110千伏高压电缆异常的分析及处理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

110千伏高压电缆异常的分析及处理

发表时间:2019-12-27T16:39:25.243Z 来源:《中国电业》2019年18期作者:何义良

[导读] 高压电缆制作、连接、施工等过程中,会受到多种因素的影响而产生故障

摘要:高压电缆制作、连接、施工等过程中,会受到多种因素的影响而产生故障,直接威胁到高压电缆的正常运行。本文根据某高压电缆工程展开分析,针对引起高压电缆异常情况的原因进行分析,采用局部放电试验进行验证,并提出了电缆故障的处理,并提出了高压电缆常见故障处理措施。

关键词:高压电缆;110kV;故障处理

高压电力电缆有着较高的安全性,施工起来比较便捷,已经被广泛应用到电力工程施工当中。随着城市规模的不断变大,要求高压电力电缆不要占用太多的空间,交联聚乙烯电缆有着很好的安全性,不会占用太多的面积。但电力电缆在实际运行过程中经常会存在异常现象,很多故障都是由电缆终端或中间连接部位而导致的,电缆连接终端制作工艺水平与能否安全应用有着直接关系,本文对某变电所110kV 高压电缆应用前的试验过程中发生异常现象进行分析,并制定了切实有效的解决措施,要求工作人员在高压电缆终端制作工艺提高重视,避免应用过程中产生运行故障。

1 110kV高压电缆工程基本情况

某变电所位于市区范围内,110kV高压线路进线采用交联聚乙烯绝缘保护材料,应用无缝铝护套进行防护,电缆长度为150米,采用交联户外油浸终端。按照电力工程施工计划,三根电缆施工完成后进入到试验环节。对外防护套、绝缘性能测试都达到合格标准,工频耐压测试应用串联谐振加压处理方法。采用的试验电压为2Ue,则试验电压为128kV。查找电缆资料可以得知,该高压电缆电容值每公里

0.162uF,然后按照串联谐振频率值进行计算:,电流值则为,公式当中的f则为谐振频率,I为试验样品电流值,则是试验样品电容,是分压器具备的电容值,L是电抗器具备的电感值,U是试验电压值。从试验加压曲线可以得知,A和B相电缆都通过了耐压性能试验,电流值设置在2A。C相电缆试验过程中,把电压提升到额定值,发现试验样品电流值为2.35A,已经超过计算数据1.936A,但还在正常区间。采用额定电压持续加压13分钟,户外电缆终端设备出现了轻微的放电声音,试验运行电流也呈现出变大的趋势。由于放电声音的不断变大,试验运行电流也呈现出变大趋势,如果试验电流上升到保护电流上限数值5A,保护装置会自动把电源完全切除掉,试验则会迫终止。对该高压电缆外观进行仔细地观察,没有发现该电缆存在着较为明显的放电痕迹。对该电缆再次进行加压测试时,试验电压只保持5分钟左右时间,再次出现试验电流超过保护上限值而出现的电源被切断问题,使得高压电缆耐压实验无法继续开展。

2 110kV高压电缆异常情况分析

2.1电缆绝缘或终端密封材料老化而导致的绝缘性能降低

按照以往的电缆测试经验,如果高压电缆运行时间比较长,或者存在绝缘材料局部发电现象,电缆具备的绝缘性能会出现下降问题。油浸电缆终端密封材料出现老化,环境水分进入也会导致电缆绝缘性能降低。由于该电缆为新建设变电所电源进线,还没有正式投入使用。对电缆生产厂家试验报告进行分析,发现每个电缆主绝缘电阻的实际测量值和出厂试验值并没有太大的差别,可以有效地排除掉高压电缆绝缘性能降低使得耐压试验无法继续完成的可能。高压电缆终端密封材料出厂时期只达到了一个月,还没有出现密封材料安装不当或者受损问题。

2.2电缆保护层被损坏而导致的绝缘性能下降

110kV电缆在施工作业过程中,受到异物刺伤而出现绝缘层受损。比如,铁钉、刀片等对电缆绝缘进行了破坏,会使电缆绝缘出现异常。通过对电缆绝缘性测验可以发现,没有存在绝缘受损的现象,具有较好的外绝缘保性性能,绝缘电阻值可以达到1万兆欧左右,表明电缆外绝缘保护层保存完好,在外保护内部的绝缘不会存在受到损坏的可能性,可以排除高压电缆主绝缘受损的可能。

3.3电缆终端制作工艺不合理导致的主绝缘性能降低

随着电缆故障的逐渐排除,把电缆故障的可能性转移到电缆接头制作上来,尤其是户外电缆终端制作时存在的问题,对施工作业人员进行沟通发现,在进行户外电缆终端接头制作过程中,存在着天气影响因素。对制作记录中可以发现,高压电缆终端接头制作前一天有阴雨,制作当天气温降低,气温最低达到了3度,而且空气湿度比较大。对电缆终端接头加入的为聚丁烯油,该绝缘物质可以有效地填充到电缆终端每个部位的间隙中,从而更好地保护电缆内部的绝缘。该绝缘油有着较高的粘稠度,会随着外界温度的减小而变大。该绝缘油在环境温度为5度时,呈现出较高的粘稠度,内部会夹杂着气泡。高压电缆终端接产学研制作厂家对填加的聚丁烯油过程中的温度有着较高的要求,如果环境温度低于20度,应该采用加热措施来减小绝缘油粘度,然后方可以把其注入到电缆终端,但电力工程施工作业现场的人员却没有对环境温度影响因素提高重视,缺少了加热处理工艺。

从上面的分析中可以看出,可以初步确定高压电缆缺陷是由于在户外电缆终端接头加工过程中,外界环境温度不高、空气湿度大而导致的,没有采取合理的加热处理措施,使得绝缘油中存在着气泡,混入了大量的湿度较大的空气。对高压电缆施加2倍额定电压进行性能试验时,绝缘油中存在着水分和气泡,会在高电压作用下形成游离态的气体分子,使得绝缘油中产生数量较多的带电粒子,会在气泡部位出现局部放电。释放出更多的气体会使得气泡体积不断变大,会产生更为明显的局部放电问题,使得试验电流不断变大,当大于设定保护值之后会自动退出试验。在该种条件下,高压电缆投入应用会存在着较大的安全隐患,较长时间的绝缘油内部放电会使得终端接头部位的绝缘性性能减小,最后会使电缆内部被击穿,使得电缆终端接头出现故障,严重情况下会引起爆炸问题。

3局部放电试验对电缆故障的验证

采用三相电缆分别进行局部放电试验,对每相电缆放电性能进行分析来验证,也就是在相同的试验电压和试验方法情况下,比较性能正常的A、B相和具备故障的C相高压电缆局部放电数据,对放电初始电压、熄灭电压和放电波形等进行对比分析,可以进一步证明C相电缆中存在着明显的局部放电现象,可以对故障原因进行证实,可以为后续的处理提供数据支持。

按着相关的标准,可以在环境温度条件下对每相电缆进行局部放电试验,采取的试验方法是先把试验运行电压逐步提高到1.75Ue,然后在该电压条件下保持10秒钟,再缓慢减小到1.5Ue。在该电压值下,如果放电量不超过5pC则达到合格标准。三相高压电缆在相同的性能试验条件下,获取到的试验结果有着较大的不同,从试验数据统计表1中可以看出,C相高压电缆有着较大幅度的局部放电,但该电缆在出厂性能试验中的局部放电量都达到了合格标准,也就是不超过2pC。A、B两相高压电缆在施工现场完成终端接头的制作和安装,电缆具备

相关文档
最新文档