北师大版数学七年级上册2、4有理数加法(2)

合集下载

七年级数学上册2.4有理数的加法第2课时有理数的加法运算律教学课件(新版)北师大版

七年级数学上册2.4有理数的加法第2课时有理数的加法运算律教学课件(新版)北师大版

这10听罐头的总质量是多少?
解法一:这10罐头的总质量为
444+459+454+459+454+454+449+454+459+464 =4550(克) 解法二:把超过标准质量的克数用正数表示,不足 的用负 数表示,列出10听关头与标准质量的差值表 (单位:克)
这10听罐头的差值和为 (-10)+5+0+5+0+0+(-5)+0+5+10 =[(-10)+10]+[(-5)+5]+5+5
=10(克) 因此,这10听罐头的总质量为
454×10+10
=4540+10
=4550(克)
【展示点评】解法1:直接将10听质量相加获解.解法2:把超过 455克的克数记为正数,不足的记为负数,然后把这些数相加.
【小组讨论2】对于教材,请模仿解决:
8筐白菜,以每筐25千克为准,超过的千克数记作 正数,不足的千克数记作负数,称重的记录如下:1.5, -3,2,-0.5,1,-2,-2,-2.5请问8筐白菜的重 量是多少?
【反思小结】运用有理数的加法解决实际问题,注意先 观察数据特征,再确定合适的解法.
1. 本课知识: 一般具有下列特点的数可以先结合:①互为 相反数的两数可以先相加;②同号的数可以先相 加;③分母相同的分数可以先相加;④相加能凑 整或凑零的数可以先相加.解题时,切忌不顾上述 特点从左算到右,导致出错. 2. 本课典型:灵活运用加法运算律简化运算、 进行大数的求和. 3. 我的困惑:
2.4 有理数的加法
第2课时 有理数的加法运算 律

北师大版-数学-七年级上册-北师大版七年级2.4有理数的加法 课时2教案.

北师大版-数学-七年级上册-北师大版七年级2.4有理数的加法 课时2教案.

北师大版七年级第二章第四节有理数的加法教案教学目标(一)知识与能力1、有理数加法的运算律2、有理数加法在实际中的运用(二)过程与方法1、经历探索有理数加法运算律的过程,理解有理数的加法运算律。

2、能利用加法运算律简化有理数加法运算。

3、利用运算律进行适当的推理训练,逐步培养学生的逻辑思维能力。

(三)情感态度与价值观1、学生通过交流、归纳、总结有理数加法的运算律,体会新旧知识的联系。

2、通过运用有理数加法法则解决实际问题,来增强学生的应用意识。

教学重点1、有理数加法的运算律2、运用有理数加法解决实际问题教学难点运用加法运算律简化运算教学过程一、引入新课复习回顾有理数的加法法则。

由课本上做一做进一步熟悉有理数的加法法则。

计算:(1)(-8)+(-9),(-9)+(-8);(2)4+(-7),(-7)+4 ;(3)+(-8),2+ ;(4)+(-5),10+;观察计算结果,引导学生发现:两个数相加,交换加数的位置,和不变。

三个数相加,先把前两个数相加或者先把后两个数相加,和也不变。

把此结论同小学学过的加法交换律和加法结合律联系起来,提出问题:有理数运算中,加法的交换律和结合律是否还成立?再换一些数试试,得出结论:有理数运算中,加法的交换律及结合律仍成立。

二、讲授新课小学中运算律的字母表示法是:a +b=b +a,(a +b)+c=a+(b +c)这两个式子是否也可以表示有理数的运算律呢?可以,加法交换律a +b=b +a,加法结合律(a +b)+c=a+(b +c)不过须明白只能说形式一样,字母所代表的意义改变了。

小学中的a、b、c表示的是正整数.正分数.零,而现在的a、b、c表示的是任意有理数。

我们学习运算律是为了简化运算,应灵活的加以应用。

三、应用新知例2、计算:31+(-28)+28+69 14+(-26)+46+(-34)=31+69+ =14+46+=100+0 =60+(-60)=100 =0总结出规律:为了计算方便,经常把正数和负数分别结合在一起,再相加。

七年级数学上册 2.4 有理数的加法(2)同步练习 (新版)北师大版-(新版)北师大版初中七年级上册

七年级数学上册 2.4 有理数的加法(2)同步练习 (新版)北师大版-(新版)北师大版初中七年级上册

2.4有理数的加法(2)A基础知识训练1.(2016•崆峒区月考)小颖解题时,将式子(- )+(-7)+ +(-4)先变成[(- )+]+[(-7)+(-4)]再计算结果,则小颖运用了()A.加法交换律 B.加法交换律和加法结合律C.加法结合律 D.无法判断2.(2016•故城期末)绝对值不大于4的所有整数的和是()A.16 B.0 C.576 D.-13.(2016•启东月考)计算1+(-2)+3+(-4)+5+(-6)得()A.3 B.-3 C.10 D.-104.(2016•单县郭村中学模拟)气温由早晨的零下2℃上升了9℃,傍晚下降了3℃,傍晚时,气温是℃.B基本技能训练1.(2016•东明月考)若三个有理数的和为0,则下列结论正确的是()A.这三个数都是0 B.最少有两个数是负数C.最多有两个正数 D.这三个数是互为相反数2.(2016•邳州期中)某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A这天的收盘价为()A.0.3元 B.16.2元 C.16.8元 D.18元3.(2016•枣庄期中)绝对值大于3且小于6的所有整数的和是()A.0 B.9 C.6 D.184.(2016•郓城期末)某运动员在东西走向的公路上练习跑步,跑步情况记录如下:(向东为正,单位:米)1000,-1200,1100,-800,1400,该运动员共跑的路程为米.5.(2016•某某模拟)一组数:1,-2,3,-4,5,-6,…,99,-100,这100个数的和等于.6.一家电脑公司仓库原有电脑100台,一个星期内调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑台.7.(2016•邹平期末)五袋白糖以每袋50kg为标准,超过的记为正,不足的记为负,称量记录如下:+4.5,-4,+2.3,-3.5,+2.5.这五袋白糖共超过多少kg?总重量是多少kg?8.(能力提升题)教师节当天,出租车司机小王在东西向的街道上免费接送教师,规定向东为正,向西为负,当天出租车的行程如下(单位:千米):+5,-4,-8,+10,+3,-6,+7,-11.(1)将最后一名老师送到目的地时,小王距出发地多少千米?方位如何?(2)若汽车耗油量为/千米,则当天耗油多少升?若汽油价格为5.70元/升,则小王共花费了多少元钱?附答案:2.4有理数的加法(2)A基础知识训练1.【解析】选B. 小颖运用的是加法交换律和加法结合律.2.【解析】选B. 绝对值不大于4的整数有:3,2,1,0,-1,-2,-3,它们的和为:3+2+1+0+(-1)+(-2)+(-3)=[3+(-3)]+[2+(-2)]+[1+(-1)]+0=0.3.【解析】选B.解法(1) 1+(-2)+3+(-4)+5+(-6)=[1+(-2)]+[3+(-4)]+[5+(-6)]=(-1)+(-1)+(-1)=-3;解法(2)1+(-2)+3+(-4)+5+(-6)=(1+3+5)+[(-2)+(-4)+(-6)]=9+(-12)=-3.4.【解析】根据题意得:-2+9+(-3)=4(℃).答案:4B基本技能训练1.【解析】选C.A、不能确定,例如:-6+6+0=0;B、不能确定,例如:-6+6+0=0;C、正确;D、错误,因为三个数不能互为相反数.2.【解析】选C.18+(-1.5)+0.3=16.2(元).3.【解析】选A.绝对值大于3小于6的所有整数是±4,±5.4+(-4)+5+(-5)=0+0=0.4.【解析】1000+1200+1100+800+1400=(1200+800)+(1000+1100+1400)=2000+3500=5500.答案:55005.【解析】1+(-2)+3+(-4)+5+(-6)+…+99+(-100)=[1+(-2)]+[3+(-4)]+[5+(-6)]+…+[99+(-100)]=(-1)+(-1)+(-1)+…+(-1)=-50,答案:-50.6.【解析】根据题意,得100+38+(-42)+27+(-33)+(-40)=(100+38+27)+[(-42)+(-33)+(-40)]=165+(-115)=50.答案:507.解:因为(+4.5)+(-4)+(+2.3)+(-3.5)+(+2.5)=[(+4.5)+(+2.3)+(+2.5)]+[(-4)+(-3.5)]=(+9.3)+(-7.5)=1.8(kg)所以这五袋白糖共超过多少.总重量是:50×5+1.8=251.8(kg).8.解;(1)(+5)+(-4)+(-8)+10+3+(-6)+7+(-11)=[(-4)+(-8)+(-6)+(-11)]+[(+5)+10+3+7]=(-29)+25=-4则距出发地西边4千米;(2)汽车的总路程是:5+4+8+10+3+6+7+11=54(千米)则耗油是54×0.2=,花费10.8×5.70=61.56元,答:小王距出发地西边4千米;耗油,花费61.56元.。

【北师大版】七年级数学上册 教案2.4 有理数的加法

【北师大版】七年级数学上册 教案2.4 有理数的加法

2.4 有理数的加法(第1课时)一、学生起点分析学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题.符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一.学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等.同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力.学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点.二、教学任务分析对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算.为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力.教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算.本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则.教学方法是“引导——分类——归纳”.本课时的教学目标如下:1.经历探索有理数加法法则的过程,理解有理数的加法法则;2.能熟练进行整数加法运算;3.培养学生的数学交流和归纳猜想的能力;4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法.三、教学过程设计本课时设计了六个教学环节:第一环节:复习引入,提出问题;第二环节:活动探究,猜想结论;第三环节:验证明确结论;第四环节:运用巩固;第五环节:课堂小结;第六环节:布置作业.(一)复习引入,提出问题活动内容:1.复习提问:(1)下列各组数中,哪一个较大?(2)一位同学在一条东西方向的跑道上,先向东走了20米,又向西走了30米,能否确定他现在的位置位于出发点的哪个方向,与原来出发的位置相距多少米?若向东记为正,向西记为负,该问题用算式表示为 .活动目的:我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围.这里先让学生回顾在具体问题中感受正数和负数的加法运算.2.提出问题:某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分.如果我们用1个表示+1,用1个,那么就表示0,同样也表示0.(1)计算(-2)+(-3).在方框中放进2个和3个:因此,(-2)+(-3)= -5.用类似的方法计算(2)(-3)+ 2323330143----+--与;与;与;-2与;与(3) 3 +(-2)(4) 4+(-4)思考:两个有理数相加,还有哪些不同的情形?举例说明.引导学生列举两个正数相加,如3 + 2,一个数和零相加,如0+(-4),4 + 0.活动目的:通过实际问题情境类比列出两个有理数相加的7种不同情形,两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0.进而讨论如何进行一般的有理数加法的运算.活动的实际效果:实际问题情境为学生营造了良好的学习氛围,利于他们积极探究.(二)活动探究,猜想结论:上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?学生分组进行活动,教师关注学生在活动中的表现,可以根据学生的实际情况给予适当点拨和引导,鼓励学生大胆发表自己的意见,最后形成统一的认识.对“一起探究”,教师可引导学生按以下步骤思考:1、观察列出的具体算式,根据两个加数的符号分类:两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0.2、同号两数相加时,和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎样的关系?异号两数相加时和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎么样的关系?有一个加数为0时,和是什么?3、从中归纳概括出规律在学生探究的基础上,教师引出规定的加法法则.在活动中,尽可能让学生独立完成,必要时可以交流,教师只在适当的时候给予帮助.同号两数相加,取相同的符号,并把绝对值相加.异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.一个数同0相加,仍得这个数.活动目的:利用分组讨论、分类归纳帮助学生理解加法运算过程,同时有利于加法运算法则的归纳.活动的实际效果:由于采用了图示的教学手段,在教师的引导下让学生分类观察,发现规律,用自己的语言表达规律,最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则.通过实际问题情境,让学生亲身参加了探索发现,获取知识和技能的全过程.理解有理数加法法则规定的合理性,培养了学生的分类和归纳概括的能力.(三)验证明确结论:例1计算下列算式的结果,并说明理由:(1) 180 +(-10); (2) (-10)+(-1);(3)5+(-5);(4) 0+(-2)活动目的:给学生提供示范,进行有理数加法,可以按照“一观察,二确定,三求和”的步骤进行,一观察是指观察两个加数是同号还是异号,二确定是指确定“和”的符号,三求和是指计算“和”的绝对值.活动的实际效果:通过习题,加深了学生对有理数加法法则的理解.(四)运用巩固:活动内容:1.口答下列算式的结果(1) (+4)+(+3); (2) (-4)+(-3); (3) (+4)+(-3);(4) (+3)+(-4); (5) (+4)+(-4); (6) (-3)+0;(7) 0+(+2); (8) 0+0.活动目的:通过这组练习,让学生进一步巩固有理数加法的法则,达到熟练程度.2.请同学们完成书上的随堂练习:(1)(-25)+(-7); (2)(-13)+5; (3)(-23)+0;(4)45+(-45)全班学生书面练习,四位学生板演,教师对学生板演进行讲评.活动目的:习题的配备上,注意到学生的思维是一个循序渐进的过程,所以由易到难,使学生在练习的过程中能够逐步地提高能力,得到发展.活动的实际效果:通过练习进一步熟悉有理数的加法法则.通过口答、演排纠错,活跃课堂气氛,充分调动学生的积极性,学生在一种比较活跃的氛围中,解决各种问题.(五)课堂小结:活动内容:师生共同总结.1. 两个有理数相加,“一观察,二确定,三求和”,即首先判断加法类型,再确定和的符号,最后确定和的绝对值2. 有理数加法法则及其应用.3. 注意异号的情况.活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的.活动的实际效果:学生对“一观察,二确定,三求和”的步骤印象较深,达到了本节课的教学目标.(六)布置作业:1.课本习题2.4 1、2、3、4、5、 62.拓展练习:(1)(-0.9)+(-2.7); (2)3.8+(-8.4); (3)(-0.5)+3;(4)3.29+1.78;(5)7+(-3.04);(6)(-2.9)+(-0.31);(7)(-9.18)+6.18; (8)4.23+(-6.77); (9)(-0.78)+0.四、教学设计反思本节课是在前面学习了有理数的意义的基础上进行的,运用数形结合的思想,探索出有理数加法法则.在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的.“有理数加法法则”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.现在,试比较这两类教学设计的得失利弊.第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好.第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,加法的训练则贯穿在今后的教学活动中进行.故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会.权衡利弊,我们主张采用第二种教学方法.2.4 有理数的加法(第2课时)一、学生起点分析学生在小学学过加法运算,知道加法的交换律和结合律,学生在上一课时已经探索总结出了有理数的加法法则,并进行了一定量的练习,但熟练程度还不够,并且对过去的加法交换律和结合律是否对有理数适用未进行探讨.二、教学任务分析和有理数的加法法则一样,有理数加法运算律的得出也是要学生自主探索,同时通过具体运算体会运算律对计算的简便之处.本课时教学重点是有理数加法运算律,并能运用加法运算律简化运算;教学难点是灵活运用运算律简化运算.具体教学目标如下:知识与技能:1.进一步熟练掌握有理数加法的法则;2.掌握有理数加法的运算律,并能运用加法运算律简化运算.过程与方法:启发引导式教学,能够由特殊到一般、由一般到特殊,体会研究数学的一些基本方法.情感、态度与价值观:1.培养学生的分类与归纳能力.2.强化学生的数形结合思想.3.提高学生的自学以及理解能力,激发学生学习数学的兴趣.三、教学过程设计本节课设计了六个教学环节:第一环节:情境引入,提出问题;第二环节:活动探究,猜想结论;第三环节:验证明确结论;第四环节:运用巩固;第五环节:课堂小结;第六环节:布置作业.(一)情境引入,提出问题活动内容:1.叙述有理数的加法法则.2.计算并比较每组的两个算式的结果:(1)(-8)+(-9),(-9)+(-8);(2) 4 +(-7),(-7) + 4;(3)[2+(-3)]+(-8), 2+[(-3)+(-8)];(4) [10+(-10)]+(-5),10+[(-10)+(-5)].活动目的:复习旧知识,为新的知识内容做准备.活动的实际效果:学生知道了小学的加法运算和有理数加法运算的联系与区别:进行有理数加法运算,先要根据具体情况正确地选用法则,确定“和”的符号,这与小学里学过的数的加法是不同的,而计算“和”的绝对值,用的是小学里学过的加法或减法运算;同时巩固了有理数的加法运算.(二)活动探究,猜想结论活动内容:通过上面练习,引导学生得出:交换律——两个有理数相加,交换加数的位置,和不变.用代数式表示:a + b = b + a.运算律式子中的字母a、b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数.结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用代数式表示:(a + b) + c = a +(b + c).这里a、b、c表示任意三个有理数.活动目的:通过特例归纳有理数的加法交换律、结合律.活动的实际效果:让学生自己总结,参与教学活动,从而使学生积极主动地学习,并且营造了良好的学习氛围.(三)验证明确结论活动内容:例1计算:(1)16+(-25)+24+(-32).(2)31 +(-28)+ 28 + 69解:(1) 16+(-25)+24+(-32)=16+24+(-25)+(-32) (加法交换律)=(16+24)+[(-25)+(-32)] (加法结合律)=40+(-57) (同号相加法则)=-17 (异号相加法则) (2)31 +(-28)+ 28 + 69=31 + 69 + [(-28)+ 28 ] (加法交换律和结合律)=100+0=100提出问题引起学生反思:此题你是抓住数的什么特点使计算简化的?依据是什么?引导学生发现,在本例(1)中,把正数与负数分别结合在一起再相加,计算比较简便.在本例(2)中,把互为相反数的两个数结合在一起,计算比较简便.总结常用的三个规律:1、一般地,总是先把正数或负数分别结合在一起相加.2、有相反数的可先把相反数相加,能凑整的可先凑整.3、有分母相同的,可先把分母相同的数结合相加.活动目的:体会加法运算律对运算的简化作用,并且根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加.活动的实际效果:本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学生发现,简化加法运算一般是三种方法:消去互为相反数的两数(其和为0)、同号结合或凑整数.例2.有一批食品罐头,标准质量为每听454克,现抽取10听样品进行检测,结果如下表(单位:克)7这10听罐头的总质量是多少?解法一:这10听罐头的总质量为444+459+454+459+454+454+449+454+459+464=4550(克)解法二:把超过标准质量的克数用正数表示,不足的用负数表示,列出10听罐头与标准质量的差值表(单位:克):这10听罐头与标准质量差值的和为(-10)+ 5 + 0 + 5 + 0 + 0 +(-5)+ 0 + 5 + 10=[(-10)+10]+[(-5)+5]+5+5=10(克)因此,这10听罐头的总质量为454×10 + 10 = 4540 + 10 = 4550(克)活动目的:通过这个应用题,让学生初步体会有理数加法运算律对加法运算的简便作用,同时让学生感受解决问题的方法的多样性.活动的实际效果:加法运算怎么由繁到简?“解法二”让学生感到很新奇,同时为今后平均数、数据的处理的学习奠定了基础.(四)运用巩固活动内容:1.完成书上随堂练习:(要求注理由)(1)(-3)+ 40+(-32)+(-8);(2) 13 +(-56)+47+(-34);(3) 43+(-77)+27+(-43).2.某潜水员先潜入水下61米,然后又上升32米,这时潜水员处在什么位置?3.有5筐蔬菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?活动目的:通过习题,加深学生对有理数加法运算律的理解.活动的实际效果:教师指定4名学生板演练习1,第2、3两题分别指定两名学生板演,并引导学生发现解题过程中出现的问题,及时解决.(五)课堂小结活动内容: 请同学们谈一谈这节课的体会和收获.1、通过具体有理数的计算,把加法运算律从非负数范围扩大到有理数的范围.2、掌握加法运算律的法则及公式,并适当的运用运算律进行简化计算.3、有理数加法解决实际问题,体会求简意识.(六)布置作业课本习题2.5: 1、2、3、4、5、6、7.四、教学设计反思1.课堂上应当把更多的时间留给学生在课堂教学中应当把更多时间交给学生.本节课中有理数运算律的探究,例题的讲解,习题的完成,知识的总结尽可能的全部由学生完成,教师所起的作用是点拨,评价和指导.这样做,可以更好的体现以学生为中心的教学思想,能更好的提高学生的综合能力.2.不要忽视代数推理对学生的思维训练作用我们一向会错误地认为,推理训练是几何教学的目的,代数可以不讲推理.其实,计算本身就是推理,计算法则、运算性质都是进行计算的根据.学生要知道每进行一步运算都要有根有据.这样通过运算就能逐步培养学生的逻辑思维能力.。

北师大版数学七年级上册2

北师大版数学七年级上册2
(二)讲授新知
1.教学活动设计:
-采用讲授法,结合数轴、实物等教具,讲解有理数加法的运算规则。
-通过例题,展示有理数加法的运算过程,让学生了解如何运用加法法则。
-强调同号相加、异号相加以及互为相反数的两个数相加的特殊情况。
2.讲授新知的过程:
-教师运用直观的教具,如数轴、卡片等,讲解有理数加法法则。
-教师通过生活实例,如温度变化等,引出有理数加法运算。
-学生在自主探究中,提出问题,总结有理数加法的运算规律。
2.采用小组合作、讨论交流的学习方式,培养学生的团队协作能力和口头表达能力。
-学生在小组内,共同探讨有理数加法的运算方法,互相提问,解答疑惑。
-学生通过讨论交流,分享学习心得,提高口头表达能力。
2.教学难点:
-同号相加和异号相加的运算规则的理解与区分。
-在实际问题中,发现并运用有理数加法法则解决问题。
-熟练运用数轴辅助有理数加法运算,提高运算速度和准确性。
(二)教学设想
1.教学方法:
-采用情境教学法,引入生活实例,让学生在具体情境中发现问题,激发学生的学习兴趣。
-运用探究式教学法,引导学生通过小组合作、讨论交流,自主总结有理数加法法则。
-鼓励学生积极参与课堂讨论,培养主动学习的习惯。
2.培养学生勇于克服困难、自主解决问题的精神,增强学生的自信心。
-鼓励学生在解决有理数加法问题时,不怕困难,勇于尝试。
-教师及时给予学生评价和反馈,提高学生的自信心。
3.培养学生严谨、踏实的科学态度,使学生认识到数学是一门严谨的学科。
-在教学中,强调有理数加法法则的正确性,培养学生严谨的学习态度。
-学生能够运用有理数加法法则,解决实际问题,提高运算能力。

最新!北师大版七年级数学上册目录.doc

最新!北师大版七年级数学上册目录.doc

七年级上册
第一章丰富的图形世界
1 生活中的立体图形
2 展开与折叠
3 截一个几何体
4 从三个方向看物体的形状回顾与思考
复习题
第二章有理数及其运算
1 有理数
2 数轴
3 绝对值
4 有理数的加法
5 有理数的减法
6 有理数加减混合运算
7 有理数的乘法
8 有理数的除法
9 有理数的乘方
10 科学记数法
11 有理数的混合运算
12 用计算器进行运算
回顾与思考
复习题
第三章整式及其加减
1 字母表示数
2 代数式
3 整式
4 整式的加减
5 探索与表达规律
回顾与思考
复习题第四章基本平面图形
1 线段射线直线
2 比较线段的长短
3 角
4 角的比较
5 多边形和圆的初步认识
回顾与思考
复习题
第五章一元一次方程
1 认识一元一次方程
2 求解一元一次方程
3 应用一元一次方程——水箱变高了
4 应用一元一次方程——打折销售
5 应用一元一次方程——“希望工程”义演
6 应用一元一次方程——追赶小明
回顾与思考
复习题
第六章数据的收集与整理
1 数据的收集
2 普查和抽样调查
3 数据的表示
4 统计图的选择
回顾与思考
复习题
综合与实践★探寻神奇的幻方
★关注人口老龄化
★制作一个尽可能大的无盖长方体形盒子
总复习。

2、4、2 有理数的加法运算律 2 北师大版七年级数学上册

2、4、2 有理数的加法运算律 2 北师大版七年级数学上册

=0+(-5) =-5
=010+(15)
比较(1)(2)你=-能5 发现什么?
有理数的加法运算律
概括 有理数的加法仍满足交换律和结合律:
加法交换律:两个数相加,交换加数的位置,和不变. a+b=b+a.
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加 和不变.
(a+b)+c=a+(b+c).
有理数的加法运算律
例1 计算:31+ (-28)+ 28+ 69.
解: 31+ (-28)+ 28+ 69 =31+ 69+[(-28) +28] = 100+ 0 =100.
利用加法交换律: 把异号加法运算变 成同号加法运算,
简化运算.
有理数的加法运算律
变式 训练
计算: (1)( + 26) + (-18) +5 + (-16); (2)(-1.75) +1.5 + (+7.3) +(-2.25) +(-8.5).
实际质量 27 24 23 28 21 26 22 27 与基准数的差 +2 -1 -2 +3 -4 +1 -3 +2 (1)你选取的一个恰当的基准数为___2_5______; (2)根据你选取的基准数,用正负数填写上表; (3)这8筐水果的总质量是多少?
课堂练习
解:25×8+[2+(-1)+(-2)+3+(-4)+1+(-3)+2] =198(千克),
2.4.2有理数的加法 运算律
七年级上册
本节目标
1 回顾小学加法运算律. 2 巩固有理数的加法运算. 3 掌握有理数加法的交换律和结合律
4 熟练运用有理数加法运算律进行加法运算,提高计算能力. 5 会运用加法运算律解决实际问题.

七年级数学北师大版上册2.4 有理数的加法(含答案)

七年级数学北师大版上册2.4  有理数的加法(含答案)

2.4 有理数的加法专题一有理数的加法运算及应用1.下列代数和是8的式子是()A.(﹣2)+(+10)B.(﹣6)+(+2)C.11 52 22+(﹣)(﹣)D.11 210 33+()(﹣)1.若两个数的和为正数,则这两个数()A.至少有一个为正数B.只有一个是正数C.有一个必为0 D.都是正数2.下列说法正确的是()A.如果两个数的和为零,那么这两个数一定是一正一负B.若﹣2+x是一个正数,则x一定是正数C.﹣a表示一个负数D.两个有理数的和一定大于其中每一个加数3.A、B、C三家超市在同一条南北大街上,A超市在B超市的南边40米处,C超市在B超市的北边100米处.小明从B超市出发沿街向北走了50米,接着又向北走了﹣60米,此时它的位置在()A.B超市B.C超市北边10米C.A超市北边30米D.B超市北边10米4.若m、n互为相反数,则m+n= .5.计算:11 40.144 33 ++(﹣)(﹣)=.6.请你列出一个两个有理数相加和为﹣5的算式.8.数轴上的一点由原点出发,向左移动2个单位长度后又向左移动了4个单位长度,两次共向左移动了_______个单位.9.纽约时间比香港时间迟13小时.你与一位在纽约的朋友约定,纽约时间4月1日晚上8时与他通话,那么在香港你应月日时给他打电话.10.当x=时,|x+1|+2取得最小值.11.计算:(1)(+15)+(-20)+(+8)+(-6)+(+2);(2))819()125.0()5.2()712()25()72(-+-+++-+-++.12.出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:﹣2,+5,﹣1,+1,﹣6,﹣2,问:(1)将最后一位乘客送到目的地时,小李在什么位置?(2)若汽车耗油量为0.2 L/km(升/千米),这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为8元,起步里程为3 km(包括3 km),超过部分每千米1.2元,问小李这天上午共得车费多少元?13.如图所示,将数字﹣2,﹣1,0,1,2,3,4,5,6,7这10个数字分别填写在五角星中每两条线的交点处(每个交点只填写一个数),将每一行上的四个数相加为一个数,共得到5个数.分别设为a1,a2,a3,a4,a5,则:(1)a1+a2+a3+a4+a5=;(2)交换其中任何两个数的位置后,a1+a2+a3+a4+a5的值是否改变?说明理由.状元笔记:【知识要点】1.掌握有理数的加法法则和相关的运算律.2.运用有理数的加法法则和运算律进行简化运算.【温馨提示】加法的法则指出,两个有理数相加的结果由两部分构成:先确定和的符号,再确定两数的绝对值相加或相减,以得到和的绝对值.在加法运算中,最容易出错的就是符号问题,运算时要特别注意符号问题.参考答案:1.A2.A3.B 解析:A.如这两个数都是0时,就不满足,故错误;B.若﹣2+x是一个正数,则x一定大于2,一定是正数,故正确;C.当a=0时,﹣a=0,既不是正数也不是负数,故错误;D.两个负数的和就一定小于每一个加数,故错误.4.C 解析:根据题意得B超市北边为正,南边为负,C超市在B超市的北边100米处,小明从B超市出发沿街向北走了50米,此时小明在B超市北边50米,接着又向北走了﹣60米,是在向反方向走,最后停在B超市南10米处,又因为A超市在B超市的南边40米处,即停在A 超市北边30米处.5.06.解:原式=(﹣413+413)﹣0.14=0﹣0.14=﹣0.14.7.答案不唯一,如﹣5+0=﹣5,6+(﹣11)=5等8.69.429解析:晚上8时即20时,20+13=33时,33﹣24=9,即4月2日9时.10.﹣1 解析:∵|x+1|≥0,∴当|x+1|=0时,|x+1|+2的值最小.即当x=﹣1时,|x+1|+2取得最小值.11.解:(1)原式=﹣1.(2)原式=﹣55/14.12.解:(1)﹣2+5﹣1+1﹣6﹣2=﹣5.答:小李在起始点的西边5 km的位置.(2)|﹣2|+|+5|+|﹣1|+|+1|+|﹣6|+|﹣2|=2+5+1+1+6+2=17,17×0.2=3.4(升).答:出租车共耗油3.4升.(3)6×8+(2+3)×1.2=54,答:小李这天上午共得车费54元.13.解:(1)a1+a2+a3+a4+a5=2×(﹣1﹣2+0+1+2+3+4+5+6+7)=50.(2)交换其中任何两数的位置后,a1+a2+a3+a4+a5的值不变仍为50.理由:无论怎样改变位置,其中的每个数都用了两次,即a1+a2+a3+a4+a5=2×(﹣1﹣2+0+1+2+3+4+5+6+7)=2×25=50.。

北师大七年级数学上册第二章有理数及其运算

北师大七年级数学上册第二章有理数及其运算

§2.1 数怎么不够用了教学目标:1.借助生活中的实例,从扩充运算的角度引进负数,然后使用正负数表示现实生活中具有相反意义的量.2.经历从生活中发现数学问题,体会数学与现实生活的联系,培养自主探索能力并体验成功.教学重点和难点:理解正、负数及有理数的意义教学准备:多媒体课件教学过程:一、引入:观察一组图片回答下列问题:某班举行知识竞赛,评分标准是:答对一题加10分,答错一题扣10分,不回答算一算:每个代表队的得分是多少?二、讲授新课:1.议一议:生活中你见过带有“–”号的数吗?比0大的数叫做正数,如,5,1.2, , …在正数前面加上“–”号的数叫做负数, 如–10,–3,…0既不是正数,也不是负数.为了突出数的符号,可以在正数前面加“+”号,如+5,+1.2,+ 9, …2.讲解例题:例1 (1)在知识竞赛中,如果用+10分表示加10分,那么扣20分怎样表示?(2)某人转动转盘,如果用+5表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(3)在某次乒乓球的质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么– 0.03克表示什么?3. 做一做:将所有学过的数进行分类,并与同伴进行交流。

4. 正数、负数与零统称为有理数5. 说一说:通过这节课的学习,你学到了什么?感受到了什么?还想知道什么?比0大的数叫做正数,在正数前面加上“–”号的数叫做负数,0即不是正数,也不是负数.为了突出数的符号,可以在正数前面加“+”正数、负数与零统称为有理数.三、课堂小结:由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数.正数是大于0的数,负数就是在正数前面加上“-”号的数.0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃.四、练习设计1.北京一月份的日平均气温大约是零下3℃,用负数表示这个温度.2.在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?3.在下列各数中,哪些是正数?哪些是负数?-3.6,-4,9651,-0.1.4.如果-50元表示支出50元,那么+200元表示什么?5.河道中的水位比正常水位低0.2米记作-0.2米,那么比正常水位高0.1米记作什么?6.如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作什么?7.一物体可以左右移动,设向右为正,问:(1)向左移动12米应记作什么?(2)“记作8米”表明什么?五、作业:习题2.1 1. 2. 3. 4.§2.2 数轴教学目标:1.知道什么是数轴,如何画数轴。

北师大版七年级数学上册第二章有理数及其运算2.4有理数的加法第1课时有理数的加法课件(共20张PPT

北师大版七年级数学上册第二章有理数及其运算2.4有理数的加法第1课时有理数的加法课件(共20张PPT
解:①冬季某天早晨温度为0度,到中午气 温上升了3度,再到下午又下降了3度,下午气 温为0度;
②取向东为正方向,先向西走了1 km,后 又走了2 km,一共向西走了3 km.
课堂小结
有理数加法的运算步骤:
一要辨别加数的类型(同号、异号); 二要确定和的符号; 三要计算绝对值的和(或差).
课后作业
先向左移动 3 个单位,再向右移动 2 个单位.
.
解:(1)( - 25 ) + ( - 7 ) = - ( 25 + 7 ) = - 32.
一个数同 0 相加,仍得这个数.
(4)45 + ( - 45 ) .
某班举行知识竞赛,评分标准是:答对一题加 1 分,答错一题扣 1 分,不回答得 0 分.
(2) 4+(-6);
(2)( - 13 ) + 5 = -( 13 – 5 ) = - 8. (3)( - 23 ) + 0 = -23. (4)45 + ( - 45 ) = 0.
练习
1. 土星表面的夜间平均温度为 - 150 ℃,白天比 夜间高 27 ℃,那么白天的平均温度是多少?
解:( - 150 ) + 27 = - ( 150 - 27 ) = -123 ( ℃ )
(2)( - 13 ) + 5 = -( 13 – 5 ) = - 8.
解:(1)( - 25 ) + ( - 7 ) = - ( 25 + 7 ) = - 32.
= - ( 10 + 1 ) 因此,(-3)+2 = -1.
因此,(-3)+2 = -1.
在数轴上,先先向左移动 2 个单位,再向左移动 3 个单位.

北师大版七年级上册第二章有理数 有理数加减法复习

北师大版七年级上册第二章有理数    有理数加减法复习

第2讲 有理数加减运算一、有理数的加法1、有理数的加法法则:同号两数相加 ;绝对值不等的异号两数相加, ;互为相反的两个数 ;一个数同0相加, 。

2、有理数加法的运算律:加法的交换律 :两个数相加 加数的位置,和不变。

即:a+b=b+a ;加法的结合律:三个数相加,先把 两个数相加,或者先把 两个数相加,和不变。

即:( a+b ) +c = a + (b +c)3、有理数加法的运算步骤:(1)先判断两个加数的符号(是同号还是异号,确定用哪条法则) (2)再确定和的符号(是“+”还是“—”号)(3)求各加数的绝对值,并确定绝对值是相加还是相减 4、用加法的运算律进行简便运算的基本思路是:(1)先把互为相反数的数相加;(2)把同分母的分数先相加;(3)把符号相同的数先相加;(4)把相加得整数的数先相加。

二、有理数的减法(1)有理数减法法则:减去一个数等于加上这个数的相反数。

即:a-b=a+(-b)概念剖析:减法是加法的逆运算,用法则“减去一个数等于加上这个数的相反数”即可转化。

转化后它满足加法法则和运算律。

三、有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算,能简算的要简算。

小试牛刀: 计算:(1)⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-3121 = (2)(—2.2)+3.8 = (3)314+(—561)= (4)95--= (5)3122--= (6)8-(-4)=典例讲解:例1 计算下列各式①2)10()8()3()7(+-+++++- ②)25.0()3211()813(413125.0-+++-++例2 计算下列各式 (能简算的要简算)①(– 3)–(– 4)+7 ② )()(32312105--+---③()5.5-+()2.3-()5.2--()8.4+- ④31523.75[()()()4]0.1258263--+---+-例3 计算:(1) 59117+--- (2)1121153483737---+(3) 123(100)---⋅⋅⋅⋅⋅⋅- (4)246898100-+-⋅⋅⋅⋅⋅⋅+-例4 用拆项法计算:5231(5)(9)(17)(3)6342--+--+-例5 某股民小张想在股市上捞一笔,上周五他买进某公司股票1000股,每股35元,下表为本周内每日股票的涨跌情况(单位:元)(1) 星期四收盘时,每股是多少元?(2) 本周内最高价是每股多少元?最低价是每股多少元?(3) 已知小王买进股票时付了1.5%的手续费,卖出时需付成交额1.5‰的手续费和1‰的交易税,如果小王在星期五收盘时将全部股票卖出,他的收益情况如何?例6 已知点A,B 在数轴 分别表示有理数a 和b,A 和B 两点之间的距离表示为∣AB ∣ (1) 数轴上表示-2和5之间的距离是 (2) 数轴上表示-2和-5之间的距离是(3) 数轴上表示x 和-1的两点之间的距离是 ,如果∣AB ∣=5,求x 的值巩固练习: 1.绝对值是23的数减去13所得的差是( )A.13B.-1 C.13或-1D.13或12.较小的数减去较大的数所得的差一定是( ) A.正数 B.负数 C.零 D.不能确定3.比3的相反数小5的数是( ) A.2 B.-8 C.2或-8 D.2或+8 4.根据加法的交换律,由式子a b c -+-可得( ) A.b a c -+ B.b a c -++ C.b a c -- D.b a c -+-5.在数轴上,a 所表示的点在b 所表示的点的右边,且6,3a b ==,则a b -的值为( ) A.-3B.-9C.-3或-9D.3或96.若0,0x y <>时,,,x x y y +,x y -中,最大的是( ) A.xB.x y +C.x y -D.y7.已知a<c<0,b>0,且|a|>|b|>|c|,则|a|+|b|-|c|+|a+b|+|b+c|+|a+c|等于( )A.-3a+b+cB.3a+3b+cC.a-b+2cD.-a+3b-3c8.有甲、乙、丙三支球队参加比赛,甲以3:1胜乙,乙以3:1胜丙,丙以4:3胜甲,以净胜球多少排名顺序是( ) A.甲丙乙 B.甲乙丙 C 乙丙甲 D 丙甲乙 9. 将正整数按下列顺序排列 -3 → 4 -7 → 8 B → C ↑ ↓ ↑ ↓ ↑ ↓1→-2 5→-6 9→……→A D→则2009应在( )A.A 处B.B 处C.C 处D.D 处 10.改写省略加号的代数和的形式:1131384824⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+----+-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=___________改写成用加号连接的和的形式:-15-12-36-8=11. 2004年12月21日的天气预报,北京市的最低气温为-3℃,武汉市的最低气温为5℃,这一天北京市的最低气温比武汉市的最低气温低____℃.12.一场足球比赛中,A队进球1个,被对方攻进3个,则A队的净胜球为___个. 13.若()0a b --=,则a 与b 的关系是___.14.已知m 是6的相反数,n 比m 的相反数小5,则n 比m 大15.计算:(1)()()()()71012-+++-+- (2)1121153483737---+(3) ()()12.37.2 2.315.2-+--- (4) 11161325(3) 3.252(28)24772----++--(5)2531 (1011)(999)2011(1) 3642 -+-++-16.有理数1442,6,8555-+-的代数和比这三个数的相反数的绝对值的和小多少?17.已知4512=-+-ba,计算下题:(1)a的相反数与b的倒数的和;(2)a的绝对值与b的绝对值的和。

北师大版数学七年级上册2、4有理数加法(2)

北师大版数学七年级上册2、4有理数加法(2)
1)将最后一名乘客送到目的地时,小王距离下午出车 时的出发点多远?
2)若汽车耗油量为每公里0.21升,这天下午小王的出 租车共耗油多少升?
归纳小结:
1.有理数加法的交换律和结合律; 2.对三个以上有理数相加,按下列过程计算 (1)先将其中的相反数相加 (2)再将正数、负数分别相加 (3)最后求出异号加数的和,遇分数时, 可把相加得整数的先加起来.
反馈检测
1、计算:
(1)23+(-17)+6+(-22) (2)(-8)+10+2+(-1) (3)(-18.6)+(-6.15)+18.15+6.15 (4)
1 2 2 3
+(
)+
4 5
+(
1 2
)+(
1 3

例2 有一批食品罐头,标准质量为每听454克。 现抽取10听样品进行检测,结果如下表(单位: 千克)
听号 质量 听号 质量 1 444 6 454 2 459 7 449 3 454 8 454 4 459 9 459 5 454 10 464
这10听罐头的总质量是多少?
如果把上题中超过标准质量的克数用正数表 示,不足的用负数表示,请同学们填出10听 罐头与标准质量的差值表(单位:克):
有理数的加法中,两个加数相加,交换 加数的位置,和不变, 加法交换律:即 a+b=b+a . 有理数的加法中,三个数相加,先把前两个数 相加,或者先把后两个数相加,和不变, 加法结合律 :(a+b)+c=a+(b+c) . 根据加法交换律和结合律可以推出: 三个以上有理数相加,可以任意交换加数的位 置,也可先把其中的几个数相加.
15 25 20 35

2.4 有理数的加法 第2课时 北师大版七年级数学上册同步作业(含答案)

2.4 有理数的加法 第2课时 北师大版七年级数学上册同步作业(含答案)

4 有理数的加法第2课时必备知识·基础练(打“√”或“×”)1.两个数相加,交换加数的位置,和也发生了变化. ( × )2.三个数相加,只能先把前两个数相加.( × ) 3.a +(-b)=b +(-a).( × )知识点1 运用运算律简化有理数加法运算1.(2021·北京质检)计算318 +⎝⎛⎭⎪⎫-327 +678 +⎝ ⎛⎭⎪⎫-457 时运算律运用最合理的是( D )A .⎣⎢⎡⎦⎥⎤318+⎝ ⎛⎭⎪⎫-327 +⎣⎢⎡⎦⎥⎤678+⎝ ⎛⎭⎪⎫-457 B .⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫-327+678 +⎣⎢⎡⎦⎥⎤318+⎝ ⎛⎭⎪⎫-457 C .⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-327+678 -⎣⎢⎡⎦⎥⎤318+⎝ ⎛⎭⎪⎫-457 D .⎣⎢⎡⎦⎥⎤318+678 +⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫-327+⎝ ⎛⎭⎪⎫-457 【解析】计算318 +⎝ ⎛⎭⎪⎫-327 +678 +⎝ ⎛⎭⎪⎫-457 时运算律运用最合理的是[318 +678 ]+[⎝⎛⎭⎪⎫-327 +⎝ ⎛⎭⎪⎫-457 ]. 2.下列省略加号和括号的形式中,正确的是( B )A .(-7)+(+6)+(-5)+(-2)=-7++6+-5+-2B .(-7)+(+6)+(-5)+(-2)=-7+6-5-2C .(-7)+(+6)+(-5)+(-2)=-7+6+5+2D .(-7)+(+6)+(-5)+(-2)=-7+6-5+2【解析】A.原式=-7+6-5-2,错误;B .原式=-7+6-5-2,正确;C .原式=-7+6-5-2,错误;D .原式=-7+6-5-2,错误.3.计算:31+(-26)+69+28=__102__.【解析】原式=(31+69)+(-26+28)=100+2=102.4.绝对值大于1而小于3的所有整数和是__0__.【解析】绝对值大于1而小于3的所有整数为-2,2,它们的和为0.5.计算:(-1)+2+(-3)+4+…+50=__25__.【解析】原式=(-1+2)+(-3+4)+…+(-49+50)=1+1+…+1=25.6.计算:(1)(-2.4)+(-3.7)+(-4.6)+5.7;(2)⎝ ⎛⎭⎪⎫-13 +13+⎝ ⎛⎭⎪⎫-23 +17; (3)(-3.14)+(+4.96)+(+2.14)+(-7.96).【解析】(1)原式=-10.7+5.7=-5.(2)原式=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-13+⎝ ⎛⎭⎪⎫-23 +(13+17)=-1+30=29.(3)原式=(-3.14+2.14)+(4.96-7.96)=-1-3=-4.7.阅读下面文字:对于⎝ ⎛⎭⎪⎫-556 +⎝ ⎛⎭⎪⎫-923 +1734 +⎝ ⎛⎭⎪⎫-312可以如下计算:原式=⎣⎢⎡⎦⎥⎤(-5)+⎝ ⎛⎭⎪⎫-56 +⎣⎢⎡⎦⎥⎤(-9)+⎝ ⎛⎭⎪⎫-23 +⎝ ⎛⎭⎪⎫17+34+⎣⎢⎡⎦⎥⎤(-3)+⎝ ⎛⎭⎪⎫-12=⎣⎡⎦⎤(-5)+(-9)+17+(-3) +[⎝ ⎛⎭⎪⎫-56 +⎝ ⎛⎭⎪⎫-23 +34+⎝ ⎛⎭⎪⎫-12 ]=0+⎝ ⎛⎭⎪⎫-114 =-114 .上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,请你计算:⎝ ⎛⎭⎪⎫-112 +⎝ ⎛⎭⎪⎫-2 00056 +4 00034 +⎝ ⎛⎭⎪⎫-1 99923 .【解析】⎝ ⎛⎭⎪⎫-112 +⎝ ⎛⎭⎪⎫-2 00056 +4 00034 +⎝ ⎛⎭⎪⎫-1 99923=-1+⎝ ⎛⎭⎪⎫-12 +(-2 000)+⎝ ⎛⎭⎪⎫-56 +4 000+34 +(-1 999)+⎝ ⎛⎭⎪⎫-23=[-1+(-2 000)+4 000+(-1 999)]+[⎝ ⎛⎭⎪⎫-12 +⎝ ⎛⎭⎪⎫-56 +34 +⎝ ⎛⎭⎪⎫-23 ] =0+⎝ ⎛⎭⎪⎫-54 =-54 . 知识点2 有理数加法的综合运用8.(2021·成都质检)下列说法正确的是( C )A .-a 一定是负数B .两个数的和一定大于每一个加数C .若|m |=2,则m =±2D .若a +b =0,则a =b =0【解析】A.-a 不一定为负数,例如-(-1)=1,故选项错误;B .两个数的和不一定大于每一个加数,例如(-2)+(-1)=-3,故选项错误;C .若|m |=2,则m =±2,故选项正确;D .若a +b =0,则a 与b 互为相反数,故选项错误.9.若a 是最小的正整数,b 是绝对值最小的数,c 是相反数等于它本身的数,d 是到原点的距离等于2的负数,e 是最大的负整数,则a +b +c +d +e =__-2__.【解析】∵a 是最小的正整数,b 是绝对值最小的数,c 是相反数等于它本身的数,d 是到原点的距离等于2的负数,e 是最大的负整数, ∴a =1,b =0,c =0,d =-2,e =-1,∴a +b +c +d +e =1+0+0-2-1=-2.10.已知a 和b 互为相反数,x 的绝对值为1,则a +b +x 的值等于__±1__.【解析】由题意得:a+b=0,|x|=1,则原式=0+x=0±1=±1.11.我们知道,在三阶幻方中每行、每列、每条对角线上的三个数之和都是相等的,在如图的三阶幻方中已经填入了两个数13和19,则图中最左上角的数n应该是__16__.【解析】如图,设相应的方格中的数为a,b,c,d,n+a+b=a+c+13①,n+c+d=b+d+19②,①+②,得:2n+a+b+c+d=a+b+c+d+32,∴2n=32,解得n=16.关键能力·综合练12.若两个非零有理数a,b满足|a|=a,|b|=-b,且a+b<0,则a,b取值符合题意的是(B)A.a=-2,b=-3 B.a=2,b=-3C.a=3,b=-2 D.a=-3,b=2【解析】∵|a|=a,|b|=-b,a+b<0,∴a >0,b <0,且|a |<|b |,在四个选项中只有B 选项符合.13.在数轴上,大于-2且小于5的整数的和是__9__.【解析】大于-2且小于5的所有整数有-1,0,1,2,3,4,和是-1+0+1+2+3+4=9.14.在0,-2,1,12 这四个数中,最大数与最小数的和是__-1__.【解析】在0,-2,1,12 四个数中,最大的数是1,最小的数是-2,它们的和为-2+1=-1.15.若四位数的各个数位上的数字具有如下特征:个位数是其余各个位上的数字之和,则称该四位数是和谐数,如2 013满足3=2+0+1,则2 013是和谐数,又如2 015不是和谐数,因为5≠2+0+1,那么在大于1 000且小于2 025的所有四位数中,和谐数的个数有__48__个.【解析】个位数为1:1 001,合计1个数;个位数为2:1 012,1 102,2 002,合计3个数;个位数为3:1 023,1 203,1 113,2 013,合计4个数;个位数为4:1 034,1 304,1 214,1 124,2 024,合计5个数; 个位数为5:1 045,1 405,1 135,1 315,1 225,合计5个数; 个位数为6:1 056,1 506,1 146,1 416,1 236,1 326,合计6个数;个位数为7:1 067,1 607,1 157,1 517,1 247,1 427,1 337,合计7个数;个位数为8:1 078,1 708,1 168,1 618,1 258,1 528,1 348,1 438,合计8个数;个位数为9:1 089,1 809,1 179,1 719,1 269,1 629,1 359,1 539,1 449,合计9个数;1+3+4+5+5+6+7+8+9=48,所以在大于1 000且小于2 025的所有四位数中,和谐数的个数有48个.16.先阅读第(1)小题,仿照其解法再计算第(2)小题:(1)计算:-156 +⎝ ⎛⎭⎪⎫-523 +2434 +⎝ ⎛⎭⎪⎫-312 原式=⎝ ⎛⎭⎪⎫-1-56 +⎝ ⎛⎭⎪⎫-5-23 +(24+34 )+⎝ ⎛⎭⎪⎫-3-12 =-1-56 -5-23 +24+34 -3-12=[(-1)+(-5)+24+(-3)]+[⎝ ⎛⎭⎪⎫-56 +⎝ ⎛⎭⎪⎫-23 +34 +⎝ ⎛⎭⎪⎫-12 ] =15+⎝ ⎛⎭⎪⎫-54 =1334 . (2)计算(-205)+40034 +⎝⎛⎭⎪⎫-20423 +⎝ ⎛⎭⎪⎫-112 . 【解析】原式=(-205)+400+34 +(-204)+⎝ ⎛⎭⎪⎫-23 +(-1)+⎝ ⎛⎭⎪⎫-12 =(400-205-204-1)+⎝ ⎛⎭⎪⎫34-23-12 =-10512 . 17.(素养提升题)在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如:|6+7|=6+7;|6-7|=7-6;|7-6|=7-6;|-6-7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式: ①|7-21|=________;②⎪⎪⎪⎪⎪⎪-12-0.8 =________; ③⎪⎪⎪⎪⎪⎪717-718 =________. (2)数a 在数轴上的位置如图所示,则|a -2.5|=________.A .a -2.5B .2.5-aC .a +2.5D .-a -2.5(3)利用上述介绍的方法计算或化简: ①⎪⎪⎪⎪⎪⎪15-12 018 +⎪⎪⎪⎪⎪⎪12 018-12 -⎪⎪⎪⎪⎪⎪-12 +11 009 ; ②⎪⎪⎪⎪⎪⎪15-1a +⎪⎪⎪⎪⎪⎪1a -12 -⎪⎪⎪⎪⎪⎪-12 +2⎝ ⎛⎭⎪⎫1a ,其中a >2. 【解析】(1)①|7-21|=21-7;②⎪⎪⎪⎪⎪⎪-12-0.8 =12 +0.8;③⎪⎪⎪⎪⎪⎪717-718 =717 -718 .答案:①21-7 ②12 +0.8 ③717 -718(2)选B.由数轴得:a <2.5,则|a -2.5|=2.5-a .(3)利用上述介绍的方法计算或化简:①⎪⎪⎪⎪⎪⎪15-12 018 +⎪⎪⎪⎪⎪⎪12 018-12 -⎪⎪⎪⎪⎪⎪-12 +11 009 =15 -12 018 +12 -12 018 -12 +11 009=15 -11 009 +11 009 =15 .②⎪⎪⎪⎪⎪⎪15-1a +⎪⎪⎪⎪⎪⎪1a -12 -⎪⎪⎪⎪⎪⎪-12 +2⎝ ⎛⎭⎪⎫1a ,其中a >2. 当2<a <5时,原式=1a -15 +12 -1a -12 +2a =-15 +2a =10-a5a ,当a ≥5时,原式=15 -1a +12 -1a -12 +2a =15 .易错点:有理数的加法的运算法则【案例】(2021·南通期中)下面的四个说法:①若a +b =0,则|a |=|b |;②若|a |=-a ,则a <0;③若|a |=|b |,则a =b ;④若|a |+|b |=0,则a =b =0,其中正确的是( B )A .①②B .①④C .②③D .③④【解析】若a +b =0,则|a |=|b |,∴①符合题意;若|a |=-a ,则a ≤0,∴②不符合题意;若|a |=|b |,则a =b 或a =-b ,∴③不符合题意;若|a|+|b|=0,则a=b=0,∴④符合题意,∴正确的是:①④.关闭Word文档返回原板块。

北师大版-数学-七年级上册-北京四中2.4 有理数的加法 教案

北师大版-数学-七年级上册-北京四中2.4 有理数的加法 教案

2.4 有理数的加法(一)教学目标:1、经历探索有理数加法法则的过程,理解有理数的加法法则。

2、能熟练进行整数加法运算教学重点:有理数加法法则;教学难点:异号两数相加的法则。

教学过程:一、创设问题情境,引入课题:问题:请帮小明计算一下他做生意的利润情况:1、第一次盈利2万,第二次又盈利3万,两次合计情况是————————;2、第一次亏损2万,第二次又亏损3万,两次合计情况是————————;3、第一次盈利2万,第二次又亏损3万,两次合计情况是————————。

4、第一次亏损2万,第二次又盈利3万,两次合计情况是————————。

引导学生得出结论后,列出算式:(1)(+2)+(+3)(2)(-2)+(-3)(3)(+2)+(-3)(4)(-2)+(+3)并解释这些算式中符号的区别。

二、探求新知,形成结构1、教师引导学生看书自学课本P44-45 内容。

说明:比赛输了1个球与赢1个球是一对具有相反意义的量;-1与1互为相反数;是用来交流用的。

2、教师引导学生看书自学课本P46 利用数轴表示加法运算的过程,并写出算式、观察算式(区分符号),寻找有理数加法的规律与法则。

议—议:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?一个有理数同0相加和是多少?(前后桌讨论)有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值相等是和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

一个数同0相加,仍得这个数。

(强调:做题时要先看看是同号相加,还是异号相加,利用法则运算时,运算要先定号,再求绝对值。

) 问:特殊地,两个相反数相加,结果会怎样? 得出:两个相反数相加,结果为零 三、应用新知识,体验成功1、例1、计算下列各题:(师生共同完成,并由生口述依据)(1)180+(-10); (2)(-10)+(-1) (3)5+(-5); (4)0+(-2) 解:(1)180+(-10)= +(180-10)=170 (2)(-10)+(-1)= -(10+1) (3)5+(-5)=0 (4)0+(-2)= -2 2、课堂练习: (1)P 47 随堂练习1 (2)计算:(+4)+(+6)=_____; (+4)+(-2)=____;(-4)+2-=_______;(-9819)+0=______; (371-)+371=_______; =-+-)41()21( ______.(3)P 51 习题2.5 5、6 3、 逆用加法法则:(+5)+( )=-10 (-8)+( )=-10 (-8)+( )=+10四、小结(鼓励学生用自己的语言归纳法则)本节课主要学习了有理数加法法则,利用法则计算时,要注意先看看是异号两数相加还是同号两数相加,相加时要先定号,再算绝对值。

七年级数学上册2.4有理数的加法课件北师大版

七年级数学上册2.4有理数的加法课件北师大版

+1
+1
轻松解释(5)
(-2) +(-3)= 演示
-1
-1
-1
-1
-1
议一议
两个有理数相加,和的符号怎样确定?和的绝对值 如何确定?
( - 4 ) + ( - 8 ) = - ( 4 + 8 )= - 12

↓↓
同号两数相加 取相同符号
两个加数的绝对 值相加
( - 9 ) + (+ 2) = - ( 9 - 2) = -7
绝对值
同号
相同符号
相加
异号(绝对值 取绝对值较大 不相等) 的加数的符号
相减
异号(互为相 反数)
结果是0
与0相加
仍是这个数
有理数加法的运算律
学习目标
1.能概括出有理数的加法交换律和结合律. 2.灵活熟练地运用加法交换律、结合律简化运算
(重点、难点)
导入新课
情境引入
学习了有理数的加法运算法则后,爱探索的小 明发现,(-3)+(-6)与(-6)+(-3)相等,8+(-3) 与(-3)+8也相等,于是他想:是不是任意的两个加 数,交换它们的位置后,和仍然相等呢?同学们你 们认为呢?
=(16+24)+[(-25)+(-32)] (加法结合律)
=40+(-57 )
(同号相加法则)
=-17.
(异号相加法则)
(2)31 +(-28)+ 28 + 69 =31 + 69 + [(-28)+ 28 ] (加法交换律和结合律 ) =100+0 =100.
小组讨论:你是抓住数的什么特点使计算简化的? 依据是什么?

北师大版七年级数学上册 第二章4 有理数的加减混合运算

北师大版七年级数学上册 第二章4 有理数的加减混合运算
2 有理数的加减运算
第4课时 有理数的加减混合运算
1.通过学生熟练地进行包括小数、分数的有理数的加减混合运 算,提高学生的计算能力。
2.通过把减法运算转化为加法运算,进行多种程度、多个层次 的运算,培养学生的转化能力。
问题导入 新疆的日温差很大,正所谓,早穿棉袄午穿纱,围着火炉吃 西瓜你能帮忙计算一下这两日温差和是多少吗?
1.请同学们阅读教材40-41页,思考并回答下列问题。 对式子4.5+(-3.2)+1.1+(-1.4)进行计算。
方法一:原式=1.3+1.1+(-1.4)=2.4+(-1.4)= 1。 方法二:原式=4.5-3.2+1.1-1.4=1.3+1.1-思考以下问题: (1)-13-15+-23;(2)(-12)--65+(-8)-170。
小组展示
越展越优秀
提疑惑:你有什么疑惑?
知识点1:加减法统一成加法(重点) 1.在进行有理数的加减混合运算时,可以通过有理数的减法法则,
把减法转化为加法,将有理数的加减混合运算统一成加法运算。 2.在一个和式里,通常把各个加数的括号和它前面的加号省略不
写,写成省略加号的和的形式。 3.算式的读法:比如-9-12-3+7,按省略加号的和的形式所
同学们,今天我们主要学习了哪些知识? 将有理数加减混合运算统一成加法运算;有理数加减混合运算 的方法和步骤 今天的课程对同学们提出了更高的计算要求,只要按照方法和步 骤认真进行,相信同学们都能计算正确。
教材习题:完成教材41页随堂练习1题。 作业本作业: 。 实践性作业:同学们将自己家去年每月的收支情 况用正、负数表示出来,算一算去年自己家的结 余,注意要用一个综合算式表示,再进行计算。
列出算式:[-6-(-12)]+[(+21)-(+7)]? 能进行简便计算吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

元,-7
25千克为准,超过的千克数记作正数,不足的
预习目标:1、进一步熟练掌握有理数加法的法则;
2、掌握有理数加法的运算律,并能运用加法运算律简化运算。

预习过程:(一)复习回顾
1.叙述有理数的加法法则.
2.计算下列各题,并说明是根据哪一条运算法则?
(1)(-9.18)+6.18; (2)6.18+(-9.18); (3)(-2.37)+(-4.63);
3.计算下列各题:
(1)(-8)+(-9)(-9)+(-8)
(2)4+(-7)(-7)+4
(3)6+(-2)(-2)+6
(4)[2+(-3)]+(-8)2+[(-3)+(-8)]
(5)10+[(-10)+(-5)] [10+(-10)]+(-5)
(二)新知探究:
活动:1、在有理数运算中,加法的交换律、结合律还成立吗?再换一些数试试。

2、请用字母表示加法的交换律和结合律。

(三)典型例题:
例1计算:16+(-25)+24+(-32).
(四)运用巩固:
活动内容:1、计算:
(1)23+(-17)+6+(-22); (2)(-2)+3+1+(-3)+2+(-4);
(3)(-7)+(-6.5)+(-3)+6.5.
活动内容:2、小组讨论:把怎样的数相加简单?
(五)实际应用题:自学课本57页例三
作业:
A级:计算:(要求注理由)
(1)(-8)+10+2+(-1); (2)5+(-6)+3+9+(-4)+(-7);
(3)(-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5;
B级:已知:小吃店一周中每天的盈亏情况如下(盈余为正):
128.3元,-25.6元,-15元,27元,-7元,36.5元,98元
一周总的盈亏情况如何?
C级:8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:
1.5,-3,2,-0.5,1,-2,-2,-
2.5
8筐白菜的重量是多少?。

相关文档
最新文档