第八章点的一般运动与刚体的基本运动.
2刚体基本运动
1 r2 n1 i 2 r1 n2
2.齿轮传动
r11= –r22;
1 n1 i12 2 n2
r2 r1 z2 z1
r1
r2
3.齿轮箱传动
1 z2 ; 2 z1
3 z4 ; 4 z3
z1
4
z4
1
z2
上二式相乘,並有:2=3
3
i14
α r ω (ω r )
at an
12
z
例:一矢量 rAB 绕 z轴以角速度定轴转动, drAB 试证: dt ω rAB B z' 证明: r r r
rB rA rAB
k
AB
B
A
x
O' i y x'
A
j y'
drAB drB drA vB v A dt dt dt
l
vA
M
vM
vM v A
B
aM a A
vA l
其中 则
π π 0 cos t 4 4 π π v A l 0 cos t 4 4
16
方向垂直O1A
π π v A l 0 cos t 4 4
O1 φ O2
A点的切向加速度 2
l B
l
n A
a
O
a
A
角速度矢量:
大小:
d dt
表征转角变化
y x
方向: 转动方向,右手螺旋确定指向
ω k
单位:
rad/s
工程中转速n: 一分钟转过的圈数
2 n 60
刚体的基本运动
转速:刚体每分钟转过的圈数。单位:r / min。 转速 n 与角速度 2n n 60 30
的关系:
(7-6)
角加速度
d d 2 lim 2 t 0 t dt dt
(7-7)
刚体的角加速度(Angular acceleration)
等于其角速度对时间的一阶导数,也等于其转角对
v r 0.4 50 20 m / s
an r 0.4 50 1000 m /s
2 2
2
例7-4 定轴轮系如图7-9所示,主动轮I通过轮齿
与从动轮II轮齿啮合实现转动传递。主动轮I和从动轮 II的节圆半径分别为r1、r2,齿数分别为z1、z2。设I轮 的角速度为 1 (转数为n1),角加速度为 1 ;II轮的 角速度为 2(转数为n2),角加速度为 2 。试求上
2 a a2 an (r )2 (rω2 )2 r 2 ω4
tan
a an
ω
2
(7-13)
在给定瞬时,刚体的角速度和角加速度有确 定的值,对刚体上任何点都是一样。因而,在同一瞬 时,转动刚体上各点的速度 v 和加速度 a 的大小均与
该点的转动半径 r 成正比;各点速度 v 的方向都垂直
O轴作定轴转动,其转动方程为 t 2 4t (1)当t = 1 s时,试求轮缘上M点速度和加速度;
(2)若轮上绕一不可伸长的绳索,并在绳索下端
悬一物体A,求当t = 1 s时,物体A的速度和加速度。 解:圆轮在任一瞬时的角速 a M 度和角加速度为 d 2t 4 rad / s
当
t 1s,直杆AB上D点的速度和加速度。
解:由于O1A与O2B平行等
点的运动及刚体的简单运动
4.3.3曲率
因为 d d d d 1 ds d ds ds
方向同 n
所以 n d
ds
4.3.4点的速度
v dr dr ds ds v
dt ds dt dt
4.3.5点的加速度 a dv dv v d
dt dt dt
代入
d d ds v n
dt ds dt
则
a
l2 a2 2al cos 2t
cos(v, j) vy (l a) cost v l2 a2 2al cos 2t
已知:OC AC BC l , MC a , t。
求:运动方程、轨迹、速度和加速度。
加速度
ax vx x l a 2 cost ay vy y l a2 sin t
加速度
dv d2 r
a
v r
dt dt 2
单位 m/s2
矢端曲线
速度 矢径矢端曲线切线
加速度 速度矢端曲线切线
4.2 用直角坐标法研究点的运动
4.2.1 运动方程
x x(t) y y(t) z z(t)
直角坐标与矢径坐标之间的关系
r (t) x t i y(t) j z(t)k
4.2.2 点的速度
① 啮合条件
R11 vA vB R22
② 传动比
i12
1 2
R2 R1
z2 z1
4.5.2 带轮传动
r11 vA vA vB vB r22
i12
1 2
r2 r1
4.6 以矢量表示角速度和角加速度 以矢积表示点的速度和加速度
4.6.1角速度矢量和角加速度矢量
角速度矢量
大小 作用线 沿轴线
4.1.2 点的速度
刚体基本运动
第八章刚体的基本运动一、内容提要刚体的基本运动包括刚体的平动和定轴转动。
1、刚体的平动(1)刚体的平动的定义:刚体在运动过程中,若其上任一条直线始终保持平行于它的初始位置,称这种运动为刚体的平动。
(2)刚体平动的运动特征:刚体平动时,其上各点的轨迹形状相同并彼此平行;在每一瞬时,刚体上各点的速度相同,各点的加速度也相同。
因此刚体的平动可简化为一个点的运动来研究。
2、刚体的定轴转动(1)刚体的定轴转动的定义:刚体运动时,若其上(或其延伸部分)有一条直线始终保持不变,称这种运动为刚体的定轴转动。
(2)刚体的定轴转动的运动特征:刚体定轴转动时,其上各点均在垂直于转轴的平面内绕转轴作圆周运动。
(3)刚体的转动规律转动方程ϕ=f(t)角速度ω=dϕ /d t角加速度ε=dω t(4)转动刚体上各点速度和加速度速度V=Rω加速度aτ=Rεa n=Rω2全加速度大小和方向a=√ aτ +a n(5)转动刚体上各点速度和加速度的矢积表示:若沿转轴作出刚体的角速度矢ω和角加速度矢ε,则定轴转动刚体内任一点的速度V=ω⨯ r4142 加速度 a=a τ+a n =ε ⨯ r + ω ⨯ V二、基本要求1、熟练掌握刚体平动的运动特征。
2、熟练掌握刚体的转动规律和转动刚体上各点速度和加速度的求解。
三、典型例题1、曲柄O 1A 和O 2B 的长度均为2R ,分别绕水平固定轴O 1和O 2转动,固连于连杆AB 的齿轮Ⅰ带动齿轮Ⅱ绕O 轴转动。
若已知曲柄O 1A 的角速度为ω、角加速度为ε,O 1O 2=AB , 齿轮Ⅰ和齿轮Ⅱ的半径均为R 。
试求齿轮Ⅱ节圆上任一点D 的加速度。
解 轮Ⅰ与AB 杆固连在一起作平动。
设N 点是轮Ⅰ节圆与轮Ⅱ的接触点,则有 V N =V A =2R ω ;a τN =a τA =2R ε ; a n N =a n A =2R 2ω又设M 点是轮Ⅱ节圆与轮Ⅰ的接触点,因两轮之间无相对滑动,所以有εM τ43V M =V N =2R ω ; a τM = a τN =2R ε因为轮Ⅱ作定轴转动,设其角速度为2ω,角加速度为2ε,则又有 V M = R 2ω,a τM =R 2ε,所以有 2ω=2ω ; 2ε=2ε 轮Ⅱ节圆任一点D 的切向和法向加速度大小分别为 a τD = R 2ε=2R ε ; a n D =R 22ω=4R 2ω 故点D 的加速度大小为 a D =()()222242ωετ+=+R a a nDD方向可由a D 与D 点处半径夹角α的正切表示为 tan α=22ωετ=nDD aa。
刚体运动的基本原理与动力学分析
刚体运动的基本原理与动力学分析刚体运动是物理学中的重要概念,研究刚体的基本原理和动力学分析对于理解力学运动规律具有重要意义。
本文将从刚体的定义、刚体运动的基本原理,以及刚体的动力学分析等方面展开论述。
一、刚体的定义刚体是指在力的作用下,保持形状和体积不变的物体。
刚体的特点是不易变形,内部各点之间的相对位置保持不变。
二、刚体运动的基本原理1. 平动和转动刚体运动可以分为平动和转动两种形式。
平动是指刚体上所有点按照相同方向和相同距离运动,转动是指刚体绕着某个轴旋转。
2. 受力和力矩刚体的运动受到外力的作用,外力可以分为接触力和非接触力。
接触力是指物体之间直接接触施加的力,非接触力是指物体间通过场的相互作用施加的力,如重力和电磁力等。
另外,刚体的转动还受到力矩的影响。
力矩是由作用力与力臂的乘积,用来描述力对刚体的转动效果。
力矩的方向由右手定则确定,大小等于力的大小与力臂的长度之积。
3. 刚体的运动学方程刚体的运动学方程描述了刚体在运动过程中各个部分的位置、速度和加速度之间的关系。
根据牛顿第二定律和运动学关系可以得到刚体的运动学方程。
三、刚体的动力学分析1. 平动的动力学分析刚体的平动运动可以通过牛顿第二定律进行动力学分析。
根据牛顿第二定律可知,刚体所受的合外力等于刚体的质量与加速度的乘积。
2. 转动的动力学分析刚体的转动运动需要通过力矩和转动惯量进行动力学分析。
根据牛顿第二定律可知,刚体所受的合外力矩等于刚体的转动惯量与角加速度的乘积。
此外,刚体的角动量和动能也是进行动力学分析的重要物理量。
角动量等于刚体的转动惯量与角速度的乘积,动能等于刚体的转动惯量与角速度的平方的乘积的一半。
四、刚体运动的应用刚体运动的研究在工程、医学等领域有广泛应用。
例如在机械工程中,对机械零件的运动进行分析可以用于设计和优化机械结构;在生物医学中,对人体骨骼系统的运动学和动力学分析可以用于疾病的诊断和康复治疗。
总结:刚体运动的基本原理和动力学分析是研究力学运动规律中的重要内容。
第八章:刚体的平面运动
y
w
M
O
A
B
vA
x
y vMD vM
M
vD O A
D
w vD B
1、求vM
vD= vA= 2m/s vA 基点:D点 x
vMD MD w 2rw 2.12 m S
vM vVM VD O
w VD B
vMD 2.12 m S
vM vM2 x vM2 y 3.8 m
B
C
A II wII
D
wO
O
I
vA wO OA wO (r1 r2 )
分析两轮接触点D
vD=0
vD vA vDA
0 vA vDA
vDA=vA=wO(r1+r2)
wII
vDA DA
wO (r1
r2
r2 )
B
C
vA A II wII
vA D
wO
vDA
O
I
以A为基点,分析点B的速度。
第八章 刚体的平面运动
§8–1 刚体平面运动的概述和运动分解 §8–2 求图形内各点速度的基点法 §8–3 求平面图形内各点速度的瞬心法 §8–4 用基点法求平面图形内各点的加速度 §8–5 运动学综合应用
注重学习分析问题的思想和方法
刚体的平面运动
• 重点 • 刚体平面运动的分解; • 熟练应用各种方法求平面图形上任一 点的速度。 • 求平面图形上任一点的加速度。
3、刚体绕基点转动的角速度ω和角加速度α是刚体自 身的运动量 与基点的选择无关。
注意:
虽然基点可任意选取
选取运动情况已知的点作为基点。
§8-2 求图形内各点速度的基点法
一.基点法
va ve vr
第八章 刚体的基本运动
理论力学电子教程
第八章 刚体的基本运动
荡木用两条等长的钢索平行吊起,如图所示。 例8-1 荡木用两条等长的钢索平行吊起,如图所示。钢索长 为 长 l, 长 度 单 位 为 m。 当 荡 木 摆 动 时 钢 索 的 摆 动 规 律 , 。 π 为时间,单位为s;转角φ 为 ϕ =ϕ0 sin t ,其中 t 为时间,单位为 ;转角 0的单位为 4 rad,试求当 和t=2 s时,荡木的中点 的速度和加速度。 的速度和加速度。 ,试求当t=0和 时 荡木的中点M的速度和加速度
∴aτ =ε × r
∴a n =ω × v
a n =ω × v
理论力学电子教程
第八章 刚体的基本运动
三、定轴轮系的传动比 在实际工程中,不同机器的工作转速往往是不一样的, 在实际工程中,不同机器的工作转速往往是不一样的, 故需要利用轮系的传动来提高或降低机器转速。 故需要利用轮系的传动来提高或降低机器转速。常用的有 带传动和齿轮传动。一般将主动轮转速与从动轮转速之比, 带传动和齿轮传动。一般将主动轮转速与从动轮转速之比, 表示, 用i表示,即 表示 n主 ω主 i= = n从 ω 从 1.带传动 当主动轮Ⅰ转动时, 当主动轮Ⅰ转动时,利用胶带与带轮轮缘间的摩擦带动 从动轮Ⅱ转动。 从动轮Ⅱ转动。 不考虑胶带由于拉力引起的变形及胶带的厚度, 不考虑胶带由于拉力引起的变形及胶带的厚度,为此在 同一瞬时胶带上各点速度大小应相等, 同一瞬时胶带上各点速度大小应相等,即v1 = v = v2。若胶带 与带轮间没有滑动, 与带轮间没有滑动,则
理论力学第八章点的合成运动
运动学/点的合成运动
▼曲柄摇杆机构运动分析
动 点:套筒A
动 系:摇杆OC 定 系: 地面 绝对运动:圆周(O1) 相对运动:直线(沿
OC)
牵连运动: 定轴转动 (绕O)
运动学/点的合成运动
▼平底凸轮机构运动分析
动点:凸轮圆心点C 动系:平底挺杆 静系:地面 绝对运动:圆周(C) 相对运动:直线
运动学/点的合成运动
飞机螺旋桨上点P的运动分析
飞机上观察 P点为圆周 运动
当飞机直线 平移时地面 上观察P点的 运动为曲线 运动。
P点的运动可看成随飞机的平移与绕螺旋桨轴心转动的合成。
运动学/点的合成运动
本章利用运动的分解、合成的方 法对点的速度、加速度进行分析,研 究点在不同参考系中的运动,以及它 们之间的联系。
运 动 , 带 动 顶 杆 AB 沿 铅
A
R φ
v0
垂方向运动,如图所示。
试求φ=60º时,顶杆AB的
速度。
n
运动学/点的合成运动
解: 1. 选择动点、动系与定系
B
y
y A
v0
R
o φ
x
o
n
x
动点:AB 杆的端点A 动系:固连于凸轮
定系:固连于水平 轨道
2. 运动分析
绝对运动:直线运动
相对运动:沿凸轮轮 廓曲线运动
▼牵连点指某瞬时动系上与
动点相重合的点,不同瞬时 牵连点的位置不同。
▼动点相对动系、定系必
须有运动,不能和动系在同 一物体上。
▼以上可归结为一点、两
系、三运动。
运动学/点的合成运动
四、 运动方程及坐标变换 可以利用坐标变换来建立绝对、
大学本科理论力学课程第8章 刚体的基本运动 (1)
理论力学电子教程
第八章 刚体的基本运动
刚体是由点组成的,在研究点的运动的基础上, 可以研究刚体的运动
刚体运动形式 刚体运动
平动 定轴转动 平面运动 定点运动 一般运动
最基本形式
具体实例如下
理论力学电子教程
第八章 刚体的基本运动
平动 平面运动
定点运动
定轴转动 一般运动
理论力学电子教程
第八章 刚体的基本运动
§8-1 刚体的平行移动
1、刚体平动的定义: P157
在刚体运动过程中,若体内任一直线始终保持与初始位置平 行,则此种运动称为刚体的平动(或称平行移动或移动或平移)。
如: 振动式送料机构的送料槽的运动,车床上刀架的运动。
理论力学电子教程2.Fra bibliotek体平动的特点: P158
理论力学电子教程
第八章 刚体的基本运动
第八章 刚体的基本运动
一、刚体作平动
1、作平动的刚体在任一瞬时刚体上各点速度,加速度大小相等方向相同, 相同时间间隔内,各点的运动轨迹形状相同,位移相同。
平动刚体的运动可以简化为一个点的运动
2、曲线平动:各点轨迹为曲线 二、刚体作定轴转动动
3、直线平动:各点轨迹为直线
1、转动方程:φ= φ(t)
2.角速度 d
dt
2n
60
n
30 (rad
s)
3.角加速度 d d 2
dt
dt 2
2n (rad s )
4、M点沿轨迹的运动方程为 sA RA
RA为A点的转动半径
理论力学电子教程
第八章 刚体的基本运动
5、M点的速度、加速度
vA RA 速度方向垂直于转动半径 OA a RA 切向加速度方向垂直于转动半径 OA
刚体的基本运动
三、刚体平面运动的运动方程 刚 体 平 面 运 动 建立如图的静坐标系, 建立如图的静坐标系, 基点。 点称为基点 将 O′点称为基点。 当刚体作平面运动时, 当刚体作平面运动时, xO′,yO′ 和 均随时间连续变 化,它们均为时间的单值连 续函数, 续函数,即 x = f (t ) (t
1 O′ yO′ = f 2 (t ) = f 3 (t )
O
vO
O
ω
A B
O
ω
O1
二、刚体平面运动的简化 刚 体 平 面 运 动 如图所示, 如图所示,刚体作平面 运动时, 运动时,刚体上所有与空间 某固定平面距离相等的点所 构成的平面图形就保持在它 自身所在的平面内运动。 自身所在的平面内运动。
A1
π
A
S
经分析可得如下结 论:
π0
A2
刚体的平面运动可以简化为平面图形S 刚体的平面运动可以简化为平面图形 在其自身所在的平面内运动。 在其自身所在的平面内运动。
静 平 面 动
z
= (t )
平 面
这就是刚体的转动方程。 开门 这就是刚体的转动方程。(开门 转动方程 开门)
刚体上任意一点的轨迹都为圆。
O
二、角速度、角加速度 角速度、
刚体绕定轴转动的角速度等于其位置角对时 8.2 间的一阶导数,用ω 表示,即 间的一阶导数, 表示,
刚 体 的 定
d ω= = dt
绝对运动中,动点的速度与加速度称为绝对速度 va 与绝对加速度
aa
相对运动中,动点的速度和加速度称为相对速度 vr 与相对加速度 ar 牵连运动中,牵连点的速度和加速度称为牵连速度 ve与牵连加速度 ae
牵连点:在任意瞬时,动坐标系中与动点相重合的点,也就是 牵连点 设想将该动点固结在动坐标系上,而随着动坐标系一起运动时 该点叫牵连点。 四.动点的选择原则: 动点的选择原则: 一般选择主动件与从动件的连接点,它是对两个坐标系都有 运动的点。 五.动系的选择原则: 动系的选择原则 动点对动系有相对运动,且相对运动的轨迹是已知的, 或者能直接看出的。
点的一般运动和刚体的基本运动
t 时间间隔内矢径旳变化 量 r(t)= r (t + t )- r(t)
点在 t 瞬时旳速度
v lim r d r r t0 t dt
动点旳速度等于它旳矢径对时间旳一阶导数。
7
v lim r dr t0 t dt
速 度 —— 描述点在 t 时刻运动快慢和运 动方向旳力学量。速度旳方向沿着运动 轨迹旳切线;指向与点旳运动方向一致; 速度大小等于矢量旳模。
❖ 加速度 —— 描述点在 t 时刻速度大小和方 向旳变化率旳力学量。 加速度旳方向为 v旳 极限方向 加速度大小等于矢量a旳模。
10
2、点旳运动旳直角坐标表达法
运动方程 速度 加速度
11
➢运动方程
不受约束旳点在空间有 3个自由度,在直角 坐标系中,点在空间旳位置由3个方程拟定:
x = x(t) y = y(t)
运动方程 速度 加速度
5
运动方程
运动方程 用点在任意瞬时t旳位置矢量r(t)
表达。 r(t)简称为位矢。
z
M
M´
M
r = r (t)
y
x
动点M在空间运动时,矢径r旳末端将描绘出一条
连续曲线,称为矢径端图,它就是动点运动旳轨迹。 6
速 度
t 时刻: 矢径 r(t)
t+ t 时刻: 矢径r (t + t )
2
学习运动学旳意义
➢它为学习动力学,即全方面地分析研 究物体旳机械运动作准备; ➢运动学旳理论能够独立地应用到工程实 际中去。
3
第五章 点旳一般运动和刚体旳基本运动
第一节 点旳运动旳表达法
矢径表达法
直角坐标表达法
弧坐标表达法
第二节 刚体旳基本运动
刚体的定点运动与一般运动动力学教学课件
根据刚体运动的平面性,一般运动可 以分为平面运动和空间运动。平面运 动是指刚体的所有点在同一平面内运 动,空间运动则涉及刚体的三维空间 运动。一般运动的动力Fra bibliotek方程总结词
一般运动的动力学方程是牛顿第二定律的推广形式。
详细描述
一般运动的动力学方程是描述刚体运动状态变化的数学表达式,它是牛顿第二定律的推广形式。根据 牛顿第二定律,力是质量与加速度的乘积,而在一般运动中,需要考虑刚体的转动惯性,因此动力学 方程中还包括转动惯量。
飞行器控制
航空航天领域的飞行器控制需要 精确的刚体动力学模型来预测飞 行器的姿态、速度和位置等参数 ,以确保安全和稳定的飞行。
卫星姿态调整
卫星在太空中运行时,需要依靠 刚体动力学模型来调整其姿态, 以确保有效载荷的正常工作。
车辆工程
车辆动力学分析
在车辆工程中,刚体动力学被广泛应 用于车辆动力学分析,以优化车辆的 设计和性能,提高行驶的稳定性和安 全性。
自动驾驶技术
自动驾驶技术依赖于精确的刚体动力 学模型来预测车辆的运动状态和行为 ,从而实现安全有效的自动驾驶。
05
总结与展望
刚体动力学的重要性和意义
刚体动力学是研究刚体在力作用下的运动规 律的科学,它在工程、物理、航空航天等领 域有着广泛的应用。
刚体动力学对于理解物体运动规律、设计机 械系统、优化工程结构等方面具有重要意义 ,是工程技术人员必备的基础知识。
03
一般运动的动力学
一般运动的定义
总结词
一般运动是指刚体在空间中的任意运动,其位置和方向随时 间变化。
详细描述
一般运动是相对于定点运动而言的,它描述了刚体在空间中 的任意运动状态,包括平动和转动。刚体的位置和方向随时 间变化,其上任意一点的位置都随时间而改变。
理论力学8刚体的基本运动
前面都为数量表达式,只有大小,而未标明方向; 矢量表达既有大小,又有方向。
一. 角速度和角加速度的矢量表示
按右手定则规定
w , 的方向。
大小:|w ||ddt |
dw dw k k
dt dt
方向如图 w wk
15
二 刚体内任一点的线速度和线加速度的矢积表示
vRw rsin w |w r|wrsin Rw
小于90o , 在同一瞬间的速度和加速度的分布图为:
各点速度分布图
各点加速度分布图
10
§8-4 绕定轴转动刚体的传动问题
传动比:通常称主动轮与从动轮角速度之比
i12
w1 w2
一.齿轮传动
因为是做纯滚动(即没有相对滑动) 1.内啮合
vF vE vF vE
wF rF wE rE
定义齿轮传动比
iEF
aC n Rw02 0.532 4.5m/s 2
aC (aC )2 (aC n )2 12 4.52 4.61 m/s2
tg
aC aC n
1 4.5
0.222,
12.5
⑤ t=3s 时, aC aA 1m/s2,aCn Rw 2 0.592 40.5m/s2
aC
12 40.52 40.51m/s2,
w 2 w02 2
7
§8-3 转动刚体内各点的速度和加速度
一. 线速度V和角速度w之间的关系(即角量与线量的关系)
w , 对整个刚体而言(各点都一样);
v, a 对刚体中某个点而言(各点不一样)。
v
v
lim
t0
R t
wR
v wR
8
二.角加速度 与an ,a 的关系
吉林大学理论力学课件-第8章
★ 瞬时转动轴.角(加)速度
C
z
例 题 2 题
w1
B A
O
O´ O
半径为r的圆盘绕 z 轴作纯滚动,角速度为 w1 r 轴作纯滚动,角速度为 =常数;OO´轴的长度为 l 。求:A、B、C 三点 = OO 轴的长度为 A B 的速度和加速度。
★ 瞬时转动轴.角(加)速度
z
z
z
y
y
O O
x
x
x
★ 运动方程 运动方程
(Eulerian angle)
* 欧拉角
★ 运动方程 运动方程
* 欧拉角
xh 坐标面与 ON-节线:o 坐标面与 ON Oxy坐标面的交线; Oxy
ON与 Ox 轴的夹角; ON ;
y -进动角(angle of precession): (angle of precession)
y = y ( ) t q = q ( ) t 运动方程 j = j ( ) t y ( ), ( ), ( ) 确定了 t 瞬 t q t j t 确定了
时定点运动刚体在空间的位 置。 置。
★ 欧拉定理
达朗贝尔-欧拉有限位移定理 达朗贝尔-欧拉有限位移定理
(d'Alernbert Euler displacement theorem) (
q -章动角(angle of nutation) : nutation
O 与Oz轴的夹角; z Oz ;
j -自转角(angle of rotation) : :
ON与Ox轴的夹角; ON Ox ; y q j -三者相互独立。
★ 运动方程
*欧拉角
z
z
理论力学6—刚体的基本运动
§6-5 以矢量表示角速度和角加速度.以矢积表示点的速度和加速度
1、角速度矢量和角加速度矢量
角速度矢量
dj
ww
dt
大小
角速度矢沿轴线,弯向表示刚体转动的方向。
指向用右手螺旋法则。
w wk
角加速度矢量
dw dw
k k
dt
dt
§6-5 以矢量表示角速度和角加速度.以矢积表示点的速度和加速度
2
例6-6
某定轴转动刚体通过点M0(2,1,3),其角速度矢w 的方向
余弦为0.6,0.48,0.64,角速度 的大小ω=25rad/s 。求:刚体上点
M(10,7,11)的速度矢。
解:角速度矢量
w wn
其中 n (0.6,0.48,0.64)
M点相对于转轴上一点M0的矢径
r rM rM0 10,7,11 2,1,3 8,6,8
Z2=60,Z3=12,Z4=70。(a)求减速箱的总减速比i13 ;(b)如
果n1=3000r/min,求n3.
1
n1
2
n2
3
n3
4
解:求传动比:
n1 n1 n2 Z 2 Z 4
i13
34.8
n3 n2 n3 Z1 Z 3
则有:
n1 3000
n3
86r / min
i13
4 rad
dw dw d
dw
w
dt
d dt
d
dw
w
0.2
d
解:
w
w wdw
0
理论力学5—点的运动学描述和刚体的基本运动
M
o j R
j
M
旋轮线
y
M
A
o j R C
x
解:取坐标系Axy 如图所示, 并设M点所在的一 个最低位置为原点A, 则当轮子转过一个角度后, M点坐标为
x AC - OM sin j R(wt - sin wt )
y OC - OM cos j R(1 - cos wt )
这是旋轮线的参数方程。
运动学
引 言
运动学是研究物体运动的几何性质的 科学。也就是从几何学方面来研究物 体的机械运动。运动学的内容包括: 运动方程、轨迹、速度和加速度。
物体运动的描述是相对的。将观察者所在 的物体称为参考体,固连在参考体上的坐 标系称为参考坐标系。只有明确参考系来 描述物体的运动才有意义。 时间概念要明确: 瞬时t 和 时间间隔Δt
O x
A
vB
aA
A2
rB
B
B1 aB
B2
y
结论:当刚体平行移动时,其上各点的轨迹形状相同; 在每一瞬时,各点的速度相同,加速度也相同。
因此,研究刚体的平移,可以归结为研究刚体 内任一点的运动。 同时要注意:刚体平移时,刚体上的点既可以 作直线运动,也可以作曲线运动。
5.3 刚体绕定轴转动
O (-)
M
s
这就是弧坐标形式的点的运动方程。
5.1.3 自然坐标法 2 自然轴系
M1
t1
t t '1
5.1.3 自然坐标法
即以点M为原点,以切线、主法线和副法 线为坐标轴组成的正交坐标系称为曲线在点M 的自然坐标系,这三个轴称为自然坐标轴。且 三个方向单位矢量满足右手法则,即
b t n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x f1 (t ) y f 2 (t ) z f 3 (t )
其速度为
r xi yj zk
dx dy dz v i j k dt dt dt
将速度向三个坐标轴方向分解,得速度的三个分量为
dx v x dt dy v y dt dx v z dt
四、运动学与工程运动分析
回目录
第二节 描述点的一般运动的方法
一、矢径法
设动点M在空间作曲线运动,任选一固定点O作为参考点,则点M在任一瞬时 的位置可用其位置矢量,即O点到点M的矢径确定,即为点的矢量形式的运动方程
r r (t )
其速度为矢径对时间变化率,即
r dr v lim t 0 t dt
例 设动点 M 沿螺旋线 z=2sin4t、y=2cos4t、z=4t 运动。求在任一瞬时的速度、加速度的大小及 轨迹的曲率半径。(x、y、z 的单位为 m,时间t的单位为 s)
解: 已知动点 M 的直角坐标形式的运动方程,可求点 M 的速度在各坐标上的投影为
dx v 8cos 4t x dt dy 8sin 4t v y dt dx vz dt 4
一、刚体的平行移动
刚体在运动过程中,如果其体内任一直线始终保持与初始位置平行, 这种运动称为平行移动。 如右图,平台在平行双曲柄机构带动下的运动,其体内任一直线始终 与原来位置平行。 运动规律 系 在作平动的刚体上任选两点 A、B,设其矢径分别为rA、rB,得其关
2 dv d s a 2 dt dt
右端第二项表示速度大小不变,仅由于速度方向所改变的速度变化率,它是加速度沿法线方向的一 个分量,称为法向加速度,即
2 v2 s an n n s a a an s n
点的加速度为速度对时间的变化率,即
v dv d 2 r a lim t 0 t dt dt 2
二、直角坐标法
设动点M在空间运动,通过固定点O 建立一直角坐标系,如图,则点M 在任一瞬时间的位置可以用它的坐标(x、y、z)唯一确定。在点M 运动时, 其坐标是时间t的连续函数,即得到直角坐标法描述点运动的运动方程
第八章 点的一般运动与刚体的基本运动
第一节 运动分析概述 第二节 描述点的一般运动的方法 第三节 刚体的基本运动 第四节 问题讨论与说明
第一节 运动分析概述
一、运动分析的内容
运动分析是研究物体在空间位置随时间变化的几何性质,提出对物体进行运动分析的一般方法。
1、对于既定的运动,选择合适的参量进行数学描述,即列写运动方程。
2 2 v vx vy vz2
点 M 的速度大小为
(8cos 4t )2 (8sin 4t ) 2 42 4 5(m ) s
点 M 的加速度在各坐标轴上的投影为
dvx a 32sin 4t x dt dv y a 32 cos 4t y dt dvz az dt 0
点 M 的加速度的大小为
2 2 a ax ay az2
(32 cos 4t ) 2 (32sin 4t ) 2 32(m s2 )
又因为
a
dv 0 dt
an a 32 m
s2
所以
v2 (4 5)2 2.5(m) an 32
回目录
第三节 刚体的基本运动
(三)加速度
根据加速度定义有
d dv d dv a (v ) v dt dt dt dt
可证明:
d s n dt
加速度表达式中右端第一项表示速度方向不变,仅由于速度大小变化引起的速度变化率。它是加速 度沿切线方向的一个分量,称为切向加速度,即
三、自然法
以动点的轨迹作为曲线坐标来确定点的位置的方法称为自然法。 (一)运动方程 弧坐标随时间变化的函数,即
s f (t )
(二)速度
dr dr ds v dt ds dt
又因为
dr ds
所以
ds v v dt
即点的速度的大小是弧坐标对时间的一阶导数,方向沿轨迹的切线方向。
加速度为
2 2 2 dvx dv y dvz d x d y d z a i j k 2 i 2 j 2 k dt dt dt dt dt dt
加速度在三个坐标轴上的分量为
dvx d 2 x ax 2 dt dt dv y d 2 y ay 2 dt dt dvz d 2 z az 2 dt dt
(二)运动分析基本形式
1、点运动形式 分为直线运动和曲线运动 2、刚体的运动形式 平移:刚体运动中,其上任意直线永远平行于自己的初始位 移。(如沿直线运动的活塞B) 定轴转动:刚体运动中,其上或外延伸部分有一直线始终保 持不动。(如曲柄OA绕O点连杆AB绕B点的运动) 平面运动:刚体运动中,其上各点到某一固定平面的距离保持不变。(如右图OA、AB、B在OAB 平面的运动) 定点转动:刚体运动中,其上始终有一点永远保持不动。(例如,陀螺的运动) 一般运动:刚体最一般的运动。 我们所讨论的是刚体的平移运动、定轴转动、平面运动。
2、研究表征运动几何性质的基本物理量,如速度、加速度、角速度与角加速度等。 3、研究运动分解与合成的规律。
二、运动分析的目的、意义
一是作为动力学的基础;二是作为机械设计和各专业专业课基础
三、运动分析的模型及基本形式
(一)运动分析的基本模型 点:不计几何形状和尺寸的理想化物体。 刚体:具有确切的形状和大小,并且在外力作用永不变形的物体。 在研究空间站的轨道运动时,可以将其简化为点去研究。在研究空间站的姿态运动时,必需考虑它 的大小及形状,即必需作为具有一定大小和形状的刚体研究。