人教版八年级数学上册《14.3因式分解》PPT课件
合集下载
人教版(新)数学八年级上册第十四章第三节完全平方公式因式分解课件
2 2
( 2 0 1 4 2 0 1 3 )
2
1.
7.分解因式:(1)4x2+4x+1;(2)
1 2-2x+3. x 3
小聪和小明的解答过程如下: 小聪:
×
小明:
×
他们做对了吗?若错误,请你帮忙纠正过来. 解:(1)原式=(2x)2+2•2x•1+1=(2x+1)2 1 1 (2)原式= 3 (x2-6x+9)= (x-3)2 3
般先利用添括号法则, 将其变形为-(x2-4xy +4y2),然后再利用公式 分解因式.
a2
2ab
+b2
解: (1)16x2+ 24x +9 = (4x)2 + 2· 4x· 3 + (3)2 = (4x + 3)2; (2)-x2+ 4xy-4y2 =-(x2-4xy+4y2) =-(x-2y)2.
a2-2ab+b2+b2-2bc+c2=0, 即(a-b)2+(b-c)2=0,
∴a-b=0,b-c=0,∴a=b=c,
∴△ABC是等边三角形.
当堂练习
1.下列四个多项式中,能因式分解的是( B )
A.a2+1 B.a2-6a+9
C.x2+5y
D.x2-5y
2.把多项式4x2y-4xy2-x3分解因式的结果是( B ) A.4xy(x-y)-x3 B.-x(x-2y)2 C.x(4xy-4y2-x2) D.-x(-4xy+4y2+x2)
课堂小结
公
式
a2±2ab+b2=(a±b)2
完全平方 公式分解 因 式 特 点
(1)要求多项式有三项. (2)其中两项同号,且都可以写 成某数或式的平方,另一项则是这
( 2 0 1 4 2 0 1 3 )
2
1.
7.分解因式:(1)4x2+4x+1;(2)
1 2-2x+3. x 3
小聪和小明的解答过程如下: 小聪:
×
小明:
×
他们做对了吗?若错误,请你帮忙纠正过来. 解:(1)原式=(2x)2+2•2x•1+1=(2x+1)2 1 1 (2)原式= 3 (x2-6x+9)= (x-3)2 3
般先利用添括号法则, 将其变形为-(x2-4xy +4y2),然后再利用公式 分解因式.
a2
2ab
+b2
解: (1)16x2+ 24x +9 = (4x)2 + 2· 4x· 3 + (3)2 = (4x + 3)2; (2)-x2+ 4xy-4y2 =-(x2-4xy+4y2) =-(x-2y)2.
a2-2ab+b2+b2-2bc+c2=0, 即(a-b)2+(b-c)2=0,
∴a-b=0,b-c=0,∴a=b=c,
∴△ABC是等边三角形.
当堂练习
1.下列四个多项式中,能因式分解的是( B )
A.a2+1 B.a2-6a+9
C.x2+5y
D.x2-5y
2.把多项式4x2y-4xy2-x3分解因式的结果是( B ) A.4xy(x-y)-x3 B.-x(x-2y)2 C.x(4xy-4y2-x2) D.-x(-4xy+4y2+x2)
课堂小结
公
式
a2±2ab+b2=(a±b)2
完全平方 公式分解 因 式 特 点
(1)要求多项式有三项. (2)其中两项同号,且都可以写 成某数或式的平方,另一项则是这
人教版八年级数学上册课件:14.3.2因式分解(公式法-平方差公式)
--因式分解的平方差公式
你学了什么方法进行分解因式?
把下列各式因式分解:
(1) ax - ay = a( x – y ) (2) 9a2 - 6ab+3a =3a(a-2b+1) (3) 3a(a+b)-5(a+b) =(a+b)(3a - 5) (4) ax2 - a3 =a(x2-a2) =a(x+a)(x-a) (5) 2xy2 - 50x =2x(y2-25) =2x(y+5)(y - 5)
个整体,加括号
熟记公式 a2 b2 (a b)(a b)
把下列式子分解因式
(x p)2 (x q)2
a² - b²= ( a + b)( a - b )
(1)a2-1
=( a )2-( 1 )2
(2)x4y2-4
=( x2y )2-( 2 )2
(3) 9 x2-0.01y2
49
=( 3
=(x+2)(x-2) =(3+y)(3-y)
(3) 1-a2
(4) 4x2-y2
=(1+a)(1-a) =(2x+y)(2x-y)
把下列各式分解因式
(1) 1-25x2
解: 1-25x2
=12-(5x)2
把两项写成平方的形式,
=(1+5x)(1-5x) 找出a和b。底数既有数
字还有字母,需要看成一
7
x )2-( 0.1y )2
(4)0.0001-121x2源自=( 0.01 )2-( 11x )2
因式分解:
1、 – a4 + 16 2、 4(a+2)2 - 9(a - 1)2 3、 (x+y+z)2 - (x-y-z)2
你学了什么方法进行分解因式?
把下列各式因式分解:
(1) ax - ay = a( x – y ) (2) 9a2 - 6ab+3a =3a(a-2b+1) (3) 3a(a+b)-5(a+b) =(a+b)(3a - 5) (4) ax2 - a3 =a(x2-a2) =a(x+a)(x-a) (5) 2xy2 - 50x =2x(y2-25) =2x(y+5)(y - 5)
个整体,加括号
熟记公式 a2 b2 (a b)(a b)
把下列式子分解因式
(x p)2 (x q)2
a² - b²= ( a + b)( a - b )
(1)a2-1
=( a )2-( 1 )2
(2)x4y2-4
=( x2y )2-( 2 )2
(3) 9 x2-0.01y2
49
=( 3
=(x+2)(x-2) =(3+y)(3-y)
(3) 1-a2
(4) 4x2-y2
=(1+a)(1-a) =(2x+y)(2x-y)
把下列各式分解因式
(1) 1-25x2
解: 1-25x2
=12-(5x)2
把两项写成平方的形式,
=(1+5x)(1-5x) 找出a和b。底数既有数
字还有字母,需要看成一
7
x )2-( 0.1y )2
(4)0.0001-121x2源自=( 0.01 )2-( 11x )2
因式分解:
1、 – a4 + 16 2、 4(a+2)2 - 9(a - 1)2 3、 (x+y+z)2 - (x-y-z)2
人教版初中数学八年级上册 第十四章14.3 因式分解 课件(共16张PPT)
=(2a3b) 2
( 3) 25x280x64
= ( 5 x ) 2 2 5 x8 8 2 =(5x8) 2
( 4) 4m24m1 = ( 2 m ) 22m 1 1 2
=(2m+1) 2
分解因式
( 1) x22xyy2
( x22xyy2) =(x y)2
( 3)Hale Waihona Puke 6aa29( a2-6a9)
( 4) m 214m49= m 2 2 m 7 7 2 = ( m 7 ) 2
( 5)x26x9 x 2 2 x 3 3 2 ( x 3 ) 2
分解因式
( 1) 16x224x9
= ( 4 x ) 2 2 4 x3 3 2
=(4x+3) 2
( 2) 4a212ab9b2
( 2 a ) 2 2 2 a 3 b ( 3 b ) 2
(6) 9x2+6x___不__是__,__只__有__一__个__平__方__项____
当堂训练
分解因式
( 1) x22xyy2 = x2 2xyy2= ( xy ) 2 (2)y2 2y1 = y22y1 1 2= ( y 1 ) 2
( 3)a24a4= a 2 2 a 2 2 2 = ( a 2 ) 2
= ( a2-2a332)
=-(a3)2
( 2) 2m nm 2n2
( 2m nm 2n2)
( m 22m n+n2)
=(m+n) 2
分解因式
( 1) my22m2ym3 m ( y22mym2)
m(ym)2
( 2) 3x26xy3y2
( 3x22xy+y2)
=( 3 x y) 2
( 3) 25x280x64
= ( 5 x ) 2 2 5 x8 8 2 =(5x8) 2
( 4) 4m24m1 = ( 2 m ) 22m 1 1 2
=(2m+1) 2
分解因式
( 1) x22xyy2
( x22xyy2) =(x y)2
( 3)Hale Waihona Puke 6aa29( a2-6a9)
( 4) m 214m49= m 2 2 m 7 7 2 = ( m 7 ) 2
( 5)x26x9 x 2 2 x 3 3 2 ( x 3 ) 2
分解因式
( 1) 16x224x9
= ( 4 x ) 2 2 4 x3 3 2
=(4x+3) 2
( 2) 4a212ab9b2
( 2 a ) 2 2 2 a 3 b ( 3 b ) 2
(6) 9x2+6x___不__是__,__只__有__一__个__平__方__项____
当堂训练
分解因式
( 1) x22xyy2 = x2 2xyy2= ( xy ) 2 (2)y2 2y1 = y22y1 1 2= ( y 1 ) 2
( 3)a24a4= a 2 2 a 2 2 2 = ( a 2 ) 2
= ( a2-2a332)
=-(a3)2
( 2) 2m nm 2n2
( 2m nm 2n2)
( m 22m n+n2)
=(m+n) 2
分解因式
( 1) my22m2ym3 m ( y22mym2)
m(ym)2
( 2) 3x26xy3y2
( 3x22xy+y2)
=( 3 x y) 2
(初二数学课件)人教版初中八年级数学上册第14章整式的乘法与因式分解14.3.1 提公因式法教学课件
人教版 数学 八年级 上册
14.3 因式分解
14.3.1 提公因式法
导入新知
我们知道,利用整式的乘法运算,可以将
几个整式的积化为一个多项式的形式,反过来,
能不能将一个多项式化成几个整式的积的形式
呢?若能,这种变形叫做什么呢?
素养目标
3. 会利用因式分解进行简便计算.
2. 理解并掌握提公因式法并能熟练地运用
整体思想是数学中一种重要而且常用的思想方法.
探究新知
解:(1) 8a3b2 + 12ab3c
=4ab2 ·2a2+4ab2 ·3bc
如果提出公因式
4ab,另一个因式
是否还有公因式?
=4ab2(2a2+3bc);
另一个因式将是2a2b+3b2c, 它还有公因式是b.
(2) 2a(b+c)–3(b+c)
pa+pb+pc
相同因式p
x2+x
相同因式x
多项式中各项都含有的相同因式,叫做这个多项
式的公因式.
探究新知
pa+ pb +pc = p ( a+b+c )
一般地,如果多项式的各项有公因式,可以
把这个公因式提取出来,将多项式写成公因式与
另一个因式的乘积的形式,这种分解因式的方法
叫做提公因式法.
探究新知
最后不是积的运算
② 24x2y=3x ·8xy 因式分解的对象是多项式
③ x2–1=(x+1)(x–1)
④ (2x+1)2=4x2+4x+1 是整式乘法
⑤
x2+x=x2(1+
1
)
x
14.3 因式分解
14.3.1 提公因式法
导入新知
我们知道,利用整式的乘法运算,可以将
几个整式的积化为一个多项式的形式,反过来,
能不能将一个多项式化成几个整式的积的形式
呢?若能,这种变形叫做什么呢?
素养目标
3. 会利用因式分解进行简便计算.
2. 理解并掌握提公因式法并能熟练地运用
整体思想是数学中一种重要而且常用的思想方法.
探究新知
解:(1) 8a3b2 + 12ab3c
=4ab2 ·2a2+4ab2 ·3bc
如果提出公因式
4ab,另一个因式
是否还有公因式?
=4ab2(2a2+3bc);
另一个因式将是2a2b+3b2c, 它还有公因式是b.
(2) 2a(b+c)–3(b+c)
pa+pb+pc
相同因式p
x2+x
相同因式x
多项式中各项都含有的相同因式,叫做这个多项
式的公因式.
探究新知
pa+ pb +pc = p ( a+b+c )
一般地,如果多项式的各项有公因式,可以
把这个公因式提取出来,将多项式写成公因式与
另一个因式的乘积的形式,这种分解因式的方法
叫做提公因式法.
探究新知
最后不是积的运算
② 24x2y=3x ·8xy 因式分解的对象是多项式
③ x2–1=(x+1)(x–1)
④ (2x+1)2=4x2+4x+1 是整式乘法
⑤
x2+x=x2(1+
1
)
x
人教版八年级数学上册《14.3.因式分解》优质PPT课件
三、公式法
3、例题讲解
例3. 4a³- 4a 解:原式=4a(a²-1)
=4a(a+1)(a-1)
利用提取公因式法和平方差公式
三、公式法
3、例题讲解
例4. 5x3y(x-y)-10x4y3(y-x)2 解:原式=5x3y(x-y)-10x4y3(x-y)2
=5x3y(x-y)[1-2xy2(x-y)] =5x3y(x-y)(1-2x2y2+2xy3) 利用提取公因式法和平方差公式
14.3因式分解
情景导入
计算下列各式:
3x(x-2)=3x2-6x m(a+b+c)= ma+mb+mc (m+4)(m-4)= m2-16 (x-2)2= x2-4x+4 a(a+1)(a-1)= a3-a
3x2-6x=(3x)(x-2) ma+mb+mc=(m)(a+b+c) m2-16=(m+4)(m-4) x2-4x+4=(x-2)2 a3-a=(a)(a+1)(a-1)
多项式的第一项是系数为负数的项,一般地,应提出负系数的公 因式.但应注意,这时留在括号内的每一项的符号都要改变,且 最后一项“-x”提出时,应留有一项“+1”,而不能错解为- x(x2-x).
三、公式法
1、平方差公式
把整式乘法的平方差公式(a+b)(a-b)=a2-b2反过来,就得到 a2-b2= (a+b)(a-b),即两个数的平方差,等于这两个数的 和与这两个数的差的积.
左边一组的变形是什么运算?右边的变形与这种运算有什么不 同?右边变形的结果有什么共同的特点?
一、因式分解
1、定义
把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这 个多项式因式分解,也叫做把这个多项式分解因式.
课件《因式分解》精品PPT课件_人教版2
十字相乘法②随堂练习: 1)4a2–9a+2 a 24a 1
2)7a2–19a–6 7a 2a 3 3)2(x2+y2)+5xy 2x y x 2y
例 .将 2(6x2 +x) 2-11(6x2 +x) +5 分解因式 解:2(6x2 +x)2-11(6x2 +x) +5 = [(6x2 +x) -5][2(6x2 +x)-1] = (6x2 +x-5) (12x2 +2x-1 ) = (6x -5)(x +1) (12x2 +2x-1 )
x2 13x 42 x 6 x 7
对二次三项式x2+px+q用x2+(a+b)x+ab=(x+a)(x+b)进行因式分解, 应重点掌握以下问题:
1.适用范围:只有当q=ab,且p=a+b时 才能用十字相乘法进
我
行分解。
2.掌握方法:拆分常数项,验证一次项.
3.符号规律:
当q>0时,a、b同号,且a、b的符号与p的符号相同;
3.(x-2)(x+1)= x2-x-2
4.(x-2)(x-1)= x2-3x+2 5.(x+2)(x+3)= x2+5x+6 6.(x+2)(x-3)= x2-x-6 7.(x-2)(x+3)= x2+x-6 8.(x-2)(x-3)= x2-5x+6
(x+a)(x+b) =x2+(a+b)x+ab
2
-1
例1:2x2-7x+3
解:原式=(2x-1)(x-3) 1
-3
总结:
2 × (-3)+(-1) × 1=-7
【初中数学】人教版八年级数学上册14.3因式分解ppt课件
3
系数:最大 公约数。
1 指数:相同字母的
x
最低次幂
字母:相同的字
母
所以,公因式是3x。
你知道吗?
正确找出多项式各项公因式的关键是:
1、定系数:公因式的系数是多项式各项系数的 最大公约数。
2、定字母: 字母取多项式各项中都含有的相同
的字母。
3、定指数:
相同字母的指数取各项中最小的一个,即字母最
低次幂
练习:(x-y)2+y(y-x)
把下列个式分解因式
(4)2a( y z) 3b( y z) (5) p(a 2 b2 ) q(a 2 b2 )
小结
1、什么叫因式分解?
记住哟!
2、确定公因式的方法:
(1)定系数 (2)定字母 (3)定指数
3、提公因式法分解因式步骤(分两步): 第一步,找出公因式; 第二步,提取公因式.
找一找: 下列各多项式的公因式是什么?
(1) 3x+6y (2) ab-2ac (3) a 2 - a 3 (4) 4(m+n)2+2(m+n) (5) 9m2n-6mn (6) -6x2y-8xy 2
(3) (a) (a2)
(2(m+n)) (3mn) (-2xy)
ma+ mb +mc
如果一个多项式的各项含有公因式,那么 就可以把这个公因式提出来,从而将多项式 化成两个因式乘积的形式,这种分解因式的
(1)ab+ac =____ (2)2x2-x =___
(3)m2-25 =_____ (4)ma+mb+mc =__
m2 – 25=(m+5)(m - 5)
人教版八年级数学上册《14.3因式分解》课件
关闭
C 解析 答案
一二
一二
2.提公因式法分解因式 【例 2】 分解因式: (1)3x2y2+6xy3; (2)x(m-n)+y(n-m). 分析:(1)中的公因式为 3xy2,(2)中看上去没有公因式,但仔细观察,发 现(m-n)与(n-m)是互为相反数,如果把其中一个提出一个“-”,则可以 出现公因式.
谢谢观赏
You made my day!
我们,还在路上……
14.3 因式分解
14.3.1 提公因式法
学前温故 新课早知
1.乘法分配律: m(a+b) =ma+mb. 2.计算:2ab(a2+3ab)= 2a3b+6a2b2 .
学前温故 新课早知
1.把一个多项式化成了几个整式的积的形式 ,像这样的式子变形叫 做这个多项式的 因式分解 ,也叫做把这个多项式 分解因式 . 2.多项式 pa+pb+pc 的各项都有一个公共的 因式 p ,我们把因式 p 叫 做这个多项式各项的 公因式 . 3.一般地,如果多项式的各项有公因式,可以把这个公因式提取出来, 将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的 方法叫做 提公因式法 . 4.下列各式从左到右的变形属于因式分解的是( B ). A.(m-2)(m-1)=(2-m)(1-m) B.1-a2=(1-a)(1+a) C.(2x+1)(x-2)=2x2-3x-2 D.4a2+4ab+b2=4a(a+b)+b2
关闭
C
答案
1
2
3
4
5
6
7
2.下列多项式中,能用提公因式法分解因式的是( ).
A.x2-y
C 解析 答案
一二
一二
2.提公因式法分解因式 【例 2】 分解因式: (1)3x2y2+6xy3; (2)x(m-n)+y(n-m). 分析:(1)中的公因式为 3xy2,(2)中看上去没有公因式,但仔细观察,发 现(m-n)与(n-m)是互为相反数,如果把其中一个提出一个“-”,则可以 出现公因式.
谢谢观赏
You made my day!
我们,还在路上……
14.3 因式分解
14.3.1 提公因式法
学前温故 新课早知
1.乘法分配律: m(a+b) =ma+mb. 2.计算:2ab(a2+3ab)= 2a3b+6a2b2 .
学前温故 新课早知
1.把一个多项式化成了几个整式的积的形式 ,像这样的式子变形叫 做这个多项式的 因式分解 ,也叫做把这个多项式 分解因式 . 2.多项式 pa+pb+pc 的各项都有一个公共的 因式 p ,我们把因式 p 叫 做这个多项式各项的 公因式 . 3.一般地,如果多项式的各项有公因式,可以把这个公因式提取出来, 将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的 方法叫做 提公因式法 . 4.下列各式从左到右的变形属于因式分解的是( B ). A.(m-2)(m-1)=(2-m)(1-m) B.1-a2=(1-a)(1+a) C.(2x+1)(x-2)=2x2-3x-2 D.4a2+4ab+b2=4a(a+b)+b2
关闭
C
答案
1
2
3
4
5
6
7
2.下列多项式中,能用提公因式法分解因式的是( ).
A.x2-y
人教版八年级数学上册 14.3.1 因式分解(提取公因式) 课件(共15张PPT)
例2 把 2a(b+c) -3(b+c)分解因式.
分析:( b+c)是这个式子的公因式,可以直接提出.
解:2a(b+c) – 3(b+c) =(b+c)(2a-3).
练习一 理解概念
判断下列各式哪些是整式乘法?哪些是因式分解?
(1) x2-4y2=(x+2y)(x-2y); (2) 2x(x-3y)=2x2-6xy (3) (5a-1)2=25a2-10a+ ;
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。21.8.2421.8.2421:56:4021:56:40August 24, 2021 • 14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月24日星期二下午9时56分40秒21:56:4021.8.24 • 15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年8月下午9时56分21.8.2421:56August 24, 2021 • 16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021年8月24日星期二9时56分40秒21:56:4024 August 2021 • 17、儿童是中心,教育的措施便围绕他们而组织起来。下午9时56分40秒下午9时56分21:56:4021.8.24
(3)5y3+20y2 ; 5y2
(4)a2b-2ab2+ab . ab
注意:各项系数都是整数时,因式的 系数应取各项系数的最大公约数;字母取 各项的相同的字母,而且各字母的指数取 次数最低的.
练习:
八年级数学上册14.3因式分解课件(新版)新人教版
,即ab=
1时,
6
原式=24ab=4.
第九页,共19页。
因式分解与特殊三角形判定(pàndìng) 的综合 例5 已知△ABC的三边长a,b,c满足(mǎnzú)a2+b2+c2-6a-
6b-10c+43=0,试判断△ABC的形状.
〔解析〕将等号的左边(zuǒ bian)变形为几个非负数的和的形 式,然后转化为关于a,b,c的方程,确定a,b,c的值即可.
第二页,共19页。
1.因式分解(yīn shì fēn jiě).
(1)16(x-1)2 - (x+2)2
(2)a2-14a+49
=[4(x-1)]2-(x+2)2
=[4(x-1)+(x+2)][4(x-1)-(x+2)] =(4x-4+x+2)(4x-4-x-2) =(5x-2)(3x-6) =3(5x-2)(x-2).
解:(1)原式=(88+112)×(88-112)=200×(-24)=-4800.
(2)原式=122+2×12×8+82=(12+8)2=202=400.
【解题归纳】 运用因式分解进行(jìnxíng)简便计算,关键是先 将所给式子进行(jìnxíng)因式分解,常见的方法:①先提公因式, 再运用公式法;②直接运用公式法.
八年级数学(shùxué)·上 标 [人]
新课
第十四章 整式的乘法(chéngfǎ)与因式 分解
14.3 因式分解(yīn shì fēn jiě)
第一页,共19页。
选择合适(héshì)的方法进行因式分
例1 把下列(xiàliè解)各式因式分解.
人教版《因式分解》(完整版)课件
(2)3mx 6my;
(3) 8m2n 2mn ;
(4)12xyz 9x2 y2 ;
(5) 2a( y z) 3b(z y) ; (6)p(a2 b2) q(a2 b2) .
人教版《因式分解》教学实用课件(P PT优秀 课件)
人教版《因式分解》教学实用课件(P PT优秀 课件)
强化训练
人教版《因式分解》教学实用课件(P PT优秀 课件)
例题解析
说出下列多项式各项的公因式: (1)ma + mb ; (m)
(2)4kx- 8ky ; (4k )
(3)5y3+20y2 ;
(5 y 2)
(4)a2b-2ab2+ab . (ab)
人教版《因式分解》教学实用课件(P PT优秀 课件)
人教版《因式分解》教学实用课件(P PT优秀 课件)
(3) (5a-1)2=25a2-10a+1 ; ( 整式乘法 )
(4) x2+4x+4=(x+2)2.
( 因式分解 )
人教版《因式分解》教学实用课件(P PT优秀 课件)
人教版《因式分解》教学实用课件(P PT优秀 课件)
提公因式法
怎样分解因式: pa pb pc ?
公因式:多项式中各项都有的因式,叫做这个多 项式的公因式.
3.什么是提公因式法?用提公因式法分解因式时 要注意什么问题?
人教版《因式分解》教学实用课件(P PT优秀 课件)
人教版《因式分解》教学实用课件(P PT优秀 课件)
布置作业
教科书第119页习题14.3第1题.
人教版《因式分解》教学实用课件(P PT优秀 课件)
由 p(a b c) pa pb pc ,可得 pa pb pc p(a b c)
八年级数学人教版上册第14章整式的乘除与因式分解14.3.2整式的除法(图文详解)
=(x2+2xy+y2 -2yx-y2-8x)÷x =(x2-8x)÷x =x-8
八年级上册第14章整式的乘除与因式分解
1.(綦江·中考)2a2÷a的结果是( )
A.2 B.2a
C.2a3
D.2a2
【解析】选B.利用单项式除以单项式的运算法则易得 选项B正确.
八年级上册第14章整式的乘除与因式分解
2.(无锡·中考)下列正确的是( )
A.(a3)2=a5 C.(a3-a)÷a=a2
B.a3+a2=a5 D.a3÷a3=1
【解析】选D.利用单项式除以单项式的运算法则易得选
项D正确.
八年级上册第14章整式的乘除与因式分解
3.(4x2y3)2 ÷ (-2xy2) 【解析】原式=16x4y6÷(-2xy2)
八年级上册第14章整式的乘除与因式分解
【例】计算:
(1)28x4y2÷7x3y (2)-15a5b3c÷5a4b
【解析】原式=4xy
原式=-3ab2c
(3)(2x2y)3×(-7xy2)÷14x4y3
原式=8x6y3×(-7xy2)÷14x4y3
=-56x7y5÷14x4y3
=-4x3y2
八年级上册第14章整式的乘除与因式分解
的值. 【解析】原式
(9x2 4 y2 5x2 2xy 10xy 4 y2 ) 8x (4x2 8xy) 8x 1xy
2 Q x 2 y 2012 1 x y 1006
2 原式 1006
八年级上册第14章整式的乘除与因式分解
通过本课时的学习,需要我们掌握: 1.单项式相除 (1)系数相除; (2)同底数幂相除; (3)只在被除式里的幂不变. 2.多项式除以单项式
八年级上册第14章整式的乘除与因式分解
1.(綦江·中考)2a2÷a的结果是( )
A.2 B.2a
C.2a3
D.2a2
【解析】选B.利用单项式除以单项式的运算法则易得 选项B正确.
八年级上册第14章整式的乘除与因式分解
2.(无锡·中考)下列正确的是( )
A.(a3)2=a5 C.(a3-a)÷a=a2
B.a3+a2=a5 D.a3÷a3=1
【解析】选D.利用单项式除以单项式的运算法则易得选
项D正确.
八年级上册第14章整式的乘除与因式分解
3.(4x2y3)2 ÷ (-2xy2) 【解析】原式=16x4y6÷(-2xy2)
八年级上册第14章整式的乘除与因式分解
【例】计算:
(1)28x4y2÷7x3y (2)-15a5b3c÷5a4b
【解析】原式=4xy
原式=-3ab2c
(3)(2x2y)3×(-7xy2)÷14x4y3
原式=8x6y3×(-7xy2)÷14x4y3
=-56x7y5÷14x4y3
=-4x3y2
八年级上册第14章整式的乘除与因式分解
的值. 【解析】原式
(9x2 4 y2 5x2 2xy 10xy 4 y2 ) 8x (4x2 8xy) 8x 1xy
2 Q x 2 y 2012 1 x y 1006
2 原式 1006
八年级上册第14章整式的乘除与因式分解
通过本课时的学习,需要我们掌握: 1.单项式相除 (1)系数相除; (2)同底数幂相除; (3)只在被除式里的幂不变. 2.多项式除以单项式