数的开方基本试题

合集下载

数的开方测试题及答案

数的开方测试题及答案

数的开方测试题及答案1. 对以下数进行开方运算,并给出结果:a) 16b) 81c) 25d) 144e) 49f) 100答案:a) √16 = 4b) √81 = 9c) √25 = 5d) √144 = 12e) √49 = 7f) √100 = 102. 求解下列方程的解:a) x² = 49b) y² = 81c) z² = 121d) w² = 169答案:a) x = ±7b) y = ±9c) z = ±11d) w = ±133. 根据已知条件计算下列开方:a) 若x² = 25,则x的值为多少?b) 若y² = 64,则y的值为多少?c) 若z² = 196,则z的值为多少?答案:a) x = ±5b) y = ±8c) z = ±144. 使用近似值计算下列开方,并保留两位小数:a) √7b) √13c) √18d) √23答案:a) √7 ≈ 2.65b) √13 ≈ 3.61c) √18 ≈ 4.24d) √23 ≈ 4.805. 请判断以下说法是否正确,并给出理由:a) √16 + √9= √25b) (a + b)² = a² + b²c) √(2² + 3²) = √13d) 3² = 9答案:a) 正确。

√16 = 4,√9 = 3,4 + 3 = 7,√25 = 5,所以等式成立。

b) 错误。

(a + b)² = a² + 2ab + b²。

c) 错误。

√(2² + 3²) = √(4 + 9) = √13。

d) 正确。

3² = 9。

总结:本文对数的开方进行了测试题及答案的陈述和解析。

通过对给定的数进行开方运算,以及求解方程和计算已知条件下的开方,我们可以更好地理解和应用数的开方。

(黄金题型)华师大版八年级上册数学第11章 数的开方含答案

(黄金题型)华师大版八年级上册数学第11章 数的开方含答案

华师大版八年级上册数学第11章数的开方含答案一、单选题(共15题,共计45分)1、下列说法正确的是( )A.用计算器进行混合运算时,应先按键进行乘方运算,再按键进行乘除运算,最后按键进行加减运算B.输入0.58的按键顺序是·58C.输入-5.8的按键顺序是+/- +5·8D.按键3y x2=+/-×2 +2+/-×3=能计算出(-3)2×2+(-2)×3的值.2、4的算术平方根是()A.±2B.2C.﹣2D.3、估计的值应在()A.-1和0之间B.0和1之间C.1和2之间D.2和3之间4、如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是()A.a+b>0B. >0C.a-b>0D.|a|-|b|>05、如果,那么m的取值范围是A.0<m<1B.1<m<2C.2<m<3D.3<m<46、分析下列说法:①实数与数轴上的点一一对应;②没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1.其中正确的有( )A.1个B.2个C.3个D.4个7、下列无理数中,与3最接近的是()A. B. C. D.8、关于的叙述,错误的是()A. 是有理数B.面积为10的正方形边长是C. 是无限不循环小数D.在数轴上可以找到表示的点9、在﹣2、﹣、0、1这四个数中,最大的数是()A.﹣2B.C.0D.110、在5,6,7,8这四个整数中,大小最接近的是()A.5B.6C.7D.811、实数a,b在数轴上的位置如图所示,且|a|>|b|,则化简-|a+b|的结果为( )A.2a+bB.-2a+bC.bD.2a-b12、16的平方根是()A.4B.±4C.D.±13、一个正方体的水晶砖,体积为,它的棱长大约在()A. 之间B. 之间C. 之间D.之间14、若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3B.-1C.1D.-3或115、在实数﹣3,0,5,3中,最小的实数是()A.﹣3B.0C.5D.3二、填空题(共10题,共计30分)16、在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=﹣2ab,如:1⊕5=﹣2×1×5=﹣10,则式子⊕ =________.17、若3-m有平方根,则m的取值范围为________.18、若一个偶数的立方根比2大,平方根比4小,则这个数一定是________.19、计算:________.20、有一组数据,按规定填写是:3,4,5,,,,则下一个数是________.21、m的平方根是n+1和n﹣5,那么mn=________.22、若的整数部分为a,小数部分为b,求a2+b﹣的值为________.23、请写出一个与- 的积为有理数的数是________.24、已知(x﹣y+3)2+ =0,则x+y=________.25、把下列各数的代号填在相应的横线上①﹣0.3.②﹣5.③.④π2.⑤|﹣2|.⑥⑦3.1010010001…(每两个1之间多一个0)⑧-分数:________整数:________无理数:________三、解答题(共5题,共计25分)26、计算:(﹣1)2012﹣+2cos45°+|﹣|.27、在数轴上作出对应的点.28、已知一个正数x的平方根是a+3和2a﹣15,求a和x的值.29、若3是的平方根,是的立方根,求的平方根.30、()﹣2﹣20150+÷﹣2sin45°.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、D5、B6、B7、B8、A9、D10、B11、C12、B13、A14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

数的开方测试题及答案

数的开方测试题及答案

数的开方测试题及答案数的开方测试题及答案【篇一:八年级数学数的开方单元测试题】班级_______姓名________一、选择题:(每题4分,共28分)1、10的平方根为………………………………………………….()2a、10 b、?c、d、?2、下列各式计算正确的是……………………………………….()(?5)2??525??54a、b、c、 d、?100?103、下列说法正确的是……………………………………………..() 3a、两个无理数的和一定是无理数b、2是分数;c、1和2之间的无理数只有2d、2是4的平方根4、若一个数的立方根等于这个数的算术平方根,则这个数是….()5、?4的平方根是…………………………………………………()a、2b、-2c、?2d、?4 6、在数轴上n点表示的数可能是…….()a、 b、 c、d、27、下列各式中正确的是…………………………………………()2(?6)??664?25??5?a、=8 b、c、 d、?8??28、若?x有意义,则x?x一定是……………………………..()a、正数b、非负数c、负数d、非正数二、填空题:(每空3分,共27分)1、当x 时,-2x有意义2、写出一个无理数a,使3a4,则a为3、若x-12是225的算术平方根,则x的立方根是4、化简2?=5、 (a+2)2+|b-1|+-c=0,则a+b+c=y?x2?9?9?x2x?2+1,则3x?4y=1 6、若7、若一个正数的两个平方根为2m-6与3m+1,则这个数是有理数有________________________,无理数有_________________________.三、解答题:1、求下列各式的值:(每题7分,共14分) 4199??1?6??8?25 (2)9271616 (1)2、求下列各式中的x值:(每题7分,共14分)23(1)121x?64 (2)3x?24?03、若a=a?2ba?3b是a+3b的算术平方根,b=2a?b?a2是1?a2的立方根,求a与b的值。

《数的开方》基础测试+提高测试

《数的开方》基础测试+提高测试

《数的开方》基础测试(一)判断题(每小题2分,共16分)1.a 为有理数,若a 有平方根,则a >0 ………………………………………( ) 2.-52 的平方根是±5 ……………………………………………………………( ) 3.因为-3是9的平方根,所以9=-3………………………………………( ) 4.正数的平方根是正数……………………………………………………………( ) 5.正数a 的两个平方根的和是0…………………………………………………( )6.25=±5………………………………………………………………………( )7.-5是5的一个平方根………………………………………………………( )8.若a >0,则3a -=3a -……………………………………………………( ) 【答案】1.×;2.×;3.×;4.×;5.√;6.×;7.√;8.√. (二)填空题(每空格1分,共28分)9.正数a 的平方根有_______个,用符号可表示为_________,它们互为________,其中正的平方根叫做a 的______,记作_______.【答案】两;±a ;相反数;算术平方根;a .10.|-972|的算术平方根是______,(-2)2的平方根是______,16的平方根是_______. 【答案】35,±2,±2.11.若-21是数a 的一个平方根,则a =______.【答案】41.12.-8的立方根是_____,-278的立方根是_________,0.216的立方根是______.【答案】-2,-32,0.6.13.0.1是数a 的立方根,则a =_________.【答案】0.001. 14.64的平方根是______,64的立方根是_________.【答案】±8,4. 15.比较下列每组数的大小:5___3;0___-2,3___7,-3____-2.【答案】>,>,>,<.16.若12+x 有意义,则x 的取值范围是___________,若x -2有意义,则x 的取值范围是________.【答案】一切实数,x ≤2.17.若按CZ —1206键后,再依次按键,则显示的结果是_______.【答案】2. 18.在3.14,33,31,2,⋅⋅21.0,722,3π,0.2020020002…,3216,94中,有理数有________________________,无理数有_________________________.【答案】3.14,31,⋅⋅21.0,722,3216,94;33,2,3π,0.2020020002….19.数325-的相反数是________,它的绝对值是_______;数4-17的绝对值是_____.【答案】325,325;17-4.20.讨论2+3保留三个有效数的近似值是________.【答案】3.15. (三)选择题(每小题4分,共16分)21.下列说法中正确的是……………………………………………………………( )(A )36的平方根是±6 (B )16的平方根是±2 (C )|-8|的立方根是-2 (D )16的算术平方根是4【答案】B .22.要使4+a 有意义,则a 的取值范围是……………………………………( )(A )a >0 (B )a ≥0 (C )a >-4 (D )a ≥-4【答案】D .23.要使321a -有意义,则a 的取值范围是……………………………………( ) (A )a ≥21 (B )a ≤21 (C )a ≠21(D )a 是一切实数【答案】D .24.若|x +2|=-x -2,则x 的取值范围是………………………………( )(A )x ≥-2 (B )x =-2 (C )x ≤-2 (D )x =0【答案】C .(四)计算:(每小题4分,共8分)25.64.0-412+44.1; 26.381-325125-+3343--327-.【答案】25.0.5;26.-3.(五)用计算器求下列各式的值(每小题2分,共12分)27.14.3; 28.02815.0 29.3465130.369.21- 31.38917.0 32.-38192-【答案】27.1.772 28.0.1678 29.186.1 30.-2.789 31.0.9625 32.20.16. (六)求下列各式中的x (每小题4分,共8分)33.x 2-3.24=0; 34.(x -1)3=64. 【答案】33.x =±1.8; 34.x =5. (七)求值(本题6分)35.已知112--y x +|2x -3y -18|=0,求x -6y 的立方根.【提示】一个数的算术平方根与绝对值都是非负数,它们的和为零,则每个数必为零,故可列出方程组:⎩⎨⎧=--=--.018320112y x y x 求出x 、y ,再求x -6y 的立方根. 【答案】x -6y 的立方根是3.(八)(本题6分)36.用作图的方法在数轴上找出表示3+1的点A .【提示】作一个腰为1的等腰直角三角形,以其斜边为1为直角边作直角三角形.则以原点O 为圆心,以这个直角三角形斜边长为半径画弧,它与数轴正半轴的交点即为表示3的点(如图1)或作一个以1为直角边,2为斜边的直角三角形.则以原点O 为圆心,以这个直角三角形的另一直角边长为半径画弧,它与数轴正半轴的交点即为表示3的点(如图2).有了表示3的点,即可找到表示3+1的点.(图1) (图2)点A 就是数轴上所求作的表示3+1的点.《数的开方》提高测试(一)判断题(每小题2分,共16分)1.两个正数,大数的平方根也较大 ………………………………………………( ) 2.5.050050005是有理数……………………………………………………………( ) 3.算术平方根最小的实数是0………………………………………………………( )4.因为-5的绝对值是5,所以绝对值等于5的数一定是-5…………( ) 5.有理数与无理数的积是无理数……………………………………………………( ) 6.实数中既无最大的数又无最小的数………………………………………………( ) 7.两个无理数的和不一定仍是无理数………………………………………………( ) 8.两个有理数之间的无理数有无数个………………………………………………( ) 【提示】第5题中,当有理数是零时,它与无理数的积是零,是有理数. 【答案】1.×;2.√;3.√;4.×;5.×;6.√;7.√;8.√. (二)填空题(每空格1分,共23分)9.91的平方根是__ _,算术平方根的相反数是_ __,算术平方根的倒数的平方根是__ _. 【答案】±31,-31,±3.10.平方根等于本身的数是________;算术平方根等于本身的数是______;立方根等于本身的数是___________.【答案】0;0,1;-1,0,1.11.如果a 2=36,那么a 3=_________.【答案】±216. 12.如果|x |=5,那么x =_______;如果|x |=2-1,那么x =_______.【答案】±5,2-1或1-2.13.如果0≤a ≤1,化简|a |+|a -1|=__________.【答案】1. 14.当x =______时,12+x =0,当x =______时,式子2+x +2--x 有意义.【答案】-21,-2. 15.如果(x -6)2+|y +2|+1+z =0,那么(x +1)2+(y -2)2+(z -3)2的四次方根是______.【答案】±3.16.比较下列每组数的大小:61____71;0____-π;7_____2.8;-3_____-5.【答案】>,>,<,>.17CZ —1206键后,再依次按键2. 18.在36,2π,-⋅⋅71.5,-39,38-,0.315311531115…,0中,无理数有______________________________;负实数有______________________;整数有________________.【答案】2π,-39,0.315311531115…;-⋅⋅71.5,-39,38-;36,38-,0.19.满足-2<x <10的整数x 是______________________.【答案】-1,0,1,2,3.20.正方体的体积是216 cm 3,则它的表面积是_______cm 2.【答案】216. (三)选择题(每小题4分,共16分)21.下列说法:①一个正数的算术平方根总比这个数小;②任何一个实数都有一个立方根,但不一定有平方根;③无限小数是无理数;④无理数与有理数的和是无理数.其中正确的是…………………………………………………………………………( ) (A )①② (B )③④ (C )①③ (D )②④【答案】D .22.a ,b 为实数,则代数式(a -b )2+ab +|a |的值…………………………( )(A )大于0 (B )大于或等于0 (C )小于0 (D )等于0【答案】(B ) 23.一个正数的正的平方根是m ,那么比这个正数大1的数的平方根是………( )(A )m 2+1 B .±1+m (C )12+m (D )±12+m 【答案】D .24.n1-n 1-=2成立的条件是…………………………………………………( )(A )n 是偶数 (B )n 是大于1的自然数 (C )n 是大于1奇数 (D )n 是整数【答案】C .(四)计算题(每小题4分,共8分)25.81.031-4162+2268101+; 26.3008.0-+481-532-38742-.【答案】25.-3.7 26.4.3.(五)求下列各式中x 的值(每小题4分,共8分)27.3(x 21+1)2-108=0; 28.8(x -1)3=-64125. 【答案】27.x =10或x =-14; 28.x =83.(六)求值(每小题6分,共18分)29.已知A =342--+b a a 是a +2的算术平方根,B =9232-+-b a b 是2-b 的立方根.求3A -2B 的立方根. 【提示】根据题意,得⎩⎨⎧=-+=--3923234b a b a 解之得⎩⎨⎧==.32b a ∴ A =2+a =22+=2,B =32b -=332-=-1.∴ 3A -2B =3×2-2×(-1)=8. ∴ 323B A -=38=2.【答案】2. 30.已知y =12-x +x 21-+x-2.求y x +10的值.【提示】根据题意,得:⎩⎨⎧≥-≥-021012x x ∴ x =21,y =x -2=(21)-2=4.∴ y x +10=42110+⨯=9=3.【答案】3.31.已知|x |=3,求代数式112-x +12+x -11-x 的值.【提示】∵ |x |=3.∴ x =±3.原式=1)1()1(212-+--+x x x =122--x x . 当x =3时,原式=1)3(232--=1323--=223-.当x =-3时,原式=1)3(232----=13)23(-+-=-223+.【答案】当x =3时,原式=223-,当x =-3时,原式=-223+.(七)(本题6分)32.一个长方体的木箱,它的底面是正方形,木箱高0.85米,体积为1.19米3,求这个木箱底面的边长(保留两个有效数字).【提示】设这个木箱底面边长为x米.根据题意,得0.85x2=1.19,x2=1.4,∴x≈1.2.【答案】1.2米.(八)(本题5分)33.用作图的方法在数轴上找出表示2115-的点A.【答案】如图:点P就是数轴上表示2115-的点.。

数的开方单元测试

数的开方单元测试

八年级(下)数的开方单元小测姓名 班级 学号 总分一、 填空题:(每空1分,共30分);9的平方根是 , 16 的平方根是 。

2. =81 ,2516±= ,2)3(-= 。

3. 若某数只有一个平方根,那么这个数等于 。

4. 若a 有平方根,那么a 一定是 数。

5. 负数 平方根,有 个立方根。

6. 5是 的平方根,是 的立方根。

7.有理数和 统称为实数; 任何一个有理数都可以写成 的形式; 叫做无理数。

与平方互为逆运算。

8. 要切一块面积为25m 2的正方形钢板,它的边长是 。

==a a 则,5 。

若a ≥0。

时, x 2有意义。

11. 下列式子中⑴11± ⑵35± ⑶2- ⑷0 ⑸-71 第 有意义,第 没有意义.(填写题号) 12. 49+196= ,225= 、25.0144•=0≥a ,(a )2= , 2a = ,14.如果一个数的平方根与它的算术平方根相同,那么这个数是 ,如果一个数与它的算术平方根相同,那么这个数是 。

15. ()212-= 。

二.判断题(每题2分,共20分)1、9的平方根是3()2、-9的平方根是-3 ()3. (-2)2的平方根是2±()4. 7=()49±5. 带根号的数都是无理数。

()6. 8的立方根是±2()7. 无限小数都是无理数()8. a的平方根是a±( )9.两个无理数相加结果肯定是无理数.( )10.所有的实数都可以在数轴上找到与它对应的点. ( )三选择题(每题2分,共10分)1.……,π,4,32其中无理数有( )个A 2B 3C 4D 52. 下列各式中无意义的是( )A 3±C23- D ()23-- B 3±3. 已知甲数是乙数的1000倍,则甲数的立方根a与乙数的立方根b的关系是( ) A a=b B a=10b C a=1000b D b=10a4.若a≠0,a、b互为相反数,下列各组数中,不互为相反数的是( )A 2a和2bB a+1和b+1 C2a和-2b D3a和3b5.有理数中,算术平方根最小的是()A 1B 0 C.0.1 D不存在四 解答题(共40分)1. 求下列各数的平方根:(6分)⑴0.0121 ⑵25162. 求下列各数的立方根(6分)(1)81 (2)833-3. x 为何值时,下列各式有意义:(8分) ①x +5 ②x -3. 求下列x 的值(8分)1)x21 2)x3=1254.圆的面积是9πcm2,求圆的半径(6分)5. 已知:c2=a2+b2,求当a=5,b=12时,c的值。

数的开方单元试题

数的开方单元试题

数的开方单元试题总分:120分 考试时间:90分钟 姓名: 得分: 一、选择题(共12题36分,每题3分) 1、4的算术平方根是( ) A 、4- B 、4 C 、2- D 、22、“9的平方根是3±”的表达式正确的是( )A 、39±=±B 、39=C 、39±=D 、39=-3、若式子5+x 在实数范围内有意义,则x 的取值范围是( )A 、5->xB 、5-<xC 、5-≠xD 、5-≥x4、在2-,0,711,23,44.1中,有平方根的数有( ) A 、1个 B 、2个 C 、3个 D 、4个5、下列说法正确的是( )A 、1-的倒数是1B 、1-的相反数是1-C 、1的算术平方根是1D 、1的立方根是1±6.下列各式中,计算不正确的是( )A .3)3(2=B .3)3(2-=-C .3)3(2=-D .3)3(2-=--7、2)9(-的平方根是x , 64的立方根是y ,则y x +的值为( )A.3B.7C.3或7D.1或78、化简6236---的结果为( )A 、1-B 、5C 、625-D 、162-9.估算192+的值是在( )A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间10.在下列各数中是无理数的有( )-0.333…,4,5, 3π, 3.141 5.A.3个B.4个C. 5个D. 6个11.下列说法中,正确的是( )A.一个数的立方根有两个,它们互为相反数B.一个数的立方根与这个数同号C.如果一个数有立方根,那么它一定有平方根D.一个数的立方根是非负数12.下列语句中,正确的是( )A.的平方根是3-B.9的平方根是3C.9的算术平方根是3±D.9的算术平方根是3二、填空题(共8题24分,每题3分)9、25的平方根是 ,216-的立方根是 10、=81 ,=±2516 ,=-31 11、若2(1)0a b -+=则a=_________b=__________12、若一个正数的平方根是2a ﹣1和﹣a+2,则a= _______,这个正数是 ______ .13、若一个数的平方根为±8,则这个数的立方根为 _________ .14、已知a 、b 为两个连续整数,且b a <<17,则=+b a15、如果23-x 和65+x 是一个数的平方根,那么这个数是16.若02733=+-x ,则______=x .三、计算(共2题8分,每题4分)(1)、3801.041--+ (2)25241+四、解方程(本题共2个小题8分,每题3分)(1)、049162=-x (2)、25)1(2=-x五、解答题(本题共6个小题44分)(1)、已知12-a 的立方根是3,13--b a 的平方根是4±,求b a 2+的平方根(2)、已知x 是的整数部分,y 是的小数部分,求的平方根.(3)、)已知x ,y 为实数,且,求的值.(4)、表示a 、b 两个实数的点在数轴上的位置如图所示,化简2)(b a b a ++-(5)、已知a 、b 为实数,且022=-++b b a ,解关于x 的方程:1)2(2-=++a b x a(6).小华家买了一套新房,客厅的面积为32平方米,准备用50块正方形地砖,请你帮她计算一下,她应购买边长为多少米的地砖?七、附加题1、已知0)2(12=-+-ab a ,求)2014)(2013(1....)1)(1(11+++++++b a b a ab 的值。

数的开方基本试题

数的开方基本试题

《数的开方》基本试题一、选择题:1.下列说法中正确的是( ).(A )4是8的算术平方根 (B )16的平方根是4(C )6是6的平方根 (D )a -没有平方根2.下列各式中错误的是( ).(A )6.036.0±=± (B )6.036.0=(C )2.144.1-=- (D )2.144.1±=3.若()227.0-=x ,则=x ( ). (A )-0.7 (B )±0.7 (C )0.7 (D )0.494.36的平方根是( ).(A )6 (B )±6 (C )6 (D )6±5.一个数的平方根是它本身,则这个数的立方根是( ).(A ) 1 (B ) 0 (C ) -1 (D )1,-1或0 6.3a 的值是( ).(A ) 是正数 (B ) 是负数 (C ) 是零 (D ) 以上都可能7.下列说法中,正确的是( ).(A)27的立方根是3,记作27=3 (B )-25的算术平方根是5(C )a 的三次立方根是3a ±(D )正数a 的算术平方根是a 8.下列等式:①81161=,②()2233-=-,③()222=-,④3388-=- ⑤416±=,⑥24-=-;正确的有( )个.(A )4 (B )3 (C )2 (D )1二、填空题:1.9的算术平方根是__________,81的平方根是___________.2.若x x -+有意义,则=+1x ___________.3.如果a 的平方根是a ,则=a _______;如果a 的算术平方根是a ,则=a _______.4.当x _______时,二次根式121-x 有意义.5.请你观察、思考下列计算过程:因为121112=,所以11121=,同样,因为123211112=,所以11112321=…由此猜想76543211234567898=_________________.6.当a ≥0时,2a =______;当a <0时,2a =_______.7的平方根是_________________的立方根是_________________.三、解答题:1.求下列各数的平方根:(1) 425 (2) ()24- (3) ()()82-⋅-.2.计算:(1)256; (2)44.1-; (3)2516±;(4)01.0; (5)232⎪⎭⎫ ⎝⎛±;(6)410-±.3.解方程:(1)942=x(2)()112=+x(3)()049121352=--x .4.计算:(1)3125.0-1613+23)871(-.(2)312564-38+-1001(-2)3×3064.0.。

数的开方小测试题6

数的开方小测试题6

+23的 值。 +D-1的 算术平方根是 4,求 四

~
数的开方小测试题 (6)
追求卓越 肩负天下
1.下 列各数中,没 有平方根的是 【 】
(A) -|-1|
2,女 口 果
(B)0
(C) (-3)2
(D)∶
1~
严 =9,男 阝 么 x=
3.(-3)2的
平 方 是 根
D
4.已 知 0-2)2+|D-8|=0,则 冬的平方根 是
5.方 程(男
十 1)2=81的 平方根是
1o.雨
。=
6万
;-V3i=厂Biblioteka ~Tˉ;±r
2 。、
丿
=
`^。
11.若 20刀
的值为 的算术平方根为 109则 正整数 刀
12.估 计 雨 9的 值在两个连续的整数
之间。
13.25的 算术平方根是
14.已
:Ⅰ 十 。 +5y的 算 面 平 方 根 术 知雨 |y-2|=0,求 男
15.已
3,3四 知 2△ -1的 平方根是 ±
6.雨 1的 平方根是
7.下 列各式成立 的是
,算 术平方根是
【 】
(A)√
(C)
r
.歹

3
r
(B)~√
(D)″ π +刀
J′
.石
=~5
(-6)2 :=-6
`i
(-10)2 =:10
8.若
{;三 i是
二元一次方程组
=8
J-P.my=1 {刀
的解 ,则 2r11~刀 的算术 平方 根为~。
9.√了 的 算术平方根为

平方根计算题50道题

平方根计算题50道题

平方根计算题50道题一、简单整数的平方根计算(1 - 10题)1. √(4)- 解析:因为2^2 = 4,所以√(4)=2。

2. √(9)- 解析:3^2 = 9,所以√(9)=3。

3. √(16)- 解析:4^2 = 16,所以√(16)=4。

4. √(25)- 解析:5^2 = 25,所以√(25)=5。

5. √(36)- 解析:6^2 = 36,所以√(36)=6。

6. √(49)- 解析:7^2 = 49,所以√(49)=7。

7. √(64)- 解析:8^2 = 64,所以√(64)=8。

8. √(81)- 解析:9^2 = 81,所以√(81)=9。

9. √(100)- 解析:10^2 = 100,所以√(100)=10。

10. √(121)- 解析:11^2 = 121,所以√(121)=11。

二、含小数的平方根计算(11 - 20题)11. √(0.04)- 解析:因为0.2^2 = 0.04,所以√(0.04)=0.2。

12. √(0.09)- 解析:0.3^2 = 0.09,所以√(0.09)=0.3。

13. √(0.16)- 解析:0.4^2 = 0.16,所以√(0.16)=0.4。

14. √(0.25)- 解析:0.5^2 = 0.25,所以√(0.25)=0.5。

15. √(0.36)- 解析:0.6^2 = 0.36,所以√(0.36)=0.6。

16. √(0.49)- 解析:0.7^2 = 0.49,所以√(0.49)=0.7。

17. √(0.64)- 解析:0.8^2 = 0.64,所以√(0.64)=0.8。

18. √(0.81)- 解析:0.9^2 = 0.81,所以√(0.81)=0.9。

19. √(1.21)- 解析:1.1^2 = 1.21,所以√(1.21)=1.1。

20. √(1.44)- 解析:1.2^2 = 1.44,所以√(1.44)=1.2。

数的开方练习题试卷

数的开方练习题试卷

数 的 开 方 练 习 题班级姓名:一、基础训练1. 9 的算术平方根是()A .-3B .3C .±3D .812.以下计算不正确的选项是()A . 4 =±2B . ( 9)2 81=9C . 3 0.064 =D . 3216 =-63.以下说法中不正确的选项是( )A .9 的算术平方根是 3B . 16 的平方根是± 2C .27 的立方根是± 3D .立方根等于 -1 的实数是 -14. 3 64 的平方根是()A .±8B .± 4C .± 2D .± 25.- 1的平方的立方根是()8.1.-1A .4 BC D .18 46.以下实数: 1,- , 8 ,19239 ,0 中无理数有( )A .4个B .3个C .2个D .1个7.以下说法中正确的选项是( )A .有限小数是有理数B .无穷小数是无理数C .数轴上的点与有理数一一对应D .无理数就是带根号的数8.以下各组数中,互为相反数的是( )A .-3 和 3B .│-3│与- 1 C .│-3│与133D .|- 3|与-39. 10 在哪两个相邻的整数之间( )A .2和3之间B .3和 4之间 C .4和5之间D .2和4之间10.一个自然数的算术平方根是x ,则它后边一个数的算术平方根是( )4A .x+1 B.x2+1C.x +1D.x2111.若 2m-4 与 3m-1 是同一个数的平方根,则 m的值是()A .-3 B.1C.-3或1 D .-112.已知 x,y 是实数,且3x 4 +(y-3 )2=0,则 xy 的值是()A.4B.-4C.9D.-9 44二、填空题13.81 的平方根是_______;9的立方根是 _______.14.写出一个 3 和 4 之间的无理数_________.15.数轴上表示 1- 3 的点到原点的距离是 _________.16.比较大小:( 1)25 ______5 2 ;(2)- 5______- 3 .317.若26 的整数部分为a,小数部分为 b,则 a=,b=_______.18、35的绝对值是,相反数是。

数的开方(有答案)

数的开方(有答案)

(华师大版)巩固复习-第十一章数的开方一、单选题1.下列计算中,正确的是()A. B. C. D.2.已知0<x<1,则x2、x、大小关系是()A. x2<x<B. x<x2<C. x<<x2D. <x<x23.一个数的立方等于它本身,这个数是().A. 0B. 1C. -1,1D. -1,1,04.估计的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.一个正方形的面积为21,它的边长为a,则a﹣1的边长大小为()A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间6.下列说法中正确的有()①±2都是8的立方根,②,③的立方根是3,④=2.A. 1个B. 2个C. 3个D. 4个7.与4﹣最接近的整数是()A. 0B. 1C. 2D. 38.﹣8的立方根是()A. -2B. 2C. ±2D. 49.7-2的算术平方根是A. B. 7 C. D. 410.64的算术平方根是()A. ±8B. 8C. -8D.11.的算术平方根是()A. B. C. D.二、填空题12.若实数a、b满足|a+2|+3 =0,则的平方根________.13.﹣8的立方根是________,36的平方根是________.14.已知=2.493,=7.882,则=________.15.计算:|﹣3|+=________16.比较大小(填“>”或“<”):________1.4;________ .17.9的平方根是________,9的算术平方根是________.18.在下列语句中:①实数不是有理数就是无理数;②无限小数都是无理数;③无理数都是无限小数;④根号的数都是无理数;⑤两个无理数之和一定是无理数;⑥所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数.正确的是________(填序号).19.比较实数的大小:3________ (填“>”、“<”或“=”).三、计算题20.计算:|﹣|﹣2﹣1+21.计算:.四、解答题22.已知a+b﹣5的平方根是±3,a﹣b+4的立方根是2.求3a﹣b+2的值.23.2cos45°﹣(π+1)0++()﹣1.五、综合题24.求下列x的值.(1)(x﹣1)2=4(2)3x3=﹣81.25.已知x﹣2的平方根是±2,5y+32的立方根是﹣2.(1)求x3+y3的平方根.(2)计算:|2﹣|- 的值.答案解析部分一、单选题1.【答案】A【考点】算术平方根,立方根【解析】【分析】根据算术平方根、立方根的性质依次分析各选项即可作出判断。

数的开方 有答案

数的开方  有答案

数的开方一、填空题1.(3分)﹣125的立方根是,9的算术平方根是.的平方根是.2.(3分)如果|x|=,那么x= ;如果x2=9,那么x= .3.要使式子有意义,则x可以取的最小整数是.4.平方根等于本身的数是,立方根等于本身的数是.5.(3分)若a、b是实数,,则a2﹣2b= .6.(3分)的立方根是.计算:= .7.(3分)若和互为相反数,求的值为.8.(3分)已知正数a和b,有下列命题:(1)若a+b=2,则≤1(2)若a+b=3,则≤(3)若a+b=6,则≤3,根据以上的规律猜想:若a+b=n,则≤.二、选择题9.下列为(﹣3)2的算术平方根的是() A. 3 B. 9 C.﹣3 D.±310.下列叙述正确的是()A. 0.4的平方根是±0.2 B.﹣(﹣2)3的立方根不存在C.±6是36的算术平方根 D.﹣27的立方根是﹣311.在实数0、3、、2.236、π、、3.14中无理数的个数是()A. 1 B. 2 C. 3 D. 412.一个自然数的算术平方根是a,则与这个自然数相邻的后续自然数的平方根是()A. B. C. D.13.对于实数a、b,若=b﹣a,则()A. a>b B. a<b C.a≥b D.a≤b14.(3分)估算的值()A.在5和6之间 B.在6和7之间 C.在7和8之间 D.在8和9之间15.设x、y为实数,且,则|x﹣y|的值是()A. 1 B. 9 C. 4 D. 5三、解答题16.直接写出答案①②③④⑤.17.解方程(1)9(x﹣3)2=64 (2)(2x﹣1)3=﹣8.18.(2011秋•阳谷县期末)已知x、y满足,求的平方根.19.(6分)已知一个正方形边长为3cm,另一个正方形的面积是它的面积的4倍,求第二个正方形的边长.(精确到0.1cm)数学单元测试卷(数的开方)参考答案与试题解析一、填空题1.(3分)﹣125的立方根是﹣5 ,9的算术平方根是 3 .的平方根是±2.考点:立方根;平方根;算术平方根.专题:计算题.分析:原式利用立方根,算术平方根,以及平方根定义计算即可得到结果.解答:解:﹣125的立方根为﹣5;9的算术平方根为3;=4的平方根为±2.故答案为:﹣5;3;±2.点评:此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.2.(3分)如果|x|=,那么x= ;如果x2=9,那么x= ±3.考点:实数的性质;平方根.分析:根据互为相反数的绝对值相等,可得答案;根据开方运算,可得一个数的平方根.解答:解:|x|=,那么x=;x2=9,那么x=±3;故答案为:,±3.点评:本题考查了实数的性质,利用了绝对值的性质,平方根的性质,注意一个正数有两个平方根,这两个平方根互为相反数.3.要使式子有意义,则x可以取的最小整数是 2 .考点:算术平方根.分析:由于式子是一个二次根式,所以被开方数是一个非负数,由此即可求出x的取值范围,然后可以求出x可以取的最小整数.解答:解:∵式子有意义,∴3x﹣5≥0,∴x≥,∴x可以取的最小整数是x=2.点评:此题主要考查了二次根式的定义,首先利用二次根式的定义求出字母的取值范围,然后利用x 取整数的要求即可解决问题.4.平方根等于本身的数是0 ,立方根等于本身的数是0,±1.考点:立方根;平方根.分析:分别利用平方根和立方根的特殊性质即可求解.解答:解:∵平方根等于它本身的数是0,立方根都等于它本身的数是0,1,﹣1.故填0;0,±1.点评:此题主要考查了平方根和立方根的运用,要掌握一些特殊的数字的特殊性质,如:±1,0.牢记这些数的特性可以快捷的解决这类问题.5.(3分)若a、b是实数,,则a2﹣2b= 2 .考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:两项非负数之和等于0,分别求出a和b的值.解答:解:∵,∴a﹣1=0且2b+1=0解得a=1 b=﹣∴a2﹣2b=1﹣(﹣1)=2,故答案为2点评:此题属于低难度题型,求出a和b的值是关键.6.(3分)的立方根是﹣2 .计算:= .考点:立方根;算术平方根.专题:计算题.分析:原式利用立方根及算术平方根的定义计算即可得到结果.解答:解:﹣=﹣8的立方根为﹣2;=.故答案为:﹣2;点评:此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.7.(3分)若和互为相反数,求的值为.考点:立方根.分析:根据相反数定义得出2a﹣1=﹣(1﹣3b),推出2a=3b,即可得出答案.解答:解:∵和互为相反数,∴2a﹣1=﹣(1﹣3b),2a=3b,和互为相反∴=,故答案为:.点评:本题考查了立方根和相反数的应用,关键是得出方程2a﹣1=﹣(1﹣3b).8.(3分)已知正数a和b,有下列命题:(1)若a+b=2,则≤1(2)若a+b=3,则≤(3)若a+b=6,则≤3,根据以上的规律猜想:若a+b=n,则≤.考点:算术平方根.专题:规律型.分析:观察已知三等式得到一般性规律,写出即可.解答:解:根据以上的规律猜想:若a+b=n,则≤=,故答案为:点评:此题考查了算术平方根,弄清题中的规律是解本题的关键.二、选择题9.下列为(﹣3)2的算术平方根的是()A. 3 B. 9 C.﹣3 D.±3考点:算术平方根.分析:先求出(﹣3)2=9,再根据算术平方根的定义解答即可.解答:解:∵(﹣3)2=9,∴(﹣3)2的算术平方根是3.故选A.点评:本题考查了算术平方根的定义,是基础题,要注意正数的算术平方根都是正数.10.下列叙述正确的是()A. 0.4的平方根是±0.2 B.﹣(﹣2)3的立方根不存在C.±6是36的算术平方根 D.﹣27的立方根是﹣3考点:立方根;平方根;算术平方根.专题:常规题型.分析:根据平方根的定义,立方根的定义,算术平方根的定义,对各选项分析判断后利用排除法.解答:解:A、应为0.04的平方根是±0.2,故本选项错误;B、﹣(﹣2)3=8,立方根是2,存在,故本选项错误;C、应为6是36的算术平方根,故本选项错误;D、﹣27的立方根是﹣3,正确.故选D.点评:本题考查了平方根的定义,算术平方根的定义,立方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根,任何实数都有立方根.11.在实数0、3、、2.236、π、、3.14中无理数的个数是()A. 1 B. 2 C. 3 D. 4考点:无理数.专题:计算题.分析:根据无理数的定义得到无理数有﹣,π共两个.解答:解:无理数有:﹣,π.故选:B.点评:本题考查了无理数的定义:无限不循环小数叫无理数,常见形式有:①开方开不尽的数,如等;②无限不循环小数,如0.101001000…等;③字母,如π等.12.一个自然数的算术平方根是a,则与这个自然数相邻的后续自然数的平方根是()A. B. C. D.考点:算术平方根;平方根.分析:根据算术平方根的定义得这个自然数为a2,则与这个自然数相邻的后续自然数a2+1,由此即可得到其平方根.解答:解:∵一个自然数的算术平方根是a,∴这个自然数为a2,∴与这个自然数相邻的后续自然数a2+1,∴其平方根为±.故选D.点评:本题考查了求一个数的算术平方根,平方根,比较简单.13.对于实数a、b,若=b﹣a,则()A. a>b B. a<b C.a≥b D.a≤b考点:二次根式的性质与化简.分析:已知等式左边为a﹣b的算术平方根,结果为非负数,即a﹣b≥0.解答:解:我们知道一个数的算术平方根为非负数,又因为=|a﹣b|=b﹣a,可以知道a﹣b≤0,则a≤b.故选D.点评:注意:不可忽略a=b,因为a=b时,a﹣b=b﹣a.14.(3分)估算的值()A.在5和6之间 B.在6和7之间 C.在7和8之间 D.在8和9之间考点:估算无理数的大小.分析:先求出4的范围,再两边都减去2,即可得出答案.解答:解:∵8<4<9,∴6<4﹣2<7,即的值在6和7之间.故选:B.点评:本题考查了估算无理数的大小的应用,解此题的关键是求出4的范围.15.设x、y为实数,且,则|x﹣y|的值是()A. 1 B. 9 C. 4 D. 5考点:算术平方根.分析:首先根据二次根式的定义即可确定x的值,进而求出y的值,代入原式即可得出|x﹣y|的值.解答:解:根据题意,有意义,而x﹣5与5﹣x互为相反数,则x=5,故y=4;所以|x﹣y|=1;故选A.点评:本题考查的是根号下的数为非负数,去绝对值后为非负数.三、解答题16.直接写出答案①②③④⑤.考点:立方根;算术平方根.专题:计算题.分析:①原式利用算术平方根定义计算即可得到结果;②原式利用二次根式性质化简即可得到结果;③原式利用立方根定义计算即可得到结果;④原式利用立方根定义计算即可得到结果;⑤原式利用算术平方根定义计算即可得到结果.解答:解:①原式=12;②原式=±;③原式=﹣0.4;④原式=5;⑤原式=.点评:此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.17.解方程(1)9(x﹣3)2=64(2)(2x﹣1)3=﹣8.考点:立方根;平方根.专题:计算题.分析:(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用立方根定义开立方即可求出解.解答:解:(1)方程整理得:(x﹣3)2=,开方得:x﹣3=±,解得:x1=,x2=;(2)开立方得:2x﹣1=﹣2,解得:x=﹣.点评:此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.18.(2011秋•阳谷县期末)已知x、y满足,求的平方根.考点:非负数的性质:算术平方根;非负数的性质:绝对值;平方根;解二元一次方程组.专题:计算题.分析:根据非负数的性质列出方程组,然后解方程组求出x、y的值,再代入代数式求值,然后根据平方根的定义求解即可.解答:解:由可得,解得,∴2x﹣y=2×8﹣×5=12,∵(±2)2=12,∴的平方根是±2.故答案为:±2.注:因为还未学到二次根式的化简,结果为也为正确答案.点评:本题主要考查了非负数的性质,解二元一次方程组,根据几个非负数的和等于0,则每一算式都等于0列出方程组是解题的关键.19.(6分)已知一个正方形边长为3cm,另一个正方形的面积是它的面积的4倍,求第二个正方形的边长.(精确到0.1cm)考点:算术平方根.专题:计算题.分析:根据题意列出算式,利用算术平方根定义计算即可得到结果.解答:解:根据题意得:=2≈3.5(cm),则第二个正方形的边长为3.5cm.点评:此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.。

数的开方基础过关测试卷(附参考答案和评分标准)

数的开方基础过关测试卷(附参考答案和评分标准)

第11章 数的开方基础过关测试卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 计算327的结果是 【 】 (A )3± (B )3 (C )33± (D )332. 下列实数中无理数是 【 】 (A )4 (B )8 (C )722(D )327 3. 估算324+的值 【 】 (A )在5和6之间 (B )在6和7之间 (C )在7和8之间 (D )在8和9之间4. 下列计算结果正确的是 【 】 (A )636±= (B )()332-=-(C )()233-=- (D )3355-=-5. 下列各组数中,是互为相反数的是 【 】 (A )2-与38- (B )2-与()22-(C )2-与21(D )2-与2 6. 比较91.3---、、π的大小,正确的是 【 】 (A )1.39-<-<-π (B )91.3-<-<-π (C )91.3-<-<-π (D )1.39-<-<-π7. 下列说法中,正确的是 【 】 (A )立方根等于1-的实数是1- (B )27的立方根是3± (C )带根号的数都是无理数 (D )()26-的平方根是6-8. 化简ππ--3得 【 】(A )3 (B )3- (C )32-π (D )π23-9. 计算3825--的结果是 【 】 (A )3 (B )7- (C )7 (D )3-10. 若一个正数的两个平方根分别是12-a 和8-a ,则这个正数是 【 】 (A )3 (B )6 (C )9 (D )25二、填空题(每小题3分,共30分)11. 如果某数的一个平方根是5-,那么这个数是_________. 12. 下列各数: π , 4-, 75, 0. 010010001中,是无理数的是_________. 13.81的平方根是_________.14. 在实数41,0,2,1--中,最小的实数是_________.15. 若021=-++y x ,则y x 的值为_________.16. 设b a ,是一个等腰三角形的两边长,且满足094=-+-b a ,则该三角形的周长是_________. 17. 计算:()=-+--+3128923_________.18. 若单项式n m y x +-45与2y x n m -是同类项,则n m 7-的算术平方根是_________. 19. 实数a 在数轴上的位置如图所示,则化简=-3a _________.20. 若32-x 与321y -互为相反数,则y x 2-的值为_________.三、解答题(共60分)21. 计算:(每小题5分,共10分)(1)()⎪⎭⎫⎝⎛-÷+-+--324227523; (2)()338211+-+-.22.(8分)求下列各式中的x :(1)()032222=--x ; (2)()2713=+x .23.(8分)正数x 的两个平方根分别为a -3和72+a . (1)求a 的值;(2)求x -44这个数的立方根.24.(8分)已知1-x 的平方根为3±,13-+y x 的立方根为4,求162+-y x 的平方根.25.(8分)已知正数x 的两个平方根分别是12-a 和5-a ,且3--y x 的立方根为3.(1)填空:__________________,_________,===a y x ; (2)求a y x 3+-的平方根.26.(8分)观察表格,然后回答问题:(1)__________________,==y x ;(2)从表格中探究a 与a 数位的规律,并利用这个规律解决下面两个问题: ①已知16.310≈,则≈1000_________;②已知973.8=m ,若3.897=b ,用含m 的代数式表示b ,则=b _________.27.(10分)如图①,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长;(2)图①中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长; (3)把正方形ABCD放到数轴上,如图②,使得点A与1重合,求点D在数轴上表示的数.①②第11章 数的开方基础过关测试卷参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共30分)11. 25 12. π 13. 3± 14. 2- 15. 1 16. 22 17.23+ 18. 10 19. a -3 20. 1三、解答题(共60分) 21. 计算:(每小题5分,共10分) (1)0 ; (2)2 . 22.(8分)求下列各式中的x : (1)()032222=--x ;解:()32222=-x()1622=-x∴42=-x 或42-=-x ∴6=x 或2-=x ; (2)()2713=+x .解:32713==+x ∴2=x .23.(8分)正数x 的两个平方根分别为a -3和72+a .(1)求a 的值;(2)求x -44这个数的立方根. 解:(1)由题意可知:0723=++-a a解之得:10-=a ;……………………………………3分 (2)由(1)可知:()131033=--=-a ∴169132==x……………………………………5分 ∴1251694444-=-=-x……………………………………6分 ∵51253-=-∴x -44这个数的立方根为5-. ……………………………………2分 24.(8分)已知1-x 的平方根为3±,13-+y x 的立方根为4,求162+-y x 的平方根.解:由题意可知:⎩⎨⎧==-+=-64413913y x x 解之得:⎩⎨⎧==3510y x……………………………………4分 ∴811635101622=+-=+-y x9=……………………………………6分 ∴162+-y x 的平方根为3±. ……………………………………8分 25.(8分)已知正数x 的两个平方根分别是12-a 和5-a ,且3--y x 的立方根为3. (1)填空:____________,______,===a y x ;(2)求a y x 3+-的平方根. 解:(1)9 , 21- , 2 ;……………………………………3分 (2)由(1)可知:()36232193=⨯+--=+-a y x ……………………………………5分 ∵636±=±∴a y x 3+-的平方根为6±. ……………………………………8分 26.(8分)解:(1)0. 1 , 10 ;……………………………………2分 (2)31. 6 ;……………………………………5分 (3)m 10000.……………………………………8分 27.(10分)如图①,这是由8个同样大小的立方体组成的魔方,体积为64. (1)求出这个魔方的棱长;(2)图①中阴影部分是一个正方形ABCD ,求出阴影部分的面积及其边长; (3)把正方形ABCD 放到数轴上,如图②,使得点A 与1-重合,求点D 在数轴上表示的数.①②解:(1)∵4643= ∴这个魔方的棱长为4;……………………………………3分 (2)由(1)可知每个小立方体的棱长为2.∴阴影部分的面积为:842221=⨯⨯⨯……………………………………5分 ∵阴影部分为正方形 ∴阴影部分的边长为8; (或写成22)……………………………………7分 (3)设原点为点O 由(2)可知:8=AD ∴81+=+=AD OA OD∴点D 在数轴上表示的数是81--. ……………………………………10分。

数的开方经典题型

数的开方经典题型

数的开方(一)判断题1.两个正数,大数的平方根较大 ( )2.5.050050005是有理数 ( )3.算术平方根最小的实数是0 ( )4.因为-5的绝对值是5,所以绝对值等于5的数一定是-5 ( )5.有理数与无理数的积是无理数 ( )6.实数中既无最大的数又无最小的数 ( )7.两个无理数的和不一定仍是无理数 ( )8.两个有理数之间的无理数有无数个 ( )(二)填空题9.91的平方根是__ _,算术平方根的相反数是_ __,算术平方根的倒数的平方根是__ _.10.平方根等于本身的数是________;算术平方根等于本身的数是______;立方根等于本身的数是___________.11.如果|x|=5,那么x =_______;如果|x|=2-1,那么x =_______.12.如果0≤a ≤1,化简|a|+|a -1|=__________.13.当x =______时,12+x =0,当x =______时,式子2+x +2--x 有意义.________的算术平方根是_________;15.从1到100之间所有自然数的平方根的和为________.16+│y-1│+(z+2)2=0,则xyz=________.17、当x = _________________.18,则a 的取值范围是___________.19.在36,2π,-⋅⋅71.5,-39,38-,0.315311531115…,0中,无理数有__________ ____________________;负实数有______________________;整数有________________.(三)选择题20.下列说法:①一个正数的算术平方根总比这个数小;②任何一个实数都有一个立方根,但不一定有平方根;③无限小数是无理数;④无理数与有理数的和是无理数.其中正确的是( )(A )①② (B )③④ (C )①③ (D )②④21.a ,b 为实数,则代数式(a -b )2+ab +|a|的值( )m n (A )大于0 (B )大于或等于0 (C )小于0 (D )等于022、已知,a b 是实数,则下列命题正确的是 ( )A、若22a b ≠,则a b ≠ B、若22a b >,则a b > C、若a b >,则a b > D、若a b >,则22a b >23.一个正数的正的平方根是m ,那么比这个正数大1的数的平方根是( )(A )m2+1 B.±1+m (C )12+m (D )±12+m 24、如果m m m m -=-33成立,则实数m 的取值范围是( ) A 、3≥m B 、0≤m C 、30≤<m D 、30≤≤m25、若0<x ,则x x x 2-的结果为( )A 、2B 、0C 、0或–2D 、–226、下列各式比较大小正确的是( )A 、32-<-B 、6655->-C 、14.3-<-πD 、310->-27、如果-b 是a 的立方根(ab ≠0),那么下列结论正确的是( )A 、-b 也是-a 的立方根B 、b 也是a 的立方根C 、b 也是-a 的立方根D 、以上结论都不对28.下列四种说法:正确的有几个()①负数有一个负的立方根;②1的平方根与立方根都是1;③4•的平方根的立方根是;④互为相反数的两个数的立方根仍为相反数.A .1B .2C .3D .429.实数m 、n 在数轴上的位置如图所示,•则下列不等关系正确的是( )A .n<mB .n2<m2 C.n>m D .│n │<│m │30 ( ) A、24(1)a + B、22(1)a +C、2(1)a + (四)计算31、(1)分别求出下列各数平方根①324 ②22349 ③(-16)2 ④-(-4)3(2)分别求出下列各的立方根①-21027 ②±0.125③ -0.0064 ④-729(3)求下列各式中的x 的值()27222049x +-= 3x = ()310.110271000x +=-64.0-412+44.1 31)(六)求值32.将下列各数由小到大重新排成一列,并用“<”号连接起来)2(--,0,23,π-3,|2|--,133、已知2a -1的平方根是±3,3a +b -1的平方根是±4,求a +2b 的平方根34.已知A =342--+b a a 是a +2的算术平方根,B =9232-+-b a b 是2-b 的立方根. 求3A -2B 的立方根.35.已知y =12-x +x 21-—2.求y x +10的值.36、已知,,a b c a b c a -+-+、37、已知ABC ∆的三边为c b a 、、.化简:38()33,438x y +=-,求()2nx y +的值(n 为正整数)39、已知,a b 为有理数,且22()3a a +=+-b 的值.40、已知实数,,a b c 满足211()022a b c --=,求()a b c +的值.。

初二华师版数的开方练习题

初二华师版数的开方练习题

初二华师版数的开方练习题数的开方是数学中的一种基本运算,在初二数学中也有很多与开方相关的习题。

下面将为大家提供一些华师版初二数学教材中关于数的开方的练习题,供大家练习和巩固知识。

题目一:计算以下数的开方,并写出结果:1. √92. √163. √254. √365. √49解答一:1. √9 = 32. √16 = 43. √25 = 54. √36 = 65. √49 = 7题目二:计算以下数的开方,结果用小数表示,并保留两位小数:1. √22. √53. √7解答二:1. √2 ≈ 1.412. √5 ≈ 2.243. √7 ≈ 2.65题目三:计算下列数的平方根,并写出结果:1. 4的平方根2. 16的平方根3. 25的平方根解答三:1. 4的平方根 = 22. 16的平方根 = 43. 25的平方根 = 5题目四:计算以下数的平方根,结果用小数表示,并保留两位小数:1. 2的平方根2. 5的平方根3. 7的平方根解答四:1. 2的平方根≈ 1.412. 5的平方根≈ 2.243. 7的平方根≈ 2.65题目五:求满足以下条件的数,并写出结果:1. 某数的平方等于362. 某数的平方等于643. 某数的平方等于100解答五:1. 某数的平方等于36,这个数可以是6,也可以是-6.2. 某数的平方等于64,这个数可以是8,也可以是-8.3. 某数的平方等于100,这个数可以是10,也可以是-10.通过以上习题的练习,相信大家对于初二华师版数的开方已经有了一定的了解和掌握。

继续加油努力,数学成绩定会有所提高!。

数的开方练习题集

数的开方练习题集

数的开方练习题集数的开方小测试题(1)追求卓越 肩负天下1.计算: ()()2332481------ 2.计算: ()91645232--+⨯- 3.计算: 313221---+- 4.计算:(1)04.0103632972+-; (2)()323832164---⨯⎪⎭⎫ ⎝⎛-+-.5.计算: 4128253+-- 6.已知y x ,为实数,且499+---=x x y ,求y x +的值. 7.已知0276433=-++b a ,求()b b a -的立方根.8.计算:(1)()()()11122++--x x x x ;(2)()()[]y x y x x y y x x 232223÷--.数的开方小测试题(2)追求卓越 肩负天下1.计算:(1)()572243+-⨯-÷-;(2)()328235---+-.2.解下列方程:(1)()64122=-x ; (2)()6412273-=--x . 3.求下列代数式的值:(1)若b a ,42=的算术平方根为3,求b a +的值;(2)已知x 是25的平方根,y 是16的算术平方根,且y x <,求y x -的值.4.已知12-a 的平方根是3±,124++b a 的平方根是5±,求b a 2-得平方根.5.已知b a ,互为倒数,d c ,互为相反数,求13+++d c ab 的值.6.计算: 22341312764949⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+--.数的开方小测试题(3)追求卓越 肩负天下1.若322=+-+-y x x ,求y x 的值2.一个正数a 的两个平方根分别是2+x 和82-x ,求a 的值.3.若321x -与353-x 互为相反数,求x -1的值.4.已知43=x ,且()03122=-++-z z y ,求333z y x ++的值.5.计算:()41218131623÷⎪⎭⎫ ⎝⎛---+追求卓越 肩负天下1.计算: ()323243212-+--+⎪⎭⎫ ⎝⎛-.2.解方程:()5432413=+x .3.计算:π---+185.04132.追求卓越 肩负天下1. 81的平方根是_________.2.81的平方根是_________.3. 16的平方根是4±用数学式子表示为____________.4.计算=--3825_________.5.计算:33125276416--+.6.算术平方根等于它本身的数是_________.7.一个正数的两个平方根分别是12-m 和m 34-,则这个正数是_________. 8.38的算术平方根是_________.9.计算:=+-41_________.10.在61,2,0,2-中,无理数是_________. 11.在 01020304.0,23,314.0,27,31,3π-中,无理数的个数是_________. 12.23-的相反数是_________,绝对值是_________.13.若334373+-n m 与互为相反数,则=+n m _________.14.已知b a ,是两个连续的整数,且b a <<15,则=+b a _________.15.估计16+的值在整数_________之间. 16.17+的整数部分是_________,小数部分是_________.17.若011=-++b a ,则()2017ab 的值是_________. 18.若322--+-=x x y ,则=x y _________.追求卓越 肩负天下1.下列各数中,没有平方根的是 【 】(A )1-- (B )0 (C )()23- (D )1 2.如果92=x ,那么=x _________.3.()23-的平方根是_________. 4.已知()0822=-+-b a ,则b a 的平方根是_________. 5.方程()8112=+x 的平方根是_________. 6.81的平方根是_________,算术平方根是_________.7.下列各式成立的是 【 】(A )39±= (B )525-=-(C )()662-=- (D )()10102=--8.若⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则n m -2的算术平方根为____. 9.4的算术平方根为_________.10.=64.0_________; =-1613_________; ()=-±23_________.11.若n 20的算术平方根为10,则正整数n 的值为_________.12.估计19的值在两个连续的整数_________之间.13. 25的算术平方根是_________. 14.已知021=-++y x ,求y x 5+的算术平方根.15.已知12-a 的平方根是13,3-+±b a 的算术平方根是4,求b a 2+的值.追求卓越 肩负天下1. 8-的立方根是_________.2.一个数的立方根是它本身,则这个数是_________.3.4的立方根等于_________.4.364的平方根是_________.5.方程()128123=-x 的解为____________.6.若163+x 的立方根是4,则42+x 的平方根为_________.7.8-的立方根与16的平方根之和为_________. 8.412的平方根是_________,算术平方根是_________.9.若x 的平方根是它本身,y 的立方根是它本身,则=-y x _________. 10.=-327_________; ()=-333_________; =327102_________.11.下列实数中,是无理数的为 【】(A )4- (B )0. 101001 (C )722(D )212.32-的相反数是_________,23-的绝对值是_________.13.21+的整数部分是_________,小数部分是_________.14.化简=--ππ3_________. 15.估计17+的值在_________之间. 16.若312-a 和331b -互为相反数,求b a的值.17.若()0125272=-++b a ,求a b的立方根. 18.设32+的整数部分是x ,小数部分是y ,求x y -的值.追求卓越 肩负天下1.下列关于3的判断:①3是无理数; ②3是实数; ③3是3的算术平方根; ④231<<,其中正确的是 【 】(A )①④ (B )①②④(C )①③④ (D )①②③④ 2.5的整数部分是_________,小数部分是_________.3.下列四个数中,最大的一个数是 【 】(A )2 (B )3 (C )0 (D )2-4.若3,,3-=-=-=c b a π,则c b a ,,的大小关系为__________.5.33-的相反数是_________,=-33_________.6.点M 在数轴上与原点相距6个单位,则点M 表示的实数为_________.7.在实数51,4,,1415926.3,8-π中,无理数是__________. 8.计算: (1)()2196----; (2)()3227225--+---.9.若b a ,互为相反数,d c ,互为倒数,4=m ,求()m b cd a 3222017-+-的值.10.先阅读理解,再回答问题: 因为2112=+,且221<<,所以112+的整数部分是1; 因为362,6222<<=+且,所以222+的整数部分是2; 因为12332=+,且4123<<,所以332+的整数部分是3.依次类推,我们会发现n n +2)(为正整数n 的整数部分是_________,请说明理由.追求卓越 肩负天下1.下列等式一定成立的是 【 】(A )549=- (B )22-=-ππ(C )39±= (D )()992=--2.若9,422==b a ,且0<ab ,则b a -的值为_________.3.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④1717是±的平方根.其中正确的结论是_________.4.下列实数中,有理数是 【 】(A )8 (B )34 (C )2π (D )0. 101001 5.对于实数b a ,,定义运算“*”:⎩⎨⎧<-≥-=*)()(2b a b a b a ab a b a ,例如:因为24>,所以8244242=⨯-=*,则()()=-*-23_________. 6.若052=-+-m n ,则=n m _________. 7.()29-的平方根是_________. 8.在实数 001001001001.3,16,,6,5π-中,有理数是__________________. 9.=+⎪⎭⎫ ⎝⎛---4312723_________. 10.已知8263+---=x x y ,求13-+y x 的平方根.11.有以下实数:()9,3,12,2,25,53332---. (1)请你计算其中有理数的和;(2)若2-x 是(1)中的和的平方,求2x 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数的开方》基本试题
一、选择题:(每小题3分,共24分) 1.25的平方根是( ).
(A )5 (B )5- (C )5± (D )5± 2.下列说法中正确的是( ).
(A )4是8的算术平方根 (B )16的平方根是4 (C )6是6的平方根 (D )a -没有平方根 3.下列各式中错误的是( ).
(A )6.036.0±=± (B )6.036.0= (C )2.144.1-=- (D )2.144.1±= 4.估计30( )
(A )在3到4之间 (B )在4到5之间 (C )在5到6之间 (D )在6到7之间 5.下列说法正确的是( )
(A) 无理数分为正无理数、负无理数和0 (B)实数分为有理数和无理数 (C ) 有理数和无理数统称为整数 ( D) 数轴上没有表示无理数的点 6.下列说法正确的是( )
(A ) 27的立方根是3,记作27=3 (B )-25的算术平方根是5 (C )a 的三次立方根是3
a ± (D )正数a 的算术平方根是a 7.已知12=y ,则3y 的值为( )
(A ) 1 (B ) -1 (C ) 1± (D )不存在
8.数3.14,2,π,0.323232…,7
1
,9,21+中,
无理数的个数为( ). (A )2个 (B )3个 (C )4个 (D )5个 二、填空题:(每小题3分,共24分) 1.
()=-2
6___________.平方等于7的数是
2.53-的相反数是 ,绝对值是
3.若2+x 有意义,则x 的取值范围是________.若()0122
=-a ,是=a
4
()210n +=,则n m +的值为 5.若14+a 的算术平方根是3,则a 的值是
6.已知x 为整数,且满足32≤≤-x ,则=x 7.比较大小:
-6-
8.55-的整数部分是 ,小数部分是 三、解答题:(共52分)
1.求下列各数的平方根:(每小题3分,共9分) (1)4
25 (2)()2
4- (3)()()82-⋅-.
2.求下列各数的立方根:(每小题3分,共9分) (1)729 (2)27
174
- (3)()3
5-
3.求下列各式中的小:(每小题4分,共12分)
(1)942=x ; (2)()01192
=-+x ; (3)()0123
=++x .
3.计算:(每小题5分,共15分) (1)3125.0-1613+23)8
7
1(- (2)312564-38+-100
1(-2)3×3064.0.
(3)252332---+-
4.(7分)有一个正方体集装箱,其容积为1253m ,现准备将其容积增大,以盛放更多货物,使其棱长增加多少,才能使其容积达到5123m ?(集装箱的厚度不计)
四、选做题
1.(5分)已知12-a 的平方根是3±,13-+b a 的平方根是4±,
求b a 2+的平方根

6.(7分)若115+的小数部分为x ,115-的小数部分为y ,求y x +的值。

相关文档
最新文档