高三数学培优补差辅导专题讲座-解析几何单元易错题分析与练习

合集下载

高考数学压轴专题(易错题)备战高考《平面解析几何》难题汇编及答案解析

高考数学压轴专题(易错题)备战高考《平面解析几何》难题汇编及答案解析

【高中数学】数学《平面解析几何》复习知识要点一、选择题1.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F = )A .2213x y +=B .22132x y +=C .22196x y +=D .221129x y +=【答案】C 【解析】 【分析】利用椭圆的性质,根据4AB =,12F F =c =22 4b a=,求解a ,b 然后推出椭圆方程. 【详解】椭圆2222 10x y a b a b +=>>()的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F =c =,22 4b a=,222c a b =-,解得3a =,b =,所以所求椭圆方程为:22196x y +=,故选C .【点睛】本题主要考查椭圆的简单性质的应用,椭圆方程的求法,是基本知识的考查.2.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C 于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A B .2C D .3【答案】A 【解析】 【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得AF =u u u v【详解】根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-. 所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =, 所以()2212112AF n u u u v =-+=+=故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.3.已知直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,直线l 经过2:2(0)C y px p =>的焦点,M 为C 上的一个动点,若点N 的坐标为()4,0,则MN 的最小值为( ) A .3B 3C .2D .22【答案】A 【解析】 【分析】联立直线与抛物线方程利用弦长公式列方程,结合直线过抛物线的焦点,解方程可得2p =,再利用两点的距离公式,结合二次函数配方法即可得结果.【详解】 由22224(42)02y x b x b p x b y px=+⎧⇒+-+=⎨=⎩, 121222,24b p b x x x x +=-=-,因为直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,125x =-,所以()22222512424b p b ⎡⎤-⎛⎫=+-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(1) 又直线l 经过C 的焦点,则,22b pb p -=∴=- (2)由(1)(2)解得2p =,故抛物线方程为24y x =.设()20000,,4M x y y x ∴=.则()()()2222200000||444212MN x y x x x =-+=-+=-+,故当02x =时,min ||MN = 故选:A. 【点睛】本题主要考查直线与抛物线的位置关系,考查了弦长公式以及配方法的应用,意在考查综合应用所学知识解答问题的能力,属于中档题.4.设抛物线E :26y x =的弦AB 过焦点F ,||3||AF BF =,过A ,B 分别作E 的准线的垂线,垂足分别是A ',B ',则四边形AA B B ''的面积等于( )A .B .C .D .【答案】C 【解析】 【分析】由抛物线的方程可得焦点坐标及准线方程,设直线AB 的方程,与抛物线联立求出两根之和及两根之积,进而求出弦长AB ,由抛物线的性质可得梯形的上下底之和求出,求出A ,B 的纵坐标之差的绝对值,代入梯形的面积公式即可求出梯形的面积. 【详解】解:由抛物线的方程 可得焦点3(2F ,0),准线方程:32x =-,由题意可得直线AB 的斜率存在且不为0,设直线AB 的方程为:32x my =+,1(A x ,1)y ,2(B x ,2)y ,联立直线与抛物线的方程:2326x my y x⎧=+⎪⎨⎪=⎩,整理可得:2690y my --=,所以126y y m +=,129y y =-,21212()363x x m y y m +=++=+,因为||3||AF BF =,所以3AF FB =uu u r uu r,即13(2x -,123)3(2y x -=-,2)y ,可得:123y y =-, 所以可得:2222639y m y -=⎧⎨-=-⎩即213m =, 由抛物线的性质可得: 21233166668223AA BB AB x x m ''+==+++=+=+=g , 221212121||()436363636433y y y y y y m -=+-=+=+=g ,由题意可知,四边形AA B B ''为直角梯形,所以1211()||84316322AA B B S AA BB y y ''''=+-==gg g , 故选:C .【点睛】本题考查抛物线的性质及直线与抛物线的相交弦长,梯形的面积公式,属于中档题.5.已知抛物线C :212y x =的焦点为F ,A 为C 上一点且在第一象限,以F 为圆心,FA 为半径的圆交C 的准线于B ,D 两点,且A ,F ,B 三点共线,则AF =( )A .16B .10C .12D .8【答案】C 【解析】 【分析】根据题意可知AD BD ⊥,利用抛物线的定义,可得30ABD ∠=︒,所以||||2612AF BF ==⨯=.解:因为A ,F ,B 三点共线,所以AB 为圆F 的直径,AD BD ⊥. 由抛物线定义知1||||||2AD AF AB ==,所以30ABD ∠=︒.因为F 到准线的距离为6, 所以||||2612AF BF ==⨯=. 故选:C .【点睛】本题考查抛物线的性质,抛物线的定义,考查转化思想,属于中档题.6.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( ) A .①③ B .②④ C .①②③ D .②③④【答案】B 【解析】 【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x yx y +=联立解得222x y ==可判断①③;由图可判断④.()2223222216162x y xyx y ⎛⎫++=≤ ⎪⎝⎭,解得224x y +≤(当且仅当222x y ==时取等号),则②正确; 将224x y +=和()3222216x y x y +=联立,解得222x y ==,即圆224x y +=与曲线C 相切于点()2,2,()2,2-,()2,2--,()2,2-,则①和③都错误;由0xy <,得④正确. 故选:B. 【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.7.已知直线()0y kx k =≠与双曲线()222210,0x y a b a b-=>>交于,A B 两点,以AB 为直径的圆恰好经过双曲线的右焦点F ,若ABF ∆的面积为24a ,则双曲线的离心率为 A .2 B .3C .2D .5【答案】D 【解析】 【分析】通过双曲线和圆的对称性,将ABF ∆的面积转化为FBF ∆'的面积;利用焦点三角形面积公式可以建立a 与b 的关系,从而推导出离心率. 【详解】由题意可得图像如下图所示:F '为双曲线的左焦点AB Q 为圆的直径 90AFB ∴∠=o根据双曲线、圆的对称性可知:四边形AFBF '为矩形12ABF AFBF FBF S S S ''∆∆∴== 又2224tan 45FBF b S b a ∆'===o,可得:225c a = 25e ∴= 5e ⇒=本题正确选项:D 【点睛】本题考查双曲线的离心率求解,离心率问题的求解关键在于构造出关于,a c 的齐次方程,从而配凑出离心率的形式.8.如图,设椭圆E :22221(0)x y a b a b+=>>的右顶点为A ,右焦点为F ,B 为椭圆在第二象限上的点,直线BO 交椭圆E 于点C ,若直线BF 平分线段AC 于M ,则椭圆E 的离心率是( ) A .12B .23C .13D .14【答案】C 【解析】如图,设AC 中点为M ,连接OM ,则OM 为△ABC 的中位线, 于是△OFM ∽△AFB ,且OF OM 1FAAB2==, 即c c a -=12可得e=c a =13. 故答案为13. 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.9.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.10.已知双曲线2222:1(0,0)x y C a b a b-=>>,点()00,P x y 是直线40bx ay a -+=上任意一点,若圆()()22001x x y y -+-=与双曲线C 的右支没有公共点,则双曲线的离心率取值范围是( ). A .(]1,2 B .(]1,4 C .[)2,+∞ D .[)4,+∞ 【答案】B 【解析】 【分析】先求出双曲线的渐近线方程,可得则直线bx ay 2a 0-+=与直线bx ay 0-=的距离d ,根据圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,可得d 1≥,解得即可. 【详解】由题意,双曲线2222x y C :1(a 0,b 0)a b-=>>的一条渐近线方程为b y x a =,即bx ay 0-=,∵()00P x ,y 是直线bx ay 4a 0-+=上任意一点,则直线bx ay 4a 0-+=与直线bx ay 0-=的距离224a 4a d ca b ==+, ∵圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,则d 1≥, ∴41a c ≥,即4ce a=≤,又1e > 故e 的取值范围为(]1,4, 故选:B . 【点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线C 的右支没有公共点得出d 1≥是解答的关键,着重考查了推理与运算能力,属于基础题.11.若函数1()ln (0,0)a a f x x a b b b+=-->>的图象在x =1处的切线与圆x 2+y 2=1相切,则a +b 的最大值是( ) A .4 B .2 C .2 D . 【答案】D 【解析】()1ln (0,0)a a f x x a b b b+=-->>,所以()'a f x bx =-,则f ′(1)=-ab为切线的斜率, 切点为(1,-1a b+), 所以切线方程为y +1a b +=-ab(x -1), 整理得ax +by +1=0.因为切线与圆相切,所以22a b+=1,即a 2+b 2=1.由基本不等式得a 2+b 2=1≥2ab , 所以(a +b )2=a 2+b 2+2ab =1+2ab ≤2, 所以a +b ≤,即a +b 的最大值为.故选D.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00(,)P x y 及斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 的切点的切线方程为:000'()()y y f x x x -=-.若曲线()y f x =在点00(,())P x f x 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.12.已知抛物线24x y =的焦点为F ,准线为l ,抛物线的对称轴与准线交于点Q ,P 为抛物线上的动点,PF m PQ =,当m 最小时,点P 恰好在以,F Q 为焦点的椭圆上,则椭圆的离心率为( )A .3-B .2-CD 1【答案】D 【解析】由已知,(01)(01)F Q ,,,-,过点P 作PM 垂直于准线,则PM PF =.记PQM α∠=,则sin PF PM m PQPQα===,当α最小时,m 有最小值,此时直线PQ与抛物线相切于点P .设204x P x ⎛⎫ ⎪⎝⎭,,可得(21)P ,±,所以2PQ PF ,==,则2PF PQ a +=,∴1a =,1c =,∴1ce a==,故选D .13.已知曲线()2222:100x y C a b a b-=>,>的左、右焦点分别为12,,F F O 为坐标原点,P是双曲线在第一象限上的点,MO OP =u u u u v u u u v,直线2PF 交双曲线C 于另一点N ,若122PF PF =,且2120MF N ∠=︒则双曲线C 的离心率为( )A BC D【答案】B 【解析】 【分析】由题意结合双曲线的定义可得124,2PF a PF a == ,在三角形12PF F 中,由余弦定理可得2224208c a a =+,据此计算双曲线的离心率即可. 【详解】由题意,122PF PF =,由双曲线的定义可得,122PF PF a -= ,可得124,2PF a PF a == ,由四边形12PF MF 为平行四边形,又2120MF N ∠=︒,可得12120F PF ∠=︒, 在三角形12PF F 中,由余弦定理可得2224164242cos120c a a a a =+-⋅⋅⋅︒ ,即有2224208c a a =+,即227c a =,可得c =,即ce a==【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a =; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).14.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .2y x =±C .3y x =D .2y x =±【答案】A【解析】 【分析】 设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由b y x a =±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =,所以2212||46413F F =+=13c ⇒=因为2521a x a =-=⇒=,所以23b =所以双曲线的渐近线方程为b y x a=±=±. 【点睛】 本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.15.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n +的最小值为( ) A .92B .9C .6D .3 【答案】D【解析】【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】 把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=, 又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=. Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225*********n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立. 12m n∴+的最小值为3. 故选:D .【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.16.过坐标轴上的点M 且倾斜角为60°的直线被圆2240x y y +-=所截得的弦长为M 的个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】设出直线方程,根据弦长公式,转化为圆心到直线的距离建立等量关系求解.【详解】由直线的斜率为tan 60k ︒==y b =+.圆2240x y y +-=可化为22(2)4x y +-=,圆心为(0,2),半径为2r =, 则由弦长公式得:圆心(0,2)到直线y b =+的距离为1d ===,即|2|12b -+=,解得0b =,4b =,故直线的方程为y =或4y =+.直线y =过坐标轴上的点(0,0),直线4y =+过坐标轴上的点()0,4与3⎛⎫- ⎪ ⎪⎝⎭,故点M 的个数为3.故选:C.【点睛】此题考查直线与圆的位置关系,根据弦长公式将弦长问题转化为圆心到直线的距离求解.17.已知1F ,2F 是双曲线22221x y a b-=(0a >,0b >)的左、右焦点,点A 是双曲线上第二象限内一点,且直线1AF 与双曲线的一条渐近线b y x a=平行,12AF F ∆的周长为9a ,则该双曲线的离心率为( )A .2B C .3D .【答案】A【解析】【分析】根据双曲线的定义,结合三角形的周长可以求出1AF 和2AF 的表达式,根据线线平行,斜率的关系,结合余弦定理进行求解即可.【详解】 由题意知212AF AF a -=,2192AF AF a c +=-,解得21122a c AF -=,1722a c AF -=, 直线1AF 与b y x a =平行,则12tan b AF F a ∠=,得12cos a AF F c∠=, 222121214cos 22AF c AF a AF F c AF c+-∠==⋅, 化简得22280c ac a +-=,即2280e e +-=,解得2e =.故选:A【点睛】本题考查求双曲线的离心率,考查了双曲线的定义的应用,考查了余弦定理的应用,考查了数学运算能力.18.设椭圆22221(0)x y a b a b+=>>的右焦点为F ,过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点,且满足AP BP <u u u v u u u v ,设O 为坐标原点,若(,)OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,29λμ=,则该椭圆的离心率为( )A .35B .1213C .35或1213D .45【答案】A【解析】 分析:根据向量共线定理及29λμ=,AP BP <u u u v u u u v ,可推出λ,μ的值,再根据过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),可推出P ,B 两点的坐标,然后求出过椭圆的左顶点和上顶点的直线1l 的方程,即可求得A 点的坐标,从而可得a ,b ,c 三者关系,进而可得椭圆的离心率. 详解:∵A 、P 、B 三点共线,(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v∴1λμ+= 又∵29λμ= ∴1323λμ⎧=⎪⎪⎨⎪=⎪⎩或2313λμ⎧=⎪⎪⎨⎪=⎪⎩ ∵AP BP <u u u v u u u v∴2313λμ⎧=⎪⎪⎨⎪=⎪⎩∵过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限) ∴2(,)b P c a ,2(,)b B c a - ∵过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点∴直线1l 的方程为为1x y a b +=- ∴()(,)a c b A c a+ ∵2133OP OA OB =+u u u r u u u r u u u r ∴222()1()33b a c b b a a a+=⋅+⋅-,即2b a c =+. ∴22224()2a c a ac c -=++,即223520a c ac --=.∴25230e e +-=∵(0,1)e ∈ ∴35e =故选A. 点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式c e a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).19.已知椭圆2221(1)x y a a+=>的左、右焦点分别为1F ,2F ,A 是椭圆在第一象限上的一个动点,圆C 与1F A 的延长线,12F F 的延长线以及线段2AF 都相切,且()3,0M 为其中一个切点.则椭圆的离心率为( )AB.3 C.2 D【答案】B【解析】【分析】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等和椭圆的定义,解方程得出3a =,求出c ,进而可得离心率.【详解】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等,得AN AT =, 11F N F M =,22F T F M =,1(,0)F c -,2(,0)F c ,由椭圆的定义可得,122AF AF a +=,()111223+22+F N F M c AF AN a AF AN a AN AT TF ==+==-+=+- 222(3)a F M a c =-=--,则26a =,即3a =,又1b =,所以2222c a b =-=,因此椭圆的离心率为223c e a ==. 故选:B.【点睛】本题主要考查求椭圆的离心率,熟记椭圆的定义,以及椭圆的简单性质即可,属于常考题型.20.已知平面向量,,a b c r r r 满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( )A 75-B 73-C .532-D 31- 【答案】A【解析】【分析】 根据题意,易知a r 与b r 的夹角为60︒,设(=13a ,r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r ,可得2212302x y x y +-+=,所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果.【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r 的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r ,因为()()21a c b c -⋅-=r r r r ,所以221202x y x +-+=,又b c -=r r所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值,又圆221202x y x +-+=的圆心坐标为1⎛ ⎝⎭,所以点()20,与圆221202x y x +-+=上一动点距离的最小值为=. 故选:A.【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.。

分析错因_走出误区——高考解析几何解答题易错题归类剖析

分析错因_走出误区——高考解析几何解答题易错题归类剖析

ʏ江苏省无锡市第六高级中学 陈 敏ʏ江苏省无锡市青山高级中学 张启兆解析几何是高中数学的重要内容,但有些同学由于对某些知识点理解不透彻,或考虑不周等原因,导致在解题过程中出现这样和那样的错误,下面对高考解析几何解答题的易错题型进行归类剖析,希望对同学们的复习备考能有所帮助㊂一、忽略直线斜率不存在的情形例1 已知F (2,0)为椭圆x 2a 2+y 2b2=1(a >b >0)的焦点,且点P 2,55在椭圆上㊂(1)求椭圆的方程㊂(2)已知直线l 与椭圆交于M ,N 两点,且坐标原点O 到直线l 的距离为306,试问:øM O N 的大小是否为定值若是,求出该定值;若不是,请说明理由㊂错解:(1)由椭圆的定义得2a =(2-2)2+552+(2+2)2+552=25,解得a =5㊂因为c =2,所以b =1㊂故椭圆的方程为x 25+y 2=1㊂(2)设点M (x 1,y 1),N (x 2,y 2)㊂设直线l 的方程为y =k x +m ,由点到直线的距离公式得|m |k 2+1=306,则m 2=56(k 2+1)㊂联立y =k x +m ,x 2+5y 2=5,消去y 整理得(5k 2+1)x 2+10k m x +5m 2-5=0,Δ=100k 2m 2-20(m 2-1)(5k 2+1)=20(5k 2+1-m 2)>0,即m 2<5k 2+1㊂由韦达定理得x 1+x 2=-10k m5k 2+1,x 1x 2=5(m 2-1)5k 2+1,所以O M ң㊃O N ң=x 1x 2+y 1y 2=x 1x 2+(k x 1+m )(k x 2+m )=(k 2+1)㊃x 1x 2+k m(x 1+x 2)+m2=5(k 2+1)(m 2-1)-10k 2m25k 2+1+m2=6m 2-5(k 2+1)5k 2+1=0,所以O M ңʅO N ң,即øM O N =π2㊂剖析:第(1)问的解答正确,第(2)问的解答中忽略直线斜率不存在的情形㊂正解:(2)当直线l 的斜率存在时,同错解㊂当直线l 的斜率不存在时,则直线l 的方程为x =ʃ306,结合对称性不妨设直线l 的方程为x =306,联立x =306,x25+y 2=1,解得x =306,y =306,或x =306,y =-306,即得点M306,306,N 306,-306,此时O M ң㊃O N ң=0,故øM O N =π2㊂综上所述,øM O N =π2㊂易错提醒:本题的易错点有两个:一是忽略对直线斜率不存在的情形的讨论;二是øM O N =π2不是显性的,比较隐晦,识别出来有困难,但我们可以从特殊情况,即直线l 的斜率不存在入手,求出对应的定值,再利用82 解题篇 易错题归类剖析 高考数学 2023年4月Copyright ©博看网. All Rights Reserved.向量的数量积证明这个值与变量无关㊂二㊁盲目应用判别式例2 若圆(x -a )2+y 2=4与抛物线y 2=6x 没有公共点,求a 的取值范围㊂错解:由于圆(x -a )2+y 2=4与抛物线y 2=6x 没有公共点,所以联立方程组(x -a )2+y 2=4,y2=6x ,消去y 得方程x 2-(2a -6)x +a 2-4=0无解,所以Δ=(2a -6)2-4a 2-4<0,解得a >136,故a 的取值范围为136,+ɕ ㊂剖析:这属于知识性错误,产生错误的原因是没有理解判别式Δ只适用于直线与二次曲线的位置关系的判断,而不适用于两个二次曲线之间的位置关系的判断㊂正解:由于圆的半径为2,当圆与抛物线外切时,a =-2,于是当a <-2时,圆与抛物线没有公共点㊂当圆与抛物线内切时,联立(x -a )2+y 2=4,y 2=6x ,消去y 整理得x 2-(2a -6)x +a 2-4=0㊂①Δ=(2a -6)2-4a 2-4=0,解得a =136,代入方程①得3x 2+5x +2512=0,解得x =-56,是负根,显然圆与抛物线不能内切,所以当x ȡ0时,问题等价于圆心(a ,0)到抛物线的距离d 的最小值大于2,求a 的取值范围㊂设P (x ,y )为抛物线上一点,则d 2=(x -a )2+y 2=(x -a )2+6x =[x -(a -3)]2+6a -9㊂设f (x )=[x -(a -3)]2+6a -9(x ȡ0),当a -3>0,即a >3时,f (a -3)最小,所以d m i n =6a -9>2,解得a >136,又a >3,所以a >3;当a -3ɤ0,即a ɤ3时,f (0)最小,所以d m i n =a >2,此时2<a ɤ3㊂综上可得,a >2㊂故a 的取值范围为a <-2或a >2㊂易错提醒:二次曲线与二次曲线的交点问题不能完全类比直线与二次曲线位置关系的探讨,仅用判别式法是不够的,这是因为二次曲线是有范围限制的,并且一般情况下具有对称性,要结合起来一起讨论㊂由于我们研究的是曲线与曲线之间的位置关系,图形未必能把细微处的走向描述清楚,必须与代数运算结合起来,即以数助形,数形结合㊂三㊁求取值范围时,未考虑直线与圆锥曲线的公共点的个数例3 已知双曲线C :x 2a2-y 2b2=1与椭圆x 24+y23=1的离心率互为倒数,且双曲线的右焦点到C 的一条渐近线的距离为3㊂(1)求双曲线C 的方程;(2)直线y =2x +m 与双曲线C 交于A ,B 两点,点M 在双曲线C 上,且O M ң=2O Aң+λO B ң,求λ的取值范围㊂错解:(1)因为椭圆x 24+y 23=1的离心率为12,所以a 2+b 2a =2,即a 2=b 23㊂因为双曲线的右焦点到C 的一条渐近线的距离为3,所以b =3,所以a =1,故双曲线C 的方程为x 2-y 23=1㊂(2)设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),联立方程y =2x +m ,3x 2-y 2=3,消去y 整理得x 2+4m x +m 2+3=0,则x 1+x 2=-4m ,x 1x 2=m 2+3㊂因为O M ң=2O A ң+λO B ң,所以x 0=2x 1+λx 2,y 0=2y 1+λy 2㊂因为点M 在双曲线C 上,所以2x 1+λx 22-2y 1+λy 223=1,即4㊃x 21-y 213+λ2x 22-y 223+4λx 1x 2-43㊃λy 1y 2=1,所以4λx 1x 2-43λy 1y 2+λ2+3=4λx 1x 2-43λ(2x 1+m )(2x 2+m )+λ2+3=0,即λ2-4λ+3+8m 2λ=0,显然λʂ0,于是8m 2=-λ2-4λ+3λȡ0 (*),所以λ(λ2-92解题篇 易错题归类剖析 高考数学 2023年4月Copyright ©博看网. All Rights Reserved.4λ+3)ɤ0,λʂ0,解得λ<0,或1<λ<3㊂综上所述,λ的取值范围为-ɕ,0 ɣ1,3㊂剖析:第(1)问的解答正确,第(2)问的解答中未考虑直线与圆锥曲线的公共点的个数对m 的限制,故最后求λ的取值范围时出现错误㊂正解:(2)前面同错解㊂考虑Δ=16m 2-4(m 2+3)>0⇒m 2>1,将(*)式改为8m 2=-λ2-4λ+3λ>8㊂当λ>0时,得λ2+4λ+3<0,解得-3<λ<-1,与λ>0矛盾;当λ<0时,得λ2+4λ+3>0,解得λ>-1,或λ<-3,所以λ<-3,或-1<λ<0㊂综上所述,λ的取值范围为-ɕ,-3 ɣ-1,0㊂易错提醒:审题不仔细,马虎大意,忽视条件 直线与双曲线有两个交点 隐含着判别式Δ=16m 2-4m 2+3>0㊂四、恒成立意义不明导致定点问题错误例4 如图1,M 是圆A :x +32+y 2=16上的动点,点B 3,0,线段M B 的垂直平分线交半径A M 于点P ㊂图1(1)求点P 的轨迹E 的方程㊂(2)N 为轨迹E 与y 轴负半轴的交点,不过点N 且不垂直于坐标轴的直线l 交轨迹E 于S ,T 两点,直线N S ,N T 分别与x 轴交于C ,D 两点㊂若C ,D 的横坐标之积是2,试问:直线l 是否过定点?如果是,求出定点坐标;如果不是,请说明理由㊂易错分析:本题易错点有三个:一是在用参数表示直线S N 的方程时计算错误;二是不会利用 同构 的方法直接写出点D 的横坐标;三是在得到直线系S T 的方程后,对直线恒过定点的意义不明,找错方程的常数解㊂正解:(1)由题意可知|A P |+|P M |=|A M |=4,所以|P A |+|P B |=4>23=|A B |,所以点P 的轨迹是以A ,B 为焦点,长轴为4的椭圆㊂所以2a =4,c =3,所以b =a 2-c 2=1,所以椭圆的方程为x 24+y 2=1,即点P 的轨迹E 的方程为x 24+y 2=1㊂(2)由题意可知点N (0,-1),设直线S T 的方程为y =k x +m (m ʂ-1),设S (x 1,y 1),T (x 2,y 2),联立y =k x +m ,x 2+4y 2=4,消去y 整理得(1+4k 2)x 2+8k m x +4m 2-4=0,所以x 1+x 2=-8k m 1+4k 2,x 1x 2=4m 2-41+4k2,由Δ>0,得4k 2-m 2+1>0㊂所以直线S N 的方程为y +1=y 1+1x 1(x -0),令y =0,得x C =x 1y 1+1㊂同理x D =x 2y 2+1㊂因为x C x D =x 1y 1+1ˑx 2y 2+1=2,所以x 1x 2=2(y 1+y 2+y 1y 2+1)=2[k x 1+m +k x 2+m +(k x 1+m )(k x 2+m )+1]=2[k (x 1+x 2)(m +1)+k 2x 1x 2+(m +1)2],所以4m 2-41+4k 2=2k ˑ-8k m1+4k2(m +1)+ k 2ˑ4m 2-41+4k2+(m +1)2㊂因为m ʂ-1,所以m +1ʂ0,则4(m -1)=-16k 2m +8k 2(m -1)+2(1+4k 2)㊃(m +1),解得m =3,所以直线S T 的方程为y =k x +3㊂所以直线S T 过定点(0,3)㊂规律与方法:(1)若确定动直线l 过定点问题,可设动直线方程(斜率存在)为y =k x +t ,由题设条件将t 用k 表示为t =m k ,得到y =k (x +m ),即可说明动直线过定点(-m ,0)㊂(2)若确定动曲线C 过定点问题,可引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出对应的定点㊂(3)先通过特定位置猜测结论后进行一般性证明㊂对于客观题,通过特殊值法探求定点能取得事半功倍的效果㊂(责任编辑 王福华)3 解题篇 易错题归类剖析 高考数学 2023年4月Copyright ©博看网. All Rights Reserved.。

高三数学培优补差辅导专题讲座-解析几何单元易错题分析与练习

高三数学培优补差辅导专题讲座-解析几何单元易错题分析与练习

解析几何单元易错题练习一.考试内容:椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程. 双曲线及其标准方程.双曲线的简单几何性质. 抛物线及其标准方程.抛物线的简单几何性质. 二.考试要求:(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用.【注意】圆锥曲线是解析几何的重点,也是高中数学的重点内容,高考中主要出现三种类型的试题:①考查圆锥曲线的概念与性质;②求曲线方程和轨迹;③关于直线与圆锥曲线的位置关系的问题. 三.基础知识:(一)椭圆及其标准方程1. 椭圆的定义:椭圆的定义中,平面内动点与两定点1F 、2F 的距离的和大于|1F 2F |这个条件不可忽视.若这个距离之和小于|1F 2F |,则这样的点不存在;若距离之和等于|1F 2F |,则动点的轨迹是线段1F 2F .2.椭圆的标准方程:12222=+b y a x (a >b >0),12222=+bx a y (a >b >0).3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果2x 项的分母大于2y 项的分母,则椭圆的焦点在x 轴上,反之,焦点在y 轴上.4.求椭圆的标准方程的方法:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.(二)椭圆的简单几何性质1. 椭圆的几何性质:设椭圆方程为12222=+by a x (a >b >0).⑴ 范围: -a ≤x ≤a ,-b ≤x ≤b ,所以椭圆位于直线x=a ±和y=b ±所围成的矩形里. ⑵ 对称性:分别关于x 轴、y 轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心.⑶ 顶点:有四个1A (-a ,0)、2A (a ,0)1B (0,-b )、2B (0,b ).线段1A 2A 、1B 2B 分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.⑷ 离心率:椭圆的焦距与长轴长的比ace =叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e <1.e 越接近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆. 2.椭圆的第二定义⑴ 定义:平面内动点M 与一个顶点的距离和它到一条定直线的距离的比是常数ace =(e <1=时,这个动点的轨迹是椭圆.⑵ 准线:根据椭圆的对称性,12222=+by a x (a >b >0)的准线有两条,它们的方程为c a x 2±=.对于椭圆12222=+bx a y (a >b >0)的准线方程,只要把x换成y 就可以了,即ca y 2±=.3.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.设1F (-c ,0),2F (c ,0)分别为椭圆12222=+by a x (a >b >0)的左、右两焦点,M (x ,y )是椭圆上任一点,则两条焦半径长分别为ex a MF +=1,ex a MF -=2.椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.椭圆的四个主要元素a 、b 、c 、e 中有2a =2b +2c 、ace =两个关系,因此确定椭圆的标准方程只需两个独立条件. 4.椭圆的参数方程椭圆12222=+b y a x (a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数).说明 ⑴ 这里参数θ叫做椭圆的离心角.椭圆上点P 的离心角θ与直线OP的倾斜角α不同:θαtan tan ab=;⑵ 椭圆的参数方程可以由方程12222=+by a x 与三角恒等式1sin cos 22=+θθ相比较而得到,所以椭圆的参数方程的实质是三角代换. 92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩. 5.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b⇔+>.6. 椭圆的切线方程(1)椭圆22221(0)x y a b a b+=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b+=>>与直线0A x B y C ++=相切的条件是2222A a B b c+= (三)双曲线及其标准方程1. 双曲线的定义:平面内与两个定点1F 、2F 的距离的差的绝对值等于常数2a (小于|1F 2F |)的动点M 的轨迹叫做双曲线.在这个定义中,要注意条件2a <|1F 2F |,这一条件可以用“三角形的两边之差小于第三边”加以理解.若2a=|1F 2F |,则动点的轨迹是两条射线;若2a >|1F 2F |,则无轨迹.若1MF <2MF 时,动点M 的轨迹仅为双曲线的一个分支,又若1MF >2MF 时,轨迹为双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.2. 双曲线的标准方程:12222=-b y a x 和12222=-bx a y (a >0,b >0).这里222a c b -=,其中|1F 2F |=2c.要注意这里的a 、b 、c 及它们之间的关系与椭圆中的异同.3.双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.4.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. (四)双曲线的简单几何性质1.双曲线12222=-by a x 的实轴长为2a ,虚轴长为2b ,离心率a c e =>1,离心率e越大,双曲线的开口越大.2. 双曲线12222=-by a x 的渐近线方程为x a b y ±=或表示为02222=-b y a x .若已知双曲线的渐近线方程是x nmy ±=,即0=±ny mx ,那么双曲线的方程具有以下形式:k y n x m =-2222,其中k 是一个不为零的常数.3.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线12222=-b y a x ,它的焦点坐标是(-c ,0)和(c ,0),与它们对应的准线方程分别是ca x 2-=和c a x 2=.双曲线22221(0,0)x y a b a b-=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.4.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b⇔->.(2)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b⇔-<.5.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-by a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222by a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上). 6. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b-=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A a B b c -=.(五)抛物线的标准方程和几何性质1.抛物线的定义:平面内到一定点(F )和一条定直线(l )的距离相等的点的轨迹叫抛物线。

春季08-高三数学培优版-三轮复习专题:解析几何解答题分析2-教师版

春季08-高三数学培优版-三轮复习专题:解析几何解答题分析2-教师版

教师姓名 学生姓名年 级高三上课时间学 科数学课题名称专题:解析几何解答题分析2一.知识梳理:解析几何在解答题中研究在基础问题的处理上常会研究曲线的方程求法、几何性质以及一些几何形式的应用(距离、角、面积、弦等),在提升拔高上常会研究变量的参与使得产生动态问题,随着动态的变化研究相应的范围、最值、定点、定值等一系列问题 1.范围、最值问题 2.定值问题、存在性问题; 3.过定点、定直线等问题 二、例题讲解:例1.(2017届奉贤二模21)已知椭圆E :22221(0)x y a b a b+=>>,左焦点是1F .(1)若左焦点1F 与椭圆E 的短轴的两个端点是正三角形的三个顶点,点⎪⎭⎫ ⎝⎛21,3Q 在椭圆E 上.求椭圆E 的方程;(2)过原点且斜率为()0t t >的直线1l 与(1)中的椭圆E 交于不同的两点,G H ,专题:解析几何解答题分析2AB CM k k ⋅2CM k ∴=16(k ∴∆=4r ==23k ∴=∉综上所述,直线(3)([)0,24,5r ∈时,共时,共4条;1与双曲线22a b-=220F A F B +=.将直线右侧的双曲线部分(不含A ,B 两点)记为曲线作一条射线,分别交(,)M M M x y (点M 在第一象限1F P .)求2W 的方程)证明:x 斜率之间的关系; )设直线MF 220F A F B +=知,F 且由椭圆与双曲线的对称性知,A 、B 关于x 轴对称,2(1,)2A ,2(1,2B -a 1F P =(x p +1,1F M =(x M +1,1)p x +,即p p mx m my +-分别在曲线1W 上,有现2931A B y y m =-, 21231A Bmy y m +=--, 代入上式, 得1812(2)0m t m --=对一切33m ≠±都成立. 即182412t =-, 12t =. 此时交点的横坐标为()B A A By x t x t y y --=+-2()(2)(2)11125222224A B BB A A B A B ty y t y my t t y y y y y -+--+--=+=+=+=---. 综上, t 存在, 12t =, 此时两直线的交点为5,04⎛⎫⎪⎝⎭. 21. [2019届普陀二模21]设曲线2:2y px Γ=(0p >),D 是直线:2l x p =-上的任意一点,过D 作Γ的切线,切点分别为A 、B ,记O 为坐标原点. (1)设(4,2)D -,求△DAB 的面积;(2)设D 、A 、B 的纵坐标依次为0y 、1y 、2y ,求证:1202y y y +=;(3)设点M 满足OM OA OB =+,是否存在这样的点D ,使得M 关于直线AB 的对称点N 在Γ上?若存在,求出D 的坐标,若不存在,请说明理由. 21.(1)205;(2)略;(3)(2,0)p -例5.(2018届虹口区年二模20题)如果直线与椭圆只有一个交点,称该直线为椭圆的“切线”.已知椭圆22:12x C y +=,点(,)M m n 是椭圆C 上的任意一点,直线l 过点M 且是椭圆C 的“切线”. (1)证明:过椭圆C 上的点(,)M m n 的“切线”方程是12mxny +=; (2)设A ,B 是椭圆C 长轴上的两个端点,点(,)M m n 不在坐标轴上,直线MA ,MB 分别交y 轴于点P ,Q ,过M 的椭圆C 的“切线”l 交y 轴于点D ,证明:点D 是线段PQ 的中点;(2,d n =1(1MF =-2(1)MF n =--,记d 与1MF 的夹角d 与2MF 的夹角分114d MF d MF ⋅=224d MF d MF ⋅=cos αβ=,有届杨浦区年二模12KF KF ⋅的范围;能否为平行四边形? ,设),(y x K的坐标;如果不存在,请说明理由;2OP OQ OM +=,当b 33, 2c b =, ………………221PF ,即2224c PF +=所以,椭圆Γ上不存在这样的点E ,使得1F E 、关于直线l 成轴对称. ……10分(3)由3a b =,得椭圆Γ方程为222330x y b +-=,且2c b =,2F 的坐标为(2,0)b ,所以可设直线l 的方程为2(cot )x m y b m α=+=,代入222330x y b +-=得:()2223220my bmy b ++-=因为点M 满足2OP OQ OM +=,所以点M 是线段PQ 的中点设M 的坐标为(),x y '',则y '=122223y y bmm +=-+ ………………12分 因为直线1:6l y =上总存在点M 满足2OP OQ OM +=所以2263bm y m '=-=+,且0m <,所以333236b m m ⎛⎫=-+≥⋅= ⎪-⎝⎭,当且仅当3m m-=-,即3m =-时取等号. ………………14分所以当cot 3m α==-时,min 6b =,此时直线l 的倾斜角56πα=. …………16分8.(2018届长嘉二模20)已知椭圆Γ:12222=+by a x (0>>b a )的焦距为32,点)2,0(P 关于直线x y -=的对称点在椭圆Γ上. (1)求椭圆Γ的方程;(2)如图,过点P 的直线l 与椭圆Γ交于两个不同的点C 、D (点C 在点D 的上方),试求△COD 面积的最大值;(3)若直线m 经过点)0,1(M ,且与椭圆Γ交于两个不同的点A 、B ,是否存在直线0l :0x x =(其中20>x ),使得A 、B 到直线0l 的距离A d 、B d 满足||||MB MA d d B A =恒成立?若存在 ,求出0x 的值;若不存在,请说明理由.答案:(1)点)2,0(P 关于直线x y -=的对称点为)0,2(-, ……………………………(1分) 因为)0,2(-在椭圆Γ上,所以2=a ,又322=c ,故3=c , ………………(3分)MO xy l P CD·则212120222210)1(||)1(||||||y x x x y x x x MA d MB d B A +-⋅--+-⋅-=⋅-⋅2122022210)1)(1(||)1)(1(||-+⋅---+⋅-=x k x x x k x x |]1||||1||[|11202102-⋅---⋅-⋅+=x x x x x x k )]1)(()1)([(11202102-----⋅+=x x x x x x k[]02))(1(212121002=+++-⋅+=x x x x x x k ,所以,02))(1(2212100=+++-x x x x x x , ………………………………(4分)即014)1(814)1(82222200=+-+++-k k k k x x ,解得40=x . …………………………(5分) 综上,存在满足条件的直线4=x ,使得||||MB MA d d B A =恒成立. ………………(6分)9.(2018届徐汇二模20)如图,,A B 是椭圆22:12x C y +=长轴的两个端点,,M N 是椭圆上与,A B 均不重合的相异两点,设直线,,AM BN AN 的斜率分别是123,,k k k .(1)求23k k ⋅的值; (2)若直线MN 过点2,02⎛⎫⎪ ⎪⎝⎭,求证:1316k k ⋅=-; (3)设直线MN 与x 轴的交点为(,0)t (t 为常数且0t ≠),试探究直线AM 与直线BN 的交点Q 是否落在某条定直线上?若是,请求出该定直线的方程;若不是,请说明理由. 答案:(1)设00(,)N x y ,由于(2,0),(2,0)A B -,所以200232000222y y y k k x x x ⋅=⋅=--+,因为00(,)N x y 在椭圆C 上,于是220012x y +=,即220022x y -=-,所以222122122211222(2)()(2)(2)(2)222(2)(2)(2)(2)2t mt m t y m t t m y m m t m t t m y m t y m -⋅++---+-++++==--+-+⋅+-+ 2121(2)(2)222(2)(2)2m t m y t t t m t m y t-+-+++=⋅=-+++-, 于是2xt =,所以2x t =,即直线AM 与直线BN 的交点Q 落在定直线2x t=上.16分 10.(2017届黄浦二模20)设椭圆M :22221(0)x y a b a b +=>>的左顶点为A 、中心为O ,若椭圆M 过点11(,)22P -,且AP PO ⊥. (1)求椭圆M 的方程;(2)若△APQ 的顶点Q 也在椭圆M 上,试求△APQ 面积的最大值;(3)过点A 作两条斜率分别为12,k k 的直线交椭圆M 于,D E 两点,且121k k =,求证:直线DE 恒过一个定点.答案:(1)由 AP OP ⊥,可知1AP OP k k ⋅=-,又A 点坐标为(,0),a -故1122111+22a ⋅=---,可得1a =,因为椭圆M 过P 点,故211+144b =,可得213b =, 所以椭圆M 的方程为22113yx +=. (2)AP 的方程为01110122y x -+=--+,即10x y -+=, 由于Q 是椭圆M 上的点,故可设3(cos ,sin )3Q θθ,所以3cos sin 1312222APQ S θθ∆-+=⨯⨯123cos()1436πθ=++ 当2()6k k πθπ+=∈Z ,即2()6k k πθπ=-∈Z 时,APQ S ∆取最大值.故APQ S ∆的最大值为3164+. xy。

高中高考数学解析几何单元易错题练习及答案解析

高中高考数学解析几何单元易错题练习及答案解析

高中高考数学解析几何单元易错题练习及答案解析一.考试内容:椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程.双曲线及其标准方程.双曲线的简单几何性质. 抛物线及其标准方程.抛物线的简单几何性质.二.考试要求:(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用.【注意】圆锥曲线是解析几何的重点,也是高中数学的重点内容,高考中主要出现三种类型的试题:①考查圆锥曲线的概念与性质;②求曲线方程和轨迹;③关于直线与圆锥曲线的位置关系的问题.三.基础知识:(一)椭圆及其标准方程1. 椭圆的定义:椭圆的定义中,平面内动点与两定点1F 、2F 的距离的和大于|1F 2F |这个条件不可忽视.若这个距离之和小于|1F 2F |,则这样的点不存在;若距离之和等于|1F 2F |,则动点的轨迹是线段1F 2F .2.椭圆的标准方程:12222=+b y a x (a >b >0),12222=+b x a y (a >b >0).3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果2x 项的分母大于2y 项的分母,则椭圆的焦点在x 轴上,反之,焦点在y 轴上.4.求椭圆的标准方程的方法:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. (二)椭圆的简单几何性质1.椭圆的几何性质:设椭圆方程为12222=+by a x (a >b >0).⑴ 范围: -a ≤x ≤a ,-b ≤x ≤b ,所以椭圆位于直线x=a ±和y=b ±所围成的矩形里. ⑵ 对称性:分别关于x 轴、y 轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心. ⑶ 顶点:有四个1A (-a ,0)、2A (a ,0)1B (0,-b )、2B (0,b ).线段1A 2A 、1B 2B 分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.⑷ 离心率:椭圆的焦距与长轴长的比ace =叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e <1.e 越接近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆. 2.椭圆的第二定义⑴ 定义:平面内动点M 与一个顶点的距离和它到一条定直线的距离的比是常数ace =(e <1=时,这个动点的轨迹是椭圆.⑵ 准线:根据椭圆的对称性,12222=+by a x (a >b >0)的准线有两条,它们的方程为c a x 2±=.对于椭圆12222=+b x a y (a >b >0)的准线方程,只要把x 换成y 就可以了,即ca y 2±=.3.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.设1F (-c ,0),2F (c ,0)分别为椭圆12222=+by a x (a >b >0)的左、右两焦点,M(x ,y )是椭圆上任一点,则两条焦半径长分别为ex a MF +=1,ex a MF -=2.椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.椭圆的四个主要元素a 、b 、c 、e 中有2a =2b +2c 、ace =两个关系,因此确定椭圆的标准方程只需两个独立条件.4.椭圆的参数方程椭圆12222=+b y a x (a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数).说明 ⑴ 这里参数θ叫做椭圆的离心角.椭圆上点P 的离心角θ与直线OP 的倾斜角α不同:θαtan tan ab=;⑵ 椭圆的参数方程可以由方程12222=+by a x 与三角恒等式1sin cos 22=+θθ相比较而得到,所以椭圆的参数方程的实质是三角代换. 92.椭圆22221(0)x y a b a b+=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.5.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b ⇔+>.6. 椭圆的切线方程(1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y ya b+=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b +=>>与直线0Ax By C ++=相切的条件是22222A aB b c+=(三)双曲线及其标准方程1.双曲线的定义:平面内与两个定点1F 、2F 的距离的差的绝对值等于常数2a (小于|1F 2F |)的动点M 的轨迹叫做双曲线.在这个定义中,要注意条件2a <|1F 2F |,这一条件可以用“三角形的两边之差小于第三边”加以理解.若2a=|1F 2F |,则动点的轨迹是两条射线;若2a >|1F 2F |,则无轨迹.若1MF <2MF 时,动点M 的轨迹仅为双曲线的一个分支,又若1MF >2MF 时,轨迹为双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.2. 双曲线的标准方程:12222=-b y a x 和12222=-bx a y (a >0,b >0).这里222a c b -=,其中|1F 2F |=2c.要注意这里的a 、b 、c 及它们之间的关系与椭圆中的异同.3.双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.4.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. (四)双曲线的简单几何性质1.双曲线12222=-by a x 的实轴长为2a ,虚轴长为2b ,离心率a ce =>1,离心率e 越大,双曲线的开口越大.2. 双曲线12222=-by a x 的渐近线方程为x a by ±=或表示为02222=-b y a x .若已知双曲线的渐近线方程是x nmy ±=,即0=±ny mx ,那么双曲线的方程具有以下形式:k y n x m =-2222,其中k 是一个不为零的常数.3.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线12222=-by a x ,它的焦点坐标是(-c ,0)和(c ,0),与它们对应的准线方程分别是c a x 2-=和ca x 2=.双曲线22221(0,0)x y a b a b -=>>的焦半径公式 21|()|a PF e x c =+,22|()|a PF e x c=-.4.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->.(2)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b⇔-<.5.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-by a x 有公共渐近线,可设为λ=-2222b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).6. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y ya b-=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=.(3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A a B b c -=.(五)抛物线的标准方程和几何性质1.抛物线的定义:平面内到一定点(F )和一条定直线(l )的距离相等的点的轨迹叫抛物线。

高考专题讲座--解析几何热点问题(201911新)

高考专题讲座--解析几何热点问题(201911新)

4、重视对数学思想、方法进行归纳提炼,达到优化解 题思路,简化解题过程的目的。
用好方程思想。解析几何的题目大部分都以方程形式 给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦 长问题利用韦达定理进行整体处理,就可简化解题运算 量。
用好函数思想Hale Waihona Puke 掌握坐标法。二、学习目标
三、知识梳理
;护肤品代理加盟 天然化妆品
总结近几年的高考试题,复习时应注意以下问题: 1、重点掌握椭圆、双曲线、抛物线的定义或性质 这是因为椭圆、双曲线、抛物线的定义和性质是本章的基石,高考所考 的题目都要涉及到这些内容,要善于多角度、多层次不断巩固强化三基, 努力促进知识的深化、升华。 2、重视求曲线的方程或曲线的轨迹 曲线的方程或轨迹问题往往是高考解答题的命题对象,而且难度较大, 所以要掌握求曲线的方程或曲线的轨迹的一般方法:定义法、直接法、待 定系数法、代入法(中间变量法)、相关点法等,还应注意与向量、三角 等知识相结合。 3、加强直线与圆锥曲线的位置关系问题的复习 由于直线与圆锥曲线的位置关系一直为高考的热点,这类问题常涉及到 圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因 此分析问题时利用数形结合思想和设而不求法与弦长公式及韦达定理联系 去解决问题,这样就加强了对数学各种能力的考查,其中着力抓好“运算 关”,增强抽象运算与变形能力。解析几何的解题思路容易分析出来,往 往由于运算不过关半途而废,在学习过程中,应当通过解题,寻求合理运 算方案,以及简化运算的基本途径和方法,亲身经历运算困难的发生与克 服困难的完整过程,增强解决复杂问题的信心。
近几年,解析几何考查的热点有以下几个 ――求曲线方程或点的轨迹 ――求参数的取值范围 ――求值域或最值 ――直线与圆锥曲线的位置关系 以上几个问题往往是相互交叉的,例如求轨迹方程时就要考虑参数的 范围,而参数范围问题或者最值问题,又要结合直线与圆锥曲线关系进 行。

春季08-高三数学培优版-三轮复习专题:解析几何解答题分析2-课后作业教师版

春季08-高三数学培优版-三轮复习专题:解析几何解答题分析2-课后作业教师版

1.已知椭圆221124x y +=,12,A A 分别是椭圆长轴的左右端点,Q 为椭圆上动点,设直线1A Q 斜率为k ,且11,23k ⎛⎫∈--⎪⎝⎭,求直线Q A 2斜率的取值范围; 答案:()()1223,0,23,0A A - 设(),Q x y ,则23y k x =+ 223A Q yk x =-222122323A Qy y y k k x x x ∴⋅=⋅=-+-Q在椭圆上()222211121243x y y x ∴+=⇒=- 2221123A Qy k k x ∴⋅==--213A Q k k∴=- 11,23k ⎛⎫∈-- ⎪⎝⎭12,133k ⎛⎫∴-∈ ⎪⎝⎭即22,13A Q k ⎛⎫∈ ⎪⎝⎭2.已知椭圆2212x y +=,过点()2,0M 的直线与椭圆C 相交于两点,A B ,设P 为椭圆上一点,且满足OA OB tOP +=(O 为坐标原点),当253PA PB -<时,求实数t 的取值范围答案:设直线AB 的方程为()2y k x =-,()()1122,,,A x y B x y ,(),P x yOA OB tOP += 1212x x txy y ty +=⎧∴⎨+=⎩联立直线与椭圆方程:()()222222212882021y k x k x k x k x y =-⎧⎪⇒+-+-=⎨+=⎪⎩ 专题:解析几何解答题分析2()()()22228412820kk k ∴∆=-+->,解得:212k <()23121212222884,44212121k k kx x y y k x x k k k k k +=+=+-=-=-+++()()222821421k x t k k y t k ⎧=⎪+⎪∴⎨⎪=-⎪+⎩,代入2212x y +=可得:()()2222284222121k k t k t k ⎛⎫⎛⎫ ⎪ ⎪+-= ⎪ ⎪++⎝⎭⎝⎭2221612k t k∴=+由条件23PA PB -<可得:253AB<12AB x ∴=-<()()22121220149k x x x x ⎡⎤∴++-<⎣⎦,代入22121222882,2121k k x x x x k k -+==++可得: ()()()222222228822014411413021219k k k k k k k ⎡⎤⎛⎫-+-⋅<⇒-+>⎢⎥ ⎪++⎢⎥⎝⎭⎣⎦214k ∴>211,42k ⎛⎫∴∈ ⎪⎝⎭22221618=16,411232k t k k ⎛⎫∴=⋅∈ ⎪+⎝⎭+ 262,,233t ⎛⎛⎫∴∈-- ⎪⎝⎭⎝⎭3.已知椭圆221:132x y C +=的左焦点为1F ,右焦点为2F ,直线1l 过点1F 且垂直于椭圆的长轴,动直线2l 垂直于直线1l ,垂足为点P ,线段2PF 的垂直平分线交2l 于点M , (1)求点M 的轨迹2C 的方程(2)设2C 与x 轴交于点Q ,不同的两点,R S 在2C 上,且满足0QR RS ⋅=,求QS 的取值范围答案:(1)22:4C y x =(2)2C 与椭圆的交点为()0,0Q ,设221212,,,44y y R y S y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭222121121,,,44y y y QR y RS y y ⎛⎫⎛⎫-∴==- ⎪ ⎪⎝⎭⎝⎭()()222121121016y y y QR RS y y y -∴⋅=+-=,因为12y y ≠,化简可得:21116y y y ⎛⎫=-+⎪⎝⎭① 考虑QS ⎛==由①可得222211211116256323264y y y y y ⎛⎫=+=++≥+= ⎪⎝⎭ 2264y ∴≥时,可得1QS =≥)8QS ⎡∈+∞⎣4.已知椭圆22:132x y C +=,问:C 上是否存在点P ,过右焦点F 的直线l 与C 相交于,A B 两点,使得当l 绕右焦点F 旋转到某一位置时,有OP OA OB =+成立?若存在,求出所有的P 的坐标和l 的方程,若不存在,说明理由答案:设()00,P x y ,()()1122,,,A x y B x y 当l 斜率存在时,设():1l y k x =-OP OA OB =+ 012012x x x y y y =+⎧∴⎨=+⎩ 联立直线与椭圆方程:()221236y k x x y =-⎧⎪⎨+=⎪⎩ 消去y 可得:()2222316x kx +-=,整理可得:()2222326360k x k x k +-+-=2122632k x x k∴+=+ ()312122264223232k ky y k x x k k k k +=+-=-=-++22264,3232k k P k k ⎛⎫∴- ⎪++⎝⎭因为P 在椭圆上()2224632k k k ∴=+⇒=当k =):1l y x =-,3,22P ⎛- ⎝⎭当k =时,):1l y x =-,322P ⎛ ⎝⎭当斜率不存在时,可知:1l x = ,1,,1,33A B ⎛⎛- ⎝⎭⎝⎭,则()2,0P 不在椭圆上∴综上所述:):1l y x =-,3,22P ⎛- ⎝⎭或):1l y x =-,3,22P ⎛ ⎝⎭5.过椭圆22:14x y Γ+=的右焦点2F 的直线交椭圆于,A B 两点,1F 为其左焦点,是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆Γ恒有两个交点,P Q ,且OP OQ ⊥?若存在,求出该圆的方程;若不存在,请说明理由答案:假设满足条件的圆为222x y r +=,依题意,若切线与椭圆相交,则圆应含在椭圆内01r ∴<<若直线PQ 斜率存在,设:PQ y kx m =+,()()1122,,,P x y Q x yPQ 与圆相切 ()2221O l d r m r k -∴==⇐=+0OP OQ OP OQ ⊥⇒⋅= 即12120x x y y +=联立方程:2244y kx mx y =+⎧⇒⎨+=⎩()222148440k x kmx m +++-=2121222844,4141km m x x x x k k -∴+=-=++ ()()()2212121212y y kx m kx m k x x km x x m ∴=++=+++()()22121212121x x y y k x x km x x m ∴+=++++()2222244814141m km k km m k k -⎛⎫=⋅++⋅-+ ⎪++⎝⎭22254441m k k --=+225440m k ∴--=对任意的,m k 均成立将()2221m rk=+代入可得:()()22251410r k k +-+=()()225410r k ∴-+= 245r ∴=∴存在符合条件的圆,其方程为:2245x y +=当PQ 斜率不存在时,可知切线PQ 为x =若:PQ x =,则,5555P Q ⎛⎛- ⎝⎭⎝⎭0OP OQ ∴⋅= :PQ x ∴=若:PQ x =,同理可得也符合条件 综上所述,圆的方程为:2245x y +=6.已知椭圆C 的中心在坐标原点,左,右焦点分别为12,F F ,P 为椭圆C 上的动点,12PF F,以原点为中心,椭圆短半轴长为半径的圆与直线3450x y -+=相切 (1)求椭圆的方程(2)若直线l 过定点()1,0且与椭圆C 交于,A B 两点,点M 是椭圆C 的右顶点,直线,AM BM 分别与y 轴交于,P Q 两点,试问以线段PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,说明理由答案:(1)2214x y += (2)当直线l 的斜率存在时,设():1l y k x =-,由椭圆方程可得点()2,0M设()()1122,,,A x y B x y ,联立方程可得:()22441x y y k x ⎧+=⎪⎨=-⎪⎩()2222148440k xk x k +-+-=22121222844,1414k k x x x x k k -∴+==++由()2,0M ,()()1122,,,A x y B x y 可得:()()1212:2,:222y yAM y x BM y x x x =-=---,分别令0x =,可得: 1212220,,0,22y y P Q x x ⎛⎫⎛⎫-- ⎪ ⎪--⎝⎭⎝⎭,设x 轴上的定点为()0,0N x若PQ 为直径的圆是否过()0,0N x ,则0PN QN ⋅=12001222,,,22y y PN x QN x x x ⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭∴问题转化为()()2120124022y y x x x +=--恒成立即()212012124024y y x x x x x +=-++ ①由22121222844,1414k k x x x x k k -+==++及()1y k x =-可得: ()()()2212121212111y y k x x k x x x x =--=-++⎡⎤⎣⎦22341k k -=+代入到①可得:2220222234410448241414k k x k k k k -⋅++=--+++2220212304k x x k-⇒+=-=解得:0x = ∴圆过定点()当直线斜率不存在时,直线方程为1x =,可得PQ 为直径的圆223x y +=过点()所以以线段PQ 为直径的圆过x轴上定点()7.已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为43y x =,右焦点()5,0F ,双曲线的实轴为12A A ,P 为双曲线上一点(不同于12,A A ),直线12,A P A P 分别于直线9:5l x =交于,M N 两点(1)求双曲线的方程(2)试判断FM FN ⋅是否为定值,若为定值,求出该值;若不为定值,请说明理由答案:(1)221916x y -= (2)由(1)可得:()()123,0,3,0A A -,设()00,P x y 设()11:3A P y k x =+,联立方程()1395y k x x =+⎧⎪⎨=⎪⎩解得:1924,55M k ⎛⎫⎪⎝⎭ 同理:设()22:3A P y k x =-,联立方程()1395y k x x =-⎧⎪⎨=⎪⎩可得:296,55N k ⎛⎫- ⎪⎝⎭ 121624166,,,5555k k FM FN ⎛⎫⎛⎫∴=-=-- ⎪ ⎪⎝⎭⎝⎭122561442525k k FM FN ∴⋅=- 下面考虑计算12k k 的值001200,33y y k k x x ==+- 212209y k k x ∴=- ()00,P x y 在双曲线上()22222000001616116991699x y x y x -=⇒=-=- 2012201699y k k x ∴==-25614416025259FM FN ∴⋅=-⋅=所以FM FN ⋅为定值 8.已知椭圆2214x y +=,设不过原点O 的直线():0l y kx m k =+≠,与该椭圆交于,P Q 两点,直线,OP OQ 的斜率依次为12,k k ,且满足124k k k =+,试问:当k 变化时,2m 是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由 答案:设()()1122,,,P x y Q x y ,联立方程可得:2244y kx m x y =+⎧⎨+=⎩消去y 可得:()2244x kx m ++=,整理可得:()222418440kx kmx m +++-=依题意可知:112212111222,y kx m m y kx m m k k k k x x x x x x ++===+===+121211442k k k k k m x x ⎛⎫∴=+⇒=++ ⎪⎝⎭即12122x xk m x x +=⋅ ①由方程()222418440k x kmx m +++-=可得:2121222844,4141km m x x x x k k -+=-=++ 代入①可得:22284124441kmk k m m k -+=⋅-+,整理可得:,212m = ∴可知2m 为定值,与k 的取值无关。

高考专题讲座--解析几何热点问题(2019年8月整理)

高考专题讲座--解析几何热点问题(2019年8月整理)
专 题 解析几何热点问题
一、高考复习建议: 本章内容是高考重点考查的内容,在每年的高考考试卷中占总分的
15%左右,分值一直保持稳定,一般有2-3道客观题和一道解答题。选择 题、填空题不仅重视基础知识和基本方法,而且具有一定的灵活性与综 合性,难度以中档题居多,解答题注重考生对基本方法,数学思想的理 解、掌握和灵活运用,综合性强,难度较大,常作为把关题或压轴题, 其重点是直线与圆锥曲线的位置关系,求曲线方程,关于圆锥曲线的最 值问题。考查数形结合、等价转换、分类讨论、函数与方程、逻辑推理 诸方面的能力,对思维能力、思维方法的要求较高。
近几年,解析几何考查的热点有以下几个 ――求曲线方程或点的轨迹 ――求参数的取值范围 ――求值域或最值 ――直线与圆锥曲线的位置关系 以上几个问题往往是相互交叉的,例如求轨迹方程时就要考虑参数的 范围,而参数范围问题或者最值问题,又要结合直线与圆锥曲线关系进 行。
专 题 解析几何热点问题 秭归县屈原高中 张鸿斌
;http://www.jxraoy源自/ 恒耀 恒耀注册 恒耀平台;
寻复追杀大者二人 诏曰 今车驾驻项 亦不顾子 意指不逊 於是罚琰为徒隶 先国后身 又曰 閟宫有侐 恒摧抑兼并 而此儿忿戾 宠弟充 人寡而禽兽众 著空仓中封之 进讨叛羌 爰暨帝室 徵命屡下 改明年元 矢贯手著棼 则罔不毕取以补其阙 昔每闻东主杀生赏罚 日磾辟歆为掾 谥曰景侯 刘备薨于白帝 及当攻屯 术从兄绍用会稽周昂为九江太守 吕壹 秦博为中书 殃流后嗣 促施行之 戊戌 其生子无以相活 大兵一发 故权卑辞上书 重译而至 据禁止 一日之中 贼不能与吾争西河者 既以重臣 遂世官相承 步度根与轲比能等因乌丸校尉阎柔上贡献 群臣再拜称臣 可显出宛 叶 而间行轻进 决漳水灌城 自古有之 战战兢兢 封都乡侯 更整勒戎马 言於太祖曰 超有信 布之勇 朕甚嘉焉

高中数学解析几何易错点评析专题辅导

高中数学解析几何易错点评析专题辅导

高中数学解析几何易错点评析同学们在解答题时,往往由于对概念掌握得不太准确或不全面而出错,也会由于考虑问题不全面而造成漏解。

现举例如下:例1 求过点P (2,-1)且倾斜角的正弦值为135的直线方程。

易错分析:本题主要考查倾斜角的概念及直线点斜式方程的有关知识。

考查学生根据已知条件熟练求出直线方程的能力和三角函数式变形的能力。

培养学生考虑问题的缜密性、思维的严谨性,使同学们了解解析几何的基本思想——用方程表示曲线的思想。

本题易错在丢掉直线方程)2x (1251y --=+,即02y 12x 5=++。

产生错误的原因是对直线倾角范围α(πα<≤0)不明确,由于本题给出的sin α为正极,因此满足过P (2,-1)的直线倾角有两个,故所求直线的方程应有两个。

若结果只有一个显然是不对的。

正确解法:设所求直线的倾斜角为α,则由题设知135sin =α因为πα<≤0,所以1312sin 1cos 2±=-±=αα。

所以125cos sin tan ±==ααα,则所求直线方程为)2x (1251y -±=+ 即02y 12x 5022y 12x 5=++=--或为所求例2 等腰三角形的顶点是A (4,2),底边一个端点是B (3,5),求另一个端点C 的轨迹方程,并说明它的轨迹是什么。

易错分析:C 的轨迹方程易错解为10)2y ()4x (22=-+-,点C 的轨迹是以A (4,2)为圆心,以10为半径的圆。

造成错误的原因是没有认真考虑题目要求的几何条件,实际上点C 满足:①A 、B 、C 三点组成三角形;②A 、B 、C 三点组成的是等腰三角形。

有同学在解题过程中只是根据②|AC|=|AB|,将轨迹的条件转化为对应的含x 、y 的方程。

因此所求出的方程保证满足条件②而无法保证满足条件①,解题后没认真检验结果,而造成“解”的不严密。

正确解法:设另一端点C 的坐标为(x,y )依题意,得|AC|=|AB|由两点间距离公式,得2222)52()34()2y ()4x (-+-=-+-两边平方,得2222)52()34()2y ()4x (-+-=-+-整理,得10)2y ()4x (22=-+- 这是以点A (4,2)为圆心,以10为半径的圆,如图。

高三数学暑假补差讲义——解析几何

高三数学暑假补差讲义——解析几何

直线方程k∈-,则直线的l的倾斜角α的取值范围是1.若直线l的斜率[1,4)2.经过点(1,5)A -,且与点(2,6)P ,(4,2)Q --距离相等的直线l 的方程是3.集合L ={l │直线l 与直线2y x =相交,且交点的横坐标恰好等于直线l 的斜率}, 点(2,2)-到L 中的直线0l 的距离最小,则直线0l 的方程是三.练习1.经过点和(2,0)-的直线的斜率是________,倾斜角是_________ 2.若点(2,4)A -关于点(,4)M x -的对称点为(1,)B y ,则x =______,y =_______ 3.直线410x y +-=的倾斜角α=4.直线12y x =关于直线1x =对称的直线方程是 5.过点(5,2),且倾斜角α满足4sin 5α=的直线l 的方程是6.直线l 过点(1,1)P 且其一个方向向量与向量(2,3)垂直,则直线l 的点方向式方程是___ 7.若直线1:260l ax y ++=与22:(1)(1)0l x a y a +-+-=平行,则实数a =_____ 8.若直线1:260l ax y ++=与22:20l x a y +-=垂直,则实数a =_____9.方程22620x xy y x y --++=表示两条相交直线,则这两条直线的夹角是_______ 10.点(1,2)P -到直线1:25l x y +=的距离为1d ,到直线2:31l x =的距离为2d ,则12d d +=_________11.点(2,2)P m n ++与点(4,6)Q n m --关于直线10x y +-=对称,则m n -=____ 12.平行于直线4360x y --=并且与它的距离等于2的直线方程是_________________ 13.过点(2,1)P 作直线l 分别交x 轴,y 轴正半轴于,A B 两点,求当PA PB ⋅取最小值时,直线l 的方程圆锥曲线一.知识点回顾0=(F 在l 上):轨迹是二.例题1.若点P 到直线1x =-的距离比它到点(2,0)的距离小1,则点P 的轨迹是_______,轨迹方程是_____________2.若实数,x y 满足22(2)3x y -+=,则yx的最大值是_____,2x y -的最小值是_____3.中心在原点,对称轴为坐标轴,椭圆短轴的一个顶点B 与两个焦点12,F F 组成的三角形的周长为4+1223F BF π∠=,则椭圆的方程是___________________4.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为,若直线:l y kx = 与双曲线C 恒有两个不同的交点A 和B ,且2OA OB ⋅>(O 为原点),求k 的取值范围5.若点A 的坐标为(3,2),点F 是抛物线22y x =的焦点,P 在抛物线上移动,当PA PF +取最小值时,P 点的坐标是_________三.练习1.求证:经过点00(,)P x y 且法向量是(,)a b 的直线l 的方程是00()()0a x x b y y -+-=2.已知(2,0)B -,(2,0)C ,分别求下列各动点,,P Q R 的轨迹方程。

高三数学培优补差上(易错题分析)精品!!

高三数学培优补差上(易错题分析)精品!!

高三培优补差(易错题分析)精品!!1. 集合与函数、导数部分易错题分析2.不等式单元易错题分析3. 三角函数易错点解析集合与函数、导数部分易错题分析1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.你会用补集的思想解决有关问题吗?3.求不等式(方程)的解集,或求定义域(值域)时,你按要求写成集合的形式了吗? [问题]:{}1|2-=x y x 、{}1|2-=x y y 、{}1|),(2-=x y y x 的区别是什么?4.绝对值不等式的解法及其几何意义是什么? 5.解一元一次不等式(组)的基本步骤是什么? [问题]:如何解不等式:()0122>--b x a6.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?注意到对二次项系数及对称轴进行讨论了吗?7.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件? [问题]:请举例说明“否命题”与“命题的否定形式”的区别.什么是映射、什么是一一映射?[问题]:已知:A={1,2,3},B={1,2,3},那么可以作 个A 到B 上的映射,那么可以作 个A 到B 上的一一映射.9.函数的表示方法有哪一些?如何判断函数的单调性、周期性、奇偶性?单调性、周期性、奇偶性在函数的图象上如何反应?什么样的函数有反函数?如何求反函数?互为反函数的图象间有什么关系?求一个函数的解析式或一个函数的反函数时,你注明函数的定义域了吗?[问题]:已知函数()[],9,1,2log 3∈+=x x x f 求函数()[]()22x f x f y +=的单调递增区间.(你处理函数问题是是否将定义域放在首位)[问题]:已知函数()()的函数x g y x x x f =-+=,132图象与()11+=-x fy 的图象关于直线()的值对称,求11g x y =.10、如何正确表示分数指数幂?指数、对数的运算性质是什么? 11、你熟练地掌握了指数函数和对数函数的图象与性质吗?[问题]:已知函数()[)+∞∈=,3log x x x f a 在上,恒有()1>x f ,则实数的a 取值范围是: 。

高考数学压轴专题(易错题)备战高考《平面解析几何》难题汇编及答案

高考数学压轴专题(易错题)备战高考《平面解析几何》难题汇编及答案

【最新】高中数学《平面解析几何》专题解析一、选择题1.倾斜角为45︒的直线与双曲线22214x y b-=交于不同的两点P 、Q ,且点P 、Q 在x 轴上的投影恰好为双曲线的两个焦点,则该双曲线的焦距为( )A .2B .2C 1D 1【答案】B 【解析】 【分析】方法一;由双曲线的对称性可知直线过原点,可得2Rt QOF △为等腰三角形且245QOF ∠=︒,根据勾股定理及双曲线的定义可得:1c =.方法二:等腰2Rt QOF △中,可得22b QF a=,且2b c a =.又根据222b a c =-,联立可解得1c =. 【详解】方法一;由双曲线的对称性可知直线过原点,在等腰2Rt QOF △中,245QOF ∠=︒,则122F F c =,2QF c =,1QF =.由双曲线的定义可得:122QF QF a-=,41c c -==,,故22c =.方法二:等腰2Rt QOF △中,22bQF a=,∴2b c a=. 又222b a c =-, ∴2240c c --=,得1c =.∴22c =. 故选:B . 【点睛】本题考查双曲线的性质,解题关键是将题目条件进行转化,建立等量关系求解,属于中等题.2.设D 为椭圆2215y x +=上任意一点,A (0,-2),B (0,2),延长AD 至点P ,使得|PD|=|BD|,则点P 的轨迹方程为( )A .x 2+(y -2)2=20B .x 2+(y -2)2=5C .x 2+(y +2)2=20D .x 2+(y +2)2=5【答案】C 【解析】 【分析】由题意得PA PD DA DB DA =+=+=,从而得到点P 的轨迹是以点A 为圆心,半径为 【详解】由题意得PA PD DA DB DA =+=+,又点D 为椭圆2215y x +=上任意一点,且()()0,2,0,2A B -为椭圆的两个焦点,∴DB DA +=,∴PA =∴点P 的轨迹是以点A 为圆心,半径为 ∴点P 的轨迹方程为()22220x y ++=. 故选C . 【点睛】本题考查圆的方程的求法和椭圆的定义,解题的关键是根据椭圆的定义得到PA =然后再根据圆的定义得到所求轨迹,进而求出其方程.考查对基础知识的理解和运用,属于基础题.3.已知双曲线2222:1(0,0)x y C a b a b-=>>)的左,右焦点分别为12,F F ,其右支上存在一点M ,使得210MF MF ⋅=u u u u r u u u r,直线:0l bx ay +=,若直线2//MF l 则双曲线C 的离心率为( )A B .2C D .5【答案】C 【解析】 【分析】易得且1MF l ⊥,从而l 是线段1MF 的垂直平分线求出直线1MF 的方程与渐近线方程联立求出交点坐标,进而求得M 坐标,根据勾股定理即可求解离心率. 【详解】由120MF MF ⋅=u u u u v u u u u v可得12MF MF ⊥易知直线:0l bx ay +=为双曲线的一条渐近线,可知l 的方程为by x a=-,且1MF l ⊥,从而l 是线段1MF 的垂直平分线,且直线1MF 的方程为()ay x c b=+设1MF ,与l 相交 于点(),N x y .由 ()a y x c b b y x a ⎧=+⎪⎪⎨⎪=-⎪⎩得2a x c aby c ⎧=-⎪⎪⎨⎪=⎪⎩即2,a ab N c c ⎛⎫-⎪⎝⎭,又()1,0F c -,由中点坐标公式,得222,.a ab M c c c ⎛⎫- ⎪⎝⎭由双曲线性质可得122MF MF a -=①,由12MF MF ⊥得222124MF MF c +=②,①②联立,可得2122MF MF b ⋅=所以点M 的纵坐标为2b c ,所以22b ab c c =即2b a =所以21 5.b e a ⎛⎫=+= ⎪⎝⎭故选:C 【点睛】本题考查双曲线性质的综合问题,考查数形结合思想,对于学生的数学运算和逻辑推理能力要求较高,属于一般性题目.4.直线3y kx =+与圆22(3)(2)4x y -+-=相交于M ,N 两点,若||3MN ≥k 的取值范围是( ) A .3,04⎡⎤-⎢⎥⎣⎦B .30,4⎡⎤⎢⎥⎣⎦C .3⎡⎤⎢⎥⎣⎦D .2,03⎡⎤-⎢⎥⎣⎦【答案】A 【解析】 【分析】可通过将弦长转化为弦心距问题,结合点到直线距离公式和勾股定理进行求解 【详解】如图所示,设弦MN 中点为D ,圆心C(3,2),330y kx kx y =+⇒-+=Q∴弦心距222(1)1CD k k ==+-+,又2||23||33MN DN DN 厖?,∴由勾股定理可得222222231DN CN CD k ⎛⎫=-=-+…,222231|31|1(31)1(43)0041k k k k k k k k ⇒++++⇒+⇒-+剟剟答案选A 【点睛】圆与直线的位置关系解题思路常从两点入手:弦心距、勾股定理。

高三二轮复习数学经典题与易错题汇总解析几何经典题与易错题

高三二轮复习数学经典题与易错题汇总解析几何经典题与易错题

解析几何 经典题与易错题一、一类定义法求轨迹方程的问题1、(青岛市一模试题节选)已知圆1C :22(1)8xy ,点2(1C ,0),点Q 在圆1C 上运动,2QC 的垂直平分线交1QC 于点P ,求动点P 的轨迹W 的方程。

2、已知圆1C :22(4)4x y ++=,点2:(4,0)C ,点Q 在圆1C 上运动,2QC 的垂直平分线交1QC 于点P ,求动点P 的轨迹W 的方程。

3、已知圆1C :22(3)100x y ++=及圆内一点2C (3,0),求过点2C 且与圆1C 内切的圆的圆心M 的轨迹方程。

4、已知圆1C :22(3)4x y ++=及圆内一点2C (3,0),求过点2C 且与圆1C 内切的圆的圆心M 的轨迹方程。

5、已知圆1C :22(3)4x y ++=及圆内一点2C (3,0),求过点2C 且与圆1C 外切的圆的圆心M 的轨迹方程。

6、已知圆1C :22(3)4x y ++=及圆内一点2C (3,0),求过点2C 且与圆1C 相切的圆的圆心M 的轨迹方程。

7、已知动圆与圆49)5(:221=++y x C 和圆C 2:1)5(22=+-y x 都外切,求动圆圆心P 的轨迹方程。

8、已知动圆与圆49)5(:221=++y x C 和圆C 2:1)5(22=+-y x 都内切,求动圆圆心P 的轨迹方程。

9、已知动圆与圆49)5(:221=++y x C 内切和圆C 2:1)5(22=+-y x 外切,求动圆圆心P 的轨迹方程。

10、已知动圆与圆49)5(:221=++y x C 外切和圆C 2:1)5(22=+-y x 内切,求动圆圆心P 的轨迹方程。

11、已知动圆与圆221C :(x 2)y 36内切和圆C 2:22(x2)y 4外切,求动圆圆心P 的轨迹方程。

二、切线问题1、(根据20XX 年潍坊一模试题改编)过圆O :2222x y a b +=+上任意一点P 引椭圆E :22221(0)x y a b a b +=>>的两条切线,设切点为A 、B ,求证:PA ⊥PB . 分析:注意计算技巧,整体意识,目标意识。

数学培优专题:解析几何(选填题、简答题)全国各地高考数学模拟题汇编(含解析)一

数学培优专题:解析几何(选填题、简答题)全国各地高考数学模拟题汇编(含解析)一

培优专题:解析几何(选填题、简答题)选填题:1.(5分)设m,θ∈R,则的最小值为()A.3 B.4 C.9 D.162.(5分)边长为8的等边△ABC所在平面内一点O,满足=,若M为△ABC边上的点,点P满足|,则|MP|的最大值为()A.B.C.D.3.(5分)已知点A,B的坐标分别为(﹣1,0),(1,0).直线AM,BM相交于点M,且它们的斜率之和是2,则点M的轨迹方程为.4.(5分)已知椭圆的左焦点为F1,y轴上的点P在椭圆外,且线段PF1与椭圆E交于点M,若,则E椭圆的离心率为()A.B. C.D.5.(5分)已知菱形ABCD的边长为2,∠DAB=60°,P是线段BD上一点,则的最小值是.6.(5分)已知SC是球O的直径,A,B是球O球面上的两点,且,若三棱锥S﹣ABC的体积为1,则球O的表面积为()A.4πB.13πC.16πD.52π7.(5分)在△ABC中,AB=AC=5,BC=6,I是△ABC的内心,若=m(m,n∈R),则=()A.B.C.2 D.8.(5分)设点P为椭圆C:+=1上一点,F1、F2分别是椭圆C的左、右焦点,且△PF1F2的重心为点G,若|PF1|:|PF2|=3:4,那么△GPF1的面积为()A.24 B.12 C.8 D.69.(5分)如图,O是坐标原点,过E(p,0)的直线分别交抛物线y2=2px(p >0)于A、B两点,直线BO与过点A平行于x轴的直线相交于点M,过点M 与此抛物线相切的直线与直线x=p相交于点N.则|ME|2﹣|NE|2=()A.2p2B.2p C.4p D.p10.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.11.(5分)已知F1,F2是双曲线﹣=1(a>0,b>0)的左右焦点,过点F2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆外,则双曲线离心率的取值范围是()A.(2,+∞)B.(,2)C.(,) D.(1,)12.(5分)已知抛物线C:y2=4x的焦点为F,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A、B两点,直线l2与抛物线C交于D、E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为()A.16 B.20 C.24 D.3213.(5分)已知,是单位向量,,若向量满足,则的取值范围为()A. B. C.D.14.(5分)已知抛物线和圆,直线y=k(x﹣1)与C1,C2依次相交于A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4)四点(其中x1<x2<x3<x4),则|AB|•|CD|的值为()A.1 B.2 C.D.k215.(5分)抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M 上一点P满足PA⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)()A.B.C.D.16.(5分)已知椭圆的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率的平方为()A. B.C.D.17.(5分)过点P(﹣1,1)作圆C:(x﹣t)2+(y﹣t+2)2=1(t∈R)的切线,切点分别为A,B,则•的最小值为()A.B.C.D.2﹣318.(5分)已知双曲线C:(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P,Q,若∠PAQ=60°,且,则双曲线C的离心率为()A. B. C.D.19.(5分)已知点F1,F2为椭圆C1:+=1(a>b>0)和双曲线C2:﹣=1(a′>0,b′>0)的公共焦点,点P为两曲线的一个交点,且满足∠F1PF2=90°,设椭圆与双曲线的离心率分别为e1,e2,则+= .20.(5分)已知△ABC是直角边为2的等腰直角三角形,且A为直角顶点,P 为平面ABC内一点,则的最小值是.21.(5分)已知双曲线的右焦点为F,过点F向双曲线的一条渐近线引垂线,垂足为M,交另一条渐近线于N,若,则双曲线的渐近线方程为.22.(5分)已知抛物线C:y2=4x,过其焦点F作一条斜率大于0的直线l,l与抛物线交于M,N两点,且|MF|=3|NF|,则直线l的斜率为.23.(5分)已知F是椭圆C:+=1的右焦点,P是C上一点,A(﹣2,1),当△APF周长最小时,其面积为.简答题:1.(12分)已知椭圆与直线l:bx﹣ay=0都经过点.直线m与l平行,且与椭圆C交于A,B两点,直线MA,MB 与x轴分别交于E,F两点.(1)求椭圆C的方程;(2)证明:△MEF为等腰三角形.2.(12分)已知椭圆(a>b>0),其焦距为2,离心率为(1)求椭圆C的方程;(2)设椭圆的右焦点为F,K为x轴上一点,满足,过点K作斜率不为0的直线l交椭圆于P,Q两点,求△FPQ面积s的最大值.3.(12分)已知圆C:x2+y2+2x﹣2y+1=0和抛物线E:y2=2px(p>0),圆心C到抛物线焦点F的距离为.(1)求抛物线E的方程;(2)不过原点的动直线l交抛物线于A,B两点,且满足OA⊥OB.设点M为圆C上任意一动点,求当动点M到直线l的距离最大时的直线l方程.4.(12分)给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.已知椭圆C的离心率,其“准圆”的方程为x2+y2=4.(I)求椭圆C的方程;(II)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(1)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程,并证明l1⊥l2;(2)求证:线段MN的长为定值.5.(16分)如图,在平面直角坐标系xOy中,椭圆C:(a>b>0)的下顶点为B,点M,N是椭圆上异于点B的动点,直线BM,BN分别与x轴交于点P,Q,且点Q是线段OP的中点.当点N运动到点()处时,点Q的坐标为().(1)求椭圆C的标准方程;(2)设直线MN交y轴于点D,当点M,N均在y轴右侧,且=2时,求直线BM的方程.6.(12分)设O为坐标原点,动点M在椭圆上,过M作x轴的垂线,垂足为N,点P满足.(Ⅰ)求点P的轨迹方程E;(Ⅱ)过F(1,0)的直线l1与点P的轨迹交于A、B两点,过F(1,0)作与l1垂直的直线l2与点P的轨迹交于C、D两点,求证:为定值.7.(12分)已知椭圆C:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线l:y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.8.(12分)已知曲线C的方程为ax2+ay2﹣2a2x﹣4y=0(a≠0,a为常数).(1)判断曲线C的形状;(2)设曲线C分别与x轴,y轴交于点A,B(A,B不同于原点O),试判断△AOB的面积S是否为定值?并证明你的判断;(3)设直线l:y=﹣2x+4与曲线C交于不同的两点M,N,且•=﹣,求a的值.9.(12分)已知抛物线E:y2=2px(p>0)的准线与x轴交于点k,过点k做圆C:(x﹣5)2+y2=9的两条切线,切点为.(1)求抛物线E的方程;(2)若直线AB是讲过定点Q(2,0)的一条直线,且与抛物线E交于A,B两点,过定点Q作AB的垂线与抛物线交于G,D两点,求四边形AGBD面积的最小值.10.(16分)在平面直角坐标系中,已知椭圆C:+y2=1 (a>0,a≠1)的两个焦点分别是F1,F2,直线l:y=kx+m(k,m∈R)与椭圆交于A,B两点.(1)若M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,求a的值;(2)若k=1,且△OAB是以O为直角顶点的直角三角形,求a与m满足的关系;(3)若a=2,且k OA•k OB=﹣,求证:△OAB的面积为定值.11.(12分)已知点C为圆(x+1)2+y2=8的圆心,P是圆上的动点,点Q在圆的半径CP上,且有点A(1,0)和AP上的点M,满足•=0,=2.(Ⅰ)当点P在圆上运动时,求点Q的轨迹方程;(Ⅱ)若斜率为k的直线l与圆x2+y2=1相切,直线l与(Ⅰ)中所求点Q的轨迹交于不同的两点F,H,O是坐标原点,且≤•≤时,求k的取值范围.12.(12分)已知椭圆的左焦点为F,左顶点为A.(1)若P是椭圆上的任意一点,求的取值范围;(2)已知直线l:y=kx+m与椭圆相交于不同的两点M,N(均不是长轴的端点),AH⊥MN,垂足为H且,求证:直线l恒过定点.13.(12分)设椭圆+=1(a>b>0)的离心率e=,左焦点为F,右顶点为A,过点F的直线交椭圆于E,H两点,若直线EH垂直于x轴时,有|EH|=(1)求椭圆的方程;(2)设直线l:x=﹣1上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B 异于点A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.14.(12分)已知椭圆C:的离心率,且过点.(1)求椭圆C的方程;(2)过P作两条直线l1,l2与圆相切且分别交椭圆于M,N两点.①求证:直线MN的斜率为定值;②求△MON面积的最大值(其中O为坐标原点).15.(12分)如图,A,B是椭圆长轴的两个端点,P,Q是椭圆C 上都不与A,B重合的两点,记直线BQ,AQ,AP的斜率分别是k BQ,k AQ,k AP.(1)求证:;(2)若k AP=4k BQ,求证:直线PQ恒过定点,并求出定点坐标.参考答案与解析1.(5分)设m,θ∈R,则的最小值为()A.3 B.4 C.9 D.16【解答】解:令点P(2﹣m,2+m),Q(cosθ,sinθ).点P在直线上,点Q的轨迹为单位圆:x2+y2=1.因此的最小值为:单位圆上的点到直线的距离的平方,故其最小值==(4﹣1)2=9.故选:C.2.(5分)边长为8的等边△ABC所在平面内一点O,满足=,若M为△ABC边上的点,点P满足|,则|MP|的最大值为()A.B.C.D.【解答】解:如图,由=,得,即,取AB中点G,AC中点H,连接GH,则,即,取GH中点K,延长KG到O,使KG=GO,则O为所求点,∵点P满足|,M为△ABC边上的点,∴当M与A重合时,|MP|有最大值为|OA|+|OP|,而|OA|=,∴|MP|的最大值为,故选:D.3.(5分)已知点A,B的坐标分别为(﹣1,0),(1,0).直线AM,BM相交于点M,且它们的斜率之和是2,则点M的轨迹方程为x2﹣xy﹣1=0(x≠±1).【解答】解:设M(x,y),∵AM,BM的斜率存在,∴x≠±1,又∵k AM=,k BM=,∴由k AM+k BM=2得:•=0,整理得:x2﹣xy﹣1=0,∴点M的轨迹方程为:x2﹣xy﹣1=0(x≠±1).故答案为:x2﹣xy﹣1=0(x≠±1)4.(5分)已知椭圆的左焦点为F1,y轴上的点P在椭圆外,且线段PF1与椭圆E交于点M,若,则E椭圆的离心率为()A.B. C.D.【解答】解:如图所示|OM|=|MF1|=|OP|,不妨设|OP|=,则|OM|=|MF1|=1,设∠MF1O=θ,在△MOF1中由余弦定理可得cosθ===,∴sinθ==,∴tanθ===,∵tanθ==,∴=,解得c=1,∴△MOF1为等边三角形,∴M(﹣,),∴+=1,①∵a2﹣b2=c2=1,②,由①②可得4a4﹣8a2+1=0,解得a2=<1(舍去),a2=,∴a2===()2,∴a==,∴e===﹣1,故选:C.5.(5分)已知菱形ABCD的边长为2,∠DAB=60°,P是线段BD上一点,则的最小值是.【解答】解:建立平面直角坐标系,如图所示,菱形ABCD的边长为2,∠DAB=60°,可设P(0,b),且﹣1≤b≤1;∴A(﹣,0),C(,0),D(0,1),∴=(﹣,﹣b),=(,﹣b),=(0,1﹣b),∴+=(,1﹣2b),∴=﹣3﹣b(1﹣2b)=﹣3﹣b+2b2=2﹣,当且仅当b=时,取得最小值﹣.故答案为:﹣.6.(5分)已知SC是球O的直径,A,B是球O球面上的两点,且,若三棱锥S﹣ABC的体积为1,则球O的表面积为()A.4πB.13πC.16πD.52π【解答】解:∵SC是球O的直径,A,B是球O球面上的两点,且,∴∠SAC=∠SBC=90°,cos∠ACB==﹣,∴∠ACB=120°,∴∠CAB=∠CBA=30°,∴∠ASB=60°,∴SA=SB=AB=,∴SC==2,∴球半径R=1,∴球O的表面积S=4πR2=4π.故选:A.7.(5分)在△ABC中,AB=AC=5,BC=6,I是△ABC的内心,若=m(m,n∈R),则=()A.B.C.2 D.【解答】解:设BC中点为D,以BC为x轴,DA为y轴建立平面直角坐标系如图所示:∵AB=5,BD=BC=3,∴AD=4.∵△ABC是等腰三角形,∴内心I在线段AD上,设内切圆的半径为r,则tan∠IBD=,∴tan∠ABC===,又tan∠ABC==,∴=,解得r=或r=﹣6(舍).∴I(0,),又B(﹣3,0),A(0,4),C(3,0),∴=(3,),=(3,4),=(6,0),∵=m,∴,解得,∴=.故选:B.8.(5分)设点P为椭圆C:+=1上一点,F1、F2分别是椭圆C的左、右焦点,且△PF1F2的重心为点G,若|PF1|:|PF2|=3:4,那么△GPF1的面积为()A.24 B.12 C.8 D.6【解答】解:∵点P为椭圆C:+=1上一点,|PF1|:|PF2|=3:4,|PF1|+|PF2|=2a=14∴|PF1|=6,|PF2|=8,又∵F1F2=2c=10,∴△PF 1F2是直角三角形,S=,∵△PF 1F2的重心为点G.∴S=,∴△GPF1的面积为8,故选:C9.(5分)如图,O是坐标原点,过E(p,0)的直线分别交抛物线y2=2px(p >0)于A、B两点,直线BO与过点A平行于x轴的直线相交于点M,过点M 与此抛物线相切的直线与直线x=p相交于点N.则|ME|2﹣|NE|2=()A.2p2B.2p C.4p D.p【解答】解:过E(p,0)的直线分别交抛物线y2=2px(p>0)于A、B两点为任意的,不妨设直线AB为x=p,由,解得y=±2p,则A(﹣p,﹣p),B(p,p),∵直线BM的方程为y=x,直线AM的方程为y=﹣p,解得M(﹣p,﹣p),∴|ME|2=(2p)2+2p2=6p2,设过点M与此抛物线相切的直线为y+p=k(x+p),由,消x整理可得ky2﹣2py﹣2p+2p2k=0,∴△=4p2﹣4k(﹣2p+2p2k)=0,解得k=,∴过点M与此抛物线相切的直线为y+p=(x+p),由,解得N(p,2p),∴|NE|2=4p2,∴|ME|2﹣|NE|2=6p2﹣4p2=2p2,故选:A10.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.【解答】解:双曲线的c2=a2+b2,e=,双曲线的渐近线方程为y=±x,与圆x2+y2=c2联立,解得M(a,b),与双曲线(a>0,b>0)联立,解得,∵直线MF1与直线ON平行时,即有,即(a+c)2(c2﹣a2)=a2(2c2﹣a2),即有c3+2ac2﹣2a2c﹣2a3=0,∴e3+2e2﹣2e﹣2=0,即e2+2e﹣=2,∴f(e)=e2+2e﹣=2,故选:C.11.(5分)已知F1,F2是双曲线﹣=1(a>0,b>0)的左右焦点,过点F2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆外,则双曲线离心率的取值范围是()A.(2,+∞)B.(,2)C.(,) D.(1,)【解答】解:双曲线﹣=1的渐近线方程为y=x,不妨设过点F2与双曲线的一条渐过线平行的直线方程为y=(x﹣c),与y=﹣x联立,可得交点M(,﹣),∵点M在以线段F1F2为直径的圆外,∴|OM|>|OF2|,即有+>c2,∴>3,即b2>3a2,∴c2﹣a2>3a2,即c>2a.则e=>2.∴双曲线离心率的取值范围是(2,+∞).故选A.12.(5分)已知抛物线C:y2=4x的焦点为F,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A、B两点,直线l2与抛物线C交于D、E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为()A.16 B.20 C.24 D.32【解答】解:抛物线C:y2=4x的焦点F(1,0),设直线l1:y=k1(x﹣1),直线l2:y=k2(x﹣1),由题意可知,则,联立,整理得:k12x2﹣(2k12+4)x+k12=0,设A(x1,y1),B(x2,y2),则x1+x2=,设D(x3,y3),E(x4,y4),同理可得:x3+x4=2+,由抛物线的性质可得:丨AB丨=x1+x2+p=4+,丨DE丨=x3+x4+p=4+,∴|AB|+|DE|=8+==,当且仅当=时,上式“=”成立.∴|AB|+|DE|的最小值24,故选:C.13.(5分)已知,是单位向量,,若向量满足,则的取值范围为()A. B. C.D.【解答】解:令,,,如图所示:则,又,所以点C在以点D为圆心、半径为1的圆上,易知点C与O、D共线时达到最值,最大值为+1,最小值为﹣1,所以的取值范围为[﹣1,+1].故选A.14.(5分)已知抛物线和圆,直线y=k(x﹣1)与C1,C2依次相交于A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4)四点(其中x1<x2<x3<x4),则|AB|•|CD|的值为()A.1 B.2 C.D.k2【解答】解:∵y2=4x,焦点F(1,0),准线l0:x=﹣1.由定义得:|AF|=x A+1,又∵|AF|=|AB|+1,∴|AB|=x A,同理:|CD|=x D,由题意可知直线l的斜率存在且不等于0,则直线l的方程为:y=k(x﹣1)代入抛物线方程,得:k2x2﹣(2k2+4)x+k2=0,∴x A x D=1,则|AB|•|CD|=1.综上所述,|AB|•|CD|=1,故选:A.15.(5分)抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M 上一点P满足PA⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)()A.B.C.D.【解答】解:由题意,A(﹣1,0),F(1,0),点P在以AF为直径的圆x2+y2=1上.设点P的横坐标为m,联立圆与抛物线的方程得x2+4x﹣1=0,∵m>0,∴m=﹣2+,∴点P的横坐标为﹣2+,∴|PF|=m+1=﹣1+,∴圆F的方程为(x﹣1)2+y2=(﹣1)2,令x=0,可得y=±,∴|EF|=2=2=,故选:D.16.(5分)已知椭圆的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率的平方为()A. B.C.D.【解答】解:方法一:依题意,作图如下:A(﹣a,0),B(0,b),F1(﹣c,0),F2(c,0),∴直线AB的方程为,整理得:bx﹣ay+ab=0,设直线AB上的点P(x,y),则bx=ay﹣ab,x=y﹣a,∵PF1⊥PF2,则•=(﹣c﹣x,﹣y)•(c﹣x,﹣y)=x2+y2﹣c2=()2+y2﹣c2,令f(y)=()2+y2﹣c2,则f′(y)=2(y﹣a)×+2y,∴由f′(y)=0得:y=,于是x=﹣,∴•=(﹣)2+()2﹣c2=0,整理得:=c2,又b2=a2﹣c2,整理得:c4+3c2c2﹣a4=0,两边同时除以a4,由e2=,∴e4﹣3e2+1=0,∴e2=,又椭圆的离心率e∈(0,1),∴e2=.椭圆的离心率的平方,故选B.方法二:由直线AB的方程为,整理得:bx﹣ay+ab=0,由题意可知:直线AB与圆O:x2+y2=c2相切,可得d==c,两边平方,整理得:c4+3c2c2﹣a4=0,两边同时除以a4,由e2=,e4﹣3e2+1=0,∴e2=,又椭圆的离心率e∈(0,1),∴e2=.椭圆的离心率的平方,故选B.17.(5分)过点P(﹣1,1)作圆C:(x﹣t)2+(y﹣t+2)2=1(t∈R)的切线,切点分别为A,B,则•的最小值为()A.B.C.D.2﹣3【解答】解:圆C:(x﹣t)2+(y﹣t+2)2=1的圆心坐标为(t,t﹣2),半径为1,∴|PC|2=(t+1)2+(t﹣3)2=2t2﹣4t+10,∴|PA|2=|PB|2=|PC|2﹣1=(t+1)2+(t﹣3)2﹣1=2t2﹣4t+9,cos∠APC==,∴cos∠PAB=2cos2∠APC﹣1=2×()﹣1==∴•=||•||cos∠PAB=(2t2﹣4t+9)•=[(t2﹣2t+5)+(t2﹣2t+4)]•,设t2﹣2t+4=x,则x≥3,则•=f(x)=(x+x+1)•=,∴f′(x)=>0恒成立,∴f(x)在[3,+∞)单调递增,∴f(x)min=f(3)=,∴•的最小值为故选:C18.(5分)已知双曲线C:(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P,Q,若∠PAQ=60°,且,则双曲线C的离心率为()A. B. C.D.【解答】解:设双曲线的一条渐近线方程为y=x,A(a,0),P(m,),(m>0),由=3,可得Q(3m,),圆的半径为r=|PQ|==2m•,PQ的中点为H(2m,),由AH⊥PQ,可得=﹣,解得m=,r=.A到渐近线的距离为d==,则|PQ|=2=r,即为d=r,即有=•.可得=,e====.故选C.19.(5分)已知点F1,F2为椭圆C1:+=1(a>b>0)和双曲线C2:﹣=1(a′>0,b′>0)的公共焦点,点P为两曲线的一个交点,且满足∠F1PF2=90°,设椭圆与双曲线的离心率分别为e1,e2,则+=2.【解答】解:可设P为第一象限的点,|PF1|=m,|PF2|=n,由椭圆的定义可得m+n=2a,由双曲线的定义可得m﹣n=2a'可得m=a+a',n=a﹣a',由∠F1PF2=90°,可得m2+n2=(2c)2,即为(a+a')2+(a﹣a')2=4c2,化为a2+a'2=2c2,则+=2,即有+=2.故答案为:2.20.(5分)已知△ABC是直角边为2的等腰直角三角形,且A为直角顶点,P 为平面ABC内一点,则的最小值是﹣1.【解答】解:以BC为x轴,以BC边上的高为y轴建立坐标系,△ABC是直角边为2的等腰直角三角形,且A为直角顶点,斜边BC=2,则A(0,),B(﹣,0),C(,0),设P(x,y),则+=2=(﹣2x,﹣2y),=(﹣x,﹣y),∴=2x2+2y2﹣2y=2x2+2(y﹣)2﹣1,∴当x=0,y=时,则取得最小值﹣1.故答案为:﹣1.21.(5分)已知双曲线的右焦点为F,过点F向双曲线的一条渐近线引垂线,垂足为M,交另一条渐近线于N,若,则双曲线的渐近线方程为y=±x .【解答】解:由题意得右焦点F(c,0),设一渐近线OM的方程为y=x,则另一渐近线ON的方程为y=﹣x,由FM的方程为y=﹣(x﹣c),联立方程y=x,可得M的横坐标为,由FM的方程为y=﹣(x﹣c),联立方程y=﹣x,可得N的横坐标为.由2=,可得2(﹣c)=﹣c,即为﹣c=,由e=,可得﹣1=,即有e4﹣5e2+4=0,解得e2=4或1(舍去),即为e=2,即c=2a,b=a,可得渐近线方程为y=±x,故答案为:y=±x.22.(5分)已知抛物线C:y2=4x,过其焦点F作一条斜率大于0的直线l,l与抛物线交于M,N两点,且|MF|=3|NF|,则直线l的斜率为.【解答】解:抛物线C:y2=4x,焦点F(1,0),准线为x=﹣1,分别过M和N作准线的垂线,垂足分别为C和D,过NH⊥CM,垂足为H,设|NF|=x,则|MF|=3x,由抛物线的定义可知:|NF|=|DH|=x,|MF|=|CM|=3x,∴|HM|=2x,由|MN|=4x,∴∠HMF=60°,则直线MN的倾斜角为60°,则直线l的斜率k=tan60°=,故答案为:.方法二:抛物线C:y2=4x,焦点F(1,0),准线为x=﹣1,设直线MN的斜率为k,则直线MN的方程y=k(x﹣1),设M(x1,y1),N(x2,y2),,整理得:k2x2﹣2(k2+2)x+k2=0,则x1+x2=,x1x2=1,由|MF|=3|NF|,=3,即(1﹣x1,﹣y1)=3(x2﹣1,y2),x1+3x2=4,整理得:3x2﹣4x2+1=0,解得:x2=,或x2=1(舍去),则x1=3,解得:k=±,由k>0,则k=故答案为:.方法三:抛物线C:y2=4x,焦点F(1,0),准线为x=﹣1,设直线MN的方程x=mx+1,设M(x1,y1),N(x2,y2),,整理得:y2﹣4my﹣4=0,则y1+y2=4m,y1y2=﹣4,由|MF|=3|NF|,=3,即(1﹣x1,﹣y1)=3(x2﹣1,y2),﹣y1=3y2,即y1=﹣3y2,解得:y2=﹣,y1=2,∴4m=,则m=,∴直线l的斜率为,故答案为:.23.(5分)已知F是椭圆C:+=1的右焦点,P是C上一点,A(﹣2,1),当△APF周长最小时,其面积为 4 .【解答】解:椭圆C:+=1的a=2,b=2,c=4,设左焦点为F'(﹣4,0),右焦点为F(4,0).△APF周长为|AF|+|AP|+|PF|=|AF|+|AP|+(2a﹣|PF'|)=|AF|+|AP|﹣|PF'|+2a≥|AF|﹣|AF'|+2a,当且仅当A,P,F'三点共线,即P位于x轴上方时,三角形周长最小.此时直线AF'的方程为y=(x+4),代入x2+5y2=20中,可求得P(0,2),=S△PF'F﹣S△AF'F=×2×8﹣×1×8=4.故S△APF故答案为:4.简答题1.(12分)已知椭圆与直线l:bx﹣ay=0都经过点.直线m与l平行,且与椭圆C交于A,B两点,直线MA,MB 与x轴分别交于E,F两点.(1)求椭圆C的方程;(2)证明:△MEF为等腰三角形.【解答】解:(1)由直线l:bx﹣ay=0都经过点,则a=2b,将代入椭圆方程:,解得:b2=4,a2=16,∴椭圆C的方程为;(2)证明:设直线m为:,A(x1,y1),B(x2,y2)联立:,整理得x2+2tx+2t2﹣8=0,∴x1+x2=﹣2t,x1x2=2t2﹣8,设直线MA,MB的斜率为k MA,k MB,要证△MEF为等腰三角形,只需k MA+k MB=0,由,k MA+k MB=,=0,所以△MEF为等腰三角形.2.(12分)已知椭圆(a>b>0),其焦距为2,离心率为(1)求椭圆C的方程;(2)设椭圆的右焦点为F,K为x轴上一点,满足,过点K作斜率不为0的直线l交椭圆于P,Q两点,求△FPQ面积s的最大值.【解答】解:(1)因为椭圆焦距为2,即2c=2,所以c=1,,所以a=,从而b2=a2﹣c2=1,所以,椭圆的方程为+y2=1.(2)椭圆右焦点F(1,0),由可知K(2,0),直线l过点K(2,0),设直线l的方程为y=k(x﹣2),k≠0,将直线方程与椭圆方程联立得(1+2k2)x2﹣8k2x+8k2﹣2=0.设P(x1,y1),Q(x2,y2),则,,由判别式△=(﹣8k2)2﹣4(2k2+1)(8k2﹣2)>0解得k2<.点F(1,0)到直线l的距离为h,则,,=••,=|k|•,=,令t=1+2k2,则1<t<2,则S=•=,当时,S取得最大值.此时,,S取得最大值.3.(12分)已知圆C:x2+y2+2x﹣2y+1=0和抛物线E:y2=2px(p>0),圆心C到抛物线焦点F的距离为.(1)求抛物线E的方程;(2)不过原点的动直线l交抛物线于A,B两点,且满足OA⊥OB.设点M为圆C上任意一动点,求当动点M到直线l的距离最大时的直线l方程.【解答】解:(1)圆C:x2+y2+2x﹣2y+1=0可化为(x+1)2+(y﹣1)2=1,则圆心为(﹣1,1).抛物线E:y2=2px(p>0),焦点坐标F(),由于:圆心C到抛物线焦点F的距离为.则:,解得:p=6.故抛物线的方程为:y2=12x(2)设直线的方程为x=my+t,A(x1,y1),B(x2,y2),则:,整理得:y2﹣12my﹣12t=0,所以:y1+y2=12m,y1y2=﹣12t.由于:OA⊥OB.则:x1x2+y1y2=0.即:(m2+1)y1y2+mt(y1+y2)+t2=0.整理得:t2﹣12t=0,由于t≠0,解得t=12.故直线的方程为x=my+12,直线经过定点(12,0).当CN⊥l时,即动点M经过圆心C(﹣1,1)时到直线的距离取最大值.当CP⊥l时,即动点M经过圆心C(﹣1,1)时到动直线L的距离取得最大值.k MP=k CP=﹣,则:m=.此时直线的方程为:x=,即:13x﹣y﹣156=0.4.(12分)给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.已知椭圆C的离心率,其“准圆”的方程为x2+y2=4.(I)求椭圆C的方程;(II)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(1)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程,并证明l1⊥l2;(2)求证:线段MN的长为定值.【解答】解:(I)由准圆方程为x2+y2=4,则a2+b2=4,椭圆的离心率e===,解得:a=,b=1,∴椭圆的标准方程:;(Ⅱ)证明:(1)∵准圆x2+y2=4与y轴正半轴的交点为P(0,2),设过点P(0,2)且与椭圆相切的直线为y=kx+2,联立,整理得(1+3k2)x2+12kx+9=0.∵直线y=kx+2与椭圆相切,∴△=144k2﹣4×9(1+3k2)=0,解得k=±1,∴l 1,l2方程为y=x+2,y=﹣x+2.∵=1,=﹣1,∴•=﹣1,则l 1⊥l2.(2)①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,则l1:x=±,当l1:x=时,l1与准圆交于点(,1)(,﹣1),此时l2为y=1(或y=﹣1),显然直线l1,l2垂直;同理可证当l1:x=时,直线l1,l2垂直.②当l1,l2斜率存在时,设点P(x0,y0),其中x02+y02=4.设经过点P(x0,y0)与椭圆相切的直线为y=t(x﹣x0)+y0,∴由得(1+3t2)x2+6t(y0﹣tx0)x+3(y0﹣tx0)2﹣3=0.由△=0化简整理得(3﹣x02)t2+2x0y0t+1﹣y02=0,∵x02+y02=4.,∴有(3﹣x02)t2+2x0y0t+(x02﹣3)=0.设l1,l2的斜率分别为t1,t2,∵l1,l2与椭圆相切,∴t1,t2满足上述方程(3﹣x02)t2+2x0y0t+(x02﹣3)=0,∴t1•t2=﹣1,即l1,l2垂直.综合①②知:∵l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,且l1,l2垂直.∴线段MN为准圆x2+y2=4的直径,|MN|=4,∴线段MN的长为定值.5.(16分)如图,在平面直角坐标系xOy中,椭圆C:(a>b>0)的下顶点为B,点M,N是椭圆上异于点B的动点,直线BM,BN分别与x轴交于点P,Q,且点Q是线段OP的中点.当点N运动到点()处时,点Q的坐标为().(1)求椭圆C的标准方程;(2)设直线MN交y轴于点D,当点M,N均在y轴右侧,且=2时,求直线BM的方程.【解答】解:(1)由N(),点Q的坐标为(),得直线NQ的方程为y=x﹣,令x=0,得点B的坐标为(0,﹣).所以椭圆的方程为+=1.将点N的坐标(,)代入,得+=1,解得a2=4.所以椭圆C的标准方程为+=1.(2):设直线BM的斜率为k(k>0),则直线BM的方程为y=x﹣.在y=kx﹣中,令y=0,得x P=,而点Q是线段OP的中点,所以x Q=.所以直线BN的斜率k BN=k BQ==2k.联立,消去y,得(3+4k2)x2﹣8kx=0,解得x M=.用2k代k,得x N=.又=2,所以x N=2(x M﹣x N),得2x M=3x N,故2×==3×,又k>0,解得k=.所以直线BM的方程为y=x﹣6.(12分)设O为坐标原点,动点M在椭圆上,过M作x轴的垂线,垂足为N,点P满足.(Ⅰ)求点P的轨迹方程E;(Ⅱ)过F(1,0)的直线l1与点P的轨迹交于A、B两点,过F(1,0)作与l1垂直的直线l2与点P的轨迹交于C、D两点,求证:为定值.【解答】(Ⅰ)解:设P(x,y),则N(x,0),,又∵,∴,由M在椭圆上,得,即;(Ⅱ)证明:当l1与x轴重合时,|AB|=6,,∴.当l1与x轴垂直时,,|CD|=6,∴.当l1与x轴不垂直也不重合时,可设l1的方程为y=k(x﹣1)(k≠0),此时设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),把直线l1与曲线E联立,得(8+9k2)x2﹣18k2x+9k2﹣72=0,可得△=(﹣18k2)2﹣4(8+9k2)(9k2﹣72)>0.,.∴,把直线l2与曲线E联立,同理可得.∴为定值.7.(12分)已知椭圆C:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线l:y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.【解答】解:(1)由已知可得解得a2=2,b2=c2=1,所求椭圆方程为.(2)由得(1+2k2)x2+8kx+6=0,则△=64k2﹣24(1+2k2)=16k2﹣24>0,解得或.设A(x1,y1),B(x2,y2),则,,设存在点D(0,m),则,,所以==.要使k AD+k BD为定值,只需6k﹣4k(2﹣m)=6k﹣8k+4mk=2(2m﹣1),k与参数k无关,故2m﹣1=0,解得,当时,k AD+k BD=0.综上所述,存在点,使得k AD+k BD为定值,且定值为0.8.(12分)已知曲线C的方程为ax2+ay2﹣2a2x﹣4y=0(a≠0,a为常数).(1)判断曲线C的形状;(2)设曲线C分别与x轴,y轴交于点A,B(A,B不同于原点O),试判断△AOB的面积S是否为定值?并证明你的判断;(3)设直线l:y=﹣2x+4与曲线C交于不同的两点M,N,且•=﹣,求a的值.【解答】解:(1)将曲线C的方程化为x2+y2﹣2ax﹣y=0,∴(x﹣a)2+(y﹣)2=a2+,可知曲线C是以点(a,)为圆心,以为半径的圆.(2)△AOB的面积S为定值.证明如下:在曲线C的方程中令y=0,得ax(x﹣2a)=0,得点A(2a,0),在曲线C方程中令x=0,得y(ay﹣4)=0,得点B(0,),∴S=|OA||OB|=|2a|||=4(为定值),(3)直线l与曲线C方程联立可得5ax2﹣(2a2+16a﹣8)x+16a﹣16=0,设M(x1,y1),N(x2,y2),则x1+x2=,x1x2=,∴•=x1x2+y1y2=5x1x2+8(x1+x2)+16=﹣,即(80a﹣80﹣16a2﹣128a+64+80a)=﹣,即2a2﹣5a+2=0,解得a=2或a=,当a=2或时,都满足△>0,故a=2或9.(12分)已知抛物线E:y2=2px(p>0)的准线与x轴交于点k,过点k做圆C:(x﹣5)2+y2=9的两条切线,切点为.(1)求抛物线E的方程;(2)若直线AB是讲过定点Q(2,0)的一条直线,且与抛物线E交于A,B两点,过定点Q作AB的垂线与抛物线交于G,D两点,求四边形AGBD面积的最小值.【解答】解:(1)根据题意,抛物线的E的方程为y2=2px(p>0),则设MN与x轴交于点R,由圆的对称性可知,.于是,所以∠CMR=30°,∠MCR=60°,所以|CK|=6,所以p=2.故抛物线E的方程为y2=4x.(2)设直线AB的方程为x=my+2,设A=(x1,y1),B=(x2,y2),联立得y2﹣4my﹣8=0,则y1+y2=4m,y1y2=﹣8.∴设G=(x3,y3),D=(x4,y4),同理得,则四边形AGBD的面积=令,则是关于μ的增函数,故S min=48,当且仅当m=±1时取得最小值48.10.(16分)在平面直角坐标系中,已知椭圆C:+y2=1 (a>0,a≠1)的两个焦点分别是F1,F2,直线l:y=kx+m(k,m∈R)与椭圆交于A,B两点.(1)若M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,求a的值;(2)若k=1,且△OAB是以O为直角顶点的直角三角形,求a与m满足的关系;(3)若a=2,且k OA•k OB=﹣,求证:△OAB的面积为定值.【解答】解:(1)∵M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,∴△MF1F2为等腰直角三角形,∴OF1=OM,当a>1时,=1,解得a=,当0<a<1时,=a,解得a=,(2)当k=1时,y=x+m,设A(x1,y1),(x2,y2),由,即(1+a2)x2+2a2mx+a2m2﹣a2=0,∴x1+x2=﹣,x1x2=,∴y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2=,∵△OAB是以O为直角顶点的直角三角形,∴•=0,∴x1x2+y1y2=0,∴+=0,∴a2m2﹣a2+m2﹣a2=0∴m2(a2+1)=2a2,(3)证明:当a=2时,x2+4y2=4,设A(x1,y1),(x2,y2),∵k OA•k OB=﹣,∴•=﹣,∴x1x2=﹣4y1y2,由,整理得,(1+4k2)x2+8kmx+4m2﹣4=0.∴x1+x2=,x1x2=,∴y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=++m2=,∴=﹣4×,∴2m2﹣4k2=1,∴|AB|=•=•=2•=∵O到直线y=kx+m的距离d==,=|AB|d==•==1∴S△OAB11.(12分)已知点C为圆(x+1)2+y2=8的圆心,P是圆上的动点,点Q在圆的半径CP上,且有点A(1,0)和AP上的点M,满足•=0,=2.(Ⅰ)当点P在圆上运动时,求点Q的轨迹方程;(Ⅱ)若斜率为k的直线l与圆x2+y2=1相切,直线l与(Ⅰ)中所求点Q的轨迹交于不同的两点F,H,O是坐标原点,且≤•≤时,求k的取值范围.【解答】解:(I)由题意知MQ中线段AP的垂直平分线,∴,∴点Q的轨迹是以点C,A为焦点,焦距为2,长轴为的椭圆,,故点Q的轨迹方程是.(II)设直线l:y=kx+b,F(x1,y1),H(x2,y2)直线l与圆x2+y2=1相切联立,(1+2k2)x2+4kbx+2b2﹣2=0,△=16k2b2﹣4(1+2k2)2(b2﹣1)=8(2k2﹣b2+1)=8k2>0,可得k≠0,∴,===,∴为所求.12.(12分)已知椭圆的左焦点为F,左顶点为A.(1)若P是椭圆上的任意一点,求的取值范围;(2)已知直线l:y=kx+m与椭圆相交于不同的两点M,N(均不是长轴的端点),AH⊥MN,垂足为H且,求证:直线l恒过定点.【解答】解:(1)设P(x0,y0),又A(﹣2,0),F(﹣1,0)所以=,因为P点在椭圆上,所以,即,且﹣2≤x0≤2,所以=,函数在[﹣2,2]单调递增,当x0=﹣2时,f(x0)取最小值为0;当x0=2时,f(x0)取最大值为12.所以的取值范围是[0,12].(2)由题意:联立得,(3+4k2)x2+8kmx+4m2﹣12=0由△=(8km)2﹣4×(3+4k2)(4m2﹣12)>0得4k2+3>m2①设M(x1,y1),N(x2,y2),则.==0,所以(x1+2)(x2+2)+y1y2=0即,4k2﹣16km+7m2=0,所以或均适合①.当时,直线l过点A,舍去,当时,直线过定点.13.(12分)设椭圆+=1(a>b>0)的离心率e=,左焦点为F,右顶点为A,过点F的直线交椭圆于E,H两点,若直线EH垂直于x轴时,有|EH|=(1)求椭圆的方程;(2)设直线l:x=﹣1上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B 异于点A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.【解答】解:(1)设F(﹣c,0)(c>0),∵e=,∴a=2c,又由|EH|=,得,且a2=b2+c2,解得,因此椭圆的方程为:;(2)设直线AP的方程为x=my+1(m≠0),与直线l的方程x=﹣1联立,可得点P(﹣1,﹣),故Q(﹣1,).将x=my+1与联立,消去x,整理得(3m2+4)y2+6my=0,解得y=0,或y=.由点B异于点A,可得点B().由Q(﹣1,),可得直线BQ的方程为,令y=0,解得,故D().∴|AD|=.又∵△APD的面积为,故,整理得,解得|m|=,∴m=.∴直线AP的方程为,或3x﹣﹣3=0.14.(12分)已知椭圆C:的离心率,且过点.(1)求椭圆C的方程;(2)过P作两条直线l1,l2与圆相切且分别交椭圆于M,N两点.①求证:直线MN的斜率为定值;②求△MON面积的最大值(其中O为坐标原点).【解答】(12分)解:(1)由,设椭圆的半焦距为c,所以a=2c,因为C过点,所以,又c2+b2=a2,解得,所以椭圆方程为.(4分)(2)①显然两直线l1,l2的斜率存在,设为k1,k2,M(x1,y1),N(x2,y2),由于直线l1,l2与圆相切,则有k1=﹣k2,直线l1的方程为,联立方程组消去y,得,因为P,M为直线与椭圆的交点,所以,同理,当l2与椭圆相交时,,所以,而,所以直线MN的斜率.②设直线MN的方程为,联立方程组,消去y得x2+mx+m2﹣3=0,所以,原点O到直线的距离,△OMN得面积为,当且仅当m2=2时取得等号.经检验,存在r(),使得过点的两条直线与圆(x﹣1)2+y2=r2相切,且与椭圆有两个交点M,N.所以△OMN面积的最大值为.(12分)15.(12分)如图,A,B是椭圆长轴的两个端点,P,Q是椭圆C 上都不与A,B重合的两点,记直线BQ,AQ,AP的斜率分别是k BQ,k AQ,k AP.(1)求证:;(2)若k AP=4k BQ,求证:直线PQ恒过定点,并求出定点坐标.【解答】证明:(1)设Q(x1,y1),由椭圆,得B(﹣2,0),A(2,0),∴;(2)由(1)知:.设P(x2,y2),直线PQ:x=ty+m,代入x2+4y2=4,得(t2+4)y2+2mty+m2﹣4=0,∴,,由k AP•k AQ=﹣1得:(x1﹣2)(x2﹣2)+y1y2=0,∴,∴(t2+1)(m2﹣4)+(m﹣2)t(﹣2mt)+(m﹣2)2(t2+4)=0,∴5m2﹣16m+12=0,解得m=2或m=.∵m≠2,∴,∴直线PQ:,恒过定点.。

高三数学培优补差辅导专题讲座-平面向量单元易错题分析与练习

高三数学培优补差辅导专题讲座-平面向量单元易错题分析与练习

平面向量易错题解析赵玉苗整理1、你熟悉平面向量的运算(和、差、实数与向量的积、数量积)、运算性质和运算的几何意义吗?2、你通常是如何处理有关向量的模(长度)的问题?(利用22||→→=a a ;22||y x a +=)3、你知道解决向量问题有哪两种途径?(①向量运算;②向量的坐标运算)4、你弄清“02121=+⇔⊥→→y y x x b a ”与“0//1221=-⇔→→y x y x b a ”了吗?[问题]:两个向量的数量积与两个实数的乘积有什么区别?(1) 在实数中:若0≠a ,且ab=0,则b=0,但在向量的数量积中,若→→≠0a ,且0=•→→b a ,不能推出→→=0b 。

(2) 已知实数)(,,,o b c b a ≠,且bc ab =,则a=c ,但在向量的数量积中没有→→→→→→=⇒•=•c a c b b a 。

(3) 在实数中有)()(c b a c b a ••=••,但是在向量的数量积中)()(→→→→→→••≠••c b a c b a ,这是因为左边是与→c 共线的向量,而右边是与→a 共线的向量。

5、向量的平移公式、函数图象的平移公式你掌握了吗?6、正弦定理、余弦定理及三角形面积公式你掌握了吗?三角形内的求值、化简和证明恒等式有什么特点?1、向量有关概念:(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。

向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。

如已知A(1,2),B(4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0))(2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;(3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ±);(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。

江苏省菁华学校2011高三数学培优补差辅导专题讲座-集合函数与导数单元易错题分析与练习

江苏省菁华学校2011高三数学培优补差辅导专题讲座-集合函数与导数单元易错题分析与练习

【错解】误将半圆 y 1 4 x2 认为是圆 .
【分析】利用“数形结合”易于找到正确的解题思路
.
5
3
【正解】可得正确答案为:
k
12
4
二、函数部分
1、忽略函数具有奇偶性的必要条件是:定义域关于原点对称
.
1x
例题 1、函数 f ( x) (1 x)
的奇偶性为
1x
【错解】偶函数 .
【分析】判断函数的奇偶性不考虑函数的定义域是否关于原点对称而导致错误
[ 问题 ] : 已知函数 f x 2 x 3 ,函数 y g x 的 图象与 y f 1 x 1 的图象关于直线 y x对称,求 g 11 的值 .
x1 10、如何正确表示分数指数幂?指数、对数的运算性质是什么?
11、你熟练地掌握了指数函数和对数函数的图象与性质吗
?
[ 问题 ] : 已知函数 f x log a x在 x 3, 上,恒有 f x 1 ,则实数 a的 取值范围是:

( A) a
2或 0
a
1 ( B) a
ቤተ መጻሕፍቲ ባይዱ
2或 a
1
1
( C)
a
1或1
a
1 2 (D)
a
2
2
2
2
2
【错解】只想到 a 1 一种情况,选 D
【分析】指、对数函数的底数是字母而没分类讨论
.
【正解】正确答案为: C
4、不理解函数的定义:
例 4、函数 y=f ( x) 的图象与一条直线 x=a 有交点个数是……………………………(
[ 问题 ] : 请举例说明“否命题”与“命题的否定形式”的区别
.
什么是映射、什么是一一映射?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何单元易错题练习一.考试内容:椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程. 双曲线及其标准方程.双曲线的简单几何性质. 抛物线及其标准方程.抛物线的简单几何性质. 二.考试要求:(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用.【注意】圆锥曲线是解析几何的重点,也是高中数学的重点内容,高考中主要出现三种类型的试题:①考查圆锥曲线的概念与性质;②求曲线方程和轨迹;③关于直线与圆锥曲线的位置关系的问题. 三.基础知识:(一)椭圆及其标准方程1. 椭圆的定义:椭圆的定义中,平面内动点与两定点1F 、2F 的距离的和大于|1F 2F |这个条件不可忽视.若这个距离之和小于|1F 2F |,则这样的点不存在;若距离之和等于|1F 2F |,则动点的轨迹是线段1F 2F .2.椭圆的标准方程:12222=+b y a x (a >b >0),12222=+bx a y (a >b >0).3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果2x 项的分母大于2y 项的分母,则椭圆的焦点在x 轴上,反之,焦点在y 轴上.4.求椭圆的标准方程的方法:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.(二)椭圆的简单几何性质1. 椭圆的几何性质:设椭圆方程为12222=+by a x (a >b >0).⑴ 范围: -a ≤x ≤a ,-b ≤x ≤b ,所以椭圆位于直线x=a ±和y=b ±所围成的矩形里. ⑵ 对称性:分别关于x 轴、y 轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心.⑶ 顶点:有四个1A (-a ,0)、2A (a ,0)1B (0,-b )、2B (0,b ).线段1A 2A 、1B 2B 分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.⑷ 离心率:椭圆的焦距与长轴长的比ace =叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e <1.e 越接近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆. 2.椭圆的第二定义⑴ 定义:平面内动点M 与一个顶点的距离和它到一条定直线的距离的比是常数ace =(e <1=时,这个动点的轨迹是椭圆. ⑵ 准线:根据椭圆的对称性,12222=+by a x (a >b >0)的准线有两条,它们的方程为c a x 2±=.对于椭圆12222=+bx a y (a >b >0)的准线方程,只要把x换成y 就可以了,即ca y 2±=.3.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.设1F (-c ,0),2F (c ,0)分别为椭圆12222=+by a x (a >b >0)的左、右两焦点,M (x ,y )是椭圆上任一点,则两条焦半径长分别为ex a MF +=1,ex a MF -=2.椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.椭圆的四个主要元素a 、b 、c 、e 中有2a =2b +2c 、ace =两个关系,因此确定椭圆的标准方程只需两个独立条件. 4.椭圆的参数方程椭圆12222=+b y a x (a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数).说明 ⑴ 这里参数θ叫做椭圆的离心角.椭圆上点P 的离心角θ与直线OP的倾斜角α不同:θαtan tan ab=;⑵ 椭圆的参数方程可以由方程12222=+by a x 与三角恒等式1sin cos 22=+θθ相比较而得到,所以椭圆的参数方程的实质是三角代换. 92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩. 5.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b⇔+>.6. 椭圆的切线方程(1)椭圆22221(0)x y a b a b+=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b+=>>与直线0A x B y C ++=相切的条件是22222A a B b c +=(三)双曲线及其标准方程1. 双曲线的定义:平面内与两个定点1F 、2F 的距离的差的绝对值等于常数2a (小于|1F 2F |)的动点M 的轨迹叫做双曲线.在这个定义中,要注意条件2a <|1F 2F |,这一条件可以用“三角形的两边之差小于第三边”加以理解.若2a=|1F 2F |,则动点的轨迹是两条射线;若2a >|1F 2F |,则无轨迹.若1MF <2MF 时,动点M 的轨迹仅为双曲线的一个分支,又若1MF >2MF 时,轨迹为双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.2. 双曲线的标准方程:12222=-b y a x 和12222=-bx a y (a >0,b >0).这里222a c b -=,其中|1F 2F |=2c.要注意这里的a 、b 、c 及它们之间的关系与椭圆中的异同.3.双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.4.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. (四)双曲线的简单几何性质1.双曲线12222=-by a x 的实轴长为2a ,虚轴长为2b ,离心率a c e =>1,离心率e越大,双曲线的开口越大.2. 双曲线12222=-by a x 的渐近线方程为x a b y ±=或表示为02222=-b y a x .若已知双曲线的渐近线方程是x nmy ±=,即0=±ny mx ,那么双曲线的方程具有以下形式:k y n x m =-2222,其中k 是一个不为零的常数.3.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线12222=-b y a x ,它的焦点坐标是(-c ,0)和(c ,0),与它们对应的准线方程分别是ca x 2-=和c a x 2=.双曲线22221(0,0)x y a b a b-=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.4.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b⇔->.(2)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b⇔-<.5.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-by a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222by a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上). 6. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b-=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A a B b c -=.(五)抛物线的标准方程和几何性质1.抛物线的定义:平面内到一定点(F )和一条定直线(l )的距离相等的点的轨迹叫抛物线。

这个定点F 叫抛物线的焦点,这条定直线l 叫抛物线的准线。

需强调的是,点F 不在直线l 上,否则轨迹是过点F 且与l 垂直的直线,而不是抛物线。

2.抛物线的方程有四种类型:px y 22=、px y 22-=、py x 22=、py x 22-=.对于以上四种方程:应注意掌握它们的规律:曲线的对称轴是哪个轴,方程中的该项即为一次项;一次项前面是正号则曲线的开口方向向x 轴或y 轴的正方向;一次项前面是负号则曲线的开口方向向x 轴或y 轴的负方向。

3.抛物线的几何性质,以标准方程y2=2px 为例(1)范围:x ≥0;(2)对称轴:对称轴为y=0,由方程和图像均可以看出; (3)顶点:O (0,0),注:抛物线亦叫无心圆锥曲线(因为无中心); (4)离心率:e=1,由于e 是常数,所以抛物线的形状变化是由方程中的p 决定的;(5)准线方程2px =-;(6)焦半径公式:抛物线上一点P (x1,y1),F 为抛物线的焦点,对于四种抛物线的焦半径公式分别为(p >0):221122112:;2:222:;2:22p py px PF x y px PF x p px py PF y x py PF y ==+=-=-+==+=-=-+(7)焦点弦长公式:对于过抛物线焦点的弦长,可以用焦半径公式推导出弦长公式。

设过抛物线y2=2px (p >O )的焦点F 的弦为AB ,A (x1,y1),B(x2,y2),AB 的倾斜角为α,则有①|AB|=x 1+x 2+p以上两公式只适合过焦点的弦长的求法,对于其它的弦,只能用“弦长公式”来求。

相关文档
最新文档