2013温州中考数学解析
2013年第一学期数学试卷九年级参考答案
温州市直五校协作体九年级数学试卷参考答案一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)二、耐心填一填(本题有6小题,每小题5分,共30分)11.6 12.)5(x x y -= 13.π32 14.(0,3) 15. 3<R <5 16.34三、用心做一做(本题有8小题,共80分)17.(1)4343=⨯=k , 3分∴x y 4= 2分(2)4=x 时1=y 3分18. 证明:∵AB=CD ,∴⋂⋂=CD AB 3分∴⋂⋂=AD BC 2分∴∠ABD=∠CDB 3分 19.解:连结BD ,∵∠ACB=30°,∴∠ADB=30° 3分∵AD 是直径,∴∠ABD=90° 3分∴AD=2AB=20(m) 2分20.解:(1)由已知得A(0,2),∴设平移后的抛物线为22++=bx x y , 2分∵抛物线过点B (2,0),∴0224=++b ,∴3-=b , 2分∴232+-=x x y . 1分(2)∵222+-=x x y 的对称轴为直线1=x , 2分232+-=x x y 的对称轴为直线23=x , 2分 ∴距离为211分21.解:(1)将B 1,33⎛⎫- ⎪⎝⎭代入1k y x =得11k =-,∴x y 1-= 3分∴A(-1,1), 1分将A(-1,1),B 1,33⎛⎫- ⎪⎝⎭代入2y k x m =+得2,32-=-=m k ,∴23--=x y3分 (2))1,0(),2,0(),2,0( 3分22.解:(1)∵OH ⊥AB ,∴BH=3, 1分设OB=x ,则OH=1-x ,∴222)3()1(x x =+-, 2分∴2=x 即半径为2 2分(2)连结OA ,得=∠AOB 120°, 1分 ∴334132212360120-2-=⨯⨯-⨯⨯==∆-ππAOB AB O S S S 扇形阴影 4分 23.解:(1)代入反比例函数,得1001k =,∴k=100;代入二次函数,得﹛50100200250b c b c ++=++= 解得 b=—200,c=250250,200,100=-==c b k 5分(2)将3=x 代入x y 100=,得3100=y 将3=x 代入250200502+-=x x y ,得640=y 4分∴用反比例函数比较合理(3)∵y 随x 的增大而减小,∴y ≤10时,x ≥10∴10月份开始 3分24.解:(1)将(0,-5)代入2229y x mx m =-+-,得592-=-m ,∴2=m 或2-=m , 2分 ∴542--=x x y 或542-+=x x y ,∵O A <OB ,∴542--=x x y . 2分(2)1=a 时,D (1,-8),∴DE=2,设PM=x ,∴x PD -=8, 2分 4)8(,162222+-=+=x PE x PB ,∴4)8(1622+-=+x x ,∴413=x . 2分 (3)连结DE ,可证△MPF ≌△DEP ,∴PM=DE,∵)54,(2--a a a D ,PM=-14(542--a a ) 2分 当a <2时,DE=)54(41)2(22---=-a a a , ∴11,121==a a (舍)∴F(7,0) 2分 当a >2时,)54(41)2(22---=-a a a ,∴7,321-==a a (舍)∴F(-3,0) 2分。
2013年温州中考数学试卷附答案
:
(D LL赛 后 ,甲 猜测七 巧板 拼图、 趣题 巧解 、 数学应用 、 魔方复原这四项得分分别按 10%,钔 %,20%,30%
棂据猜涮 ,求 出甲的总分 折算记人总分。
;
(2)本 次大赛组委会最后决定 ,总 分为 BO分 以上 (包 括 sO分 )的 学生获一等奖.现 获悉 乙、 的总分分别 丙
B.==O
7.如 图 ,在 ⊙0中 ,oC⊥ 弦 AB于 点 C,^B=4,oC=1,则
卩
l^3
B.√
:・
C・ ÷
C。
8.如 图 ,在 △ ABC中 ,zC=90° ,AB=5,BC=3,则 蚯 nA的 值 是 ( ▲
A.溽
t
√15
0B的 长是 (
D・ Γ ÷
D,汀
D・
(第
7题 图)
▲
〉
—
)
A.÷
告
A。
¨
1,2,4
B,4,5,9
) C.4,6,8
5 , 5 ,
5.若 分 式
Jˉ 3的
值 为 0,则
. C。 ∶ tu=ˉ 4 D。 . ==-3 6.已 知 点 P(l,工 3)在 反 比例 函 丿 =吉 Ω≠ 0〉 的 图象 上 ,则 虍 值 是 ( △ 钧 攀
平的值 是 (
▲
)
A.lz=3
A・
,
・
∶ =£鲁等 品 即 =午 卩 ?g畀 ∴ 一呼 cE=辔 ÷
,
(第
扭 题图 D
D
彳
(2)・ fm。 ==3,
∴ 5,cE=管 ~÷ m=3, BC=8-狃 ⊥
∴ BE=4,
r。
∵点 F落 在 j轴 上(如 图 2), r.pE∥ B0,
(中考数学复习)第8讲 一元二次方程 课件 解析
(1)证明:∵一元二次方程为x2-(2k+1)x+k2+k=0,
Δ=[-(2k+1)]2-4(k2+k)=1>0,∴此方程有两个不相等的
实数根.
(2)解:∵△ABC的两边AB、AC的长是这个方程的两个实数
根,由(1)知,AB≠AC,△ABC第三边BC的长为5,且
△ABC是等腰三角形,
基础知识 · 自主学习 题组分类 · 深度剖
=2 014.
3.(2013·日照)已知一元二次方程x2-x-3=0的较小根为x1,
则下面对x1的估计正确的是
( A )
A.-2<x1<-1
B.-3<x1<-2
C.2<x1<3
D.-1<x1<0
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
题组三 利用根的判别式解决问题
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考 10
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
1.(2013·温州)方程x2-2x-1=0的根是____________. 2.(2013·聊城)若x1=-1是关于x的方程x2+mx-5=0的一个
根,则方程的另一个根x2=___5__.
6
A.x-6=-4 C.x+6=4
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
=x1·(x1+2 013)+2 013x2+x2-2 013 =(x1+2 013)+2 013x1+2 013x2+x2-2 013 =x1+x2+2 013(x1+x2)+2 013-2 013 =1+2 013
【免费下载】 温州2013年中考数学真题试题
A.一直增大 后减小
B.一直减小
C.先减小后增大
用心 爱心 专心
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
浙江温州中考数学试卷及答案(word解析版)
2013温州市中考数学解析版数学(满分:150分 考试时间120分钟)一、选择题(本题有10小题,每个小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选均不给分) (2013浙江温州市,1,4分)计算:(-2)×3的结果是( )A .-6 B.-1 C.1 D.6 【答案】A(2013浙江温州市,2,4分)小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图. 由图可知,该班同学最喜欢的球类项目是( )A .羽毛球 B.乒乓球 C .排球 D.篮球 【答案】D(2013浙江温州市,3,4分)下列个图中,经过折叠能围成一个立方体的是( )【答案】A(2013浙江温州市,4,4分)下列各组数可能是一个三角形的边长的是( )A .1,2,4 B.4,5,9 C.4,6,8 D.5,5,11 【答案】C(2013浙江温州市,5,4分)若分式43+-x x 的值为0,则x 的值是( ) A .x =3 B.x =0 C.x =-3 D.x =-4 【答案】A(2013浙江温州市,6,4分)已知点P (1,-3)在反比例函数)0(≠=k xky 的图象上,则k的值是( )A.3B.-3C.31 D.31- 【答案】B(2013浙江温州市,7,4分)如图,在⊙O 中,OC ⊥弦AB 于点C ,AB =4,OC =1,则OB 的长是( )A.3B.5C.15D.17【答案】B(2013浙江温州市,8,4分)如图,在△ABC 中,∠C =90°,AB =5,BC =3,则sinA 的值是( )A .43 B.34 C.53 D.54【答案】C(2013浙江温州市,9,4分)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC .已知AE =6,34AD DB =,则EC 的长是( )A.4.5B.8C.10.5D.14 【答案】B(2013浙江温州市,10,4分)在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作弧¼BAC ,如图所示,若AB =4,AC =2,12-S 4S π=,则S 3-S 4的值是( ) A.429π B.423π C.411π D.45π【答案】D二、填空题(本题有6小题,每小题5分,共30分)(2013浙江温州市,11,5分)因式分解:m 2-5m = . 【答案】m (m-5)(2013浙江温州市,12,5分)在演唱比赛中,5位评委给一位歌手打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均分是 分. 【答案】8.0(2013浙江温州市,13,5分)如图,直线a ,b 被直线c 所截. 若a ∥b ,∠1=40°,∠2=70°,则∠3= 度.【答案】110(2013浙江温州市,14,5分)方程x 2-2x -1=0的解是 . 【答案】21,2121-=+=x x(2013浙江温州市,15,5分)如图,在平面直角坐标系中△ABC 的两个顶点A ,B 的坐标分别为(-2,0),(-1,0),BC ⊥x 轴. 将△ABC 以y 轴为对称轴对称变换,得到△A′B′C′(A 和A ′,B 和B′,C 和C ′分别是对应顶点).直线y =x +b 经过点A ,C ′,则点C ′的坐标是 .【答案】(1,3)(2013浙江温州市,16,5分)一块矩形木板,它的右上角有一个圆洞. 现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线交点上,木工师傅想到了一个巧妙的办法,他测量了PQ 与圆洞的切点K 到点B 的距离及相关的数据(单位:cm )后,从点N 沿折线NF —FM (NF ∥BC ,FM ∥AB )切割,如图1所示.图2中的矩形EFGH 是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠,无缝隙,不计损耗),则CN ,AM 的长分别是 .【答案】18cm ,31cm三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程) (2013浙江温州市,17(1),5分)计算:0211-28)()(++ 解:0211-28)()(++=22+(2-1)+1=32.(2013浙江温州市,17(2),5分)化简:(1+a )(1-a )+a (a -3) 解:(1+a )(1-a )+a (a -3)=1-a 2+a 2-3a =1-3a .(2013浙江温州市,18,8分)如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB 于点E .(1)求证:△ACD ≌△AED ; (2)若∠B =30°,CD =1,求BD 的长. (1)证明1:∵AD 平分∠CAB .∴∠CAD =∠EAD . ∵DE ⊥AB , ∠C =90°, ∴∠ACD =∠AED =90°. 又∵AD =AD ,∴△ACD ≌△AED (AAS). 证明2:∵∠C =90°,∴AC ⊥CD , ∵DE ⊥AB , ∴CD =DE ,∵AD =AD ,∴△ACD ≌△AED (HL). (2)解:∵△ACD ≌△AED ∴DE =CD =1. ∵∠B =30°, ∠DEB =90°, ∴BD =2DE =2.(2013浙江温州市,19,9分)如图,在方格纸中,△ABC 的三个顶点和点P 都在小方格的顶点上.按要求画一个三角形,使它的顶点在方格的顶点上.(1)将△ABC平移,使点P落在平移后的三角形内部..,在图甲中画出示意图;(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部..,在图乙中画出示意图.解:(1)答案如图示:(2)答案如图示:(2013浙江温州市,20,10分)如图,抛物线y=a(x-1)2+4与x轴交于点A,B,与y轴交于点C. 过点C作CD∥x轴交抛物线的对称轴于点D,连结BD. 已知点A的坐标为(-1,0).(1)求抛物线的解析式;(2)求梯形COBD的面积.解:(1)把A(-1,0)代入y=a(x-1)2+4,得0=4a+4,∴a=-1,∴y=-(x-1)2+4.(2)令x=0,得y=3,∴OC=3.∵抛物线y=-(x -1)2+4的对称轴是直线x =1, ∴CD =1. ∵A (-1,0) ∴B (3,0), ∴OB =3. ∴.623)31(=⨯+=COBD S 梯形(2013浙江温州市,21,10分)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现在袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于31。
【VIP专享】2013温州市中考数学试题部分改编
则 k 的值是( ▲ )
A. 3
B. 3
1
C.
3
改编二:6.已知点 P(m,-1)在反比例函数 y 3 的图象上,则 m 的值是( ▲ ) x
D.6
D.篮球
C.10,6,8
C. 3,3,4
C. 4,6,8
D.6
D.6
九(1)班同学最喜欢
的球类项目统计图
(第 2 题图)
D.5,5,11
D.7,5,11
) D. 5,11,5
(第 2 题图)
D. 5,5,11
5.若分式 x 3 的值为 0,则 x 的值是( ▲ ) x4
A. x 3
改编一:5.若分式 x 3 无意义,则 x 的值是( ▲ ) x4
x 4
A. x 3
改编二:若分式 x 3 有意义,则 x 的取值范围( ▲ ) x4
x 4
A. x 3
B. x 0
6.已知点 P(1,-3)在反比例函数 y k ( k 0 )的图象上, x
则 k 的值是( ▲ )
A. 3
B. 3
B. x 0
B.x 4 的全体实数
1
C.
3
改编一:6.已知点 P(1,-3)在正比例函数 y kx ( k 0 )的图象上,
(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的
扇形统计图.由图可知,该班同学喜欢篮球比喜欢乒乓球的人
多几个?( ▲ )
A.12
B.5
4.下列各组数可能是一个三角形的边长的是( ▲ )
A.1,2,4
B.4,5,9
C.6
改编一:4.下列各组数可能是一个直角三角形的边长的是( ▲ )
A.3,2,4
2013年浙江省中考数学压轴题解析汇编
【2013·浙江宁波·26题】如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD。
过P、D、B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF。
(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A,B两点)上时,①求证:∠BDE=∠ADP;②设DE=x,DF=y,请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B、D、F为顶点的直角三角形,满足两条直角边之比为2:1?(0(2(3【2013·浙江绍兴·24题】抛物线y=(x-3)(x+1)与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,点D为顶点。
(1)求点B及点D的坐标;(2)连接BD,CD,抛物线的对称轴与x轴交于点E。
①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标;②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标。
设CN=m,则MN=2m,HN=m,HM=3m【2013·浙江温州·24题】如图,在平面直角坐标系轴,直线AB 与x 轴、y 轴分别交于点A (6,0)、B (0,8),点C 的坐标为(0,m ),过点C 作CE ⊥AB 于点E ,点D 为x 轴上一动点,连接CD 、DE ,以CD 、DE 为边作平行四边形CDEF 。
(1)当0<m <8时,求CE 的长(用含m 的代数式表示);(2)当m=3时,是否存在点D ,使平行四边形CDEF 的顶点F 恰好落在y 轴上?若存在,求出点D 的坐标;若不存在,请说明理由;(3)点D 在整个运动过程中,若存在唯一的位置,使得平行四边形CDEF 为矩形,请求出所有满足条件的m(2(3与x 图a 过点P 作PQ ⊥y 轴于Q ,易证得△PQC ∽△BOA∴CQ PC OA AB = ∴CQ=950(8-m) ∴OQ=OC+CQ=m+950(8-m)。
中考数学总复习第7课 一元二次方程
5.(2013·浙江衢州)如图 7-1,在长和宽分别是 a,b 的矩形纸片的四个 角都剪去一个边长为 x 的正方形. (1)用含 a,b,x 的代数式表示纸片剩余部分的面积; (2)当 a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方 形的边长.
图 7-1 【解析】 (1)面积=ab-4x2. (2)根据题意,得 ab-4x2=4x2(或 4x2=1ab龙江牡丹江)若关于 x 的一元二次方
程为 ax2+bx+5=0(a≠0)的解是 x=1,则 2013-a-b 的
值是
()
A.2018
B.2008
C .2014
D.2012
点评:(1)本题主要考查一元二次方程的解的概念,难度较小.
(2)解题的关键是把已知方程的解直接代入方程得到待定系数
3.解一元二次方程时,方程两边不能同时约去一个相同 的式子,因为这个式子可能为 0,如果约去,会造成漏 解.
【精选考题 2】 (2013·江苏无锡)解方程:x2-3x+2=0.
点评:(1)本题考查一元二次方程的解法,难度较小. (2)求解本题的关键是根据题目特征选择最适合的方法(因 式分解法)求解. 解析:x 2-3x +2=0,(x -1)(x -2)=0,∴x 1=1,x 2=2.
3.配方法:解一元二次方程时,先把方程的常数项移到方程的右边,再在方程两边同时 加上某一常数,使得左边刚好能配成一个完全平方式,即将方程化为(x+a)2=b 的形式, 如果 b≥0,就可以用直接开平方法来求出它的解,这种解一元二次方程的方法叫做配 方法.
4.公式法:一元二次方程 ax2+bx+c=0(a≠0)的求根公式:x=-b± b2-4ac(b2-4ac≥0). 2a
拓展提高
1.(2012·山东泰安)方程 2x2+5x-3=0 的解是
2013年温州中考数学试卷及详解
2013年温州市中考数学试题卷参考公式:一元二次方程)0(02≠=++a c bx ax 的求根公式是aac b b x 242-±-=(ac b 42-≥ ) 一、选择题(本题有 小题,每小题 分,共 分。
每小题只有一个选项是正确的,不选、多选、错选均不给分) 计算3)2(⨯-的结果是✌ 小明对九( )班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图。
由图可知,该班同学最喜欢的球类项目是✌ 羽毛球 乒乓球 排球 篮球 下列各图形中,经过折叠能围成一个立方体的是 下列各组数可能是一个三角形的边长的是✌ , , , , , , , , 若分式43+-x x 的值为 ,则x 的值是 ✌ 3=x 0=x 3-=x 4-=x 已知点 ( , )在反比例函数)0(≠=k xky 的图象上,则k 的值是 ✌ 31 31- 如图,在⊙ 中, ⊥弦✌于点 ,✌, ,则 的长是✌ 3 5 15 17 如图,在△✌中,∠ °,✌, ,则♦♓⏹✌的值是✌43 34 53 54 如图,在△✌中,点 ,☜分别在✌,✌上, ☜∥ ,已知✌☜,43=DB AD ,则☜的长是 ✌ 在△✌中,∠ 为锐角,分别以✌,✌为直径作半圆,过点 ,✌, 作,如图所示,若✌,✌,421π=-S S ,则43S S -的值是✌429π 423π 411π 45π二、填空题(本题有 小题,每小题 分,共 分) 因式分解:m m 52- ♉♉♉♉♉♉♉♉♉♉ 在演唱比赛中, 位评委给一位歌手的打分如下: 分, 分, 分, 分, 分,则这位歌手的平均得分是♉♉♉♉♉分 如图,直线a ,b 被直线c 所截,若a ∥b ,∠ °,∠ °,则∠ ♉♉♉♉♉♉♉♉♉♉度 方程0122=--x x 的根是♉♉♉♉♉♉♉♉♉♉ 如图,在平面直角坐标系中,△✌的两个顶点✌, 的坐标分别为( , ),( , ), ⊥x 轴,将△✌以y 轴为对称轴作轴对称变换,得到△✌❼❼❼(✌和✌❼, 和 ❼, 和 ❼分别是对应顶点),直线b x y +=经过点✌, ❼,则点 ❼的坐标是♉♉♉♉♉♉♉♉♉♉ 一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线交点上。
2013年温州中考数学和科学试卷及详解
教育精品资料2013年温州市中考数学试题卷参考公式:一元二次方程)0(02≠=++a c bx ax 的求根公式是aac b b x 242-±-=(ac b 42-≥0) 一、选择题(本题有10小题,每小题4分,共40分。
每小题只有一个选项是正确的,不选、多选、错选均不给分) 1. 计算3)2(⨯-的结果是A. -6B. -1C. 1D. 6 2. 小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图。
由图可知,该班同学最喜欢的球类项目是A. 羽毛球B. 乒乓球C. 排球D. 篮球 3. 下列各图形中,经过折叠能围成一个立方体的是4. 下列各组数可能是一个三角形的边长的是A. 1,2,4B. 4,5,9C. 4,6,8D. 5,5,11 5. 若分式43+-x x 的值为0,则x 的值是 A. 3=x B. 0=x C. 3-=x D. 4-=x 6. 已知点P (1,-3)在反比例函数)0(≠=k x ky 的图象上,则k 的值是A. 3B. -3C. 31D. 31-7. 如图,在⊙O 中,OC ⊥弦AB 于点C ,AB=4,OC=1,则OB的长是 A.3 B. 5 C. 15 D. 178. 如图,在△ABC 中,∠C=90°,AB=5,BC=3,则sinA 的值是A.43 B. 34 C. 53 D. 549. 如图,在△ABC 中,点D ,E 分别在AB ,AC 上,DE ∥BC ,已知AE=6,43=DB AD ,则EC 的长是A. 4.5B. 8C. 10.5D. 1410. 在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作,如图所示,若AB=4,AC=2,421π=-S S ,则43S S -的值是A. 429πB. 423πC. 411πD. 45π二、填空题(本题有6小题,每小题5分,共30分)11. 因式分解:m m 52-=__________12. 在演唱比赛中,5位评委给一位歌手的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均得分是_____分 13. 如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=40°,∠2=70°,则∠3=__________度14. 方程0122=--x x 的根是__________15. 如图,在平面直角坐标系中,△ABC 的两个顶点A ,B 的坐标分别为(-2,0),(-1,0),BC ⊥x 轴,将△ABC 以y 轴为对称轴作轴对称变换,得到△A ’B ’C ’(A 和A ’,B 和B ’,C 和C ’分别是对应顶点),直线b x y +=经过点A ,C ’,则点C ’的坐标是__________16. 一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线交点上。
浙江省温州市2013年中考数学考试试题(WORD版)
2013年浙江省初中毕业生学业考试(温州市卷)数学试题卷参考公式:一元二次方程)0(02≠=++a c bx ax 的求根公式是aac b b x 242-±-=(ac b 42-≥0)一、选择题(本题有10小题,每小题4分,共40分。
每小题只有一个选项是正确的,不选、多选、错选均不给分)1. 计算3)2(⨯-的结果是A. -6B. -1C. 1D. 6 2. 小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图。
由图可知,该班同学最喜欢的球类项目是A. 羽毛球B. 乒乓球C. 排球D. 篮球 3. 下列各图形中,经过折叠能围成一个立方体的是4. 下列各组数可能是一个三角形的边长的是A. 1,2,4B. 4,5,9C. 4,6,8D. 5,5,11 5. 若分式43+-x x 的值为0,则x 的值是 A. 3=x B. 0=x C. 3-=xD. 4-=x6. 已知点P (1,-3)在反比例函数)0(≠=k xky 的图象上,则k 的值是A. 3B. -3C.31 D. 31- 7. 如图,在⊙O 中,OC ⊥弦AB 于点C ,AB=4,OC=1,则OB 的长是A.3 B. 5 C. 15 D. 178. 如图,在△ABC 中,∠C=90°,AB=5,BC=3,则sinA 的值是A.43 B. 34 C. 53 D. 549. 如图,在△ABC 中,点D ,E 分别在AB ,AC 上,DE ∥BC ,已知AE=6,43=DB AD ,则EC 的长是A. 4.5B. 8C. 10.5D. 1410. 在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作,如图所示,若AB=4,AC=2,421π=-S S ,则43S S -的值是A. 429πB. 423πC. 411πD. 45π二、填空题(本题有6小题,每小题5分,共30分)11. 因式分解:m m 52-=__________12. 在演唱比赛中,5位评委给一位歌手的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均得分是_____分 13. 如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=40°,∠2=70°,则∠3=__________度 14. 方程0122=--x x 的根是__________15. 如图,在平面直角坐标系中,△ABC 的两个顶点A ,B 的坐标分别为(-2,0),(-1,0),BC ⊥x 轴,将△ABC 以y 轴为对称轴作轴对称变换,得到△A ’B ’C ’(A 和A ’,B 和B ’,C 和C ’分别是对应顶点),直线b x y +=经过点A ,C ’,则点C ’的坐标是__________16. 一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线交点上。
浙江省各市2013年中考数学分类解析 专题8 平面几何基础
浙江省各市2013年中考数学分类解析专题8 平面几何基础一、选择题1. (2013年浙江杭州3分)下列“表情图”中,属于轴对称图形的是【】(2013杭州)下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义,结合各选项进行判断即可.解答:答案选D;2. (2013年浙江金华、丽水3分)如图,AB∥CD,AD和BC相交于点O,∠A=200,∠COD=1000,则∠C的度数是【】A.800B.700C.600D.5003. (2013年浙江宁波3分)下列电视台的台标,是中心对称图形的是【】【答案】D。
4. (2013年浙江宁波3分)一个多边形的每个外角都等于72°,则这个多边形的边数为【】A.5 B.6 C.7 D.85. (2013年浙江宁波3分)如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的【】A.6 B.8 C.10 D.126. (2013年浙江湖州3分)如图,已知直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数为【】A.30°B.60°C.120°D.150°∴∠2=180°﹣∠1=180°-60°=120°。
故选C。
7. (2013年浙江湖州3分)在正三角形、等腰梯形、矩形、平行四边形中,既是轴对称图形又是中心对称图形的是【】A.正三角形B.等腰梯形C.矩形D.平行四边形8. (2013年浙江台州4分)下列四个艺术字中,不是轴对称的是【】9. (2013年浙江温州4分)下列各组数可能是一个三角形的边长的是【】A. 1,2,4B. 4,5,9C. 4,6,8D. 5,5,1110. (2013年浙江温州4分)如图,在△ABC中,点D,E分别在AB,AC上,DE∥BC,已知AE=6,ADDB34,则EC的长是【】A. 4.5B. 8C. 10.5D. 14二、填空题1. (2013年浙江金华、丽水4分)如图,在Rt△ABC中,∠A=Rt∠,∠ABC的平分线BD 交AC于点D,AD=3,BC=10,则△BDC的面积是▲ 。
中考数学总复习第25课 与圆有关的计算
∴BH=BO·sin 60°=12× 3=6 3. 2
∴S
阴影=S
扇形
GOB
-S△OHB
=60×π×122-1×6×6 360 2
3=24π-18 3.
【预测演练 3-2】 观察思考
某种在同一平面进行转动的机械装置如图 25-9,图 25-10 是它
的示意图.其工作原理是:滑块 Q 在平直滑道 l 上可以左右滑动,
点 B 的直线折叠,点 O 恰好落在A︵B上的点 D 处,折
痕交 OA 于点 C,则A︵D的长为
.
点评:(1)本题主要考查弧长的计算及折叠的性质,难度较小. (2)由折叠的性质推知△ODB 是等边三角形是解决本题的关键. 解析:如解图 4,连结 OD. 根据折叠的性质知,OB =DB . 又∵OD=OB ,∴OD=OB =DB , 即△ODB 是等边三角形,∴∠DOB=60°. ∵∠A OB =110°,∴∠A OD=∠A OB -∠DOB =50°,
【精选考题 3】 (2013·浙江衢州)如图 25-7,将一块 三角尺和半圆形量角器按图中方式叠放,三角尺一 边与量角器的零刻度线所在的直线重合,重叠部分
的量角器弧(A︵B)对应的圆心角(∠AOB)为 120°,OC
的长为 2 cm,则三角尺和量角器重叠部分的面积为
cm 2.
点评:(1)本题主要考查扇形的面积计算,难度中等. (2)解决本题的关键是从图中得出 S 重叠=S 扇形 OAB+S△OBC,求出扇形的半径 及掌握扇形的面积公式.
OA 的垂直平分线交 OA 于点 M,如
图 25-3①;
(2)以 M 为圆心,BM 长为半径作圆弧,
交 CA 于点 D,连结 BD,如图 25-3②.
若⊙O 的半径为 1,则由以上作图得到的关于正五边形边长 BD
浙江省温州市2013年中考数学模拟试卷(解析版)
浙江省温州市2013年中考数学模拟试卷一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)(2013•温州模拟)3的相反数是()A.3B.﹣3 C.D.﹣考点:相反数分析:根据相反数的意义,3的相反数即是在3的前面加负号.解答:解:根据相反数的概念及意义可知:3的相反数是﹣3.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)(2013•温州模拟)2010年5月1日,举世瞩目的上海世博会正式开园.截至当天19:00,约有20.4万名中外游客进世博园区参观,参观人数用科学记数法表示为()A.20.4×104人B.2.04×105人C.20.4×105人D.2.04×106人考点:科学记数法—表示较大的数..专题:应用题.分析:根据科学记数法的表示方法,将20.4万化为整数,再将其用科学记数法表示即可得到答案.解答:解:将20.4万=204 000用科学记数法表示为2.04×105人.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(4分)(2013•温州模拟)函数的图象经过点A(﹣2,3),则k的值为()A.﹣6 B.6C.D.考点:反比例函数图象上点的坐标特征..分析:根据反比例函数图象上点的坐标特征:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k可以直接写出答案.解答:解:∵函数的图象经过点A(﹣2,3),∴k=﹣2×3=﹣6,故选:A.点评:此题主要考查了反比例函数图象上点的坐标特征,关键是掌握反比例函数图象上点的坐标特征.4.(4分)(2013•温州模拟)如图几何体的主视图是()A.B.C.D.考点:简单组合体的三视图..专题:压轴题.分析:找到从正面看所得到的图形即可解答:解:从正面可看到从左往右三列小正方形的个数为:2,1,1,故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.(4分)(2013•温州模拟)下列式子中是完全平方式的是()A.a2+ab+b2B.a2+2a+2 C.a2﹣2b+b2D.a2+2a+1考点:完全平方式..分析:完全平方公式:(a±b)2=a2±2ab+b2.看哪个式子整理后符合即可.解答:解:符合的只有a2+2a+1.故选D.点评:本题主要考的是完全平方公式结构特点,有两项是两个数的平方,另一项是加或减去这两个数的积的2倍.6.(4分)(2013•温州模拟)不等式2x﹣6>0的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集..专题:图表型.分析:不等式2x﹣6>0的解集是x>3,>应向右画,且不包括3时,应用圈表示,不能用实心的原点表示3这一点,据此可求得不等式的解以及解集再数轴上的表示.解答:解:不等式移项,得2x>6,系数化1,得x>3;∵不包括3时,应用圈表示,不能用实心的原点表示3这一点答案.故选A.点评:在数轴上表示不等式的解集时,>向右,<向左,有等于号的画实心原点,没有等于号的画空心圆圈.7.(4分)(2013•温州模拟)如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为()A.72°B.120°C.144°D.150°考点:扇形统计图..专题:图表型.分析:先根据图求出九年级学生人数所占扇形统计图的百分比为40%,又知整个扇形统计图的圆心角为360度,再由360乘以40%即可得到答案.解答:解:由图可知九年级学生人数所占扇形统计图的百分比为:1﹣35%﹣25%=40%,∴九年级学生人数所占扇形的圆心角的度数为360×40%=144°,故选C.点评:本题考查了扇形统计图的知识,从扇形图上可以清楚地看出各部分数量和总数量之间的关系,读懂图是解题的关键.8.(4分)(2013•温州模拟)如图,已知Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA的值为()A.B.C.D.考点:锐角三角函数的定义;勾股定理..专题:计算题.分析:直角三角形中,正弦值是角的对边与斜边的比值;先求出斜边AB的值,然后,即可解答.解答:解:∵Rt△ABC中,∠C=90°,BC=3,AC=4,∴AB=5;∴sinA==.故选C.点评:本题考查了锐角三角函数值的求法及勾股定理的应用,熟记公式才能正确运用.9.(4分(2013•温州模拟))为响应团中央“号召全国每位团员,少先队员捐一瓶水”的倡议,我校师生积极开展了“情系西南灾区”的捐款活动.某班6名同学捐款的数额分别是(单位:元):5,5,5,10,10,20.则这组数据的中位数和众数分别是()元.A.5,5 B.10,5 C.10,7.5 D.5,7.5考点:众数;中位数..专题:计算题.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.解答:解:众数是一组数据中出现次数最多的数,在这一组数据中5是出现次数最多的,故众数是5;而将这组数据从小到大的顺序排列后,处于中间位置的那个数是5和10,那么由中位数的定义可知,这组数据的中位数是7.5.故选D.点评:本题为统计题,考查了众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.命题立意:本题以给地震灾区捐款为背景,考核了统计概率的相关知识.本题在考核数学知识的基础上向学生渗透爱心教育,是一道很不错的题目.10.(4分)(2013•温州模拟)如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N,设△BPQ,△DKM,△CNH 的面积依次为S1,S2,S3.若S1+S3=20,则S2的值为()A.8B.10 C.12 D.考点:矩形的性质;三角形的面积;相似三角形的判定与性质..专题:压轴题.分析:由条件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ与△DKM的相似比为,△BPQ与△CNH相似比为,由相似三角形的性质,就可以求出S1,从而可以求出S2.解答:解:∵矩形AEHC是由三个全等矩形拼成的,∴AB=BD=CD,AE∥BF∥DG∥CH,∴四边形BEFD,四边形DFGC是平行四边形,∠BQP=∠DMK=∠CHN,∴BE∥DF∥CG∴∠BPQ=∠DKM=∠CNH,∵△ABQ∽△ADM,△ABQ∽△ACH,∴,,∴△BPQ∽△DKM∽△CNH∴,∴,=∴S2=4S1,S3=9S1∵S1+S3=20,∴S1=2,∴S2=8,故A答案正确.故选A.点评:本题考查了矩形的性质,相似三角形的判定与性质,三角形的面积公式.二、填空题(本题共6小题,每小题5分,共30分)11.(5分)(2013•温州模拟)分解因式:a2+3ab= a(a+3b).考点:因式分解-提公因式法..分析:提取公因式a,余下的式子为(a+3b),不能再分解.解答:解:a2+3ab=a(a+3b).故答案为:a(a+3b).点评:本题主要考查了提公因式法分解因式,准确找出公因式是解题的关键.12.(5分)(2013•温州模拟)如图,圆锥的底面半径为2cm,高为cm,那么这个圆锥的侧面积是8πcm2.考点:圆锥的计算..专题:计算题.分析:先根据勾股定理计算出母线长为4,再根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长4π,扇形的半径等于圆锥的母线长4,然后根据扇形的面积公式计算即可.解答:解:∵圆锥的底面半径为2cm,高为cm,∴圆锥的母线长==4,∴这个圆锥的侧面积=•2π•2•4=8π.故答案为8π.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,扇形的半径等于圆锥的母线长.也考查了扇形的面积公式和勾股定理.13.(5分)(2013•温州模拟)若二次函数y=x2﹣3x+2m的最小值是2,则m= .考点:二次函数的最值..专题:函数思想.分析:利用配方法将二次函数方程y=x2﹣3x+2m转化为顶点式方程,然后求该函数的最小值即可.解答:解:由y=x2﹣3x+2m,得y=(x﹣)2+2m﹣,∴y最小=2m﹣=2,解得,m=;故答案是:.点评:本题考查了二次函数的最值.求二次函数的最值,就是求二次函数的顶点的纵坐标.14.(5分)(2013•温州模拟)如图,三个半径都为3cm的圆两两外切,切点分别为D、E、F,则EF的长为 3 cm.考点:相切两圆的性质..分析:三个圆半径相等且两两外切,则EF为ABC的中位线,EF=BC.解答:解:连接EF,∵⊙A、⊙B、⊙C半径相等且两两外切,∴△ABC为等边三角形,边长为6cm,又切点E、F为AB、AC的中点,∴EF=BC=3cm.故答案为3.点评:本题考查了相切了圆的性质,三角形中位线定理.关键是判断三角形的形状,判断中位线.15.(5分)(2013•温州模拟)某地按以下规定收取每月电费:用电量如果不超过60度,按每度电0.8元收费;如果超过60度则超过部分按1.2元收费.已知某用户3月份交电费66元.那么3月份该用户用电量为75 度.考点:一元一次方程的应用..分析:先判断出3月份用电量一定超过60度,再根据“某用户3月份交电费66元”得到等量关系:60×0.8+超过60度的用电量×1.2=66,设3月份该用户用电量为x度,从而列出方程求解即可.解答:解:∵某用户3月份交电费66元,0.8×60=48元,66>48,∴3月份用电量超过60度.设3月份该用户用电量为x度,由题意,得:60×0.8+(x﹣60)×1.2=66,解得:x=75,答:3月份该用户用电量为75度.故答案为75.点评:本题考查用一元一次方程解决实际问题,判断出用电量在60度以上是解决本题的突破点,根据3月份的电费是66元列出方程是解决本题的关键.16.(5分)(2013•温州模拟)将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=2,E是AC上的一点(AE>CE),且DE=BE,则AE的长为.考点:勾股定理;含30度角的直角三角形;等腰直角三角形..专题:压轴题.分析:根据直角三角形30°角所对的直角边等于斜边的一半求出BC,再利用勾股定理列式求出AC,过点D作DF⊥AC于F,根据等腰直角三角形的性质求出DF=CF=AC,设CE=x,表示出EF,然后分别用勾股定理表示出DE2、BE2,再列出方程求解即可.解答:解:∵AB=2,∠BAC=30°,∴BC=AB=×2=,根据勾股定理,AC===3,过点D作DF⊥AC于F,∵△ACD是等腰直角三角形,∴DF=CF=AC=,设CE=x,则EF=﹣x,在Rt△DEF中,DE2=DF2+EF2=()2+(﹣x)2,在Rt△BCE中,BE2=BC2+CE2=2+x2,∵DE=BE,∴()2+(﹣x)2=2+x2,解得x=,所以,AE=AC﹣CE=3﹣=.故答案为:.点评:本题考查了勾股定理的应用,直角三角形30°角所对的直角边等于斜边的一半的性质,等腰直角三角形的性质,作辅助线,利用勾股定理表示出DE、BE然后列出方程是解题的关键.三、解答题(本题有8小题,共80分)17.(10分)(2013•温州模拟)(1)计算:;(2)解方程组.考点:实数的运算;零指数幂;负整数指数幂;解二元一次方程组;特殊角的三角函数值..专题:计算题.分析:(1)分别根据负整数指数幂、0指数幂的计算法则及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;(2)先用加减消元法求出x的值,再用代入消元法求出y的值即可.解答:解:(1)原式=﹣2﹣+1=﹣1﹣;(2),解法1:①+②得5x=10,解得x=2;把x=2代入①,得4﹣y=3,解得y=1,故方程组的解是.解法2:由①得y=2x﹣3.③把③代入②,得3x+2x﹣3=7,解得x=2,把x=2代入③得y=1.故方程组的解是.点评:本题考查的是实数运算及解二元一次方程组,熟知实数混合运算的法则及解二元一次方程组的加减消元法和代入消元法是解答此题的关键.18.(8分)(2013•温州模拟)如图,矩形ABCD中,M是CD的中点.求证:(1)△ADM≌△BCM;(2)∠MAB=∠MBA.考点:矩形的性质;全等三角形的判定与性质..专题:证明题.分析:(1)根据矩形的性质可以得到全等条件证明△ADM≌△BCM;(2)利用全等三角形的性质可以解决.解答:证明:(1)∵M是CD的中点,∴DM=CM;∵有矩形ABCD,∴AD=BC∠D=∠C=90°;∴在△ADM和△BCM中,∴△ADM≌△BCM;(SAS)(2)∵△ADM≌△BCM,∴AM=BM,∴∠MAB=∠MBA.点评:此题把全等三角形的判定和性质与矩形的性质结合起来,难度不大.19.(8分)(2013•温州模拟)如图,方格纸中的每个小正方形的边长均为1.(1)观察图①、②中所画的“L”型图形,然后各补画一个小正方形,使图①中所成的图形是轴对称图形,图②中所成的图形是中心对称图形;(2)补画后,图①、②中的图形是不是正方体的表面展开图:(填“是”或“不是”)答:①中的图形①﹣1不是或图①﹣2是,②中的图形是.考点:利用旋转设计图案;几何体的展开图;利用轴对称设计图案..分析:(1)根据轴对称图形与中心对称的定义即可作出,首先确定对称轴,即可作出所要作的正方形;(2)利用折叠的方法进行验证即可.解答:解:(1)如图(画对一个得3分).(2)图①﹣1不是正方体的表面展开图或图①﹣2是正方体的表面展开图,图②是正方体的表面展开图.故答案为:①﹣1不是或图①﹣2是,是.点评:考查了利用旋转设计图案,利用轴对称设计图案和正方体的展开图,掌握轴对称的性质:沿着一直线折叠后重合.中心对称的性质:绕某一点旋转180°以后重合.20.(8分)(2013•温州模拟)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到10 元购物券,至多可得到50 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.考点:列表法与树状图法..专题:压轴题.分析:(1)如果摸到0元和10元的时候,得到的购物券是最少,一共10元.如果摸到20元和30元的时候,得到的购物券最多,一共是50元;(2)列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.解答:解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=;解法二(列表法):第二次第一次0 10 20 300 ﹣﹣10 20 3010 10 ﹣﹣30 4020 20 30 ﹣﹣5030 30 40 50 ﹣﹣(以下过程同“解法一”)点评:本题主要考查概率知识.解决本题的关键是弄清题意,满200元可以摸两次,但摸出一个后不放回,概率在变化.用到的知识点为:概率=所求情况数与总情况数之比.21.(10分)(2013•温州模拟)如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍.考点:二次函数综合题..专题:综合题.分析:(1)已知了抛物线的顶点坐标,可将其解析式设为顶点坐标式,然后将原点坐标代入上式,即可求得待定系数的值,从而确定该抛物线的解析式.(2)由于△MON和△AOB同底不等高,因此它们的面积比等于高的比,即M点的纵坐标的绝对值是A点纵坐标绝对值的3倍,由于A是抛物线顶点,因此点M必在x轴下方,将其纵坐标代入抛物线的解析式中,即可确定M点的坐标.解答:解:(1)由题意,可设抛物线的解析式为y=a(x﹣2)2+1,(2分)∵抛物线过原点,∴a(0﹣2)2+1=0,a=﹣;(2分)∴抛物线的解析式为y=﹣(x﹣2)2+1=﹣x2+x.(1分)(2)△AOB和所求△MOB同底不等高,且S△MOB=3S△AOB,∴△MOB的高是△AOB高的3倍,即M点的纵坐标是﹣3,(3分)∴﹣3=﹣x2+x,即x2﹣4x﹣12=0,(1分)解之,得x1=6,x2=﹣2,(2分)∴满足条件的点有两个:M1(6,﹣3),M2(﹣2,﹣3).(1分)点评:此题主要考查了二次函数解析式的确定、图形面积的求法、函数图象上点的坐标意义等知识,难度不大,能够将图形的面积比转化为M点的纵坐标是解决(2)题的关键.22.(10分)(2013•温州模拟)如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径OA=5,弦AC的长是6.①求DE的长;②请直接写出的值.考点:切线的判定;矩形的判定与性质..专题:证明题.分析:(1)连接OD,由AD是∠BAC的平分线得∠EAD=∠DAO,而∠DAO=∠ADO,则∠EAD=∠ADO,根据平行线的判定得到OD∥AE,而DE⊥AC,所以OD⊥DE,然后根据切线的判定定理即可得到结论;(2))①过O作OH⊥AC交AC于H,根据垂径定理得AH=CH=AC=3,再利用勾股定理可计算出OH=4,由于∠ODE=∠DEH=∠OHE=90°,可得到四边形ODEH是矩形,根据矩形性质得DE=OH=4;②由OD∥AE可得到△ODF∽△AEF,则=,然后把OD与AE的值代入即可.解答:解:(1)连接OD,如图,∵AD是∠BAC的平分线,∴∠EAD=∠DAO,∵AO=DO,∴∠DAO=∠ADO,∴∠EAD=∠ADO,∴OD∥AE,又∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线;(2)①过O作OH⊥AC交AC于H,如图,则AH=CH=AC=3,在Rt△AOH中,AH=3,OA=5,∴OH==4,∵∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴DE=OH=4;②∵OD∥AE,∴△ODF∽△AEF,∴=,而OD=5,AE=AH+HE=AH+OD=3+5=8,∴=.点评:本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.也考查了垂径定理、矩形的判定与性质以及三角形相似的判定与性质.23.(12分)(2013•温州模拟)由于受到手机更新换代的影响,某手机店经销的Iphone4手机二月售价比一月每台降价500元.如果卖出相同数量的Iphone4手机,那么一月销售额为9万元,二月销售额只有8万元.(1)一月Iphone4手机每台售价为多少元?(2)为了提高利润,该店计划三月购进Iphone4s手机销售,已知Iphone4每台进价为3500元,Iphone4s 每台进价为4000元,预计用不多于7.6万元且不少于7.4万元的资金购进这两种手机共20台,请问有几种进货方案?(3)该店计划4月对Iphone4的尾货进行销售,决定在二月售价基础上每售出一台Iphone4手机再返还顾客现金a元,而Iphone4s按销售价4400元销售,如要使(2)中所有方案获利相同,a应取何值?考点:分式方程的应用;一元一次不等式组的应用;一次函数的应用..分析:(1)首先设一月Iphone4手机每台售价为x元,则二月Iphone4手机每台售价为(x﹣500)元,根据关键语句“卖出相同数量的Iphone4手机”可得:=,再解方程即可;(2)设购进Iphone4手机m台,则购进Iphone4s手机(20﹣m)台,根据关键语句“预计用不多于7.6万元且不少于7.4万元的资金购进这两种手机”得:74000≤Iphone4每台进价×数量+Iphone4s每台进价×数量≤76000,有由不等关系列出不等式,解不等式即可;(3)设总获利W元,根据题意得等量关系:W=每台Iphone4手机获利×台数+每台Iphone4s手机获利×台数,由等量关系可得方程W=(4000﹣3500﹣a)m+(4400﹣4000)(20﹣m),整理以后使m 的系数等于0即可.解答:解:(1)设一月Iphone4手机每台售价为x元,由题意得:=,解得x=4500.经检验x=4500是方程的解.答:故一月Iphone4手机每台售价为4500元;(2)设购进Iphone4手机m台,由题意得,74000≤3500m+4000(20﹣m)≤76000,解得:8≤m≤12.∵m只能取整数,∴m取8、9、10、11、12,共有5种进货方案,答:共有5种进货方案;(3)二月Iphone4手机每台售价是:4500﹣500=4000(元),设总获利W元,则W=(4000﹣3500﹣a)m+(4400﹣4000)(20﹣m)=(100﹣a)m+8000.100﹣a=0,解得:a=100,答:当a=100时,(2)中所有的方案获利相同.点评:此题主要考查了分式方程的应用,一元一次不等式组的应用,一次函数的应用,是一道综合题,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程与不等式组.24.(14分)(2013•温州模拟)如图,在平面直角坐标系中,O是坐标原点,点C的坐标为(0,﹣3),B 是射线CO上的一个动点,经过B点的直线交x轴于点A(直线AB总有经过第二、四象限),且OA=2OB,动点P在直线AB上,设点P的纵坐标为m,线段CB的长度为t.(1)当t=7,且点P在第一象限时,连接PC交x轴于点D.①直接写出直线AB的解析式;②当CD=PD时,求m的值;③求△ACP的面积S.(用含m的代数式表示)(2)是否同时存在m、t,使得由A、C、O、P为顶点组成的四边形是等腰梯形?若存在,请求出所有满足要求的m、t的值;若不存在,请说明理由.考点:相似形综合题..专题:压轴题.分析:(1)①当t=7时,即CB=7,由OC=3,OA=2OB求出A,B两点的坐标,再设直线AB的解析式为y=kx+b,将A,B两点的坐标代入,运用待定系数法即可求出直线AB的解析式;②过P作PH⊥OA于H,当CD=PD时,根据AAS可得△COD≌△PHD,则PH=OC,即m=3;③先由PH∥OB,得△APH∽△ABO,根据相似三角形对应边成比例得出=,求出AH=2m,则OH=8﹣2m,再根据三角形面积公式得出S△BCP=28﹣7m,则S=S△ABC﹣S△BCP=7m;(2)由于B是射线CO上的一个动点,所以根据B点的不同位置分两种情况进行讨论:①点B运动在y轴的正半轴上;②点B运动在OC上.又动点P在直线AB上,直线AB总有经过第二、四象限,所以在每一种情况下,P点所在的位置又有三种可能的情况:①点P分别在第一、二、四象限;②点P分别在第二、三、四象限.解答:解:(1)①当t=7时,CB=7,∵OC=3,∴OB=CB﹣OC=7﹣3=4,∴OA=2OB=8,∴A点坐标为(8,0),B点坐标为(0,4).设直线AB的解析式为y=kx+b,则,解得,∴直线AB的解析式为y=﹣x+4;②如图,过P作PH⊥OA于H.在△COD与△PHD中,,∴△COD≌△PHD,∴CO=PH,∴m=3;③∵PH∥OB,∴△APH∽△ABO,∴=,=,∴AH=2m,OH=8﹣2m,∴S△BCP=×7×(8﹣2m)=28﹣7m,∴S=S△ABC﹣S△BCP=28﹣(28﹣7m)=7m;(2)①当点B运动在y轴的正半轴上时.a、当点P在第一象限时,如图1,若四边形OCAP是等腰梯形,则PA=OC=3.∵∠AHP=90°,OA=2OB,∴PH=PA•sin∠PAH=3×=,即m1=.∵∠BCA=∠BAC,∴BA=BC=t.在Rt△AOB中,AB=OB,即t=(t﹣3),∴t1==;b、当点P在第二象限时,如图2,四边形AOPC为凹四边形,不可能为等腰梯形;c、当点P在第四象限时,如图3,四边形AOPC中有一个角为直角,不可能为等腰梯形;②当点B运动在OC上时.a、当点P在第二象限时,如图4,四边形OACP为凹四边形,不可能为等腰梯形;b、当点P在第三象限时,如图5,四边形OACP为凹四边形,不可能为等腰梯形;c、当点P在第四象限时,如图6,若四边形OACP为等腰梯形,则AP=OC=3,∵∠AHP=90°,OA=2OB,∴PH=PA•sin∠PAH=3×=,即m2=﹣.∵∠BCA=∠BAC,∴BA=BC=t.在Rt△AOB中,AB=OB,即t=(3﹣t),∴t2==.综上所述,满足要求的m、t的值分别为或.知识像烛光,能照亮一个人,也能照亮无数的人。
温州市2013年初中毕业生学业考试数学卷(扫描版有答案)
附件2温州市直十校联盟考试命题双向细目表(_2010_学年第二学期十校联盟考试数学学科初三年级) 命题人徐鸣章雪霞2011 年 3 月25 日题号知识点题型学习水平分数期望难度1 有理数选择题识记 3 0.8-1.02 准确数和近似数选择题识记3 0.8-1.03、16 特殊三角形选择题填空题理解6 0.2-0.54 三视图选择题识记 3 0.8-1.05、12、21、23 函数选择题填空题解答题理解25 0.5-0.76、19 平移变换选择题解答题理解9 0.8-1.07 可能性和概率选择题理解 3 0.8-1.08 弧长及扇形的面积选择题识记 3 0.5-0.79 圆的基本性质选择题理解 3 0.5-0.710 相似三角形选择题运用 3 0.2-0.511 因式分解填空题识记 3 0.8-1.0 13 平面直角坐标系填空题识记 3 0.8-1.014、24 特殊平行四边形与梯形填空题解答题识记运用150.2-0.515 中位数和众数填空题识记 3 0.8-1.017有理数的运算一元一次不等式解答题识记10 0.8-1.018 三角形全等的条件解答题理解 6 0.8-1.020 数据与图表解答题识记8 0.8-1.022 直线与圆的位置关系解答题运用11 0.5-0.7说明:1.题型:选择题、填空题、解答题、……2.学习水平:了解(识记)、理解、运用、综合运用;3.题目难度分布:基础:中等:较难=7:2:1;得分率在0.7以上属基础题,得分率在0.4-0.7之间属中等题,得分率在0.4以下属较难题。
浙江省温州市2013年中考数学试卷(解析版)
浙江省温州市2013年中考数学试卷(解析版)浙江省温州市2013年中考数学试卷⼀、选择题(本题有10⼩题,每⼩题4分,共40分。
每⼩题只有⼀个选项是正确的,不选,多选,错选,均不给分)1.(4分)(2013?温州)计算:(﹣2)×3的结果是()2.(4分)(2013?温州)⼩明对九(1)班全班同学“你最喜欢的球类项⽬是什么?(只选⼀项)”的问题进⾏了调查,把所得数据绘制成如图所⽰的扇形统计图,由图可知,该班同学最喜欢的球类项⽬是()3.(4分)(2013?温州)下列各图中,经过折叠能围成⼀个⽴⽅体的是()B C D.4.(4分)(2013?温州)下列各组数可能是⼀个三⾓形的边长的是()5.(4分)(2013?温州)若分式的值为0,则x的值是()6.(4分)(2013?温州)已知点P(1,﹣3)在反⽐例函数y=(k≠0)的图象上,则k的值是()D==,解得7.(4分)(2013?温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()B C D.=AB=8.(4分)(2013?温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是()B C D.=.9.(4分)(2013?温州)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是()∴,即=10.(4分)(2013?温州)在△ABC中,∠C为锐⾓,分别以AB,AC为直径作半圆,过点B,A,C作,如图所⽰.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是()B C D.,,π⼆、填空题(本题有6⼩题,每⼩题5分,共30分)11.(5分)(2013?温州)因式分解:m2﹣5m=m(m﹣5).12.(5分)(2013?温州)在演唱⽐赛中,5位评委给⼀位歌⼿的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌⼿的平均得分是8分.13.(5分)(2013?温州)如图,直线a,b被直线c所截,若a∥b,∠1=40°,∠2=70°,则∠3= 110度.14.(5分)(2013?温州)⽅程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.=1±,=1+﹣,.15.(5分)(2013?温州)如图,在平⾯直⾓坐标系中,△ABC的两个顶点A,B的坐标分别为(﹣2,0),(﹣1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A 和A′,B和B′,C和C′分别是对应顶点),直线y=x+b经过点A,C′,则点C′的坐标是(1,3).16.(5分)(2013?温州)⼀块矩形⽊板,它的右上⾓有⼀个圆洞,现设想将它改造成⽕锅餐桌桌⾯,要求⽊板⼤⼩不变,且使圆洞的圆⼼在矩形桌⾯的对⾓线上.⽊⼯师傅想了⼀个巧妙的办法,他测量了PQ与圆洞的切点K到点B的距离及相关数据(单位:cm),从点N 沿折线NF﹣FM(NF∥BC,FM∥AB)切割,如图1所⽰.图2中的矩形EFGH是切割后的两块⽊板拼接成符合要求的矩形桌⾯⽰意图(不重叠,⽆缝隙,不记损耗),则CN,AM的长分别是18cm、31cm.=′=AB CB三、解答题(本题有8⼩题,共80分,解答需写出必要的⽂字说明,演算步骤或证明过程)17.(10分)(2013?温州)(1)计算:+()+()0(2)化简:(1+a)(1﹣a)+a(a﹣3)+;18.(8分)(2013?温州)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.19.(8分)(2013?温州)如图,在⽅格纸中,△ABC的三个顶点和点P都在⼩⽅格的顶点上,按要求画⼀个三⾓形,使它的顶点在⽅格的顶点上.(1)将△ABC平移,使点P落在平移后的三⾓形内部,在图甲中画出⽰意图;(2)以点C为旋转中⼼,将△ABC旋转,使点P落在旋转后的三⾓形内部,在图⼄中画出⽰意图.20.(10分)(2013?温州)如图,抛物线y=a(x﹣1)2+4与x轴交于点A,B,与y轴交于点C,过点C作CD∥x轴交抛物线的对称轴于点D,连接BD,已知点A的坐标为(﹣1,0)(1)求该抛物线的解析式;(2)求梯形COBD的⾯积.=621.(10分)(2013?温州)⼀个不透明的袋中装有5个黄球,13个⿊球和22个红球,它们除颜⾊外都相同.(1)求从袋中摸出⼀个球是黄球的概率;(2)现从袋中取出若⼲个⿊球,并放⼊相同数量的黄球,搅拌均匀后使从袋中摸出⼀个是黄球的概率不⼩于,问⾄少取出了多少个⿊球?摸出⼀个球摸到黄球的概率为:=由题意,得≥≥.22.(10分)(2013?温州)如图,AB为⊙O的直径,点C在⊙O上,延长BC⾄点D,使DC=CB,延长DA与⊙O的另⼀个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.,(舍去).23.(10分)(2013?温州)某校举办⼋年级学⽣数学素养⼤赛,⽐赛共设四个项⽬:七巧板拼图,趣题巧解,数学应⽤,魔⽅复原,每个项⽬得分都按⼀定百分⽐折算后记⼊总分,下表为甲,⼄,丙三位同学得分情况(单位:分)(1)⽐赛后,甲猜测七巧板拼图,趣题巧解,数学应⽤,魔⽅复原这四个项⽬得分分别按10%,40%,20%,30%折算△记⼊总分,根据猜测,求出甲的总分;(2)本次⼤赛组委会最后决定,总分为80分以上(包含80分)的学⽣获⼀等奖,现获悉⼄,丙的总分分别是70分,80分.甲的七巧板拼图、魔⽅复原两项得分折算后的分数和是20分,问甲能否获得这次⽐赛的⼀等奖?解得:,24.(14分)(2013?温州)如图,在平⾯直⾓坐标系中,直线AB与x轴,y轴分别交于点A (6,0),B(0.8),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴上的⼀动点,连接CD,DE,以CD,DE为边作?CDEF.(1)当0<m<8时,求CE的长(⽤含m的代数式表⽰);(2)当m=3时,是否存在点D,使?CDEF的顶点F恰好落在y轴上?若存在,求出点D 的坐标;若不存在,请说明理由;(3)点D在整个运动过程中,若存在唯⼀的位置,使得?CDEF为矩形,请求出所有满⾜条件的m的值.∴,即=,﹣m﹣m∴即=的坐标为(﹣m=(﹣﹣m﹣m=∴=﹣;∴,即=,.﹣(﹣﹣.﹣=﹣m.的值是或或﹣或﹣.上⼀页下⼀页。
2013温州数学中考试卷+答案
2013年浙江省初中毕业生学业考试(温州市卷)数学试题(含答案全解全析)(满分:150分时间:120分钟)第Ⅰ卷(选择题,共40分)一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.计算:(-2)×3的结果是( )A.-6B.-1C.1D.62.小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,该班同学最喜欢的球类项目是( )九(1)班同学最喜欢的球类项目统计图A.羽毛球B.乒乓球C.排球D.篮球3.下列各图中,经过折叠能围成一个立方体的是( )4.下列各组数可能是一个三角形的边长的是( )A.1,2,4B.4,5,9C.4,6,8D.5,5,115.若分式-3的值为 0,则x的值是( )A.3B.0C.-3D.-46.已知点P(1,-3)在反比例函数y=(k≠0)的图象上,则k的值是( )A.3B.-3C.3D.-37.如图,在☉O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )A. B. C. D.8.如图,在△ABC中,∠C=90°,AB= ,BC=3,则sin A的值是( )A.3B.3C.3D.9.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,=3,则EC的长是( )A.4.5B.8C.10.5D.1410.在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如图所示,若AB=4,AC=2,S1-S2=,则S3-S4的值是( )A. 29B.23C. D.第Ⅱ卷(非选择题,共110分)二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:m2-5m= .12.在演唱比赛中,5位评委给一位歌手的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均得分是分.13.如图,直线a,b被直线c所截,若a∥b,∠ = 0°,∠2= 0°,则∠3=度.14.方程x2-2x-1=0的解是.15.如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(-2,0),(- ,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A'B'C'(A和A',B和B',C 和C'分别是对应顶点).直线y=x+b经过点A,C',则点C'的坐标是.16.一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线交点上,木工师傅想到了一个巧妙的办法,他测量了PQ与圆洞的切点K到点B的距离及相关数据(单位:cm)后,从点N沿折线NF—FM(NF∥BC,FM∥AB)切割,如图1所示,图2中的矩形EFGH是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠,无缝隙,不计损耗),则CN,AM的长分别是.图1 图2三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:+(-1)+20 ;(2)化简:(1+a)(1-a)+a(a-3).18.(本题8分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD= ,求BD的长.19.(本题8分)如图,在方格纸中,△ABC的三个顶点和点P 都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.(1)将△ABC平移,使点P落在平移后的三角形内部..,在图甲中画出示意图;(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部..,在图乙中画出示意图.图甲图乙20.(本题10分)如图,抛物线y=a(x-1)2+4与x轴交于点A,B,与y轴交于点C.过点C作CD∥x轴交抛物线的对称轴于点D,连结BD.已知点A的坐标为(-1,0).(1)求该抛物线的解析式;(2)求梯形COBD的面积.21.(本题10分)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球,问至少取出了多少个黑球?是黄球的概率不小于322.(本题10分)如图,AB为☉O的直径,点C在☉O上,延长BC至点D,使DC=CB,延长DA与☉O的另一个交点为E,连结AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC-AC=2,求CE的长.23.(本题10分)某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原,每个项目得分都按一定百分比折算后记入总分.下表为甲、乙、丙三位同学的得分情况((1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项得分分别按10%,40%,20%,30%折算记入总分.根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖.现获悉乙、丙的总分分别是70分,80分,甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分.问甲能否获得这次比赛一等奖?24.(本题14分)如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(6,0),B(0,8).点C的坐标为(0,m),过点C作CE⊥AB于点E.点D为x轴上一动点,连结CD,DE,以CD,DE为边作▱CDEF.(1)当0<m<8时,求CE的长(用含 m的代数式表示);(2)当m=3时,是否存在点D,使▱CDEF的顶点F恰好落在y轴上?若存在,求出点D的坐标;若不存在,请说明理由;(3)点D在整个运动过程中,若存在唯一的位置,使得▱CDEF为矩形,请求出所有满足条件的m的值.答案全解全析:1.A (-2)×3=-6,故选A.2.D 因为喜欢篮球的比例为32%,所以该班同学最喜欢的球类项目是篮球,故选D.3.A 只有A经过折叠能够围成一个立方体,故选A.4.C 能够组成三角形的三边长必须满足两边之和大于第三边,故选C.5.A 若分式的值为0,则一定要满足分子为零,同时分母不为零.故选A.6.B 因为点P(1,-3)在反比例函数y=(k≠0)的图象上,所以-3=k,即k=-3,故选B.7.B 因为OC⊥AB,AB= ,所以BC=2,又OC=1,所以OB=222=,故选B.8.C 由正弦定义得sin A==3,故选C.9.B 因为DE∥BC,所以=,即3=,所以EC=8,故选B.10.D 由题图可知S1+S3=2×22× =2 ,S2+S4=2× 2× =2,所以(S1+S3)-(S2+S4)=(S1-S2)+(S3-S4)=2 -2=32,又S1-S2=,所以S3-S4=32-=,故选D.11.答案m(m-5)解析m2-5m=m(m-5).12.答案8.0解析=×( .2+ .3+ . + . + .0)= .0(分).13.答案110解析因为a∥b,所以∠ =∠ (如图),所以∠3=∠ +∠2= 0°.14.答案 x 1=1+ 2=1-解析 由求根公式得x=2 (-2)2- (- )2=2 2 22= ± 15.答案 (1,3)解析 因为BC⊥x 轴,C 与C'关于x 轴对称,且B(-1,0),可设C'的坐标为(1,y),因为直线y=x+b 经过点A,C',所以把点A 的坐标(-2,0)代入y=x+b,得b=2,再把C'点的坐标(1,y)代入直线解析式得y=1+2=3,所以点C'的坐标是(1,3). 16.答案 18 cm,31 cm解析 由于点K 到AB 的距离是130-50=80(cm),BK=100 cm,所以点K 到BC 的距离是 002- 02=60(cm),由此可求得圆的半径为60-44=16(cm),所以圆心到AB 的距离是80+16=96(cm),要使圆心在矩形对角线交点上,所以CN=60- 0 2=18(cm),AM=96-302=31(cm).评析 本题以改造矩形桌面为载体,考查了矩形、直角三角形及圆等相关知识,积累了将实际问题转化为数学问题的经验,渗透了图形变换思想,体现了数学思想方法在现实问题中的应用.17.解析 (1) +( 2-1)+ 2 0=2 =3 2.(2)(1+a)(1-a)+a(a-3) =1-a 2+a 2-3a =1-3a.18.解析 (1)证明:∵AD 平分∠CAB,∴∠CAD=∠EAD.∵DE⊥AB,∠C=90°,∴∠ACD=∠AED=90°,又∵AD=AD,∴△ACD≌△AED.(2)∵△ACD≌△AED,∴DE=CD= ,∵∠B=30°,∠DEB=90°,∴BD=2DE=2.19.解析(1)(2)20.解析(1)把A(-1,0)代入y=a(x-1)2+4,得0=4a+4,∴a=-1.∴y=-(x-1)2+4.(2)令x=0,得y=3,∴OC=3.∵抛物线y=-(x-1)2+4的对称轴是直线x=1,∴CD= .∵A点坐标为(-1,0),且点A、B关于直线x=1对称, ∴B点坐标为(3,0).∴OB=3,∴S梯形COBD=( 3)32=6.21.解析(1)摸出一个球是黄球的概率P=322=.(2)设取出x个黑球,由题意,得0≥3,解得x≥23,∴x的最小正整数解是9.则至少取出9个黑球.22.证明( )∵AB是☉O直径,∴∠ACB=90°,∴AC⊥BC.∵CD=CB,∴AD=AB,∴∠B=∠D.(2)设BC=x,则AC=x-2,在Rt△ABC中,AC2+BC2=AB2,∴(x-2)2+x2=42,解得x1=1+,x2=1-舍去).∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE.∵CD=CB,∴CE=CB= +23.解析(1)甲的总分: × 0%+ 9× 0%+ ×20%+ ×30%= 9. (分).(2)设趣题巧解所占的百分比为x,数学应用所占的百分比为y.由题意,得20 0 0 0,20 090 0,解得0.3,0. .∴甲的总分:20+ 9×0.3+ ×0. = . > 0,∴甲能获一等奖.24.解析( )∵A( ,0),B(0, ),∴OA= ,OB= ,∴AB= 0.图1∵∠CEB=∠AOB=90°,又∵∠OBA=∠EBC,∴△BCE∽△BAO.,∴=,即=-∴CE=2 -3m.(2)∵m=3,∴BC= -m=5.CE=2 -3m=3.∴BE= ,∴AE=AB-BE=6,∵点F落在y轴上(如图2),∴DE∥BO,图2∴△EDA∽△BOA,∴ = ,即 - = 0,∴OD= 2 ,∴点D 的坐标为 2 ,0 .(3)取CE 的中点P,过点P 作PG⊥y 轴于点G,则CP= 2CE= 2 -3 0m.图3(Ⅰ)当m>0时,(i)当0<m<8时(如图3),易证∠GCP=∠BAO,∴cos∠GCP=cos∠BAO=3 .∴CG=CPcos∠GCP=3 × 2 -3 0m =3 2 -9 0m,∴OG=OC+CG=m+3 2 -9 0m= 0m+3 2 .由题意得OG=CP,∴ 0m+3 2 = 2 -3 0m,解得m= .(ii)当m≥ 时,OG>CP,显然不存在满足条件的m 的值.(Ⅱ)当m=0时,点C 与原点O 重合(如图4),满足题意.图4(Ⅲ)当m<0时,(i)当点E 与点A 重合时(如图5),图5易证△COA∽△AOB,∴ = ,即- = ,解得m=-92.图6(ii)当点E 与点A 不重合时(如图6),OG=OC-CG=-m- 3 2 -9 0m=- 0m-3 2 . 由题意,得OG=CP,∴- 0m-3 2 = 2 -3 0m,解得m=-9 3.综上所述,m 的值为 或0或-92或-9 3.评析 本题属于探究性问题,设计新颖,易理解,作答难.特别是第(3)小题,当动点D 在运动过程中不能得到矩形时,需要学生自己去寻找m 的值,对m 的取值范围进行讨论,画出相应图形.该题把观察、操作、探究、计算整合在一起,蕴含着函数、方程、分类、转化等重要的数学思想方法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省温州市2013年中考数学试卷
一、选择题(本题有10小题,每小题4分,共40分。
每小题只有一个选项是正确的,不选,多选,错选,均不给分)
2.(4分)(2013
•温州)小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,该班同学最喜欢的球类项目是( )
B
5.(4分)(2013•温州)若分式的值为0,则x的值是()
6.(4分)(2013•温州)已知点P(1,﹣3)在反比例函数y=(k≠0)的图象上,则k的
y=
y=
,解得
7.(4分)(2013•温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()
B
AB
AB
OB==
8.(4分)(2013•温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是()
B
sinA=.
9.(4分)(2013•温州)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是()
∴=
=
10.(4分)(2013•温州)在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如图所示.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是()
B
,
=
π
=
二、填空题(本题有6小题,每小题5分,共30分)
11.(5分)(2013•温州)因式分解:m2﹣5m=m(m﹣5).
12.(5分)(2013•温州)在演唱比赛中,5位评委给一位歌手的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均得分是8分.
13.(5分)(2013•温州)如图,直线a,b被直线c所截,若a∥b,∠1=40°,∠2=70°,则∠3= 110度.
14.(5分)(2013•温州)方程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.
±,
,.
=1+﹣
15.(5分)(2013•温州)如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(﹣2,0),(﹣1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点),直线y=x+b经过点A,C′,则点C′的坐标是(1,3).
16.(5分)(2013•温州)一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线上.木工师傅想了一个巧妙的办法,他测量了PQ与圆洞的切点K到点B的距离及相关数据(单位:cm),从点N 沿折线NF﹣FM(NF∥BC,FM∥AB)切割,如图1所示.图2中的矩形EFGH是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠,无缝隙,不记损耗),则CN,AM的长分别是18cm、31cm.
+r=CB=65cm
AB=42cm+r=
三、解答题(本题有8小题,共80分,解答需写出必要的文字说明,演算步骤或证明过程)17.(10分)(2013•温州)(1)计算:+()+()0
(2)化简:(1+a)(1﹣a)+a(a﹣3)
=2﹣;
18.(8分)(2013•温州)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长.
19.(8分)(2013•温州)如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.
(1)将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图;
(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.
20.(10分)(2013•温州)如图,抛物线y=a(x﹣1)2+4与x轴交于点A,B,与y轴交于点C,过点C作CD∥x轴交抛物线的对称轴于点D,连接BD,已知点A的坐标为(﹣1,0)(1)求该抛物线的解析式;
(2)求梯形COBD的面积.
=6
21.(10分)(2013•温州)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.
(1)求从袋中摸出一个球是黄球的概率;
(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?
=;
由题意,得≥
≥
.
22.(10分)(2013•温州)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.
(1)求证:∠B=∠D;
(2)若AB=4,BC﹣AC=2,求CE的长.
(舍去)
23.(10分)(2013•温州)某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图,趣题巧解,数学应用,魔方复原,每个项目得分都按一定百分比折算后记入总分,下
(1)比赛后,甲猜测七巧板拼图,趣题巧解,数学应用,魔方复原这四个项目得分分别按10%,40%,20%,30%折算△记入总分,根据猜测,求出甲的总分;
(2)本次大赛组委会最后决定,总分为80分以上(包含80分)的学生获一等奖,现获悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖?
,
24.(14分)(2013•温州)如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(6,0),B(0.8),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴上的一动点,连接CD,DE,以CD,DE为边作▱CDEF.
(1)当0<m<8时,求CE的长(用含m的代数式表示);
(2)当m=3时,是否存在点D,使▱CDEF的顶点F恰好落在y轴上?若存在,求出点D 的坐标;若不存在,请说明理由;
(3)点D在整个运动过程中,若存在唯一的位置,使得▱CDEF为矩形,请求出所有满足条件的m的值.
∴=,即=
CE=﹣
CE=﹣m=3
∴=即.
,
,
CP=CE=﹣
BAO=,
(﹣m﹣OG=OC+OG=m+m=m+
∴=﹣m
;
∴=,即=
﹣
﹣m
m
m﹣m
.
的值是或﹣.。