2019版高考数学(理)一轮复习精选练习:第10章 计数原理、概率、随机变量及其分布 10-5a
2019版高考数学(理)一轮复习全国经典版:第10章 计数原理、概率、随机变量及分布列 第3讲 二项式定理
第3讲二项式定理板块一知识梳理·自主学习[必备知识]考点1二项式定理的内容1.(a+b)n=C0n a n+C1n a n-1b1+…+C r n a n-r b r+…+C n n b n(n∈N*).2.第r+1项,T r+1=C r n a n-r b r.3.第r+1项的二项式系数为C r n(r=0,1,…,n).考点2二项式系数的性质的关系是相等.1.0≤k≤n时,C k n与C n-kn3.各二项式系数和:C0n+C1n+C2n+…+C n n=2n,C0n+C2n+C4n+…=2n-1,C1n+C3n+C5n+…=2n-1.[必会结论]1.二项展开式形式上的特点(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由0逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,…一直到C n -1n ,C nn .2.二项式系数与项的系数二项式系数与项的系数是完全不同的两个概念.二项式系数是指C 0n ,C 1n ,…,C nn ,它只与各项的项数有关,而与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a ,b 的值有关.如(a +bx )n 的展开式中,第k +1项的二项式系数是C k n ,而该项的系数是C k n an -k b k .当然,在某些二项展开式中,各项的系数与二项式系数是相等的.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)C k na n -kb k是二项展开式的第k 项.( ) (2)二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( ) (4)在(1-x )9的展开式中系数最大的项是第五、第六两项.( ) (5)若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为128.( )答案 (1)× (2)× (3)√ (4)× (5)×2.[课本改编]若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( )A .9B .8C .7D .6答案 B解析 令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,两式相加得a 0+a 2+a 4=8.3.[课本改编]二项式⎝ ⎛⎭⎪⎫x -1x 6的展开式中常数项为( )A .-15B .15C .-20D .20答案 B解析 依题意,二项展开式的通项公式T r +1=C r 6x6-r·(-x -12 )r =(-1)r C r6x 6-r -r 2 ,令6-r -r 2=0,得r =4,所以常数项为(-1)4C 46=15.4.[2018·抚州模拟]若⎝ ⎛⎭⎪⎫x 2-1x n展开式的二项式系数之和为128,则展开式中x 2的系数为( )A .-21B .-35C .35D .21答案 C解析 由已知得2n=128,n =7,所以T r +1=C r 7x 2(7-r )·⎝⎛⎭⎪⎫-1xr =C r 7(-1)r x 14-3r ,令14-3r =2,得r =4,所以展开式中x 2的系数为C 47(-1)4=35.故选C.5.[2017·山东高考]已知(1+3x )n 的展开式中含有x 2项的系数是54,则n =________.答案 4解析 (1+3x )n 的展开式的通项为T r +1=C r n (3x )r.令r =2,得T 3=9C 2n x 2.由题意得9C 2n =54,解得n =4.6.[2018·吉林模拟](x +2)10(x 2-1)的展开式中x 10的系数为________.答案 179解析 (x +2)10(x 2-1)=x 2(x +2)10-(x +2)10,本题求x 10的系数,只要求(x +2)10展开式中x 8及x 10的系数T r +1=C r 10x 10-r ·2r 取r =2,r =0得x 8的系数为C 210×22=180,x 10的系数为C 010=1, ∴所求系数为180-1=179.板块二 典例探究·考向突破考向二项展开式中特定项或系数问题例 1 (1)(x y -y x )4的展开式中,x 3y 3项的系数为________.答案 6解析 由二项展开式的通项可得T r +1=C r 4(x ·y )4-r ·(-y x )r =(-1)r C r4x4-r 2 ·y2+r2.令⎩⎪⎨⎪⎧4-r 2=32+r 2=3解得r =2,所以展开式中x 3y 3的系数为(-1)2C 24=6.(2)[2016·山东高考]若⎝ ⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a =________.答案 -2 解析 T r +1=a5-r C r5x10-52r,令10-52r =5,解之得r =2,所以a 3C 25=-80,a =-2.触类旁通求二项展开式中的项或项的系数的方法(1)展开式中常数项、有理项的特征是通项式中未知数的指数分别为零和整数.解决这类问题时,先要合并通项式中同一字母的指数,再根据上述特征进行分析.(2)有关求二项展开式中的项、系数、参数值或取值范围等,一般要利用通项公式,运用方程思想进行求值,通过解不等式(组)求取值范围.【变式训练1】 (1)[2018·广东测试]⎝ ⎛⎭⎪⎫x 2-12x 6的展开式中,常数项是( )A .-54B.54C .-1516 D.1516答案 D解析 T r +1=C r 6(x 2)6-r ⎝⎛⎭⎪⎫-12x r =⎝⎛⎭⎪⎫-12r C r 6x12-3r ,令12-3r =0,解得r =4.∴常数项为⎝ ⎛⎭⎪⎫-124C 46=1516.故选D.(2)⎝ ⎛⎭⎪⎪⎫x -124x 8的展开式中的有理项共有________项.答案 3解析 ∵T r +1=C r8(x )8-r ⎝ ⎛⎭⎪⎪⎫-124x r =⎝⎛⎭⎪⎫-12r C r 8x 16-3r4 ,∴r 为4的倍数,故r =0,4,8共3项.考向二项式系数的和或各项系数的和例 2 二项式(2x -3y )9的展开式中,求: (1)二项式系数之和; (2)各项系数之和; (3)所有奇数项系数之和; (4)各项系数绝对值之和.解 设(2x -3y )9=a 0x 9+a 1x 8y +a 2x 7y 2+…+a 9y 9.(1)二项式系数之和为C 09+C 19+C 29+…+C 99=29.(2)各项系数之和为a 0+a 1+a 2+…+a 9,令x =1,y =1,得a 0+a 1+a 2+…+a 9=(2-3)9=-1. (3)由(2)知a 0+a 1+a 2+…+a 9=-1,①令x =1,y =-1,得a 0-a 1+a 2-…-a 9=59,②①+②得a 0+a 2+a 4+a 6+a 8=59-12,此即为所有奇数项系数之和.(4)|a 0|+|a 1|+|a 2|+…+|a 9|=a 0-a 1+a 2-…-a 9,令x =1,y =-1,得|a 0|+|a 1|+|a 2|+…+|a 9|=a 0-a 1+a 2-…-a 9=59,此即为各项系数绝对值之和.触类旁通二项式定理中赋值法的应用(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2, 偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2. 【变式训练2】 (1)[2018·温州调研]已知(2x -1)10=a 0+a 1x +a 2x 2+…+a 9x 9+a 10x 10,则a 2+a 3+…+a 9+a 10的值为( )A .-20B .0C .1D .20答案 D解析 令x =1,得a 0+a 1+a 2+…+a 9+a 10=1,再令x =0,得a 0=1,所以a 1+a 2+…+a 9+a 10=0,又易知a 1=C 910×21×(-1)9=-20,所以a 2+a 3+…+a 9+a 10=20.(2)在二项式⎝ ⎛⎭⎪⎫x +3x n 的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且A +B =72,则展开式中常数项的值为________.答案 9解析 令x =1,得各项系数的和为4n ,而各项的二项式系数的和等于2n ,根据已知,得方程4n +2n =72,解得n =3.所以二项展开式的通项T r +1=C r 3(x )3-r ⎝ ⎛⎭⎪⎫3xr=3r C r 3x 32-32r ,显然当r =1时,T r +1是常数项,值为3C 13=9.考向项的系数的最值问题例 3 [2018·宜昌高三测试]已知(x23 +3x 2)n 的展开式中,各项系数和与它的二项式系数和的比为32.(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.解 令x =1,则展开式中各项系数和为(1+3)n =22n . 又展开式中二项式系数和为2n.∴22n 2n =2n=32,n =5.(1)∵n =5,展开式共6项,∴二项式系数最大的项为第三、四两项,∴T 3=C 25(x23 )3(3x 2)2=90x 6,T 4=C 35(x23 )2(3x 2)3=270x 223.(2)设展开式中第k +1项的系数最大,则由T k +1=C k5(x23 )5-k (3x 2)k =3k C k 5x 10+4k 3 ,得⎩⎪⎨⎪⎧3k C k 5≥3k -1C k -15,3k C k 5≥3k +1C k +15,∴72≤k ≤92,∴k =4, 即展开式中系数最大的项为T 5=C 45(x23 )(3x 2)4=405x263 .触类旁通1.求二项式系数最大项(1)如果n 是偶数,那么中间一项(第⎝ ⎛⎭⎪⎫n 2+1项)的二项式系数最大; (2)如果n 是奇数,那么中间两项(第n +12项与第⎝ ⎛⎭⎪⎫n +12+1项)的二项式系数相等并最大.2.求展开式系数最大项如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎪⎨⎪⎧A k ≥A k -1A k ≥A k +1从而解出k 来,即得.【变式训练3】 (1)若⎝ ⎛⎭⎪⎫x +2x 2n 的展开式中只有第6项的二项式系数最大,则展开式中的常数项是( )A .180B .120C .90D .45答案 A解析 只有第6项的二项式系数最大,可知n =10,于是展开式通项为T r +1=C r 10(x )10-r ⎝ ⎛⎭⎪⎫2x 2r =2r C r 10·x 5-5r2,令5-5r2=0,得r =2,所以常数项为22C 210=180.故选A.(2)若x ∈(0,+∞),则(1+2x )15的二项展开式中系数最大的项为第________项.答案 11解析 T r +1=C r 152r x r,由⎩⎪⎨⎪⎧C r -1152r -1≤C r 152r,C r +1152r +1≤C r 152r, 解得293≤r ≤323,故r =10,所以第11项的系数最大.考向二项式定理的应用命题角度1 n 个多项式积的展开式问题例 4 [2017·全国卷Ⅰ]⎝⎛⎭⎪⎫1+1x 2(1+x )6展开式中x 2的系数为( )A .15B .20C .30D .35答案 C解析 因为(1+x )6的通项为C r 6x r,所以⎝⎛⎭⎪⎫1+1x 2(1+x )6展开式中含x 2的项为1·C 26x 2和1x 2·C 46x 4.因为C 26+C 46=2C 26=2×6×52×1=30, 所以⎝ ⎛⎭⎪⎫1+1x 2(1+x )6展开式中x 2的系数为30. 故选C.【变式训练4】 [2017·全国卷Ⅲ](x +y )(2x -y )5的展开式中x 3y 3的系数为( )A .-80B .-40C .40D .80答案 C解析 因为x 3y 3=x ·(x 2y 3),其系数为-C 35·22=-40, x 3y 3=y ·(x 3y 2),其系数为C 25·23=80. 所以x 3y 3的系数为80-40=40.故选C. 命题角度2 与整除有关的问题例 5 [2018·潍坊模拟]设a ∈Z ,且0≤a <13,若512018+a 能被13整除,则a =( )A .0B .1C .11D .12答案 D解析 由于51=52-1,(52-1)2018=C 020********-C 12018522017+…-C 20172018521+1,又由于13整除52,所以只需13整除1+a ,0≤a <13,a ∈Z ,所以a =12.命题角度3 求近似值的问题例 6 求0.9986的近似值,使误差小于0.001.解 0.9986=(1-0.002)6=1+6×(-0.002)+15×(-0.002)2+…+(-0.002)6,∵T3=15×(-0.002)2=0.00006<0.001,即第3项以后的项的绝对值都小于0.001,∴从第3项起,以后的项可以忽略不计,即0.9986=(1-0.002)6≈1+6×(-0.002)=0.988.触类旁通二项式定理应用的题型及解法(1)对于多项式积的特定项问题,可通过“搭配”解决,但要注意不重不漏.(2)在证明整除问题或求余数问题时要进行合理的变形,使被除式(数)展开后的每一项都含有除式的因式.(3)二项式定理的一个重要用途是做近似计算:当n不很大,|x|比较小时,(1+x)n≈1+nx.【变式训练5】99100+1除以1000的余数是________.答案 2解析99100+1=(100-1)100+1=C0100×100100+(-C1100×10099)+…+(-C99100×100)+C100100×1+1=100100-100×10099+…-10000+2,从第一项到倒数第二项都能被1000整除,∴余数是2.核心规律1.二项展开式的通项T k+1=C k n a n-k b k是展开式的第k+1项,这是解决二项式定理有关问题的基础.在利用通项公式求指定项或指定项的系数时,要根据通项公式讨论对k的限制.2.因为二项式定理中的字母可取任意数或式,所以,在解题时,根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.满分策略1.注意(a+b)n与(b+a)n虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题.2.解题时,要注意区别二项式系数和项的系数的不同、项数和项的不同.3.切实理解“常数项”“有理项(字母指数为整数)”“系数最大的项”等概念.板块三启智培优·破译高考题型技法系列17——拆分法破解三项展开式中特定项(系数)问题[2015·全国卷Ⅰ](x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20C.30 D.60解题视点利用拆分法,(x2+x+y)5=[(x2+x)+y]5,将(x2+x)看作一项,应用二项式定理求解.解析由二项展开式通项易知T r+1=C r5(x2+x)5-r y r,令r=2,则T3=C25(x2+x)3y2,对于二项式(x2+x)3,由T t+1=C t3(x2)3-t·x t=C t3x6-t,令t=1,所以x5y2的系数为C25C13=30.故选C.答案 C答题启示二项式定理研究两项和的展开式,对于三项式问题,一般是通过合并、拆分或进行因式分解,转化成二项式定理的形式去求解.跟踪训练(1)(x2-x+1)10展开式中x3项的系数为()A.-210 B.210C.30 D.-30答案 A解析 (x 2-x +1)10=[x 2-(x -1)]10=C 010(x 2)10-C 110(x 2)9(x -1)+…-C 910x 2(x -1)9+C 1010(x -1)10,所以含x 3项的系数为:-C 910C 89+C 1010(-C 710)=-210.故选A.(2)[2018·安徽安庆模拟]将⎝ ⎛⎭⎪⎫x +4x -43展开后,常数项是________. 答案 -160解析 ⎝ ⎛⎭⎪⎫x +4x -43=⎝ ⎛⎭⎪⎫x -2x 6展开后的通项是C k 6(x )6-k·⎝ ⎛⎭⎪⎫-2x k =(-2)k ·C k 6(x )6-2k. 令6-2k =0,得k =3.所以常数项是C 36(-2)3=-160.板块四 模拟演练·提能增分[A 级 基础达标]1.已知⎝ ⎛⎭⎪⎫a +1a n (n ∈N *)的展开式中含a 3的项为第3项,则n 的值为( )A .2B .6C .12D .24答案 C 解析 ∵T 3=C 2n a n -22 ⎝ ⎛⎭⎪⎫1a 2=C 2n a n2-3 ,∴n 2-3=3,得n =12.故选C.2.[2018·湖北模拟]若二项式⎝ ⎛⎭⎪⎫2x +a x 7的展开式中1x 3的系数是84,则实数a =( )A .2 B.54 C .1 D.24 答案 C解析T r +1=C r 7·(2x )7-r ·⎝ ⎛⎭⎪⎫a xr =27-r C r 7a r·1x2r -7.令2r -7=3,则r =5.由22·C 57a 5=84得a =1.故选C.3.(1+x )8(1+y )4的展开式中x 2y 2的系数是( ) A .56 B .84 C .112 D .168答案 D解析 因为(1+x )8的展开式中x 2的系数为C 28,(1+y )4的展开式中y 2的系数为C 24,所以x 2y 2的系数为C 28C 24=168.故选D.4.已知(1-2x )n 展开式中,奇数项的二项式系数之和为64,则(1-2x )n (1+x )的展开式中含x 2项的系数为( )A .71B .70C .21D .49答案 B解析 因为奇数项的二项式系数之和为2n -1,所以2n -1=64,n=7,因此(1-2x )n (1+x )的展开式中含x 2项的系数为C 27(-2)2+C 17(-2)=70.故选B.5.若⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为2,则该展开式的常数项为( )A .-40B .-20C .20D .40答案 D解析 令x =1,得(1+a )(2-1)5=2,∴a =1.∴⎝ ⎛⎭⎪⎫2x -1x 5的通项为T r +1=C r 5·(2x )5-r ·⎝ ⎛⎭⎪⎫-1x r =(-1)r ·25-r ·C r 5·x 5-2r. 令5-2r =1,得r =2.令5-2r =-1,得r =3.∴展开式的常数项为(-1)2×23·C 25+(-1)3· 22·C 35=80-40=40.6.[2018·遵义四中月考](2-x )8展开式中不含x 4项的系数的和为( )A .-1B .0C .1D .2答案 B解析 二项式的通项T k +1=C k 828-k (-1)k (x )k =C k 828-k·(-1)k x k 2,令k =8,则T 9=C 88(-1)8x 4=x 4,∴x 4的系数为1,令x =1,得展开式的所有项系数和为(2-1)8=1,∴不含x 4项的系数的和为0.选B.7.[2018·衡水模拟]已知(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,则a 8等于( )A .180B .90C .-5D .5答案 A解析 (1+x )10=[2-(1-x )]10,其通项公式为T r +1=C r 10210-r·(-1)r (1-x )r ,a 8是r =8时,第9项的系数.∴a 8=C 81022(-1)8=180.故选A.8.设a =⎠⎛0πsin x d x ,则二项式⎝ ⎛⎭⎪⎫a x -1x 6展开式中的常数项是________.答案 -160解析 a =⎠⎛0πsin x d x =(-c os x )|π0=2,T r +1=C r 6(2x )6-r ⎝⎛⎭⎪⎫-1x r =C r 626-r (-1)r x 3-r, 令3-r =0,则r =3.所以二项展开式中常数项为-C 36·23=-160. 9.[2018·唐山模拟]S =C 127+C 227+…+C 2727除以9的余数为________.答案 7解析 依题意S =C 127+C 227+…+C 2727=227-1=89-1=(9-1)9-1=C 09×99-C 19×98+…+C 89×9-C 99-1=9×(C 09×98-C 19×97+…+C 89)-2.∵C 09×98-C 19×97+…+C 89是正整数,∴S 被9除的余数为7.10.[2015·全国卷Ⅱ](a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.答案 3解析 设f (x )=(a +x )(1+x )4,则其展开式的所有项的系数和为f (1)=(a +1)·(1+1)4=(a +1)×16,∵展开式中x 的奇数次幂项的系数和为12[f (1)-f (-1)],又f (-1)=0,∴12×(a +1)×16=32,∴a =3.[B 级 知能提升]1.[2018·山西四校联考]若⎝ ⎛⎭⎪⎫x 6+1x x n 的展开式中含有常数项,则正整数n 的最小值等于( )A .3B .4C .5D .6答案 C 解析T r +1=C r n (x 6)n -r ⎝⎛⎭⎪⎫1x x r =C rn x 6n -15r 2 ,当T r +1是常数项时,6n-15r 2=0,即n =5r4,又n ∈N *,故n 的最小值为5.故选C.2.[2018·福建厦门联考]在⎝ ⎛⎭⎪⎫1+x +1x 201810的展开式中,x 2的系数为( )A .10B .30C .45D .120答案 C解析 因为⎝ ⎛⎭⎪⎫1+x +1x 201810=⎣⎢⎡⎦⎥⎤(1+x )+1x 201810=(1+x )10+C 110(1+x )91x2018+…+C 1010⎝ ⎛⎭⎪⎫1x201810,所以x 2只出现在(1+x )10的展开式中,所以含x 2的项为C 210x 2,系数为C 210=45.故选C.3.[2017·浙江高考]已知多项式(x +1)3(x +2)2=x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则a 4=________,a 5=________.答案 16 4解析 a 4是x 项的系数,由二项式的展开式得a 4=C 33·C 12·2+C 23·C 22·22=16;a 5是常数项,由二项式的展开式得a 5=C 33·C 22·22=4.4.已知⎝ ⎛⎭⎪⎫x +12x n 的展开式中前三项的系数成等差数列. (1)求n 的值;(2)求展开式中系数最大的项. 解 (1)由题设,得C 0n +14·C 2n =2×12·C 1n ,即n 2-9n +8=0,解得n =8,n =1(舍去).(2)设第r +1的系数最大,则⎩⎨⎧12r C r 8≥12r +1C r +18,12r C r 8≥12r -1C r -18.即⎩⎨⎧18-r ≥12(r +1),12r ≥19-r ,解得2≤r ≤3.所以系数最大的项为T 3=7x 5,T 4=7x72 .5.[2018·焦作模拟]已知⎝ ⎛⎭⎪⎫x -2x 2n (n ∈N *)的展开式中第五项的系数与第三项的系数的比是10∶1.(1)求展开式中各项系数的和;(2)求展开式中含x32的项;(3)求展开式中二项式系数最大的项. 解 由题意知,第五项系数为C 4n ·(-2)4, 第三项的系数为C 2n ·(-2)2,则有C 4n ·(-2)4C 2n ·(-2)2=101,化简得n 2-5n -24=0, 解得n =8或n =-3(舍去).(1)令x =1得各项系数的和为(1-2)8=1. (2)通项公式T k +1=C k 8·(x )8-k ·(-2x 2)k =C k 8·(-2)k·x 8-k2-2k ,令8-k 2-2k =32,则k =1.故展开式中含x32的项为T 2=-16x32 .(3)由n =8知第五项二项式系数最大, 此时T 5=1120x -6.。
2019版高考数学一轮复习第10章计数原理、概率、随机变量及其分布10.2排列
第一节课有 A5 数学课排在第四节课也有 A5 5种方法, 5种方法, 体育课排在第一节课且数学课排在第四节课有 A4 4种方法,
5 4 由排除法得这天课表的不同排法种数为 A6 - 2A + A 6 5 4=504.
故选 D.
3.某班级举办的演讲比赛中,共有 5 位选手参加,其 中 3 位女生、2 位男生.如果 2 位男生不能连续出场,且女 生甲不能排在第一个,那么出场顺序的排法种数为( A.90 B.60 C.48 D.36
2 百位.∴排成的三位奇数有 C2 A 3 2=6 个. 2 ②当选数字 2 时,再从 1,3,5 中取 2 个数字有 C3 种方
法.然后将选中的两个奇数数字选一个排在个位,其余 2
1 2 个数字全排列.∴排成的三位奇数有 C2 C 3 2A2=12 个.
∴由分类加法计数原理,共有 18 个符合条件的三位奇 数.故选 B.
解析 若大一的孪生姐妹乘坐甲车, 则时甲车中的另1 1 外 2 人分别来自不同年级,有 C2 3C2C2=12 种,若大一的孪
生姐妹不乘坐甲车,则有 2 名同学来自同一个年级,另外 2
1 1 1 名分别来自不同年级,有 C3 C2C2=12 种,所以共有 24 种乘
坐方式,故选 A.
8.在航天员进行的一项太空实验中,先后要实施 6 个 程序,其中程序 A 只能出现在第一步或最后一步,程序 B 和 C 实施时必须相邻, 请问实验顺序的编排方法共有( ) A.34 种 B.48 种 C.96 种 D.144 种 解析 由题意知程序 A 只能出现在第一步或最后一步,
4.(2018· 山西质量监测)A,B,C,D,E,F 六人围坐 在一张圆桌周围开会,A 是会议的中心发言人,必须坐最北 面的椅子,B,C 二人必须坐相邻的两把椅子,其余三人坐 剩余的三把椅子,则不同的座次有( ) A.60 种 B.48 种 C.30 种 D.24 种
2019版高考数学(理)高分计划一轮狂刷练:第10章 计数原理、概率、随机变量及其分布 10-4a
[基础送分 提速狂刷练]一、选择题1.(2017·湖南十三校二模)同学聚会上,某同学从《爱你一万年》《十年》《父亲》《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未被选取的概率为( )A.13B.12C.23D.56答案 B解析 分别记《爱你一万年》《十年》《父亲》《单身情歌》为A 1,A 2,A 3,A 4,从这四首歌中选出两首歌进行表演的所有可能结果为A 1A 2,A 1A 3,A 1A 4,A 2A 3,A 2A 4,A 3A 4,共6个,其中A 1未被选取的结果有3个,所以所求概率P =36=12.故选B.2.(2018·广东中山模拟)从1,2,3,4,5这5个数中任取两个,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数,上述事件中,是对立事件的是( )A .①B .②④C .③D .①③答案 C解析 从1,2,3,4,5这5个数中任取两个,有三种情况:一奇一偶,两个奇数,两个偶数.其中至少有一个是奇数包含一奇一偶,两个奇数这两种情况,它与两个都是偶数是对立事件,而①②④中的事件可能同时发生,不是对立事件,故选C.3.(2017·安徽“江南十校”联考)从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( )A.45B.35C.25D.15答案 D解析 令选取的a ,b 组成实数对(a ,b ),则有C 13C 15=15种情况,其中b >a 的有(1,2),(1,3),(2,3)3种情况,所以b >a 的概率为315=15.故选D.4.把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,向量m =(a ,b ),n =(1,2),则向量m 与向量n 不共线的概率是( )A.16B.1112C.112D.118答案 B解析 若m 与n 共线,则2a -b =0.而(a ,b )的可能性情况为6×6=36个.符合2a =b 的有(1,2),(2,4),(3,6)共三个.故共线的概率是336=112,从而不共线的概率是1-112=1112.故选B.5.一个袋子里装有编号为1,2,…,12的12个相同大小的小球,其中1到6号球是红色球,其余为黑色球.若从中任意摸出一个球,记录它的颜色和号码后再放回袋子里,然后再摸出一个球,记录它的颜色和号码,则两次摸出的球都是红球,且至少有一个球的号码是偶数的概率是( )A.116B.316C.14D.716答案 B解析 据题意由于是有放回地抽取,故共有12×12=144种取法,其中两次取到红球且至少有一次号码是偶数的情况共有6×6-3×3=27种可能,故其概率为27144=316.故选B.6.(2018·湖南常德模拟)现有一枚质地均匀且表面分别标有1,2,3,4,5,6的正方体骰子,将这枚骰子先后抛掷两次,这两次出现的点数之和大于点数之积的概率为( )A.13B.12C.23D.1136答案 D解析 将这枚骰子先后抛掷两次的基本事件总数为6×6=36(个),这两次出现的点数之和大于点数之积包含的基本事件有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1),共11个.∴这两次出现的点数之和大于点数之积的概率P =1136.故选D.7.(2018·安徽黄山模拟)从1,2,3,4,5这5个数中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )A.310B.15C.12D.35答案 A解析 从1,2,3,4,5这5个数中任取3个不同的数的基本事件有C 35=10个,取出的3个数可作为三角形的三边边长的基本事件有(2,3,4),(2,4,5),(3,4,5),共3个,故所求概率P =310.故选A.8.(2018·河南开封月考)有5张卡片,上面分别写有数字1,2,3,4,5.从这5张卡片中随机抽取2张,那么取出的2张卡片上的数字之积为偶数的概率为( )A.13B.23C.710D.310答案 C解析 从5张卡片中随机抽取2张共有C 25=10种等可能情况;2张卡片上的数字之积为偶数的为1奇1偶和2偶,共有C 13C 12+C 22=7种等可能情况,故所求概率为P =710.故选C.9.(2018·广东海珠综合测试)某食品厂为了促销,制作了3种不同的精美卡片,每袋食品中随机装入一张卡片,集齐3种卡片可获奖,现购买该食品4袋,能获奖的概率为( )A.427B.827C.49D.89答案 C解析 因为3种不同的精美卡片随机放进4袋食品中,根据分步乘法计数原理可知共有34=81种不同放法,4袋食品中共有3种不同的卡片的放法有3×C 24×A 22=36种,根据等可能事件的概率公式得能获奖的概率为3681=49,故选C.10.(2017·湖南郴州三模)从集合A ={-2,-1,2}中随机抽取一个数记为a ,从集合B ={-1,1,3}中随机抽取一个数记为b ,则直线ax -y +b =0不经过第四象限的概率为( )A.29B.13C.49D.14答案 A解析 (a ,b )所有可能的结果为C 13C 13=9种.由ax -y +b =0得y =ax +b ,当⎩⎪⎨⎪⎧a ≥0,b ≥0时,直线不经过第四象限,符合条件的(a ,b )的结果为(2,1),(2,3),共2种,∴直线ax -y +b =0不经过第四象限的概率P =29,故选A.二、填空题11.(2017·陕西模拟)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为________.答案 35解析 如图,从A ,B ,C ,D ,O 这5个点中任取2个,共有C 25=10种取法,满足两点间的距离不小于正方形边长的取法有(A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D )共6种,因此所求概率P =610=35.12.(2017·云南昆明质检)中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得女子乒乓球单打冠军的概率为________.答案 1928解析 由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为37+14=1928.13.一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为715,取得两个绿球的概率为115,则取得两个同颜色的球的概率为________;至少取得一个红球的概率为________.答案 815 1415解析 (1)由于“取得两个红球”与“取得两个绿球”是互斥事件,因此事件C “取得两个同色球”,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P (C )=715+115=815.(2)由于事件A “至少取得一个红球”与事件B “取得两个绿球”是对立事件,则至少取得一个红球的概率为P (A )=1-P (B )=1-115=1415.14.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为________.答案0.25解析20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为520=0.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25.三、解答题15.(2018·扬州模拟)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)解(1)由已知得25+y+10=55,x+30=45,所以x=15,y=20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟). (2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P (A 1)=20100=15,P (A 2)=10100=110.P (A )=1-P (A 1)-P (A 2)=1-15-110=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710.16.(2015·北京高考)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解 (1)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001000=0.2.(2)从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001000=0.6,顾客同时购买甲和丁的概率可以估计为1001000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.。
2019版高考数学(理)高分计划一轮狂刷练:第10章 计数原理、概率、随机变量及其分布 10-9a
[重点保分 两级优选练]A 级一、选择题1.已知ξ的分布列为ξ -1 0 1 P121316则在下列式中:①E (ξ)=-13;②D (ξ)=2327;③P (ξ=0)=13.正确的个数是( )A .0B .1C .2D .3 答案 C解析 E (ξ)=(-1)×12+1×16=-13,故①正确.D (ξ)=⎝ ⎛⎭⎪⎫-1+132×12+⎝ ⎛⎭⎪⎫0+132×13+⎝ ⎛⎭⎪⎫1+132×16=59,故②不正确.由分布列知③正确.故选C.2.已知随机变量X +Y =8,若X ~B (10,0.6),则E (Y ),D (Y )分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6答案 B解析 由已知随机变量X +Y =8,所以Y =8-X .因此,求得E (Y )=8-E (X )=8-10×0.6=2,D (Y )=(-1)2D (X )=10×0.6×0.4=2.4.故选B.3.(2018·广东茂名模拟)若离散型随机变量X 的分布列为X1则X 的数学期望E (X )=( ) A .2 B .2或12 C.12 D .1 答案 C解析 因为分布列中概率和为1,所以a 2+a 22=1,即a 2+a -2=0,解得a =-2(舍去)或a =1,所以E (X )=12.故选C.4.(2017·青岛质检)设随机变量ξ服从正态分布N (1,σ2),则函数f (x )=x 2+2x +ξ不存在零点的概率为( )A.12B.23C.34D.45 答案 A解析 函数f (x )=x 2+2x +ξ不存在零点的条件是 Δ=22-4×1×ξ<0,解得ξ>1.又ξ~N (1,σ2),所以P (ξ>1)=12,即所求事件的概率为12.故选A.5.(2018·山东聊城重点中学联考)已知服从正态分布N (μ,σ2)的随机变量在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为68.3%,95.4%和99.7%.某校为高一年级1000名新生每人定制一套校服,经统计,学生的身高(单位:cm)服从正态分布(165,52),则适合身高在155~175 cm 范围内的校服大约要定制( )A .683套B .954套C .972套D .997套 答案 B解析 P (155<ξ<175)=P (165-5×2<ξ<165+5×2)=P (μ-2σ<ξ<μ+2σ)=95.4%.因此服装大约定制1000×95.4%=954套.故选B.6.(2018·皖南十校联考)在某市1月份的高三质量检测考试中,理科学生的数学成绩服从正态分布N (98,100).已知参加本次考试的全市理科学生约9450人.某学生在这次考试中的数学成绩是108分,那么他的数学成绩大约排在全市第多少名?( )A .1500B .1700C .4500D .8000 答案 A解析 因为学生的数学成绩X ~N (98,100),所以P (X ≥108)=12[1-P (88<X <108)]=12[1-P (μ-σ<X <μ+σ)]=12(1-0.6826)=0.1587,故该学生的数学成绩大约排在全市第0.1587×9450≈1500名,故选A.7.(2017·银川一中一模)一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,(a ,b ,c ∈(0,1)),已知他投篮得分的数学期望是2,则2a +13b 的最小值为( )A.323B.283C.143D.163 答案 D解析 由数学期望的定义可知3a +2b =2,所以2a +13b =12(3a +2b )·⎝ ⎛⎭⎪⎫2a +13b =12( 6+23+4b a +a b )≥12⎝ ⎛⎭⎪⎫6+23+4=163,当且仅当4b a =ab 即a =12,b =14时取得等号.故选D.8.若X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2,又已知E (X )=43,D (X )=29,则x 1+x 2的值为( )A.53B.73 C .3 D.113 答案 C 解析 由已知得⎩⎪⎨⎪⎧x 1·23+x 2·13=43,⎝ ⎛⎭⎪⎫x 1-432·23+⎝ ⎛⎭⎪⎫x 2-432·13=29,解得⎩⎪⎨⎪⎧x 1=53,x 2=23或⎩⎪⎨⎪⎧x 1=1,x 2=2. 又∵x 1<x 2,∴⎩⎪⎨⎪⎧x 1=1,x 2=2,∴x 1+x 2=3.故选C.9.(2018·广州调研)已知随机变量x 服从正态分布N (μ,σ2),且P (μ-2σ<x ≤μ+2σ)=0.9544,P (μ-σ<x ≤μ+σ)=0.6826,若μ=4,σ=1,则P (5<x <6)等于( )A .0.1358B .0.1359C .0.2716D .0.2718 答案 B解析 由题知x ~N (4,1),作出相应的正态曲线,如图,依题意P (2<x ≤6)=0.9544,P (3<x ≤5)=0.6826,即曲边梯形ABCD 的面积为0.9544,曲边梯形EFGH 的面积为0.6826,其中A ,E ,F ,B 的横坐标分别是2,3,5,6,由曲线关于直线x =4对称,可知曲边梯形FBCG 的面积为0.9544-0.68262=0.1359,即P (5<x <6)=0.1359,故选B. 10.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设某学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望E (X )>1.75,则p 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,712B.⎝ ⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫712,1D.⎝ ⎛⎭⎪⎫12,1 答案 B解析 根据题意,学生一次发球成功的概率为p ,即P (X =1)=p ,发球二次的概率P (X =2)=p (1-p ),发球三次的概率P (X =3)=(1-p )2,则E (X )=p +2p (1-p )+3(1-p )2=p 2-3p +3,依题意有E (X )>1.75,则p 2-3p +3>1.75,解得p >52或p <12,结合p 的实际意义,可得0<p <12,即p ∈⎝⎛⎭⎪⎫0,12.故选B.二、填空题11.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的数学期望E (X )=______.答案 53解析 ∵P (X =0)=13×(1-p )2=112,∴p =12. 则P (X =1)=23×12×12+13×12×12×2=412=13, P (X =2)=23×12×12×2+13×12×12=512, P (X =3)=23×12×12=16.则E (X )=0×112+1×13+2×512+3×16=53.12.某省实验中学高三共有学生600人,一次数学考试的成绩(试卷满分150分)服从正态分布N (100,σ2),统计结果显示学生考试成绩在80分到100分之间的人数约占总人数的13,则此次考试成绩不低于120分的学生约有________人.答案 100解析 ∵数学考试成绩ξ~N (100,σ2),作出正态分布图象,可能看出,图象关于直线x =100对称.显然P (80≤ξ≤100)=P (100≤ξ≤120)=13;∴P (ξ≤80)=P (ξ≥120).又∵P (ξ≤80)+P (ξ≥120)=1-P (80≤ξ≤100)-P (100≤ξ≤120)=13,∴P (ξ≥120)=12×13=16.∴成绩不低于120分的学生约为600×16=100人.13.(2018·沧州七校联考)2017年中国汽车销售量达到1700万辆,汽车耗油量对汽车的销售有着非常重要的影响,各个汽车制造企业积极采用新技术降低耗油量,某汽车制造公司为调查某种型号的汽车的耗油情况,共抽查了1200名车主,据统计该种型号的汽车的平均耗油为百公里8.0升,并且汽车的耗油量ξ服从正态分布N (8,σ2),已知耗油量ξ∈[7,9]的概率为0.7,那么耗油量大于9升的汽车大约有________辆.答案 180解析 由题意可知ξ~N (8,σ2),故正态分布曲线以μ=8为对称轴.又因为P (7≤ξ≤9)=0.7,故P (7≤ξ≤9)=2P (8≤ξ≤9)=0.7,所以P (8≤ξ≤9)=0.35.而P (ξ≥8)=0.5,所以P (ξ>9)=0.15.故耗油量大于9升的汽车大约有1200×0.15 =180辆.14.(2017·安徽蚌埠模拟)赌博有陷阱.某种赌博游戏每局的规则是:参与者从标有5,6,7,8,9的小球中随机摸取一个(除数字不同外,其余均相同),将小球上的数字作为其赌金(单位:元),然后放回该小球,再随机摸取两个小球,将两个小球上数字之差的绝对值的2倍作为其奖金(单位:元).若随机变量ξ和η分别表示参与者在每一局赌博游戏中的赌金与奖金,则E (ξ)-E (η)=________元.答案 3解析 ξ的分布列为E (ξ)=15×(5+6+7+8+9)=7(元). η的分布列为E (η)=2×25+4×310+6×15+8×110=4(元), ∴E (ξ)-E (η)=7-4=3(元). 故答案为3.B 级三、解答题15.(2018·湖北八校第二次联考)某手机卖场对市民进行国产手机认可度的调查,随机抽取100名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如下:(1)求频率分布表中x 、y 的值,并补全频率分布直方图; (2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人中随机选取2人各赠送精美礼品一份,设这2名市民中年龄在[35,40)内的人数为X ,求X 的分布列及数学期望.解 (1)由题意知,[25,30)内的频率为0.01×5=0.05,故x =100×0.05=5.因[30,35)内的频率为1-(0.05+0.35+0.3+0.1)=1-0.8=0.2,故y =100×0.2=20,且[30,35)这组对应的频率组距=0.25=0.04.补全频率分布直方图略.(2)∵年龄从小到大的各层人数之间的比为5∶20∶35∶30∶10=1∶4∶7∶6∶2,且共抽取20人,∴抽取的20人中,年龄在[35,40)内的人数为7. X 可取0,1,2,P (X =0)=C 213C 220=78190,P (X =1)=C 113C 17C 220=91190,P (X =2)=C 27C 220=21190,故X 的分布列为故E(X)=91190×1+21190×2=133190.16.新生儿Apgar评分,即阿氏评分,是对新生儿出生后总体状况的一个评估,主要从呼吸、心率、反射、肤色、肌张力这几个方面评分,评分在8~10分者为正常新生儿,评分在4~7分的新生儿考虑患有轻度窒息,评分在4分以下的新生儿考虑患有重度窒息,大部分新生儿的评分在7~10分之间.某医院妇产科从9月份出生的新生儿中随机抽取了16名,表格记录了他们的评分情况.(1)现从这16名新生儿中随机抽取3名,求至多有1名新生儿的评分不低于9分的概率;(2)用这16名新生儿的Apgar评分来估计本年度新生儿的总体状况,若从本年度新生儿中任选3名,记X表示抽到评分不低于9分的新生儿数,求X的分布列及数学期望.解(1)设A i表示所抽取的3名新生儿中有i名的评分不低于9分,“至多有1名新生儿的评分不低于9分”记为事件A,则由表格中数据可知P(A)=P(A0)+P(A1)=C312C316+C14C212C316=121140.(2)由表格数据知,从本年度新生儿中任选1名,评分不低于9分的概率为416=1 4,由题意知随机变量X的所有可能取值为0,1,2,3,且P (X =0)=⎝ ⎛⎭⎪⎫343=2764;P (X =1)=C 13⎝ ⎛⎭⎪⎫141⎝ ⎛⎭⎪⎫342=2764; P (X =2)=C 23⎝ ⎛⎭⎪⎫142⎝ ⎛⎭⎪⎫341=964;P (X =3)=C 33⎝ ⎛⎭⎪⎫143=164.所以X 的分布列为E (X )=0×2764+1×2764+2×964+3×164=0.75 ⎝ ⎛⎭⎪⎫或E (X )=3×14=0.75.17.(2015·湖南高考)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的数学期望和方差.解 (1)记事件A 1={从甲箱中摸出的1个球是红球},A 2={从乙箱中摸出的1个球是红球},B 1={顾客抽奖1次获一等奖},B 2={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,A 1A -2与A -1A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A -2+A -1A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15,P (B 2)=P (A 1A -2+A-1A 2)=P (A 1A -2)+P (A -1A 2)=P (A 1)P (A -2)+P (A -1)P (A 2)=P (A 1)[1-P (A 2)]+[1-P (A 1)]P (A 2)=25×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×12=12.故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝ ⎛⎭⎪⎫3,15.故X 的数学期望为E (X )=3×15=35, 方差为D (X )=3×15×45=1225.18.(2018·江淮十校联考)某市级教研室对辖区内高三年级10000名学生的数学一轮成绩统计分析发现其服从正态分布N (120,25),该市一重点高中学校随机抽取了该校成绩介于85分到145分之间的50名学生的数学成绩进行分析,得到如图所示的频率分布直方图.(1)试估算该校高三年级数学的平均成绩;(2)从所抽取的50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为X ,求X 的期望.附:若X ~N (μ,σ2),则P (μ-3σ<X <μ+3σ)=0.9974.解 (1)由频率分布直方图可知[125,135)的频率为1-10×(0.01+0.024+0.03+0.016+0.008)=0.12,该校高三年级数学的平均成绩为90×0.1+100×0.24+110×0.3+120×0.16+130×0.12+140×0.08=112(分).(2)由于1310000=0.0013,由正态分布得P (120-3×5<X <120+3×5)=0.9974,故P (X ≥135)=1-0.99742=0.0013,即0.0013×10000=13,所以前13名的成绩全部在135分以上,由频率分布直方图可知这50人中成绩在135以上(包括135分)的有50×0.08=4人,而在[125,145)的学生有50×(0.12+0.08)=10人,所以X 的取值为0,1,2,3,P (X =0)=C 36C 310=16,P (X =1)=C 26C 14C 310=12, P (X =2)=C 16C 24C 310=310,P (X =3)=C 34C 310=130, X 的分布列为数学期望值为E (X )=0×16+1×12+2×310+3×130=1.2.。
【配套K12】2019版高考数学(理)高分计划一轮狂刷练:第10章 计数原理、概率、随机变量及其分布
[基础送分提速狂刷练]一、选择题1.(2018·泉州模拟)将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.18种B.24种C.36种D.72种答案 C解析分两类,甲乙在一路口,其余3人中也有两人在一路口,则有C23A33种.当有3人在一路口时只能是甲、乙和其余三人中一个在一起,则有C13A33,所以共有C23A33+C13A33=36种,故选C.2.某学校周五安排有语文、数学、英语、物理、化学、体育六节课,要求体育不排在第一节课,数学不排在第四节课,则这天课表的不同排法种数为()A.600 B.288 C.480 D.504答案 D解析对六节课进行全排列有A66种方法,体育课排在第一节课有A55种方法,数学课排在第四节课也有A55种方法,体育课排在第一节课且数学课排在第四节课有A44种方法,由排除法得这天课表的不同排法种数为A66-2A55+A44=504.故选D.3.某班级举办的演讲比赛中,共有5位选手参加,其中3位女生、2位男生.如果2位男生不能连续出场,且女生甲不能排在第一个,那么出场顺序的排法种数为()A.90 B.60 C.48 D.36答案 B解析先排3位女生,3位女生间及两端有4个空,从4个空中选2个排男生,共有A24A33=72种排法.若女生甲排在第一个,则3位女生间及一端有3个空,从3个空中选2个排男生,有A23A22=12种排法,所以满足条件的排法种数为72-12=60.故选B.4.(2018·山西质量监测)A,B,C,D,E,F六人围坐在一张圆桌周围开会,A是会议的中心发言人,必须坐最北面的椅子,B,C 二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有()A.60种B.48种C.30种D.24种答案 B解析由题意知,不同的座次有A22A44=48(种),故选B.5.(2018·福建福州八中模拟)甲、乙等5人在9月3号参加了纪念抗日战争胜利70周年阅兵庆典后,在天安门广场排成一排拍照留念,甲和乙必须相邻且都不站在两端的排法有()A.12种B.24种C.48种D.120种答案 B解析甲乙相邻,将甲乙捆绑在一起看作一个元素,共有A44A22种排法,甲乙相邻且在两端有C12A33A22种排法,故甲乙相邻且都不站在两端的排法有A44A22-C12A33A22=24(种).故选B.6.(2017·黔江模拟)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24 B.18 C.12 D.6答案 B解析根据所选偶数为0和2分类讨论求解.①当选数字0时,再从1,3,5中取2个数字排在个位与百位.∴排成的三位奇数有C23A22=6个.②当选数字2时,再从1,3,5中取2个数字有C23种方法.然后将选中的两个奇数数字选一个排在个位,其余2个数字全排列.∴排成的三位奇数有C23C12A22=12个.∴由分类加法计数原理,共有18个符合条件的三位奇数.故选B.7.(2018·河北衡水模拟)某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车.每辆车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自于同一年级的乘坐方式共有()A.24种B.18种C.48种D.36种答案 A解析若大一的孪生姐妹乘坐甲车,则此时甲车中的另外2人分别来自不同年级,有C23C12C12=12种,若大一的孪生姐妹不乘坐甲车,则有2名同学来自同一个年级,另外2名分别来自不同年级,有C13C12 C12=12种,所以共有24种乘坐方式,故选A.8.在航天员进行的一项太空实验中,先后要实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有()A.34种B.48种C.96种D.144种答案 C解析由题意知程序A只能出现在第一步或最后一步,∴从第一个位置和最后一个位置中选一个位置把A排列,有A12=2种结果.∵程序B和C在实施时必须相邻,∴把B和C看作一个元素,同除A 外的3个元素排列,注意B和C之间还有一个排列,共有A44A22=48种结果.根据分步计数原理知共有2×48=96种结果,故选C.9.(2018·福建漳州八校联考)若无重复数字的三位数满足条件:①个位数字与十位数字之和为奇数,②所有数位上的数字和为偶数,则这样的三位数的个数是()A.540 B.480 C.360 D.200答案 D解析由个位数字与十位数字之和为奇数知个位数字、十位数字1奇1偶,有C15C15A22=50种排法;所有数位上的数字和为偶数,则百位数字是奇数,有C14=4种满足题意的选法,故满足题意的三位数共有C14×C15C15A22=200(个).故选D.10.(2018·赣州摸底)甲、乙、丙3名教师安排在10月1日至5日的5天中值班,要求每人值班一天且每天至多安排一人,其中甲不在10月1日值班且丙不在10月5日值班,则不同的安排方法有() A.36种B.39种C.42种D.45种答案 B解析当甲安排在10月2日值班时,则丙可以安排在1,3,4日中某一天,乙可以在剩余的3日中选一天,有C13C13=9种排法,同理可得甲安排在10月3日,4日中的一天值班时,有C13C13+C13C13=18种排法;当甲安排在10月5日值班时,有A24=12种排法,所以不同的安排方法有9+18+12=39种,故选B.二、填空题11.(2017·江西八所重点中学联合模拟)摄像师要对已坐定一排照像的5位小朋友的座位顺序进行调整,要求其中恰有2人座位不调整,则不同的调整方案的种数为________.(用数字作答)答案20解析从5人中任选3人有C35种,将3人位置全部进行调整,有C12·C11·C11种,故有N=C35·C12·C11·C11=20种调整方案.12.(2018·江西宜春模拟)将标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,则一共有________种放法.答案150解析标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,故可分成(3,1,1)和(2,2,1)两组,共有C35+C25·C23A22=25种分法,再分配到三个不同的盒子中,共有25·A33=150种放法.13.(2017·河南天一大联考)如图,图案共分9个区域,有6种不同颜色的涂料可供涂色,每个区域只能涂一种颜色的涂料,其中2和9同色、3和6同色、4和7同色、5和8同色,且相邻区域的颜色不相同,则涂色方法有________种.答案720解析由题意知2,3,4,5的颜色都不相同,先涂1,有6种方法,再涂2,3,4,5,有A45种方法,故一共有6·A45=720种.14.两个家庭的4个大人与2个小孩一起到动物园游玩,购票后排队依次入园.为安全起见,首尾一定要排2个爸爸,另外,2个小孩一定要排在一起,则这6人入园顺序的排法种数为________.答案24解析第一步:将2个爸爸排在两端,有2种排法;第二步:将2个小孩视为一人与2个妈妈任意排在中间的三个位置上,有A33种排法;第三步:将2个小孩排序有2种排法.故总的排法有2×2×A33=24种.三、解答题15.某市委从组织机关10名科员中选3人担任驻村第一书记,求甲、乙至少有1人入选,而丙没有入选的不同选法的种数?解由于丙不入选,相当于从9人中选派3人.解法一:(直接法)甲、乙两人均入选,有C22C17种选法,甲、乙两人只有1人入选,有C12C27种选法.∴由分类加法计数原理,共有C22C17+C12C27=49种选法.解法二:(间接法)从9人中选3人有C39种选法,其中甲、乙均不入选有C37种选法.∴满足条件的选派方法有C39-C37=84-35=49种.16.(2018·保定调研)已知集合M={1,2,3,4,5,6},集合A,B,C 为M的非空子集,若∀x∈A,y∈B,z∈C,x<y<z恒成立,则称“A—B—C”为集合M的一个“子集串”,求集合M的“子集串”共有多少个.解由题意可先分类,再分步:第一类,将6个元素全部取出来,可分两步进行:第一步,取出元素,有C66种取法,第二步,分成三组,共C25种分法,所以共有C66 C25个子集串;第二类,从6个元素中取出5个元素,共C56种取法,然后将这5个元素分成三组共C24种分法,所以共有C56C24个子集串;同理含4个元素的子集串数为C46C23;含3个元素的子集串数为C36C22.所以集合M的子集串共C66C25+C56C24+C46C23+C36C22=111个.。
2019版高考数学高分计划一轮:第10章 计数原理、概率、随机变量及其分布 10-2
(4)选取 2 种假货有 C210C215种,选取 3 件假货有 C315种, 共有选取方式 C120C215+C135=2100+455=2555 种.
∴至少有 2 种假货在内的不同的取法有 2555 种. (5)选取 3 件的总数为 C335,因此共有选取方式 C335-C315=6545-455=6090 种. ∴至多有 2 种假货在内的不同的取法有 6090 种.
解法二:将甲、乙两同学“捆绑”在一起看成一个元 素,此时一共有 6 个元素.
若丙站在排头或排尾有 2A55种方法,所以丙不能站在排 头和排尾的排法有(A66-2A55)·A22=960 种方法.
解法三:将甲、乙两同学“捆绑”在一起看成一个元 素,此时一共有 6 个元素,因为丙不能站在排头和排尾, 所以可以从其余的四个位置选择共有 A41种方法.
(2)从 1,3,5,7 中任取 2 个数字,从 0,2,4,6,8 中任取 2 个 数字,组成没有重复数字的四位数,其中能被 5 整除的四位 数共有___3_0_0___个.
解析 符合条件的四位数的个位必须是 0 或 5,但 0 不 能排在首位,故 0 是其中的特殊元素,应优先安排.按照 0 排在个位,0 排在十、百位和不含 0 为标准分为三类:
①0 排在个位能被 5 整除的四位数有 A11·(C14C24)A33=144 个;
②0 排在十、百位,但 5 必须排在个位有 A12·A11(C14C13)·A22 =48 个;
③不含 0,但 5 必须排在个位有 A11·(C31C24)A33=108 个. 由分类加法计数原理得所求四位数共有 300 个.
解 7 位同学站成一排,共有 A77种不同的排法; 甲、乙和丙三个同学都相邻的排法共有 A55A33=720 种. 故共有 A77-A55A33=4320 种不同的排法.
2019版高考数学(理)高分计划一轮狂刷练:第10章 计数原理、概率、随机变量及其分布 10-7a Word版含解析
[重点保分 两级优选练]A 级一、选择题1.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0 B.12 C.13 D.23 答案 C解析 P (X =1)=2P (X =0),且P (X =1)+P (X =0)=1.所以P (X =0)=13.故选C.2.若某一随机变量X 的概率分布如下表,且m +2n =1.2,则m -n2的值为( )A .-0.2B .0.2C .0.1D .-0.1 答案 B解析 由m +n +0.2=1,又m +2n =1.2,可得m =n =0.4,m -n2=0.2.故选B.3.袋中有大小相同的红球6个、白球5个,从袋中每次任意取出1个球,直到取出的球是白球时为止,所需要的取球次数为随机变量ξ,则ξ的可能值为( )A .1,2,…,6B .1,2,…,7C .1,2,…,11D .1,2,3,…答案 B解析 除白球外,其他的还有6个球,因此取到白球时取球次数最少为1次,最多为7次.故选B.4.设X 是一个离散型随机变量,其分布列为:则q 等于( )A .1B .1±22C .1-22D .1+22 答案 C解析 由分布列的性质得⎩⎪⎨⎪⎧0≤1-2q <1,0≤q 2<1,0.5+(1-2q )+q 2=1⇒⎩⎨⎧0<q ≤12,q =1±22,∴q =1-22,故选C.5.已知某一随机变量X 的概率分布如下,且E (X )=6.9,则a 的值为( )A .5B .6C .7D .8 答案 B解析 因为在分布列中,各变量的概率之和为1,所以m =1-(0.2+0.5)=0.3,由数学期望的计算公式,可得4×0.3+a ×0.2+9×0.5=6.9,a =6,故选B.6.已知离散型随机变量X 的分布列为则P (X ∈Z )=( )A .0.9B .0.8C .0.7D .0.6 答案 A解析 由分布列性质得0.5+1-2q +13q =1,解得q =0.3, ∴P (X ∈Z )=P (X =0)+P (X =1)=0.5+1-2×0.3=0.9,故选A.7.(2017·泰安模拟)若P (X ≤x 2)=1-β,P (X ≥x 1)=1-α,其中x 1<x 2,则P (x 1≤X ≤x 2)等于( )A .(1-α)(1-β)B .1-(α+β)C .1-α(1-β)D .1-β(1-α)答案 B解析 显然P (X >x 2)=β,P (X <x 1)=α.由概率分布列的性质可知P (x 1≤X ≤x 2)=1-P (X >x 2)-P (X <x 1)=1-α-β.故选B.8.(2018·潍坊模拟)若随机变量X 的分布列为则当P (X <a )=0.8时,实数a 的取值范围是( ) A .(-∞,2] B .[1,2] C .(1,2] D .(1,2) 答案 C解析 由随机变量X 的分布列,知P (X <-1)=0.1,P (X <0)=0.3,P (X <1)=0.5,P (X <2)=0.8,则当P (X <a )=0.8时,实数a 的取值范围是(1,2].故选C.9.(2017·烟台模拟)一只袋内装有m 个白球,n -m 个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了ξ个白球,下列概率等于(n -m )A 2mA 3n的是( )A .P (ξ=3)B .P (ξ≥2)C .P (ξ≤3)D .P (ξ=2) 答案 D解析 依题意知,(n -m )A 2mA 3n是取了3次,所以取出白球应为2个.故选D.10.袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号.若η=aξ-2,E (η)=1,则a 的值为( )A .2B .-2C .1.5D .3 答案 A解析 由题意知ξ的可能取值为0,1,2,3,4,则ξ的分布列为∴E (ξ)=0×12+1×120+2×110+3×320+4×15=32,∵η=aξ-2,E (η)=1,∴aE (ξ)-2=1,∴32a -2=1,解得a =2.故选A.二、填空题11.设随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,那么n =________.答案 10解析 由于随机变量X 等可能取1,2,3,…,n .所以取到每个数的概率均为1n .∴P (X <4)=P (X =1)+P (X =2)+P (X =3)=3n =0.3,∴n =10. 12.(2018·临汾联考)口袋中有5只球,编号为1,2,3,4,5,从中任意取3只球,以X 表示取出的球的最大号码,则X 的分布列为________.答案解析 X 的取值为3,4,5.又P (X =3)=1C 35=110,P (X =4)=C 23C 35=310,P (X =5)=C 24C 35=35.∴随机变量X 的分布列为13.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.设ξ为取出的4个球中红球的个数,则P (ξ=2)=________.答案 310解析 ξ可能取的值为0,1,2,3,P (ξ=0)=C 23C 24C 24C 26=15,P (ξ=1)=C 13C 24+C 23C 12C 14C 24C 26=715,又P (ξ=3)=C 13C 24C 26=130,∴P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=1-15-715-130=310. 14.如图所示,A ,B 两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内都通过的最大信息总量为ξ,则P (ξ≥8)=________.答案 45解析 解法一:由已知,ξ的取值为7,8,9,10,∵P (ξ=7)=C 22C 12C 35=15,P (ξ=8)=C 22C 11+C 12C 22C 35=310, P (ξ=9)=C 12C 12C 11C 35=25,P (ξ=10)=C 22C 11C 35=110,∴ξ的概率分布列为∴P (ξ≥8)=P (ξ=8)+P (ξ=9)+P (ξ=10) =310+25+110=45.解法二:P (ξ≥8)=1-P (ξ=7)=45.B 级三、解答题15.(2018·太原模拟)根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如图所示.(1)已知[30,40),[40,50),[50,60)三个年龄段的上网购物者人数成等差数列,求a ,b 的值;(2)该电子商务平台将年龄在[30,50)内的人群定义为高消费人群,其他年龄段的人群定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1000位上网购物者中抽取10人,并在这10人中随机抽取3人进行回访,求此3人获得的代金券总和X (单位:元)的分布列与数学期望.解 (1)由题意可知⎩⎪⎨⎪⎧2b =a +0.015,(0.01+0.015×2+b +a )×10=1, 解得a =0.035,b =0.025.(2)利用分层抽样从样本中抽取10人,易知其中属于高消费人群的有6人,属于潜在消费人群的有4人.从该10人中抽取3人,此3人所获得的代金券的总和为X (单位:元),则X 的所有可能取值为150,200,250,300.P (X =150)=C 36C 310=16,P (X =200)=C 26C 14C 310=12,P (X =250)=C 16C 24C 310=310,P (X =300)=C 34C 310=130.X 的分布列为E (X )=150×16+200×12+250×310+300×130=210.16.一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.解 (1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2) =416×116+116×12=364.(2)X 可能的取值为400,500,800,并且 P (X =400)=1-416-116=1116,P (X =500)=116,P (X =800)=14. 所以X 的分布列为E (X )=400×1116+500×116+800×14=506.25.17.(2018·广州测试)班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)(2)如果随机抽取的7名同学的数学、物理成绩(单位:分)对应如下表:①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望;②根据上表数据,求物理成绩y 关于数学成绩x 的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?附:线性回归方程y =b ^x +a ^,其中b ^=∑ni =1(x i -x )(y i -y )∑ni =1(x i -x )2,a ^=y --b ^x .解 (1)依据分层抽样的方法,24名女同学中应抽取的人数为742×24=4名,18名男同学中应抽取的人数为742×18=3名,故不同的样本的个数为C 424C 318.(2)①∵7名同学中数学和物理成绩均为优秀的人数为3名, ∴ξ的取值为0,1,2,3.∴P (ξ=0)=C 34C 37=435,P (ξ=1)=C 24C 13C 37=1835,P (ξ=2)=C 14C 23C 37=1235,P (ξ=3)=C 33C 37=135.∴ξ的分布列为∴E (ξ)=0×435+1×1835+2×1235+3×135=97.②∵b ^=526812≈0.65,a ^=y -b ^x =83-0.65×76=33.60. ∴线性回归方程为y =0.65x +33.60.当x =96时,y =0.65×96+33.60=96. 可预测该同学的物理成绩为96分.18.(2018·豫北十校联考)某高中在招高一新生时,有统一考试招生和自主招生两种方式.参加自主招生的同学必须依次进行“语文”“数学”“科学”三科的考试,若语文达到优秀,则得1分,若数学达到优秀,则得2分,若科学达到优秀,则得3分,若各科未达到优秀,则不得分.已知小明三科考试都达到优秀的概率为124,至少一科考试优秀的概率为34,数学考试达到优秀的概率为13,语文考试达到优秀的概率大于科学考试达到优秀的概率,且小明各科达到优秀与否相互独立.(1)求小明语文考试达到优秀的概率; (2)求小明三科考试所得总分的分布列和期望.解 (1)依题意,设小明语文考试达到优秀的概率为p 1,科学考试达到优秀的概率为p 2,且p 1>p 2,故⎩⎪⎨⎪⎧13p 1p 2=124,1-(1-p 1)⎝ ⎛⎭⎪⎫1-13(1-p 2)=34,解得⎩⎪⎨⎪⎧p 1=12,p 2=14,则小明语文考试达到优秀的概率为12.(2)记小明三科的总得分为X ,则X 的可能取值为0,1,2,3,4,5,6. P (X =0)=12×23×34=14, P (X =1)=12×23×34=14,P (X =2)=12×13×34=18,P (X =3)=12×23×14+12×13×34=524, P (X =4)=12×23×14=112, P (X =5)=12×13×14=124, P (X =6)=12×13×14=124. 则X 的分布列为E (X )=0×14+1×14+2×18+3×524+4×112+5×124+6×124=2312.。
2019版高考数学一轮复习第10章计数原理概率随机变量及其分布10.8n次独立重复试验与二项分布课件理
10.8 n次独立重复试验与二项分布
基础知识过关
[知识梳理] 1.条件概率及其性质 (1)对于任何两个事件 A 和 B,在已知事件 A 发生的条 件下,事件 B 发生的概率叫做 条件概率 ,用符号 P(B|A)
PAB 来表示,其公式为 P(B|A)= PA (P(A)>0).在古典概型 中,若用 n(A)表示事件 A 中基本事件的个数,则 P(B|A)= nnAAB(n(AB)表示 AB 共同发生的基本事件的个数).
都相互独立. (4)若 P(AB)=P(A)P(B),则
A 与 B 相互独立 .
3.独立重复试验与二项分布
(1)独立重复试验 在 相同 条件下重复做的 n 次试验称为 n 次独立重复试
验.Ai(i=1,2,…,n)表示第 i 次试验结果,则 P(A1A2A3…An) = P(A1)P(A2)…P(An) .
[诊断自测] 1.概念思辨 (1)相互独立事件就是互斥事件.( × ) (2)P(B|A)表示在事件 A 发生的条件下,事件 B 发生的 概率;P(BA)表示事件 A,B 同时发生的概率,一定有 P(AB) =P(A)·P(B).( × ) (3)二项分布是一个概率分布,其公式相当于(a+b)n 二 项展开式的通项公式,其中 a=p,b=(1-p).( × )
解 记 E={甲组研发新产品成功},F={乙组研发新 产品成功},由题设知 P(E)=23,P(-E )=13,P(F)=35,P(-F ) =25,且事件 E 与 F,E 与-F ,-E 与 F,-E 与-F 都相互独立.
(1)记 H={至少有一种新产品研发成功},则-H =-E -F , 于是 P(-H )=P(-E )P(-F )=13×25=125, 故所求的概率为 P(H)=1-P(-H )=1-125=1153.
2019版高考数学(理)一轮复习全国经典版:第10章 计数原理、概率、随机变量及分布列 10-9a
高考一轮总复习 ·数学[理](经典版)
7.[2018· 南宁模拟]某高校进行自主招生的面试程序如 下:共设 3 道题,每道题答对给 10 分,答错倒扣 5 分(每道 题都必须答,但相互不影响),设某学生答对每道题的概率 2 15 为 ,则该学生在面试时得分的期望值为________ . 3
12
1 3 3 1 ∴E(X)=3× +4× +5× +6× ,得 E(X)=5.25. 20 20 10 2
8
高考一轮总复习 ·数学[理](经典版)
5.为了了解某地区高三男生的身体发育状况,抽查了 该地区 1000 名年龄在 17.5 岁至 19 岁的高三男生的体重情 况, 抽查结果表明他们的体重 X(kg)服从正态分布 N(μ, 22), 且正态曲线如图所示. 若体重大于 58.5 kg 小于等于 62.5 kg 属于正常情况,则这 1000 名男生中体重属于正常情况的人 数是( )
14高考一轮总复习 ·数源自[理](经典版)解析 ∵数学考试成绩 ξ~N(100,σ2),作出正态分布 图 象 , 可 以 看 出 , 图 象 关 于 直 线 x = 100 对 称 . 显 然 1 P(80≤ξ≤100) = P(100≤ξ≤120) = ; ∴ P(ξ≤80) = 3 P(ξ≥120). 又 ∵ P(ξ≤80) + P(ξ≥120) = 1 - P(80≤ξ≤100) - 1 P(100≤ξ≤120)= , 3 1 1 1 ∴P(ξ≥120)= × = , 2 3 6 1 ∴成绩不低于 120 分的学生约为 600× =100(人). 6
4.签盒中有编号为 1、2、3、4、5、6 的六支签,从中 任意取 3 支, 设 X 为这 3 支签的号码之中最大的一个, 则X 的数学期望为( A.5 C.5.8 ) B.5.25 D.4.6
2019版高考数学(理)高分计划一轮狂刷练及答案解析:第10章 计数原理、概率、随机变量及其分布 10-3a
[基础送分 提速狂刷练]一、选择题1.(2018·广东测试)⎝⎛⎭⎪⎫x 2-12x 6的展开式中,常数项是( )A .-54 B.54 C .-1516 D.1516 答案 D 解析T r +1=C r 6(x 2)6-r ⎝⎛⎭⎪⎫-12x r =⎝⎛⎭⎪⎫-12r C r 6x 12-3r ,令12-3r =0,解得r =4.∴常数项为⎝ ⎛⎭⎪⎫-124C 46=1516.故选D.2.(2018·福建厦门联考)在⎝⎛⎭⎪⎫1+x +1x 201810的展开式中,x 2的系数为( )A .10B .30C .45D .120 答案 C解析 因为⎝⎛⎭⎪⎫1+x +1x 201810=⎣⎢⎡⎦⎥⎤(1+x )+1x 201810=(1+x )10+C 110(1+x )91x2018+…+C 1010⎝ ⎛⎭⎪⎫1x201810,所以x 2只出现在(1+x )10的展开式中,所以含x 2的项为C 210x 2,系数为C 210=45.故选C.3.已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ) A .-4 B .-3 C .-2 D .-1 答案 D解析 由二项式定理得(1+x )5的展开式的通项为T r +1=C r 5·x r,所以当r =2时,(1+ax )(1+x )5的展开式中相应x 2的系数为C 25,当r =1时,相应x 2的系数为C 15·a ,所以C 25+C 15·a =5,a =-1,故选D. 4.(2018·河南百校联盟模拟)(3-2x -x 4)(2x -1)6的展开式中,含x 3项的系数为 ( )A .600B .360C .-600D .-360解析 由二项展开式的通项公式可知,展开式中含x 3项的系数为3×C 3623(-1)3-2×C 2622(-1)4=-600.故选C.5.若⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为2,则该展开式的常数项为( )A .-40B .-20C .20D .40 答案 D解析 令x =1,得(1+a )(2-1)5=2,∴a =1.∴⎝⎛⎭⎪⎫2x -1x 5的通项为T r +1=C r 5·(2x )5-r ·⎝⎛⎭⎪⎫-1xr =(-1)r ·25-r ·C r 5·x 5-2r. 令5-2r =1,得r =2.令5-2r =-1,得r =3.∴展开式的常数项为(-1)2×23·C 25+(-1)3·22·C 35=80-40=40.故选D.6.在⎝ ⎛⎭⎪⎪⎫x2-13x n 的展开式中,只有第5项的二项式系数最大,则展开式中的常数项是( )A .-7B .7C .-28D .28 答案 B解析 由题意知n =8,T r +1=C r 8·⎝ ⎛⎭⎪⎫x 28-r ·⎝ ⎛⎭⎪⎪⎫-13x r =(-1)r ·C r 8·x 8-r28-r ·=(-1)r ·C r8·, 由8-r -r3=0,得r =6.∴T 7=C 68·122=7,即展开式中的常数项为T 7=7.故选B.7.(2018·石家庄模拟)若⎝⎛⎭⎪⎫x 2-1ax 9(a ∈R )的展开式中x 9的系数是-212,则⎠⎛0a sin x d x 的值为( )A .1-cos2B .2-cos1C .cos2-1D .1+cos2解析 由题意得T r +1=C r 9·(x 2)9-r ·(-1)r ·⎝ ⎛⎭⎪⎫1ax r =(-1)r ·C r 9·x 18-3r ·1ar ,令18-3r =9,得r =3,所以-C 39·1a 3=-212,解得a =2.所以⎠⎛0asin x d x =(-cos x )20=-cos2+cos0=1-cos2.故选A .8.设a ∈Z ,且0≤a <13,若512018+a 能被13整除,则a =( ) A .0 B .1 C .11 D .12 答案 D解析 512018+a =(52-1)2018+a =522018+C 12018·522017·(-1)+…+C 20172018×52×(-1)2017+1+a , ∵522018能被13整除,∴只需a +1能被13整除即可,∴a =12.故选D.9.(2018·合肥质检)若(x +2+m )9=a 0+a 1(x +1)+a 2·(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为( )A .1或-3B .-1或3C .1D .-3 答案 A解析 令x =0,得到a 0+a 1+a 2+…+a 9=(2+m )9,令x =-2,得到a 0-a 1+a 2-a 3+…-a 9=m 9,所以有(2+m )9m 9=39,即m 2+2m =3,解得m =1或m =-3.故选A.10.(2017·淮北模拟)已知在⎝ ⎛⎭⎪⎫3x -123x n的展开式中,第6项为常数项,则展开式中所有的有理项共有( )A .5项B .4项C .3项D .2项 答案 C解析 T r +1=C r n x n -r 3⎝⎛⎭⎪⎪⎫-123xr =C r n ⎝ ⎛⎭⎪⎫-12r x ,由第6项为常数项 ,得当r =5时,n -2r 3=0,得n =10.令10-2r3=k ∈Z ,则10-2r =3k ,即r =5-32k ,故k 应为偶数.又0≤r ≤10,故k 可取2,0,-2,即r 可取2,5,8.故第3项,第6项与第9项为有理项,故选C.二、填空题11.(2014·安徽高考)设a ≠0,n 是大于1的自然数,⎝ ⎛⎭⎪⎫1+x a n 的展开式为a 0+a 1x +a 2x 2+…+a n x n .若点A i (i ,a i )(i =0,1,2)的位置如图所示,则a =________.答案 3解析 根据题意知a 0=1,a 1=3,a 2=4,结合二项式定理得⎩⎪⎨⎪⎧C 1n ·1a =3,C 2n ·1a 2=4,即⎩⎨⎧n -1=83a ,n =3a ,解得a =3.12.若⎝ ⎛⎭⎪⎫ax 2+b x 6的展开式中x 3的系数为20,则a 2+b 2的最小值为________.答案 2解析 因为二项式⎝ ⎛⎭⎪⎫ax 2+b x 6展开后第k 项为C k -16·(ax 2)7-k ⎝ ⎛⎭⎪⎫b x k -1=C k -16a7-k b k -1x 15-3k,所以当k =4时,可得x 3的系数为20a 3b 3,即20a 3b 3=20,得ab =1.故a 2+b 2≥2ab =2,当且仅当a =b =1时等号成立,此时a 2+b 2取得最小值2.13.在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=________.答案 120解析 ∵(1+x )6展开式的通项公式为T r +1=C r 6x r ,(1+y )4展开式的通项公式为T h +1=C h 4y h ,∴(1+x )6(1+y )4展开式的通项可以为C r 6C h4x r y h .∴f (m ,n )=C m 6C n4.∴f (3,0)+f (2,1)+f (1,2)+f (0,3)=C 36+C 26C 14+C 16C 24+C 34=20+60+36+4=120.14.(2017·江西赣州十四县联考)若⎝ ⎛⎭⎪⎫x +13x n 的展开式中前三项的系数分别为A ,B ,C ,且满足4A =9(C -B ),则展开式中x 2的系数为________.答案 5627解析 易得A =1,B =n 3,C =C 2n9=n (n -1)18,所以有4=9⎝ ⎛⎭⎪⎫n 2-n 18-n 3,即n 2-7n -8=0,解得n =8或n =-1(舍).在⎝ ⎛⎭⎪⎫x +13x 8中,因为通项T r +1=C r 8x 8-r ·⎝ ⎛⎭⎪⎫13xr=C r 83r x 8-2r ,令8-2r =2,得r =3,所以展开式中x 2的系数为5627.三、解答题15.(2018·三亚模拟)已知f n (x )=(1+x )n .(1)若f 2019(x )=a 0+a 1x +…+a 2019x 2019,求a 1+a 3+…+a 2017+a 2019的值;(2)若g (x )=f 6(x )+2f 7(x )+3f 8(x ),求g (x )中含x 6项的系数. 解 (1)因为f n (x )=(1+x )n , 所以f 2019(x )=(1+x )2019,又f 2019(x )=a 0+a 1x +…+a 2019x 2019, 所以f 2019(1)=a 0+a 1+…+a 2019=22019,① f 2019(-1)=a 0-a 1+…+a 2017-a 2019=0,② ①-②得2(a 1+a 3+…+a 2017+a 2019)=22019, 所以a 1+a 3+…+a 2017+a 2019=22018. (2)因为g (x )=f 6(x )+2f 7(x )+3f 8(x ), 所以g (x )=(1+x )6+2(1+x )7+3(1+x )8.g (x )中含x 6项的系数为C 66+2C 67+3C 68=99.16.已知⎝ ⎛⎭⎪⎫12+2x n, (1)若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数;(2)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.解 (1)因为C 4n +C 6n =2C 5n ,所以n 2-21n +98=0,得n =7或n=14.当n =7时,展开式中二项式系数最大的项是T 4和T 5.∴T 4的系数为C 37⎝ ⎛⎭⎪⎫12423=352,T 5的系数为C 47⎝ ⎛⎭⎪⎫12324=70.当n =14时,展开式中二项式系数最大的项是T 8, ∴T 8的系数为C 714⎝ ⎛⎭⎪⎫12727=3432.(2)∵C 0n +C 1n +C 2n =79,∴n 2+n -156=0,∴n =12或n =-13(舍去). 设T k +1项的系数最大,∵⎝⎛⎭⎪⎫12+2x 12=⎝ ⎛⎭⎪⎫1212(1+4x )12, ∴⎩⎪⎨⎪⎧C k 124k ≥C k -1124k -1,C k 124k ≥C k +1124k +1, 解得475≤k ≤525.∵k ∈N ,∴k =10,∴展开式中系数最大的项为T 11,T 11=C 1012·⎝ ⎛⎭⎪⎫122·210·x 10=16896x 10.。
2019版高考数学(理)高分计划一轮狂刷练:第10章 计数原理、概率、随机变量及其分布 10-5a Word版含解析
[基础送分 提速狂刷练]一、选择题1.先后抛掷两枚质地均匀的骰子,设出现的点数之和是12,11,10的概率依次是P 1,P 2,P 3,则( )A .P 1=P 2<P 3B .P 1<P 2<P 3C .P 1<P 2=P 3D .P 3=P 2<P 1答案 B解析 先后抛掷两枚骰子点数之和共有36种可能,而点数之和为12,11,10的概率分别为P 1=136,P 2=118,P 3=112.故选B.2.(2018·郑州质检)现有四所大学进行自主招生,同时向一所高中的已获省级竞赛一等奖的甲、乙、丙、丁四位学生发录取通知书,若这四名学生都愿意进入这四所大学的任意一所就读,则仅有两名学生被录取到同一所大学的概率为( )A.12B.916C.1116D.724答案 B解析 所求概率P =C 24·A 3444=916.故选B.3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A.12B.13C.14D.16答案 B解析 从1,2,3,4中任取2个不同的数有C 24=6种情况:满足取出的2个数之差的绝对值为2的(1,3),(2,4),故所求概率是26=13.故选B.4.(2018·山西朔州模拟)某校食堂使用大小、手感完全一样的餐票,小明口袋里有一元餐票2张,两元餐票2张,五元餐票1张,若他从口袋中随机地摸出2张,则其面值之和不少于四元的概率为( )A.310B.25C.12D.35答案 C解析 小明口袋里共有5张餐票,随机地摸出2张,基本事件总数n =10,其面值之和不少于四元包含的基本事件数m =5,故其面值之和不少于四元的概率为m n =510=12.故选C.5.(2018·保定模拟)甲、乙二人玩猜数字游戏,先由甲任想一数字,记为a ,再由乙猜甲刚才想的数字,把乙猜出的数字记为b ,且a ,b ∈{1,2,3},若|a -b |≤1,则称甲、乙“心有灵犀”,现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为( )A.13B.59C.23D.79答案 D解析 甲任想一数字有3种结果,乙猜数字有3种结果,基本条件总数为3×3=9.设“甲、乙心有灵犀”为事件A ,则A 的对立事件B 为“|a -b |>1”,即|a -b |=2,包含2个基本事件,∴P (B )=29.∴P (A )=1-29=79.故选D.6.(2018·浙江金丽衢十二校联考)若在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为 ( )A.17B.27C.37D.47答案 C解析 因为任取3个顶点连成三角形共有C 38=8×7×63×2=56个,又每个顶点为直角顶点的非等腰三角形有3个,即正方体的一边与过此点的一条面对角线,所以共有24个三角形符合条件.所以所求概率为2456=37.故选C.7.(2017·甘肃质检)将5本不同的书全发给4名同学,每名同学至少有一本书的概率是( )A.1564B.15128C.24125D.48125答案 A解析 由计数原理得基本事件的个数,再利用古典概型的概率公式求解.将5本不同的书分给4名同学,共有45=1024种分法,其中每名同学至少一本的分法有C 25A 44=240种,故所求概率是2401024=1564,故选A.8.抛掷两枚均匀的骰子,得到的点数分别为a ,b ,那么直线x a +y b =1的斜率k ≥-12的概率为( )A.12B.13C.34D.14答案 D解析 记a ,b 的取值为数对(a ,b ),由题意知(a ,b )的所有可能取值有36种.由直线x a +y b =1的斜率k =-b a ≥-12,知b a ≤12,那么满足题意的(a ,b )可能的取值为(2,1),(3,1),(4,1),(4,2),(5,1),(5,2),。
2019版高考数学一轮复习第10章计数原理概率随机变量及其分布10.1分类加法计数原理与分步乘法计数原理课后作
10.1 分类加法计数原理与分步乘法计数原理[基础送分提速狂刷练]一、选择题1.有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有( )A.21种 B.315种 C.143种 D.153种答案 C解析可分三类:一类:语文、数学各1本,共有9×7=63种;二类:语文、英语各1本,共有9×5=45种;三类:数学、英语各1本,共有7×5=35种;∴共有63+45+35=143种不同选法.故选C.2.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.( ) A.8 B.12 C.14 D.9答案 B解析由题意知本题是一个分类计数问题.当组成的数字有三个1,三个2,三个3,三个4共有4种情况,当有三个1时:2111,3111,4111,1211,1311,1411,1121,1131,1141,有9种,当有三个2,3,4时:2221,3331,4441,有3种,根据分类计数原理得到共有12种结果,故选B.3.高三年级的三个班去甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( )A.16种 B.18种 C.37种 D.48种答案 C解析自由选择去四个工厂有43种方法,甲工厂不去,自由选择去乙、丙、丁三个工厂有33种方法,故不同的分配方案有43-33=37种.故选C.4.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了2个新节目.如要将这2个节目插入原节目单中,那么不同插法的种类为( )A.42 B.30 C.20 D.12答案 A解析将新增的2个节目分别插入原定的5个节目中,插入第一个有6种插法,插入第2个时有7个空,共7种插法,所以共6×7=42(种).故选A.5.(2017·石家庄模拟)教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有( )A.10种 B.25种 C.52种 D.24种答案 D解析每相邻的两层之间各有2种走法,共分4步.由分步乘法计数原理,共有24种不同的走法.故选D.6.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是( )A.60 B.48 C.36 D.24答案 B解析长方体的6个表面构成的“平行线面组”个数为6×6=36,另含4个顶点的6个面(非表面)构成的“平行线面组”个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.故选B.7.(2017·山东模拟)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A.243 B.252 C.261 D.279答案 B解析由分步乘法计数原理知:用0,1,…,9十个数字组成三位数(可有重复数字)的个数为9×10×10=900,组成没有重复数字的三位数的个数为9×9×8=648,则组成有重复数字的三位数的个数为900-648=252,故选B.8.(2018·南宁调研)我们把各位数字之和为6的四位数称为“六合数”(如2013是“六合数”),则“六合数”中首位为2的“六合数”共有( )A.18个 B.15个 C.12个 D.9个答案 B解析依题意,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成6个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112,共计3+6+3+3=15(个).故选B.9.有A,B两种类型的车床各一台,现有甲、乙、丙三名工人,其中甲、乙都会操作两种车床,丙只会操作A种车床,若从三名工人中选2名分别去操作以上车床,则不同的选派方法有( )A.6种 B.5种 C.4种 D.3种答案 C解析若选甲、乙2人,则包括甲操作A车床,乙操作B车床或甲操作B车床,乙操作A车床,共有2种选派方法;若选甲、丙2人,则只有甲操作B车床,丙操作A车床这1种选派方法;若选乙、丙2人,则只有乙操作B车床,丙操作A车床这1种选派方法.∴共有2+1+1=4种不同的选派方法.故选C.10.(2018·湖南长沙模拟)若两条异面直线所成的角为60°,则称这对异面直线为“黄金异面直线对”,在连接正方体各顶点的所有直线中,“黄金异面直线对”共有( ) A.12对 B.18对 C.24对 D.30对答案 C解析依题意,注意到在正方体ABCD-A1B1C1D1中,与直线AC构成异面直线且所成的角为60°的直线有BC 1,BA 1,A 1D ,DC 1,注意到正方体ABCD -A 1B 1C 1D 1中共有12条面对角线,可知所求的“黄金异面直线对”共有4×122=24对,故选C. 二、填空题11.已知集合M ={1,2,3,4},集合A ,B 为集合M 的非空子集,若对∀x ∈A ,y ∈B ,x <y 恒成立,则称(A ,B )为集合M 的一个“子集对”,则集合M 的“子集对”共有________个.答案 17解析 当A ={1}时,B 有23-1=7种情况;当A ={2}时,B 有22-1=3种情况;当A ={3}时,B 有1种情况;当A ={1,2}时,B 有22-1=3种情况;当A ={1,3},{2,3},{1,2,3}时,B 均有1种情况.故满足题意的“子集对”共有7+3+1+3+3=17个.12.(2018·湖南十二校联考)若m ,n 均为非负整数,在做m +n 的加法时各位均不进位(例如:134+3802=3936),则称(m ,n )为“简单的”有序对,而m +n 称为有序对(m ,n )的值,那么值为1942的“简单的”有序对的个数是________.答案 300解析 第1步,1=1+0,1=0+1,共2种组合方式;第2步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10种组合方式; 第3步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式;第4步,2=0+2,2=1+1,2=2+0,共3种组合方式.根据分步乘法计数原理,值为1942的“简单的”有序对的个数为2×10×5×3=300.13.已知数列{a n }是公比为q 的等比数列,集合A ={a 1,a 2,…,a 10},从A 中选出4个不同的数,使这4个数成等比数列,这样得到4个数的不同的等比数列的个数为________.答案 24解析 当公比为q 时,满足题意的等比数列有7种,当公比为1q时,满足题意的等比数列有7种,当公比为q 2时,满足题意的等比数列有4种,当公比为1q 2时,满足题意的等比数列有4种,当公比为q 3时,满足题意的等比数列有1种,当公比为1q 3时,满足题意的等比数列有1种,因此满足题意的等比数列共有7+7+4+4+1+1=24(种).14.如图,一个地区分为5个行政区域,现给地图着色,若要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有________种(用数字作答).答案72解析解法一:区域1有C14种着色方法;区域2有C13种着色方法;区域3有C12种着色方法;区域4,5有3种着色方法(4与2同色有2种,4与2不同色有1种).∴共有4×3×2×3=72种不同着色方法.解法二:区域1与其他四个区域都相邻,宜先考虑.区域1有4种涂法.若区域2,4同色,有3种涂色,此时区域3,5均有两种涂法,涂法总数为4×3×2×2=48种;若区域2,4不同色,先涂区域2有3种方法,再涂区域4有2种方法.此时区域3,5也都只有1种涂法,涂法总数为4×3×2×1×1=24种.因此涂法共有48+24=72种.三、解答题15.编号为A,B,C,D,E的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A球不能放在1,2号,B球必须放在与A球相邻的盒子中,则不同的放法有多少种?解根据A球所在位置分三类:(1)若A球放在3号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E,则根据分步乘法计数原理得,3×2×1=6种不同的放法.(2)若A球放在5号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E,则根据分步乘法计数原理得,3×2×1=6种不同的放法.(3)若A球放在4号盒子内,则B球可以放在2号,3号,5号盒子中的任何一个,余下的三个盒子放球C,D,E有3×2×1=6种不同的放法,根据分步乘法计数原理得,3×6=18种不同的放法.综上所述,由分类加法计数原理得不同的放法共有6+6+18=30种.16.(2018·江阴模拟)用n(n∈N*)种不同颜色给如图的4个区域涂色,要求相邻区域不能用同一种颜色.(1)当n=6时,图①、图②各有多少种涂色方案?(要求:列式或简述理由,结果用数字作答)(2)若图③有180种涂色法,求n的值.解(1)当n=6时,图①A有6种方法,B有5种方法,C有4种方法,D有5种方法,共有涂色方法6×5×4×5=600种.图②若A,C相同,则A有6种方法,B有5种方法,D有4种方法,共有6×5×4=120种.若A,C不同,则A有6种方法,B有5种方法,C有4种方法,D有3种方法,共有6×5×4×3=360种.∴共有涂色方法120+360=480种.(2)A有n种方法,B有n-1种方法,C有n-2种方法,D有n-2种方法,共有涂色方法n(n-1)(n-2)·(n-2)种,由n(n-1)(n-2)(n-2)=180,解得n=5.。
2019版高考数学(理)一轮复习全国经典版:第10章 计数原理、概率、随机变量及分布列 10-2a
板块四模拟演练·提能增分[A级基础达标]1.[2018·衡阳质检]4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有()A.12种B.24种C.30种D.36种答案 B解析第一步选出2人选修课程甲有C24=6种方法;第二步安排剩余两人从乙、丙中各选1门课程有2×2种选法,根据分步乘法计数原理,有6×4=24种选法.2.若某单位要邀请10位教师中的6位参加一个会议,其中甲、乙两位教师不能同时参加,则邀请的不同方法有()A.84种B.98种C.112种D.140种答案 D解析由题意分析不同的邀请方法有:C12C58+C68=112+28=140(种).3.某校高一有6个班,高二有5个班,高三有8个班,各年级分别举行班与班之间篮球单循环赛,则共需要进行比赛的场数为() A.C26C25C28B.C26+C25+C28C.A26A25A28D.C219答案 B解析依题意,高一比赛有C26场,高二比赛有C25场,高三比赛有C28场,由分类计数原理,得共需要进行比赛的场数为C26+C25+C28.选B.4.[2018·东北四市联考]甲、乙两人要在一排8个空座上就坐,若要求甲、乙两人每人的两旁都有空座,则有多少种坐法()C .20D .24答案 C 解析 一排共有8个座位,现有两人就坐,故有6个空座.∵要求每人左右均有空座,∴在6个空座的中间5个空中插入2个座位让两人就坐,即有A 25=20(种)坐法.5.某科室派出4名调研员到3个学校,调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为( )A .144B .72C .36D .48答案 C解析 分两步完成:第1步将4名调研员按2,1,1分成三组,其分法有C 24C 12C 11A 22种;第2步将分好的三组分配到3个学校,其分法有A 33种.所以满足条件的分配方案有C 24C 12C 11A 22×A 33=36(种). 6.[2018·大连模拟]在1,2,3,4,5,6这六个数字组成的没有重复数字的三位数中,各位数字之和为偶数的共有( )A .60个B .36个C .24个D .18个答案 A解析 依题意,所选的三位数字有两种情况:(1)3个数字都是偶数,有A 33种方法;(2)3个数字中有2个是奇数,1个是偶数,有C 23C 13A 33种方法,故共有A 33+C 23C 13A 33=60种方法.故选A. 7.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( )C.30 D.36答案 C解析排除法.先不考虑甲、乙同班的情况,将4人分成三组有C24=6种方法,再将三组同学分配到三个班级有A33=6种分配方法,再考虑甲、乙同班的分配方法有A33=6种,所以共有C24A33-A33=30种分法.故选C.8.[2018·沧州模拟]有5个大学保送名额,计划分到3个班级,每班至少一个名额,则不同的分法种数为________种.答案 6解析一共有5个保送名额,分到3个班级,每个班级至少1个名额,即将名额分成3份,每份至少1个(定行数).将5个名额排成一列产生6个空,中间有4个空(定空位).即只需在中间4个空中插入2个隔板,隔板不同的方法共有C24=6种.(插隔板)9.[2018·湖南衡阳八中期末]有6名同学参加两项课外活动,每位同学必须参加一项活动且不能同时参加两项,每项活动最多安排4人,则不同的安排方法有________种(用数字作答).答案50解析因为每项活动最多安排4人,所以可以有三种安排方法,即(4,2),(3,3),(2,4).当安排4,2时,需要选出4个人参加第一个项目,共有C46=15种;当安排3,3时,共有C36=20种;当安排2,4时,共有C26=15种,所以共有15+20+15=50种.10.[2018·沈阳模拟]现有2门不同的考试要安排在5天之内进行,每天最多进行一门考试,且不能连续两天有考试,那么不同的考试安排方案种数为________.答案 12解析 若第一门安排在开头或结尾,则第二门有3种安排方法,这时,共有C 12×3=6种方法;若第一门安排在中间的3天中,则第二门有2种安排方法,这时,共有3×2=6种方法.综上可得,不同的考试安排方案共有6+6=12种.[B 级 知能提升]1.[2018·福建厦门]将甲,乙等5位同学分别保送到北京大学、上海交通大学、浙江大学三所大学就读,则每所大学至少保送一人的不同保送的方法有( )A .240种B .180种C .150种D .540种答案 C解析 5名学生可分成2,2,1和3,1,1两种形式,当5名学生分成2,2,1时,共有12C 25C 23A 33=90种方法,当5名学生分成3,1,1时,共有C 35A 33=60种方法,根据分类计数原理知共有90+60=150种保送方法. 2.甲、乙等5人参加国庆阅兵庆典后,在天安门广场排成一排拍照留念,甲和乙必须相邻且都不站在两端的排法有( )A .12种B .24种C .48种D .120种答案 B解析 甲乙相邻,将甲乙捆绑在一起看作一个元素,共有A 44A 22种排法,甲乙相邻且在两端有C 12A 33A 22种排法,故甲乙相邻且都不站在两端的排法有A 44A 22-C 12A 33A 22=24(种). 3.在小语种提前招生考试中,某学校获得5个推荐名额,其中俄语2个,日语2个,西班牙语1个,日语和俄语都要求有男生参加,学校通过选拔定下3男2女共5名推荐对象,则不同的推荐方法共有________.答案24种解析每个语种各推荐1名男生,共有A33A22=12种,3名男生都不参加西班牙语考试,共有C23C12A22=12种,故不同的推荐方法共有24种.4.有4个不同的球,四个不同的盒子,把球全部放入盒内.(1)共有多少种放法?(2)恰有一个盒子不放球,有多少种放法?(3)恰有一个盒内放2个球,有多少种放法?(4)恰有两个盒子不放球,有多少种放法?解(1)一个球一个球的放到盒子里去,每只球都有4种独立的放法,由分步乘法计数原理知,放法共有44=256种.(2)为保证“恰有一个盒子不放球”,先从四个盒子中任意拿出去1个,即将4个球分成2,1,1的三组,有C24种分法;然后再从三个盒子中选一个放两个球,其余两个球,两个盒子,全排列即可.由分步乘法计数原理知,共有放法C14C24C13A22=144种.(3)“恰有一个盒子内放2个球”,即另外三个盒子中恰有一个空盒.因此,“恰有一个盒子放2球”与“恰有一个盒子不放球”是一回事.故也有144种放法.(4)先从四个盒子中任取两个有C24种,问题转化为:“4个球,两个盒子,每盒必放球,有几种放法?”从放球数目看,可分为(3,1),(2,2)两类.第一类:可从4个球中先选3个,然后放入指定的一个盒子中即可,有C34·C12种放法;第二类:有C24种放法.因此共有C34C12+C24=14种.由分步乘法计数原理得“恰有两个盒子不放球”的放法有C24·14=84种.5.[2018·武汉调研]有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数:(1)选其中5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,甲不站在排头也不站在排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻;(6)全体排成一排,甲、乙两人中间恰好有3人.解本题考查了有限制条件的排列问题.(1)从7个人中选5个人来排列,有A57=2520种.(2)分两步完成,先选3人排在前排,有A37种方法,余下4人排在后排,有A44种方法,故共有A37·A44=5040种.事实上,本小题即为7人排成一排的全排列,无任何限制条件.(3)(优先法)甲为特殊元素.先排甲,有5种方法,其余6人有A66种方法,故共有5×A66=3600种.(4)(捆绑法)将女生看成一个整体,与3名男生在一起进行全排列,有A44种方法,再将4名女生进行全排列,也有A44种方法,故共有A44×A44=576种.(5)(插空法)男生不相邻,而女生不作要求,∴应先排女生,有A44种方法,再在女生之间及首尾空出的5个空位中任选3个空位排男生,有A35种方法,故共有A44×A35=1440种.(6)把甲、乙及中间3人看作一个整体,第一步先排甲、乙两人有A22种方法,再从剩下的5人中选3人排到中间,有A35种方法,最后把甲、乙及中间3人看作一个整体,与剩余2人排列,有A33种方法,故共有A22×A35×A33=720种.。
2019版高考数学(理)一轮复习全国经典版:第10章 计数原理、概率、随机变量及分布列 10-9
9
板块一
板块二
板块三
板块四
高考一轮总复习 ·数学[理] (经典版)
[必会结论] 均值与方差的作用 均值是随机变量取值的平均值, 常用于对随机变量平均 水平的估计, 方差反映了随机变量取值的稳定与波动、 集中 与离散的程度,常用于对随机变量稳定于均值情况的估计.
10
板块一
板块二
板块三
板块四
高考一轮总复习 ·数学[理] (经典版)
17
板块一
板块二
板块三
板块四
高考一轮总复习 ·数学[理] (经典版)
解析
由分布列的性质得:
2 0 ≤ q ≤1,① 0≤1-q≤1,② 5q 0≤ -1≤1,③ 2 5q 2 - 1 q + 1 - q + =1,④ 2
2 4 由①②③,得 ≤q≤ . 5 5
1.若离散型随机变量 X 的分布列为 x1 x2 „ xi „ xn p2 „ pi „ pn P p1
高考一轮总复习 ·数学[理] (经典版)
(2)方差 称 D(X)=
[xi-E(X)]2pi
i=1
n
为随机变量 X 的方差,它
平均偏离程度 ,其
刻画了随机变量 X 与其均值 E(X)的
算术平方根 DX 为随机变量 X 的标准差.
板块二
板块三
板块四
高考一轮总复习 ·数学[理] (经典版)
[必备知识] 考点 1 离散型随机变量的均值与方差 X (1)均值 称 E(X)= x1p1+x2p2+„+xipi+„+xnpn 为随机变量 X 的均值或 数学期望 ,它反映了离散型随机变量取值的 平均水平.
4
板块一 板块二 板块三 板块四
2019版高考数学理高分计划一轮狂刷练:第10章 计数原理、概率、随机变量及其分布 10-6a 含解析 精品
[基础送分 提速狂刷练]一、选择题1.(2017·陕西榆林二模)若函数f (x )=⎩⎪⎨⎪⎧e x ,0≤x <1,ln x +e ,1≤x ≤e在区间[0,e]上随机取一个实数x ,则f (x )的值不小于常数e 的概率是( )A.1e B .1-1e C.e 1+e D.11+e答案 B解析 当0≤x <1时,f (x )<e ,当1≤x ≤e 时,e ≤f (x )≤1+e ,∵f (x )的值不小于常数e ,∴1≤x ≤e ,∴所求概率为e -1e =1-1e ,故选B.2.(2018·绵阳模拟)在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S4的概率是( )A.14B.12C.34D.23 答案 C解析 如图所示,在边AB 上任取一点P ,因为△ABC 与△PBC 是等高的,所以事件“△PBC 的面积大于S4”等价于事件“|BP |∶|AB |>14”,即P ⎝ ⎛⎭⎪⎫△PBC 的面积大于S 4=|P A ||BA |=34.故选C.3.已知实数a 满足-3<a <4,函数f (x )=lg (x 2+ax +1)的值域为R 的概率为P 1,定义域为R 的概率为P 2,则( )A .P 1>P 2B .P 1=P 2C .P 1<P 2D .P 1与P 2的大小不确定答案 C解析 若f (x )的值域为R ,则Δ1=a 2-4≥0,得a ≤-2或a ≥2. 故P 1=-2-(-3)4-(-3)+4-24-(-3)=37.若f (x )的定义域为R ,则Δ2=a 2-4<0,得-2<a <2.故P 2=47.∴P 1<P 2.故选C.4.(2017·湖南长沙四县联考)如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是( )A .1-π4 B.π12 C.π4 D .1-π12 答案 A解析 鱼缸底面正方形的面积为22=4,圆锥底面圆的面积为π.所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1-π4,故选A.5.(2017·铁岭模拟)已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为( )A.16B.13C.12D.23 答案 C解析 如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B 、E 点)上时,△ABD 为钝角三角形;当BF =4时,∠BAF 为直角,则点D 在线段CF (不包含F 点)上时,△ABD 为钝角三角形.所以△ABD 为钝角三角形的概率为1+26=12.故选C.6.(2018·沧州七校联考)用一平面截一半径为5的球面得到一个圆,则此圆面积小于9π的概率是( )A.45B.15C.13D.12 答案 B解析 如图,此问题属几何概型,球的直径为10,用一平面截该球面,所得的圆面积大于等于9π的概率为P (A )=810=45.∴所截得圆的面积小于9π的概率为P (A -)=1-45=15.故选B.7.(2017·福建宁德一模)若从区间(0,e),(e 为自然对数的底数,e =2.71828…)内随机选取两个数,则这两个数之积小于e 的概率为( )A.2eB.1e C .1-2e D .1-1e 答案 A解析 设随机选取的两个数为x ,y ,由题意得⎩⎪⎨⎪⎧0<x <e ,0<y <e ,该不等式组在坐标系中对应的区域面积为e 2, 又不等式组⎩⎪⎨⎪⎧0<x <e ,0<y <e ,xy <e 在坐标系中对应的区域面积为e +⎠⎛1e ex d x=2e ,∴所求概率为2e ,故选A.8.(2017·河南三市联考)在区间[-π,π]内随机取两个数分别为a ,b ,则使得函数f (x )=x 2+2ax -b 2+π2有零点的概率为( )A .1-π8B .1-π4C .1-π2D .1-3π4 答案B解析 函数f (x )=x 2+2ax -b 2+π2有零点,需Δ=4a 2-4(-b 2+π2)≥0,即a 2+b 2≥π2成立.而a ,b ∈[-π,π],建立平面直角坐标系,满足a 2+b 2≥π2,点(a ,b )如图阴影部分所示,所求事件的概率为P =2π×2π-π32π×2π=4π2-π34π2=1-π4.故选B .9.(2018·江西模拟)向面积为S 的平行四边形ABCD 中任投一点M ,则△MCD 的面积小于S3的概率为( )A.13B.35C.23D.34 答案 C解析 设△MCD 的高为ME ,ME 的反向延长线交AB 于F ,当“△MCD 的面积等于S 3”时,12CD ·ME =13CD ·EF ,即ME =23EF ,过M 作GH ∥AB ,则满足△MCD 的面积小于S3的点M 在▱CDGH 中,由几何概型的概率公式得到△MCD 的面积小于S3的概率为2S 3S =23.故选C .10.(2018·湖北襄阳优质高中联考)已知λ=3⎠⎛01x 2d x ,在矩形ABCD中,AB =2,AD =1,则在矩形ABCD 内(包括边界)任取一点P ,使得AP →·AC →≥λ的概率为( )A.18 B .14 C.34 D.78 答案 D解析 由已知得λ=3⎠⎛01x 2d x =3×13x 310=1.建立如图所示的平面直角坐标系.则A(0,0),C (2,1),设P (x ,y ),则AP →=(x ,y ),AC →=(2,1),故AP →·AC →=2x +y ,则满足条件的点P (x ,y )使得2x +y ≥1,由图可知满足条件的点P 所在的区域(图中阴影区域)的面积S =2×1-12×1×12=2-14=74,故所求概率为742=78,故选D.二、填空题11. 如图所示,在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM 交BC 于点M ,则BM <1的概率是________.答案 25解析 ∠B =60°,∠C =45°,所以∠BAC =75°. 在Rt △ABD 中,AD =3,∠B =60°, BD =AD tan 60°=1,∠BAD =30°.记事件N 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”,则可得∠BAM <∠BAD 时事件N 发生.由几何概型的概率公式,得P (N )=30°75°=25.12.一个长方体空屋子,长、宽、高分别为5米、4米、3米,地面三个角上各装有一个捕蝇器(大小忽略不计),可捕捉距其一米空间内的苍蝇,若一只苍蝇从位于另外一角处的门口飞入,并在房间内盘旋,则苍蝇被捕捉的概率是________.答案 π120解析 依题意,放在地面一角处的捕蝇器能捕捉到的空间体积V 0=18×4π3×13=π6(立方米),又空屋子的体积V =5×4×3=60(立方米),三个捕蝇器捕捉到的空间体积V ′=3V 0=π2(立方米). 故苍蝇被捕捉的概率是π260=π120.13.(2018·湖北八校联考)正方形的四个顶点A (-1,-1),B (1,-1),C (1,1),D (-1,1)分别在抛物线y =-x 2和y =x 2上,如图所示.若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影区域的概率是________.答案 23解析 利用定积分直接求面积,再利用几何概型的概率公式求解.正方形内阴影部分的面积S =2⎠⎛-11(1-x 2)d x =2⎝ ⎛⎭⎪⎫x -13x 3|1-1=2×43=83,所以所求概率为834=23.14.(2018·河南洛阳模拟)已知O (0,0),A (2,1),B (1,-2),C ⎝ ⎛⎭⎪⎫35,-15,动点P (x ,y )满足0≤OP →·OA →≤2且0≤OP →·OB →≤2,则点P 到点C 的距离大于14的概率为________.答案 1-5π64解析 ∵O (0,0),A (2,1),B (1,-2),C ⎝ ⎛⎭⎪⎫35,-15, 动点P (x ,y )满足0≤OP →·OA →≤2且0≤OP →·OB →≤2,∴⎩⎪⎨⎪⎧0≤2x +y ≤2,0≤x -2y ≤2.如图,不等式组⎩⎪⎨⎪⎧0≤2x +y ≤2,0≤x -2y ≤2对应的平面区域为正方形OEFG 及其内部,|CP |>14对应的平面区域为阴影部分.由⎩⎪⎨⎪⎧x -2y =0,2x +y =2解得⎩⎪⎨⎪⎧x =45,y =25,即E ⎝ ⎛⎭⎪⎫45,25,∴|OE |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫252=255, ∴正方形OEFG 的面积为45,则阴影部分的面积为45-π16, ∴根据几何概型的概率公式可知所求的概率为45-π1645=1-5π64.三、解答题15.(2018·广东深圳模拟)已知复数z =x +yi (x ,y ∈R )在复平面上对应的点为M .(1)设集合P ={-4,-3,-2,0},Q ={0,1,2},从集合P 中随机抽取一个数作为x ,从集合Q 中随机抽取一个数作为y ,求复数z 为纯虚数的概率;(2)设x ∈[0,3],y ∈[0,4],求点M 落在不等式组: ⎩⎪⎨⎪⎧x +2y -3≤0,x ≥0,y ≥0所表示的平面区域内的概率.解 (1)记“复数z 为纯虚数”为事件A .∵组成复数z 的所有情况共有12个:-4,-4+i ,-4+2i ,-3,-3+i ,-3+2i ,-2,-2+i ,-2+2i,0,i,2i ,且每种情况出现的可能性相等,属于古典概型, 其中事件A 包含的基本事件共2个:i,2i , ∴所求事件的概率为P (A )=212=16.(2)依条件可知,点M 均匀地分布在平面区域{(x ,y )⎪⎪⎪⎭⎪⎬⎪⎫⎩⎪⎨⎪⎧0≤x ≤3,0≤y ≤4内,属于几何概型.该平面区域的图形为图中矩形OABC 围成的区域,面积为S =3×4=12.而所求事件构成的平面区域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )|⎩⎪⎨⎪⎧x +2y -3≤0,x ≥0,y ≥0,其图形如图中的三角形OAD (阴影部分).又直线x +2y -3=0与x 轴,y 轴的交点分别为A (3,0),D ⎝ ⎛⎭⎪⎫0,32, ∴三角形OAD 的面积为S 1=12×3×32=94. ∴所求事件的概率为P =S 1S =9412=316.16.设f (x )和g (x )都是定义在同一区间上的两个函数,若对任意x ∈[1,2],都有|f (x )+g (x )|≤8,则称f (x )和g (x )是“友好函数”,设f (x )=ax ,g (x )=b x .(1)若a ∈{1,4},b ∈{-1,1,4},求f (x )和g (x )是“友好函数”的概率;(2)若a ∈[1,4],b ∈[1,4],求f (x )和g (x )是“友好函数”的概率. 解 (1)设事件A 表示f (x )和g (x )是“友好函数”,则|f (x )+g (x )|(x ∈[1,2])所有的情况有x -1x ,x +1x ,x +4x ,4x -1x ,4x +1x ,4x +4x ,共6种且每种情况被取到的可能性相同.又当a >0,b >0时ax +b x 在⎝⎛⎭⎪⎫0, b a 上递减,在⎝ ⎛⎭⎪⎫ b a ,+∞上递增;x -1x 和4x -1x 在(0,+∞)上递增,∴对x ∈[1,2]可使|f (x )+g (x )|≤8恒成立的有x -1x ,x +1x ,x +4x ,4x -1x ,故事件A 包含的基本事件有4种,∴P (A )=46=23,故所求概率是23.(2)设事件B 表示f (x )和g (x )是“友好函数”,∵a 是从区间[1,4]中任取的数,b 是从区间[1,4]中任取的数,∴点(a ,b )所在区域是长为3,宽为3的正方形区域.要使x ∈[1,2]时,|f (x )+g (x )|≤8恒成立,需f (1)+g (1)=a +b ≤8且f (2)+g (2)=2a +b 2≤8,∴事件B 表示的点的区域是如图所示的阴影部分.∴P (B )=12×⎝ ⎛⎭⎪⎫2+114×33×3=1924, 故所求的概率是1924.。
2019版高考数学(理)一轮复习全国经典版:第10章 计数原理、概率、随机变量及分布列 10-7a
板块四 模拟演练·提能增分[A 级 基础达标]1.袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X ,则X 的所有可能取值个数为( )A .25B .10C .7D .6答案 C解析 X 的可能取值为1+2=3,1+3=4,1+4=5=2+3,1+5=6=4+2,2+5=7=3+4,3+5=8,4+5=9.2.若随机变量X 的分布列为则当P (X <A .(-∞,2] B .[1,2] C .(1,2] D .(1,2)答案 C解析 由随机变量X 的分布列知:P (X <-1)=0.1,P (X <0)=0.3,P (X <1)=0.5,P (X <2)=0.8,则当P (X <a )=0.8时,实数a 的取值范围是(1,2].3.[2018·邯郸模拟]从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P (ξ≤1)等于( )A.15 B.25 C.35 D.45答案 D解析 P (ξ≤1)=1-P (ξ=2)=1-C 14C 22C 36=45.4.[2018·安庆一中模拟]离散型随机变量X 的分布列中部分数据丢失,丢失数据以“x ”“y ”(x ,y ∈N )代替,其表如下:则P ⎝ ⎛⎭⎪⎫32<X <113等于( )A .0.25B .0.35C .0.45D .0.55答案 B解析 由于0.20+0.10+0.x 5+0.10+0.1y +0.20=1. 得0.x 5+0.1y =0.4,于是两个数据x =2,y =5. 所以P ⎝ ⎛⎭⎪⎫32<x <113=P (x =2)+P (x =3)=0.1+0.25=0.35. 5.一次骨干教师培训中,共邀请了15名教师,其中男、女教师使用教材情况如下表:X =⎩⎪⎨⎪⎧0,发言者中使用B 版教材的女教师至多1人,1,发言者中使用B 版教材的女教师为2人.则X 的分布列为( )答案 D解析 P (X =0)=C 02C 213C 215+C 12C 113C 215=104105.P (X =1)=C 22C 215=1105.6.[2018·安康质检]设随机变量X 的概率分布列为则P (|X -3|=1)答案 512解析 由13+m +14+16=1,解得m =14,P (|X -3|=1)=P (X =2)+P (X =4)=14+16=512.7.[2018·临汾联考]口袋中有5只球,编号为1,2,3,4,5,从中任意取3只球,以X 表示取出的球的最大号码,则X 的分布列为________.答案解析 X 的取值为又P (X =3)=1C 35=110,P (X =4)=C 23C 35=310,P (X =5)=C 24C 35=35.∴随机变量X 的分布列为8.盒中有91个零件,如果取出次品不再放回,则在取得正品前已取出次品数ξ的分布列为________.答案解析 ξξ=k (k =0,1,2,3)表示取k +1次零件,前k 次取得的都是次品,第k +1次才取到正品.P (ξ=0)=C 19C 112=34,P (ξ=1)=C 13C 112·C 19C 111=944, P (ξ=2)=C 13C 112·C 12C 111·C 19C 110=9220, P (ξ=3)=C 13C 112·C 12C 111·C 11C 110=1220. 故ξ的分布列为9.[2018·按照规则,甲先从6道备选题中一次性抽取3道题独立作答,然后由乙回答剩余3题,每人答对其中2题就停止答题,即闯关成功.已知在6道被选题中,甲能答对其中的4道题,乙答对每道题的概率都是23.(1)求甲、乙至少有一人闯关成功的概率; (2)设甲答对题目的个数为ξ,求ξ的分布列. 解 (1)设甲、乙闯关成功分别为事件A ,B ,则P (A )=C 14C 22C 36=420=15,P (B )=⎝⎛⎭⎪⎫1-233+C 23⎝⎛⎭⎪⎫1-232⎝ ⎛⎭⎪⎫231=127+29=727,则甲、乙至少有一人闯关成功的概率是 1-P (A B )=1-P (A )P (B )=1-15×727=128135. (2)由题知ξ的可能取值是1,2.P (ξ=1)=C 14C 22C 36=15,P (ξ=2)=C 24C 12+C 34C 36=45,则ξ的分布列为10.[2018·重庆模拟]定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求甲获胜的概率;(2)求投篮结束时甲的投篮次数ξ的分布列.解 设A k ,B k 分别表示甲、乙在第k 次投篮投中,则P (A k )=13,P (B k )=12,(k =1,2,3)(1)记“甲获胜”为事件C ,由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式可得P (C )=P (A 1)+P (A 1 B 1A 2)+P (A 1 B 1 A 2 B 2A 3)=P (A 1)+P (A 1)P (B 1)P (A 2)+P (A 1)P (B 1)P (A 2)·P (B 2)P (A 3) =13+23×12×13+⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫122×13=13+19+127=1327.(2)ξ的所有可能值为1,2,3,由独立性可知 P (ξ=1)=P (A 1)+P (A 1B 1)=13+23×12=23, P (ξ=2)=P (A 1 B 1A 2)+P (A 1 B 1 A 2B 2) =23×12×13+⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫122=29,P (ξ=3)=P (A 1 B 1 A 2 B 2)=⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫122=19,综上可知,ξ的分布列为]1.[2018·淄博一中模拟]设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P (ξ=0)等于( )A .0 B.13 C.12 D.23答案 B解析 设P (ξ=1)=p ,则P (ξ=0)=1-p .依题意知,p =2(1-p ),解得p =23.故P (ξ=0)=1-p =13.2.已知离散型随机变量X 的分布列P (X =k )=k15,k =1,2,3,4,5,令Y =2X -2,则P (Y >0)=( )A.715B.815 C.1115 D.1415 答案 D解析 由已知Y 取值为0,2,4,6,8,且P (Y =0)=115,P (Y =2)=215,P (Y =4)=315=15,P (Y =6)=415,P (Y =8)=515=13.则P (Y >0)=P (Y =2)+P (Y =4)+P (Y =6)+P (Y =8)=1415.3.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.设ξ为取出的4个球中红球的个数,则P (ξ=2)=________.答案 310解析 ξ可能取的值为0,1,2,3,P (ξ=0)=C 23C 24C 24C 26=15,P (ξ=1)=C 13C 24+C 23C 12C 14C 24C 26=715, 又P (ξ=3)=C 13C 24C 26=130,∴P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=1-15-715-130=310. 4.在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 元的概率分布列.解 (1)该顾客中奖,说明是从有奖的4张奖券中抽到了1张或2张,由于是等可能地抽取,所以该顾客中奖的概率P =C 14C 16+C 24C 210=3045=23.⎝⎛⎭⎪⎫或用间接法,即P =1-C 26C 210=1-1545=23.(2)依题意可知,X 的所有可能取值为0,10,20,50,60(元),且P (X =0)=C 04C 26C 210=13,P (X =10)=C 13C 16C 210=25,P (X =20)=C 23C 210=115,P (X =50)=C 11C 16C 210=215,P (X =60)=C 11C 13C 210=115.所以X 的分布列为5摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球.根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X的分布列.解设A i表示摸到i个红球,B j表示摸到j个蓝球,则A i(i=0,1,2,3)与B j(j=0,1)独立.(1)恰好摸到1个红球的概率为P(A1)=C13C24C37=1835.(2)X的所有可能的值为:0,10,50,200,且P(X=200)=P(A3B1)=P(A3)P(B1)=C33C37·13=1105,P(X=50)=P(A3B0)=P(A3)P(B0)=C33C37·23=2105,P(X=10)=P(A2B1)=P(A2)P(B1)=C23C14C37·13=12105=435,P(X=0)=1-1105-2105-435=67.综上知X的分布列为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[基础送分 提速狂刷练]一、选择题1.先后抛掷两枚质地均匀的骰子,设出现的点数之和是12,11,10的概率依次是P 1,P 2,P 3,则( )A .P 1=P 2<P 3B .P 1<P 2<P 3C .P 1<P 2=P 3D .P 3=P 2<P 1答案 B解析 先后抛掷两枚骰子点数之和共有36种可能,而点数之和为12,11,10的概率分别为P 1=136,P 2=118,P 3=112.故选B.2.(2018·郑州质检)现有四所大学进行自主招生,同时向一所高中的已获省级竞赛一等奖的甲、乙、丙、丁四位学生发录取通知书,若这四名学生都愿意进入这四所大学的任意一所就读,则仅有两名学生被录取到同一所大学的概率为( )A.12B.916C.1116D.724 答案 B解析 所求概率P =C 24·A 3444=916.故选B.3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A.12B.13C.14D.16 答案 B解析 从1,2,3,4中任取2个不同的数有C 24=6种情况:满足取出的2个数之差的绝对值为2的(1,3),(2,4),故所求概率是26=13.故选B.4.(2018·山西朔州模拟)某校食堂使用大小、手感完全一样的餐票,小明口袋里有一元餐票2张,两元餐票2张,五元餐票1张,若他从口袋中随机地摸出2张,则其面值之和不少于四元的概率为( )A.310B.25C.12D.35 答案 C解析 小明口袋里共有5张餐票,随机地摸出2张,基本事件总数n =10,其面值之和不少于四元包含的基本事件数m =5,故其面值之和不少于四元的概率为m n =510=12.故选C.5.(2018·保定模拟)甲、乙二人玩猜数字游戏,先由甲任想一数字,记为a ,再由乙猜甲刚才想的数字,把乙猜出的数字记为b ,且a ,b ∈{1,2,3},若|a -b |≤1,则称甲、乙“心有灵犀”,现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为( )A.13B.59C.23D.79 答案 D解析 甲任想一数字有3种结果,乙猜数字有3种结果,基本条件总数为3×3=9.设“甲、乙心有灵犀”为事件A ,则A 的对立事件B 为“|a -b |>1”,即|a -b |=2,包含2个基本事件,∴P (B )=29.∴P (A )=1-29=79.故选D.6.(2018·浙江金丽衢十二校联考)若在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为 ( )A.17B.27C.37D.47 答案 C解析 因为任取3个顶点连成三角形共有C 38=8×7×63×2=56个,又每个顶点为直角顶点的非等腰三角形有3个,即正方体的一边与过此点的一条面对角线,所以共有24个三角形符合条件.所以所求概率为2456=37.故选C.7.(2017·甘肃质检)将5本不同的书全发给4名同学,每名同学至少有一本书的概率是( )A.1564B.15128C.24125D.48125 答案 A解析 由计数原理得基本事件的个数,再利用古典概型的概率公式求解.将5本不同的书分给4名同学,共有45=1024种分法,其中每名同学至少一本的分法有C 25A 44=240种,故所求概率是2401024=1564,故选A.8.抛掷两枚均匀的骰子,得到的点数分别为a ,b ,那么直线xa +yb =1的斜率k ≥-12的概率为( )A.12B.13C.34D.14 答案 D解析 记a ,b 的取值为数对(a ,b ),由题意知(a ,b )的所有可能取值有36种.由直线x a +y b =1的斜率k =-b a ≥-12,知b a ≤12,那么满足题意的(a ,b )可能的取值为(2,1),(3,1),(4,1),(4,2),(5,1),(5,2),(6,1),(6,2),(6,3),共有9种,所以所求概率为936=14.故选D.9.某酒厂制作了3种不同的精美卡片,每瓶酒盒随机装入一张卡片,集齐3种卡片可获奖,现购买该种酒5瓶,能获奖的概率为( )A.3181B.3381C.4881D.5081 答案 D解析 假设5个酒盒各不相同,5个酒盒装入卡片的方法一共有35=243种,其中包含了3种不同卡片有两种情况:即一样的卡片3张,另外两种不同的卡片各1张,有C 35×2×3=60种方法,两种不同的卡片各2张,另外一种卡片1张,有C 15×3×C 24=15×6=90种,故所求的概率为90+60243=5081.故选D.10.(2018·淄博模拟)将一颗骰子投掷两次,第一次出现的点数记为a ,第二次出现的点数记为b ,设任意投掷两次使两条不重合直线l 1:ax +by =2,l 2:x +2y =2平行的概率为P 1,相交的概率为P 2,若点(P 1,P 2)在圆(x -m )2+y 2=137144的内部,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-518,+∞ B.⎝ ⎛⎭⎪⎫-∞,718 C.⎝ ⎛⎭⎪⎫-718,518 D.⎝ ⎛⎭⎪⎫-518,718 答案 D解析 对于a 与b 各有6种情形,故总数为36种.两条直线l 1:ax +by =2,l 2:x +2y =2平行的情形有a =2,b =4或a =3,b =6,故概率为P 1=236=118.两条直线l 1:ax +by =2,l 2:x +2y =2相交的情形除平行与重合(a =1,b =2)即可,∴P 2=3336=1112.∵点(P 1,P 2)在圆(x -m )2+y 2=137144的内部,∴⎝ ⎛⎭⎪⎫118-m 2+⎝ ⎛⎭⎪⎫11122<137144, 解得-518<m <718,故选D. 二、填空题11.现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为________.答案 2063解析 从正整数m ,n (m ≤7,n ≤9)中任取两数的所有可能结果有C 17C 19=63个,其中m ,n 都取奇数的结果有C 14C 15=20个,故所求概率为2063.12.(2018·武汉调研)某同学同时掷两颗骰子,得到点数分别为a ,b ,则双曲线x 2a 2-y 2b 2=1的离心率e >5的概率是________.答案 16 解析 由e =1+b 2a 2>5,得b >2a .当a =1时,b =3,4,5,6四种情况;当a =2时,b =5,6两种情况,总共有6种情况.又同时掷两颗骰子,得到的点数(a ,b )共有36种结果.∴所求事件的概率P =636=16.13.(2018·湖南长沙模拟)抛掷两枚质地均匀的骰子,得到的点数分别为a ,b ,则使得直线bx +ay =1与圆x 2+y 2=1相交且所得弦长不超过423的概率为________.答案 19解析 根据题意,得到的点数所形成的数组(a ,b )共有6×6=36种,其中满足直线bx +ay =1与圆x 2+y 2=1相交且所得弦长不超过423,则圆心到直线的距离不小于13,即1>1a 2+b 2≥13,即1<a 2+b 2≤9的有(1,1),(1,2),(2,1),(2,2)四种,故直线bx +ay =1与圆x 2+y 2=1相交且所得弦长不超过423的概率为436=19.14.(2018·唐山模拟)无重复数字的五位数a1a2a3a4a5,当a1<a2,a2>a3,a3<a4,a4>a5时称为波形数,则由1,2,3,4,5任意组成的一个没有重复数字的五位数是波形数的概率是________.答案2 15解析∵a2>a1,a3;a4>a3,a5,∴a2只能是3,4,5.(1)若a2=3,则a4=5,a5=4,a1与a3是1或2,这时共有A22=2(个)符合条件的五位数.(2)若a2=4,则a4=5,a1,a3,a5可以是1,2,3,共有A33=6(个)符合条件的五位数.(3)若a2=5,则a4=3或4,此时分别与(1)(2)情况相同.∴满足条件的五位数有2(A22+A33)=16(个).又由1,2,3,4,5任意组成的一个没有重复数字的五位数有A55=120(个),故所求概率为16120=215.三、解答题15.为了解收购的每只小龙虾的重量,某批发商在刚从甲、乙两个水产养殖场收购的小龙虾中分别随机抽取了40只,得到小龙虾的重量的频数分布表如下.从甲水产养殖场中抽取的40只小龙虾的重量的频数分布表从乙水产养殖场中抽取的40只小龙虾的重量的频数分布表(1)试根据上述表格中的数据,完成从甲水产养殖场中抽取的40只小龙虾的重量的频率分布直方图;(2)依据小龙虾的重量,将小龙虾划分为三个等级:若规定二级以上(包括二级)的小龙虾为优质小龙虾,估计甲、乙两个水产养殖场的小龙虾哪个的“优质率”高?并说明理由;(3)从乙水产养殖场抽取的重量在[5,15),[15,25),[45,55]内的小龙虾中利用分层抽样的方法抽取6只,再从这6只中随机抽取2只,求至少有1只的重量在[15,25)内的概率.解(1)(2)若把频率看作相应的概率,则“甲水产养殖场的小龙虾为优质小龙虾”的概率为16+10+440=0.75,“乙水产养殖场的小龙虾为优质小龙虾”的概率为18+10+440=0.8,所以乙水产养殖场的小龙虾“优质率”高.(3)解法一:用分层抽样的方法从乙水产养殖场重量在[5,15),[15,25),[45,55]内的小龙虾中抽取6只,则重量在[5,15)内的有1只,在[15,25)内的有3只,在[45,55]内的有2只,记重量在[5,15)内的1只为x,在[15,25)内的3只分别为y1,y2,y3,在[45,55]内的2只分别为z1,z2,从中任取2只,可能的情况有(x,y1),(x,y2),(x,y3),(x,z1),(x,z2),(y1,y2),(y1,y3),(y1,z1),(y1,z2),(y2,y3),(y2,z1),(y2,z2),(y3,z1),(y3,z2),(z1,z2),共15种;记“任取2只,至少有1只的重量在[15,25)内”为事件A,则事件A包含的情况有(x,y1),(x,y2),(x,y3),(y1,y2),(y1,y3),(y1,z1),(y1,z2),(y2,y3),(y2,z1),(y2,z2),(y3,z1),(y3,z2),共12种.所以P (A )=1215=45.解法二:由解法一可知:重量在[15,25)内有3只,由题意可得P=1-C 23C 26=45.16.(2017·石景山区一模)“累积净化量(CCM)”是空气净化器质量的一个重要衡量指标,它是指空气净化器从开始使用到净化效率为50%时对颗粒物的累积净化量,以克表示.根据GB/T18801-2015《空气净化器》国家标准,对空气净化器的累积净化量(CCM)有如下等级划分:为了了解一批空气净化器(共2000台)的质量,随机抽取n 台机器作为样本进行估计,已知这n 台机器的累积净化量都分布在区间(4,14]中,按照(4,6],(6,8],(8,10],(10,12],(12,14]均匀分组,其中累积净化量在(4,6]的所有数据有:4.5,4.6,5.2,5.3,5.7和5.9,并绘制了如下频率分布直方图.(1)求n 的值及频率分布直方图中的x 值;(2)以样本估计总体,试估计这批空气净化器(共2000台)中等级为P 2的空气净化器有多少台?(3)从累积净化量在(4,6]的样本中随机抽取2台,求恰好有1台等级为P 2的概率.解 (1)∵在(4,6]之间的数据一共有6个, 再由频率分布直方图得:落在(4,6]之间的频率为0.03×2=0.06, ∴n =60.06=100,由频率分布直方图的性质得: (0.03+x +0.12+0.14+0.15)×2=1, 解得x =0.06.(2)由频率分布直方图可知:落在(6,8]之间共:0.12×2×100=24台.又∵在(5,6]之间共4台, ∴落在(5,8]之间共28台,∴估计这批空气净化器(共2000台)中等级为P 2的空气净化器有560台.(3)设“恰好有1台等级为P 2”为事件B ,依题意落在(4,6]之间共6台,属于国标P 2级的有4台, 则从(4,6]中随机抽取2台,基本事件总数n =C 26=15,事件B 包含的基本事件个数m =C 14C 12=8,∴恰好有1台等级为P 2的概率P (B )=m n =815.。