北师大版八年级数学下册第一次月考卷

合集下载

北师大版八年级数学下册第一次月考试卷(含答案)

北师大版八年级数学下册第一次月考试卷(含答案)

八年级数学下册第一次月考试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第二章《一元一次不等式与一元一次不等式组》班级姓名得分一、选择题(本大题共10小题,共30.0分)1.如图,在△ABC中,AB=AC,D是BC的中点,下列结论中不正确的是()A. ∠B=∠CB. AD⊥BCC. AD平分∠BACD. AB=2BD2.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A. ∠A=40°,∠B=50°B. ∠A=40°,∠B=60°C. ∠A=40°,∠B=80°D. ∠A=20°,∠B=80°3.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A. a−c>b−cB. a+c<b+cC. ac>bcD. ab <cb4.若a>b,则()A. a−1≥bB. b+1≥aC. a+1>b−1D. a−1>b+15.不等式组{x−1<−3,2x+9≥3的解集是()A. −3≤x<3B. x>−2C. −3≤x<−2D. x≤−36.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售()A. 6折B. 7折C. 8折D. 9折7.如图,在平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A. 5B. 6C. 7D. 88.如图,AB⊥AC于点A,BD⊥CD于点D.若AC=DB,则下列结论中不正确的是()A. ∠A=∠DB. ∠ABC=∠DCBC. OB=ODD. OA=OD9.如图,点A,B,C在一条直线上,△ABD和△BCE是等边三角形,连接AE,交BD于点P,连接CD,分别交BE,AE于点Q,M,连接BM,PQ,则∠AMD的度数为()A. 45°B. 60°C. 75°D. 90°10.若3a−22和2a−3是实数m的平方根,且t=√m,则不等式2x−t3−3x−t2≥512的解集为()A. x≥910B. x≤910或x≤6.5C. x≥811D. x≤811二、填空题(本大题共5小题,共20.0分)11.如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.12.如图,BD平分∠ABC,DE⊥BC于点E,AB=7,DE=4,则△ABD的面积为.13.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗.为了避免亏本,售价至少应定为______元/千克.14.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为______.15.若关于x的不等式组{3x+5<5x+1 x>a−1 解集为x>2,则a的取值范围是______.三、解答题(本大题共10小题,共100.0分)16.(8分)解不等式组:{3(x+1)>x−1 x+92>2x17.(10分)已知,如图,△ABC中,∠C=90°,AB=10,AC=8,BD为∠ABC的角平分线交AC于D,过点D作DE垂直AB于点E,(1)求BC的长;(2)求AE的长;(3)求BD的长18.(10分)解不等式组{4(x+1)≤7x+13,①x−4<x−83,②并求它的所有整数解的和.19.(10分)某工厂计划生产甲、乙两种机器共10台,其生产成本和利润如下表所示:(1)某工厂计划投入成本26万元,这些成本刚好生产出整数台机器.问:甲、乙两种机器各应安排生间多少台?(2)若工厂计划生产甲机器的数量不少于4台,并共能获利不少于16万元,问:工厂有哪几种生产方案?并说明哪种方案获利最大?最大利润是多少?20.(10分)如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水,有两种方案备选择.方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB)(如图2);方案2:作A点关于直线CD的对称点A′,连接A′B交CD于M点,水厂建在M点处,分别向两村修管道AM和BM(即AM+BM)(如图3).从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,若快艇Q在CD之间(即点Q在线段CD上),当DQ为多少时?△ABQ为等腰三角形,请直接写出结果.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如表:现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数表达式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(10分)如图,在四边形ABCD中,E是边BC的中点,F是边CD的中点,且AE⊥BC,AF⊥CD.(1)求证:AB=AD;(2)若∠BCD=114°,求∠BAD的度数.23.(10分)用※定义一种新运算:对于任意实数m和n,规定m※n=m2n−mn−3n,如:1※2=12×2−1×2−3×2=−6.(1)求(−2)※√3;(2)若3※m≥−6,求m的取值范围,并在所给的数轴上表示出解集.24.(12分)甲、乙两台智能机器人从同一地点出发,沿着笔直的路线行走了450cm.甲比乙先出发,并且匀速走完全程,乙出发一段时间后速度提高为原来的2倍.设甲行走的时间为x(s),甲、乙行走的路程分别为y1(cm),y2(cm),y1,y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙比甲晚出发___________s,乙提速前的速度是___________cm/s,m=___________,n=___________;(2)当x为何值时,乙追上了甲?(3)何时乙在甲的前面?25.(12分)(1)如图①,点A、点B在线段l的同侧,请你在直线l上找一点P,使得AP+BP的值最小(不需要说明理由).(2)如图②,菱形ABCD的边长为6,对角线AC=6√3,点E,F在AC上,且EF=2,求DE+BF的最小值.(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.答案1.D2.D3.B4.C5.C6.C7.A8.C9.B10.B11.4012.1413.1014.x>315.a≤316.解:{3(x+1)>x−1①x+92>2x②解不等式①得x>−2,解不等式②得x<3,∴不等式组的解集为−2<x<3.17.解:(1)∵∠C=90°,AB=10,AC=8,∴BC=√102−82=6;(2)∵BD为∠ABC的角平分线,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,{BD=BDCD=DE,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=6,∴AE=AB−BE=10−6=4;(3)设CD=DE=x,则AD=8−x,在Rt△ADE中,AE2+DE2=AD2,即42+x2=(8−x)2,解得x=3,所以,CD=DE=3,在Rt△BCD中,BD=√62+32=3√5.18.解:−3≤x<2.所有整数解的和为−5.19.解:(1)设甲、乙两种机器各应安排生间x台,(10−x)台,2x+5(10−x)=26,解得,x=8,则10−x=2,答:甲、乙两种机器各应安排生间8台、2台;(2)设生产甲种机器的数量为a台,{a+3(10−a)≥16a≥4,解得,4≤a≤7,∵a是整数,∴a=4,5,6,7,即工厂有四种进货方案,方案一:生产甲种机器4台,乙种机器6台;方案二:生产甲种机器5台,乙种机器5台;方案三:生产甲种机器6台,乙种机器4台;方案四:生产甲种机器7台,乙种机器3台;设利润为w元,w=a+3(10−a)=−2a+30,∴当a=4时,w取得最大值,此时w=22,即方案一获利最大,最大利润是22万元.20.解:(1)方案1:AC+AB=1+5=6,方案2:AM+BM=A′B=√CD2+(AC+BD)2=√41,∵6<√41,∴方案1更合适;(2)(方法不唯一)如图,①若AQ1=AB=5或AQ4=AB=5时,CQ1=CQ4=√52−12=2√6(或√24)>4∴(不合题意,舍去)②若AB=BQ2=5或AB=BQ5=5时,DQ=√52−42=3,③当AQ3=BQ3时,设DQ3=x,则有x2+42=(4−x)2+128x=1∴x=1,8;即:DQ=18故当DQ=3或1时,△ABQ为等腰三角形.821.解:(1)大货车、小货车各有12辆、8辆.(2)设到A地的大货车有x辆,则到A地的小货车有(10−x)辆,到B地的大货车有(12−x)辆,到B地的小货车有(x−2)辆,∴y=900x+500(10−x)+1000(12−x)+700(x−2)=100x+15600(2≤x≤10,且x为整数).(3)根据题意,得15x+10(10−x)≥140.解得x≥8.∴8≤x≤10.∴当x=8时,y取最小值,y最小=100×8+15600=16400.22.解:(1)连接AC,∵点E 是边BC 的中点,AE ⊥BC ,∴AB =AC(三线合一)同理AD =AC ,∴AB =AD ;(2)∵AB =AC ,AD =AC ,∴∠B =∠1,∠D =∠2,∴∠B +∠D =∠1+∠2,即∠B +∠D =∠BCD ,∵∠BAD +(∠B +∠D)+∠BCD =(4−2)⋅180°=360°,∠BCD =114°, ∴∠BAD =360°−114°−114°=132°.23.(1)3√3.(2)m ≥−2.解集在数轴上表示图略.24.解:(1)15 15 31 45(2)设y 1=k 1x.∵点A(31,310)在OA 上,∴31k 1=310.解得k 1=10.∴y 1=10x .设BC 段对应的函数关系式为y 2=k 2x +b ,∵点B(17,30),C(31,450)在BC 上,∴{17k 2+b =30,31k 2+b =450,解得{k 2=30,b =−480.∴y 2=30x −480(17≤x ≤31).当y 1=y 2时,则10x =30x −480,解得x =24.∴当x =24时,乙追上了甲.(3)由图象可知,当x >24且x ≤45时,乙在甲的前面.25.解:(1)如图①中,作点A 关于直线l 的对称点A′,连接A′B 交直线l 于P ,连接PA.则点P 即为所求的点.(2)如图②中,作DM//AC ,使得DM =EF =2,连接BM 交AC 于F ,∵DM=EF,DM//EF,∴四边形DEFM是平行四边形,∴DE=FM,∴DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=3√3,在Rt△ADO中,OD=√AD2−OA2=3,∴BD=6,∵DM//AC,∴∠MDB=∠BOC=90°,∴BM=√BD2+DM2=√62+22=2√10.∴DE+BF的最小值为2√10.(3)如图③中,连接AC、BD,在AC上取一点,使得DM=DC.∵∠DAB=60°,∠DCB=120°,∴∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,∵AD=AB,∠DAB=60°,∴△ADB是等边三角形,∴∠ABD=∠ADB=60°,∴∠ACD=∠ADB=60°∵DM=DC,∴△DMC是等边三角形,∴∠ADB=∠MDC=60°,CM=DC,∴∠ADM=∠BDC,∵AD=BD,∴△ADM≌△BDC,∴AM=BC,∴AC=AM+MC=BC+CD,∵四边形ABCD的周长=AD+AB+CD+BC=AD+AB+AC,∵AD=AB=6,∴当AC最大时,四边形ABCD的周长最大,∴当AC为△ABC的外接圆的直径时,四边形ABCD的周长最大,易知AC的最大值=4√3,∴四边形ABCD的周长最大值为12+4√3.。

数学(北师大版)八年级下册第一~第六章单元测试题-含答案

数学(北师大版)八年级下册第一~第六章单元测试题-含答案

第一章:一元一次不等式一、填空题(每小题3分,共30分)1.若代数式2151--+t t 的值不小于-3,则t 的取值范围是_________. 2.不等式03≤-k x 的正数解是1,2,3,那么k 的取值范围是________. 3.若0)3)(2(>-+x x ,则x 的取值范围是________. 4.若b a <,用“<”或“>”号填空:2a______b a +,33ab -_____. 5.若11|1|-=--x x ,则x 的取值范围是_______. 6.如果不等式组⎩⎨⎧><m x x 5有解,那么m 的取值范围是_______.7.若不等式组⎩⎨⎧>-<-3212b x a x 的解集为11<<-x ,那么)3)(3(+-b a 的值等于_______.8.函数2151+-=x y ,1212+=x y ,使21y y <的最小整数是________. 9.如果关于x 的不等式5)1(+<-a x a 和42<x 的解集相同,则a 的值为________. 10.一次测验共出5道题,做对一题得一分,已知26人的平均分不少于4.8分,最低的得3分,至少有3人得4分,则得5分的有_______人.二、选择题(每小题3分,共30分)1.当21-=x 时,多项式12-+kx x 的值小于0,那么k 的值为 [ ]. A .23-<k B .23<k C .23->k D .23>k2.同时满足不等式2124xx -<-和3316-≥-x x 的整数x 是 [ ].A .1,2,3B .0,1,2,3C .1,2,3,4D .0,1,2,3,43.若三个连续正奇数的和不大于27,则这样的奇数组有 [ ]. A .3组 B .4组 C .5组 D .6组 4.如果0>>a b ,那么 [ ]. A .b a 11->-B .b a 11<C .ba 11-<- D .a b ->-5.某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是 [ ].A .9>xB .9≥xC .9<xD .9≤x 6.不等式组⎩⎨⎧<>+72013x x 的正整数解的个数是 [ ].A .1B .2C .3D .47.关于x 的不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32有四个整数解,则a 的取值范围是 [ ].A .25411-≤<-a B .25411-<≤-a C .25411-≤≤-a D .25411-<<-a 8.已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b的值为 [ ].A .-2B .21-C .-4D .41- 9.不等式组⎩⎨⎧>-<+-mx x x 62的解集是4>x ,那么m 的取值范围是 [ ].A .4≥mB .4≤mC .4<mD .4=m10.现用 甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排 [ ].A .4辆B .5辆C .6辆D .7辆 三、解答题(本大题,共40分) 1.(本题8分)解下列不等式(组): (1)1312523-+≥-x x ;(2)⎪⎩⎪⎨⎧<--+->++-.,021331215)1(2)5(7x x x x2.(本题8分)已知关于x ,y 的方程组⎩⎨⎧=+=+3135y x my x 的解为非负数,求整数m 的值.3.(本题6分)若关于x 的方程52)4(3+=+a x 的解大于关于x 的方程3)43(4)14(-=+x a x a 的解,求a 的取值范围.4.(本题8分)有人问一位老师,他所教的班有多少学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生念外语,还剩下不足6位同学在操场踢足球”.试问这个班共有多少位学生?5.(本题10分)某食品厂生产的一种巧克力糖每千克成本为24元,其销售方案有如下两种:方案一:若直接给本厂设在武汉的门市部销售,则每千克售价为32元,但门市部每月需上缴有关费用2400元;方案二:若直接批发给本地超市销售,则出厂价为每千克28元.若每月只能按一种方案销售,且每种方案都能按月销售完当月产品,设该厂每月的销售量为xkg.(1)你若是厂长,应如何选择销售方案,可使工厂当月所获利润更大?(2)厂长看到会计送来的第一季度销售量与利润关系的报表后(下表),发现该表填写的销售量...与实际有不符之处,请找出不符之处,并计算第一季度的实际销量总量.四、探索题(每小题10,共20分)1.甲从一个鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均每条b元,后来他又以每条2ba元的价格把鱼全部卖给了乙,请问甲会赚钱还是赔钱?并说明原因.2.随着教育改革的不断深入,素质教育的全面推进,某市中学生利用假期参加社会实践活动的越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月产量范围.第一章一元一次不等式和一元一次不等式组单元测试参考答案一、填空题 1.337≤t 2.129<≤k提示:不等式03≤-k x 的解集为 3k x ≤.因为不等式03≤-k x 的正数解是1,2,3,所以 433<≤k.所以129<≤k . 3.3>x 或2-<x 提示:由题意,得 ⎩⎨⎧>->+0302x x 或⎩⎨⎧<-<+0302x x前一个不等式的解集为3>x ,后一个不等式的解集为2-<x 4.<,> 5.1<x 6.5<m 7.-2提示:不等式组⎩⎨⎧>-<-3212b x a x 的解集为 2123+<<+a x b ,由题意,得⎪⎩⎪⎨⎧=+-=+121123a b 解得 ⎩⎨⎧-==21b a 所以2)32()31()3)(3(-=+-⨯-=+-b a . 8.0 9.7 10.22提示:设得5分的有x 人,若最低得3分的有1人,得4分的有3人,则22≤x ,且8.4284)25(35⨯≥⨯-++x x ,解得 8.21≥x .应取最小整数解,得 x=22.二、选择题 1.C2.B 3.B提示:设三个连续奇数中间的一个为x ,则 27)2()2(≤+++-x x x . 解得 9≤x .所以72≤-x .所以 2-x 只能取1,3,5,7. 4.C 5.B 6.C 7.B提示:不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32的解集为a x 428-<<.因为不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32有四个整数解,所以134212≤-<a .解得25411-<≤-a . 8.A提示:不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为212++<≤+b a x b a .由题意,得⎪⎩⎪⎨⎧=++=+52123b a b a 解得⎩⎨⎧=-=63b a .则2163-=-=a b . 9.B 10.C 三、解答题1.解:(1)去分母,得 15)12(5)23(3-+≥-x x . 去括号,得1551069-+≥-x x 移项,合并同类项,得 4-≥-x . 两边都除以-1,得4≤x .(2)⎪⎩⎪⎨⎧<--+->++-.,021331215)1(2)5(7x x x x解不等式①,得 2>x . 解不等式②,得25>x . 所以,原不等式组的解集是25>x . 2.解:解方程组⎩⎨⎧=+=+3135y x m y x 得⎪⎪⎩⎪⎪⎨⎧-=-=23152331m y m x .由题意,得⎪⎪⎩⎪⎪⎨⎧≥-≥-0231502331m m解得 331531≤≤m . 因为m 为整数,所以m 只能为7,8,9,10.3.解:因为方程52)4(3+=+a x 的解为372-=a x ,方程3)43(4)14(-=+x a x a 的解为a x 316-=.由题意,得a a 316372->-.解得 187>a . 4.解:设该班共有x 位同学,则 6)742(<++-x x x x .∴6283<x .∴56<x .又∵x ,2x ,4x ,7x都是正整数,则x 是2,4,7的最小公倍数.∴28=x .故该班共有学生28人. 5.解:(1)设利润为y 元.方案1:240082400)2432(1-=--=x x y , 方案2:x x y 4)2428(2=-=. 当x x 424008>-时,600>x ; 当x x 424008=-时,600=x ; 当x x 424008<-时,600<x . 即当600>x 时,选择方案1; 当600=x 时,任选一个方案均可; 当600<x 时,选择方案2.① ②(2)由(1)可知当600=x 时,利润为2400元.一月份利润2000<2400,则600<x ,由4x=2000,得 x=500,故一月份不符. 三月份利润5600>2400,则600>x ,由560024008=-x ,得 x=1000,故三月份不符.二月份600=x 符合实际.故第一季度的实际销售量=500+600+1000=2100(kg ). 四、探索题1.解:买5条鱼所花的钱为:b a 23+,卖掉5条鱼所得的钱为:2)(525b a b a +=+⨯.则2)23(2)(5ab b a b a -=+-+. 当b a >时,02<-ab ,所以甲会赔钱. 当b a <时,02>-ab ,所以甲会赚钱. 当b a =时,02=-ab ,所以甲不赔不赚. 2.解:设下个月生产量为x 件,根据题意,得⎪⎩⎪⎨⎧≥⨯+≤⨯≤.,,160001000)30060(202001922x x x 解得 1800016000≤≤x .即下个月生产量不少于16000件,不多于18000件.第二章因式分解单元测试AB 卷仔细审题,细心答题,相信你一定会有出色的表现! (时间90分钟 满分120分)一、精心选一选(每题4分,总共32分)1.下列各式中从左到右的变形属于分解因式的是( ).A.2(1)a a b a ab a +-=+-B.22(1)2a a a a --=--C.2249(23)(23)a b a b a b -+=-++D.121(2)x x x+=+2.把多项式-8a 2b 3c +16a 2b 2c 2-24a 3bc 3分解因式,应提的公因式是( ), A.-8a 2bc B. 2a 2b 2c 3C.-4abcD. 24a 3b 3c 33. 下列因式分解错误的是()A .22()()x y x y x y -=+-B .2269(3)x x x ++=+C .2()x xy x x y +=+D .222()x y x y +=+4.下列多项式中,可以用平方差公式分解因式的是( ) A.x 2+1 B.-x 2+1 C.x 2-2 D.-x 2-1 5.把-6(x -y)2-3y(y -x)2分解因式,结果是( ). A.-3(x -y)2(2+y) B. -(x -y)2(6-3y) C.3(x -y)2(y +2)D. 3(x -y)2(y -2)6.下列各式中,能用完全平方公式分解因式的是( ). A.4x 2-2x +1 B.4x 2+4x -1 C.x 2-xy +y 2 D .x 2-x +127.把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-8.式分解公式( ). A.))((22b a b a b a -+=-B.(a +C.2222)(b ab a b a +-=- D.)(2b a a ab a -=- 二、耐心填一填(每空4分,总共32分)1.2a 2b -6ab 2分解因式时,应提取的公因式是 . 2.-x -1=-(____________).3. 因式分解:=-822a .4.多项式92-x 与962++x x 的公因式是 . 5.若a +b=2011,a -b=1,z 则a 2-b 2=_________________. 6.因式分解:1+4a 2-4a=______________________.7.已知长方形的面积是2916a -(43a >),若一边长为34a +,则另一边长为________________.8.如果a 2+ma +121是一个完全平方式,那么m =________或_______. 三、用心算一算(共36分) 1.(20分)因式分解:(1)4x 2-16y 2; (2)()()()()a b x y b a x y ----+(3)x 2-10x +25; (4)()22241x x -+2.(5分)利用因式分解进行计算:(1)0.746×136+0.54×13.6+27.2;3.(满分5分)若2m n -=-,求m n n m -+222的值?4.(6分)3221-可以被10和20之间某两个数整除,求这两个数.八年级数学下册第二章整章水平测试(B )仔细审题,细心答题,相信你一定会有出色的表现! (时间90分钟 满分120分)一、精心选一选(每题4分,总共32分)1.下列各式从左到右的变形中,是因式分解的为( )A.bx ax b a x -=-)(B.222)1)(1(1y x x y x ++-=+-C.)1)(1(12-+=-x x xD.c b a x c bx ax ++=++)( 2.下列多项式,不能运用平方差公式分解的是( )A.42+-m B.22y x -- C.122-y x D.412-x 3.若4x 2-mxy +9y 2是一个完全平方式,则m 的值为( ) A.6 B.±6 C.12 D.±12 4.下列多项式分解结果为()()y x y x -+-22的是( )A.224y x +B.224y x -C.224y x +-D.224y x -- 5.对于任何整数m ,多项式2(45)9m +-都能( )A.被8整除B.被m 整除C.被(m -1)整除D.被(2m -1)整除6.要在二次三项式x 2+□x-6的□中填上一个整数,使它能按x 2+(a +b )x +ab 型分解为(x +a )(x +b )的形式,那么这些数只能是 ( )A .1,-1;B .5,-5;C .1,-1,5,-5;D .以上答案都不对7.已知a=2012x+2009,b=2012x+2010,c=2012x+2011,则多项式a 2+b 2+c 2-ab-bc-ca 的值为( )A.0B.1C.2D.38.满足m 2+n 2+2m -6n +10=0的是( )A.m=1, n=3B.m=1,n=-3C.m=-1,n=-3D.m=-1,n=3 二、耐心填一填(每空4分,总共36分)1.分解因式a 2b 2-b 2= .2.分解因式2x 2-2x +21=______________ 3.已知正方形的面积是2269y xy x ++ (0x >,0y >),利用分解因式,写出表示该正方形的边长的代数式 . 4.若x 2+mx +16=(x -4)2,那么m =___________________.5.若x -y=2,xy=3则-x 2y +xy 2的值为________ . 6.学习了用平方差公式分解因式后,在完成老师布置的练习时,小明将一道题记错了一个符号,他记成了-4x 2-9y 2,请你帮小明想一想,老师布置的原题可能是________. 7.如果多项式142+x 加上一个单项式以后,将成为一个整式完全平方式,那么加上的单项式是 .8.请写出一个三项式,使它能先“提公因式”,再“运用公式”来分解.你编写的三项式是________,分解因式的结果是________. 三、用心算一算(共44分)1.(16分)分解因式(1)-x 3+2x 2-x (2) a 2-b 2+2b -12.(8分) 利用分解因式计算:20112010201020082010220102323-+-⨯-3.(10分)在三个整式2222,2,x xy y xy x ++中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解4.(10分)若3-=+b a ,1=ab ,求32232121ab b a b a ++的值四、拓广探索(共28分)1. (14分)阅读下题的解题过程:已知a 、b 、c 是△ABC 的三边,且满足222244a cbc a b -=-,试判断△ABC 的形状. 解:∵ 222244a cbc a b -=- (A )∴ 2222222()()()c a b a b a b -=+- (B ) ∴ 222c a b =+ (C )∴ △ABC 是直角三角形 (D ) 问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号 ; (2)错误的原因为 ; (3)本题正确的结论是 ;参考答案:一、1.C 2.A 3.D 4.B 5.A 6.D 7.D 8.A二、1. 2ab 2. x +1 3. 2(a +2)(a -2) 4. x +3 5. 2011 6. (2a-1)27. 3a-4 8.22 、-22三、1.(1)解原式=4(x 2-4y 2)=4(x +2y)(x -2y) (2)解原式=(a -b)(x -y +x +y)=2x(a -b)(3)解原式=(x -5)2(4)解原式=(x 2+1+2x)(x 2+1-2x)=(x +1)2(x -1)22.解原式=13.6(7.46+0.54+2)13.6×10=1363.解当m -n=-2时,原式=22)2(2)(222222=-=-=+-n m n mn m 4.因为()()()()()161616882121212121+-=++-,()()()()1684421212121=+++-,又因为42117+=,42115-=,所以3221-可以被10和20之间的15,17两个数整除.四、1.长为a +2b ,宽为a +b2. 解:(1)原式=x 2-4x +4-1=(x -2)2-1=(x -2+1)(x -2-1)=(x -1)(x -3)(2) 原式=x 2+2x +1+1=(x +1)2+1 因为(x +1)2≥0 所以原式有最小值,此时,x=-1参考答案:一、1.C 2.B 3.D 4.C 5.A 6.C 7.D 8.D 二、1.b2(a +1)(a -1) 2. 2(x -21)23. 3x +y4. -85.-66. -4x 2+9y 2或4x 2-9y 27. -4x 2、4x 、-4x 、4x 4、-18.答案不唯一如:a 2x -2ax +x x(a -1)2三、1.解原式=-x(x 2-2x +1)=-x(x -1)22. 解原式=a 2-(b 2-2b +1)=a 2-(b -1)2=(a +b -1)(a -b +1)3.解:222(2)222();x xy x x xy x x y ++=+=+ 或222(2)();y xy x x y ++=+或2222(2)(2)()();x xy y xy x y x y x y +-+=-=+- 或2222(2)(2)()().y xy x xy y x y x y x +-+=-=+- 4.解:当a +b=-3,ab=1时, 原式=21ab(a 2+2ab +b 2)=21ab(a +b)2=21×1×(-3)2=29 四、 1. (1)(C )(2)()22a b -可以为零(3)本题正确的结论是:由第(B )步2222222()()()c a b a b a b -=+-可得:()()222220a bca b ---=所以△ABC 是直角三角形或等腰三角第三章分式单元测试一、选择题(每小题3分,共30分)1.在下列各式mam x x b a x x a ,),1()3(,43,2,3222--÷++π中,是分式的有( ) A.2个 B.3个 C.4个 D.5个 2.要使分式733-x x有意义,则x 的取值范围是( )A.x=37B.x>37C.x<37D.x ≠=373.若分式4242--x x 的值为零,则x 等于( )A.2B.-2C.2±D.0 4.如果分式x+16的值为正整数,则整数x 的值的个数是( ) A.2个 B.3个 C.4个 D.5个5.有游客m 人,若果每n 个人住一个房间,结果还有一个人无房住,这客房的间数为( )A.n m 1- B.1-n m C.n m 1+ D.1+nm6.把a 千克盐溶于b 千克水中,得到一种盐水,若有这种盐水x 千克,则其中含盐( )A.b a ax +千克 B.b a bx +千克 C.b a x a ++千克 D.b ax 千克 7.计算)1(1x x x x -÷-所得的正确结论wei ( ) A.11-x B.1 C.11+x D.-1 8.把分式2222-+-+-x x x x 化简的正确结果为( ) A.482--x x B.482+-x x C.482-x x D.48222-+x x 9.当x=33时,代数式)23(232x x x x x -+÷--的值是( ) A.213- B.213+ C.313- D.313+ 10.某工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走。

北师大版八年级数学下册 第1章 三角形的证明 单元测试卷(含答案)

北师大版八年级数学下册  第1章 三角形的证明  单元测试卷(含答案)

北师大版八年级数学下册第1章三角形的证明单元测试卷(时间:120分钟满分:150分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填在相应的答题框内)1.如图,若∠B=30°,∠C=90°,AC=20,则AB=( )A.25B.30C.20 3D.402.如图,已知DE∥BC,AB=AC,∠1=55°,则∠C的度数是( )A.55°B.45°C.35°D.65°3.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是( )A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°C.∠A=20°,∠B=80°D.∠A=40°,∠B=80°4.以下各组数为三角形的三条边长,其中是直角三角形的三条边长的是( )A.2,3,4B.1,2, 3C.4,5,6D.2,2,45.如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的理由是( )A.HLB.ASAC.AASD.SAS6.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠CAD的度数为( )A.35°B.45°C.55°D.60°7.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为( )A.30°B.45°C.60°D.75°8.如图,D是Rt△ABC的斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β,若α=10°,则β的度数是( )A.40°B.50°C.60°D.不能确定9.如图,在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB,DE⊥AB,CD=3,则BD的长为( )A.1.5B.3C.6D.910.用反证法证明“直角三角形中的两个锐角不能都大于45°”,第一步应假设这个直角三角形中( )A.每一个锐角都小于45°B.有一个锐角大于45°C.有一个锐角小于45°D.每一个锐角都大于45°11.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么下列各条件中,不能使Rt△ABC≌Rt△A′B′C′的是( )A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°12.观察下列命题的逆命题:①有两边相等的三角形是等腰三角形;②到角的两边的距离相等的点在这个角的平分线上;③直角三角形的两个锐角互余;④全等三角形的面积相等.其中逆命题为假命题的个数是( )A.1B.2C.3D.413.如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E.如果∠BAC=60°,∠ACE=24°,那么∠BCE 的大小是( )A.24°B.30°C.32°D.36°14.如图,直角三角形纸片的两直角边长分别为6,8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE∶S△BDE =( )A.2∶5B.14∶25C.16∶25D.4∶2115.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是( )A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°二、填空题(本大题共5个小题,每小题5分,共25分)16.在直角三角形中,其中一个锐角是22°,则另外一个锐角是.17.如图,某失联客机从A地起飞,飞行1 000 km到达B地,再折返飞行1 000 km到达C地后在雷达上消失,已知∠ABC=60°,则失联客机消失时离起飞地A地的距离为km.18.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.19.如图,已知△ABC的周长是22,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3,△ABC的面积是.20.如图,在等腰△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,点C沿EF 折叠后与点O重合,则∠OEC的度数是.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(本题8分)一个机器零件的形状如图所示,在Rt△ABC中,∠BAC=30°,BC=2.5 cm,BD=13 cm,AD=12 cm,求△ABD的面积.22.(本题8分)在加快城镇建设中,有两条公路OA和OB交会于O点,在∠AOB的内部有蔬菜基地C和D,现要修建一个蔬菜转运站P,使转运站P到两条公路OA,OB的距离相等,且到两个蔬菜基地C,D的距离也相等,用尺规作出蔬菜转运站P的位置.(要求:不写作法,保留作图痕迹.)23.(本题10分)如图,点P为△ABC的BC边上一点,且PC=2PB,∠ABC=45°,∠APC=60°,CD⊥AP,连接BD,求∠ABD的度数.24.(本题12分)如图,∠AOB=60°,OC平分∠AOB,C为角平分线上一点,过点C作CD⊥OC,垂足为C,交OB于点D,CE∥OA交OB于点E.(1)判断△CED的形状,并说明理由;(2)若OC=3,求CD的长.25.(本题12分)如图,△ABC的外角∠DAC的平分线交BC边的垂直平分线于点P,PD⊥AB于D,PE⊥AC于E.(1)求证:BD=CE;(2)若AB=6 cm,AC=10 cm,求AD的长.26.(本题14分)如图,在△ABC中,MP,NO分别垂直平分AB,AC.(1)若BC=10 cm,试求出△PAO的周长;(2)若AB=AC,∠BAC=110°,试求∠PAO的度数;(3)在(2)中,若无AB=AC的条件,你能求出∠PAO的度数吗?若能,请求出来;若不能,请说明理由.27.(本题16分)如图,△ABC中,AB=BC=AC=12 cm,现有两点M,N分别从点A,B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N第一次到达点B时,M,N同时停止运动.(1)点M,N运动几秒后,M,N两点重合?(2)点M,N运动几秒后,可得到等边三角形△AMN?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.参考答案一、选择题(本大题共15个小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填在相应的答题框内)1.如图,若∠B=30°,∠C=90°,AC=20,则AB=(D)A.25B.30C.20 3D.402.如图,已知DE∥BC,AB=AC,∠1=55°,则∠C的度数是(A)A.55°B.45°C.35°D.65°3.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是(C)A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°C.∠A=20°,∠B=80°D.∠A=40°,∠B=80°4.以下各组数为三角形的三条边长,其中是直角三角形的三条边长的是(B)A.2,3,4B.1,2, 3C.4,5,6D.2,2,45.如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的理由是(A)A.HLB.ASAC.AASD.SAS6.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠CAD的度数为(A)A.35°B.45°C.55°D.60°7.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为(C)A.30°B.45°C.60°D.75°8.如图,D是Rt△ABC的斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β,若α=10°,则β的度数是(B)A.40°B.50°C.60°D.不能确定9.如图,在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB,DE⊥AB,CD=3,则BD的长为(C)A.1.5B.3C.6D.910.用反证法证明“直角三角形中的两个锐角不能都大于45°”,第一步应假设这个直角三角形中(D)A.每一个锐角都小于45°B.有一个锐角大于45°C.有一个锐角小于45°D.每一个锐角都大于45°11.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么下列各条件中,不能使Rt△ABC≌Rt△A′B′C′的是(B)A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°12.观察下列命题的逆命题:①有两边相等的三角形是等腰三角形;②到角的两边的距离相等的点在这个角的平分线上;③直角三角形的两个锐角互余;④全等三角形的面积相等.其中逆命题为假命题的个数是(A)A.1B.2C.3D.413.如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E.如果∠BAC=60°,∠ACE=24°,那么∠BCE 的大小是(C)A.24°B.30°C.32°D.36°14.如图,直角三角形纸片的两直角边长分别为6,8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE∶S△BDE =(B)A.2∶5B.14∶25C.16∶25D.4∶2115.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是(D)A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°二、填空题(本大题共5个小题,每小题5分,共25分)16.在直角三角形中,其中一个锐角是22°,则另外一个锐角是68__°.17.如图,某失联客机从A地起飞,飞行1 000 km到达B地,再折返飞行1 000 km到达C地后在雷达上消失,已知∠ABC=60°,则失联客机消失时离起飞地A地的距离为1__000km.18.如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M19.如图,已知△ABC 的周长是22,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于点D ,且OD =3,△ABC 的面积是33.20.如图,在等腰△ABC 中,AB =AC ,∠BAC =54°,∠BAC 的平分线与AB 的垂直平分线交于点O ,点C 沿EF 折叠后与点O 重合,则∠OEC 的度数是108__°.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(本题8分)一个机器零件的形状如图所示,在Rt △ABC 中,∠BAC =30°,BC =2.5 cm ,BD =13 cm ,AD =12 cm ,求△ABD 的面积.解:∵Rt △ABC 中,∠BAC =30°,BC =2.5 cm , ∴AB =2BC =5 cm.∵52+122=132,即AB 2+AD 2=BD 2, ∴△ABD 是直角三角形.∴S △ABD =12AB·AD =12×5×12=30(cm 2).22.(本题8分)在加快城镇建设中,有两条公路OA 和OB 交会于O 点,在图中∠AOB 的内部有蔬菜基地C 和D ,现要修建一个蔬菜转运站P ,使转运站P 到两条公路OA ,OB 的距离相等,且到两个蔬菜基地C ,D 的距离也相等,用尺规作出蔬菜转运站P 的位置.(要求:不写作法,保留作图痕迹.)解:如图所示.23.(本题10分)如图,点P 为△ABC 的BC 边上一点,且PC =2PB ,∠ABC =45°,∠APC =60°,CD ⊥AP ,连接BD ,求∠ABD 的度数.解:∵∠APC =60 °,CD ⊥AP , ∴∠PCD =90 °-∠APC =90 °-60 °=30 °. ∴PC =2PD.∵PC =2PB ,∴PB =PD. ∴∠PBD =∠PDB.又∵∠APC =∠PBD +∠PDB ,∴∠PBD =12∠APC =12×60 °=30 °.∵∠ABC =45 °,∴∠ABD =∠ABC -∠PBD =45 °-30 °=15 °.24.(本题12分)如图,∠AOB =60°,OC 平分∠AOB ,C 为角平分线上一点,过点C 作CD ⊥OC ,垂足为C ,交OB 于点D ,CE ∥OA 交OB 于点E.(1)判断△CED 的形状,并说明理由; (2)若OC =3,求CD 的长.解:(1)△CED 是等边三角形.理由如下: ∵OC 平分∠AOB ,∠AOB =60 °,∴∠AOC =∠COE =30 °. ∵CE ∥OA ,∴∠AOC =∠COE =∠OCE =30 °,∠CED =60 °. ∵CD ⊥OC ,∴∠OCD =90 °. ∴∠EDC =60 °.∴△CED 是等边三角形.(2)∵△CED 是等边三角形,∴CD =CE =ED. 又∵∠COE =∠OCE ,∴OE =EC. ∴CD =ED =OE.设CD =x ,则OD =2x.在Rt △OCD 中,根据勾股定理得:x 2+9=4x 2,解得x = 3. 则CD = 3.25.(本题12分)如图,△ABC 的外角∠DAC 的平分线交BC 边的垂直平分线于点P ,PD ⊥AB 于D ,PE ⊥AC 于E. (1)求证:BD =CE ;(2)若AB =6 cm ,AC =10 cm ,求AD 的长.解:(1)证明:连接BP ,CP.∵点P 在BC 的垂直平分线上,∴BP =CP. ∵AP 是∠DAC 的平分线,∴DP =EP ,在Rt △BDP 和Rt △CEP 中,⎩⎪⎨⎪⎧BP =CP ,DP =EP ,∴Rt △BDP ≌Rt △CEP (HL ),∴BD =CE.(2)在Rt △ADP 和Rt △AEP 中,⎩⎪⎨⎪⎧AP =AP ,DP =EP ,∴Rt △ADP ≌Rt △AEP (HL ),∴AD =AE.∵AB =6 cm ,AC =10 cm ,∴6+AD =10-AE , 即6+AD =10-AD.解得AD =2 cm.26.(本题14分)如图,在△ABC 中,MP ,NO 分别垂直平分AB ,AC.(1)若BC =10 cm ,试求出△PAO 的周长; (2)若AB =AC ,∠BAC =110°,试求∠PAO 的度数;(3)在(2)中,若无AB =AC 的条件,你能求出∠PAO 的度数吗?若能,请求出来;若不能,请说明理由.解:(1)∵MP ,NO 分别垂直平分AB ,AC , ∴AP =BP ,AO =CO.∴△PAO 的周长为AP +PO +AO =BO +PO +OC =BC. ∵BC =10 cm ,∴△PAO 的周长为10 cm.(2)∵AB =AC ,∠BAC =110 °,∴∠B =∠C =12×(180 °-110 °)=35 °.由(1)知AP =BP ,AO =CO. ∴∠BAP =∠B =35 °,∠CAO =∠C =35 °. ∴∠PAO =∠BAC -∠BAP -∠CAO =110 °-35 °-35 °=40 °. (3)能.理由如下: ∵∠BAC =110 °,∴∠B +∠C =180 °-110 °=70 °.由(1)知AP =BP ,AO =CO.∴∠BAP =∠B ,∠CAO =∠C.∴∠PAO =∠BAC -∠BAP -∠CAO =∠BAC -(∠B +∠C )=110 °-70 °=40 °.27.(本题16分)如图,△ABC 中,AB =BC =AC =12 cm ,现有两点M ,N 分别从点A ,B 同时出发,沿三角形的边运动,已知点M 的速度为1 cm /s ,点N 的速度为2 cm /s .当点N 第一次到达点B 时,M ,N 同时停止运动.(1)点M ,N 运动几秒后,M ,N 两点重合?(2)点M ,N 运动几秒后,可得到等边三角形△AMN?(3)当点M ,N 在BC 边上运动时,能否得到以MN 为底边的等腰三角形AMN ?如存在,请求出此时M ,N 运动的时间.解:(1)设点M ,N 运动x 秒后,M ,N 两点重合,x ×1+12=2x ,解得x =12.(2)设点M ,N 运动t 秒后,可得到等边三角形△AMN ,如图1,AM =t ×1=t ,AN =AB -BN =12-2t.∵三角形△AMN 是等边三角形,∴t =12-2t ,解得t =4.∴点M ,N 运动4秒后,可得到等边三角形△AMN.(3)当点M ,N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形.由(1)知,12秒时M ,N 两点重合,恰好在C 处.如图2,假设△AMN 是以MN 为底边的等腰三角形,∴AN =AM.∴∠AMN =∠ANM.∴∠AMC =∠ANB.∵AB =BC =AC ,∴△ACB 是等边三角形.∴∠C =∠B.在△ACM 和△ABN 中,⎩⎪⎨⎪⎧∠C =∠B ,∠AMC =∠ANB ,AC =AB , ∴△ACM ≌△ABN (AAS ).∴CM =BN.设当点M ,N 在BC 边上运动时,M ,N 运动的时间y 秒时,△AMN 是等腰三角形.∴CM =y -12,NB =36-2y ,由CM =NB ,得y -12=36-2y ,解得y =16.故假设成立.∴当点M ,N 在BC 边上运动时,能得到以MN 为底边的等腰三角形AMN ,此时M ,N 运动的时间为16秒.。

2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:第1章~第3章(北师版)。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

北师大八年级(下)第一次月考数学试卷含答案

北师大八年级(下)第一次月考数学试卷含答案

八年级(下)第一次月考数学试卷一.选择题:(每题3分,共36分)1.若m>n,下列不等式不一定成立的是()A.m+2>n+2 B.2m>2n C.>D.m2>n22.如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为点E、点F,连接EF与AD相交于点O,下列结论不一定成立的是()A.DE=DF B.AE=AF C.OD=OF D.OE=OF3.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB 上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个 B.3个 C.4个 D.5个4.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或175.下列说法中,正确的有()①等腰三角形的两腰相等;②等腰三角形的两底角相等;③等腰三角形底边上的中线与底边上的高相等;④等腰三角形两底角的平分线相等.A.1个 B.2个 C.3个 D.4个6.等腰三角形一腰上的高与底边的夹角为40°,则顶角的度数为()A.40°B.80°C.100° D.80°或100°7.不等式组的解集在数轴上可表示为()A.B.C.D.8.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm9.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为()A.x>3 B.x<3 C.x>﹣1 D.x<﹣110.已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④11.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处12.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64二、填空题(每题3分,共12分)13.如图,△ABC和△DCB中,∠A=∠D=90°,边AC与DB相交于点O,要使△ABC≌△DCB,则需要添加的一个条件是.(写出一种情况即可)14.已知关于x的不等式组无解,则a的取值范围是.15.某次数学竞赛初试有试题25道,阅卷规定:每答对一题得4分,每答错(包括未答)一题得(﹣1)分,得分不低于60分则可以参加复试.那么,若要参加复试,初试的答对题数至少为.16.命题“两直线平行,同位角相等.”的逆命题是.三.解答题(7个大题,共52分)17.解不等式(组)(1)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.(2),并写出不等式组的整数解.18.如图,△ABC中,∠ACB=90°,∠BAC=30°,将线段AC绕点A顺时针旋转60°得到线段AD,连接CD交AB于点O,连接BD.(1)求证:AB垂直平分CD;(2)若AB=6,求BD的长.19.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.20.某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台,和液晶显示器8台,共需要资金7000元,若购进电脑机箱两台和液晶显示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元,根据市场行情,销售电脑机箱,液晶显示器一台分别可获得10元和160元,改经销商希望销售完这两种商品,所获得利润不少于4100元,试问:该经销商有几种进货方案?哪种方案获利最大?最大利润是多少?21.如图,△ABC,△CDE是等边三角形.(1)求证:AE=BD;(2)若BD和AC交于点M,AE和CD交于点N,求证:CM=CN;(3)连结MN,猜想MN与BE的位置关系.并加以证明.参考答案与试题解析一.选择题:(每题3分,共36分)1.若m>n,下列不等式不一定成立的是()A.m+2>n+2 B.2m>2n C.>D.m2>n2【考点】不等式的性质.【分析】根据不等式的性质1,可判断A;根据不等式的性质2,可判断B、C;根据不等式的性质3,可判断D.【解答】解:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选:D.2.如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为点E、点F,连接EF与AD相交于点O,下列结论不一定成立的是()A.DE=DF B.AE=AF C.OD=OF D.OE=OF【考点】角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.【分析】首先运用角平分线的性质得出DE=DF,再由HL证明Rt△ADE≌Rt△ADF,即可得出AE=AF;根据SAS即可证明△AEG≌△AFG,即可得到OE=OF.【解答】解:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠AED=∠AFD=90°,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF;∵AD是△ABC的角平分线,∴∠EAO=∠FAO,在△AEO和△AFO中,,∴△AEO≌△AFO(SAS),∴OE=OF;故选C.3.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB 上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个 B.3个 C.4个 D.5个【考点】等腰三角形的判定与性质.【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.4.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或17【考点】等腰三角形的性质;三角形三边关系.【分析】分6是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【解答】解:①6是腰长时,三角形的三边分别为6、6、5,能组成三角形,周长=6+6+5=17;②6是底边时,三角形的三边分别为6、5、5,能组成三角形,周长=6+5+5=16.综上所述,三角形的周长为16或17.故选D.5.下列说法中,正确的有()①等腰三角形的两腰相等;②等腰三角形的两底角相等;③等腰三角形底边上的中线与底边上的高相等;④等腰三角形两底角的平分线相等.A.1个 B.2个 C.3个 D.4个【考点】等腰三角形的性质.【分析】等腰三角形中顶角平分线,底边中线及高互相重合,即三线合一,两腰上的角平分线、中线及高都相等.【解答】解:①等腰三角形的两腰相等;正确;②等腰三角形的两底角相等;正确;③等腰三角形底边上的中线与底边上的高相等;正确;④等腰三角形两底角的平分线相等.正确.故选D.6.等腰三角形一腰上的高与底边的夹角为40°,则顶角的度数为()A.40°B.80°C.100° D.80°或100°【考点】等腰三角形的性质.【分析】首先根据题意画出图形,然后根据直角三角形两锐角互余求出底角的度数,再根据等腰三角形两底角相等列式进行计算即可得解.【解答】解:∵BD⊥AC,∠CBD=40°,∴∠C=50°,∵AB=AC,∴∠ABC=∠C=50°,∴∠A=180°﹣∠ABC﹣∠C=80°,即顶角的度数为80°.故选B.7.不等式组的解集在数轴上可表示为()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围,它们相交的地方就是不等式组的解集.【解答】解:不等式可化为:在数轴上可表示为:故选C.8.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm【考点】含30度角的直角三角形;线段垂直平分线的性质.【分析】求出AE=BE,推出∠A=∠1=∠2=30°,求出DE=CE=3cm,根据含30度角的直角三角形性质求出即可.【解答】解:∵DE垂直平分AB,∴AE=BE,∴∠2=∠A,∵∠1=∠2,∴∠A=∠1=∠2,∵∠C=90°,∴∠A=∠1=∠2=30°,∵∠1=∠2,ED⊥AB,∠C=90°,∴CE=DE=3cm,在Rt△ADE中,∠ADE=90°,∠A=30°,∴AE=2DE=6cm,故选C.9.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为()A.x>3 B.x<3 C.x>﹣1 D.x<﹣1【考点】一次函数与一元一次不等式.【分析】观察函数图象得到,当x<﹣1时,直线y=k2x都在直线y=k1x+b,的上方,于是可得到不等式k2x>k1x+b的解集.【解答】解:当x<﹣1时,k2x>k1x+b,所以不等式k2x>k1x+b的解集为x<﹣1.故选D.10.已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④【考点】等腰三角形的判定.【分析】根据等腰三角形的判定逐一进行判断即可.【解答】解:选②AD=BE;③AF=BF,不能证明△ADF与△BEF全等,所以不能证明∠1=∠2,故不能判定△ABC是等腰三角形.故选C.11.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边的距离相等解答即可.【解答】解:根据角平分线的性质,集贸市场应建在∠A、∠B两内角平分线的交点处.故选C.12.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64【考点】等边三角形的性质;含30度角的直角三角形.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.二、填空题(每题3分,共12分)13.如图,△ABC和△DCB中,∠A=∠D=90°,边AC与DB相交于点O,要使△ABC≌△DCB,则需要添加的一个条件是AB=DC.(写出一种情况即可)【考点】全等三角形的判定.【分析】本题要判定△ABC≌△DCB,已知∠A=∠D=90°,隐含的条件是BC=BC,那么只需添加一个条件即可.添边的话可以是AB=DC,符合HL.【解答】解:所添加条件为:AB=DC,∵∠A=∠D=90°,∴在Rt△ABC和△RtDCB中,∵,∴△ABC≌△DCB(HL).故答案为AB=DC.(答案不唯一)14.已知关于x的不等式组无解,则a的取值范围是a≥10.【考点】不等式的解集.【分析】根据不等式组无解,可得出a≥10.【解答】解:∵关于x的不等式组无解,∴根据大大小小找不到(无解)的法则,可得出a≥10.故答案为a≥10.15.某次数学竞赛初试有试题25道,阅卷规定:每答对一题得4分,每答错(包括未答)一题得(﹣1)分,得分不低于60分则可以参加复试.那么,若要参加复试,初试的答对题数至少为17.【考点】一元一次不等式的应用.【分析】设要参加复试,初试的答对题数至少为x道,根据某次数学竞赛初试有试题25道,阅卷规定:每答对一题得4分,每答错(包括未答)一题得(﹣1)分,得分不低于60分则可以参加复试,可列出不等式求解.【解答】解:设要参加复试,初试的答对题数至少为x道,4x﹣(25﹣x)≥60x≥17.若要参加复试,初试的答对题数至少为17道.故答案为:17.16.命题“两直线平行,同位角相等.”的逆命题是同位角相等,两直线平行.【考点】命题与定理.【分析】将原命题的条件与结论互换即得到其逆命题.【解答】解:∵原命题的条件为:两直线平行,结论为:同位角相等.∴其逆命题为:同位角相等,两直线平行.三.解答题(7个大题,共52分)17.解不等式(组)(1)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.(2),并写出不等式组的整数解.【考点】一元一次不等式组的整数解;在数轴上表示不等式的解集;解一元一次不等式;解一元一次不等式组.【分析】(1)不等式去括号、移项合并、系数化为1即可求出不等式的解集,再在数轴上表示出不等式的解集即可.(2)先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:(1)去括号,得2x+2﹣1≥3x+2,移项,得2x﹣3x≥2﹣2+1,合并同类项,得﹣x≥1,系数化为1,得x≤﹣1,这个不等式的解集在数轴上表示为:;(2)由①得x≥﹣1,由②得x<3,所以不等式组的解集是﹣1≤x<3,则整数解是﹣1,0,1,2.18.如图,△ABC中,∠ACB=90°,∠BAC=30°,将线段AC绕点A顺时针旋转60°得到线段AD,连接CD交AB于点O,连接BD.(1)求证:AB垂直平分CD;(2)若AB=6,求BD的长.【考点】线段垂直平分线的性质;等边三角形的判定与性质;含30度角的直角三角形.【分析】(1)根据旋转的性质得到△ACD是等边三角形,根据线段垂直平分线的概念判断即可;(2)根据直角三角形的性质计算即可.【解答】(1)证明:∵线段AC绕点A顺时针旋转60°得到线段AD,∴AD=AC,∠CAD=60°,∴△ACD是等边三角形,∵∠BAC=30°,∴∠DAB=30°,∴∠BAC=∠DAB,∴AO⊥CD,又CO=DO,∴AB垂直平分CD;(2)解:∵AB垂直平分CD,∴BD=BC,∠ADB=∠ACB=90°,∴BD=AB=3.19.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.【考点】等腰三角形的判定;角平分线的性质.【分析】由条件可得出DE=DF,可证明△BDE≌△CDF,可得出∠B=∠C,再由等腰三角形的判定可得出结论.【解答】证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴∠B=∠C,∴△ABC为等腰三角形.20.某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台,和液晶显示器8台,共需要资金7000元,若购进电脑机箱两台和液晶显示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元,根据市场行情,销售电脑机箱,液晶显示器一台分别可获得10元和160元,改经销商希望销售完这两种商品,所获得利润不少于4100元,试问:该经销商有几种进货方案?哪种方案获利最大?最大利润是多少?【考点】二元一次方程组的应用.【分析】(1)设每台电脑机箱进价为x元、每台液晶显示器的进价为y元,然后根据购进电脑机箱10台,和液晶显示器8台,共需要资金7000元,购进电脑机箱两台和液晶显示器5台,共需要资金4120元列出组求解即可;(2)设购买电脑机箱x台,则购买液晶显示器(50﹣x)台,然后根据两种商品的资金不超过22240元,且利润不少于4100元列不等式组求解,从而可求得x 的范围,然后根据x的取值范围可确定出进货方案,并求得最大利润.【解答】解:(1)设每台电脑机箱进价为x元、每台液晶显示器的进价为y元.根据题意得:,解得:.答:设每台电脑机箱进价为60元、每台液晶显示器的进价为800元.(2)设购买电脑机箱x台,则购买液晶显示器(50﹣x)台.根据题意得:.解得:24≤x≤26.经销商共有三种进货方案:①购买电脑机箱24台,购买液晶显示器26台;②购买电脑机箱25台,购买液晶显示器25台;③购买电脑机箱26台,购买液晶显示器24台.第①种进货方案获利最大,最大利润=10×24+160×26=4400元.21.如图,△ABC,△CDE是等边三角形.(1)求证:AE=BD;(2)若BD和AC交于点M,AE和CD交于点N,求证:CM=CN;(3)连结MN,猜想MN与BE的位置关系.并加以证明.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)欲证明AE=BD,只要证明△ACE≌△BCD(SAS)即可.(2)欲证明CM=CN,只要证明△BCM≌△ACN(ASA)即可.(3)结论:MN∥BE.只要证明△MNC是等边三角形,即可推出∠CMN=∠BCM,推出MN∥BE.【解答】(1)证明:∵△ABC和△DCE均为等边三角形,∴AC=BC,CE=CD,∠ACB=∠DCE=60°,∴∠BCD=∠ACE=120°,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS)∴AE=BD.(2)证明:∵△ACE≌△BCD,∴∠CBD=∠CAE,又∵BC=AC,∠BCM=∠ACN=60°,在△BCN和△ACN中,,∴△BCM≌△ACN(ASA)∴CM=CN(3)结论:MN∥BE.理由:∵∠BCA=∠DCE=60°,∴∠MCN=180°﹣60°﹣60°=60°,∵CM=CN,∴△CMN是等边三角形,∴∠CMN=∠BCM=60°,∴MN∥BE.。

北师大版八年级下册数学第一次月考试卷

北师大版八年级下册数学第一次月考试卷

北师大版八(Ba)年级下册数学第一次月考试卷一.选择题(共(Gong)10小题)1.已知(Zhi)等腰三角形的一边长为3cm,且它的周长为12cm,则它的底边长为()A.3cm B.6cm C.9cm D.3cm或(Huo)6cm2.如图是某商场一楼与二楼之间(Jian)的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升(Sheng)的高度h 是()A. m B.4 m C.4 m D.8 m3.如(Ru)图,在△ABC中,DE垂直平分AB,交边(Bian)AC于点D,交边AB于点E,连接BD.若AC=6,△BCD的周长为10,则BC的长为()A.2 B.4 C.6 D.84.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA 的距离是()A.1 B.2 C. D.45.式子:①2>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.其中不等式有()A.1个B.2个C.3个D.4个6.若3x>﹣3y,则下列不等式中一定成立的是()A.x+y>0 B.x﹣y>0 C.x+y<0 D.x﹣y<07.当x<a<0时,x2与ax的大小关系是()A.x2>ax B.x2≥ax C.x2<ax D.x2≤ax8.若不等式组有解,则实数a的取值范围是()A.a≥﹣2 B.a<﹣2 C.a≤﹣2 D.a>﹣29.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,若CD=4,AC=12,AB=15,则△ABC的面积为()A.48 B.50 C.54 D.6010.如下图所示,D为BC上一点,且(Qie)AB=AC=BD,则图中∠1与(Yu)∠2的关系(Xi)是()A.∠1=2∠2 B.∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°二(Er).填空题(共10小题)11.等腰三角形的(De)一个内角为40°,则顶角的度数为.12.如(Ru)图,在△ABC中(Zhong),AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则(Ze)用含a、b的代数式表示△ABC的周长为.13.如图,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF=度.14.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC=度.15.如图,Rt△ABC中,∠C=90°,AB=10,AC=6,D是BC上一点,BD=5,DE⊥AB,垂足为E,则线段DE的长为.16.如图,△ABC中,∠BAC=100°,DF、EG分别是AB、AC的垂直平分线,则∠DAE等于度.17.如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是cm.18.如图所(Suo)示,△ABC中(Zhong),∠C=90°,AD平(Ping)分∠BAC,AB=7cm,CD=3cm,则(Ze)△ABD的面(Mian)积是.19.若关于x的不等(Deng)式(1﹣a)x>2可化(Hua)为x<,则a的(De)取值范围是.20.关于x的两个不等式<1与1﹣3x>0的解集相同,则a=.三.解答题(共10小题)21.已知:△ABC内部一点O到两边AB、AC所在直线的距离相等,且OB=OC.求证:AB=AC.22.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.23.如图,△ABC中,∠B=90°,AB=BC,AD是△ABC的角平分线,若BD=1,求DC的长.24.如图,△ABC的边BC的垂直平分线MN交AC于点D,若△ADB的周长是10cm,AB=4cm,求AC的长.25.如图(Tu),在△ABC中(Zhong),∠C=90°,AD平(Ping)分∠BAC,DE⊥AB,如(Ru)果DE=5cm,∠CAD=32°,求CD的长度(Du)及∠B的度(Du)数.26.已知等腰(Yao)三角形△ABC,AB=AC,一腰上的中线把这个三角(Jiao)形的周长分成12和15两部分,求这个三角形的三边长.27.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=5,求OM的长度.28.如(Ru)图,在Rt△ABC中(Zhong),∠C=90°,AD平(Ping)分∠CAB,DE⊥AB于点(Dian)E.若AC=6,BC=8,CD=3.(1)求DE的(De)长;(2)求(Qiu)△BDE的(De)周长.29.如(Ru)图,△ABC中,∠B=90°,两直角边AB=7,BC=24,三角形内有一点P到各边的距离相等,PE⊥AB、PF⊥BC、PD⊥AC,垂足分别为E、F、D,求PD的长.30.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN 相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若(Ruo)∠MFN=70°,求(Qiu)∠MCN的(De)度数.北师大版八年级下册数(Shu)学第一次月考试卷参考答(Da)案与试题解析一.选择(Ze)题(共10小题)1.已知等腰三角形的一边长为3cm,且(Qie)它的周长为12cm,则它的底边长为()A.3cm B.6cm C.9cm D.3cm或(Huo)6cm【分(Fen)析】分3cm是等腰三角形的腰或底(Di)边两种情况进行讨论即可.【解(Jie)答】解:当3cm是等腰三角形的腰时,底边长=12﹣3×2=6cm,∵3+3=6,不能构成三角形,∴此种情况不存在;当3cm是等腰三角形的底边时,腰长==4.5cm.∴底为3cm,故选A.【点评】本题考查等腰三角形的性质、三角形三边关系定理等知识,解题的关键是学会分类讨论,注意三角形三边要满足三边关系定理,属于中考常考题型.2.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h是()A. m B.4 m C.4 m D.8 m【分析】过C作CM⊥AB于M,求出∠CBM=30°,根据含30度的直角三角形性质求出CM 即可.【解答】解:过C作CM⊥AB于M则CM=h,∠CMB=90°,∵∠ABC=150°,∴∠CBM=30°,∴h=CM=BC=4m,故(Gu)选B.【点(Dian)评】本题考查了(Liao)含30度角的直角三角形性质的应用,构造直角三角形是解此题的关键所在,题目比较好,难度也不大.3.如(Ru)图,在△ABC中,DE垂直平分(Fen)AB,交边AC于点D,交边AB于点E,连接BD.若AC=6,△BCD的(De)周长为10,则BC的长为()A.2 B.4 C.6 D.8【分(Fen)析】根(Gen)据线段的垂直平分线的性质得到DA=DB,根据三角形的周长公式计算即可..【解答】解:∵DE垂直平分AB,∴DA=DB,∴CD+BD+BC=10,∴CD+AD+BC=10,即AC+BC=10,∴BC=4,故选:B.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.4.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA 的距离是()A.1 B.2 C. D.4【分(Fen)析】作(Zuo)PE⊥OA于E,根据角(Jiao)平分线的性质解答.【解(Jie)答】解(Jie):作PE⊥OA于(Yu)E,∵点(Dian)P是∠AOB平(Ping)分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD=2,故选:B.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.5.式子:①2>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.其中不等式有()A.1个B.2个C.3个D.4个【分析】找到用不等号连接的式子的个数即可.【解答】解:①是用“>”连接的式子,是不等式;②是用“≤”连接的式子,是不等式;③是等式,不是不等式;④没有不等号,不是不等式;⑤是用“>”连接的式子,是不等式;∴不等式有①②⑤共3个,故选C.【点评】用到的知识点为:用“<,>,≤,≥,≠”连接的式子叫做不等式.6.若3x>﹣3y,则下列不等式中一定成立的是()A.x+y>0 B.x﹣y>0 C.x+y<0 D.x﹣y<0【分析】根据不等式的性质,可得答案.【解答】解:两边都除以3,得x>﹣y,两边都加y,得x+y>0,故(Gu)选:A.【点(Dian)评】本题考(Kao)查了不等式的性质,熟记不等式的性质并根据不等式的性质求解是解题关键.7.当(Dang)x<a<0时(Shi),x2与ax的大(Da)小关系是()A.x2>ax B.x2≥ax C.x2<ax D.x2≤ax【分(Fen)析】根据不等式的两边(Bian)都除以或乘以同一个负数,不等式的符号要发生改变求出即可.【解答】解:∵x<a<0,∴两边都乘以x得:x2>ax,故选A.【点评】本题考查了对不等式性质的应用,注意:不等式的两边都除以或乘以同一个负数,不等式的符号要发生改变.8.若不等式组有解,则实数a的取值范围是()A.a≥﹣2 B.a<﹣2 C.a≤﹣2 D.a>﹣2【分析】先解不等式组,然后根据题意可得a>﹣2,由此求得a的取值.【解答】解:,解不等式x+a≥0得,x≥﹣a,由不等式4﹣2x>x﹣2得,x<2,∵不等式组:不等式组有解,∴a>﹣2,故选D.【点评】本题考查了不等式组有解的条件,属于中档题.9.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,若CD=4,AC=12,AB=15,则△ABC的面积为()A.48 B.50 C.54 D.60【分(Fen)析】作(Zuo)DE⊥AB于E,根据角平(Ping)分线的性质求出DE,根据三角形的面积公式计算即可.【解(Jie)答】解(Jie):作DE⊥AB于(Yu)E,∵AD是(Shi)△ABC的角(Jiao)平分线,∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABC的面积为:×AC×DC+×AB×DE=54,故选:C.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10.如下图所示,D为BC上一点,且AB=AC=BD,则图中∠1与∠2的关系是()A.∠1=2∠2 B.∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°【分析】由已知AB=AC=BD,结合图形,根据等腰三角形的性质、内角与外角的关系及三角形内角和定理解答.【解答】解:∵AB=AC=BD,∴∠1=∠BAD,∠C=∠B,∠1是△ADC的外角,∴∠1=∠2+∠C,∵∠B=180°﹣2∠1,∴∠1=∠2+180°﹣2∠1即(Ji)3∠1﹣∠2=180°.故(Gu)选:D.【点(Dian)评】主要考查了等腰三角形的性(Xing)质及三角形的外角、内角和等知识;(1)三角形的外角等于与它不相邻的两个内(Nei)角和;(2)三角形的内角和是180度.求角的度数常常要用(Yong)到“三角形的内角和是180°这一隐含的条件.二(Er).填空题(共10小题)11.等腰三角形的一个(Ge)内角为40°,则顶角的度数为100°或40°.【分析】已知等腰三角形的一个内角为40°,则这个角有可能是底角,也有可能是顶角,所以应该分情况进行分析,从而得到答案.【解答】解:当这个角是顶角时,则顶角的度数为40°,当这个角是底角时,则顶角的度数180°﹣40°×2=100°,故其顶角的度数为100°或40°.故填100°或40°.【点评】此题主要考查等腰三角形的性质及三角形内角和定理的运用;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.12.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为2a+3b.【分析】由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,∠BAC=36°,所以易证AE=CE=BC=b,从可知△ABC的周长;【解答】解:∵AB=AC,BE=a,AE=b,∴AC=AB=a+b,∵DE是线段AC的垂直平(Ping)分线,∴AE=CE=b,∴∠ECA=∠BAC=36°,∵∠BAC=36°,∴∠ABC=∠ACB=72°,∴∠BCE=∠ACB﹣∠ECA=36°,∴∠BEC=180°﹣∠ABC﹣∠ECB=72°,∴CE=BC=b,∴△ABC的周长(Chang)为:AB+AC+BC=2a+3b故(Gu)答案为:2a+3b.【点(Dian)评】本题考查线段垂直平分线的性(Xing)质,解题的关键是利用等腰三角形的性质以及垂直平分线的性质得出AE=CE=BC,本题属于中等题型.13.如(Ru)图,AB=AC,FD⊥BC于(Yu)D,DE⊥AB于(Yu)E,若∠AFD=145°,则∠EDF=55度.【分析】首先求出∠C的度数,再根据等腰三角形的性质求出∠A,从而利用四边形内角和定理求出∠EDF.【解答】解:∵∠AFD=145°,∴∠CFD=35°又∵FD⊥BC于D,DE⊥AB于E∴∠C=180°﹣(∠CFD+∠FDC)=55°∵AB=AC∴∠B=∠C=55°,∴∠A=70°根据四边形内角和为360°可得:∠EDF=360°﹣(∠AED+∠AFD+∠A)=55°∴∠EDF为55°.故填55.【点(Dian)评】本题考查的是四边形内角和定(Ding)理以及等腰三角形的性质;解题关键是先求出∠A的(De)度数,再利用四边形的内角和定理求出所求角.14.如(Ru)图,在△ABC中(Zhong),AB=AC,∠A=40°,AB的垂直平分线(Xian)MN交AC于点D,则∠DBC=30度(Du).【分(Fen)析】根据等腰三角形两底角相等求出∠ABC的度数,再根据线段垂直平分线上的点到线段两端点的距离相可得AD=BD,根据等边对等角的性质可得∠ABD=∠A,然后求解即可.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=(180°﹣∠A)=×(180°﹣40°)=70°,∵MN垂直平分线AB,∴AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30.【点评】本题主要考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形两底角相等的性质,等边对等角的性质,是基础题,熟记性质是解题的关键.15.如图,Rt△ABC中,∠C=90°,AB=10,AC=6,D是BC上一点,BD=5,DE⊥AB,垂足为E,则线段DE的长为3.【分析】由垂直的定义得到∠DEB=90°,根据相似三角形的性质即可得到结论.【解(Jie)答】解(Jie):∵DE⊥AB,∴∠DEB=90°,∴∠C=∠DEB,∵∠B=∠B,∴△BED∽△BCA,∴,即(Ji)=,∴DE=3,故答(Da)案为:3.【点(Dian)评】本题考查了相似三角形的判定和性质,垂直的定义,熟练(Lian)掌握相似三角形的判定和性质是解题的关键.16.如(Ru)图,△ABC中(Zhong),∠BAC=100°,DF、EG分别是AB、AC的垂直平分线,则∠DAE等于20度.【分析】图中涉及两条垂直平分线,要根据其特点,转化为关于等腰三角形的知识解答.【解答】解:∵DF、EG分别是AB、AC的垂直平分线∴(1)DA=DB,则∠B=∠DAF,设∠B=∠DAF=x度(2)EA=EC,∠C=∠EAG,设∠C=∠EAG=y度因为∠BAC=100°所以x+y+∠DAE=100°根据三角形内角和定理,x+y+x+y+∠DAE=180°解得∠DAE=20°.【点评】主要考查线段的垂直平分线的性质和等腰三角形的性质.17.如图(Tu),在△ABC中,DE是AC的垂直平分(Fen)线,AE=3cm,△ABD的周(Zhou)长为13cm,则△ABC的周(Zhou)长是19cm.【分(Fen)析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD,AC=2AE,结合周长,进行(Xing)线段的等量代换可得答案.【解(Jie)答】解(Jie):∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19.【点评】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.18.如图所示,△ABC中,∠C=90°,AD平分∠BAC,AB=7cm,CD=3cm,则△ABD的面积是cm2.【分析】过点D作DE⊥AB,由角平分线的性质可知DE=CD=3,再根据S=AB•DE即可△ABD得出结论.【解答】解:过点D作DE⊥AB,∵AD平分∠BAC,∴DE=CD=3,S△ABD=AB×DE=×7×3=cm2.故答(Da)案为:cm2.【点(Dian)评】本题考查的是角平分线的性质及三角形的面积公式,根据题意作出辅助(Zhu)线是解答此题的关键.19.若关于(Yu)x的不等式(1﹣a)x>2可(Ke)化为x<,则a的取值(Zhi)范围是a>1.【分(Fen)析】依据不等式的(De)性质解答即可.【解答】解:∵不等式(1﹣a)x>2可化为x<,∴1﹣a<0,解得:a>1.故答案为:a>1.【点评】本题主要考查的是不等式的性质,掌握不等式的性质是解题的关键.20.关于x的两个不等式<1与1﹣3x>0的解集相同,则a=1.【分析】求出第二个不等式的解集,表示出第一个不等式的解集,由解集相同求出a的值即可.【解答】解:由<1得:x<,由1﹣3x>0得:x<,由两个不等式的解集相同,得到=,解得:a=1.故答案为:1.【点评】此题考查了不等式的解集,根据题意分别求出对应的值利用不等关系求解.三.解答题(共10小题)21.已知:△ABC内部一点O到两边AB、AC所在直线的距离相等,且OB=OC.求(Qiu)证:AB=AC.【分(Fen)析】证(Zheng)明Rt△BOF≌Rt△COE,根据全等三角形(Xing)的性质得到∠FBO=∠ECO,根据等腰三(San)角形的性质得到∠CBO=∠BCO,得(De)到∠ABC=∠ACB,根据等(Deng)腰三角形的判定定理证明结论.【解(Jie)答】证明:在Rt△BOF和Rt△COE中,,∴Rt△BOF≌Rt△COE,∴∠FBO=∠ECO,∵OB=OC,∴∠CBO=∠BCO,∴∠ABC=∠ACB,∴AB=AC.【点评】本题考查的是角平分线的性质、全等三角形的判定,掌握全等三角形的判定定理、等腰三角形的判定定理是解题的关键.22.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.【分析】根据等边对等角和三角形的内角和定理,可先求得∠CAD的度数;再根据外角的性质,求∠B的读数.【解答】解:∵AC=DC=DB,∠ACD=100°,∴∠CAD=(180°﹣100°)÷2=40°,∵∠CDB是△ACD的外角,∴∠CDB=∠A+∠ACD=100°=40°+100°=140°,∵DC=DB,∴∠B=(180°﹣140°)÷2=20°.【点(Dian)评】此题很简单,考查了等(Deng)腰三角形的性质,关键是根据三角形外角的性质及三角形的内角和定理解答.23.如(Ru)图,△ABC中(Zhong),∠B=90°,AB=BC,AD是(Shi)△ABC的角平分线(Xian),若BD=1,求DC的长.【分(Fen)析】过(Guo)D作DE⊥AC于E,根据角平分线性质求出DE=1,求出∠C=45°,解直角三角形求出DC即可.【解答】解:过D作DE⊥AC于E,∵△ABC中,∠B=90°,AD是△ABC的角平分线,BD=1,∴DE=BD=1,∵∠B=90°,AB=BC,∴∠C=∠BAC=45°,在Rt△DEC中,sin45°=,∴DC==.【点评】本题考查了三角形内角和定理,等腰三角形的性质,角平分线的性质,解直角三角形的应用,主要考查学生综合运用性质进行推理和计算的能力.24.如图,△ABC的边BC的垂直平分线MN交AC于点D,若△ADB的周长是10cm,AB=4cm,求AC的长.【分(Fen)析】根据线段垂直平分线上的点到(Dao)线段两端点的距离相等可得BD=CD,然后根据△ADB的周长(Chang)求出AC+AB=10cm,再求(Qiu)解即可.【解(Jie)答】解(Jie):∵MN是线段BC的垂直平(Ping)分线,∴BD=CD,∵△ADB的(De)周长是10cm,∴AD+BD+AB=10cm,∴AD+CD+AB=10cm,∴AC+AB=10cm.∵AB=4cm,∴AC=6cm.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质并求出AC+AB是解题的关键.25.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB,如果DE=5cm,∠CAD=32°,求CD的长度及∠B的度数.【分析】根据角平分线上的点到角的两边的距离相等可得CD=DE;再根据角平分线的定义求出∠BAC,然后利用直角三角形两锐角互余求解即可.【解答】解:∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴CD=DE=5cm,又∵AD平分∠BAC,∴∠BAC=2∠CAD=2×32°=64°,∴∠B=90°﹣∠BAC=90°﹣64°=26°.【点(Dian)评】本题考查了角平分线上的点到角的两边的距离相等的性质,角平分线的定义,熟记性质是解题的关(Guan)键.26.已(Yi)知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分(Fen)成12和15两部分,求这个三角形的三边长.【分(Fen)析】如图(Tu),在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,根据题意列方程(Cheng)即可得到结论.【解(Jie)答】解:如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,(1)当AC+AD=15,BD+BC=12时,则+x=15,+y=12,解得x=10,y=7.(2)当AC+AD=12,BC+BD=15时,则+x=12,+y=15,解得x=8,y=11,故得这个三角形的三边长分别为10,10,7或8,8,11.【点评】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.27.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=5,求OM的长度.【分析】作PH⊥MN于H,根据直角三角形的性质得到OH=OP=6,根据等腰三角形的性质求出MH,计算即可.【解(Jie)答】解(Jie):作PH⊥MN于(Yu)H,∵∠AOB=60°,∴∠OPH=30°,∴OH=OP=6,∵PM=PN,PH⊥MN,∴MH=NH=2.5,∴OM=OH﹣MH=3.5.【点(Dian)评】本题考查的是直角三角形的性质、等腰三角形的性质,掌握直角三角形中,30°角所(Suo)对的直角边等于斜边的一半是解题的关键.28.如(Ru)图,在Rt△ABC中(Zhong),∠C=90°,AD平(Ping)分∠CAB,DE⊥AB于点E.若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△BDE的周长.【分析】(1)根据角平分线上的点到角的两边距离相等可得DE=CD;(2)利用勾股定理列式求出AB的长度,再利用“HL”证明Rt△ACD和Rt△AED全等,根据全等三角形对应边相等可得AE=AC,然后求出BE,再根据三角形的周长的定义列式计算即可得解.【解答】解:(1)∵∠C=90°,AD平分∠CAB,DE⊥AB,∴DE=CD,∵CD=3,∴DE=3;(2)∵∠C=90°,AC=6,BC=8,∴AB===10,在(Zai)Rt△ACD和(He)Rt△AED中(Zhong),,∴Rt△ACD≌Rt△AED(HL),∴AE=AC=6,∴BE=AB﹣AE=10﹣6=4,∴△BDE的周(Zhou)长=BD+DE+BE=BD+CD+BE=BC+BE=8+4=12.【点(Dian)评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,勾股定理,熟记各性质是解题的关键,难点在(Zai)于(2)三角形周长的转换.29.如(Ru)图,△ABC中(Zhong),∠B=90°,两直角边AB=7,BC=24,三角形内有一点P到各边的距离相等,PE⊥AB、PF⊥BC、PD⊥AC,垂足分别为E、F、D,求PD的长.【分析】连接AP,BP,CP,根据直角三角形的面积公式即可求得该距离的长.【解答】解:连接AP,BP,CP.设PE=PF=PD=x.∵△ABC中,∠B=90°,两直角边AB=7,BC=24,∴AC=25.=×AB×CB=84,∵S△ABCS△ABC=AB×x+AC×x+BC×x=(AB+BC+AC)•x=×56x=28x,则(Ze)28x=84,x=3.故PD的(De)长为3.【点(Dian)评】本题考查了勾股定理,三角形的面积.注意构造辅助线,则直角三角形的面积有两种表示方法:一是(Shi)整体计算,即两条直角边乘积的一半;二是等于三个小三角形的面积和,即(AB+AC+BC)x,然(Ran)后即可计算x的值.30.如(Ru)图,在△ABC中,DM、EN分别垂(Chui)直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若(Ruo)△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM=CM,BN=CN,然后求出△CMN的周长=AB;(2)根据三角形的内角和定理列式求出∠MNF+∠NMF,再求出∠A+∠B,根据等边对等角可得∠A=∠ACM,∠B=∠BCN,然后利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵DM、EN分别垂直平分AC和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的(De)周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.【点(Dian)评】本题考查了线段(Duan)垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,(2)整体思想的利用是解题的关键.。

北师大版数学八年级下册 第二章 一元一次不等式与一元一次不等式组 《板块专题20道—月考真题—能力培养》

北师大版数学八年级下册 第二章 一元一次不等式与一元一次不等式组 《板块专题20道—月考真题—能力培养》

一元一次不等式与一元一次不等式组1.(2019春•禅城区校级月考)如果关于x的方程5x+a=3(x﹣1)﹣2的根为非负数,则a 的取值范围()A.a≥5B.a≤5C.a≥﹣5 D.a≤﹣52.(2019春•盐湖区校级月考)给出下列数学表达式:①﹣3<0;②4x+3y>0;③x=5;④x2﹣xy+y2;⑤x+2>y﹣7.其中不等式的个数是()A.5个B.4个C.3个D.2个3.(2019春•盐湖区校级月考)x与5的差是非正数,用不等式表示为()A.x﹣5<0B.x﹣5≤0C.x﹣5>0D.x﹣5≥04.(2019春•中原区校级月考)下列不等式变形中,错误的是()A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a≤b,则ac2≤bc2D.若ac2≤bc2,则a≤b5.(2019春•海州区校级月考)不等式组有3个整数解,则a的取值范围是()A.﹣6≤a<﹣5B.﹣6<a≤﹣5C.﹣6<a<﹣5D.﹣6≤a≤﹣56.(2019春•盐湖区校级月考)某小区便利店负责人上午买回来30千克黄瓜,价格为每千克x元,下午他又买回来20千克黄瓜,价格为每千克y元,后来他以每千克元的价格卖完后,发现自己赔了钱,其原因是()A.x<y B.x>yC.x≤y D.x≥y7.(2019春•海沧区校级月考)下列按条件列出的不等式中,不正确的是()A.x超过0,则x>0B.x是不大于0的数,则x≤0C.x是不小于﹣1的数,则x≥﹣1D.x+y是负数,则x+y≤08.(2019春•南岗区校级月考)如果不等式(2﹣a)x<a﹣2的解集为x>﹣1,则a必须满足的条件是()A.a>0B.a>2C.a≠1D.a<19.(2019春•南岸区校级月考)已知关于x的不等式(a﹣2)x>1的解集为x<,则a 的取值范围()A.a>2B.a≥2C.a<2D.a≤210.(2019春•九龙坡区校级月考)如图,直线y=kx+b与直线y=﹣交于点A(m,2),则关于x的不等式kx+b x+的解集是()A.x≤2B.x≥1C.x≤1D.x≥211.(2019秋•雨花区校级月考)当0≤x≤4时,关于x的不等式≥2x﹣2恒成立,则m的取值范围为.(2019春•新华区校级月考)根据“x的3倍与8的和比x的5倍大”,列出的不等式是.12.13.(2019秋•双流区校级月考)对x,y定义一种新运算T,规定:T(x,y)=,这里等式右边是通常的四则运算,若关于m的不等式组只有两个整数解,则实数P的取值范围.14.(2019春•西湖区校级月考)关于x、y的方程组,其中﹣3≤a≤1,给出下列结论:①是方程组的解;②当﹣3≤a≤1时,无论a取什么实数,x+y的值始终不变;③当a=1时,方程组的解也是方程2x+y=4﹣a的解;④x、y为自然数的解有4对.其中正确的序号为.15.(2019春•京口区校级月考)已知一次函数y=kx+b与y=mx+n的图象如图所示,若kx+b <mx+n,则x的取值范围为.16.(2019秋•九龙坡区校级月考)解不等式(组)(1)≥﹣1(2)17.(2019秋•思明区校级月考)为迎接:“国家卫生城市”复检,某市坏卫局准备购买A、B两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需540元,购买2个A型垃圾箱比购买3个B型垃圾箱少用160元.(1)求每个A型垃圾箱和B型垃圾箱各多少元?(2)该市现需要购A、B买两种型号的垃圾箱共30个,其中买A型垃圾箱不超过16个.求出购买费用最少时的购买方案?18.(2019秋•呼兰区月考)某自行车行销售甲、乙两种品牌的自行车,若购进甲品牌自行车5辆,乙品牌自行车6辆,需要进货款9500元,若购进甲品牌自行车3辆,乙品牌自行车2辆需要进货款4500元.(1)求甲、乙两种品牌自行车每辆进货价分别为多少元?(2)今年夏天,车行决定购进甲、乙两种品牌自行车共50辆,在销售过程中,甲品牌自行车的利润率为80%,乙品牌自行车的利润率为60%,若将所购进的自行车全部销售完毕后其利润不少于29500,那么此次最多购进多少辆乙种品牌自行车?19.(2019春•涧西区校级月考)甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠,现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)顾客到哪个厂家购买更划算?20.(2019春•西湖区校级月考)小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若营业员A某月的总收入不低于3500元,那么营业员A当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式,如果购买甲服装3件,乙服装2件,丙服装1件共需390元;如采购买甲服装1件,乙服装2件,丙服装3件共需370元,某顾客想购买甲、乙、丙服装各一件共需多少元?。

北师大版八年级数学下册第一章《三角形的证明》单元过关测试卷(含答案)

北师大版八年级数学下册第一章《三角形的证明》单元过关测试卷(含答案)

北师大版八年级数学下册第一章《三角形的证明》单元过关测试卷一.选择题(共8小题,满分24分)1.如图,△ABC是等边三角形,DE∥BC,若AB=10,BD=6,则△ADE的周长为()A.4B.30C.18D.122.已知实数a,b满足|a﹣2|+(b﹣4)2=0,则以a,b的值为两边的等腰三角形的周长是()A.10B.8或10C.8D.以上都不对3.如图,在△ABC中,∠ACB=90°,∠A=30°,CE=2,边AB的垂直平分线交AB于点D,交AC于点E,那么AE的为()A.6B.4C.3D.24.如图,OP平分∠MON,P A⊥ON,PB⊥OM,垂足分别为A、B,若P A=3,则PB=()A.2B.3C.1.5D.2.55.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC上,则∠EAN=()A.58°B.32°C.36°D.34°6.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题为真命题的()A.如果∠A=2∠B=3∠C,则△ABC是直角三角形B.如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形C.如果a:b:c=1:2:2,则△ABC是直角三角形D.如果a:b;c=3:4:,则△ABC是直角三角形7.如图,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC,当用反证法证明时,第一步应假设()A.AB≠AC B.PB=PC C.∠APB=∠APC D.∠B≠∠C8.如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根B.8根C.9根D.10根二.填空题(共8小题,满分24分)9.在Rt△ABC中,∠B=90°,∠A=30°,AB=3,则AC=.10.如图,已知△ABC中,BC=4,AB的垂直平分线交AC于点D,若AC=6,则△BCD 的周长=.11.如图,小艾同学坐在秋千上,秋千旋转了80°,小艾同学的位置也从A点运动到了A'点,则∠OAA'的度数为.12.如图,Rt△ABC中,∠C=90°,AB=10,AD平分∠BAC,交BC于点D,CD=4,则S△ABD=.13.如图,在△ABC中,OB、OC分别是∠ABC和∠ACB的平分线,过点O作EF∥BC,分别与边AB、AC相交于点E、F,AB=8,AC=7,那么△AEF的周长等于.14.如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE ⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.15.如图,△ABC是等边三角形,过它的三个顶点分别作对边的平行线,则图中共有个等边三角形.16.如图,△ABC是边长为8的等边三角形,D为AC的中点,延长BC到E,使CE=CD,DF⊥BC于点F,求线段BF的长,BF=.三.解答题(共7小题,满分52分)17.用反证法证明等腰三角形的底角必为锐角.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.19.如图:△ABC中,∠ACB=90°,点D在AB上,CE是斜边AB上的高,且AC=AD.(1)若∠DCE=15°,求∠B的度数;(2)若∠B﹣∠A=20°,求∠DCB的度数.20.如图,在△ABC中,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于点E.(1)若∠ABE=50°,求∠EBC的度数;(2)若△ABC的周长为43cm,BC的长为11cm,求△BCE的周长21.如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连结CD,DE,已知∠EDB=∠ACD.(1)求证:△DEC是等腰三角形.(2)当∠BDC=5∠EDB,BD=2时,求EB的长.22.如图,在△ABC中,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)若∠BAC=90°(图1),求∠DAE的度数;(2)若∠BAC=120°(图2),求∠DAE的度数;(3)当∠BAC>90°时,探求∠DAE与∠BAC之间的数量关系,直接写出结果.23.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒时,M、N两点重合?(2)点M、N运动几秒时,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.参考答案一.选择题(共8小题)1.【解答】解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠AED=∠B=∠C=60°,∴△ADE为等边三角形,∵AB=10,BD=6,∴AD=AB﹣BD=10﹣6=4,∴△ADE的周长为12.故选:D.2.【解答】解:根据题意得a﹣2=0,b﹣4=0,解得a=2,b=4,①a=2是底长时,三角形的三边分别为4、4、2,∵4、4、2能组成三角形,∴三角形的周长为10,②a=2是腰边时,三角形的三边分别为4、2、2,2+2=4,不能组成三角形.综上所述,三角形的周长是10.故选:A.3.【解答】解:连接BE,∵DE是边AB的垂直平分线,∴BE=AE,∴∠EBA=∠A=30°,∴∠CBE=180°﹣90°﹣30°﹣30°=30°,∴BE=2CE=4,∴AE=BE=4,故选:B.4.【解答】解:∵OP平分∠MON,P A⊥ON,PB⊥OM,∴PB=P A=3,故选:B.5.【解答】解:∵△ABC中,∠BAC=106°,∴∠B+∠C=180°﹣∠BAC=180°﹣106°=74°,∵EF、MN分别是AB、AC的中垂线,∴∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN=74°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=106°﹣74°=32°.故选:B.6.【解答】解:A、∵∠A=2∠B=3∠C,∠A+∠B+∠C=180°,∴∠A≈98°,错误不符合题意;B、如果∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=75°,错误不符合题意;C、如果a:b:c=1:2:2,12+22≠22,不是直角三角形,错误不符合题意;D、如果a:b;c=3:4:,,则△ABC是直角三角形,正确;故选:D.7.【解答】解:假设结论PB≠PC不成立,即:PB=PC成立.故选:B.8.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠EDF=∠EFD=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个,∴添加这样的钢管的根数最多是8根.故选:B.二.填空题(共8小题)9.【解答】解:如图,∵∠B=90°,∠A=30°,∴设BC=x,则AC=2BC=2x,∵AB=3,∴x2+32=(2x)2解得:x=或﹣(舍去),∴AC=2x=2,故答案为:2.10.【解答】解:∵DE是线段AB的垂直平分线,∴DA=DB,∴△BCD的周长=BC+CD+DB=BC+CD+DA=BC+AC=10,故答案为:10.11.【解答】解:∵秋千旋转了80°,小林的位置也从A点运动到了A'点,∴AOA′=80°,OA=OA′,∴∠OAA'=(180°﹣80°)=50°.故答案为50°.12.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=4,∴S△ABD=AB•DE=×10×4=20,故答案为20.13.【解答】解:∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EOB=∠EBO,∠FOC=∠FCO,∴EO=EB,FO=FC,∵AB=8cm,AC=7cm,∴△AEF的周长为:AE+EF+AF=AE+EO+FO+AF=AE+EB+FC+AF=AB+AC=8+7=15(cm).故△AEF的周长为15,故答案为:15.14.【解答】解:∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°﹣40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣50°=40°,故答案为:40°.15.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠BCA=∠CAB=60°,∵DF∥BC,∴∠F AC=∠ACB=60°,∠DAB=∠ABC=60°,同理:∠ACF=∠BAC=60°在△AFC中,∠F AC=∠ACF=60°∴△AFC是等边三角形,同理可证:△ABD△BCE都是等边三角形,因此∠E=∠F=∠D=60°,△DEF是等边三角形,故有5个等边三角形,故答案为:5.16.【解答】解:连接BD,∵△ABC是边长为8的等边三角形,D为AC的中点,∴AC=BC=8,AD=DC=4,∠DBF=ABC==30°,由勾股定理得:BD==4,∵DF⊥BC,∴∠DFB=90°,∴DF=BD==2,在Rt△DFB中,由勾股定理得:BF===6,故答案为:6.三.解答题(共7小题)17.【解答】证明:①设等腰三角形底角∠B,∠C都是直角,则∠B+∠C=180°,而∠A+∠B+∠C=180°+∠A>180°,这与三角形内角和等于180°矛盾.②设等腰三角形的底角∠B,∠C都是钝角,则∠B+∠C>180°,而∠A+∠B+∠C>180°,这与三角形内角和等于180°矛盾.综上所述,假设①,②错误,所以∠B,∠C只能为锐角.故等腰三角形两底角必为锐角18.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.19.【解答】解:(1)∵CE⊥AB,∴∠CED=90°,∵∠ECD=15°,∴∠ADC=75°,∵AC=AD,∴∠ACD=∠ADC=75°,∵∠ACD=90°,∴∠DCB=15°,∵∠ADC=∠B+∠DCB,∴∠B=75°﹣15°=60°.(2)设∠DCB=x,则∠ADC=∠ACD=∠B+x=90°﹣x,∴2x=90°﹣∠B,∵∠A+∠B=90°,∠B﹣∠A=20°,∴∠B=55°,∴2x=35°,∴x=17.5°,∴∠DCB=17.5°20.【解答】解:(1)∵DE垂直平分AB∴∠A=∠ABE=50°,又∵AB=AC,∴∠ABC=∠ACB,而∠A+∠ABC+∠ACB=180°,∴∠ABC=×(180°﹣50°)=65°,∴∠EBC=∠ABC﹣∠ABE=65°﹣50°=15°;(2)∵△ABC的周长为43cm,BC=11cm∴AB=AC=16cm,又∵DE垂直平分AB∴EA=EB,∴△BCE的周长为:BC+BE+CE=BC+AE+CE=BC+AC=16+11=27cm.21.【解答】(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵∠E+∠EDB=∠ABC=60°,∠ACD+∠DCB=60°,∠EDB=∠ACD,∴∠E=∠DCE,∴△DEC是等腰三角形;(2)解:设∠EDB=α,则∠BDC=5α,∴∠E=∠DCE=60°﹣α,∴6α+60°﹣α+60°﹣α=180°,∴α=15°,∴∠E=∠DCE=45°,∴∠EDC=90°,过D作DH⊥CE于H,∵BD=2,∠DBH=60°,∴BH=BD=1,DH==,DH=EH=,∴BE=EH﹣BH=﹣1.22.【解答】解:(1)如图1,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=(180°﹣∠B)=67.5°,∵CE=CA,∴∠CAE=∠E=∠ACB=22.5°,∴∠BAE=180°﹣∠B﹣∠E=112.5°,∴∠DAE=∠BAE﹣∠BAD=45°,(2)如图2,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=30°,∵BA=BD,∴∠BAD=∠BDA=75°,∴∠DAC=45°,∵CA=CE,∴∠E=∠CAE=15°,∴∠DAE=∠DAC+∠CAE=60°;(3)∠DAE=∠BAC,理由:设∠CAE=x,∠BAD=y,则∠B=180°﹣2y,∠E=∠CAE=x,∴∠BAE=180°﹣∠B﹣∠E=2y﹣x,∴∠DAE=∠BAE﹣∠BAD=2y﹣x﹣y=y﹣x,∠BAC=∠BAE﹣∠CAE=2y﹣x﹣x=2y﹣2x∴∠DAE=∠BAC.23.【解答】解:(1)设点M、N运动x秒时,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒时,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒时,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N 运动的时间为16秒.。

【北师大版】八年级下册数学第一次月考卷01(第一章、第二章)附答题卡

【北师大版】八年级下册数学第一次月考卷01(第一章、第二章)附答题卡

2023-2024学年八年级数学下学期第一次月考卷01基础知识达标测(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:第一章、第二章(北师大版)。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、单项选择题(本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列数学表达式中:①20-<,②230x y +>,③2x =,④222x xy y ++,⑤3x ≠,⑥12x +>中,不等式有( ) A .1个B .2个C .3个D .4个2.下列说法不正确的是( ) A .若a b >,则22a b +>+ B .若a b >,则1122a b -<- C .若a b >,则22ac bc >D .若22a b >,则a b >3.不等式组10240x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .4.若不等式组12x x k <≤⎧⎨>⎩有解,则k 的取值范围是( )A .12k ≤<B .2k ≥C .1k <D .2k <5.用反证法证明命题钝角三角形中必有一个内角小于45°时,首先应该假设这个三角形中( ) A .每一个内角都大于等于45° B .每一个内角都小于45° C .有一个内角大于等于45°D .有一个内角小于45°6.等腰三角形一腰上的高与另一腰的夹角为40︒,则这个等腰三角形的顶角为( ) A .50︒B .130︒C .50︒或130︒D .140︒7.用三角尺可按下面方法画角平分线:如图摆放使得三角板刻度相同,即PM PN =,画射线OP ,则OP 平分AOB ∠.作图过程用了OMP ONP ≌△△,那么OMP ONP ≌△△所用的判定定理是( )A .SSSB .AASC .HLD .ASA8.到三角形三个顶点距离都相等的点是( ) A .三角形的三条角平分线的交点 B .三角形的三边垂直平分线的交点 C .三角形的三条高线的交点 D .三角形的三条中线的交点9.如图,在ABC 中,90,30C B ∠=︒∠=︒,以A 为圆心、任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M 、N 为圆心、大于MN 的长的一半为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,给出下列说法:①AD 是BAC ∠的平分线;②120ADB ∠=︒;③点D 在AB 的垂直平分线上;④D 点是线段BC 的中点.其中正确的个数是( )A .1B .2C .3D .410.如图所示三角形纸片ABC 中,B C ∠=∠,将纸片沿过点B 的直线折叠,使点C 落到AB 边上的E 点处,折痕为BD . 再将纸片沿过点E 的直线折叠,点A 恰好与点D 重合,折痕为EF ,若2AE =,则ABC 的周长为13,则AF 长为( )A .1.2B .1.5C .1.4D .111.一次函数1y ax b =+与2y cx d =+的图象如图所示,下列结论:①当0x >时,10y >,20y >;②函数y ax d =+的图象不经过第一象限;③3d ba c --=;④d a b c <++.其中正确的个数是( )A .1个B .2个C .3个D .4个12.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM V 周长的最小值为( )A .16B .10C .8D .2第II 卷二、填空题(本题共6小题,每小题3分,共18分.)13.已知a 、b 为常数,且0a ≠,如果不等式0ax b +<的解集是1x >,那么不等式ax b >-的解集是 .14.如图,在ABC 中,9060C BAC ADC ∠=︒∠=∠=︒,,则CD 与BD 的数量关系是 .15.我们用[]a 表示不大于a 的最大整数,例如:[]1.51=,[]2.32=,若[]41x +=,则x 的取值范围是 .16.如图,ABC 中,BO 平分ABC ∠,CO 平分ACB ∠,MN 经过点O ,与AB ,AC 相交于点M 、N ,且MN BC ∥,7cm AB =,9cm AC =,则AMN 的周长为 .17.关于x 的不等式组36152x m x x >-⎧⎨-<+⎩的整数解仅有4个,则m 的取值范围是 .18.如图,M N ,为44⨯方格纸中格点上的两点,若以MN 为边(P 在格点上),使得MNP △为等腰三角形,则点P 的个数为 个.三、解答题(本题共8小题,共66分.第19-20题每题6分,第21-23题每题8题,其他每题10分,解答应写出文字说明、证明过程或演算步骤.) 19.解不等式:()3312x x ---≤,并把它的解集在数轴上表示出来.20.解不等式组()211212x x x ⎧-<+⎪⎨+>⎪⎩,并求不等式组的正整数解.21.如图,已知ABC ,(1)根据要求作图,在边BC 上求作一点D .使得点D 到点AB 、AC 的距离相等,在边AB 上求作一点E .使得点E 到A 、D 的距离相等;(不要求写作法,但需要保留作图痕迹和结论) (2)在第(1)小题所作的图中,求证:∥DE AC .22.如图,在四边形ABCD 中,90,A B E ∠=∠=︒是AB 上的一点,且AD BE ==,12DE CE ∠=∠、.(1)求证:Rt Rt ADE BEC △≌△; (2)若30AED ∠=︒,求CD 的长.23.西安某校计划购买A ,B 两种树木共100棵,进行校园绿化,经市场调查:购买A 种树木3棵,B 种树木4棵,共需470元,购买A 种树木5棵,B 种树木2棵,共需410元. (1)求A ,B 两种树木每棵各多少元?(2)布局需要,决定再次购进A ,B 两种树木共50棵,恰逢该供应商对两种树木的售价进行调价,A 种树木售价比第一次购买时提高了8%,B 种树木按第一次购买时售价的9折出售.如果这所学校此次购买A ,B 两种树木的总费用不超过3260元,那么该校最多可购买多少B 种树木? 24.如图,在平面直角坐标系中,一次函数y kx b =+的图象经过点()1,5C ,且与x 轴相交于点()6,0B ,与一次函数26y x =-的图象相交于点A ,点A 的横坐标为4.(1)求k ,b 的值;(2)请直接写出关于x 的不等式26kx b x +>-的解集;(3)设点E 在直线y kx b =+上,且2BCD BDE S S =△△,求点E 的坐标.25.如图,ABC 是等边三角形,BD 是中线,延长BC 至E ,使CE CD =.(1)求证:DB DE =;(2)过点A 作AF BC ∥,交ED 延长线于点F ,交AB 于M ,连接BF . ①若12EM =,则BD = . ②求证:AB 垂直平分DF .26.如图①,在ABC 中,延长AC 到D ,使CD AB =,E 是AD 上方一点,且A BCE D ∠=∠=∠,连接BE .(1)求证:BCE 是等腰三角形;(2)如图①,若90ACB ∠=︒,将DE 沿直线CD 翻折得到DE ',连接BE '和CE ',BE '与CE 交于F ,若BE ED '∥,求证:F 是BE '的中点;(3)在如图②,若90ACB ∠=︒,AC BC =,将DE 沿直线CD 翻折得到DE ',连接BE '交CE 于F ,交CD 于G ,若AC a =,()0AB b b a =>>,求线段CG 的长度.12023-2024学年八年级数学下学期第一次月考卷·答题卡一、单项选择题(本题共12小题,每小题3分,共36分。

北师大版数学八年级下册 第一章 三角形的证明 单元测试卷(含答案)

北师大版数学八年级下册 第一章 三角形的证明   单元测试卷(含答案)

第一章三角形的证明单元测试卷一、选择题(每题3分,共30分)1.下列各组数中能作为直角三角形的三边长的是()A.2,2,3 B.6,8,10C.5,2,2 D.1.5,2.5,3.52.如图,直线AD垂直平分线段BC,∠B=50°,则∠C的度数为() A.60°B.50°C.40°D.30°(第2题) (第5题)(第6题)3.已知在Rt△ABC中,∠C为直角,∠B是∠A的2倍,则∠A的度数是() A.30°B.50°C.70°D.90°4.用反证法证明“一个三角形的三个内角分别是∠1,∠2,∠3,如果∠2+∠3<90°,那么∠1>90°.”时,应先假设()A.∠1≠90° B.∠1=90°C.∠1<90°D.∠1≤90°5.如图,已知AB⊥BD,CD⊥BD,若用“HL”判定Rt△ABD和Rt△CDB全等,则需要添加的条件是()A.AD=CB B.∠A=∠CC.BD=DC D.AB=CD6.某地兴建的幸福小区的三个出口A,B,C的位置如图所示,物业公司想在小区内修建一个电动车充电桩,以方便业主,要求到三个出口的距离都相等,则充电桩应该在△ABC()A.三条高线的交点处B.三条中线的交点处C.三个角的平分线的交点处D.三条边的垂直平分线的交点处7.如图,点B 在AC 上,AB =5,BC =3,△BCD 是等边三角形,则AD 的长为( )A .3B .4C .5D .7(第7题) (第9题)8.已知等腰三角形的两边长分别为x ,y ,且满足|2x -y +1|+(x +y -13)2=0,则该等腰三角形的周长为( ) A .22或26B .17C .17或22D .229.如图,在△ABC 中,∠A =90°,∠C =30°,∠ABC 的平分线与线段AC 相交于点D ,若AD =4,则CD 的长为( ) A .10B .8C .6D .410.如图,正方形ABCD 的边长为1,其面积为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为S 2,…,按此规律继续下去,则S 100的值为( )A.⎝ ⎛⎭⎪⎫2299B.⎝ ⎛⎭⎪⎫22100C.⎝ ⎛⎭⎪⎫1299 D.⎝ ⎛⎭⎪⎫12100 二、填空题(每题3分,共15分)11.命题“等腰三角形有两个角相等”的逆命题是______(填“真”或“假”)命题. 12.如图,BD 是等边三角形ABC 的角平分线,AB =10,则AD =______. 13.若△ABC 的三边长分别为a ,b ,c ,则下列条件中能判定△ABC 是直角三角形的有________个.①∠A =∠B -∠C ;②∠A ∶∠B ∶∠C =3∶4∶5;③a 2=(b +c )(b -c );④a ∶b ∶c =5∶12∶13.(第12题)(第14题)14.如图,S△ABC=21,∠BAC的平分线AD交BC于点D,点E为AD的中点.连=2,则AB AC 接BE,点F为BE上一点,且BF=2EF,连接DF.若S△DEF=________.15.如图,在平面直角坐标系中有点A(0,3)和B(4,0),点M(8,m)为坐标平面内一动点,且△ABM为等腰三角形,则点M的坐标为________________.三、解答题(一)(每题8分,共24分)16.用一条长为40 cm的细绳围成一个一边长为12 cm的等腰三角形,求这个三角形的三边长.17.如图,在△ABC中,AE=5,BE=13,AC=12,DE是BC的垂直平分线,求证:△ABC为直角三角形.318.如图,在△ABC中,∠C=90°.(1)作∠ABC的平分线交AC于点D(尺规作图,保留作图痕迹,标注有关字母,不用写作法和证明);(2)若CD=3,AB+BC=16,求△ABC的面积.四、解答题(二)(每题9分,共27分)19.在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于点D,CE⊥DE于点E.(1)如图①,若点B,C在DE的同侧,AD=CE,求证:AB⊥AC.(2)如图②,若点B,C在DE的两侧,AD=CE,AB与AC仍垂直吗?若垂直,请给出证明;若不垂直,请说明理由.520.如图,在△ABC中,AB=AC,∠BAC=40°,AD是BC边上的高.线段AC 的垂直平分线交AD于点E,交AC于点F,连接BE.(1)填空:∠BAD的度数为__________;∠ABC的度数为______;∠ACB的度数为________.(2)线段AE与BE的长相等吗?请说明理由;(3)求∠EBD的度数.21.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC,交AB于点E,交AC于点F.(1)求证:点E在OB的垂直平分线上;(2)过点O作OH⊥BC于点H,连接OA,当∠BAC=60°时,试探究OH与OA的数量关系,并说明理由.五、解答题(三)(每题12分,共24分)22.如图,在△ABC中,AC=BC,点F为AB的中点,连接CF.边AC的垂直平分线交AC,CF,CB于点D,O,E,连接OA,OB.(1)求证:△OBC为等腰三角形;(2)若∠ACF=23°,求∠BOE的度数;(3)若AB=10,CF=25,求线段OA的长.23.如图①,用两条线段(虚线),将一个顶角为36°的等腰三角形分成了三个小等腰三角形,并标出了三个小等腰三角形顶角的度数.(1)请你仿照图①的方法,在图②中,用两种不同的方法将顶角为45°的等腰三角形分成三个小等腰三角形;(2)在△ABC中,∠B=30°,请用线段AD和DE(点D在BC边上,点E在AC边上)将△ABC分成三个小等腰三角形,且AD=BD,DE=CE.试仿照图①,在备用图中画出示意图,并求出∠C的所有可能度数.7答案一、1.B 2.B 3.A 4.D 5.A 6.D 7.D 8.D 9.B10.C 点拨:由题意易得规律为S 1=12=1,S 2=12S 1=12,S 3=12S 2=14,S 4=12S 3=18,…,∴S n =⎝ ⎛⎭⎪⎫12 n -1,∴S 100=⎝ ⎛⎭⎪⎫12 99.故选C.二、11.真 12.5 13.3 14.4315.(8,3)或⎝ ⎛⎭⎪⎫8,192 点拨:由题意得OA =3,OB =4,∴AB =32+42=5.△ABM 为等腰三角形,可分三种情况:①当BM =AB 时,如图①,(8-4)2+m 2=5,∴m =3或m =-3(A ,B ,M 三点共线,舍去),∴M (8,3);②当AM =BM 时,如图②,82+(m -3)2=(8-4)2+m 2,∴m =192,∴M ⎝ ⎛⎭⎪⎫8,192;③当AM =AB 时,易知不符题意.故答案为(8,3)或⎝ ⎛⎭⎪⎫8,192.三、16.解:当12 cm 为等腰三角形的腰长时,则底边长为40-12×2=16(cm), 此时三角形的三边长分别为12 cm ,12 cm ,16 cm ;当12 cm 为等腰三角形的底边长时,则腰长为40-122=14(cm),此时三角形的三边长分别为14 cm ,14 cm ,12 cm.综上,这个三角形的三边长分别为12 cm ,12 cm ,16 cm 或14 cm ,14 cm ,12 cm.17.证明:如图,连接CE .∵DE 是BC 的垂直平分线,∴EC =BE =13.在△AEC 中,AE =5,EC =13,AC =12, ∵AC 2+AE 2=122+52=169,EC 2=132=169,9 ∴AC 2+AE 2=EC 2,∴△AEC 是直角三角形, ∠A =90°,∴△ABC 是直角三角形.18.解:(1)∠ABC 的平分线如图所示.(2)如图,作DH ⊥AB 于点H .∵BD 平分∠ABC ,DC ⊥BC ,DH ⊥AB ,∴CD =DH =3,∴△ABC 的面积=S △BCD +S ABD =12BC ·CD +12AB ·DH =12×3BC +12×3AB =12×3(BC +AB )=12×3×16=24.四、19.(1)证明:∵BD ⊥DE ,CE ⊥DE ,∴∠ADB =∠AEC =90°.在Rt △ABD 和Rt △CAE 中,∵AB =CA ,AD =CE , ∴Rt △ABD ≌Rt △CAE (HL),∴∠DBA =∠EAC . ∵∠DAB +∠DBA =90°,∴∠DAB +∠EAC =90°, ∴∠BAC =180°-(∠DAB +∠EAC )=180°-90°=90°, ∴AB ⊥AC .(2)解:AB 与AC 仍垂直.证明如下:同(1)可证得Rt △ABD ≌Rt △CAE ,∴∠DAB =∠ECA . ∵∠CAE +∠ECA =90°,∴∠CAE +∠BAD =90°,即∠BAC =90°,∴AB ⊥AC . 20.解:(1)20°;70°;70°(2)线段AE 与BE 的长相等,理由如下:如图,连接CE,∵AB=AC,AD是BC边上的高,∴BD=CD,∴BE=CE.∵EF是线段AC的垂直平分线,∴AE=CE,∴AE=BE.(3)∵AE=BE,∴∠ABE=∠BAD=20°,∴∠EBD=∠ABC-∠ABE=70°-20°=50°.21.(1)证明:∵BO平分∠ABC,∴∠CBO=∠ABO.∵EF∥BC,∴∠EOB=∠CBO,∴∠ABO=∠EOB,∴EB=EO,∴点E在OB的垂直平分线上.(2)解:OH=12OA.理由如下:过O点作OG⊥AE于点G,OQ⊥AC于点Q,如图,∵BO平分∠ABC,OH⊥BC,OG⊥AB,∴OH=OG.∵CO平分∠ACB,OH⊥BC,OQ⊥AC,∴OH=OQ,∴OG=OQ,∴AO平分∠BAC,∴∠GAO=12∠BAC=30°,∴OG=12OA,∴OH=12OA.五、22.(1)证明:∵AC=BC,点F为AB的中点,∴CF⊥AB,∴CF垂直平分AB,∴OA=OB.∵DE垂直平分AC,∴OA=OC,∴OB=OC,∴△OBC为等腰三角形.(2)解:∵CA=CB,CF⊥AB,∴CF平分∠ACB,∴∠BCF=∠ACF=23°.∵OB=OC,∴∠OBC=∠OCB=23°.∵∠EDC=90°,∴∠DEC=90°-∠DCE=90°-23°-23°=44°,∴∠BOE=44°-23°=21°.(3)解:由题意得CF⊥AB,AF=12AB=5.∵DE垂直平分AC,∴AO=CO,∴FO=25-AO.∵AO2=AF2+OF2,∴AO2=52+(25-AO)2,解得AO=13,∴线段OA的长为13.23.解:(1)如图①.(2)如图②,作△ABC.设∠C=x,当AD=AE时,∵AD=BD,∠B=30°,∴∠BAD=30°,∵DE=CE,∠C=x,∴∠EDC=x,∴∠AED=∠ADE=2x,∴2x+x=60°,∴x=20°;当AD=DE时,∵AD=BD,∠B=30°,∴∠BAD=30°,∵DE=CE,∠C=x,∴∠EDC=x,∴∠AED=∠DAE=2x,∴60°=180°-x-2x,∴x=40°,∴∠C的度数是20°或40°.11。

最新北师大版八年级数学下册单元测试题全套及答案

最新北师大版八年级数学下册单元测试题全套及答案

最新北师大版八年级数学下册单元测试题全套及答案第1章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,直线l 1∥l 2,以直线l 1上的点A 为圆心,适当长为半径画弧,分别交直线l 1,l 2于点B ,C ,连接AC ,BC.若∠ABC =67°,则∠1的度数为( B )A .23°B .46°C .67°D .78°2.如图,在△ABC 中,AB =AC ,D 为BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F.则下列结论错误的是( D )A .AD ⊥BCB .∠BAD =∠CADC .DE =DFD .BE =DE,第2题图) ,第3题图) ,第4题图)3.如图,在△ABC 中,∠C =90°,∠B =30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD =3,则BC 的长为( C )A .6B .6 3C .9D .3 34.如图,在△ABC 中,∠B =40°,∠BAC =75°,AB 的垂直平分线交BC 于点D ,垂足为E.则∠CAD 等于( B )A .30°B .35°C .40°D .50°5.如图,AC =BD ,则补充下列条件后仍不能判定△ABC ≌△BAD 的是( D ) A .AD =BC B .∠BAC =∠ABD C .∠C =∠D =90° D .∠ABC =∠BAD6.已知三角形三内角之间有∠A =12∠B =13∠C ,它的最长边为10,则此三角形的面积为( D )A .20B .10 3C .5 3 D.2532,第5题图) ,第7题图) ,第8题图) ,第10题图)7.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当∠B =90°时,如图①,测得AC =2,当∠B =60°时,如图②,AC 等于( A )A. 2 B .2 C. 6 D .2 28.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C.若P 是BC边上一动点,则DP 长的最小值为( C )A .2B .2 2C .4D .4 29.下列说法:①斜边和一条直角边分别相等的两个直角三角形全等;②两个锐角分别相等的两个直角三角形全等;③有一个角和底边分别相等的两个等腰三角形全等;④一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等.其中正确的有( B )A .1个B .2个C .3个D .4个10.如图,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一条直线上,连接BD ,BE.下列四个结论:①BD =CE ;②BD ⊥CE ;③∠ACE +∠DBC =45°;④BE 2=2(AD 2+AB 2).其中结论正确的个数是( C )A .1B .2C .3D .4二、填空题(每小题3分,共24分)11.如图,在△ABC 中,∠C =90°,∠A =30°,若AB =6 cm ,则BC =__3__cm .12.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,CD =4,则点D 到AB 的距离为__4__.,第11题图 第12题图 第13题图 第14题图)13.如图,已知点B ,C ,F ,E 在同一条直线上,∠1=∠2,BC =EF ,要使△ABC ≌△DEF ,还需添加一个条件,这个条件可以是__AC =DF (答案不唯一)__.(只需写出一个)14.如图,△ABC 的周长为22 cm ,AB 的垂直平分线交AC 于点E ,垂足为D ,若△BCE 的周长为14 cm ,则AB =__8__cm .15.如图,在等边△ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE =CD ,DM ⊥BC ,垂足为M.若AB =4 cm ,则DE =__23__cm .,第15题图) ,第16题图) ,第17题图)16.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边上的中点,E 是AB 边上一动点,则EC +ED 的最小值是__5__.17.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,坡角∠A =30°,∠B =90°,BC =6米.当正方形DEFH 运动到什么位置,即当AE =__143__米时,有DC 2=AE 2+BC 2.18.下列命题:①到三角形三边距离相等的点是这个三角形三条角平分线的交点;②三角形三边的垂直平分线的交点到这个三角形的三个顶点的距离相等;③一个锐角和一条边分别相等的两个直角三角形全等;④顶角和底边对应相等的两个等腰三角形全等.其中真命题是__①②④__(填序号)三、解答题(共66分)19.(8分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.解:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,又∵AB=DC,∠B=∠C,∴△ABF≌△DCE(SAS),∴∠A=∠D20.(8分)如图,在△ABC中,AB=AC,AB的垂直平分线交AC于点E,垂足为D.若△ABC的周长为20 cm,△BCE的周长为12 cm,求BC的长.解:∵DE垂直平分AB,∴AE=BE,∵△BCE的周长为12 cm,即BC+BE+CE=12,∴BC+AE +CE=12,即BC+AC=12,又∵△ABC的周长为20 cm,即AB+BC+AC=20,∴AB+12=20,则AB =8,∴AC=8,∴BC=20-AB-AC=20-8-8=4(cm)21.(8分)如图,锐角三角形ABC的两条高BE,CD相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.解:(1)∵OB=OC,∴∠OBC=∠OCB,∵BE,CD是两条高,∴∠BDC=∠CEB=90°,又∵BC =CB,∴△BDC≌△CEB(AAS),∴∠DBC=∠ECB,∴AB=AC,∴△ABC是等腰三角形(2)点O 在∠BAC 的平分线上.理由:如图,连接AO.∵△BDC ≌△CEB ,∴DC =EB ,∵OB =OC ,∴OD =OE ,∵∠BDC =∠CEB =90°,∴点O 在∠BAC 的平分线上(或通过证Rt △ADO ≌Rt △AEO (HL ),得出∠DAO =∠EAO 也可)22.(8分)如图,∠AOB =90°,OM 平分∠AOB ,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA ,OB 相交于点C ,D ,问PC 与PD 相等吗?试说明理由.解:PC =PD.理由:过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F ,∵OM 平分∠AOB ,点P 在OM 上,∴PE =PF ,又∵∠AOB =90°,∴∠EPF =90°,∴∠EPF =∠CPD ,∴∠EPC =∠FPD.又∵∠PEC =∠PFD =90°,∴△PCE ≌△PDF (ASA ),∴PC =PD23.(10分)如图,为了测出某塔CD 的高度,在塔前的平地上选择一点A ,用测角仪测得塔顶D 的仰角为30°,在A ,C 之间选择一点B(A ,B ,C 三点在同一直线上).用测角仪测得塔顶D 的仰角为75°,且AB 间的距离为40 m .(1)求点B 到AD 的距离;(2)求塔高CD.(结果用根号表示)解:(1)过点B 作BE ⊥AD ,垂足为E ,∴∠AEB =90°,又∵∠A =30°,∴BE =12AB =12×40=20 m(2)AE =AB 2-BE 2=203,∵∠A +∠ADB =∠DBC =75°,∴∠ADB =75°-∠A =45°,∵BE ⊥AD ,∴∠BED =90°,∴∠DBE =∠ADB =45°,∴DE =BE =20,∴AD =AE +DE =203+20,∵CD ⊥AC ,∴∠C =90°,又∵∠A =30°,∴CD =12AD =12(203+20)=(103+10) m24.(12分)在△ABC 中,∠B =22.5°,边AB 的垂直平分线DP 交AB 于点P ,交BC 于点D ,且AE ⊥BC 于点E ,DF ⊥AC 于点F ,DF 与AE 交于点G ,求证:EG =EC.解:如图所示:连接AD ,∵∠B =22.5°,且DP 为AB 的垂直平分线,∴DB =DA ,∴∠B =∠BAD ,∴∠ADE =2∠B =45°,在Rt △ADE 中,∠ADE =45°,∴∠DAE =45°,∴AE =DE ,∵AE ⊥DE ,∴∠1+∠2=90°,∵DF ⊥AC ,∴∠2+∠C =90°,∴∠1=∠C.在△DEG 和△AEC 中,⎩⎨⎧∠1=∠C ,∠DEG =∠AEC =90°,DE =AE ,∴△DEG ≌△AEC (AAS ),∴EG =EC25.(12分)如图,已知△ABC 是边长为6 cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 方向匀速运动,其中点P 运动的速度是1 cm /s ,点Q 运动的速度是2 cm /s ,当点Q 到达点C 时,P ,Q 两点都停止运动,设运动时间为t s ,解答下列问题:(1)当点Q 到达点C 时,PQ 与AB 的位置关系如何?请说明理由;(2)在点P 与点Q 的运动过程中,△BPQ 是否能成为等边三角形?若能,请求出t 的值;若不能,请说明理由.解:(1)当点Q 到达点C 时,PQ 与AB 垂直,即△BPQ 为直角三角形.理由:∵AB =AC =BC =6 cm ,∴当点Q 到达点C 时,AP =3 cm ,∴点P 为AB 的中点.∴QP ⊥BA (等腰三角形三线合一的性质) (2)假设在点P 与点Q 的运动过程中,△BPQ 能成为等边三角形,则有BP =BQ ,∴6-t =2t ,解得t =2,又∠B =60°,∴当t =2时,△BPQ 是等边三角形第2章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.据中央气象台报道,某日上海最高气温是22 ℃,最低气温是11 ℃,则当天上海气温t (℃)的变化范围是( D )A .t >22B .t ≤22C .11<t <22D .11≤t ≤222.(2016·新疆)不等式组⎩⎪⎨⎪⎧3x <2x +4,x -1≥2的解集是( C )A .>4B .x ≤3C .3≤x <4D .无解3.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( A ) A .3<x <5 B .-3<x <5 C .-5<x <3 D .-5<x <-34.如图a ,b ,c 分别表示苹果、梨、桃子的质量,同类水果质量相等,则下列关系正确的是( C )A .a >c >bB .b >a >cC .a >b >cD .c >a >b5.如果点P(3-m ,1)在第二象限,那么关于x 的不等式(2-m)x +2>m 的解集是( B ) A .x >-1 B .x <-1 C .x >1 D .x <16.如图是一次函数y =kx +b 的图象,当y <2时,x 的取值范围是( C ) A .x <1 B .x >1 C .x <3 D .x >37.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,则实数a 的取值范围是( D )A .a ≥-1B .a <-1C .a ≤1D .a ≤-18.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥b ,2x -a <2b +1的解集为3≤x <5,则a ,b 的值为( A )A .a =-3,b =6B .a =6,b =-3C .a =1,b =2D .a =0,b =39.如图,函数y =2x 和y =ax +4的图象相交于点A(m ,3),则不等式2x <ax +4的解集为( A )A .x <32 B .x <3C .x >32D .x >310.某镇有甲,乙两家液化气站,它们每罐液化气的价格,质地和重量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年需购买8罐液化气,则购买液化气最省钱的方法是( B )A .买甲站的B .买乙站的C .买两站的都一样D .先买甲站的1罐,以后买乙站的 二、填空题(每小题3分,共24分)11.(2016·绍兴)不等式3x +134>x3+2的解是__x >-3__.12.(2016·巴中)不等式组⎩⎪⎨⎪⎧3x -1<x +1,2(2x -1)≤5x +1的最大整数解为__0__.13.如果关于x 的不等式组⎩⎪⎨⎪⎧x >m -1,x >m +2的解集是x >-1,那么m =__-3__.14.要使关于x 的方程5x -2m =3x -6m +1的解在-3与4之间,m 的取值范围是__-74<m <74__.15.如图,函数y =ax -1的图象经过点(1,2),则不等式ax -1>2的解集是__x >1__.,第15题图),第16题图)16.已知不等式组⎩⎪⎨⎪⎧x +2a ≥1,2x -b <3的解集如图所示,则a -b 的值为__0__.17.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =3k -1,x +2y =-2的解满足x +y >1,则k 的取值范围是__k >2__.18.商店购进一批文具盒,进价每个4元,零售价每个6元,为促进销售,决定打折销售,但利润率仍不低于20%,那么该文具盒实际价格最多可打__8__折销售.三、解答题(共66分)19.(10分)解下列不等式组,并把解集在数轴上表示出来:(1)⎩⎪⎨⎪⎧2(x +1)≤x +3,x -4<3x ; (2)⎩⎪⎨⎪⎧2x >3x -2,①2x -13≥12x -23.② 解:-2<x ≤1 数轴表示略 解:-2≤x <2 数轴表示略20.(7分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧5x +2y =11a +18,2x -3y =12a -8的解满足x >0,y >0,求实数a 的取值范围.解:解方程组得⎩⎨⎧x =3a +2,y =4-2a ,∵x >0,y >0,∴⎩⎨⎧3a +2>0,4-2a >0,解得-23<a <221.(8分)解不等式组⎩⎪⎨⎪⎧3(x -2)≥x -4,①2x +13>x -1,②并写出它所有的整数解.解:解不等式①得x ≥1,解不等式②得x <4,∴原不等式的解集是1≤x <4,∴原不等式组的整数解是x =1,2,322.(8分)若关于x 的不等式组⎩⎪⎨⎪⎧x 2+x +13>0,3x +5a +4>4(x +1)+3a 恰有三个整数解,求实数a 的取值范围. 解:解不等式x 2+x +13>0得x >-25,解不等式3x +5a +4>4(x +1)+3a 得x <2a ,∵不等式组恰有三个整数解,∴2<2a ≤3,∴1<a ≤3223.(9分)如图,一次函数y 1=kx -2和y 2=-3x +b 的图象相交于点A(2,-1).(1)求k ,b 的值;(2)利用图象求当x 取何值时,y 1≥y 2?(3)利用图象求当x 取何值时,y 1>0且y 2<0?解:(1)将A 点坐标代入y 1=kx -2,得2k -2=-1,即k =12;将A 点坐标代入y 2=-3x +b 得-6+b=-1,即b =5 (2)从图象可以看出当x ≥2时,y 1≥y 2 (3)直线y 1=12x -2与x 轴的交点为(4,0),直线y 2=-3x +5与x 轴的交点为(53,0),从图象可以看出当x >4时,y 1>0;当x >53时,y 2<0,∴当x >4时,y 1>0且y 2<024.(12分)甲,乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x 元,其中x >100.(1)根据题意,填写下表(物购计累 费花际实 130 290 … x 在甲商场127…在乙商场 126 …(2)当x 取何值时,(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?解:(1)271 100+(x -100)×90% 278 50+(x -50)×95% (2)根据题意得100+(x -100)×90%=50+(x -50)×95%,解得x =150.即当x =150时,小红在甲、乙两商场的实际花费相同 (3)由100+(x -100)×90%<50+(x -50)×95%,解得x >150;由100+(x -100)×90%>50+(x -50)×95%,解得x <150.∴当小红累计购物超过150元时,选择甲商场实际花费少,当小红累计购物超过100元而不到150元时,选择乙商场实际花费少25.(12分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲,乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件,则运输部门安排甲,乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:(1)设饮用水有x 件,则蔬菜有(x -80)件,由题意得x +(x -80)=320,解得x =200,∴x -80=120.则饮用水和蔬菜分别为200件和120件 (2)设租用甲种货车m 辆,则租用乙种货车(8-m )辆,由题意得⎩⎨⎧40m +20(8-m )≥200,10m +20(8-m )≥120,解得2≤m ≤4.∵m 为正整数,∴m =2或3或4.故安排甲、乙两种货车时有3种方案,设计方案分别为①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆 (3)3种方案的运费分别为①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.则运输部门应安排甲车2辆,乙车6辆,可使运费最少,最少运费是2960元第3章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分) 1.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到点B ,则点B 的坐标是( B ) A .(-5,3) B .(1,3) C .(1,-3) D .(-5,-1)2.如图,下列四个图形中,△ABC 经过旋转之后不能得到△A ′B ′C ′的是( D )3.(2016·青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是( B )4.如图,△OAB 绕点O 逆时针旋转80°得到△OCD ,若∠A =110°,∠D =40°,则∠α的度数是( C )A .30°B .40°C .50°D .60°5.一个图形无论经过平移还是旋转,下列说法:①对应线段相等;②对应线段平行;③对应角相等;④图形的形状和大小都没有发生变化.其中正确的有( C )A.①②③B.①②④C.①③④D.②③④6.(2016·枣庄)已知点P(a+1,-a2+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )7.如图,将△ABC沿射线BC向右平移到△DCE的位置,连接AD,则下列结论:①AB∥CD;②AC=DE;③AD=BC;④∠B=∠ADC;⑤△ACD≌△EDC.其中正确的结论有( A )A.5个B.4个C.3个D.2个,第7题图),第8题图),第9题图),第10题图)8.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2.△A′B′C可以由△ABC绕点C 顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A,B′,A′在同一条直线上,则AA′的长为( A )A.6 B.4 3 C.3 3 D.39.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′是点B的对应点,点C′是点C的对应点),连接CC′,则∠CC′B′的度数是( D ) A.45°B.30°C.25°D.15°10.将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为( C )A.(1,1) B.(2,2) C.(-1,1) D.(-2,2)二、填空题(每小题3分,共24分)11.如图,点D是等边三角形ABC内的一点,如果△ABD绕点A逆时针旋转后能与△ACE重合,那么旋转了__60__度.12.如图,△A′B′C′是由△ABC沿BC方向平移得到的,若BC=5 cm,AC=4.5 cm,B′C=2 cm,那么A′C′=__4.5__cm,A,A′两点之间的距离为__3__cm.,第11题图),第12题图),第14题图),第15题图)13.在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-2,3),B(-4,-1),C(2,0),将△ABC平移至△A1B1C1的位置,点A,B,C,的对应点分别是A1,B1,C1,若点A1的坐标为(3,1),则点C1的坐标为__(7,-2)__.14.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为__2α__.15.如图,在△ABC中,∠BAC=115°,∠ACB=25°,把△ABC以AC为对称轴作对称变换得△ADC,又把△ABC绕点B逆时针旋转55°得△FBE,则∠α的度数为__145°__.16.如图,等腰直角三角形ABC的直角边AB的长为6 cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,则图中阴影部分的面积等于__63__cm2.,第16题图),第17题图),第18题图)17.如图是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的阴影部分构成一个中心对称图形,则这个白色小正形内的数字是__3__.18.如图,在△ABC中,∠ACB=90°,∠BAC=30°,将△ABC绕点C按逆时针方向旋转α(0°<α<90°)后得到△DEC,设CD交AB于点F,连接AD,当旋转角α的度数为__40°或20°__时,△ADF是等腰三角形.三、解答题(共66分)19.(7分)如图,将△ABC沿直线AB向右平移后到达△BDE的位置.(1)若AC=6 cm,则BE=__6__cm;(2)若∠CAB=50°,∠BDE=100°,求∠CBE的度数.解:根据平移的性质得AC∥BE,∠ABC=∠BDE=100°,∴∠C=180°-∠CAB-∠ABC=180°-50°-100°=30°,由AC∥BE得∠CBE=∠C=30°20.(7分)如图,边长为4的正方形ABCD绕点D旋转30°后能与四边形A′B′C′D重合.(1)旋转中心是哪一点?(2)四边形A ′B ′C ′D 是什么图形?面积是多少?(3)求∠C ′DC 和∠CDA ′的度数;(4)连接AA ′,求∠DAA ′的度数.解:(1)点D (2)四边形A ′B ′C ′D ′是正方形,面积为4×4=16 (3)由题意得∠C ′DC =30°,∠CDA ′=90°-∠C ′DC =60° (4)∵AD =A ′D ,∠ADA ′=30°,∴∠DAA ′=(180°-30°)×12=75°21.(8分)(1)在平面直角坐标系中找出点A(-3,4),B(-4,1),C(-1,1),D(-2,3)并将它们依 次连接;(2)将(1)中所画图形先向右平移4个单位,再向下平移3个单位,画出第二次平移后的图形;(3)如何将(1)中所画图形经过一次平移得到(2)中所画图形?平移前后对应点的横坐标有什么关系?纵坐标呢?解:(1)画图略 (2)画图略 (3)将A 点与它的对应点A ′连接起来,则AA ′=32+42=5,∴将(1)中所画图形沿A 到A ′的方向平移5个单位长度得到(2)中所画图形.四边形A ′B ′C ′D ′与四边形ABCD 相比,对应点的横坐标分别增加了4,纵坐标分别减少了322.(10分)(2016·巴中)如图,方格中,每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图.(1)画出将△ABC 向右平移2个单位得到的△A 1B 1C 1;(2)画出将△ABC 绕点O 顺时针方向旋转90°得到的△A 2B 2C 2;(3)画出△ABC 关于原点对称的△A 3B 3C 3.解:图略23.(10分)如图,在△ABC中,∠BAC=120°,以BC为边向图形外作等边△BCD,把△ABD绕点D按顺时针方向旋转60°到△ECD的位置,若AB=3,AC=2.(1)求∠BAD的度数;(2)求AD的长.解:(1)因为△DCE是由△DBA旋转后得到的,∴DE=DA,∵∠BDC=60°,∴∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=60°,∠BAD=∠BAC-∠DAE=120°-60°=60°(2)AD=AE =AC+CE=AC+AB=2+3=524.(12分)如图,在平面直角坐标系xOy中,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5,∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中△OMN的边NM重合;(3)求OE的长.解:(1)△OMN如图所示(2)△A′B′C′如图所示(3)设OE=x,则ON=x,作MF⊥A′B′于点F,由作图可知B′C′平分∠A′B′O,且C′O⊥OB ′,∴B ′F =B ′O =OE =x ,FC ′=OC ′=OD =3.∵A ′C ′=AC =5,∴A ′F =52-32=4,∴A ′B ′=x +4,A ′O =5+3=8.在Rt △A ′B ′O 中,x 2+82=(4+x )2,解得x =6,即OE =625.(12分)如图,小明将一张长方形纸片沿对角线剪开,得到两张三角形纸片(如图②),量得它们的斜边长为10 cm ,较小的锐角为30°,再将这两张三角形纸片摆成如图③的形状,且点B ,C ,F ,D 在同一条直线上,且点C 与点F 重合(在图③至图⑥中统一用F 表示).小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮忙解决:(1)将图③中的△ABF 沿BD 向右平移到图④的位置,使点B 与点F 重合,请你求出平移的距离;(2)将图③中的△ABF 绕点F 顺时针方向旋转30°到图⑤的位置,A 1F 交DE 于点G ,请你求出线段FG 的长度;(3)将图③中的△ABF 沿直线AF 翻折到图⑥的位置,AB 1交DE 于点H ,请证明:AH =DH.解:(1)图形平移的距离就是线段BC 的长,∵在Rt △ABC 中,斜边长为10 cm ,∠BAC =30°,∴BC =5 cm.∴平移的距离为5 cm (2)∵∠A 1FA =30°,∴∠GFD =60°,又∵∠D =30°,∴∠FGD =90°.在Rt △DFG 中,由勾股定理得FD =5 3 cm ,∴FG =12FD =532cm (3)在△AHE 与△DHB 1中,∵∠FAB 1=∠EDF =30°,FD =FA ,EF =FB =FB 1,∴FD -FB 1=FA -FE ,即AE =DB 1.又∵∠AHE =∠DHB 1.∴△AHE ≌△DHB 1(AAS ).∴AH =DH期中检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2016·哈尔滨)下列图形中既是轴对称图形又是中心对称图形的是( D )2.若a >b ,则下列不等式变形错误的是( D )A .a +3>b +3 B.a 3>b 3C .2a -3>2b -3D .3-2a >3-2b3.(2016·临沂)不等式组⎩⎪⎨⎪⎧3x <2x +4,3-x 3≥2的解集,在数轴上表示正确的是( A )4.在平面直角坐标系中,将点A(x ,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A 的坐标是( D )A .(2,5)B .(-8,5)C .(-8,-1)D .(2,-1)5.如图,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′等于( A )A .30°B .35°C .40°D .50°,第5题图) ,第6题图) ,第7题图),第8题图)6.在△ABC 中,∠C =90°,AD 平分∠BAC ,DE 垂直平分AB ,垂足为E.若CD =2,则BD 的长为( C )A .2B .3C .4D .57.如图,AD ⊥CD ,AE ⊥BE ,垂足分别为D ,E ,且AB =AC ,AD =AE.则下列结论:①△ABE ≌△ACD ;②AM =AN ;③△ABN ≌△ACM ;④BO =EO.其中正确的有( B )A .4个B .3个C .2个D .1个8.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC =5 cm ,△ADC 的周长为17 cm ,则BC 的长为( C )A .7 cmB .10 cmC .12 cmD .22 cm9.如图,已知MN 是△ABC 的边AB 的垂直平分线,垂足为点F ,∠CAB 的平分线AD 交BC 于点D ,且MN 与AD 交于点O ,连接BO 并延长交AC 于点E ,则下列结论中不一定成立的是( B ) A .∠CAD =∠BAD B .OE =OF C .AF =BF D .OA =OB,第9题图) ,第10题图)10.如图,将边为3的正方形ABCD 绕点A 沿逆时针方向旋转30°后得到正方形AEFH ,则图中阴影部分的面积为( B ) A.32- 3 B .3- 3 C .2- 3 D .2-32 二、填空题(每小题3分,共24分)11.如图,已知∠B =∠C ,添加一个条件使△ABD ≌△ACE(不标注新的字母,不添加辅助线).则添加的条件是__AB =AC (答案不唯一)__.12.如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,若AB =10 cm ,BC =8 cm ,BD =5 cm ,则△ABD 的面积为__15_cm 2__.,第11题图) ,第12题图) ,第13题图),第14题图)13.如图,在等边△ABC 中,AB =6,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE ,那么线段DE 的长度为__33__.14.如图,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a +b =__2__.15.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2有解,则a 的取值范围__a >-1__. 16.如图,OA ⊥OB ,△CDE 的边CD 在OB 上,∠ECD =45°,CE =4,若将△CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则OC 的长度为__2__.,第16题图) ,第17题图),第18题图)17.如图,点E 是正方形ABCD 内的一点,连接AE ,BE ,CE ,将△ABE 绕点B 顺时针旋转90°到△CBE ′的位置.若AE =1,BE =2,CE =3,则∠BE ′C =__135__°.18.如图,在△ABC 中,∠ACB =90°,AC =BC ,O 是AB 的中点,点D 在AC 上,点E 在BC 上,且∠DOE =90°.则下列结论:①OA =OB =OC ;②CD =BE ;③△ODE 是等腰直角三角形;④四边形CDOE 的面积等于△ABC 的面积的一半;⑤AD 2+BE 2=2OD 2;⑥CD +CE =2OA.其中正确的有__①②③④⑤⑥__(填序号)三、解答题(共66分)19.(8分)如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB 于点E.(1)求证:△ACD ≌△AED ;(2)若∠B =30°,CD =1,求BD 的长.解:(1)∵AD 平分∠CAB ,∴∠CAD =∠EAD ,∵∠C =90°,DE ⊥AB ,∴∠C =∠DEA =90°,又∵AD =AD ,∴△ACD ≌△AED (AAS ) (2)∵DE ⊥AB ,∴∠DEB =90°,又∵由(1)得△ACD ≌△AED ,∴DE =CD =1,在Rt △BDE 中,∵∠B =30°,∴BD =2DE =220.(8分)解不等式组⎩⎪⎨⎪⎧3(x -1)<5x +1,x -12≥2x -4,并指出它的所有非负整数解. 解:解不等式组得-2<x ≤73,∴不等式组的非负整数解是0,1,221.(8分)如图,△ABO 与△CDO 关于O 点中心对称,点E ,F 在线段AC 上,且AF =CE.求证:FD =BE.解:根据中心对称的性质可得BO =DO ,AO =CO ,又∵AF =CE ,∴AO -AF =CO -CE ,即OF =OE.在△ODF 和△OBE 中,DO =BO ,∠DOF =∠BOE (对顶角相等),OF =OE ,∴△ODF ≌△OBE (SAS ),∴FD =BE22.(8分)如图,OA ⊥OB ,OA =45海里,OB =15海里,我国某岛位于O 点,我国渔政船在点B 处发现有一艘不明国籍的渔船,自A 点出发沿着AO 方向匀速驶向该岛所在地O 点,我国渔政船立即从B 处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国渔政船行驶的航程BC.解:(1)如答图,连接AB,作AB的垂直平分线与OA交于点C.点C即为所求(2)连接BC,设BC=x海里,则CA=x海里,OC=(45-x)海里,在Rt△OBC中,BO2+OC2=BC2,即152+(45-x)2=x2,解得x=25.则我国渔政船行驶的航程BC为25海里23.(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-4,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标.解:(1)图略(2)(2,-1)24.(12分)已知△ABC是等边三角形,将一块含有30°角的直角三角板DEF如图放置,让三角板在BC所在的直线上向右平移.如图①,当点E与点B重合时,点A恰好落在三角形的斜边DF上.(1)利用图①证明:EF=2BC;(2)在三角板的平移过程中,在图②中线段EB =AH 是否始终成立(假定AB ,AC 与三角板斜边的交点为G ,H)?如果成立,请证明;如果不成立,请说明理由.解:(1)∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC.∵∠F =30°,∴∠CAF =60°-30°=30°,∴∠CAF =∠F ,∴CF =AC.∴CF =AC =BC ,∴EF =2BC (2)成立.∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC ,∵∠F =30°,∴∠CHF =60°-30°=30°.∴∠CHF =∠F .∴CH =CF .∵EF =2BC ,∴EB +CF =BC.又∵AH +CH =AC ,AC =BC ,∴EB =AH25.(12分)某文具商店销售功能相同的A ,B 两种品牌的计算器,购买2个A 品牌和3个B 品牌的计算器共需156元;购买3个A 品牌和1个B 品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A 品牌计算器按原价的八折销售,B 品牌计算器5个以上超出部分按原价的七折销售.设购买x 个A 品牌的计算器需要y 1元,购买x 个B 品牌的计算器需要y 2元,分别求出y 1,y 2关于x 的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.解:(1)设A 品牌计算器的单价为x 元,B 品牌计算器的单价为y 元,根据题意得⎩⎨⎧2x +3y =156,3x +y =122, 解得⎩⎨⎧x =30,y =32 (2)根据题意得y 1=0.8×30x ,即y 1=24x.当0≤x ≤5时,y 2=32x ;当x >5时,y 2=32×5+32(x -5)×0.7,即y 2=22.4x +48 (3)当购买数量超过5个时,y 2=22.4x +48.①当y 1<y 2时,24x <22.4x +48,解得x <30,即当购买数量超过5个而小于30个时,购买A 品牌的计算器更合算;②当y 1=y 2时,24x =22.4x +48,解得x =30,即当购买数量为30个时,购买A 品牌和B 品牌的计算器花费相同;③当y 1>y 2时,24x >22.4x +48,解得x >30,即当购买数量超过30个时,购买B 品牌的计算器更合算第4章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列从左边到右边的变形,属于因式分解的是( C )A .(3-x )(3+x )=9-x 2B .(y +1)(y -3)=-(3-y )(y +1)C .m 4-n 4=(m 2+n 2)(m +n )(m -n )D .4yz -2y 2z +z =2y (2z -yz )+z2.多项式mx 2-m 与多项式x 2-2x +1的公因式是( A )A .x -1B .x +1C .x 2-1D .(x -1)2 3.下列各式中,能用公式法分解因式的有( B )①-x 2-y 2;②-14a 2b 2+1;③a 2+ab +b 2;④-x 2+2xy -y 2;⑤14-mn +m 2n 2.A .2个B .3个C .4个D .5个4.把代数式3x 3-12x 2+12x 分解因式,结果正确的是( D ) A .3x (x 2-4x +4) B .3x (x -4)2 C .3x (x +2)(x -2) D .3x (x -2)25.一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是( B ) A .4x 2-4x +1=(2x -1)2 B .x 3-x =x (x 2-1) C .x 2y -xy 2=xy (x -y ) D .x 2-y 2=(x +y )(x -y ) 6.若a 2-b 2=14,a -b =12,则a +b 的值为( B )A .-12 B.12C .1D .27.已知多项式2x 2+bx +c 因式分解后为2(x -3)(x +1),则b ,c 的值为( D )A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-6 8.计算(-2)99+(-2)100的结果为( A ) A .299 B .2100 C .-299 D .-29.若多项式x 2-2(k -1)x +4是一个完全平方式,则k 的值为( D ) A .3 B .-1 C .3或0 D .3或-110.若三角形的三边长分别是a ,b ,c ,且满足a 2b -a 2c +b 2c -b 3=0,则这个三角形是( A ) A .等腰三角形 B .直角三角形C .等边三角形D .三角形的形状不确定 二、填空题(每小题3分,共24分)11.分解因式:4+12(x -y)+9(x -y)2=__(2+3x -3y )2__.12.若2a -b +1=0,则8a 2-8ab +2b 2的值为__2__.13.已知实数x ,y 满足x 2+4x +y 2-6y +13=0,则x +y 的值为__1__. 14.多项式2ax 2-8a 与多项式2x 2-8x +8的公因式为__2(x -2)__.15.若多项式(3x +2)(2x -5)+(5-2x)(2x -1)可分解为(2x +m)(x +n),其中m ,n 均为整数,则mn 的值为__-15__.16.已知长方形的面积为6m 2+60m +150(m >0),长与宽的比为3∶2,则这个长方形的周长为__10m +50__.17.已知代数式a 2+2a +2,当a =__-1__时,它有最小值,最小值为__1__.18.从边长为a 的正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形,如图甲,然后拼成一个平行四边形,如图乙,那么通过计算两个图形阴影部分的面积,可以验证成立的为__a 2-b 2=(a +b )(a -b )__.三、解答题(共66分)19.(12分)将下列各式分解因式:(1)2x 2y -8xy +8y; (2)a 2(x -y)-9b 2(x -y); 解:2y (x -2)2 解:(x -y )(a +3b )(a -3b )(3)9(m +2n )2-4(m -2n )2; (4)(y 2-1)2+6(1-y 2)+9. 解:(5m +2n )(m +10n ) 解:(y +2)2(y -2)220.(10分)先分解因式,再求值:(1)已知x -y =-23,求(x 2+y 2)2-4xy(x 2+y 2)+4x 2y 2的值;解:原式=(x -y )4,当x -y =-23时,原式=1681(2)已知x +y =1,xy =-12,求x (x +y )(x -y )-x (x +y )2的值.解:原式=-2xy (x +y ),当x +y =1,xy =-,原式=-2×(-12)×1=121.(6分)下列三个多项式:12x 3+2x 2-x ,12x 3+4x 2+x ,12x 3-2x 2,请选择你喜欢的两个多项式进行加法运算,再将结果因式分解.解:12x 3+2x 2-x +12x 3+4x 2+x =x 3+6x 2=x 2(x +6)(答案不唯一)22.(8分)甲,乙两同学分解因式x 2+mx +n ,甲看错了n ,分解结果为(x +2)(x +4);乙看错了m ,分解结果为(x +1)(x +9),请分析一下m ,n 的值及正确的分解过程.解:∵(x +2)(x +4)=x 2+6x +8,甲看错了n 的值,∴m =6,又∵(x +1)(x +9)=x 2+10x +9,乙看错了m 的值,∴n =9,∴原式为x 2+6x +9=(x +3)223.(8分)阅读下列解题过程:已知a,b,c为三角形的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4, (A)∴c2(a2-b2)=(a2+b2)(a2-b2), (B)则c2=a2+b2, (C)∴△ABC为直角三角形. (D)(1)上述解题过程中,从哪一步开始出现错误?请写出该步的代号__C__;(2)错误的原因__忽略了a2-b2=0,即a=b的可能__;(3)请写出正确的解答过程.解:∵a2c2-b2c2=a4b4,∴c2(a2-b2)=(a2+b2)(a2-b2),即c2(a2-b2)-(a2+b2)(a2-b2)=0,∴(a2-b2)(c2-a2-b2)=0,∴a2-b2=0或c2-a2-b2=0,即a=b或c2=a2+b2,∴△ABC为等腰三角形或直角三角形24.(10分)有足够多的长方形和正方形的卡片,如图①(1)如果选取1号,2号,3号卡片分别为1张,2张,3张(如图②),可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系将多项式a2+3ab+2b2分解因式;(2)小明想用类似的方法将多项式2a2+7ab+3b2分解因式,那么需要1号卡片__2__张,2号卡片__3__张,3号卡片__7__张.试画出草图,写出将多项式2a2+7ab+3b2分解因式的结果.解:(1)画图略.a2+3ab+2b2=(a+b)(a+2b)(2)2,3,7.画图略.2a2+7ab+3b2=(2a+b)(a+3b)25.(12分)阅读下列计算过程:多项式x2-11x+24分解因式,可以采取以下两种方法:①将-11x拆成两项,即-6x-5x;将24拆成两项,即9+15,则:x2-11x+24=x2-6x+9-5x+15=(x2-6x+9)-5(x-3)=(x-3)2-5(x-3)=(x-3)(x-3-5)=(x-3)(x-8);②添加一个数(112)2,再减去这个数(112)2,则:x 2-11x +24=x 2-11x +(112)2-(112)2+24=[x 2-11x +(112)2]-254=(x -112)2-(52)2=(x -112+52)(x -112-52)=(x -3)(x -8). (1)根据上面的启发,请任选一种方法将多项式x 2+4x -12分解因式;(2)已知A =a +10,B =a 2-a +7,其中a >3,指出A 与B 哪个大,并说明理由.解:(1)x 2+4x -12=x 2+4x +4-16=(x +2)2-16=(x +6)(x -2) (2)B >A.理由:B -A =a 2-a +7-a -10=a 2-2a +1-4=(a -3)(a +1),∵a >3,∴a -3>0,a +1>0,∴B -A >0,即B >A第5章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.在式子1a ,2xy π,3ab 2c 4,56+x ,x 7+y 8,9x +10y ,x 2x 中,分式的个数是( B )A .5B .4C .3D .22.若分式x 2-1x +1的值为零,则x 的值为( B )A .0B .1C .-1D .±1 3.在下列分式中,最简分式是( B ) A.x +1x 2-1 B.x +2x 2+1 C.y 2y 2 D.63y +34.下列各式从左到右的变形中正确的是( A ) A.x -12y12xy =2x -y xy B.0.2a +b a +2b =2a +b a +2b C .-x +1x -y =x -1x -y D.a +b a -b =a -b a +b5.计算a b +b a -a 2-b 2ab 的结果是( B )A.2a bB.2ba C.-2ab D.-2b a6.分式方程2x -2+3x 2-x =1的解为( A )A .1B .2 C.13D .0。

24-25八年级数学第一次月考卷(辽宁专用)(考试版A4)【测试范围:勾股定理、实数】(北师大版)

24-25八年级数学第一次月考卷(辽宁专用)(考试版A4)【测试范围:勾股定理、实数】(北师大版)

2024-2025学年八年级数学上学期第一次月考卷(辽宁专用)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:丰富的图形世界、有理数及其运算5.难度系数:0.65。

第Ⅰ卷一.选择题(共10小题,满分30分,每小题3分)1.下列各式中,二次根式是()A B C D 2.下列各组数中,勾股数是()A .13,14,15B .1,1C .0.3,0.4,0.5D .8,15,17310.2121121112...,(每两个2之间依次多一个1),0.3g 中,无理数有( )A .2个B .3个C .4个D .5个4.如图,公园园内池塘边A 、B 两点,在池塘边选定一点C ,构成一个三角形ABC ,使90ABC Ð=°,若测得AC 长26m ,BC 长24m ,则A 、B 两点之间的距离为()A .10mB .8mC .5mD .12m5.下列运算正确的是()A 5=±B .1-=9=D =6式的有( )个A .1B .2C .3D .47.如图,已知直角三角形ABC 的三边长分别为a 、b 、c (其中c 为斜边),分别以直角三角形的三边为直径,向外作半圆,已知132,5S S ==,那么2S =( )A .B .3C .4D .58.把-A .B .C .D 9.已知Rt ABC V 的两条直角边分别为6,8,现将Rt ABC V 按如图所示的方式折叠,使点A 与点B 重合,则BE 的长为()A .252B .152C .254D .15410.定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.例如:如图①,在四边形ABCD 中,90A ABC Ð=Ð=°且DC BC =,那么四边形ABCD 就是邻等四边形.问题解决:如图②,在65´的方格纸中,A ,B ,C 三点均在格点上,若四边形ABCD 是邻等四边形(点D 在格点上),则所有符合条件的点D 共有()个.A .2B .3C .4D .5第Ⅱ卷二.填空题(共5小题,满分15分,每小题3分)11a 的值为__________.12.如图,数轴上的点P 表示的数为无理数,该数可以为__________.13.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA 静止的时候,踏板离地高一尺(1AC =尺),将它往前推进两步(10EB =尺),此时踏板升高离地五尺(5BD =尺),则秋千绳索(OA 或OB )的长度为__________尺.14.有一个数值转换机,原理如下:当输入的16x =时,输出的y =__________.三、解答题(本大题共8个小题,第16、17、18、19题每题8分,第20题9分,第21题10分,第22、23题每题12分,共75分)16.计算:17.如图,小区A 与公路l 的距离200AC =米,小区B 与公路l 的距离400BD =米,已知800CD =米.(1)政府准备在公路边建造一座公交站台Q ,使Q 到A 、B 两小区的路程相等,求CQ 的长;(2)现要在公路旁建造一利民超市P ,使P 到A 、B 两小区的路程之和最短,求PA PB +的最小值,求出此最小值.18.如图,在一条东西走向的河流的一侧有一村庄C ,河边原有两个取水点A ,B ,其中AB AC =,由于某种原因,由C 到A 的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H (A 、H 、B 在同一条直线上),并新修一条路CH ,测得5km CB =,4km CH =,3km HB =.(1)CH 是不是从村庄C 到河边的最近的路,请通过计算加以说明;(2)求新路CH 比原路少多少千米.19.如图,观察图形,认真分析,其中1S 表示12Rt A A O △的面积,2S 表示23Rt A A O △的面积,…,以此类推.22212OA =+=,1S =22313OA =+=,2S22414OA =+=,3S ….根据以上规律,解答下列问题:(1)填空:26OA =______,6S =______;(2)求2222123100S S S S +++×××+的值.21.我们在学习有理数时,可以根据有理数在数轴上的位置关系比较有理数的大小,某数学兴趣小组发现可以用相同的方法比较无理数的大小,请根据他们的探究过程,完成下列问题.(1)1在数轴上的位置;(2)11;(3)若a b (a b .22.【知识链接】(1)有理化因式:两个含有根式的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相1的有理化因式是1(2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去,指的是如果代数式中1====【知识理解】(1)填空:(2)计算:①②;【启发运用】(3L 23.【阅读理解】若3a b +=,1ab =,求22a b +的值.解:因为3a b +=,所以()29a b +=,即:2229a ab b ++=,又因为1ab =,所以227a b +=【方法应用】(1)若7x y +=,2229x y +=,求xy 的值.(2)若()815x x -=,则()228x x -+=________.【拓展提升】(3)在Rt ABC V 中,90C Ð=°,11AC BC +=,三角形ABC 的面积为232,求的长.(4)如图,在四边形ABCD 中,对角线AC BD ^于点O ,且2BD AC -=,22100BD AC +=,则四边形ABCD 的面积为_________.。

【新】北师大版八年级下册第一次月考数学试卷含答案 (2)

【新】北师大版八年级下册第一次月考数学试卷含答案 (2)

八年级(下)第一次月考数学试卷一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里.每小题4分,共40分.1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C. D.﹣3x>﹣3y2.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或123.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>44.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个5.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣26.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.57.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3 B.4 C.5 D.68.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC 恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个9.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足﹣3≤a<0时,k 的取值范围是()A.﹣1≤k<0 B.1≤k≤3 C.k≥1 D.k≥310.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.二、填空题:本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为.12.设a、b是直角三角形的两条直角边,若该直角三角形的周长为6,斜边长为2.5,则ab的值是.13.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是.(填写所有真命题的序号)14.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为.15.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=4,在BE上截取BG=2,以GE 为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.16.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三.解答题:本大题共6小题,满分56分.17.解不等式:.18.若关于x、y的二元一次方程组的解满足x+y<2,求a的取值范围.19.如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.20.如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.21.某苹果生产基地,用30名工人进行采摘或加工苹果,每名工人只能做其中一项工作.苹果的销售方式有两种:一种是可以直接出售;另一种是可以将采摘的苹果加工成罐头出售.直接出售每吨获利4000元;加工成罐头出售每吨获利10000元.采摘的工人每人可以采摘苹果0.4吨;加工罐头的工人每人可加工0.3吨.设有x名工人进行苹果采摘,全部售出后,总利润为y元.(1)求y与x的函数关系式.(2)如何分配工人才能获利最大?22.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里.每小题4分,共40分.1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C. D.﹣3x>﹣3y【考点】不等式的性质.【分析】根据不等式的性质1,可判断A、B;根据不等式的性质2,可判断C;根据不等式的性质3,可判断D.【解答】解:A、不等式的两边都减3,不等号的方向不变,故A正确;B、不等式的两边都加3,不等号的方向不变,故B正确;C、不等式的两边都乘以,不等号的方向不变,故C正确;D、不等式的两边都乘以﹣3,不等号的方向改变,故D错误;故选:D.【点评】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或12【考点】等腰三角形的性质;三角形三边关系.【分析】分2是腰长与底边长两种情况讨论求解.【解答】解:①2是腰长时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,②2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长=2+4+4=10,综上所述,它的周长是10.故选C.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论并利用三角形的三边关系进行判定.3.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>4【考点】解一元一次不等式;一元一次方程的解.【分析】把m看作常数,根据一元一次方程的解法求出x的表达式,再根据方程的解是负数列不等式并求解即可.【解答】解:由2x+4=m﹣x得,x=,∵方程有负数解,∴<0,解得m<4.故选C.【点评】本题考查了一元一次方程的解与解不等式,把m看作常数求出x的表达式是解题的关键.4.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个【考点】等腰三角形的判定与性质.【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.【点评】此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,不要遗漏.5.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2【考点】一元一次不等式的整数解.【分析】表示出已知不等式的解集,根据负整数解只有﹣1,﹣2,确定出b的范围即可.【解答】解:不等式x﹣b>0,解得:x>b,∵不等式的负整数解只有两个负整数解,∴﹣3≤b<﹣2故选D.【点评】此题考查了一元一次不等式的整数解,弄清题意是解本题的关键.6.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.5【考点】勾股定理;等腰三角形的性质.【专题】动点型.【分析】过A点作AF⊥BC于F,连结AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得S ABC=S ABP+S ACP,代入数值,解答出即可.【解答】解:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=8,∴BF=4,∴△ABF中,AF==3,∴×8×3=×5×PD+×5×PE,12=×5×(PD+PE)PD+PE=4.8.故选:A.【点评】本题主要考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两个三角形的面积和;体现了转化思想.7.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3 B.4 C.5 D.6【考点】含30度角的直角三角形;等腰三角形的性质.【专题】计算题.【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD 的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.【解答】解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD﹣MD=6﹣1=5.故选:C.【点评】此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.8.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC 恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【考点】全等三角形的判定与性质;角平分线的性质;相似三角形的判定与性质.【分析】根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故②③正确;通过△CDE≌△DBF,得到DE=DF,CE=BF,故①④正确.【解答】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质三线合一是解题的关键.9.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足﹣3≤a<0时,k 的取值范围是()A.﹣1≤k<0 B.1≤k≤3 C.k≥1 D.k≥3【考点】一次函数与一元一次不等式.【分析】把点的坐标代入直线方程得到a=﹣,然后将其代入不等式组﹣3≤a<0,通过不等式的性质来求k的取值范围.【解答】解:把点(0,3)(a,0)代入y=kx+b,得b=3.则a=﹣,∵﹣3≤a<0,∴﹣3≤﹣<0,解得:k≥1.故选C.【点评】本题考查了一次函数与一元一次不等式.把点的坐标代入直线方程得到a=﹣是解题的关键.10.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.【考点】翻折变换(折叠问题).【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE=,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE==,∴DF=EF﹣ED=,∴B′F==.故选:A.【点评】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的相等相等的角是本题的关键.二、填空题:本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为4.【考点】解一元一次不等式.【分析】先根据不等式的基本性质把不等式去分母、去括号、再移项、合并同类项求出x的取值范围,再与已知解集相比较即可求出m的取值范围.【解答】解:去分母得,x﹣m>3(3﹣m),去括号得,x﹣m>9﹣3m,移项,合并同类项得,x>9﹣2m,∵此不等式的解集为x>1,∴9﹣2m=1,解得m=4.故答案为:4.【点评】考查了解一元一次不等式,解答此题的关键是掌握不等式的性质,(1)不等式两边同加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边同乘(或同除以)同一个正数,不等号的方向不变;(2)不等式两边同乘(或同除以)同一个负数,不等号的方向改变.12.设a、b是直角三角形的两条直角边,若该直角三角形的周长为6,斜边长为2.5,则ab的值是3.【考点】勾股定理.【分析】根据勾股定理得出a2+b2的值,再利用完全平方公式求出ab的值.【解答】解:∵a、b是直角三角形的两条直角边,直角三角形的周长为6,斜边长为2.5,∴a+b=3.5,a2+b2=2.52=6.25,(a+b)2=12.25,∴a2+b2+2ab=12.25,∴2ab=6,解得:ab=3.故答案为:3.【点评】此题主要考查了勾股定理以及完全平方公式,正确应用完全平方公式是解题关键.13.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是①②④.(填写所有真命题的序号)【考点】命题与定理;平行线的判定与性质.【专题】推理填空题.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①如果a∥b,a⊥c,那么b⊥c是真命题,故①正确;②如果b∥a,c∥a,那么b∥c是真命题,故②正确;③如果b⊥a,c⊥a,那么b⊥c是假命题,故③错误;④如果b⊥a,c⊥a,那么b∥c是真命题,故④正确.故答案为:①②④.【点评】本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,难度适中.14.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为x>.【考点】一次函数与一元一次不等式.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式2x>ax+4的解集即可.【解答】解:∵函数y=2x过点A(m,3),∴2m=3,解得:m=,∴A(,3),∴不等式2x>ax+4的解集为x>.故答案为:,【点评】此题主要考查了一次函数与一元一次不等式,关键是求出A点坐标.15.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=4,在BE上截取BG=2,以GE 为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.【考点】等边三角形的判定与性质;三角形的重心;三角形中位线定理.【专题】压轴题.【分析】根据等边三角形的性质,可得AD的长,∠ABG=∠HBD=30°,根据等边三角形的判定,可得△MEH的形状,根据直角三角形的判定,可得△FIN的形状,根据面积的和差,可得答案.【解答】解:如图所示:,由△ABC是等边三角形,高AD、BE相交于点H,BC=4,得AD=BE=BC=6,∠ABG=∠HBD=30°.由直角三角的性质,得∠BHD=90°﹣∠HBD=60°.由对顶角相等,得∠MHE=∠BHD=60°由BG=2,得EG=BE﹣BG=6﹣2=4.由GE为边作等边三角形GEF,得FG=EG=4,∠EGF=∠GEF=60°,△MHE是等边三角形;S△ABC=AC•BE=AC×EH×3EH=BE=×6=2.由三角形外角的性质,得∠BIG=∠FGE﹣∠IBG=60°﹣30°=30°,由∠IBG=∠BIG=30°,得IG=BG=2,由线段的和差,得IF=FG﹣IG=4﹣2=2,由对顶角相等,得∠FIN=∠BIG=30°,由∠FIN+∠F=90°,得∠FNI=90°,由锐角三角函数,得FN=1,IN=.=S△EFG﹣S△EMH﹣S△FINS五边形NIGHM=×42﹣×22﹣××1=,故答案为:.【点评】本题考查了等边三角形的判定与性质,利用了等边三角形的判定与性质,直角三角形的判定,利用图形的割补法是求面积的关键.16.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为或.【考点】勾股定理;等腰直角三角形.【专题】分类讨论.【分析】分①点A、D在BC的两侧,设AD与边BC相交于点E,根据等腰直角三角形的性质求出AD,再求出BE=DE=AD并得到BE⊥AD,然后求出CE,在Rt△CDE中,利用勾股定理列式计算即可得解;②点A、D在BC的同侧,根据等腰直角三角形的性质可得BD=AB,过点D作DE⊥BC 交BC的反向延长线于E,判定△BDE是等腰直角三角形,然后求出DE=BE=2,再求出CE,然后在Rt△CDE中,利用勾股定理列式计算即可得解.【解答】解:①如图1,点A、D在BC的两侧,∵△ABD是等腰直角三角形,∴AD=AB=×2=4,∵∠ABC=45°,∴BE=DE=AD=×4=2,BE⊥AD,∵BC=1,∴CE=BE﹣BC=2﹣1=1,在Rt△CDE中,CD===;②如图2,点A、D在BC的同侧,∵△ABD是等腰直角三角形,∴BD=AB=2,过点D作DE⊥BC交BC的反向延长线于E,则△BDE是等腰直角三角形,∴DE=BE=×2=2,∵BC=1,∴CE=BE+BC=2+1=3,在Rt△CDE中,CD===,综上所述,线段CD的长为或.故答案为:或.【点评】本题考查了勾股定理,等腰直角三角形的性质,难点在于要分情况讨论,作出图形更形象直观.三.解答题:本大题共6小题,满分56分.17.解不等式:.【考点】解一元一次不等式.【分析】利用不等式的基本性质,即可求得原不等式的解集.【解答】解:去分母得:6(5x+1)﹣3(x﹣2)>2(5x﹣1)+4(x﹣3),去括号得:0x+6﹣3x+6>10x﹣2+4x﹣12,移项得:30x﹣3x﹣10x﹣4x>﹣2﹣12﹣6﹣6,合并同类项得:13x>﹣26,系数化为1得:x>﹣13.【点评】本题考查了解一元一次不等式,熟练掌握不等式的性质是解题的关键.18.若关于x、y的二元一次方程组的解满足x+y<2,求a的取值范围.【考点】二元一次方程组的解;解一元一次不等式.【专题】计算题;一次方程(组)及应用;一元一次不等式(组)及应用.【分析】把a看做已知数表示出方程组的解,代入已知不等式求出a的范围即可.【解答】解:方程组,解得:,∴x+y=1+a,∵x+y<2,∴1+a<2,解得:a<4.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.19.如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.【考点】全等三角形的判定与性质;平行线的性质;等腰三角形的判定与性质.【分析】(1)当点M在线段CD上时,线段OD、ON、DM之间的数量关系是:OD=DM+ON.首先根据OC是∠AOB的平分线,CD∥OB,判断出∠DOC=∠DC0,所以OD=CD=DM+CM;然后根据E是线段OC的中点,CD∥OB,推得CM=ON,即可判断出OD=DM+ON,据此解答即可.(2)当点M在线段CD延长线上时,线段OD、ON、DM之间的数量关系是:OD=ON﹣DM.由(1),可得OD=DC=CM﹣DM,再根据CM=ON,推得OD=ON﹣DM即可.【解答】解:(1)当点M在线段CD上时,线段OD、ON、DM之间的数量关系是:OD=DM+ON.证明:如图1,,∵OC是∠AOB的平分线,∴∠DOC=∠C0B,又∵CD∥OB,∴∠DCO=∠C0B,∴∠DOC=∠DC0,∴OD=CD=DM+CM,∵E是线段OC的中点,∴CE=OE,∵CD∥OB,∴,∴CM=ON,又∵OD=DM+CM,∴OD=DM+ON.(2)当点M在线段CD延长线上时,线段OD、ON、DM之间的数量关系是:OD=ON﹣DM.证明:如图2,,由(1),可得OD=DC=CM﹣DM,又∵CM=ON,∴OD=DC=CM﹣DM=ON﹣DM,即OD=ON﹣DM.【点评】(1)此题主要考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:①定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.②定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.③定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.(2)此题还考查了等腰三角形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.20.如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.【考点】全等三角形的判定与性质.【分析】连接BE,根据已知条件先证出∠BCE=∠ACD,根据SAS证出△ACD≌△BCE,得出AD=BE,再根据勾股定理求出AB,然后根据∠BAC=∠CAE=45°,求出∠BAE=90°,在Rt△BAE中,根据AB、AE的值,求出BE,从而得出AD.【解答】解:如图,连接BE,∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,又∵AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∵AC=BC=6,∴AB=6,∵∠BAC=∠CAE=45°,∴∠BAE=90°,在Rt△BAE中,AB=6,AE=3,∴BE====9,∴AD=9.【点评】此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质、勾股定理,关键是根据题意作出辅助线,证出△ACD≌△BCE.21.某苹果生产基地,用30名工人进行采摘或加工苹果,每名工人只能做其中一项工作.苹果的销售方式有两种:一种是可以直接出售;另一种是可以将采摘的苹果加工成罐头出售.直接出售每吨获利4000元;加工成罐头出售每吨获利10000元.采摘的工人每人可以采摘苹果0.4吨;加工罐头的工人每人可加工0.3吨.设有x名工人进行苹果采摘,全部售出后,总利润为y元.(1)求y与x的函数关系式.(2)如何分配工人才能获利最大?【考点】一次函数的应用.【分析】(1)根据题意可知进行加工的人数为(30﹣x)人,采摘的数量为0.4x吨,加工的数量为(9﹣0.3x)吨,直接出售的数量为0.4x﹣(9﹣0.3x)=(0.7x﹣9)吨,由此可得出y与x的关系式;(2)先求出x的取值范围,再由x为整数即可得出结论.【解答】解:(1)根据题意得,进行加工的人数为(30﹣x)人,采摘的数量为0.4x吨,加工的数量为(9﹣0.3x)吨,直接出售的数量为0.4x﹣(9﹣0.3x)=(0.7x﹣9)吨,y=4000×(0.7x﹣9)+10000×(9﹣0.3x)=﹣200x+54000;(2)根据题意得,0.4x≥9﹣0.3x,解得x≥12,∴x的取值是12≤x≤30的整数.∵k=﹣200<0,∴y随x的增大而减小,∴当x=13时利润最大,即13名工人进行苹果采摘,17名工人进行加工,获利最大.【点评】本题考查的是一次函数的应用,根据题意列出关于x、y的关系式是解答此题的关键.22.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.【考点】全等三角形的判定与性质;角平分线的性质;等腰直角三角形.【专题】证明题;几何综合题.【分析】(1)根据等腰直角三角形的性质求出∠B=∠ACB=45°,再求出∠ACF=45°,从而得到∠B=∠ACF,根据同角的余角相等求出∠BAE=∠CAF,然后利用“角边角”证明△ABE和△ACF全等,根据全等三角形对应边相等证明即可;(2)①过点E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM是等腰直角三角形,再根据等腰直角三角形的性质求解即可;②求出∠CAE=∠CEA=67.5°,根据等角对等边可得AC=CE,再利用“HL”证明Rt△ACM和Rt△ECM 全等,根据全等三角形对应角相等可得∠ACM=∠ECM=22.5°,从而求出∠DAE=∠ECM,根据等腰直角三角形的性质可得AD=CD,再利用“角边角”证明△ADE和△CDN全等,根据全等三角形对应边相等证明即可.【解答】证明:(1)∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC;②由题意得,∠CAE=45°+×45°=67.5°,∴∠CEA=180°﹣45°﹣67.5°=67.5°,∴∠CAE=∠CEA=67.5°,∴AC=CE,在Rt△ACM和Rt△ECM中,,∴Rt△ACM≌Rt△ECM(HL),∴∠ACM=∠ECM=×45°=22.5°,又∵∠DAE=×45°=22.5°,∴∠DAE=∠ECM,∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=CD=BC,在△ADE和△CDN中,,∴△ADE≌△CDN(ASA),∴DE=DN.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出等腰直角三角形和全等三角形是解题的关键,难点在于最后一问根据角的度数得到相等的角.。

最新北师大版八年级数学下册第一次月考试题

最新北师大版八年级数学下册第一次月考试题

北师大版八年级数学下册第一次月考试题一.选择题(36分)1.下面各组数是三角形的三边的长,则能构成直角三角形的是()A.2,2,3 B.60,80,100 C.4,5,6 D.5,6,72.等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A.17 B.22 C.13 D.17或223.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.64.如图,在△ABC中,AB=AC,点D,E分别在边BC和AC上,若AD=AE,则下列结论错误的是()A.∠ADB=∠ACB+∠CAD B.∠ADE=∠AEDC.∠B=∠C D.∠BAD=∠BDA5.已知a>b,则在下列结论中,正确的是()A.a﹣2<b﹣2 B.﹣2a<﹣2b C.|a|>|b| D.a2>b26.一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分.则小明至少答对的题数是()A.11道B.12道C.13道D.14道7.若x+a<y+a,ax>ay,则()A.x>y ,a>0 B.x>y,a<0 C.x<y,a>0 D.x<y,a<08.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条9.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=10,DE=2,AB=4,则AC 长是()A.9 B.8 C.7 D.610.如图,在△ABC中,边BC的垂直平分线l与AC相交于点D,垂足为E,如果△ABD的周长为10cm,BE=3cm,则△ABC的周长为()A.9 cm B.15 cm C.16 cm D.18 cm11.如图,已知正比例函数y1=ax与一次函数y2=x+b的图象交于点P.下面有四个结论:①a <0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2.其中正确的是()A.①②B.②③C.①③D.①④12.已知关于x的不等式组恰有3个整数解,则a的取值范围是()A.B.C.D.二.填空题(共4小题,12分)13.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是.14.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、M在BC上,则∠EAN= .15.如图,在平面直角坐标系中,点B、A分别在x轴、y轴上,∠BAO=60°,在坐标轴上找一点C,使得△ABC是等腰三角形,则符合条件的等腰三角形ABC有个.16.如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点,则不等式mx+2<kx+b<0的解集为.三.解答题(共8小题,72分)17.(8分)解下列不等式(组),并用数轴表示解集(1)(3y﹣1)﹣<y+1(2).18.(8分)如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)试求∠DAE的度数.(2)如果把原题中“AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改变吗?为什么?19.(8分)如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE ⊥AB,垂足为E.(1)已知CD=4cm,求AC的长;(2)求证:AB=AC+CD.20.(8分如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D 的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)21.(8分)某公司保安部去商店购买同一品牌的应急灯和手电筒,查看定价后发现,购买一个应急灯和5个手电筒共需50元,购买3个应急灯和2个手电筒共需85元.(1)求出该品牌应急灯、手电筒的定价分别是多少元?(2)经商谈,商店给予该公司购买一个该品牌应急灯赠送一个该品牌手电筒的优惠,如果该公司需要手电筒的个数是应急灯个数的2倍还多8个,且该公司购买应急灯和手电筒的总费用不超过670元,那么该公司最多可购买多少个该品牌应急灯?22.(8分)如图,已知直线y=kx﹣3经过点M,直线与x轴,y轴分别交于A,B 两点.(1)求A,B 两点坐标;(2)结合图象,直接写出kx﹣3>1的解集.23.(8分)△ABC中,AB=AC,点D为射线BC上一个动点(不与B、C重合),以AD 为一边向AD的左侧作△ADE,使AD=AE,∠DAE=∠BAC,过点E作BC的平行线,交直线AB 于点F,连接BE.(1)如图1,若∠BAC=∠DAE=60°,判断△BEF的形状并说明理由.(2)若∠BAC=∠DAE≠60°如图2,当点D在线段BC上移动,判断△BEF的形状,不必说明理由24.(8分)为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容市貌环境提升行动.某工程队承担了一段长为1500米的道路绿化工程,施工时有两张绿化方案:甲方案是绿化1米的道路需要A型花2枝和B型花3枝,成本是22元;乙方案是绿化1米的道路需要A型花1枝和B型花5枝,成本是25元.现要求按照乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的2倍.(1)求A型花和B型花每枝的成本分别是多少元?(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总成本最少是多少元?。

第1章三角形的证明单元测试卷八年级数学北师大版下册(山东省枣庄市滕州市羊庄中学)

第1章三角形的证明单元测试卷八年级数学北师大版下册(山东省枣庄市滕州市羊庄中学)

北师大新版八年级下册《第1章三角形的证明》2021年单元测试卷(山东省枣庄市滕州市羊庄中学)一、单选题1.在△ABC中,AB=AC,∠A﹣∠B=15°,则∠C的度数为()A.50°B.55°C.60°D.70°2.如图,△ABC中,∠A=36°,∠C=72°,BD平分∠ABC,ED∥BC,则图中等腰三角形的个数是()A.3B.4C.5D.63.如图,△ABC中,AB=AC,AD⊥BC,∠BAC=80°,AD=AE.则∠CDE=()A.10°B.20°C.30°D.40°4.如图,在△ABC中,已知点D在BC上,且BD+AD=BC,则点D在()A.AC的垂直平分线上B.∠BAC的平分线上C.BC的中点D.AB的垂直平分线上5.如图,等腰△ABC中,AB=AC=10,BC=12,点D是底边BC的中点,以A、C为圆心,大于AC的长度为半径分别画圆弧相交于两点E、F,若直线EF上有一个动点P,则线段PC+PD的最小值为()A.6B.8C.10D.126.如图,在△ABC中,∠C=90°,以点A为圆心,适当长为半径画弧,分别交AC,AB 于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,射线AP交BC于点D,若CD=1,AB=4,则△ABD的面积是()A.2B.4C.6D.87.如图,一棵高5米的树AB被强台风吹斜,与地面BC形成60°夹角,之后又被超强台风在点D处吹断,点A恰好落在BC边上的点E处,若BE=2米,则BD的长是()米A.2B.3C.D.8.如图,将等边△ABC折叠,使得点B恰好落在AC边上的点D处,折痕为EF,O为折痕EF上一动点,若AD=2,AB=5,△OCD周长的最小值是()A.5B.6C.7D.89.如图,在Rt△ABC中,CA=CB,D为斜边AB的中点,Rt∠EDF在△ABC内绕点D转动,分别交边AC,BC点E,F(点E不与点A,C重合),下列说法正确的是()①∠DEF=45°;②BF2+AE2=EF2;③CD<EF≤CD.A.①②B.①③C.②③D.①②③10.如图,在四边形ABCD中,∠A=∠BDC=90°,∠C=∠ADB,点P是BC边上的一动点,连接DP,若AD=3,则DP的长不可能是()A.2B.3C.4D.511.如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于长为半径画弧,两弧相交于点M,作射线CM交AB 于点E.若AE=4,BE=1,则EC的长度是()A.2B.3C.D.12.如图,△ABC为直角三角形,∠B=90°,∠C=60°,点E、F分别在边BC、AC上,将△CEF沿EF折叠,点C恰好落在边AB上的点D,若DE平分∠BEF,EC=2,则AC 的长为()A.4B.5C.6D.813.如图,OP平分∠AOB,PC⊥OA,点D是OB上的动点,若PC=5cm,则PD的长可以是()A.2cm B.3cm C.4cm D.6cm14.如图,在△ABC中,∠C=30°,点D是AC的中点,DE⊥AC交BC于E;点O在ED 上,OA=OB,OD=2,OE=4,则BE的长为()A.12B.10C.8D.615.如图,在△ABC中,点D在边BC上,且满足AB=AD=DC,过点D作DE⊥AD,交AC于点E.设∠BAD=α,∠CAD=β,∠CDE=γ,则()A.2α+3β=180°B.3α+2β=180°C.β+2γ=90°D.2β+γ=90°二、填空题16.如图所示,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,若DE=2,则BC =.17.如图,在△ABC中,AB=AC=10,∠BAC=120°,AD是△ABC的中线,AE是∠BAD 的角平分线,DF∥AB交AE的延长线于点F,则DF的长为.18.如图,在△ABC中,∠ACB=90°,AD是它的角平分线,若AB:AC=3:2,且BD =2,则点D到直线AB的距离为.19.如图,在△ABC中,EF是AB的垂直平分线,与AB交于点D,BF=4,CF=1,则AC 的长为.20.如图,∠AOB=30°,点P在∠AOB的内部,OP=6cm,点E、F分别为OA、OB上的动点,则△PEF周长的最小值为cm.21.有一个三角形纸片ABC,∠A=76°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两个纸片均为等腰三角形,则∠C=.22.如图,△ABC,BC在射线BM上,AB=AC.取AC的中点A1,以A1C为腰,∠A1CM 为顶角作等腰三角形A1CC1;取A1C1的中点A2,以A2C1为腰,∠A2C1M为顶角作等腰三角形A2C1C2;取A2C2的中点A3,以A3C2为腰,∠A3C2M为顶角作等腰三角形A3C2C3…,若∠A=α,则∠A n∁n B的度数为.三、解答题23.如图,Rt△ABC中,∠BAC=90°,AB=AC.(1)如图1,CD⊥AE,BE⊥AE,求证:△DAC≌△EBA;(2)如图2,∠AFD=∠CEB,AF=CE,请直接用几何语言写出BE、DA的位置关系;(3)证明(2)中的结论.24.如图,在△ABC中,AB=BC,∠ABC=90°,点E在BC上,点F在AB的延长线上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠ACF=75°,求∠EAC的度数.25.如图,在△ABC中,AB=BC,∠ABC=120°,AB的垂直平分线DE交AC于点D,连接BD,若AC=12.(1)求证:BD⊥BC.(2)求DB的长.26.如图,已知△ABC中,AB=AC,BD,CD分别平分∠ABE,∠ACE,BD交AC于F,连接AD.(1)当∠BAC=40°时,求∠BDC的度数;(2)请直接写出∠BAC与∠BDC的数量关系;(3)求证:AD∥BE.。

24-25八年级数学第一次月考卷(全解全析)【测试范围:北师大版八上第一、二章】(四川成都专用)

24-25八年级数学第一次月考卷(全解全析)【测试范围:北师大版八上第一、二章】(四川成都专用)

2024-2025学年八年级数学上学期第一次月考卷(四川成都专用)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:北师大版八年级上册第一章、第二章。

5.难度系数:0.65。

A 卷(共100分)第Ⅰ卷(共32分)一、选择题(本大题共8个小题,每小题4分,共32分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑).12.满足下列条件的ABC V ,其中是直角三角形的为( )A .::3:4:5ABC ÐÐÐ= B .::3:4:5AB BC AC = C .1,4,5AB BC AC === D .30,75A B Ð=°Ð=°3A .8±B .8C .8-D .无法确定4.勾股定理是用代数思想解决几何问题最重要的工具,也是数形结合的纽带之一.如图,当秋千静止时,踏板B 离地的垂直高度0.8m BE =,将它往前推3m 至C 处时(即水平距离3m CD =),踏板离地的垂直高度 2.6m CF =,它的绳索始终拉直,则绳索AC 的长是( )A .3.4mB .3.6mC .3.8mD .4.2m5A .2B .32C .23D .1166.临汾是帝尧之都,有着尧都之称.尧都华表柱身祥云腾龙,顶蹲冲天吼,底座浮雕长城和黄河壶口瀑布,是中华民族历史悠久、文化灿烂的标志.如图,在底面周长约为6米且带有层层回环不断的云朵石柱上,有一条雕龙从柱底沿立柱表面均匀地盘绕2圈到达柱顶正上方(从点A 到点C ,B 为AC 的中点),每根华表刻有雕龙的部分的柱身高约16米,则雕刻在石柱上的巨龙至少为( )A .20米B .25米C .30米D .15米226AB AE +=米.故选:A .7.如图,在四边形ABCD 中,对角线分别为AC 、BD ,且AC BD ^交于点O ,若2AD =,4BC =,则22AB CD +的值为( )A .20B .18C .16D .1【答案】A 【解析】解:∵AC BD ^,∴()()222222222222222420AB CD OA OB OD OC OA OD OB OC AD BC +=+++=+++=+=+=,故答案为:A .8.如图,是4个全等的直角三角形镶嵌而成的正方形图案,已知大正方形的面积是81,小正方形的面积是25,若用x y ,表示直角三角形的两条直角边(x y >),请观察图案,下列式子不正确的是( )A .5x y -=B .2281x y +=C .12x y +=D .28xy =第Ⅱ卷(共68分)二、填空题(本大题共5个小题,每题4分,满分20分,将答案填在答题纸上)921011.如图,小张在投篮训练时把球打到篮板的点D 处后恰好进球,已知小张与篮板底的距离BC =米,头顶与地面的距离 1.65AB =米,头顶与篮板点D 处的距离3AD =米,则点D 到地面的距离CD 为 米.2233(3) 1.52=-=(米),3.15(米).故答案为:3.15.12.如图,正方形纸片ABCD 的四个顶点分别在四条平行线1l 、2l 、3l 、4l 上,这四条直线中相邻两条之间的距离依次为1h 、2h 、31(0h h >,20h >,30)h >,若15h =,22h =,则正方形ABCD 的面积S 等于 .【答案】74【解析】解:如图,过点B 作1l 作1BH l ^于H ,过点D 作1DN l ^于N ,90AHB AND BAD \Ð=Ð=°=Ð,90BAH ABH BAH DAN \Ð+Ð=°=Ð+Ð,DAN ABH \Ð=Ð,(AAS)ADN BAH \V V ≌,5BH AN \==,527AH DN ==+=,222254974AD AN DN \=+=+=,\正方形ABCD 的面积S 等于74,故答案为:74.13.如图,90C Ð=°,AB CD ∥,5AB =,11CD =,8AC =,点E 是BD 的中点,则AE 的长为 .DFE =Ð,1156DC DF -=-=,三、解答题 (本大题共5小题,其中14题12分,15-16题,每题8分,17-18题,每题10分,共48分.解答应写出文字说明、证明过程或演算步骤.)14.(满分12分)化简:15.(满分8分)2023年7月五号台风“杜苏芮”登陆,使我国很多地区受到严重影响,据报道,这是今年以来对我国影响最大的台风,风力影响半径250km(即以台风中心为圆心,250km为半径的圆形区域都会受台风影响),如图,线段BC是台风中心从C市向西北方向移动到B市的大致路线,A是某个大型^.若A,C之间相距300km,A,B之间相距400km.农场,且AB AC(1)判断农场A是否会受到台风的影响,请说明理由.(2)若台风中心的移动速度为25km/h,则台风影响该农场持续时间有多长?【解析】(1)解:会受到台风的影响.,300km AC =,)km ,(2分),∴AB AC AD BC ×==会受到台风的影响,(4分),∴受台风影响的时间为14025¸=分)16.(满分8分)我们用[]a 表示不大于a 的最大整数,[]a a -的值称为数a 的小数部分,如[]2.132=,2.13的小数部分为[]2.13 2.130.13-=.(1)=______________,=______________,p 的小数部分=______________;(2)的小数部分为a ,求a +(3)已知10x y =+,其中x 是整数,且01y <<,求x y -的相反数.17.(满分10分)如图,一架长25m的云梯AB斜靠在一面墙上,这时云梯底端距墙脚的距离15mBC=,90ABCÐ=°.(1)求这架云梯的顶端距地面的高度AC;(2)当云梯的顶端A沿墙面下滑m x到达A¢位置时,用含x的代数式表示云梯的底端水平滑动的距离BB¢;(3)若云梯底端离墙的距离不能小于云梯长度的15,求云梯的顶端所能达到的最大高度.在答:这架云梯的顶端距地面的高度由勾股定理得:答:云梯的顶端所能达到的最大高度是18.(满分10分)数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化,数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.【思想应用】(1)已知a ,b 均为正实数,且2a b +=形解决此问题:如图,2AB =,1AC =,2BD =,CA AB ^,DB AB ^,点E 是线段AB 上的动点,且不与端点重合,连接CE ,DE ,设AE a =,BE b =.①用含a 的代数式表示CE =________,用含b 的代数式表示DE =________.________.【类比应用】(2)根据上述方法,求代数式2,2HD AB ==123CA AH +=+=,13=,24b ++的最小值为13BDE 中,2(5)DE x =-CE DE CD +³(当且仅当AB ,DB AB ^(7分)6BD ==,HD AB ==5,∴CE DE +的最小值为一、填空题(每题4分,满分20分,将答案填在答题纸上)190.7160=, 1.542== .【答案】0.1542-20.如图,在四边形ABDC 中,90BAC BDC Ð=Ð=°,2AB AC BD ==,,4DC =,则AD 的长为 .90BDC =°,360ABD ACD \Ð+Ð=°-ACE =Ð,ACE ,,BAD CAE AD AE \Ð=Ð=90CAD BAC +Ð=Ð=°,21.设x 、y 、z 是两两不等的实数,且满足下列等式:=3333x y z xyz ++-的值为 .22.如图,在ABC V 中,点D 是BC 边上一点,连接AD ,把ABD △沿着AD 翻折,得到AB D ¢V ,B D ¢与AC交于点M ,且M 为DB ¢的中点,连接BB ¢交AD 于点N ,若AB =47AB M AN S ¢==,V ,则点B 到DB ¢的距离为 .23.如图,在Rt ABC △中,90BAC Ð=°,6AC =,10BC =,D E 、分别是AB BC 、上的动点,且CE BD =,连接AE CD 、,则AE CD +的最小值为 .18090ACN BAC =°-=°∠∠,DBC ,∴()SAS CEN BDC V V ≌,,AN ³,二、解答题 (本大题共3小题,其中24题8分,25题10分,26题12分,共30分.解答应写出文字说明、证明过程或演算步骤.)24.(满分8分)【探究发现】我国三国时期的数学家赵爽利用四个全等的直角三角形拼成如图1所示图形,其中四边形ABED 和四边形CFGH 都是正方形,巧妙地用面积法得出了直角三角形三边长a ,b ,c 之间的一个重要结论:222a b c +=.(1)请你将数学家赵爽的说理过程补充完整:已知:Rt ABC △中,90ACB Ð=°,BC a =,AC b =,AB c =.求证:222a b c +=.证明:由图可知4ABC ABED CFGH S S S =+△正方形正方形,2ABED S c =Q 正方形,ABC S =V ______,正方形CFGH 边长为______,222214()222c ab a b ab a ab b \=´+-=+-+,即222a b c +=.【深入思考】如图2,在V 中,90C Ð=°,BC a =,AC b =,AB c =,以AB 为直角边在AB 的右侧作等腰直角ABD △,其中AB BD =,90ABD Ð=°,过点D 作DE CB ^,垂足为点E.(2)求证:DE a =,BE b =;(3)请你用两种不同的方法表示梯形ACED 的面积,并证明:222a b c +=;【实际应用】(4)将图1中的四个直角三角形中较短的直角边分别向外延长相同的长度,得到图3所示的“数学风车”,若12a =,9b =,“数学风车”外围轮廓(图中实线部分)的总长度为108,求这个风车图案的面积.)的总长度为108,()()22227a b x x ++=-,25.(满分10分)阅读下面材料:我们在学习二次根式时,熟悉的是分母有理化以及应用,其实,还有一个方法叫做“分子有理化”,与分母有理化类似,分母和分子都乘以分子的有理化因式,从而消掉分子中==,分子有理化可以用来比较某些二次根式的大小,也可以用来处理一些二次根式的最值问题.和=,=.再例如:求 y =的最大值.做法如下:解:由x +2≥0,x ﹣2≥0可知x ≥2,而y ==x =2时,分母+有最小值2,所以y 的最大值是2.解决下述问题:(1)由材料可知,__________=(2)比较4和(3)式子y =的最小值是__________.26.(满分12分)在ABC V 中,2AC AB =,点D 为直线BC 上一点,AD AE =,BAC DAE Ð=Ð,连接ED交AC 于F .(1)如图1,90BAC Ð=°,F 为AC中点,若AE =1DF =,求BD 的长;(2)如图2,延长CB 至点G 使得BG DB =,过点G 作GH DA ^延长线于点H ,若ED BC ^,CD AH =,求证:ED GH =;(3)如图3,120BAC Ð=°,AB =E 关于直线BC 的对称点E ¢,连接BE ¢,AE ¢,CE ¢,当BE ¢最小时,直接写出ACE ¢V 的面积.=Ð,(9分)EAM BADÐ,ABCABC,=°,60分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二下学期第一次月考数学试题
(满分:150分 考试时间:120分钟)
3分,共21分) x
1、xy y xy 3-、5b a +、πy x +中,是分式的有( )
1个 B .2个 C .3个 D .4个 5
1
-x 有意义,则x 的取值范围是( ) x 5≥ B .x 5≤ C .x ﹥5 D .x ≠5
y
x x
-4中的x 和y 都扩大为原来的2,那么这个分式的值 ( ) 2 B .保持不变 C .缩小到原来的2
1
D .无法确定
对于圆的面积公式S =πR 2,下列说法中,正确的为( )
A .π是自变量
B .R 2
是自变量
C .R 是自变量
D .πR 2
是自变量
62-=x y 中, 自变量x 的取值范围是( ). x 3≥ B .x 3≤ C .x ﹥3 D .x ≠3 )
x y 5
=
B .35+-
=x y C .532-+=x x y D .42+=x y
s 与时间t 的关系如图所示 小王根据图错误..的是( ) A 这是一次1500米的赛跑 B 甲、乙两人中乙先到达终点
C 甲、乙同时起跑
D 甲的这次赛跑中的速度为5米/秒 4分,共40分)
a
c
b a • = . 9、计算:=---b a b
b a a .
10、用正整数指数幂表示1
2
5--bc a =__________;
11、肥皂泡表面厚度大约是0.0000007 m ,用科学记数法表示为______________m
12、长方形的面积为100,则长方形的长y 与宽x 之间的函数关系是 。

13、当m = 时,关于x 的方程323
2-+
=-x m
x x 会产生增根。

14、点A(a,-5)和(3,b)关于x 轴对称,则a= ,b= 15、已知一次函数y=kx+b 的图象与直线y=-x+1平行,则k= . 16、若直线y=kx+b 中,k <0,b >0,则直线不经过第 象限 17、如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____. 三、解答题(共89分) 18、计算:(12分)
(1)1
203122005-⎪⎭

⎝⎛+- (2)2
11()339a a a a +÷-+-
19、解分式方程:(12分) (1)
1
32+=
x x (2)321+-x =x x
--21.
20、先化简,再求值:(8分)
a
a a a a -+-÷--2244)111(,其中1-=a
21、(9分)探究性问题:
2111211-=⨯,3121321-=⨯,4
1
31431-=⨯
(1)则=+)
1(1
n n 。

(2分)
(2)试用上面规律,计算:)1(1+x x +)
4)(3(1
)3)(2(1)2)(1(1++++++++x x x x x x
22、(9分)已知有两人分别骑自行车和摩托车沿着相同的路线从甲地到乙地去,•下图反映
的是这两个人行驶过程中时间和路程的关系,请根据图象回答下列问题: (1)甲地与乙地相距 千米?(2分) (2)两个人分别用了几小时才到达乙地?(2分)
(3)• 先到达了乙地?早到多长时间? (2分) (4)求摩托车行驶的平均速度.(3分)
23.(9分)、已知一次函数y=kx+b(k ≠0)的图像经过点(1,1)和点(0,-1). (1)在平面直角坐标系中画出这个函数的图象 (2)求这个函数的解析式
(3)由图象观察,当2≤x ≤4时,函数y 的取值范围
24、(8分)已知正比例函数x k y 1=的图象与一次函数92-=x k y 的图象交于点P (3,-6) (1)求21,k k 的值
(2)如果一次函数92-=x k y 与x 轴交于点A ,求A 点坐标
25、(8分)前年入秋以来,云南省发生了百年一遇的旱灾,连续8个多月无有效降水,为抗旱救灾,某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务. 问原计划每天修水渠多少米?
26、(14分)我市某乡A\B 两村盛产柑橘,A 村有柑橘200吨,B 村有柑橘300吨,现将这些柑橘运到C 、D 两冷藏仓库,已知C 仓库可储存240吨,D 仓库可储存260吨,从A 村运往C 、D 两处的费用分别为每吨20元和25元,从B 运往C 、D 两处的费用分别为每吨15元和18元。

设从A 运往C 仓库的柑橘质量为x 吨,A 、B 两村运往两仓库的柑橘运输费用为y a 和y b 元。

(1)填写下表,并求出y a 和y b 与x 之间的函数关系式。

(3分)
②当x 满足什么条件时,B 村的运费较少
(3)考虑到B村的经济承受能力,B村的柑橘运费不得超过4830元,在各种情况下,问该怎样调运,才能使两村运费之和最少?求出这个最小值。

(5分)
=
解:(1)y
a
y
=
a
(2)
(3)
四、附加题(每小题5分,共10分):
友情提醒:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况。

如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计后全卷总分最多不超过90分,如果你全卷得分达到或超过90分,则本题的得分不计入全卷总分。

1、计算:2-1=
2、在函数y=2x+5中,其中是常量的有.。

相关文档
最新文档