三相逆变器Matlab仿真
基于MATLAB的三相桥式PWM逆变电路的状态空间分析与仿真_本科课程设计论文
在电力电子中把直流电变为交流电称为逆变。逆变电路的应用非常广泛,如在直流电源向负载供电时需要交流电动机调速用变频器、不间断电源、感应加热电源等电力电子装置的核心部分也是逆变电路。本文重点根据三相电压型PWM整流器的原理和特点,对PWM控制电路进行了相应的分析,在此基础上对PWM电路后面所接的L-C滤波电路和R-L负载电路运用状态空间法建立了模型。最后采用MATLAB7.1软件搭建了相应的仿真平台,取得了较好的仿真结果。
1.2
由于期望的逆变器输出是一个正弦电压波形,可以把一个正弦半波分作N等分。然后把每一等分的正弦曲线与横轴所包围的面积都用个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等分的中点重合。这样,由N个等幅不等宽的矩形脉冲所组成的波形为正弦的半周等效。同样,正弦波的负半周也可用相同的方法来等效。这一系列脉冲波形就是所期望的逆变器输出SPWM波形。由于各脉冲的幅值相等,所以逆变器可由恒定的直流电源供电,也就是说,这种交一直一交变频器中的整流器采用不可控的二极管整流器就可以了。逆变器输出脉冲的幅值就是整流器的输出电压。当逆变器各开关器件都是在理想状态下工作时,驱动相应开关器件的信号也应为与形状相似的一系列脉冲波形,这是很容易推断出来的。从理论上讲,这一系列脉冲波形的宽度可以严格地用计算方法求得,作为控制逆变器中各开关器件通断的依据。但较为实用的办法是引用通信技术中的“调制”这一概念,以所期望的波形(在这里是正弦波)作为调制波(Modulation Wave ),而受它调制的信号称为载波(Carrier Wave )。在SPWM中常用等腰三角波作为载波,因为等腰三角波是上下宽线性对称变化的波形,当它与任何一个光滑的曲线相交时,在交点的时刻控制开关器件的通断,即可得到一组等幅而脉冲宽度正比于该曲线函数值的矩形脉冲,这正是SPWM所需要的结果。从理论上讲,这一系列脉冲波形的宽度可以严格地用计算方法求得,作为控制逆变器中各开关器件通断的依据。
我的三相逆变器Matlab仿真研究
三相逆变器Matlab仿真研讨1计划选择1.1 课程设计请求本次课程设计请求对逆变电源进行Matlab仿真研讨,输入直流电压为110V,输出为220V三订交换电,树立三相逆变器Matlab仿真模子,进行仿真试验,得到三订交换电波形.1.2 实现计划肯定因为请求的输出为220V,50HZ三订交换电,显然不克不及直接由输入的110V直流电逆变产生,需将输入的110V直流电压经由过程升压斩波电路进步电压,再经由逆变进程及滤波电路得到请求的输出.依据教材所学的,可以采取升压斩波电路和三相电压型桥式逆变电路的组合电路,将升压后的电压作为逆变电路的直流侧,得到三订交换电,同时采取SPWM掌握技巧,使其频率为50HZ.斩波电路有脉冲宽度调制.频率调制和混杂型三种掌握方法.在此应用第一种掌握方法,这种方法也是应用最多的办法.经由过程掌握开关器件的通断实现电能的储存和释放进程,输出旌旗灯号为方波,调节脉宽可以掌握输出的电压的大小.依据直流侧电源性质不合,逆变电路可分为电压型逆变电路和电流型逆变电路.这里的逆变电路属电压型.PWM掌握方法有两种,一种是在调制波的半个周期内三角载波只在正极性或负极性一种极性规模内变更,所得到的PWM波形也只在单个极性规模变更的单极性PWM掌握方法,另一种是双极性掌握方法,其在调制波的半个周期内三角载波不再是一种极性,而是有正有负,所得的PWM波也是有正有负.对于三相桥式PWM逆变电路,一般采取双极性掌握方法.该电路的输出含有谐波,滤波电路采取RLC滤波电路.直流斩波电路采取PWM斩波掌握,输出的方波经由滤波电路后变成直流电送往逆变电路.逆变采取PWM逆变电路,采取SPWM作为调制旌旗灯号,输出PWM波形,再经由滤波电路得到220V.50Hz三订交换电,体系总体框图如图1所示.图1 体系总体框图2各模块道理2.1 升压斩波电路升压斩波电路如下图2所示.假设L值.C值很大,V通时,E向L充电,充电电流恒为I1,同时C的电压向负载供电,因C值很大,输出电压u o为恒值,记为U o.设V通的时光为t on,此阶段L断时,E和L配合向C充电并向负载R供电.设V则此时代电感L释稳态时,一个周期T中L蓄积能量与释放能量相等,即化简得输出电压高于电源电压,故称升压斩波电路,也称之为boost变换器.T,将升压比的倒数记作β,则故升压斩波电路能使输出电压高于电源电压的原因:L储能之后具有使电压泵升的感化,并且电容C可将输出电压保持住.图2 升压斩波电路道理图2.2 三相电压型桥式逆变电路三相电压型桥式逆变电路如下图3所示.PWM三相的调制旌旗灯和W各相功率开关器件的掌握纪律雷同,现以U相为例来解释.,,给下桥臂U,导通讯号,关断旌旗灯号,则.号时,,,这要由阻感负载中电流的偏素来决议.V相和W相的掌握方法都和U相雷同..图3三相电压型桥式逆变电路电路的相干波形如图4所示图4三相桥式PWM 逆变电路波形SPWM 波的应用道理在调制旌旗灯号u r 和载波旌旗灯号u c 的交点时刻掌握各开关器件的通断.在u r 的半个周期内,三角波载波有正有负,所得的PWM 波也是有正有负,在u r 的一个周期内,输出的PWM 波只有±U d 两种电平.在u r 的正负半周,对各开关器件的掌握纪律雷同.当u r >u c 时,V 1和V 4导通,V 2和V 3关断,这时如i o >0,则V 1和V 4通,如i o <0,则VD 1和VD 4通,当u r <u c 时,V 2和V 3导通,V 1和V 4关断,这时如i o <0,则V2和V3通,如i o >0,则VD 2和VD 3通,如许就得到了正弦旌旗灯号与三角载波的比较波形即SPWM 波,此波形在后果上等效于调制波.其波形如图5所示.图5双极性PWM 掌握方法波形t t将正弦半波算作是由N个彼此相连的脉冲宽度为p/N,但幅值顶部曲直线且大小按正弦纪律变更的脉冲序列构成的.把上述脉冲序列应用雷同数目的等幅而不等宽的矩形脉冲代替,使矩形脉冲的中点和响应正弦波部分的中点重合,且使矩形脉冲和响应的正弦波部分面积(冲量)相等,这就是PWM波形.对于正弦波的负半周,也可以用同样的办法得到PWM波形.脉冲的宽度按正弦纪律变更而和正弦波等效的PWM波形,也称SPWM(Sinusoidal PWM)波形.PWM波形可分为等幅PWM波和不等幅PWM波两种,由直流电源产生的PWM波平日是等幅PWM波.基于等效面积道理,PWM波形还可以等效成其他所须要的波形,如等效所须要的非正弦交换波形等.因为各脉冲的幅值相等,所以逆变器可由恒定的直流电源供电.2.4 Simulink仿真情形Simulink是Matlab的仿真集成情形,是一个实现动态体系建模.仿真的集成情形.它使Matlab的功效进一步加强,重要表示为:①模子的可视化.在Windows情形下,用户经由过程鼠标就可以完成模子的树立与仿真;②实现了多工作情形间文件互用和数据交换;③把理论和工程有机联合在一路.应用Matlab下的Simulink软件和电力体系模块库(SimPowerSystems)进行体系仿真是十分简略和直不雅的,用户可以用图形化的办法直接树立起仿真体系的模子,并经由过程Simulink情形中的菜单直接启动体系的仿真进程,同时将成果在示波器上显示出来.本文重要经由过程对逆变电源的Matlab仿真,研讨逆变电路的输入输出及其特征,以及一些参数的选择设置办法,从而为今后的进修和研讨奠基基本,同时也进修应用Matlab软件的Simulink集成情形进行仿真的相干操纵.3 Matlab仿真建模依据体系总体框图,可将其分为PWM升压斩波电路和三相逆变电路(含滤波电路),而在三相逆变电路中,SPWM的感化很重要,会单独进行一些解释,下面分离对它们进行仿真建模.3.1 斩波电路Matlab仿真建模斩波电路我采取了升压斩波电路,MATLAB仿真模子如图6所示,道理前面也讲得很清晰了.电路输出的电压还要经逆变后滤波,故对波形的请求不是很高,与负载并联的电容C取很大,就可以达到滤波的目标,是以不需别的添加滤波电路.该电路中开关器件用IGBT,掌握IGBT的波形由PWM脉冲生成器Pulse Generator产生,Pulse Generator在Simulink Library Browser的Simulink下拉菜单Sources类别中.绘制仿真图时,打开Simulink Library Browser,可以在分类菜单中查找所需元件,也可以直接在查找栏中输入元件名称,如Pulse Generator,双击查找.找到元件后直接将其拖到新建Model文件窗口中即可.电路中其他元件按以上办法找出,放入Model 文件窗口中.个中电阻.电感和电容元件,选择SimPowerSystems下拉菜单Elements类别中的Series RLC Branch,放入窗口后,双击该图标,在Branch Type中选择响应类型,如电阻选R,电感选L,选择完毕后单击OK按钮.放齐元件后,按起落压斩波电路道理图衔接电路,为了便利不雅察输出,应在输出端加上电压测量装配Voltage Measurement,并在Simulink下拉菜单Commonly Used Blocks类别中选择Scope,即示波器,以不雅测输出电压波形.图6 升压斩波电路MATLAB仿真模子3.2 逆变电路仿真建模3.2.1 逆变电路的Matlab模子如图7所示,为逆变电路的Matlab的仿真模子.此电路采取了三相逆变桥集成块Universal Bridge 3 arms,滤波电路也已由Three-Phasse Parallel RLC Load模块构成,不需另加滤波电路.对于SPWM掌握波的生成,因为这一个模块根本上是全部逆变电路的焦点,直接用Matlab自带的模块集成电路,固然也可以实现这一功效,但是显然没有对SPWM波的生成有一个比较深刻的懂得,下面会对SPWM波的生成,即下面仿真图中的pwm subsystem进行具体的解释.图7 逆变电路的Matlab的仿真模子3.2.2 SPWM波的Matlab仿真模子等腰三角形载波的Matlab仿真如下图8所示图8等腰三角形载波的Matlab仿真模子其波形如下图9所示图9 三角形载波图形生成等腰三角形载波的S函数如下function [sys,x0,str,ts] = sanjiaowave(t,x,u,flag,A,Freq) switch flag,case 0,[sys,x0,str,ts]=mdlInitializeSizes;case 1,sys=mdlDerivatives(t,x,u);case 2,sys=mdlUpdate(t,x,u);case 3,sys=mdlOutputs(t,x,u,A,Freq);case 4,sys=mdlGetTimeOfNextVarHit(t,x,u);case 9,sys=mdlTerminate(t,x,u);otherwiseerror(['Unhandled flag = ',num2str(flag)]);endfunction [sys,x0,str,ts]=mdlInitializeSizessizes = simsizes;sizes.NumContStates = 0;sizes.NumDiscStates = 0;sizes.NumOutputs = 1;sizes.NumInputs = 1;sizes.DirFeedthrough = 1;sizes.NumSampleTimes = 1; % at least one sample time is needed sys = simsizes(sizes);x0 = [];str = [];%% initialize the array of sample times%ts = [0 0];function sys=mdlDerivatives(t,x,u)sys = [];function sys=mdlUpdate(t,x,u)sys = [];function sys=mdlOutputs(t,x,u,A,Freq)%直接在输出函数部分编写三角波的代码T=1/Freq; %求三角波周期m=rem(u,T); %u为外部输入时光信息,rem为求余函数K=floor(u/T); %floor为向零取整r=4*A*Freq;c=T/2;if ((m>=0)&(m<c))sys =r*(u-(K+0.25)*T);elseif ((m>=c)&(m<=T))sys=-[r*(u-(K+0.75)*T)];elsesys=A;endfunction sys=mdlGetTimeOfNextVarHit(t,x,u)sampleTime =1; % Example, set the next hit to be one second later.sys = t + sampleTime;function sys=mdlTerminate(t,x,u)sys = [];% end mdlTerminateSPWM波的Matlab仿真模子如下图10所示图10 SPWM波的Matlab仿真模子SPWM波的Matlab仿真波形如下图11所示图11 SPWM波的Matlab仿真波形3.3 逆变电源仿真建模将斩波电路的输出接到逆变电路的输入,就得到逆变电源仿真模子,如图12所示.图12逆变电源仿真模子4 仿真波形打开斩波电路窗口,依据参考材料设置初试参数,设置时双击元件图标.输入直流电设为100V,开关器件IGBT和二极管Diode应用默认参数.负载电感L=6e-04H(即0.6mH),电容C=3e-05F(即30uF).设置PWM 产生器周期Period为0.0001s,占空比Pulse Width(% of period)为75.7%,其他参数不变.单击Start simulation按键,开端仿真,双击示波器Scope,不雅察输出波形图.此时输出波形中断等副震动,且幅值太高,很不睬想.剖析知起落压斩波电路中电感和电容值均应很大,将电容值改为600uF (C=6e-04F),电感值为 4.2mH,不雅察波形,如图13 所示,输出电压约0.2s后稳固在435V.经由过程几回调节各元件参数发明,转变电感和电容的值,输出电压稳固值也在变更.电容的感化主如果使输出电压保持住,电容值过小输出波形会中断震动,应取较大,但过大的电容值会使输出电压稳固的时光太长.依据以上纪律重复转变各元件参数,直到得到知足的成果.图13 斩波电路仿真波形4.2 逆变电路仿真波形在SPWM中三角载波的频率为1000HZ,因为本次课程设计所须要的调制波为50HZ,而依据当载波比为20时,逆变电路输出的波形中谐波含量最小.所以取三角载波的频率为1000HZ.其幅值为1V,调制所须要的正弦波由Matlab自带的函数库产生.其频率当然为50HZ,幅值设为1V,其产生的SPWM波形在上面已给出,变压器(Transformer)中的绕组参数(Winding parameters),其变比为 1.Three-Phasse Parallel RLC Load模块,在电路中起着很重要的感化,其一是作为后级滤波电路,滤除SPWM波中正弦基波中含有的高次谐波,若没有其滤波感化得到的波形为SPWM波,其不含有低次谐波,谐波重要散布在载波频率以及载波频率整数倍邻近.其二是作为逆变电路的负载.在现实应用时,对于IGBT等全控器件须要加上驱动电路.其输出波形如下图14所示.图14 逆变电路仿真波形4.3 逆变电源仿真实现起首应将斩波电路的输出电压调到450V阁下,再对逆变电源进行仿真.重复调节参数知当斩波电路中PWM脉冲生成器的占空比达到75.7%时,输出的直流电压约为435V,此时的波形如图15所示,输出电压先大幅震动,大约0.2s后,稳固在435V阁下.图15 逆变电源斩波输出波形转变逆变电源仿真模子中的参数到请求值,单击Start simulation按键开端仿真,图16为逆变电源输出波形.从图可知,逆变电源输出三订交换电相电压波形幅值为311V,各相电压互差120°,周期为0.02s即频率为50Hz.第一个波形会消失掉,因为电路到正常的响应须要一段时光,但从后续波形看,仿真成果照样知足义务请求的.图16 逆变电源输出三订交换电相电压波形5 心得领会本次课程设计分为以下四个部分,计划选择,模块道理剖析,仿真模子以及仿真成果.起首对于计划选择,对于课设给出的110V电压,产生220V的三订交换电压,直接逆变显著不知足请求,所以起首以升压斩波电路晋升直流电压至知足请求的必定值,然后再进行逆变,如许就可以知足课设请求了,对于Matlab仿真模子的树立,确切消费了大量的时光和精神,固然对Matlab已经谈不上生疏,但是Matlab功效太壮大,各类仿真模块库繁多,对于SPWM波的产生,在网上查找了许多材料,总算是得出了准确的成果,在这个进程中,我也学会了许多,特殊是S函数的仿真,S函数确切有其独到之处,仿真进程中不免碰到许多问题,但万幸,固然花了很长时光和精神去检讨,但最终仿真图新照样出来了.从这些进程中我看出没有研讨就没有谈话权,只有进行了深刻的研讨,你才干更清晰的懂得它.在画升压斩波电路,逆变电路等模子图的进程中我用到了Matlab软件,再一次的让我重温了用它绘图的感到是最让我愉快的事,记得照样大二时学过的软件课程,但在进修的时刻老是感到差点什么,此次做了课程设计让我明确软件的进修是须要在实践中进行的.在经由进修,就教后,我能轻松的画出本身想要的Simulink仿真图形,特殊是这个Simulink仿真图形还包含S函数的一个模块,这时感到很有成就感.我以为光靠本身一小我的力气是远远不敷的,当本身碰到问题其实解决不了时,可以和同窗配合商量,查找解决办法.正所谓“三人行,则必有我师”.最后,我看着最终的成果,照样以为受益匪浅的.此次课程设计,让我有机遇将教室上所学的理论常识应用到现实中.这是一次对所学常识的整合,一次分解应用,在做课程设计的同时也验证了我们教室上所学的理论常识,对我们今后的工作进修具有很大的指点感化,同时我也明确了在今后的工作中,不但要动脑,还要多进行着手实践.参考文献[1] 杨荫福.段善旭.朝泽云.电力电子装配及体系.北京:清华大学出版社,2006[2] 王维平.现代电力电子技巧及应用.南京:东南大学出版社,1999[3] 王兆安,黄俊.电力电子技巧.北京:机械工业出版社,2008[4] 叶斌.电力电子应用技巧及装配.北京:铁道出版社,1999[5] Robert H.Bishop.Modern Contorl Systems Analysis andDesign-Using MATLAB and Simulation[M].影印版. 北京:清华大学出版社,2008。
基于SVPWM三相逆变器在MATLAB下的仿真研究
基于SVPWM 三相逆变器在MATLAB 下的仿真研究 摘要:介绍了电压空间矢量脉宽调制控制算法的基本概念; 并简要介绍了利用多种实际矢量合成所需电压矢量的方法及具体的实现算法; 最后,利用 Matlab 的 Simulink 工具箱,建立了SVPWM 逆变器的仿真模型,通过仿真波形可知,该算法是正确的,并分析了逆变器输出的交流电压和电流的谐波。
关键词:SVPWM 、Simulink 、三相逆变器0 引 言电压空间矢量脉宽调制( Space Vector PWM ,SVPWM) 控制技术,也称作磁链跟踪控制技术,它是从控制交流电动机的角度出发,最终目的是在电动机气隙空间形成旋转磁场,从而产生恒定的电磁转矩。
空间矢量脉宽调制方法凭借其优越的性能指标、易于数字化实现等优点,自提出以来就成为研究的热点,不仅可以应用在各种交流电气传动系统中,而且在电力系统功率因数的调节以及各种利用清洁能源发电的分布式发电系统中都有很好的应用前景。
1 SVPWM 逆变器的原理1.1 电压空间矢量电压空间矢量是研究交流电动机三相电压与电动机旋转磁场关系而提出的虚构物理量。
在空间按 120°对称分布的三相电机定子绕组上施加三相对称电压()1)32sin()32sin(sin ⎪⎪⎪⎭⎪⎪⎪⎬⎫+=-==πωπωωt U u t U u t U u m c m b m a在定子绕组中即产生定子电流和磁通。
对单个绕组而言,产生的磁通是脉振的,它仅在固定的绕组轴线位置上有大小和方向的变化,但是在三相绕组的共同作用下,在电机的气隙中就产生了合成的旋转磁场。
电压和电流是时间变量,并没有空间的概念,但是电动机三相绕组产生的旋转磁场是空间和时间的变量,它的大小和空间位置随时间变化,一般以矢量表示。
时空变化的旋转磁场由三相电压产生,为了描述三相电压与电动机旋转磁场的关系,提出了电压空间矢量的概念。
电压空间矢量反映了三相电压综合作用的效果,三相电压与电压空间矢量的关系由 Park 变换来表示:)2()(322401200 j C j B j S e u e u e u u A ++=式中,u s 为电压空间矢量,u A 、u B 、u C 为三相相电压,2/3为变换系数,指数项表示了三相绕组的空间位置。
基于matlab的三相桥式PWM逆变电路的仿真实验报告
基于matlab 的三相桥式PWM 逆变电路的仿真实验报告一、小组成员指导教师二、实验目的1. 深入理解三相桥式 PWM 逆变电路的工作原理。
2. 使用 simulink 和 simpowersystem 工具箱搭建三相桥式 PWM 逆变电路的仿真框图.3. 观察在 PWM 控制方式下电路输出线电压和负载相电压的波形。
4. 分别改变三角波的频率和正弦波的幅值, 观察电路的频谱图并进行谐波分析。
三、实验平台Matlab / simulink / simpowersystem五、实验模块介绍BSi∏* WIVt正弦波, 电路常用到的正弦信号模 块,双击图标,在弹出的窗 口中调整相关参数。
其信号 生成方式有两种:Time based 和SamPle based .OKCancelHelPI,J3. E E 示波器,其模块可以接受多个输入信号,每个端口的输入信号都将在 一个坐标轴中显示。
2.锯齿波发RePeat ing j t able (mask)OIItPUt 炷 repeating SeQUeTlCe Of niunbers SPeCified Ln a IabIe Of I IJH 亡-ValiL 亡 pairs. VaItLeS □f tiinft ShOUIti be JilorL OtoniCalIy IrLCrea≤in⅛ ・生器,产生一个时基和高度 可调的锯齿波序列。
⅞⅛ SOUrCe BlCCk Parameter^r RePtating SeqUtnCeS-ErqU-⅞-π茜ParaJiieterETinIe ValUftEiFUnCtiOn BloCk P ⅛ramet 亡rm : RelatianaI OPeratOr 屋Relational OperatorAPPl ie≡ the selected re IatLOIlaI OlPerator to t h.E inpu Ieft ) input 79xreΞpQΓL^ j ζ□ the it st Qp ⅞Eand ・Main Si SnaI Attr ibu ,t e S Kelatianal OPeratclr :∖-∣ 。
基于matlab的三相交流调压电路仿真与研究
基于matlab的三相交流调压电路仿真与研究一、引言随着电力电子技术和控制理论的不断发展,交流调压技术在许多领域得到了广泛应用。
三相交流调压电路由于其能够实现对三相交流电的独立调节,因此在电机控制、电力质量改善以及无功补偿等方面具有重要作用。
本文旨在通过Matlab仿真研究三相交流调压电路的工作原理和性能。
二、三相交流调压电路工作原理三相交流调压电路通常采用相位控制方式,通过调节开关的导通和关断时间来改变输出电压的大小。
在三相系统中,每一相都有一个独立的调压电路,通过对每一相的独立调节,可以实现三相输出电压的平衡控制。
三、Matlab仿真环境设置Matlab是一款强大的数学计算软件,可用于电力电子系统仿真。
在Matlab中,我们首先需要设置仿真参数,包括仿真时间、采样时间、仿真算法等。
然后,我们需要构建三相交流调压电路的数学模型,并转化为Simulink模型。
四、电路模型的建立与参数设置在Simulink中,我们需要根据三相交流调压电路的工作原理,建立相应的电路模型。
这个模型应该包括电源、开关、二极管、电感和电容等元件。
然后,我们需要为这些元件设置合适的参数,以模拟实际的电路行为。
五、仿真结果分析通过运行仿真,我们可以得到输出电压的波形。
通过对这些波形的分析,我们可以了解调压电路的性能。
例如,我们可以观察输出电压的幅值、相位和频率等参数的变化情况。
六、实验验证与结果对比为了验证仿真结果的准确性,我们需要进行实验验证。
在实验中,我们需要搭建实际的三相交流调压电路,并使用示波器等设备记录输出电压的波形。
然后,我们将实验结果与仿真结果进行对比,以评估仿真的准确性。
七、结论通过以上分析和对比,我们可以得出结论:基于Matlab的三相交流调压电路仿真能够准确反映实际电路的工作情况。
这为进一步研究三相交流调压电路的性能提供了有力支持。
同时,通过仿真和实验的结合,我们可以更好地理解电路的工作原理,优化电路设计,提高系统的稳定性和可靠性。
滞环控制三相电流跟踪型逆变器的MATLAB仿真
7 滞环控制三相电流跟踪型逆变器的MATLAB仿真7.1滞环控制三相电流跟踪型逆变器的原理和仿真模型7.1.1滞环控制三相电流跟踪型逆变器的原理常用的一种电流闭环控制方法是电流滞环跟踪 PWM(Current Hysteresis Band PWM ——CHBPWM)控制,具有电流滞环跟踪 PWM 控制的 PWM 变压变频器的A相控制原理如7-1图所示。
图7-1 电流滞环跟踪控制的A相原理图图中,电流控制器是带滞环的比较器,环宽为2h。
将给定电流i*a 与输出电流i a进行比较,电流偏差∆i a超过时±h,经滞环控制器HBC控制逆变器A相上(或下)桥臂的功率器件动作。
B、C二相的原理图均与此相同。
⏹如果,i a < i*a ,且i*a - i a ≥h,滞环控制器 HBC输出正电平,驱动上桥臂功率开关器件V1导通,变压变频器输出正电压,使增大。
当增长到与相等时,虽然,但HBC仍保持正电平输出,保持导通,使继续增大⏹直到达到i a= i*a+ h,∆i a = –h,使滞环翻转,HBC输出负电平,关断V1 ,并经延时后驱动V4但此时未必能够导通,由於电机绕组的电感作用,电流不会反向,而是通过二极管续流,使受到反向钳位而不能导通。
此后,逐渐减小,直到时,,到达滞环偏差的下限值,使 HBC 再翻转,又重复使导通。
这样,与交替工作,使输出电流给定值之间的偏差保持在范围内,在正弦波上下作锯齿状变化。
从图 7-2 中可以看到,输出电流是十分接近正弦波的。
图7-2 电流滞环跟踪控制时的电流波形图7-2给出了在给定正弦波电流半个周期内的输出电流波形和相应的相电压波形。
可以看出,在半个周期内围绕正弦波作脉动变化,不论在的上升段还是下降段,它都是指数曲线中的一小部分,其变化率与电路参数和电机的反电动势有关。
图7-3 三相电流跟踪型PWM逆变电路图7-4 三相电流跟踪型PWM逆变电路输出波形因此,输出相电压波形呈PWM状,但与两侧窄中间宽的SPWM波相反,两侧增宽而中间变窄,这说明为了使电流波形跟踪正弦波,应该调整一下电压波形。
三相逆变电源的在Matlab中的仿真设计
三相逆变电源的在Matlab中的仿真设计摘要:本文采用MATLAB搭建仿真系统对变频电源进行系统分析。
基于Simulink做了系统仿真,并做了原理性的论证,调节器件参数比较仿真结果。
1. 引言由于计算机技术的迅速发展和广泛应用,数学模型的应用和仿真越来越普遍。
本文研究背景及意义于在MATLAB中提供了Simulink和Power Systerm Blockset工具箱,拥有一种很方便的建模环境,用户不用直接编写程序,而是通过交互命令方式建立、修改和调试模型,给电力电子技术中的各种电路的仿真提供了有利的条件,简化了仿真建模。
电力系统工具箱(Power System Blockset),如图1-1 Block Library。
图1-1 Block Library2. MATLAB在变频器中应用及仿真框图2.1仿真框图的设计变频电源主要结构分为以下几个部分。
1. 整流器,它与单相或三相交流电源相连接,产生脉动的直流电压。
2. 中间电路,有以下三种作用:a.使脉动的直流电压变得稳定或平滑,供逆变器使用。
b.通过开关电源为各个控制线路供电。
c.可以配置滤波或保护装置以提高变频电源性能。
3. 逆变器,将固定的直流电压变换成可变电压和频率的交流电压。
4. 控制电路,它将信号传送给整流器、中间电路和逆变器,同时它也接收来自这些部分的信号。
图2-1为三相变频电源的仿真电路。
在仿真电路图中,双击元件,可得到各元件的属性设置。
改变各项的值,运行并通过示波器来显示各个量的变化,以便比较和研究。
在仿真环境中,用户通过简单的鼠标操作就可建立起直观的系统模型并进行仿真,能有机地将理论研究和工程实践结合在一起。
图2-1 三相变频电源的仿真电路整个仿真图由电气系统模块库中的元件搭建组成,元件的直观连接与实际的主电路相似,其中主要包括:整流环节,直流环节,逆变环节,PI调节器、坐标变换模块、SPWM产生环节。
这些元件都设置有对话框,用户可以方便的选择元件类型和设置参数。
三相逆变器matlab仿真
三相无源逆变器的构建及其M A T L A B仿真1逆变器1.1逆变器的概念逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。
相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。
这是与整流相反的变换,因而称为逆变。
1.3逆变器的分类现代逆变技术的种类很多,可以按照不同的形式进行分类。
其主要的分类方式如下:1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。
2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。
3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。
4)…………….2 三相逆变电路三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。
图 1 三相逆变电路日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。
随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。
尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。
在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。
这就催生了三相逆变器的产生。
4MATLAB仿真Matlab软件作为教学、科研和工程设计的重要方针工具,已成为首屈一指的计算机仿真平台。
该软件的应用可以解决电机电器自动化领域的诸多问题。
利用其中的Simulink模块可以完成对三相无源电压型SPWM逆变器的仿真,并通过仿真获取逆变器的一些特性图等数据。
图 2 系统Simulink 仿真所示为一套利用三相逆变器进行供电的系统的Matlab仿真。
系统由一个380v的直流电源供电,经过三相整流桥整流为三相交流电,并进行SPWM 正弦脉宽调制。
基于SVPWM三相逆变器在MATLAB下的仿真研究.doc
基于SVPWM 三相逆变器在MATLAB 下的仿真研究摘要:介绍了电压空间矢量脉宽调制控制算法的基本概念; 并简要介绍了利用多种实际矢量合成所需电压矢量的方法及具体的实现算法; 最后,利用 Matlab 的 Simulink 工具箱,建立了SVPWM 逆变器的仿真模型,通过仿真波形可知,该算法是正确的,并分析了逆变器输出的交流电压和电流的谐波。
关键词:SVPWM 、Simulink 、三相逆变器0 引 言电压空间矢量脉宽调制( Space Vector PWM,SVPWM) 控制技术,也称作磁链跟踪控制技术,它是从控制交流电动机的角度出发,最终目的是在电动机气隙空间形成旋转磁场,从而产生恒定的电磁转矩。
空间矢量脉宽调制方法依附其优越的性能指标、易于数字化实现等优点,自提出以来就成为研究的热点,不仅可以应用在各种交流电气传动系统中,而且在电力系统功率因数的调节以及各种利用清洁能源发电的分布式发电系统中都有很好的应用前景。
1 SVPWM 逆变器的原理1.1 电压空间矢量电压空间矢量是研究交流电动机三相电压与电动机旋转磁场关系而提出的虚构物理量。
在空间按 120°对称分布的三相电机定子绕组上施加三相对称电压()1)32sin()32sin(sin ⎪⎪⎪⎭⎪⎪⎪⎬⎫+=-==πωπωωt U u t U u t U u m c m b m a在定子绕组中即产生定子电流和磁通。
对单个绕组而言,产生的磁通是脉振的,它仅在固定的绕组轴线位置上有大小和方向的变化,但是在三相绕组的配合作用下,在电机的气隙中就产生了合成的旋转磁场。
电压和电流是时间变量,并没有空间的概念,但是电动机三相绕组产生的旋转磁场是空间和时间的变量,它的大小和空间位置随时间变化,一般以矢量表示。
时空变化的旋转磁场由三相电压产生,为了描述三相电压与电动机旋转磁场的关系,提出了电压空间矢量的概念。
电压空间矢量反映了三相电压综合作用的效果,三相电压与电压空间矢量的关系由 Park 变换来表示:)2()(322401200 j C j B j S e u e u e u u A ++=式中,u s 为电压空间矢量,u A 、u B 、u C 为三相相电压,2/3为变换系数,指数项表示了三相绕组的空间位置。
两电平三相PWM电压逆变器MATLAB仿真分析
Three-phase Two-level PWM Converters (discrete)两电平三相PWM电压逆变器1、原理分析如图1,该系统主要由两个独立的电路说明两个两电平三相的PWM电压源逆变器。
每个PWM电压源逆变器输入为一个通过三相变压器二次侧得到的交流电,变压器数据为:1kw,208V/ rms 500 var 60Hz。
电路中所有转换器属于开环控制,其中PWM发生器是属于离散模块的,这个模块可在离散控制模块库中查找。
这两个电路使用相同的直流电压(Vdc = 400V)、载波频率(1080赫兹)、调制指数(m = 0.85)与生成频率(f = 60赫兹)。
采用变压器漏电感和负载电容进行谐波滤波。
这两个电路是:1、三相、两电平转换器(单/三桥臂,六开关器件);2、三相、两级转换器(双/三桥臂,十二开关器件的H型结构)图1 两电平三相PWM电压逆变器仿真图2、参数设置1、通用桥图2 通用桥参数设置如图2,参数分别为:·Number of bridge arms:桥臂数量,可以选择1、2、3相桥臂,构成不同形式的整流器·Snubber resistance Rs(Ohms):缓冲电阻Rs,为消除缓冲电路,可将Rs参数设置为inf。
·Snubber capacitance Cs(F):缓冲电容Cs,单位F,为消除缓冲电路,可将缓冲电容设置为0;为得到纯电阻,可将电容参数设置为inf。
·Resistance Ron(Ohms):晶闸管的内电阻Ron,单位为Ω。
·Forward voltage Vf(V):晶闸管元件的正向管压降Vf和二极管的正向管压降Vfd,单位为V。
·Measurements:测量可以选择5种形式,即None(无)、device voltages (装置电压)、Device currents(装置电流)、UAB UBC UCA UDC(三相线电压与输出平均电压)或All voltages and currents(所有电压电流),选择之后需要通过Multimeter(万用表模块)显示。
三相桥式电压型逆变器电路的建模与仿真实验
三相桥式电压型逆变器电路的建模与仿真实验摘要:本文在对三相桥式电压型逆变电路做出理论分析的基础上,建立了基于MATLAB的三相桥式电压型逆变电路的仿真模型并对其进行分析与研究,用MATLAB 软件自带的工具箱进行仿真,给出了仿真结果,验证了所建模型的正确性。
关键词:逆变;MATLAB;仿真第一章概述1.1电力电子技术顾名思义,可以粗略地理解,所谓电力电子技术就是应用于电力领域的电子技术。
电子技术包括信息电子技术和电力电子技术两大分支。
通常所说的模拟电子技术和数字电子技术都属于信息电子技术。
电力电子技术中所变换的"电能"和"电力系统"所指的"电力"是有一定差别的。
两者都指"电能",但后者更具体,特指电力网的"电力",前者则更一般些。
具体地说,电力电子技术就是对电能进行变换和控制的电子技术。
更具体一点,电力电子技术是通过对电子运动的控制对电能进行变换和控制的电子技术。
其中,用来实现对电子的运动进行控制的器件叫电力电子器件。
目前所用的电力电子器件均由半导体材料制成,故也称电力半导体器件。
电力电子技术所变换的"电力",功率可以大到数百兆瓦甚至吉瓦,也可以小到数瓦甚至是毫瓦级。
信息电子技术主要用于信息处理,而电力电子技术则主要用于电力变换,这是二者本质上的不同。
1.2电力电子技术的应用(1)一般工业中,采用电力电子装置对各种交直流电动机进行调速,一些对调速性能要求不高的大型鼓风机近年来也采用变频装置以达到节能的目的,除此之外,有些对调速没有特别要求的电机为了避免启动时的电流冲击而采用软启动装置,这种软启动装置也是电力电子装置。
电化学工业大量使用直流电源,电解铝、电解食盐水以及电镀装置均需要大容量整流电源。
电力电子产品还大量应用于冶金工业中的高频或中频感应加热电源、淬火电源及直流电弧炉电源等场合。
基于MATLAB的三相SPWM逆变电路与Dead time 对其影响的仿真
基于MATLAB的三相SPWM逆变电路与Dead time 对其影响的仿真电子信息工程学院通信工程二班顾问 2012214485一、MATLAB与Simulink简介MATLAB程序设计语言是美国MathWorks公司在20世纪80年代中期推出的高性能数值计算软件。
该公司经过三十年的开发、扩充、不断完善与更新换代,MATLAB已经发展成适合多学科切功能特别强、特别全的大型软件。
Simulink是MATLAB的一个附加组件,为用户提供了一个建模与仿真的工作平台。
由于它的许多功能都是必须基于MATLAB环境下运行的,因此也有人将其称之为MATLAB的一个工具箱。
它能够实现动态系统建模与仿真的环境集成,且可以根据设计及使用的要求,对系统进行修改与优化,以提高系统工作的性能,实现高效开发系统的目的。
二、三相SPWM逆变电路三相PWM 逆变器主电路 三相SPWM 逆变电路中,载波信号c u 仍为对称三角波,幅值为cm U ,频率为c f ,调制信号为三相正弦波sa u 、sb u 与sm u ,幅值为sm U ,频率为s f ,对于a 相桥臂,当sa u >c u 时,S1导通S4关断,当sa u <c u 时,S4导通S1关断,b 相和c 相类似。
下图为载波比p=3时的三相SPWM 逆变电路基本波形输出电压的谐波集中分布在s s k np k ωωω)(n c ±=±处,其中n=1,3,5,…时,k=3(2m-1)±1,m=1,2,3,…n=2,4,6,…时,k=6m+1,m=0,1,2,…,或k=6m-1,m=1,2,3,…所以,在载波频率的整数倍处的高次谐波不再存在。
SPWM的谐波分布一组一组集中分布于载波频率的整数倍频率两侧,且在每一组谐波中,随着k的增大,谐波值通常逐渐减小。
三、三相SPWM半桥逆变电路的仿真在仿真在Simpowersystems的“Electrical Sources”库中选择电压源模块,直流电压设置为530V,选择“Universal Bridge”模块,在对话框中选择桥臂数为3,构成三相半桥电路,开关器件选择带反并联二极管的IGBT,三相串联RLC负载模块选择Y型连接,设定额定电压为413V,额定功率为50Hz,有功为1kW,感性无功为500Var,SPWM控制信号由Simpowersystems中的“Discrete PWM Generator”产生,选择三桥臂六脉冲模式。
三相SPWM逆变器的调制建模和仿真详解
三相SPWM逆变器的调制建模和仿真详解随着电力电子技术的发展,SPWM正弦脉宽调制法正逐渐被人们熟悉,这项技术的特点是通用性强,原理简单。
具有开关频率固定,控制和调节性能好,能消除谐波,设计简单,是一种比较好的波形改善法。
它的出现为中小型逆变器的发展起了重要的推动作用。
由于大功率电力电子装置的结构复杂,若直接对装置进行实验,且代价高费时费力,故在研制过程中需要借助计算机仿真技术,对装置的运行机理与特性,控制方法的有效性进行试验,以预测并解决问题,缩短研制时间。
MATLAB软件具有强大的数值计算功能,方便直观的Simulink建模环境,使复杂电力电子装置的建模与仿真成为可能。
本文利用MATLAB/Simulink为SPWM逆变电路建立系统仿真模型,并对其输出特性进行仿真分析。
首先介绍的是三相电压型桥式逆变电路原理,其次阐述了SPWM逆变器的工作原理及特点,最后详细介绍了三相电压源SPWM逆变器的建模与仿真结构,具体的跟随小编一起了解一下。
一、三相电压型桥式逆变电路三相电压型桥式逆变电路如图1所示,电压型三相桥式逆变电路的基本工作方式也是180导电方式,即每个桥臂的导电角度为180,同一相上下2个桥臂交替导电,各相开始导电的角度依次相差120。
这样,在任一瞬间,将有3个桥臂同时导通。
可能是上面一个臂下面2个臂,也可能是上面两个臂下面一个臂同时导通。
因为每次换流都是在同一相上下两个桥臂之间进行的,因此也被称为纵向换流。
当urU》uc时,给上桥V1臂以导通信号,给下桥臂V4以关断信号,则U相相对于电源假想中点N的输出电压uUN=Ud/2。
当urU《uc时,给V4导通,给V1关断,则uUN=Ud/2。
V1和V4的驱动信号始终是互补的。
当给V1(V4)加导通信号时,可能是V1(V4)导通,也可能是二极管VD1(VD4)续流导通。
二、SPWM逆变器的工作原理及特点SPWM,他是根据面积等效原理,PWM波形和正弦波是等效的,对于正弦波的负半周,也可以用同样的方法得到PWM波形。
三相SVPWM逆变电路MATLAB仿真
基于电压空间矢量控制的三相逆变器的研究1、SVPWM 逆变电路的基本原理及控制算法图1.1中所示的三相逆变器有6个开关,其中每个桥臂上的开关工作在互补状态, 三相桥臂的上下开关模式得到八个电压矢量,包括6个非零矢量(001)、(010)、(011)、(100)、(101)、(110)和两个零矢量 (000)、(111).图1.-1 三相桥式电压型有源逆变器拓扑结构在平面上绘出不同的开关状态对应的电压矢量,如图1.2所示。
由于逆变器能够产生的电压矢量只有8个,对与任意给定的参考电压矢量,都可以运用这8个已知的参考电压矢量来控制逆变器开关来合成。
3U (011)1U (001)5U (101)4U (100)6U (110)2U (010)ⅠⅡⅢⅣⅤⅥ0U (000)7U (111)βcU θβu αu 1sv U 2sv U 3sv U图1.2 空间电压矢量分区图1.2中,当参考电压矢量在1扇区时,用1扇区对应的三个空间矢量U sv 1、U sv 2、U sv 3来等效参考电压矢量。
若1.2 合成矢量ref U 所处扇区N 的判断三相坐标变换到两相βα-坐标:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡)()()(23- 23 021- 21- 132)()(t t t t t u u u u u co bo ao βα (1.1)根据u α、u β的正负及大小关系就很容易判断参考电压矢量所处的扇区位置。
如表1.1所示。
表1.1 参考电压矢量扇区位置的判断条件可以发现,扇区的位置是与u β、 u u βα-3及u u βα--3的正负有关。
为判断方便,我们设空间电压矢量所在的扇区NN=A+2B+3C (1.2)其中,如果u β >0,那么A=1,否则A=0如果u u βα-3 >0,那么B=1,否则B=0 如果u u βα--3 >0,那么C=1,否则C=01.3 每个扇区中基本矢量作用时间的计算在确定参考电压矢量的扇区位置后,根据伏秒特性等效原理,采用该扇区三个顶点所对应的三个电压空间矢量来逼近参考电压矢量。
三相逆变器Matlab仿真
三相逆变器M a t l a b仿真 Revised by Jack on December 14,2020三相无源电压型SPWM逆变器的构建及其MATLAB仿真09 电气工程及其自动化邱迪摘要:本文简要介绍了三相无源电压型SPWM输出的逆变器的构建和工作方式及其MATLAB仿真。
关键词:三相逆变器正弦脉宽调制(SPWM)技术 MATLAB仿真Abstract: This paper introduces briefly the construction of 3-phase inverter which output SPWM wave and the MATLAB-based simulation.Key word: Three-phase inverter Sinusoidal Pulse Width Modulation Power electronic technology1逆变器逆变器的概念逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。
相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。
这是与整流相反的变换,因而称为逆变。
逆变器涉及的技术逆变器的构建应用了电力电子学科中的很多关键技术。
电路中电流的可控流通断开的过程中应用了多种可控硅类型的电力电子器件;开关的控制过程应用了基于微处理器的现代控制技术;对于正弦波形的仿制过程应用了正弦波脉宽调制(SPWM)技术等等。
逆变器的分类现代逆变技术的种类很多,可以按照不同的形式进行分类。
其主要的分类方式如下:1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。
2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。
3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。
4)按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管逆变等等。
基于Matlab的三相Z源逆变器最大升压SPWM仿真研究
《变频器世界》 March , 2019 77 基于Matlab 的三相Z 源逆变器最大升压SPWM 仿真研究Simulation Research on Maximum Boost SPWM of Three Phase Z Source Inverter Basedon Matlab齐鲁工业大学(山东省科学院) 鞠宏宝(Ju Hongbao)本文简述了Z源逆变器和最大升压SPWM技术的研究背景,对Z源逆变器拓扑结构及最大升压SPWM技术原理作了简要分析,利用Matlab软件Simulink工具箱中模块针对三相Z源逆变器最大升压SPWM技术搭建了仿真模型。
最后针对实例进行仿真验证,理论计算值和仿真结果的一致性证明了所搭建仿真模型的正确性,从而为同行从业人员或学习者提供可靠的参照。
关键词:Z源逆变器;最大升压SPWM;仿真Abstract: This paper firstly introduces the research background of the Z source inverter and Maximum boost SPWM technology, then briefly analyzes the topology of the Z source inverter and the principle of the Maximum boost SPWM technology, and uses the module of Simulink toolbox of Matlab software to build a simulation model for the Maximum boost SPWM technology of three-phase Z source inverter. Finally, the simulation verification is carried out for a example, and the consistency of the theoretical calculation value and the simulation result proves the correctness of the simulation model, thus providing a reliable reference for the peer practitioners or learners.Key words: Z source inverter; Maximum boost SPWM; Simulation【中图分类号】TM464+.32 【文献标识码】B 【文章编号】1561-0330(2019)03-0077-041 引言传统电压源逆变器及电流源逆变器具有如下共同缺陷[1]:(1)只是单一的升压型或降压型变换器,所得输出电压范围有限;(2)两者不能互换主电路;(3)逆变器同一桥臂两只开关器件易受电磁干扰误触发造成直通而损坏,抗电磁干扰能力很弱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三相无源电压型SPWM逆变器的构建及其MATLAB仿真09 电气工程及其自动化邱迪摘要:本文简要介绍了三相无源电压型SPWM输出的逆变器的构建和工作方式及其MATLAB 仿真。
关键词:三相逆变器正弦脉宽调制(SPWM)技术MATLAB仿真Abstract: This paper introduces briefly the construction of 3-phase inverter which output SPWM wave and the MATLAB-based simulation.Key word:Three-phase inverter Sinusoidal Pulse Width Modulation Power electronic technology1逆变器逆变器的概念逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。
相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。
这是与整流相反的变换,因而称为逆变。
逆变器涉及的技术逆变器的构建应用了电力电子学科中的很多关键技术。
电路中电流的可控流通断开的过程中应用了多种可控硅类型的电力电子器件;开关的控制过程应用了基于微处理器的现代控制技术;对于正弦波形的仿制过程应用了正弦波脉宽调制(SPWM)技术等等。
逆变器的分类现代逆变技术的种类很多,可以按照不同的形式进行分类。
其主要的分类方式如下:1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。
2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。
3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。
4)按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管逆变等等。
5)按输出稳定的参量,可分为电压型逆变和电流型逆变。
6)按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆变。
7) 按控制方式,可分为调频式(PFM)逆变和调脉宽式(PWM)逆变。
2 三相逆变电路三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。
图 1 三相逆变电路日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。
随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。
尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。
在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。
这就催生了三相逆变器的产生。
电压型三相逆变电路电压型逆变电路是指直流侧采用电压源的逆变电路,直流侧的电源能够提供幅值稳定不变的直流电。
是一个电压型逆变电路原理图。
d U 为直流侧电压源,两侧各加一个电容用来稳定电压。
±A T 、±B T 、±C T 分别为ABC 三相的控制开关。
通过对三个开关的控制,便可以实现直流——交流(DC —AC )的转换。
现设一个周期时间为t ,将一个周期时间以0t 、1t 、2t 、3t 、4t 、5t 、六个时刻均分为六段。
0t 对应零时刻,O 点为等效接地点。
图 2 图1所示三相逆变电路进行特定开关控制后的波形图如所示电路中按以下方式进行控制:0t 时刻:开关+A T 闭合,-A T 断开。
A 处电压变为2d U +。
1t 时刻:开关+C T 关闭,-C T 打开。
C 处电压变为2d U -。
2t 时刻:开关+B T 闭合,-B T 断开。
B 处电压变为2d U +。
3t 时刻:开关+A T 关闭,-A T 打开。
A 处电压变为2d U -。
4t 时刻:开关+C T 闭合,-C T 断开。
C 处电压变为2d U +。
5t 时刻:开关+B T 关闭,-B T 打开。
B 处电压变为2d U -。
下一周期的0t 时刻:开关+A T 闭合,-A T 断开。
A 处电压变为2d U +都一次按上述规律闭合断开,即可得到相位互差120°的三相交流电。
电压幅值电。
其波形如所示。
图 3 A 相开关同时闭合时的电路图由于开关的控制并不是理想的那么精密,能同时断开或同时闭合。
若同时闭合,如所示,直流侧电压源短路发生危险。
因此,为保证两开关在断开闭合时不会发生重叠,在同时开关闭合瞬间改为一段死区时间,即两开关首先同时关闭一段时间d t ,而后其中一个开关再进行下一步闭合动作。
d t 时间内,正负开关均断开,而后再打开其中一个,保证了交替过程中不会有同时打开的可能。
d t 的具体时间长短则要根据实际中使用的器件性能参数予以确定。
加入死区后的三相电路波形如所示。
图 4 加入死区后的波形图接入负载的三相逆变电路如所示接入负载的三相逆变电路。
图 5 接入星形三相负载的三相逆变电路A Z 、B Z 、C Z 分别为ABC 三相的负载阻抗。
根据不同的性质,可分为电阻性阻抗、电容性阻抗和电感性阻抗。
其中,感性负载与容性负载的电流相位和电压相位是不同相的。
对于电感型的负载,电流不能突变,那么如中的开关转换的时刻,因为正负向开关均断开,这样会在两侧造成很大的开路电压,极易造成器件或电路的损坏。
因此,需要对电路进行改进。
保护措施是为每个开关并联一个二极管。
如所示。
图 6 开关并联二极管后的电路加装六个二极管后,即使正负开关均闭合,也可为电流提供续流的通路,避免了发生上述危险情况。
3 正弦脉宽调制(Sinusoidal Pulse Width Modulation ,SPWM )技术SPWM (正弦脉宽调制)技术是指利用PWM (脉宽调制)技术来模拟输出具有正弦特性的电压或电流波形。
如所示为电压源型SPWM 调制原理,若把一个正弦半波划分为N 等分,每一等分的正弦波形的面积都可用一个与该面积相等的等幅矩形脉冲来代替,矩形脉冲的中点与正弦波每一等分的中点重合。
于是,由N (图中N=12)个等幅不等宽的矩形脉冲所组成的波形就与正弦的半周等效。
这一系列矩形脉冲就是期望逆变器输出的正弦PWM 波形(简称SPWM)。
图 7 SPWM正弦波原理图8 双极性SPWM产生原理每个脉冲的宽度可以由理论计算取得,但实际应用中常用正弦调制波(即信号波)与三角形脉冲(载波)的比较得出准确的闭合关断时刻。
如所示。
载波的频率直接影响了pwm脉冲的密度,这也直接影响了以该信号波作为控制信号的整流桥整流后的结果,通过Matlab仿真可以清楚的观察到影响。
4MATLAB仿真Matlab软件作为教学、科研和工程设计的重要方针工具,已成为首屈一指的计算机仿真平台。
该软件的应用可以解决电机电器自动化领域的诸多问题。
利用其中的Simulink模块可以完成对三相无源电压型SPWM逆变器的仿真,并通过仿真获取逆变器的一些特性图等数据。
图9 系统Simulink 仿真所示为一套利用三相逆变器进行供电的系统的Matlab仿真。
系统由一个380v的直流电源供电,经过三相整流桥整流为三相交流电,并进行SPWM正弦脉宽调制。
输出经过一个三相变压器隔离后通入一个三相的RLC负载模块(Three phase parallel RLC)。
加入了两个电压测量单元voltage measurement和voltage measurement1,并将结果输出到示波器模块Scope1.4.1 仿真中的各个模块及其参数设定1)整流桥图10 通用三相整流桥模块图11 Universal bridge 及其参数设置通用三相整流桥为Simulink中的Universal bridge模块。
图11为该模块的参数设置对话框。
其中Number of bridge arms(桥臂个数)为3,Power Electronic device(电力电子器件)选用IGBT/Diodes (晶闸管)。
2)SPWM脉冲信号发生器模块图12 SPWM脉冲发生器为为控制通用三相整流桥产生SPWM的脉冲信号发生器,使用的是Matlab中的Discrete PWM Generator模块。
该模块的作用即为为产生PWM而用以控制IGBTs等电桥的脉冲信号。
为该模块的参数设置,在Generator mode选项中选择3-arms bridge(6 pulse),既三桥臂共需要六个脉冲信号用以控制如中所示的六个电子管。
Carrier frequency为载波频率,该频率的大小决定了一个周期内SPWM 脉冲的密度(如所示)。
Frequency of output voltage是输出电压的频率,此处设置为国内标准的50Hz。
图13 PWM脉冲生成模块及其参数设置3)其他模块为模拟真实供电效果,在仿真系统中,整流桥输出的电压通入一个三相变压器后接入一个三相的RLC负载模块。
三相变压器的原边为三角形绕组,副边为星型绕组。
负载标称电压:220v,标称频率50Hz,有功功率:1000W,电感无功功率:0W,电容无功功率:500W。
图14 变压器及负载模块4.2 仿真特性分析在仿真中,在整流桥的输出和变压器的输出加上了电压测量模块,并将测量显示在了一个示波器模块上。
仿真时间设定为。
如所示便是仿真后的输出结果,上部分为整流桥的输出波形,下部分为变压器副边的电压波形。
图15 示波器输出波形将示波器的横轴时间设定为后的图形如下:图16 内的波形图观察波形可知,没半个周期输出的脉冲数为21个。
载波频率与输出电压频率改变对波形的影响1.将Discrete PWM Generator模块中的载波频率有原来的1080Hz提高至2160Hz。
所得波形如所示。
图17 载波频率为2160Hz时的波形图1可以清楚的观察到,PWM脉冲密度加大,正弦波形较原来更加光滑。
放大后的波形图如下:图18 载波频率为2160Hz观察图形可知,没半个周期内的脉冲个数为43个。
由两个仿真结果可见,载波频率直接影响了波形的光滑度,载波频率越大波纹越小仿正弦效果越好。
但也应注意到频率过高有可能对整流桥器件产生影响,所以也不能过于高。
2.载波频率为1080Hz,将输出电压的频率提高为100Hz后:图19 输出电压为100Hz 载波频率1080图20 放大图输出电压为100Hz观察波形,没半个周期内的脉冲个数为11个。
改变输出电压后可以注意到,波纹想对于50Hz时变小了,但由于没半个周期内的脉冲个数由21个变为了11个,所以仿正弦效果大大下降了,可见如若提高输出电压的频率后,不改变载波频率,逆变效果会打折扣。