设a为实数,函数f(x)=x3-x2-x+a.(1)求f(x)的极值;(2)当a在什么范围内取值时,曲线y=f(x)与x轴仅有一个交点.第6讲 函数与方程1.(2011年浙江)设函数f (x )=⎩⎪⎨⎪⎧-x (x ≤0),x 2 (x >0).若f (a )=4,则实数a =( )A .-4或-2B .-4或2C .-2或4D .-2或2 2.由下表知f (x )=g (x )有实数解的区间是( )x -1 0 1 2 3 f (x ) -0.677 3.011 5.432 5.980 7.651 g (x ) -0.530 3.451 4.890 5.241 6.892A.(-1,0) 3.设函数f (x )=x 3-4x +3+ln x (x >0),则y =f (x )( )A .在区间⎝⎛⎭⎫0,12,⎝⎛⎭⎫12,2内均无零点 B .在区间⎝⎛⎭⎫0,12,⎝⎛⎭⎫12,2内均有零点 C .在区间⎝⎛⎭⎫0,12内无零点,在区间⎝⎛⎭⎫12,2内有零点 D .在区间⎝⎛⎭⎫0,12内有零点,在区间⎝⎛⎭⎫12,2内无零点 4.(2011年陕西)函数f (x )=x -cos x 在[0,+∞)内( ) A .没有零点 B .有且仅有一个零点 C .有且仅有两个零点 D .有无穷多个零点5.若关于x 的方程x 2+2kx -1=0的两根x 1,x 2满足-1≤x 1<0<x 2<2,则k 的取值范围是( )A.⎝⎛⎭⎫-34,0B.⎝⎛⎦⎤-34,0C.⎝⎛⎭⎫0,34D.⎣⎡⎭⎫0,34 6.(2011年陕西)设n ∈N *,一元二次方程x 2-4x +n =0有整数根的充要条件是n =______.7.函数f (x )=ln(x +2)-2x的零点所在区间是(n ,n +1),则正整数n =____.8.下面是用区间二分法求方程2sin x +x -1=0在[0,1]内的一个近似解(误差不超过0.001)的算法框图,如图K3-6-1所示,则判断框内空白处应填入____________,才能得到需要的解.图K3-6-19.已知关于x的二次方程x2+2mx+2m+1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的范围;(2)若方程两根均在区间(0,1)内,求m的范围.10.已知函数f(x)=e x+2x2-3x.(1)求证:函数f(x)在区间[0,1]上存在唯一的极值点,并用二分法求函数取得极值时相应x 的近似值(误差不超过0.2);(2)当x≥1时,若关于x的不等式f(x)≥ax恒成立,试求实数a的取值范围(参考数据e≈2.7,e≈1.6,e0.3≈1.3).第7讲 抽象函数1.(2010年陕西)下列四类函数中,有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是( )A .幂函数B .对数函数C .指数函数D .余弦函数 2.设f (x )是定义在R 上的偶函数,且在(-∞,0)上是增函数,已知x 1>0,x 2<0,且f (x 1)<f (x 2),那么一定有( )A .x 1+x 2<0B .x 1+x 2>0C .f (-x 1)>f (-x 2)D .f (-x 1)·f (-x 1)<03.已知函数f (x )是定义在R 上的函数且满足f ⎝⎛⎭⎫x +32=-f (x ),若x ∈(0,3)时,f (x )=log 2(3x +1),则f (2 011)=( )A .4B .-2C .2D .log 274.已知定义域为R 的偶函数f (x )的一个单调递增区间是(2,6),那么x 的函数f (2-x )有( )A .对称轴为x =-2,一个递减区间是(4,8)B .对称轴为x =-2,一个递减区间是(0,4)C .对称轴为x =2,一个递增区间是(4,8)D .对称轴为x =2,一个递增区间是(0,4)5.若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R ,有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( )A .f (x )为奇函数B .f (x )为偶函数C .f (x )+1为奇函数D .f (x +1)为偶函数 6.已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( ) A .f (-25)<f (11)<f (80) B .f (80)<f (11)<f (-25) C .f (11)<f (80)<f (-25) D .f (-25)<f (80)<f (11)7.对于函数f (x )定义域中任意的x 1,x 2(x 1≠x 2),有如下结论: ①f (x 1+x 2)=f (x 1)·f (x 2); ②f (x 1·x 2)=f (x 1)+f (x 2); ③f (x 1)-f (x 2)x 1-x 2>0;④f (x 1)-1x 1<0(x 1≠0);⑤f (-x 1)=1f (x 1).当f (x )=2x 时,上述结论中正确结论的序号是________.8.已知y =f (x )是定义在R 上的奇函数,且y =f ⎝⎛⎭⎫x +π2为偶函数,对于函数y =f (x )有下列几种描述:①y =f (x )是周期函数;②x =π是它的一条对称轴;③(-π,0)是它图象的一个对称中心;④当x =π2时,它一定取最大值.其中描述正确的是____________.9.设函数y =f (x )是定义在(0,+∞)上的减函数,并且同时满足下面两个条件: ①对正数x ,y 都有f (xy )=f (x )+f (y );②f ⎝⎛⎭⎫12=1.(1)求f (1)和f (4)的值;(2)求满足f (x )+f (5-x )>-2的x 的取值范围.10.函数f (x )对任意的a ,b ∈R ,都有f (a +b )=f (a )+f (b )-1,并且当x >0时,f (x )>1. (1)求证:f (x )是R 上的增函数;(2)若f (4)=5,解不等式f (3m 2-m -2)<3.第8讲 函数模型及其应用1.在一定范围内,某种产品的购买量y 吨与单价x 元之间满足一次函数关系.如果购买1 000吨,每吨为800元;购买2 000吨,每吨为700元.一客户购买400吨,单价应该是( )A .820元B .840元C .860元D .880元2.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为( )A .3B .4C .6D .123.(2011届山东聊城调研)已知某驾驶员喝了m 升酒后,血液中酒精的含量f (x )(毫克/毫升)随时间x (小时)变化的规律近似满足表达式f (x )=⎩⎪⎨⎪⎧5x -2 (0≤x ≤1),35·⎝⎛⎭⎫13x(x >1),《酒后驾车与醉酒驾车的标准及相应的处罚》规定:驾驶员血液中酒精含量不超过0.02毫克/毫升,此驾驶员至少要过( )小时后才能开车(精确到1小时).( )A .2B .3C .4D .54.进货单价为80元的商品400个,按90元一个可以全部卖出,已知这种商品每涨价1元,其销售量就减少20个,问售价( )元时获得的利润最大?( )A .85B .90C .95D .1005.某产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2,x ∈(0,240).若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量为______台.6.(2010年浙江)某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月至十月份销售总额至少达7 000万元,则x 的最小值是______.7.某商场宣传在节假日对顾客购物实行一定的优惠,商场规定: ①如一次购物不超过200元,不予以折扣;②如一次购物超过200元,但不超过500元,按标价予以九折优惠; ③如一次购物超过500元的,其中500元给予九折优惠,超过500元的给予八五折优惠;某人两次去购物,分别付款176元和432元,如果他只去一次购买同样的商品,则应付款______元.8.(2011届海淀区统测)如图K3-8-1(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y 与乘客量x 之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图K3-8-1(2)(3)所示.图K3-8-1给出以下说法:(1)图(2)的建议是:提高成本,并提高票价;(2)图(2)的建议是:降低成本,并保持票价不变; (3)图(3)的建议是:提高票价,并保持成本不变; (4)图(3)的建议是:提高票价,并降低成本. 其中所有说法正确的序号是________.9.已知某企业原有员工2 000人,每人每年可为企业创利润3.5万元.为应对国际金融危机给企业带来的不利影响,该企业实施“优化重组,分流增效”的策略,分流出一部分员工待岗.为维护生产稳定,该企业决定待岗人数不超过原有员工的5%,并且每年给每位待岗员工发放生活补贴0.5万元.据评估,当待岗员工人数x 不超过原有员工1%时,留岗员工每人每年可为企业多创利润⎝⎛⎭⎫1-81100x 万元;当待岗员工人数x 超过原有员工1%时,留岗员工每人每年可为企业多创利润0.959 5万元.为使企业年利润最大,应安排多少员工待岗?10.(2011年湖北)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值(精确到1辆/小时).第四章 导数第1讲 导数的意义及运算1.已知函数f (x )=sin x +a 2,则f ′(x )=( ) A .cos x +2a B .cos x C .sin x +2a D .2a2.若f ′(x 0)=2,则lim k →0 f (x 0-k )-f (x 0)2k等于( ) A .-1 B .-2 C .-1 D.123.若函数y =f (x )的导函数在区间[a ,b ]上是增函数,函数y =f (x )在区间[a ,b ]上的图象可能是( )4.(2011年山东)曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .155.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .4B .-14C .2D .-126.(2011年“江南十校”联考)已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( )A .-eB .-1C .1D .e7.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.8.物体的运动方程是s =-13t 3+2t 2-5,则物体在t =3时的瞬时速度为________,加速度为________.9.(2010年全国)若曲线y =x -12在点(a ,a -12)处的切线与两个坐标围成的三角形的面积为18,求a 的值.10.已知曲线y=2x2+3.(1)求曲线在点P(1,5)处的切线方程;(2)求曲线过点Q(2,9)的切线方程.第2讲 导数在函数中的应用1.(2011届河北唐山一中统测)若函数f (x )=ax 3+bx 2+cx +d 有极值,则导函数f ′(x )的图象不可能是( )2.(2011年海南海口调研测试)函数y =f (x )在定义域⎝⎛⎭⎫-32,3内可导,其图象如图K4-2-1所示,记y =f (x )的导函数为y =f ′(x ),则不等式f ′(x )≤0的解集为( )图K4-2-1A.⎣⎡⎦⎤-32,12∪[1,2)B.⎣⎡⎦⎤-1,12∪⎣⎡⎦⎤43,83 C.⎣⎡⎦⎤-13,1∪[2,3) D.⎝⎛⎦⎤-32,-1∪⎣⎡⎦⎤12,43∪⎣⎡⎦⎤83,3 3.已知f (x )=x 3-6x +m (m 是常数)在[-1,1]上的最小值是2,则此函数在[-1,1]上的最大值是( )A .10B .11C .12D .134.(2011年福建)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .95.(2011年浙江)设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ).若x =-1为函数f (x )e x 的一个极值点,则下列图象不可能为y =f (x )的图象是( )6.如图K4-2-2为函数f (x )=ax 3+bx 2+cx +d的图象,f ′(x )为函数f (x )的导函数,则不等式x ·f ′(x )<0的解集为__________________________________________________.图K4-2-27.(2011年辽宁)已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是____________. 8.已知函数f (x )=x 3+3mx 2+nx +m 2在x =-1时有极值0,则m =________,n =________.9.已知函数f (x )=x 3-12x 2+bx +c .(1)若f (x )在(-∞,+∞)上是增函数,求b 的取值范围;(2)若f (x )在x =1处取得极值,且x ∈[-1,2]时,f (x )<c 2恒成立,求c 的取值范围.10.(2011年福建)已知a ,b 为常数,且a ≠0,函数f (x )=-ax +b +ax ln x ,f (e)=2(e =2.718 28…是自然对数的底数).(1)求实数b 的值;(2)求函数f (x )的单调区间;(3)当a =1时,是否同时存在实数m 和M (m <M ),使得对每一个t ∈[m ,M ],直线y =t与曲线y =f (x )⎝⎛⎭⎫x ∈⎣⎡⎦⎤1e ,e 都有公共点?若存在,求出最小的实数m 和最大的实数M ;若不存在,说明理由.第3讲 导数的综合应用1.设f (x )=2x 2-x 3,则f (x )的单调递减区间是( )A.⎝⎛⎭⎫0,43B.⎝⎛⎭⎫43,+∞ C .(-∞,0) D .(-∞,0)和⎝⎛⎭⎫43,+∞2.(2011年江西)若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(-1,0)∪(2,+∞) C .(2,+∞) D .(-1,0)3.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )≥0,则必有( ) A .f (0)+f (2)<2f (1) B .f (0)+f (2)≤2f (1) C .f (0)+f (2)≥2f (1) D .f (0)+f (2)>2f (1)4.某厂生产某种产品x 件的总成本C (x )=1 200+275x 3(万元),又知产品单价的平方与产品件数x 成反比,生产100件这样的产品单价为50万元,则产量定为( )元时总利润最大.( )A .10B .25C .30D .405.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获得最大年利润的年产量为( ) A .13万件 B .11万件 C .9万件 D .7万件6.(2011年辽宁)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)7.(2011年湖南)设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时,t 的值为( )A .1 B.12 C.52 D.228.(2010届湖南师大附中调研)若函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是__________.9.(2011年江西)设f (x )=13x 3+mx 2+nx .(1)如果g (x )=f ′(x )-2x -3在x =-2处取得最小值-5,求f (x )的解析式; (2)如果m +n <10(m ,n ∈N *),f (x )的单调递减区间的长度是正整数,试求m 和n 的值(注:区间(a ,b )的长度为b -a ).10.(2011年福建)某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=ax-3+10(x-6)2,其中3<x<6,a为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.第五章 不等式第1讲 不等式的概念与性质1.(2011年浙江)若a ,b 为实数,则“0<ab <1”是“b <1a”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.已知四个条件:①b >0>a ;②0>a >b ;③a >0>b ;④a >b >0,能推出1a <1b成立的有( )A .1个B .2个C .3个D .4个3.在等比数列{a n }中,a n >0(n ∈N ),公比q ≠1.则( ) A .a 1+a 8>a 4+a 5 B .a 1+a 8<a 4+a 5 C .a 1+a 8=a 4+a 5 D .不确定4.已知三个不等式:ab >0;bc -ad >0;c a -db>0(其中a ,b ,c ,d 均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个数是( )A .0B .1C .2D .35.(2010届湖北八校联考)若a <b <0,则下列不等式中不一定成立的是( ) A.1a >1b B.1a -b >1b C.-a >-b D .|a |>-b6.(2011年湖北黄冈质检)已知x >y >z ,且x +y +z =0,下列不等式中成立的是( ) A .xy >yz B .xz >yz C .xy >xz D .x |y |>z |y |7.若不等式(-1)na <2+(-1)n +1n对于任意正整数n 恒成立,则实数a 的取值范围是( )A.⎣⎡⎭⎫-2,32B.⎝⎛⎦⎤-2,32 C.⎣⎡⎭⎫-3,32 D.⎝⎛⎭⎫-3,32 8.用若干辆载重为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装8吨,则最后一辆汽车不满也不空.则有汽车______辆.9.a >0,b >0,求证⎝⎛⎭⎫a2b 12+⎝⎛⎭⎫b 2a 12≥a12+b 12.10.已知α∈(0,π),比较2sin2α与sin α1-cos α的大小.第2讲 一元二次不等式及其解法1.(2011年福建)若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是( )A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)2.如果kx 2+2kx -(k +2)<0恒成立,则实数k 的取值范围是( ) A .-1≤k ≤0 B .-1≤k <0 C .-1<k ≤0 D .-1<k <03.已知函数f (x )=⎩⎪⎨⎪⎧x +2,(x ≤0),-x +2,(x >0),则不等式f (x )≥x 2的解集是( )A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2]4.关于x 的不等式ax -b >0的解集是(1,+∞),则关于x 的不等式ax +bx -2>0的解集是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(1,2)D .(-∞,1)∪(2,+∞)5.(2011年湖南)已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若有f (a )=g (b ),则b 的取值范围为( )A .[2-2,2+2]B .(2-2,2+2)C .[1,3]D .(1,3)6.(2010年上海)不等式2-xx +4>0的解集是__________.7.(2011年上海)不等式x +1x≤3的解为____________.8.不等式ax 2+bx +c >0的解集区间为⎝⎛⎭⎫-13,2,对于系数a ,b ,c ,则有如下结论:①a <0;②b >0;③c >0;④a +b +c >0;⑤a -b +c >0,其中正确的结论的序号是_________.9.已知不等式2x +1>1的解集为A ,不等式x 2-(2+a )x +2a <0的解集为B .(1)求集合A 及B ;(2)若A ⊆B ,求实数a 的取值范围.10.已知a ,b ,c ∈R 且a <b <c ,函数f (x )=ax 2+2bx +c 满足f (1)=0,且关于t 的方程f (t )=-a 有实根(其中t ∈R 且t ≠1).(1)求证:a <0,c >0;(2)求证:0≤ba<1.第3讲 算术平均数与几何平均数1.A 为两正数a ,b 的等差中项,G 为a ,b 正的等比中项,则ab 与AG 的大小关系为( ) A .ab ≤AG B .ab ≥AG C .ab >AG D .ab <AG2.(2011年上海)若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2ab D.b a +a b≥2 3.设a >0,b >0.若3是3a 与3b 的等比中项,则1a +1b的最小值为( )A .8B .4C .1 D.144.(2011年重庆)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =( )A .1+2B .1+3C .3D .45.对于函数f (x )=x 2+2x ,在使f (x )≥M 成立的所有常数M 中,我们把M 的最大值-1叫做f (x )=x 2+2x 的下确界,则对于a ,b ∈R 且a ,b 不全为0,a 2+b 2(a +b )2的下确界为( )A.12 B .2 C.14D .4 6.(2011年湖南)设x ,y ∈R ,且xy ≠0,则⎝⎛⎭⎫x 2+1y 2· ⎝⎛⎭⎫1x 2+4y 2的最小值为________. 7.(2011年浙江)若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是__________.8.(2011年湖北模拟)设a >0,b >0,称2aba +b为a ,b 的调和平均数.如图K5-3-1,C为线段AB 上的点,且AC =a ,CB =b ,O 为AB 中点,以AB 为直径作半圆.过点C 作AB 的垂线交半圆于D .连接OD ,AD ,BD .过点C 作OD 的垂线,垂足为E .则图中线段OD 的长度是a ,b 的算术平均数,线段________的长度是a ,b 的几何平均数,线段________的长度是a ,b 的调和平均数.图K5-3-19.已知x >0,y >0,且2x +1y=1,若x +2y >m 2+2m 恒成立,求实数m 的取值范围.。

2011届高考数学第一轮巩固与练习题52

2011届高考数学第一轮巩固与练习题52

1.(2008年高考陕西卷)已知{a n }是等差数列,a 1+a 2=4,a 7+a 8=28,则该数列前10项和S 10等于( )A .64B .100C .110D .120解析:选B.设等差数列公差为d ,则由已知得⎩⎨⎧ a 1+a 1+d =4a 1+6d +a 1+7d =28, 即⎩⎨⎧ 2a 1+d =42a 1+13d =28,解得a 1=1,d =2,∴S 10=10a 1+10×92d =10×1+10×92×2=100.2.等差数列{a n }的通项公式为a n =2n +1,其前n 项的和为S n ,则数列{S n n }的前10项的和为( )A .120B .70C .75D .100解析:选C.S n =n (a 1+a n )2=n (n +2),∴S n n =n +2. 故S 11+S 22+…+S 1010=75.3.(原创题)设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列{1f (n )}(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1C.n n -1D.n +1n 解析:选 A.f ′(x )=mx m -1+a =2x +1,∴a =1,m =2,∴f (x )=x (x +1),1f (n )=1n (n +1)=1n -1n +1,用裂项相消法求和得S n =n n +1.故选A.4.若S n =1-2+3-4+…+(-1)n -1·n ,S 17+S 33+S 50等于________.解析:由题意知S n =⎩⎪⎨⎪⎧ n +12(n 为奇数),-n 2(n 为偶数).∴S 17=9,S 33=17,S 50=-25,∴S 17+S 33+S 50=1.答案:15.若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2+3n (n ∈N *),则a 12+a 23+…+a n n +1=________. 解析:令n =1得a 1=4,即a 1=16,当n ≥2时,a n =(n 2+3n )-[(n -1)2+3(n -1)]=2n +2,所以a n =4(n +1)2,当n =1时,也适合,所以a n =4(n +1)2(n ∈N *).于是a n n +1=4(n +1),故a 12+a 23+…+a n n +1=2n 2+6n . 答案:2n 2+6n6.已知等差数列{a n }中,S n 是它前n 项和,设a 6=2,S 10=10.(1)求数列{a n }的通项公式;(2)若从数列{a n }中依次取出第2项,第4项,第8项,…,第2n 项,…,按取出的顺序组成一个新数列{b n },试求数列{b n }的前n 项和T n .解:(1)设数列{a n }首项,公差分别为a 1,d .则由已知得a 1+5d =2①10a 1+10×92d =10②联立①②解得a 1=-8,d =2,所以a n =2n -10(n ∈N *).(2)b n =a 2n =2·2n -10=2n +1-10(n ∈N *),所以T n =b 1+b 2+…+b n =4(1-2n )1-2-10n =2n +2-10n -4.练习1.已知数列{a n }的前n 项和S n =an 2+bn (a 、b ∈R ),且S 25=100,则a 12+a 14等于( )A .16B .8C .4D .不确定解析:选B.由数列{a n }的前n 项和S n =an 2+bn (a 、b ∈R ),可得数列{a n }是等差数列,S 25=(a 1+a 25)·252=100, 解得a 1+a 25=8,所以a 1+a 25=a 12+a 14=8.2.数列{a n }、{b n }都是等差数列,a 1=5,b 1=7,且a 20+b 20=60.则{a n +b n }的前20项和为( )A .700B .710C .720D .730解析:选C.由题意知{a n +b n }也为等差数列,所以{a n +b n }的前20项和为:S 20=20(a 1+b 1+a 20+b 20)2=20×(5+7+60)2=720. 3.数列9,99,999,…的前n 项和为( )A.109(10n -1)+n B .10n -1C.109(10n -1)D.109(10n -1)-n解析:选D.∵数列通项a n =10n -1,∴S n =(10+102+103+…+10n )-n=10(1-10n )1-10-n =109(10n -1)-n .故应选D.4.(2010年哈师大附中模拟)设a n =-n 2+17n +18,则数列{a n }从首项到第几项的和最大( )A .17B .18C .17或18D .19解析:选C.令a n ≥0,得1≤n ≤18.∵a 18=0,a 17>0,a 19<0,∴从首项到第18项或17项和最大.5.数列a n =1n (n +1),其前n 项之和为910,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为( )A .-10B .-9C .10D .9解析:选B.数列的前n 项和为11×2+12×3+…+1n (n +1)=1-1n +1=nn +1=910,∴n =9, ∴直线方程为10x +y +9=0.令x =0,得y =-9,∴在y 轴上的截距为-9.6.若{a n }是等差数列,首项a 1>0,a 2009+a 2010>0,a 2009·a 2010<0,则使前n 项和S n >0成立的最大自然数n 是( )A .4017B .4018C .4019D .4020解析:选B.∵a 1>0,a 2009+a 2010>0,a 2009·a 2010<0,且{a n }为等差数列,∴{a n }表示首项为正数,公差为负数的单调递减等差数列, 且a 2009是绝对值最小的正数,a 2010是绝对值最小的负数(第一个负数),且|a 2009|>|a 2010|.∵在等差数列{a n }中,a 2009+a 2010=a 1+a 4018>0,S 4018=4018(a 1+a 4018)2>0, ∴使S n >0成立的最大自然数n 是4018.7.数列1,11+2,11+2+3,…的前n 项和S n =________.解析:由于a n =11+2+3+…+n =2n (n +1)=2(1n -1n +1) ∴S n =2(1-12+12-13+13-14+…+1n -1n +1) =2(1-1n +1)=2n n +1. 答案:2n n +18.若1+3+5+…+(2x -1)11·2+12·3+…+1x (x +1)=110(x ∈N +),则x =________.解析:原式分子为1+3+5+…+(2x -1)=(1+2x -1)x 2=x 2, 分母为11·2+12·3+…+1x (x +1)=1-12+12-13+…+1x -1x +1=x x +1, 原式为:x 2x x +1=x 2+x =110⇒x =10.答案:109.数列{a n }中,a 1=-60,且a n +1=a n +3,则这个数列前30项的绝对值的和是________.解析:{a n }是等差数列,a n =-60+3(n -1)=3n -63,a n ≥0,解得n ≥21.∴|a 1|+|a 2|+|a 3|+…+|a 30|=-(a 1+a 2+…+a 20)+(a 21+…+a 30)=S 30-2S 20=(-60+90-63)302-(-60+60-63)·20=765. 答案:76510.已知函数f (x )=m ·2x +t 的图象经过点A (1,1)、B (2,3)及C (n ,S n ),S n 为数列{a n }的前n 项和,n ∈N *.(1)求S n 及a n ;(2)若数列{c n }满足c n =6na n -n ,求数列{c n }的前n 项和T n .解:(1)由⎩⎨⎧ 2m +t =14m +t =3,得⎩⎨⎧ m =1t =-1,∴f (x )=2x -1,∴S n =2n -1(n ∈N *).∴当n ≥2时,a n =S n -S n -1=2n -2n -1=2n -1.当n =1时,S 1=a 1=1符合上式.∴a n =2n -1(n ∈N *).(2)由(1)知c n =6na n -n =3n ×2n -n .从而T n =3(1×2+2×22+…+n ×2n )-(1+2+…+n )=3(n -1)·2n +1-n (n +1)2+6.11.将n 2个数排成n 行n 列的一个数阵:a 11 a 12 a 13 … a 1na 21 a 22 a 23 … a 2na 31 a 32 a 33 … a 3n… … … … …a n 1 a n 2 a n 3 … a nn已知a 11=2,a 13=a 61+1,该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,其中m 为正实数.(1)求第i 行第j 列的数a ij ;(2)求这n 2个数的和.解:(1)由a 11=2,a 13=a 61+1得2m 2=2+5m +1,解得m =3或m =-12(舍去).a ij =a i 1·3j -1=[2+(i -1)m ]3j -1=(3i -1)3j -1.(2)S =(a 11+a 12+…+a 1n )+(a 21+a 22+…+a 2n )+…+(a n 1+a n 2+…+a nn )=a 11(1-3n )1-3+a 21(1-3n )1-3+…+a n 1(1-3n )1-3=12(3n -1)·(2+3n -1)n 2=14n (3n +1)(3n -1).12.(2009年高考全国卷Ⅰ)在数列{a n }中,a 1=1,a n +1=(1+1n )a n+n +12n .(1)设b n =a n n ,求数列{b n }的通项公式;(2)求数列{a n }的前n 项和S n .解:(1)由已知得b 1=a 1=1,且a n +1n +1=a n n +12n , 即b n +1=b n +12n ,从而b 2=b 1+12,b 3=b 2+122,…b n =b n -1+12n -1(n ≥2). 于是b n =b 1+12+122+…+12n -1=2-12n -1(n ≥2). 又b 1=1,故所求的通项公式为b n =2-12n -1. (2)由(1)知a n =2n -n 2n -1, 故S n =(2+4+…+2n )-(1+22+322+423+…+n 2n -1), 设T n =1+221+322+423+…+n 2n -1,① 12T n =12+222+323+…+n -12n -1+n 2n ,② ①-②得,12T n =1+12+122+123+…+12n -1-n 2n=1-12n 1-12-n 2n =2-22n -n 2n , ∴T n =4-n +22n -1. ∴S n =n (n +1)+n +22n -1-4.。

2011届高考数学第一轮巩固与练习题37

2011届高考数学第一轮巩固与练习题37

巩固1.(原创题)已知一个几何体的三视图如图所示,则此几何体的组成为()A.上面为棱台,下面为棱柱B.上面为圆台,下面为棱柱C.上面为圆台,下面为圆柱D.上面为棱台,下面为圆柱解析:选C.结合图形分析知上面为圆台,下面为圆柱.2.两个完全相同的长方体的长、宽、高分别为5 cm、4 cm、3 cm,把它们重叠在一起组成一个新的长方体,在这些长方体中,最长对角线的长度是()A.77 cm B.7 2 cmC.5 5 cm D.10 2 cm解析:选C.两个完全相同的长方体重叠在一起有三种情况,分别计算三种情况的体对角线为77、98、125,所以最长对角线的长为5 5.3.下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D.A错误.如图(1)所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.B错误.如图(2)(3)所示,若△ABC不是直角三角形,或是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥.C错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.4.底面半径为2的圆锥被过高的中点且平行于底面的平面所截,则截面圆的面积为__________.解析:由题意知截面圆的半径为1,所以截面圆的面积为π.答案:π5.下面关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱.其中,真命题的编号是________(写出所有真命题的编号).解析:①错,必须是两个相邻的侧面;②正确;③错,反例,可以是斜四棱柱;④正确,对角线两两相等,则此两对角线所在的平行四边形为矩形.答案:②④6.用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,求圆台的母线长.解:抓住轴截面,利用相似比,由底面积之比为1∶16,设半径分别为r 、4r.设圆台的母线长为l ,截得圆台的上、下底面半径分别为r 、4r.根据相似三角形的性质得33+l=r 4r ,解得l=9. 所以,圆台的母线长为9 cm.练习1.三视图如图的几何体是( )A .三棱锥B .四棱锥C .四棱台D .三棱台解析:选B.由三视图知,该几何体是四棱锥,且其中一条棱与底面垂直.2.下列几种关于投影的说法不正确的是( )A .平行投影的投影线是互相平行的B .中心投影的投影线是互相垂直的C .线段上的点在中心投影下仍然在线段上D .平行的直线在中心投影中不平行解析:选B.中心投影的投影线是从一点出发的,不一定互相垂直.3.一个平面四边形的斜二测画法的直观图是一个边长为a 的正方形,则原平面四边形的面积等于( )A.24a 2 B .22a 2C.22a 2D.223a 2解析:选B.根据斜二测画法画平面图形的直观图的规则,可以得出一个平面图形的面积S 与它的直观图的面积S ′之间的关系是S ′=24S ,本题中直观图的面积为a 2,所以原平面四边形的面积等于a 224=22a 2.故选B. 4.(2009年高考福建卷)如下图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )解析:选C.法一:∵体积为12,而高为1,故底面积为12,选C.法二:选项A 得到的几何体为正方体,其体积为1,故排除A ;而选项B 、D 所得几何体的体积都与π有关,排除B 、D ;易知选项C 符合.5.(2009年高考全国卷Ⅱ)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到右侧的平面图形,则标“△”的面的方位是( )A .南B .北C .西D .下解析:选B.如图所示.6.圆锥轴截面的顶角θ满足π3<θ<π2,则侧面展开图中中心角α满足( )A.π4<α<π3B.π3<α<π2C.π2<α<π D .π<α<2π解析:选D.设圆锥母线长为R ,底面圆的半径为r ,则r =R sin θ2.又底面周长l =2πr =Rα,即2πR sin θ2=Rα,∴α=2πsin θ2.∵π3<θ<π2,∴12<sin θ2<22,∴π<α<2π,故选D.7.如图所示为长方体木块堆成的几何体的三视图,此几何体共由__________块木块堆成.解析:由三视图知,由4块木块组成.答案:48.(2010年温州模拟)把边长为1的正方形ABCD 沿对角线BD 折起,形成三棱锥C-ABD ,其正视图与俯视图如图所示,则侧视图的面积为 .解析:根据这两个视图可以推知折起后二面角C-BD-A 为直角二面角,其侧视图是一个两直角边长为22的直角三角形,其面积为14. 答案:149.把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长是10 cm ,则圆锥的母线长为________cm.解析:作出圆锥的轴截面如图,利用平行线截线段成比例,则SA′∶SA=O′A′∶OA ,即(y-10)∶y=x ∶4x ,解得 y =1313.即圆锥的母线长为1313cm.答案:131310.一个正方体内接于高为40 cm ,底面半径为30 cm 的圆锥中,求正方体的棱长.解:如图,过正方体的体对角线作圆锥的轴截面,设正方体的棱长为x ,则OC=22x ,∴22x 30=40-x 40,, 解得x=120(3-22),∴正方体的棱长为120(3-22)cm.11.已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,∠DAB =90°,P A ⊥底面ABCD ,且P A =AD =DC =2AB =4.根据已经给出的此四棱锥的正视图,画出其俯视图和侧视图.解:12.已知正三角形ABC 的边长为a ,求△ABC 的直观图△A ′B ′C ′的面积.解:如图①、②所示的实际图形和直观图.由②可知,A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图②中作C ′D ′⊥A ′B ′于D ′,则C ′D ′=22O ′C ′=68a .∴S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巩固1.圆(x +2)2+y 2=5关于原点(0,0)对称的圆的方程为( )A .(x -2)2+y 2=5B .x 2+(y -2)2=5C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=5答案:A2.已知⊙C :x 2+y 2+Dx +Ey +F =0,则F =E =0且D <0是⊙C 与y 轴相切于原点的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.由题意可知,要求圆心坐标为(-D 2,0),而D 可以大于0,故选A.3.已知两定点A (-2,0),B (1,0),如果动点P 满足|P A |=2|PB |,则点P 的轨迹所包围的图形的面积等于( )A .πB .4πC .8πD .9π解析:选B.设P (x ,y ),由题知有:(x +2)2+y 2=4[(x -1)2+y 2],整理得x 2-4x +y 2=0,配方得(x -2)2+y 2=4.可知圆的面积为4π,故选B.4.(2009年高考广东卷)以点(2,-1)为圆心且与直线x +y =6相切的圆的方程是________.解析:将直线x +y =6化为x +y -6=0,圆的半径r =|2-1-6|1+1=52,所以圆的方程为(x -2)2+(y +1)2=252. 答案:(x -2)2+(y +1)2=2525.(原创题)已知圆x 2+y 2+2x -4y +a =0关于直线y =2x +b 成轴对称,则a -b 的取值范围是________.解析:圆的方程变为(x +1)2+(y -2)2=5-a ,∴其圆心为(-1,2),且5-a >0,即a <5.又圆关于直线y =2x +b 成轴对称,∴2=-2+b ,∴b =4.∴a -b =a -4<1.答案:(-∞,1)6.已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.解:(1)设AP 中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ).∵P 点在圆x 2+y 2=4上, ∴(2x -2)2+(2y )2=4.故线段AP 中点的轨迹方程为(x -1)2+y 2=1.(2)设PQ 的中点为N (x ,y ),在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.练习1.过点A (1,-1),B (-1,1),且圆心在直线x +y -2=0上的圆的方程是( )A .(x -3)2+(y +1)2=4B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=4 解析:选C.设圆心C 的坐标为(a ,b ),半径为r .∵圆心C 在直线x +y -2=0上,∴b =2-a .由|CA |2=|CB |2得(a -1)2+(b +1)2=(a +1)2+(b -1)2,即(a -1)2+(2-a +1)2=(a +1)2+(2-a -1)2,解得a =1,b =1,∴r =|CA |=(1-1)2+(1+1)2=2.即所求圆的方程为(x -1)2+(y -1)2=4.2.若曲线x 2+y 2+a 2x +(1-a 2)y -4=0关于直线y -x =0对称的曲线仍是其本身,则实数a 为( )A .±12B .±22 C.12或-22 D .-12或22解析:选B.由题意知,圆心C (-a 22,a 2-12)在直线y -x =0上,∴a 2-12+a 22=0,∴a 2=12,∴a =±22.故选B.(注:F =-4<0,不需验D 2+E 2-4F >0)3.(2009年高考上海卷)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是( )A .(x -2)2+(y +1)2=1B .(x -2)2+(y +1)2=4C .(x +4)2+(y -2)2=1D .(x +2)2+(y -1)2=1 解析:选A.设圆上任意一点为(x 1,y 1),中点为(x ,y ),则⎩⎨⎧x =x 1+42,y =y 1-22,⎩⎪⎨⎪⎧x 1=2x -4,y 1=2y +2,代入x 2+y 2=4得 (2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1.4.(2009年高考辽宁卷)已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A .(x +1)2+(y -1)2=2B .(x -1)2+(y +1)2=2C .(x -1)2+(y -1)2=2D .(x +1)2+(y +1)2=2解析:选B.由题意可设圆心坐标为(a ,-a ),则|a +a |2=|a +a -4|2,解得a =1,故圆心坐标为(1,-1),半径r =|1+1|2=2,所以圆的方程为(x -1)2+(y +1)2=2.5.(2008年高考山东卷)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -3)2+(y -73)2=1B .(x -2)2+(y -1)2=1C .(x -1)2+(y -3)2=1D .(x -32)2+(y -1)2=1 解析:选B.设圆心坐标为(a ,b ),则⎩⎨⎧ |b |=1|4a -3b |5=1,又b >0,故b =1,由|4a -3|=5得a =2或a =-12,又a >0,故a =2,所求圆的标准方程是(x -2)2+(y -1)2=1.(采用检验的方法也可以)6.一束光线从点A (-1,1)出发经x 轴反射到圆C :(x -2)2+(y -3)2=1上的最短路程是( )A .4B .5C .32-1D .2 6解析:选A.圆C 的圆心C 的坐标为(2,3),半径r =1.点A (-1,1)关于x 轴的对称点A ′的坐标为(-1,-1).因A ′在反射线上,所以最短距离为|A ′C |-r ,即[2-(-1)]2+[3-(-1)]2-1=4.7.如果圆的方程为x 2+y 2+kx +2y +k 2=0.那么当圆面积最大时,圆心为________.解析:将方程配方,得(x +k 2)2+(y +1)2=-34k 2+1.∴r 2=1-34k 2>0,r max =1,此时k =0.∴圆心为(0,-1).答案:(0,-1)8.圆心在原点且圆周被直线3x +4y +15=0分成1∶2两部分的圆的方程为________.解析:如图,因为圆周被直线3x +4y+15=0分成1∶2两部分,所以∠AOB =120°.而圆心到直线3x +4y +15=0的距离d =1532+42=3,在△AOB 中,可求得OA =6.所以所求圆的方程为x 2+y 2=36.答案:x 2+y 2=369.一个等腰三角形底边上的高等于4,底边两端点的坐标是(-3,0),(3,0),则它的外接圆方程是________.解析:底边端点关于原点对称,所以底边的中垂线方程为x =0,①底边上的高等于4,说明第三个顶点的坐标为(0,4)或(0,-4).一腰的中垂线方程为y -2=34(x -32)或y +2=-34(x -32),②方程①②联立得圆心坐标为(0,78)或(0,-78), 半径为(0-3)2+(±78-0)2=258, 所求圆的方程为x 2+(y +78)2=62564或x 2+(y -78)2=62564. 答案:x 2+(y +78)2=62564或x 2+(y -78)2=6256410.求与x 轴相交于A (1,0)和B (5,0)两点且半径为5的圆的标准方程.解:法一:设圆的标准方程为(x -a )2+(y -b )2=5.∵点A ,B 在圆上,所以可得到方程组:⎩⎪⎨⎪⎧(1-a )2+(0-b )2=5(5-a )2+(0-b )2=5,解得a =3,b =±1. ∴圆的标准方程是(x -3)2+(y -1)2=5或(x -3)2+(y +1)2=5. 法二:由A 、B 两点在圆上可知线段AB 是圆的一条弦,根据平面几何知识:这个圆的圆心在线段AB 的垂直平分线x =3上,于是可设圆心为C (3,b ),又|AC |=5,即(3-1)2+b 2=5,解得b =1或b =-1.因此,所求圆的标准方程为(x -3)2+(y -1)2=5或(x -3)2+(y +1)2=5.11.圆C 通过不同的三点P (k,0)、Q (2,0)、R (0,1),已知圆C 在点P 处的切线斜率为1,试求圆C 的方程.解:设圆C 的方程为x 2+y 2+Dx +Ey +F =0,则k 、2为x 2+Dx +F =0的两根,∴k +2=-D,2k =F ,即D =-(k +2),F =2k ,又圆过R (0,1),故1+E +F =0.∴E =-2k -1.故所求圆的方程为x 2+y 2-(k +2)x -(2k +1)y +2k =0,圆心坐标为(k +22,2k +12).∵圆C 在点P 处的切线斜率为1,∴k CP =-1=2k +12-k,∴k =-3.∴D =1,E =5,F =-6. ∴所求圆C 的方程为x 2+y 2+x +5y -6=0.12.已知以点C (t ,2t )(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程.解:(1)证明:设圆的方程为x 2+y 2+Dx +Ey =0,由于圆心C (t ,2t ),∴D =-2t ,E =-4t ,令y =0得x =0或x =-D =2t ,∴A (2t,0),令x =0得y =0或y =-E =4t ,∴B (0,4t ),∴S △OAB =12|OA |·|OB |=12·|2t |·|4t |=4(定值).(2)∵OM =ON ,∴O 在MN 的垂直平分线上,而MN 的垂直平分线过圆心C, ∴k OC =12,∴2t t =12,解得t =2或t =-2,而当t =-2时,直线与圆C 不相交,∴t =2, ∴D =-4,E =-2,∴圆的方程为x 2+y 2-4x -2y =0.。

相关文档
最新文档