20xx-20xx学年七年级下学期期末数学试题及答案.doc
初一下学期期末考试数学试卷含答案(共5套)
七年级(下册)期末考试数学试卷一、选择题(共12小题,每小题3分,满分40分)1.下列调查中,调查方式选择错误的是()A.为了解全市中学生的课外阅读情况,选择全面调查B.旅客上飞机前的安检,选择全面调查C.为了了解《人民的名义》的收视率,选择抽样调查D.为保证“神舟十一号”载人飞船的成功发射,对其零部件的检查,选择全面调查2.a,b为实数,且a>b,则下列不等式的变形正确的是()A.a﹣x<b﹣x B.﹣a+1>﹣b+1 C.5a>5b D.<3.下列方程组中是二元一次方程组的是()A.B.C.D.4.已知点A(﹣1,﹣5)和点B(2,m),且AB平行于x轴,则B点坐标为()A.(2,﹣5)B.(2,5) C.(2,1) D.(2,﹣1)5.下列式子正确的是()A.=±5 B.=﹣C.±=8 D.=﹣56.如图,点E在BC的延长线上,由下列条件能得到AD∥BC的是()A.∠1=∠2 B.∠3=∠4 C.∠B=∠DCE D.∠D+∠DAB=180°7.关于“”,下面说法不正确的是()A.它是数轴上离原点个单位长度的点表示的数B.它是一个无理数C.若a<<a+1,则整数a为3D.它表示面积为10的正方形的边长8.8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm,则每一个小长方形的面积为()A.12cm2B.16cm2C.24cm2D.27cm29.如图,AB∥CD∥EF,则下列各式中正确的是()A.∠1=180°﹣∠3 B.∠1=∠3﹣∠2C.∠2+∠3=180°﹣∠1 D.∠2+∠3=180°+∠110.把△ABC经过平移后得到△A′B′C′,已知A(4,3),B(3,1),B′(1,﹣1),C′(2,0),则△ABC的面积为()A.B.C.1 D.211.在一次“数学与生活”知识竞赛中,竞赛题共26道,每道题都给出4个答案,其中只有一个答案正确,选对得4分,不选或选错扣2分,得分不低于70分得奖,那么得奖至少应选对()道题.A.22 B.21 C.20 D.1912.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A2017的坐标为()A.(0,4) B.(﹣3,1)C.(0,﹣2)D.(3,1)二、填空题(共4小题,每小题4分,满分16分)13.某点M(a,a+2)在x轴上,则a=.14.估计与0.5的大小关系是:0.5.(填“>”、“=”、“<”)15.已知关于x的不等式组只有五个整数解,则实数a的取值范围是.16.解方程组时,应该正确地解得,小明由于看错了系数c,得到的解为则a﹣b﹣c=.三、解答题(共6小题,满分64分)17.(1)计算: +++|﹣1|;(2)已知+|b3﹣64|=0,求b﹣a的平方根.18.(1)解方程组(2)解不等式组,并在数轴上画出它的解集.19.在“十三五”规划纲要中,“全民阅读”位列国家八大文化重大工程之一,我县各学校一直积极开展课外阅读活动,我县某初中学校为了解全校学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题(写出规范完整计算步骤):(1)求这次调查的学生总数是多少人,并求出x的值;(2)在统计图①中,t≥4部分所对应的圆心角是多少度?(3)将图②补充完整;④若该校共有学生1200人,试估计每周课外阅读时间量满足2≤t<4的人数.20.已知:如图所示,点E在直线DF上,点B在直线AC上,∠A=50°,∠AGB=∠EHF,∠C=∠D,求∠F的度数.21.某校将周五上午大课间活动项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的三倍少4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过1950元的现金购买190条长、短跳绳,且短跳绳的条数不超过长跳绳的5倍,问学校有几种购买方案可供选择?并写出这几种方案.22.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a,b满足|a﹣4|+=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)点B的坐标为,当点P移动3.5秒时,点P的坐标;(2)在移动过程中,当点P到x轴的距离为4个单位长度时,求点P移动的时间;(3)在移动过程中,当△OBP的面积是10时,求点P移动的时间.七年级(下册)期末数学试卷参考答案一、选择题(共12小题,每小题3分,满分40分)1.下列调查中,调查方式选择错误的是()A.为了解全市中学生的课外阅读情况,选择全面调查B.旅客上飞机前的安检,选择全面调查C.为了了解《人民的名义》的收视率,选择抽样调查D.为保证“神舟十一号”载人飞船的成功发射,对其零部件的检查,选择全面调查解:A、为了解全市中学生的课外阅读情况,调查范围广适合抽样调查,故A符合题意;B、旅客上飞机前的安检,是事关重大的调查,选择全面调查,故B不符合题意;C、为了了解《人民的名义》的收视率,调查范围广适合抽样调查,故C不符合题意;D、为保证“神舟十一号”载人飞船的成功发射,对其零部件的检查,是事关重大的调查,选择全面调查,故D不符合题意;故选:A.2.a,b为实数,且a>b,则下列不等式的变形正确的是()A.a﹣x<b﹣x B.﹣a+1>﹣b+1 C.5a>5b D.<解:解:A、不等式的两边都加或都减同一个整式,不等号的方向不变,故A错误;B、不等式的两边都乘或除以同一个负数,不等号的方向改变,故B错误;C、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故C正确;D、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故D错误;故选:C.3.下列方程组中是二元一次方程组的是()A.B.C.D.解:A、该方程组符合二元一次方程组的定义,故本选项正确;B、该方程组中含有3个未知数,不是二元一次方程组,故本选项错误;C、该方程组中的第一个方程不是整式方程,故本选项错误;D、该方程组中的第二个方程属于二元二次方程,故本选项错误;故选:A.4.已知点A(﹣1,﹣5)和点B(2,m),且AB平行于x轴,则B点坐标为()A.(2,﹣5)B.(2,5) C.(2,1) D.(2,﹣1)解:如图所示:∵点A(﹣1,﹣5)和点B(2,m),且AB平行于x轴,∴B点坐标为:(2,﹣5).故选:A.5.下列式子正确的是()A.=±5 B.=﹣C.±=8 D.=﹣5解:A、=5,故A错误;B、=﹣,故B正确;C、±=±8,故C错误;D、==5,故D错误.故选B.6.如图,点E在BC的延长线上,由下列条件能得到AD∥BC的是()A.∠1=∠2 B.∠3=∠4 C.∠B=∠DCE D.∠D+∠DAB=180°解:A.根据∠1=∠2,可得AB∥CD,故A错误;B.根据∠3=∠4,可得AD∥BC,故B正确;C.根据∠B=∠DCE,可得AB∥CD,故C错误;D.根据∠D+∠DAB=180°,可得AB∥CD,故D错误;故选:B.7.关于“”,下面说法不正确的是()A.它是数轴上离原点个单位长度的点表示的数B.它是一个无理数C.若a<<a+1,则整数a为3D.它表示面积为10的正方形的边长解:A、±它是数轴上离原点个单位长度的点表示的数,题干的说法错误,符合题意;B、是一个无理数,题干的说法正确,不符合题意;C、∵3<<3+1,a<<a+1,∴整数a为3,题干的说法正确,不符合题意;D、表示面积为10的正方形的边长,题干的说法正确,不符合题意.故选:A.8.8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm,则每一个小长方形的面积为()A.12cm2B.16cm2C.24cm2D.27cm2解:设每个小长方形的长为xcm,宽为ycm,根据题意得:,解得:.则每一个小长方形的面积为3×9=27(cm2).故选:D.9.如图,AB∥CD∥EF,则下列各式中正确的是()A.∠1=180°﹣∠3 B.∠1=∠3﹣∠2C.∠2+∠3=180°﹣∠1 D.∠2+∠3=180°+∠1解:∵AB∥CD,∴∠2+∠BDC=180°,即∠BDC=180°﹣∠2,∵EF∥CD,∴∠BDC+∠1=∠3,即∠BDC=∠3﹣∠1,∴180°﹣∠2=∠3﹣∠1,即∠2+∠3=180°+∠1,故选:D.10.把△ABC经过平移后得到△A′B′C′,已知A(4,3),B(3,1),B′(1,﹣1),C′(2,0),则△ABC的面积为()A.B.C.1 D.2解:∵把△ABC经过平移后得到△A′B′C′,B(3,1)的对应点是B′(1,﹣1),∴B点向左平移2个单位,再向下平移2个单位,∵A(4,3)的对应点A′的坐标是(4﹣2,3﹣2),即A′(2,1),C′(2,0))的对应点C的坐标是(2+2,0+2),即(4,2),过B作BD⊥AC于D,∵A(4,3),C(4,2),∴AC⊥X轴,∴AC=3﹣2=1,BD=4﹣3=1,∴△ABC的面积是AC×BD=×1×1=.答:△ABC的面积是.11.在一次“数学与生活”知识竞赛中,竞赛题共26道,每道题都给出4个答案,其中只有一个答案正确,选对得4分,不选或选错扣2分,得分不低于70分得奖,那么得奖至少应选对()道题.A.22 B.21 C.20 D.19解:设应选对x道题,则不选或选错的有25﹣x道,依题意得:4x﹣2(26﹣x)≥70,得:x≥21,∵x为正整数,∴x最小为21,即至少应选对21道题.故选B.12.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A2017的坐标为()A.(0,4) B.(﹣3,1)C.(0,﹣2)D.(3,1)解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2017÷4=504…1,∴点A2017的坐标与A1的坐标相同,为(3,1).故选:D.二、填空题(共4小题,每小题4分,满分16分)13.某点M(a,a+2)在x轴上,则a=﹣2.解:∵点M(a,a+2)在x轴上,∴a+2=0,解得:a=﹣2.故答案为:﹣2.14.估计与0.5的大小关系是:>0.5.(填“>”、“=”、“<”)解:∵﹣0.5=﹣=,∵﹣2>0,∴>0.答:>0.5.15.已知关于x的不等式组只有五个整数解,则实数a的取值范围是﹣5≤a<﹣4.解:解不等式x﹣a>0,得:x>a,解不等式1﹣2x>﹣3,得:x<2,∵只有五个整数解,∴﹣5≤a<﹣4,故答案为:﹣5≤a<﹣4.16.解方程组时,应该正确地解得,小明由于看错了系数c,得到的解为则a﹣b﹣c=1.解:把与代入得:,解得:,把代入得:3c+14=8,解得:c=﹣2,则a﹣b﹣c=4﹣5+2=1.故答案为:1三、解答题(共6小题,满分64分)17.(1)计算: +++|﹣1|;(2)已知+|b3﹣64|=0,求b﹣a的平方根.解:(1)+++|﹣1|===﹣;(2)∵+|b3﹣64|=0,∴,得,∴,即b﹣a的平方根是.18.(1)解方程组(2)解不等式组,并在数轴上画出它的解集.解:(1)原方程组整理可得:,①+②,得:8x=24,解得:x=3,将x=3代入②,得:15+y=10,解得:y=﹣5,则原方程组的解为;(2)解不等式4x﹣3<3(2x+1),得:x>﹣3,解不等式x﹣1>5﹣x,得:x>3,∴不等式组的解集为x>3,将解集表示在数轴上如下:19.在“十三五”规划纲要中,“全民阅读”位列国家八大文化重大工程之一,我县各学校一直积极开展课外阅读活动,我县某初中学校为了解全校学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题(写出规范完整计算步骤):(1)求这次调查的学生总数是多少人,并求出x的值;(2)在统计图①中,t≥4部分所对应的圆心角是多少度?(3)将图②补充完整;④若该校共有学生1200人,试估计每周课外阅读时间量满足2≤t<4的人数.解:(1)抽查的学生总数=90÷45%=200人,∵x%=1﹣15%﹣10%﹣45%=30%,∴x=30,(2)t≥4部分所对应的圆心角=×360°=54°.(3)①B等级的人数=200×30%=60人,C等级的人数=200×10%=20人,如图,②1200×(10%+30%)=480人,所以估计每周课外阅读时间量满足2≤t<4的人数为480人.20.已知:如图所示,点E在直线DF上,点B在直线AC上,∠A=50°,∠AGB=∠EHF,∠C=∠D,求∠F的度数.解:∵∠AGB=∠EHF,∠AGB=∠DGF,∴∠DGF=∠EHF,∴BD∥CE,∴∠C=∠ABD;又∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF,∴∠F=∠A=50°.21.某校将周五上午大课间活动项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的三倍少4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过1950元的现金购买190条长、短跳绳,且短跳绳的条数不超过长跳绳的5倍,问学校有几种购买方案可供选择?并写出这几种方案.解:(1)设长跳绳的单价是x元,短跳绳的单价为y元.由题意得:,解得:.答:长跳绳单价是20元,短跳绳的单价是8元.(2)设学校购买a条长跳绳,则购买条短跳绳,由题意得:,解得:≤a≤,∵a为整数,∴a为32、33、34、35,则可供选择的方案有:1、长跳绳32条、短跳绳158条;2、长跳绳33条、短跳绳157条;3、长跳绳34条、短跳绳156条;4、长跳绳35条、短跳绳155条.22.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a,b满足|a﹣4|+=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)点B的坐标为(4,6),当点P移动3.5秒时,点P的坐标(1,2);(2)在移动过程中,当点P到x轴的距离为4个单位长度时,求点P移动的时间;(3)在移动过程中,当△OBP的面积是10时,求点P移动的时间.解::(1)∵a、b满足+|b﹣6|=0,∴a﹣4=0,b﹣6=0,解得a=4,b=6,∴点B的坐标是(4,6),∵点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动,∴2×3.5=7,∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是:7﹣6=1,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(1,6);故答案为(4,6),(1,6).(2)由题意可得,在移动过程中,当点P到x轴的距离为4个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:4÷2=2秒,第二种情况,当点P在BA上时.点P移动的时间是:(6+4+2)÷2=6秒,故在移动过程中,当点P到x轴的距离为4个单位长度时,点P移动的时间是2秒或6秒.(3)如图1所示:∵△OBP的面积=10,∴OP•BC=10,即×4×OP=10.解得:OP=5.∴此时t=2.5s如图2所示;∵△OBP的面积=10,∴PB•OC=10,即×6×PB=10.解得:BP=.∴CP=.∴此时t=s,如图3所示:∵△OBP的面积=10,∴BP•BC=10,即×4×PB=10.解得:BP=5.∴此时t=s如图4所示:∵△OBP的面积=10,∴OP•AB=10,即×6×OP=10.解得:OP=.∴此时t=s综上所述,满足条件的时间t的值为2.5s或s或s或s.七年级下学期期末考试数学试卷一、选择题(1-10题每小题3分,11-15题每小题3分,共40分,)1.(3分)下列四个图案是四国冬季奥林匹克运动会会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.2.(3分)计算2x3•(﹣x2)的结果是()A.2x B.﹣2x5C.2x6D.x53.(3分)某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是()A.9.4×10﹣7m B.9.4×107m C.9.4×10﹣8m D.9.4×108m4.(3分)下列长度的三条线段能组成三角形的是()A.1,2,3 B.5,4,2 C.2,2,4 D.4,6,115.(3分)有3张纸牌,分别是红桃2,红桃3,黑桃A,把纸牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张,则两人抽的纸牌均为红桃的概率是()A.B.C.D.6.(3分)如图,已知AB=DC,下列所给条件中不能推出△ABC≌△DCB的是()A.∠ABC=∠DCB B.AC=DBC.∠A=∠D D.BO=CO7.(3分)如图,直线a∥b,直线l与a、b交于A、B两点,过点B作BC⊥AB 交直线a于点C,若∠2=35°,则∠1的度数为()A.25°B.35°C.55°D.115°8.(3分)如图,因为直线AB⊥l于点B,BC⊥l于点B,所以直线AB和BC重合,则其中蕴含的数学原理是()A.平面内,过一点有且只有一条直线与已知直线垂直B.垂线段最短C.过一点只能作一条垂线D.两点确定一条直线9.(3分)如图,边长为a的大正方形剪去一个边长为b的小正方形后,将剩余部分通过割补拼成新的图形.根据图形能验证的等式为()A.a2﹣b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b210.(3分)如图,在△ABC中,∠C=90°,∠B=26°.洋洋按下列步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长的一半为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为()A.50°B.52°C.58°D.64°11.(2分)如图,一艘补给船从A点出发沿北偏东65°方向航行,给B点处的船补给物品后,向左进行了90°的转弯,然后沿着BC方向航行,则∠DBC的度数为()A.25°B.35°C.45°D.65°12.(2分)王叔叔花x万元买了二年期年利率为4.89%的国库券,则本息和y(元)与x之间的关系正确的是()A.y=1.0978x B.y=10978x C.y=10489x D.y=978x13.(2分)下列语句:①角的对称轴是角的平分线;②两个成轴对称的图形的对应点一定在对称轴的两侧;③一个轴对称图形不一定只有一条对称轴;④两个能全等的图形一定能关于某条直线对称,其中正确的个数有()A.1 B.2 C.3 D.414.(2分)如图,一个高为12cm的杯子放入一个高度为10cm的空玻璃槽中,并向杯子中匀速注水,则玻璃槽中水面高度y(cm)随注水时间x(s)的变化图象大致是()A.B.C.D.15.(2分)如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()A.B.C.D.二、填空题(本大题共4个小题,每小题3分,共12分,)16.(3分)一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,如果取得红球或黑球的概率与取得白球的概率相同,那么m与n的关系是.17.(3分)若4x•32y=8,则2x+5y= .18.(3分)如图,把对边平行的纸带折叠,∠1=62°,则∠2= .19.(3分)李老师从家开车去学校,中途等红绿灯用时1分钟,之后又行驶了4千米到达学校,假设李老师开车速度始终不变,从出发开始计时,李老师离学校的距离为5(千米)与行驶的时间为t(分钟)的关系如图所示,则图中a= .三、解答题(本大题共7个小题,共68分)20.(12分)(1)利用乘法公式计算①1022②(a+2b+1)(a+2b﹣1)(2)先化简,再求值:[(﹣2x+y)(﹣2x﹣y)﹣(3y﹣2x)2]÷(4y),其中6x﹣5y=10.21.(7分)尺规作图(保留作图痕迹,不写作法)如图,C是∠AOB的边OB上一点(1)过C点作直线EF∥OA.(2)请说明作图的依据.22.(8分)在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF 关于某直线成轴对称,请在如图给出的图中画出4个这样的△DEF.(每个3×3正方形个点图中限画一种,若两个图形中的对称轴是平行的,则视为一种)23.(9分)如图,在四边形ABCD中,BC⊥AB,AE、CF分别是∠DAB和∠BCD的角平分线,且∠DAB与∠BCD互补,请你判断AE与CF的位置关系,并说明理由.[来源:学科网]24.(10分)如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.25.(10分)如图是一辆摩托车从家里出发,离家的距离(千米)随行驶时间(分)的变化而变化的情况.(1)摩托车从出发到最后停止共经过了多少时间?离家最远的距离是多少?(2)摩托车在哪一段时间内速度最快?最快速度是多少?(3)请你写出一个适合图象反映的实际情景.26.(12分)观察发现:如图1,OP平分∠MON,在OM,ON上分别取OA,OB,使OA=OB,再在OP上任取一点D,连接AD,BD.请你猜想AD与BD之间的数量关系,并说明理由.拓展应用:如图2,在△ABC中,∠ACB是直角,∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,A D,CE相交于点F,请你写出FE与FD之间的数量关系,并说明理由.参考答案一、选择题1.D.2.B.3.A.4.B.5.A.6.D.7.C.8.A.9.B.10.C.11.D.12.B.13.A.14.A.15.C.二、填空题16.m+n=8.17.3.18.56°.19.10.三、解答题20.解:(1)①1022=(100+2)2=1002+2×100×2+22=10404;②(a+2b+1)(a+2b﹣1)=(a+2b)2﹣12=a2+4ab+4b2﹣1;(2)[(﹣2x+y)(﹣2x﹣y)﹣(3y﹣2x)2]÷(4y)=[4x2﹣y2﹣9y2+12xy﹣4x2]÷4y=(﹣10y2+12xy)÷4y=﹣y+3x=(6x﹣5y),当6x﹣5y=10时,原式=×10=5.21.解:(1)如图所示,直线EF即为所求.[来源:](2)由作图知∠ECB=∠O,∴EF∥OA.22.解:如图,△DEF即为所求.(答案不唯一)23.解:AE∥CF,理由如下:∵AE、CF分别是∠DAB和∠BCD的角平分线,∴∠EAB=∠DAB,∠BCF=∠DCB,∵∠DAB+∠BCD=180°,∴∠DAB+∠BCD=180°,∴∠EAB+∠BCF=(∠DAB+∠BCD)=90°,∵BC⊥AB,∴∠CBF=90°,∴∠CFB+∠BCF=90°,∴∠EAB=∠CFB,∴AE∥CF.24.(1)证明:在△AOB和△DOC中,,∴△AOB≌△DOC;(2)解:∵△AOB≌△DOC,∴OA=OD,又E是AD的中点,∴OE⊥AD,即∠AEO=90°.25.解:(1)摩托车从出发到最后停止共经过:100分钟,离家最远的距离是:40千米;(2)摩托车在20~50分钟内速度最快,最快速度是:30÷=60(千米/小时);(3)小明父亲早上送小明去40千米外参加夏令营,由于早高峰行驶20分钟走了10千米,过了早高峰后继续行驶30分钟到达目的地,然后父亲立即返回,行驶50分钟回到家里.26.解:(1)AD=BD.理由:∵OP平分∠MON,∴∠DOA=∠DOB,∵OA=OB,OD=OD,∴△OAD≌△OBD,∴AD=DB.(2)FE=FD.理由:如图2,在AC上截取AG=AE,连接FG,∴△AEF≌△AGF,∴∠AFE=∠AFG,FE=FG.∵∠ACB是直角,即∠ACB=90°,[来源:学&科&网Z&X&X&K] 又∵∠B=60°,∴∠BAC=30°,∵AD,CE分别是∠BAC,∠BCA的平分线,[来源:学*科*网] ∴∠FAC+∠FCA=15°+45°=60°=∠AFE,∴∠AFE=∠AFG=∠CFD=60°,∴∠CFG=180°﹣60°﹣60°=60°,∴∠CFG=∠CFD,又FC为公共边,∴△CFG≌△CFD,∴FG=FD,∴FE=FD.初中七年级下学期期末考试数学试卷一、选择题共10小题。
七年级下期末数学试卷带答案
七年级下期末数学试卷带答案七年级数学期末考试复习要多做试题,不仅能提高数学成绩,还能为以后的初中数学打下结实的基础。
以下是店铺为你整理的七年级下期末数学试卷,希望对大家有帮助!七年级下期末数学试卷一、选择题(每小题3分,本题共30分)1.一个一元一次不等式组的解集在数轴上表示如图所示,则该不等式组的解集为A. B.C. D.2. 下列计算中,正确的是A. B. C. D.3. 已知,下列不等式变形中正确的是A. B. C. D.4. 下列各式由左边到右边的变形中,是因式分解的是A. B.C. D.5. 如图,点是直线上一点,过点作,那么图中和的关系是A. 互为余角B. 互为补角C. 对顶角D. 同位角6. 已知是方程的一个解,那么a的值为A.1B. -1C.-3D.37. 为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中10是A.个体B.总体C.总体的样本D.样本容量8. 如图,直线∥ ,直线与,分别交于点,,过点作⊥ 于点,若,则的度数为A.C.B.D.9. 为了解游客在野鸭湖国家湿地公园、松山自然保护区、玉渡山风景区和百里山水画廊这四个风景区旅游的满意率,数学小组的同学商议了几个收集数据的方案:方案一:在多家旅游公司调查400名导游;方案二:在野鸭湖国家湿地公园调查400名游客;方案三:在玉渡山风景区调查400名游客;方案四:在上述四个景区各调查100名游客.在这四个收集数据的方案中,最合理的是A. 方案一B. 方案二C.方案三D.方案四10. 数学小组的同学为了解“阅读经典”活动的开展情况,随机调查了50名同学,对他们一周的阅读时间进行了统计,并绘制成下图.这组数据的中位数和众数分别是A. 中位数和众数都是8小时B. 中位数是25人,众数是20人C. 中位数是13人,众数是20人,D. 中位数是6小时,众数是8小时二、填空题(每小题2分,本题共16分)11. 一种细胞的直径约为米,将用科学记数法表示为 .12 计算: .13. 分解因式: .14. 化简(x+y)2+(x+y)(x-y)= .15. 如图1,将边长为a的大正方形剪去一个边长为b的小正方形(a b),将剩下的阴影部分沿图中的虚线剪开,拼接后得到图2,这种变化可以用含字母a,b的等式表示为 .16. 在一次数学活动课上,老师让同学们用两个大小、形状都相同的三角板画平行线AB、CD, 并说出自己做法的依据. 小琛、小萱、小冉三位同学的做法如下:小琛说:“我的做法的依据是内错角相等,两直线平行. ”小萱做法的依据是______________________.小冉做法的依据是______________________.17. 算筹是中国古代用来记数、列式和进行各种数与式演算的一种工具.在算筹计数法中,以“立”,“卧”两种排列方式来表示单位数目,表示多位数时,个位用立式,十位用卧式,百位用立式,千位用卧式,以此类推.《九章算术》的“方程”一章中介绍了一种用“算筹图”解决一次方程组的方法.如图1,从左向右的符号中,前两个符号分别代表未知数x,y的系数.因此,根据此图可以列出方程:x+10y=26.请你根据图2列出方程组 .18. 如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由5个圆组成,第3个图由11个圆组成,……,按照这样的规律排列下去,则第9个图形由_______个圆组成,第n个图形由________个圆组成。
七年级下学期期末考试数学试卷(附含答案)
第5题图第9题图七年级下学期期末考试数学试卷(附含答案)一 选择题(每小题4分,共40分) 1. 9的平方根是( )A.3±B. 3C. 81D.81± 2.在平在直角坐标系中,点M (3,-2)位于( )A.第一象限B. 第二象限C. 第三象限D. 第四象限 3.下列调查中适合采用全面调查的是( )A.了解凯里市“停课不停学”期间全市七年级学生的听课情况B.了解新冠肺炎疫情期间某校七(1)班学生的每日体温C.了解疫情期间某省生产的所有口罩的合格率D.了解全国各地七年级学生对新冠状病毒相关知识的了解情况 4.下列运动属于平移的是( )A. 荡秋千B. 地球绕太阳转C. 风车的转动D.急刹车时,汽车在地面上的滑动5. 如图,在下列条件中,不能判定AB ∥DF 的是( )A. ∠A+∠AFD=180°B.∠A=∠CFDC. ∠BED=∠EDFD. ∠A=∠BED 6. 已知二元一次方程432=-y x ,用含x 的代数式表示y ,正确的是( ) A.342+=x y B. 342-=x y C. 234y x += D. 234yx -= 7. 已知b a >,下列不等式中错误的是( )A. 11+>+b aB. 22->-b aC. b a 22>D. b a 44->-8. 下列命题是真命题的是( )A.若||||b a =,则b a =B.经过直线外一点有且只有一条直线与已知直线平行C.同位角相等D.在同一平面内,如果b a ⊥,c b ⊥,那么c a ⊥ 9.如图,数轴上与40对应的点是( ) A.点A B.点B C.点C D.点D 10. 某种服装的进价为200元,出售时标价为300元; 由于换季,商店准备对该服装打折销售,但要保持利 润不低于20%,那么最多打( )A. 6折B. 7折C. 8折D. 9折 二 填空题(每小题4分,共32分) 11. 在实数①21,②11,③1415926.3,④16,⑤π,⑥ 2020020002.0(相邻两个2之间依次多一个0)中,无理数有 (填写序号).12. 如图,要在河岸l 上建立一水泵房引水到C 处,做法是:过点C 作CD ⊥l 于点D ,将水泵房建在了D 处.这样做最节省水管长度,其数学道理是 . 13. 已知⎩⎨⎧=-=13y x 是方程7=+y mx 的解,则m .14.如图,直线a ∥b ,点B 在a 上,点A 与点C 在b 上; 且AB ⊥BC.若∠1=034,则∠2= .第12题图第14题图15. 将50个数据分成5组列出频数分布表,其中第一组的频数为6,第二组与第五组的频数和为18,第三组的频率为0.2,则第四组的频率为 . 16.一个正数b 有两个不同的平方根1+a 和72-a ,则b a -21的立方根是 . 17.若关于x 的不等式组⎪⎩⎪⎨⎧<->-2210x a x 的所有整数解之和等于9,则a 的取值范围是 .18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上 向右 向下 向右的方向依次不断移动,每次移动1个单位,移动的路线如图所示。
七年级下学期期末考试数学试卷(附带答案解析)
七年级下学期期末考试数学试卷(附带答案解析)一选择题(每个小题4分,共40分。
在每个小题给出的四个选项中,只有一个选项正确)1.(4分)4的平方根是()A.±2B.﹣2C.2D.162.(4分)以下调查中,适合用抽样调查的是()A.了解我校七年级(1)班学生的视力情况B.了解北斗导航卫星的设备零件的质量情况C.企业招聘时应聘人员进行面试D.检测某市的空气质量3.(4分)在平面直角坐标系中,点P(1,﹣1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.(4分)如图.AB∥CD,∠1=115°,划∠2的度数是()A.65°B.75°C.115°D.85°5.(4分)已知是方程组的解,则a+b的值为()A.2B.1C.3D.﹣16.(4分)乙知a=﹣2,α介于两个连续自然数之间,则下列结论中正确的是()A.1<a<2B.3<a<4C.2<a<3D.4<a<57.(4分)在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣38.(4分)某校春季运动会比赛中,八年级(1)班(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的方程组应为()A.B.C.D.9.(4分)不等式组有两个整数解,则a的取值范围是()A.﹣5<a<﹣4B.﹣5<a≤﹣4C.﹣4<a≤﹣3D.﹣5≤a≤﹣410.(4分)如图,长方形ABCD四个顶点的坐标分别为A(2,1),B(﹣2,1),C(﹣2,﹣1),(2,﹣1)物体甲和物体乙分别由点P(2,0)同时出发,沿长方形ABCD的边作环绕运动.物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2022次相遇地点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣1,﹣1)D.(2,﹣1)二填空(每个小题4分,共32分)11.(4分)在﹣2 ﹣π中,无理数有个.12.(4分)把二元一次方程2x+y﹣3=0化成用x表示y的式子为.13.(4分)已知点P(3a﹣8,a﹣1),若点P在x轴上,则点P的坐标为.14.(4分)如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为度.15.(4分)为了解某地区七年级8460名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,样本容量是.16.(4分)一次数学基础知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,某同学获得优秀(90分或90分以上),则这位同学至少答对了道题.17.(4分)如图,数轴上点A表示数﹣1,点B表示数1,过数轴上的点B作BC垂直于数轴,若AC=,以点A为圆心,AC为半径作圆交正半轴于点P,则点P所表示的数是.18.(4分)一副三角尺按如图所示叠放在一起,其中点B,D重合,若固定三角形AOB,将三角形ACD绕点A顺时针旋转一周,共有次出现三角形ACD的一边与三角形AOB的某一边平行.三解答题(共78分)19.(12分)(1)计算﹣|﹣2|﹣4+8;(2)解方程组.20.(8分)解不等式组,并将其解集表示在如图所示的数轴上.21.(12分)如图,△ABC各顶点的坐标分别为A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)将△ABC向上平移5个单位,再向右平移2个单位,得到△A1B1C1,画出平移后的图形△A1B1C1,并写出平移后△A1B1C1对应顶点的坐标.(2)求出△ABC的面积S△ABC.(3)在y轴上是否存在点P,使以A B P三点为顶点的三角形满足:S△ABP=3S△ABC,若存在,请求出点P的坐标;若不存在,请说明理由.22.(12分)某学校为了解《大中小学劳动教育指导纲要(试行)》落实情况,就假期“平均每大期助父母干家务所用时长”进行了调查,如图是根据相关数据绘制的统计图的一部分,根据上述信息,回答下列问题:(1)在本次陆机抽取的样本中,调查的学生人数是多少?(2)求m,n的值;(3)补全频数分布直方图;(4)如果该校共有学生3000人,请你估计“平均每天帮助父母干家务所用时长不少于30分钟”的学生大约有多少人?23.(10分)如图.∠1+∠2=180°,∠3=∠B,试说明:∠CED=∠CAB.24.(12分)“新冠疫情”对全球经济造成了严重冲击,英雄的武汉人民为抗击“疫情”付出了巨大的努力并取得了伟大的胜利.为了加快复工复产,武汉市某企业需要运输一批生产物资.根据调查得知,2辆大货车与3辆小货车一次可以运输600箱生产物资;5辆大货车与6辆小货车一次可以运输1350箱生产物资.(1)求1辆大货车和1辆小货车一次分别可以运输多少箱生产物资?(2)现计划用这样的两种货车共12辆运输这批生产物资,已知每辆大货车一次需要运输费用5000元,每辆小货车一次需要运输费用3000元.若运输物资不少于1500箱,并且运输总费用小于54000元.请你列出所有运输方案,并指出哪种运输方案所需费用最少,最少费用是多少元?25.(12分)如图,已知AM∥BN,点P是射线AM上一动点(与点A不重合),BC,BD分别平分∠ABP 和∠PBN,分别交射线AM于点C,D.(1)若∠A=70°,则∠CBD=:(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生改变?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当∠A=3∠ABC,∠BCM=2∠BDC,求∠A的度数.参考答案与解析一选择题1.(4分)4的平方根是()A.±2B.﹣2C.2D.16【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4;∴4的平方根是±2.故选:A.2.(4分)以下调查中,适合用抽样调查的是()A.了解我校七年级(1)班学生的视力情况B.了解北斗导航卫星的设备零件的质量情况C.企业招聘时应聘人员进行面试D.检测某市的空气质量【分析】根据普查得到的调查结果比较准确,但所费人力物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A.了解我校七年级(1)班学生的视力情况,适合全面调查,故本选项不符合题意;B.了解北斗导航卫星的设备零件的质量情况,适合全面调查,故本选项不符合题意;C.企业招聘时应聘人员进行面试,适合全面调查,故本选项不符合题意;D.检测某市的空气质量,适合抽样调查,故本选项符合题意.故选:D.3.(4分)在平面直角坐标系中,点P(1,﹣1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据点的横纵坐标的符号可得所在象限.【解答】解:∵点P的横坐标是正数,纵坐标是负数;∴点P(1,﹣1)在第四象限;故选:D.4.(4分)如图.AB∥CD,∠1=115°,划∠2的度数是()A.65°B.75°C.115°D.85°【分析】根据AB∥CD,可知∠3=∠1=115°,再根据邻补角可求∠2.【解答】解:如图:∵AB∥CD;∴∠3=∠1=115°;∴∠2=180°﹣∠3=65°.故选:A.5.(4分)已知是方程组的解,则a+b的值为()A.2B.1C.3D.﹣1【分析】根据二元一次方程组的解的定义解决此题.【解答】解:由题意得,.∴.∴a+b=5+(﹣4)=1.故选:B.6.(4分)乙知a=﹣2,α介于两个连续自然数之间,则下列结论中正确的是()A.1<a<2B.3<a<4C.2<a<3D.4<a<5【分析】先估算的范围,4,然后估算﹣2即可.【解答】解:∵4;∴2.故选:C.7.(4分)在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3【分析】根据平行于x轴的直线上点的纵坐标相等列出方程计算即可得解.【解答】解:∵过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴;∴2a≠4+b,6=3﹣b;解得b=﹣3,a≠.故选:B.8.(4分)某校春季运动会比赛中,八年级(1)班(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的方程组应为()A.B.C.D.【分析】此题的等量关系有:(1)班得分:(5)班得分=6:5;(1)班得分=(5)班得分×2﹣40.【解答】根据(1)班与(5)班得分比为6:5,有:x:y=6:5,得5x=6y;根据(1)班得分比(5)班得分的2倍少40分,得x=2y﹣40.可列方程组为.故选:D.9.(4分)不等式组有两个整数解,则a的取值范围是()A.﹣5<a<﹣4B.﹣5<a≤﹣4C.﹣4<a≤﹣3D.﹣5≤a≤﹣4【分析】先根据不等式的性质求出第一个不等式的解集,再根据求不等式组解集的规律求出不等式组的解集,根据不等式组有两个整数解得6≤2﹣x<7,再求出a的范围即可.【解答】解:;解不等式①,得x>4;所以不等式组的解集是4<x≤2﹣a;∵不等式组有两个整数解(是5,6);∴6≤2﹣a<7;∴4≤﹣a<5;∴﹣4≥a>﹣5;即﹣5<a≤﹣4;故选:B.10.(4分)如图,长方形ABCD四个顶点的坐标分别为A(2,1),B(﹣2,1),C(﹣2,﹣1),(2,﹣1)物体甲和物体乙分别由点P(2,0)同时出发,沿长方形ABCD的边作环绕运动.物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2022次相遇地点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣1,﹣1)D.(2,﹣1)【分析】利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.【解答】解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在AB边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在CD边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在P点相遇;…此时甲乙回到原出发点,则每相遇三次,两点回到出发点;∵2022÷3=674;故两个物体运动后的第2022次相遇地点的是:第三次相遇地点;即物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在点A相遇;此时相遇点的坐标为:(2,0).故选:A.二填空11.(4分)在﹣2 ﹣π中,无理数有3个.【分析】无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数.【解答】解:在﹣2 ﹣π中,无理数有﹣π,共3个.故答案为:3.12.(4分)把二元一次方程2x+y﹣3=0化成用x表示y的式子为y=﹣2x+3.【分析】把含y的项放到方程左边,移项,求y即可.【解答】解:2x+y﹣3=0;移项,得y=﹣2x+3.故答案为:y=﹣2x+3.13.(4分)已知点P(3a﹣8,a﹣1),若点P在x轴上,则点P的坐标为(﹣5,0).【分析】根据x轴上点的纵坐标为0列式求出a,再求解即可.【解答】解:∵点P(3a﹣8,a﹣1)在x轴上;∴a﹣1=0;解得a=1;∴3a﹣8=3×1﹣8=﹣5;所以,P(﹣5,0).故答案为:(﹣5,0).14.(4分)如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为48度.【分析】根据平行线的性质得∠BFD=∠B=68°,再根据三角形的一个外角等于与它不相邻的两个内角和,得∠D=∠BFD﹣∠E,由此即可求∠D.【解答】解:∵AB∥CD,∠B=68°;∴∠BFD=∠B=68°;而∠D=∠BFD﹣∠E=68°﹣20°=48°.故答案为:48.15.(4分)为了解某地区七年级8460名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,样本容量是400.【分析】根据样本容量是指一个样本中所包含的单位数判断即可.【解答】解:为了解某地区七年级8460名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,样本容量是400.故答案为:400.16.(4分)一次数学基础知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,某同学获得优秀(90分或90分以上),则这位同学至少答对了24道题.【分析】根据题意,设至少答对了x题,则答对获得的分数为4x,而答错损失的分数为30﹣x,由这次竞赛中,某同学获得优秀(90分或90分以上),列出不等式求解即可.【解答】解:设至少答对了x题,那么答错或者不答的有(30﹣x)题4x﹣(30﹣x)≥90解得x≥24答:至少答对了24题.故答案为:24.17.(4分)如图,数轴上点A表示数﹣1,点B表示数1,过数轴上的点B作BC垂直于数轴,若AC=,以点A为圆心,AC为半径作圆交正半轴于点P,则点P所表示的数是﹣1+.【分析】根据圆的半径相等得到AP=AC=即可得出点P表示的点.【解答】解:∵AP=AC=;∴点P所表示的数是﹣1+.故答案为:﹣1+.18.(4分)一副三角尺按如图所示叠放在一起,其中点B,D重合,若固定三角形AOB,将三角形ACD绕点A顺时针旋转一周,共有8次出现三角形ACD的一边与三角形AOB的某一边平行.【分析】分8种情况讨论,即可求解.【解答】解:分8种情况讨论:(1)如图1,AD边与OB边平行时,∠BAD=45°或135°;(2)如图2,当AC边与OB平行时,∠BAD=90°+45°=135°或45°;(3)如图3,DC边与AB边平行时,∠BAD=60°+90°=150°;(4)如图4,DC边与OB边平行时,∠BAD=135°+30°=165°;(5)如图5,DC边与OB边平行时,∠BAD=45°﹣30°=15°;(6)如图6,DC边与AO边平行时,∠BAD=15°+90°=105°(7)如图7,DC边与AB边平行时,∠BAD=30°;(8)如图8,DC边与AO边平行时,∠BAD=30°+45°=75°;综上所述:共有8次出现三角形ACD的一边与三角形AOB的某一边平行.故答案为:8.三解答题(共78分)19.(12分)(1)计算﹣|﹣2|﹣4+8;(2)解方程组.【分析】(1)先化简,去绝对值符号,再算加减即可;(2)利用加减消元法进行求解即可.【解答】解:(1)﹣|﹣2|﹣4+8=4﹣(2﹣)﹣4+8=4﹣2+﹣4+8=6+;(2);①×2得:8x+2y=30③;②+③得:11x=33;解得:x=3;把x=3代入①得:12+y=15;解得:y=3;所以这个方程组的解是.20.(8分)解不等式组,并将其解集表示在如图所示的数轴上.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:;由①得x≤1;由②解得x>﹣2;所以不等式组的解集为﹣2<x≤1;解集在数轴上表示如下:21.(12分)如图,△ABC各顶点的坐标分别为A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)将△ABC向上平移5个单位,再向右平移2个单位,得到△A1B1C1,画出平移后的图形△A1B1C1,并写出平移后△A1B1C1对应顶点的坐标.(2)求出△ABC的面积S△ABC.(3)在y轴上是否存在点P,使以A B P三点为顶点的三角形满足:S△ABP=3S△ABC,若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)利用点平移的坐标特征得到A1B1C1的坐标,然后描点即可;(2)利用三角形面积公式计算;(3)设点P的坐标为(0,t),根据三角形面积公式得到×2×|t+4|=3×3,然后解方程求出t,从而得到P点坐标.【解答】解:(1)如图,△A1B1C1为所作;A1(0,1 )B1(2,1 )C1(3,4);(2)S△ABC=×2×3=3;(3)存在.设点P的坐标为(0,t);∵S△ABP=3S△ABC;∴×2×|t+4|=3×3;解得t=5或t=﹣13;∴P点坐标为(0,5)或(0,﹣13).22.(12分)某学校为了解《大中小学劳动教育指导纲要(试行)》落实情况,就假期“平均每大期助父母干家务所用时长”进行了调查,如图是根据相关数据绘制的统计图的一部分,根据上述信息,回答下列问题:(1)在本次陆机抽取的样本中,调查的学生人数是多少?(2)求m,n的值;(3)补全频数分布直方图;(4)如果该校共有学生3000人,请你估计“平均每天帮助父母干家务所用时长不少于30分钟”的学生大约有多少人?【分析】(1)由0~10分钟的人数及其所占百分比可得总人数;(2)先根据5个分组的人数之和等于总人数求出20﹣30的人数,再分别用20﹣30 30﹣40分钟的人数除以被调查的总人数即可求出m n的值;(3)根据以上所求结果即可补全图形;(4)用总人数乘以样本中30﹣40 40﹣50分钟人数和占被调查人数的比例即可.【解答】解:(1)在本次随机抽取的样本中,调查的学生人数是60÷30%=200(人);(2)∵20﹣30分钟的人数为200﹣(60+40+50+10)=40(人);∴m%=×100%=20%,n%=×100%=25%;∴m=20 n=25;(3)补全频数分布直方图如下:(4)3000×=900(人).答:该校共有学生3000人,估计“平均每天帮助父母干家务所用时长不少于30分钟”的学生大约有900人.23.(10分)如图.∠1+∠2=180°,∠3=∠B,试说明:∠CED=∠CAB.【分析】由图可得∠2+∠ADC=180°,从而可得∠1=∠ADC,可得EF∥CD,从而可得∠3=∠CDE,可得∠B=∠CDE,可推出AB∥DE,可得∠CED=∠CAB.【解答】证明:∵∠1+∠2=180°,∠2+∠ADC=180°;∴∠1=∠ADC;∴FE∥DC;∴∠3=∠EDC;∵∠3=∠B;∴∠B=∠EDC;∴AB∥DE;∴∠CED=∠CAB.24.(12分)“新冠疫情”对全球经济造成了严重冲击,英雄的武汉人民为抗击“疫情”付出了巨大的努力并取得了伟大的胜利.为了加快复工复产,武汉市某企业需要运输一批生产物资.根据调查得知,2辆大货车与3辆小货车一次可以运输600箱生产物资;5辆大货车与6辆小货车一次可以运输1350箱生产物资.(1)求1辆大货车和1辆小货车一次分别可以运输多少箱生产物资?(2)现计划用这样的两种货车共12辆运输这批生产物资,已知每辆大货车一次需要运输费用5000元,每辆小货车一次需要运输费用3000元.若运输物资不少于1500箱,并且运输总费用小于54000元.请你列出所有运输方案,并指出哪种运输方案所需费用最少,最少费用是多少元?【分析】(1)设1辆大货车可以运输x箱生产物资,1辆小货车可以运输y箱生产物资,根据2辆大货车与3辆小货车一次可以运输600箱生产物资;5辆大货车与6辆小货车一次可以运输1350箱生产物资列出方程组,解之得出结果即可.(2)设大货车m辆,则小货车(12﹣m)辆,根据运输物资不少于1500箱,并且运输总费用小于54000元列出不等式组解出结果,计算最少费用.【解答】解:(1)设1辆大货车可以运输x箱生产物资,1辆小货车可以运输y箱生产物资.由题意得.解方程组得.答:1辆大货车可以运输150箱生产物资,1辆小货车可以运输100箱生产物资.(2)设大货车m辆,则小货车(12﹣m)辆.由题意得.解不等式组得6≤m<9.∵m取正整数6,7,8.∴运输方案有三种.大货车6辆,小货车6辆,费用为5000×6+3000×6=48000(元);大货车7辆,小货车5辆,费用为5000×7+3000×5=50000(元);大货车8辆,小货车4辆,费用为5000×8+3000×4=52000(元);48000<50000<52000.共计三种方案,当大货车6辆,小货车6辆时,费用最少,最少费用为48000元.25.(12分)如图,已知AM∥BN,点P是射线AM上一动点(与点A不重合),BC,BD分别平分∠ABP 和∠PBN,分别交射线AM于点C,D.(1)若∠A=70°,则∠CBD=55°:(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生改变?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当∠A=3∠ABC,∠BCM=2∠BDC,求∠A的度数.【分析】(1)由平行线的性质,两直线平行,同旁内角互补可直接求出;由角平分线的定义可以证明∠CBD=∠ABN,即可求出结果;(2)不变,∠APB:∠ADB=2:1,由AM∥BN得∠APB=∠PBN,∠ADB=∠DBN,根据BD平分∠PBN得∠PBN=2∠DBN,即可推出结论;(3)先根据∠A=3∠ABC和角平分线的定义可得∠ABP=2∠ABC=∠A,再根据∠BCM=2∠BDC和(2)中的∠APB=∠PBN=2∠DBN=2∠BDC可得,最后根据平行线的性质可求出∠A的度数.【解答】解:(1)∵AM∥BN;∴∠ABN+∠A=180°;∵∠A=70°;∴∠ABN=110°∴∠ABP+∠PBN=110°;∵BC平分∠ABP,BD平分∠PBN;∴∠ABP=2∠CBP∠PBN=2∠PBD(角平分线的定义);∴2∠CBP+2∠DBP=110°;∴∠CBD=∠CBP+∠DBP=55°;故答案为:55°;(2)∠APB与∠ADB之间数量关系是:∠APB=2∠ADB.不随点P运动而变化.理由是:∵AM∥BN;∴∠APB=∠PBN,∠ADB=∠DBN(两直线平行内错角相等);∵BD平分∠PBN(已知);∴∠PBN=2∠DBN(角平分线的定义);∴∠APB=∠PBN=2∠DBN=2∠ADB(等量代换);即∠APB=2∠ADB.(3)∵∠A=3∠ABC;∴;∵BC平分∠ABP;∴∠ABP=2∠ABC=∠A;∵∠BCM=∠A+∠ABC;∴;∵∠BCM=2∠BDC;由(2)可知:∠APB=∠PBN=2∠DBN=2∠BDC;∴∠PBN=∠BCM=∠A;∴;∵AM∥BN;∴∠A+∠ABN=180°;即:∠A+2∠A=180°;∴∠A=60°。
初一年级下册期末数学试题(含答案)
初一年级下册期末数学试题(含答案)每个学期快结束时,学校往往以试卷的形式对各门学科进行该学期知识掌握的检测,这便是期末考试。
接下来小编为大家精心准备了初一年级下册期末数学试题,希望大家喜欢!一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.任意画一个三角形,它的三个内角之和为A. 180°B.270°C.360°D.720°2.下列命题中,真命题的是A.相等的两个角是对顶角B.若a>b,则>C.两条直线被第三条直线所截,内错角相等D.等腰三角形的两个底角相等3.下列各计算中,正确的是A.a3÷a3 =aB.x3+x3=x6C.m3?m3 =m6D.(b3)3=b64.如图,已知AB// CD//EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有A.5个B.4个C.3个D.2个5.由方程组,可得到x与y的关系式是A.x+y=9B.x+y=3C.x+y=-3D.x+y=-96.用四个完全一样的长方形(长、宽分别设为x、y)拼成如图所示的大正方形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则下列关系式中不正确的是A.x+y=6B.x-y=2C.x?y=8D.x2+y2=367.用长度为2cm、3cm、4cm、6cm的小木棒依次首尾相连(连接处可活动,损耗长度不计),构成一个封闭图形ABCD,则在变动其形状时,两个顶点间的最大距离为A.6cmB.7cmC.8cmD.9cm8.若3×9m×27m=321,则m的值是A.3B.4C.5D.69.如图,已知AB∥CD,则∠a、∠B和∠y之间的关系为A.α+β-γ=180°B.α+γ=βC.α+β+γ=360°D.α+β-2γ=180°10.若二项式4m2+9加上一个单项式后是一个含m的完全平方式,则这样的单项式共有,A.2个B.3个C.4个D.5个二、填空题(本大题共8小题,每小题3分,共24分)11.化简▲ .12.“同位角相等,两直线平行”的逆命题是▲ .13.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2= ▲ °.14.已知x-y=4,x-3y=1,则x2-4xy+3y2的值为▲ .15.已知二元一次方程x-y=1,若y的值大于-1,则x的取值范围是▲ .16.如图,已知∠AOD=30°,点C是射线OD上的一个动点.在点C的运动过程中,△AOC恰好是等腰三角形,则此时∠A所有可能的度数为▲ °.17.如图,将正方形纸片ABCD沿BE翻折,使点C落在点F 处,若∠DEF=30°,则∠ABF的度数为▲ .观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
七年级下学期期末数学试卷含答案
七年级下学期期末数学试卷(时间:120分钟 满分:120分)亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 请认真审题,看清要1、剧院里5排2号可以用(5,2)表示,则(7,4)表示 。
2、不等式-4x ≥-12的正整数解为 .3、要使4 x 有意义,则x 的取值范围是_______________。
4、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_______________________.5、如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。
6、等腰三角形一边等于5,另一边等于8,则周长是_________ .7、如图所示,请你添加一个条件....使得AD ∥BC , 。
8、若一个数的立方根就是它本身,则这个数是 。
9、点P (-2,1)向上平移2个单位后的点的坐标为 。
10、某校去年有学生1000名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%。
问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x 名,走读学生y 名,则可列出方程组为 。
二、细心选一选:(每题3分,共30分)11、下列说法正确的是( )A 、同位角相等;B 、在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥c 。
C 、相等的角是对顶角;D 、在同一平面内,如果a ∥b,b ∥c ,则a ∥c 。
12、观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)的平移得到的是( )13、有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数; (3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。
其中正确的说法的个数是( )A .1B .2C .3D .414、若多边形的边数由3增加到n 时,其外角和的度数( )A.增加B.减少C.不变D.变为(n-2)180o15、某人到瓷砖店去买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可能是( )A 、等边三角形;B 、正方形;C 、正八边形;D 、正六边形(1) A B C D E C D B A C B A C D B A16、如图,下面推理中,正确的是( )A.∵∠A+∠D=180°,∴AD ∥BC;B.∵∠C+∠D=180°,∴AB ∥CD;C.∵∠A+∠D=180°,∴AB ∥CD;D.∵∠A+∠C=180°,∴AB ∥CD17、方程2x-3y=5,x+y3=6,3x-y+2z=0,2x+4y,5x-y>0中是二元一次方程的有( )个。
七年级下学期期末数学试卷含答案(共3套,人教版)
( ⎩b = 3 C . ⎧⎨a = 0 =的解不是负值,那么 a 与 b 的关系是( ).B. b ≥ aC.5a =3bD. 5a ≥3b七年级第二学期期末质量检测数学试卷一、选择题(本大题共 10 小题,每小题 3 分,共 30 分. 在每小题给出的四个选项中,选出符合题目要求的一项并填在表格中 .)题号1 2 3 4 5 6 7 8 9 10 得分答案1.下列说法正确的是( )A. 4 的算术平方根是 2C. 27 的立方根是±3B. 16 的平方根是 ± 2D. 9 的平方根是 ± 32.点 A 关于 x 轴对称的点为 A ′ 3,- 2 ),则点 A 的关于原点的对称点坐标是A.( 3,2 )B.( - 3,2 )C.( - 3,-2 )D. ( - 2,3 )3. 下列调查方式,你认为最合适的是A. 了解恒安新区每天的流动人口数,采用抽样调查方式B. 要了解全市七年级学生英语单词的掌握情况,采用全面调查方式C. 了 解矿区居民日平均用水量,采用全面调查方式D. 旅客进火车站上车前 的安检,采用抽样调查方式4.如图,把一块含有 45°的直角三角形的两个顶点放 在直尺的对边上.如果∠1=25°,那么∠2的度数是( )A .C .30° B .25°20° D .15°⎧bx - 2 y = 2 ⎧x = 2 5.若方程组 ⎨ 的解是 ⎨ ,则 a 、b 的值为()⎩ ax + 3 y = 5 ⎩ y = 1⎧a = 3A . ⎨⎩b = -2⎧a = -1 B . ⎨⎩b = 2 ⎧a = 1 D . ⎨ ⎩b = 26.如果关于 x 的方程A. a > 3 b 52 x + a 4 x + b3 5 35⎩x > k (12.当 x 满足______时, 的值不小于- 4 且小于 8.7.如图,AD ∥BC ∥x 轴,下列说法正确的是().A. A 与 D 的横坐标相同B. C 与 D 的横坐标相同C. B 与 C 的纵坐标相同D. B 与 D 的纵坐标相同⎧1 < x ≤ 2, 8.若不等式组 ⎨有解,则 k 的取值范围是).A. k <2B. k ≥2C. k <1D. 1≤k <2 9.二元一次方程 3x -2y =1 的不超过 10 的正整数解共有( )组.A. 1B. 2C. 3D. 410.甲、乙两数和为 21,甲数的 2 倍等于乙数的 5 倍,求甲、乙两数.设甲数为x ,乙数为 y , 则下列方程组正确的是( ).⎧x + y = 21, (A) ⎨⎩5x = 2 y ⋅⎧2 x + 5 y = 21, (C) ⎨⎩2 x = 5 y . ⎧x + y = 21, (B) ⎨⎩2 x = 5 y ⋅⎧2 x + 5 y = 21, (D) ⎨⎩5x = 2 y .二、 填空题: 本大题共 6 小题,每题 3 分,共 18 分. 请把答案填在题中横线上.11.如图,直线 AB ,CD 相交于点 O ,OE ⊥AB ,O 为垂足,∠EOD =30°,则 ∠AOC = .1 - 3x213 . 若 (x + y - 2)2 + | 4x + 3y - 7 | = 0 , 则 8x - 3y 的 值 为 .14.为了让大家感受丢 弃塑料袋对环境的影响,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33,25,28,26,25,31.如果该班有 45 位 学 生 , 那 么 根 据 提 供 的 数 据 估 计 本 周 全 班 各 家 丢 弃 塑 料 袋 的 总 数 量 约 为 .15.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称 该点是整点。
七年级下学期期末考试数学试卷(带答案解析)
七年级下学期期末考试数学试卷(带答案解析)一、选择题(本大题共8小题,每小题3分,共24分)1.如图所示,AP平分∠BAC,点M,N分别在边AB,AC上,如果添加一个条件,即可推出AM=AN,那么下面条件不正确的是()A.PM=PN B.∠APM=∠APN C.MN⊥AP D.∠AMP=∠ANP2.下列所给的四组条件中,能作出唯一三角形的是()A.AB=2cm,BC=6cm,AC=3cm B.BC=3cm,AC=5cm,∠B=90°C.∠A=∠B=∠C=60°D.AB=4cm,AC=6cm,∠C=30°3.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,添加的一组条件不正确的是()A.BC=DC,∠A=∠D B.BC=EC,AC=DCC.∠B=∠E,∠BCE=∠ACD D.BC=EC,∠B=∠E4.打碎的一块三角形玻璃如图所示,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是()A.带①②去B.带②③去C.带③④去D.带②④去5.如图,AB=AC,点D、E分别是AB、AC上一点,AD=AE,BE、CD相交于点M.若∠BAC=70°,∠C=30°,则∠BMD的大小为()A.50°B.65°C.70°D.80°6.边长都为整数的△ABC和△DEF全等,AB与DE是对应边,AB=2,BC=4,若△DEF的周长为奇数,则DF 的值为()A.3 B.4 C.3或5 D.3或4或57.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2cm,BE=0.5cm,则DE的长为()A.0.5cm B.1cm C.1.5cm D.2cm8.下列命题中,说法不正确的有()个.①形状相同的两个三角形全等;②两边和一角对应相等的两个三角形全等;③周长相等的两个等腰三角形全等;④有两角及其中一角的角平分线对应相等的两个三角形全等.A.4个B.3个C.2个D.1个二、填空题(本大题共8小题,每小题3分,本大题共24分.)9.一个整数8150…0用科学记数法表示为8.15×109,则原数中“0”的个数为个.10.若3m=2,3n=5,则33m+2n=.11.命题“直角三角形两锐角互余”的逆命题是:.12.已知关于x,y的二元一次方程y+ax=b的部分解如表①所示,二元一次方程2x﹣cy=d的部分解分别如表②所示,则关于x,y的二元一次方程组的解为.x﹣1 0 1 2 3y﹣4 ﹣3 ﹣2 ﹣1 0表①x﹣1 0 1 2 3y 5 3 1 ﹣1 ﹣3表②13.如图,△ABC中,AD为BC边上的中线,DE⊥AB,垂足为点E,其中AB=10,DE=3,若BD=5,则点A 到BC的距离为.14.甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为,乙看错了方程②中的b,得到方程组的解为,则a2020+()2021=.15.若关于x的不等式组的整数解只有3个,则a的取值范围是.16.如图,在四边形ABCD中,∠C+∠D=207°,E、F分别是AD,BC上的点,将四边形CDEF沿直线EF翻折,得到四边形C′D′EF,C′F交AD于点G,若△EFG有两个角相等,则∠EFG=°.三、解答题(本大题共10小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(10分)计算:(1)22﹣(π﹣1)0+3﹣2×(﹣6);(2)(x+2y)(x﹣y)﹣y(x﹣2y).18.(10分)解下列方程组:(1);(2).19.(10分)解下列不等式(组),并把它们的解集在数轴上表示出来(1)解不等式:<4﹣;(2)解不等式组:.20.(8分)因式分解:(1)3ax2﹣3ay2;(2)x4﹣2x2y2+y4.21.(6分)解方程组与不等式组:(1);(2).22.(6分)如图,在方格纸内将△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角尺画图:(1)补全△A′B′C′;(2)画出AC边上的中线BD;(3)求△ABD的面积.23.(6分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),中x=﹣2,y=2.24.(6分)如图,△ABC与△DCB中,AC与BD交于点E,且∠ABC=∠DCB,AB=DC.(1)求证:△ABC≌DCB;(2)当∠EBC=30°,求∠AEB的度数.25.(6分)已知非负数x、y满足,设L=2x+y﹣3k.(1)求k的取值范围;(2)求满足条件的L的所有整数值.26.(6分)某校为提高学生的阅读品味,现决定购买获得第十届茅盾文学奖的《北上》(徐则臣著)和《牵风记》(徐怀中著)两种书共50本.已知购买6本《北上》与购买7本《牵风记》的价格相同;购买2本《北上》和1本《牵风记》需100元.(1)求这两种书的单价;(2)若购买《北上》的数量不少于所购买《牵风记》数量的一半,且购买两种书的总价不超过1600元.请问有哪几种购买方案?哪种购买方案的费用最低?最低费用为多少元?参考答案与解析一、选择题1.【分析】根据已知条件结合三角形全等的判定方法,验证各选项提交的条件是否能证△APM≌△APN即可.【解答】解:∵AP平分∠BAC,∴∠BAP=∠CAP,A、由∠BAP=∠CAP,PM=PN,AP=AP,不能判定△APM≌△APN,∴不推出AM=AN,故选项A符合题意;B、由∠BAP=∠CAP,AP=AP,∠APM=∠APN,能判定△APM≌△APN(ASA),∴AM=AN,故选项B不符合题意;C、由∠BAP=∠CAP,AP=AP,MN⊥AP,能判定△APM≌△APN(ASA),∴AM=AN,故选项C不符合题意;D、由∠BAP=∠CAP,AP=AP,∠AMP=∠ANP,能判定△APM≌△APN(AAS),∴AM=AN,故选项D不符合题意;故选:A.2.【分析】根据三角形三边的关系对A进行判断;根据全等三角形的判定方法对B、C、D进行判断.【解答】解:A、因为AB+AC<BC,三条线段不能组成三角形,所以A选项不符合题意;B、BC=3cm,AC=5cm,∠B=90°,根据“SAS”可判断此三角形为唯一三角形,所以B选项符合题意;C、利用∠A=∠B=∠C=60°不能确定三角形的大小,所以C选项不符合题意;D、利用AB=4cm,AC=6cm,∠C=30°可画出两三角形,所以D选项不符合题意.故选:B.3.【解答】解:A.AB=DE,BC=DC,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEC,故本选项符合题意;B.AC=DC,AB=DE,BC=EC,符合全等三角形的判定定理SSS,能推出△ABC≌△DEC,故本选项不符合题意;C.∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,即∠ACB=∠DCE,∵∠B=∠E,AB=DE,∴△ABC≌△DEC(AAS),故本选项不符合题意;D.AB=DE,∠B=∠E,BC=EC,符合全等三角形的判定定理SAS,能推出△ABC≌△DEC,故本选项不符合题意;故选:A.4.【解答】解:A、带①②去,符合ASA判定,选项符合题意;B、带②③去,仅保留了原三角形的一个角和部分边,不符合任何判定方法,选项不符合题意;C、带③④去,仅保留了原三角形的一个角和部分边,不符合任何判定方法,选项不符合题意;D、带②④去,仅保留了原三角形的两个角和部分边,不符合任何判定方法,选项不符合题意;故选:A.5.【解答】解:在△ADC与△AEB中,,∴△ADC≌△AEB(SAS),∴∠B=∠C,∠AEB=∠ADC,∵∠BAC=70°,∠C=30°,∴∠AEB=∠ADC=180°﹣∠BAC﹣∠C=180°﹣70°﹣30°=80°,∴∠BMC=∠DME=360°﹣∠AEB﹣∠ADC﹣∠BAC=360°﹣80°﹣80°﹣70°=130°,∴∠BMD=180°﹣130°=50°,故选:A.6.【解答】解:AC的范围是2<AC<6,则AC的奇数值是3或5.△ABC和△DEF全等,AB与DE是对应边,则DE=AB=2,当DF=AC时,DF=3或5.当DF=BC时,DF=4.故选:D.7.【解答】解:∵BE⊥CE,AD⊥CE,∴∠ADC=∠CEB,∵∠ACB=90°,即∠ACD+∠BCE=90°,∠ACD+∠CAD=90°,∴∠CAD=∠BCE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴AD=CE=2,CD=BE=0.5,∴DE=CE﹣CD=2﹣0.5=1.5(cm).故选:C.8.【解答】解:①形状、大小完全相同的两个三角形全等,原命题是假命题;②两边和其夹角对应相等的两个三角形全等,原命题是假命题;③周长相等的两个等腰三角形不一定全等,原命题是假命题;④有两角及其中一角的角平分线对应相等的两个三角形全等,是真命题;故选:B.二、填空题9.【解答】解:∵8.15×109=8150000000,∴原数中有7个0,故答案为:7.10.【解答】解:∵3m=2,3n=5,∴33m+2n=(3m)3×(3n)2=23×52=8×25=200.故答案为:20011.【解答】解:因为“直角三角形两锐角互余”的题设是“三角形是直角三角形”,结论是“两个锐角互余”,所以逆命题是:“如果三角形有两个锐角互余,那么这个三角形是直角三角形”.故答案为:如果三角形有两个锐角互余,那么这个三角形是直角三角形.12.【解答】解:把x=0,y=﹣3;x=1,y=﹣2代入y+ax=b得:,解得:;把x=0,y=3;x=1,y=1代入2x﹣cy=d得:,解得:,代入方程组得:,解得:.故答案为:13.【解答】解:过点A作AF⊥BC,垂足为F.∵AB=10,DE=3,∴S△ABD=AB×DE=15.∵AD为BC边上的中线,∴CD=BD=5,S△ADC=S△ABD=15.∴DC×AF=15.∴AF=6.故答案为:6.14.【解答】解:∵由于甲看错了方程①中的a,得到方程组的解为,∴是4x﹣by=﹣2的解.∴﹣3×4﹣b=﹣2.∴b=﹣10.∵乙看错了方程②中的b,得到方程组的解为,∴是方程ax+5y=15的解.∴5a+20=15.∴a=﹣1.∴a2020+()2021=(﹣1)2020+(﹣1)2021=1﹣1=0.故答案为:0.15.【解答】解:,解不等式x﹣a>0,得:x>a,解不等式5﹣2x>1,得:x<2,则不等式组的解集为a<x<2,∵不等式组的整数解只有3个,∴﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.16.【解答】解:(1)当∠FGE=∠FEG时,设∠EFG=x,则∠EFC=x,∠FGE=∠FEG=(180°﹣x),在四边形GFCD中,由内角和为360°得:(180°﹣x)+2x+∠C+∠D=360°,∵∠C+∠D=207°,∴(180°﹣x)+2x=360°﹣207°,解得:x=42°,(2)当∠GFE=∠FEG时,此时AD∥BC不合题意舍去,(3)当∠FGE=∠GFE时,同理有:x+2x+∠C+∠D=360°,∵∠C+∠D=207°,∴x+2x+207°=360°,解得:x=51°,故答案为42或51.三、解答题17.(10分)计算:【解答】解:(1)22﹣(π﹣1)0+3﹣2×(﹣6)=4﹣1+×(﹣6)=3﹣=;(2)(x+2y)(x﹣y)﹣y(x﹣2y)=x2﹣xy+2xy﹣2y2﹣xy+2y2=x2.18.【解答】解:(1),①﹣②,得3y=3,解得:y=1,把y=1代入②,得2x+1=2,解得:x=,所以方程组的解是;(2),①+②×2,得13x=26,解得:x=2,把x=2代入①,得6﹣4y=2,解得:y=1,所以方程组的解是.19.【解答】解:(1)去分母,得:2x<24﹣3(x﹣2),去括号,得:2x<24﹣3x+6,移项,得:2x+3x<24+6,合并同类项,得:5x<30,系数化为1,得:x<6,将解集表示在数轴上如下:(2),解不等式①得:x≥3,解不等式②得:x>﹣1,则不等式组的解集为x≥3,将不等式组的解集表示在数轴上如下:.20.【解答】解:(1)3ax2﹣3ay2=3a(x2﹣y2)=3a(x+y)(x﹣y);(2)x4﹣2x2y2+y4=(x2﹣y2)2=(x+y)2(x﹣y)2.21.【解答】解:(1),②﹣①×2,得x=6,将x=6代入①,得,6+2y=0,解得y=﹣3,则;(2)解不等式x﹣2(x﹣1)≥2,得x≤0,解不等式,得x<2,则不等式组的解集为x≤0.22.【解答】解:(1)如图所示,△A′B′C′即为所求作三角形.(2)如图所示,BD为AC边上的中线;(3)如图所示,S△ABD=4×6﹣×1×2﹣×4×6﹣×(1+6)×2=24﹣1﹣12﹣7=4,故答案为:4.23.【解答】解:原式=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy,当x=﹣2,y=2时,原式=9×(﹣2)×2=﹣36.24.【解答】(1)证明:在△ABC和△DCB中,∴△ABC≌△DCB(SAS);(2)解:∵由(1)知,△ABC≌△DCB,∴∠EBC=∠ECB=30°,∴∠EBC+∠ECB=∠AEB=60°.25.【解答】解:(1)∵,∴x=4k+2,y=3﹣3k,∵x、y是非负数,∴,∴﹣≤k≤1;(2)把x=4k+2,y=3﹣3k代入L=2x+y﹣3k得:L=2(4k+2)+(3﹣3k)﹣3k=2k+7,由(1)知﹣≤k≤1,∴﹣1≤2k≤2,∴6≤2k+7≤9,即6≤L≤9,∴满足条件的L的所有整数值有:6,7,8,9.26.【解答】解:(1)设购买《北上》的单价为x元,《牵风记》的单价为y元,由题意得:,解得.答:购买《北上》的单价为35元,《牵风记》的单价为30元;(2)设购买《北上》的数量为n本,则购买《牵风记》的数量为(50﹣n)本,根据题意得,解得:16≤n≤20,则n可以取17、18、19、20,当n=17时,50﹣n=33,共花费17×35+33×30=1585(元);当n=18时,50﹣n=32,共花费18×35+32×30=1590(元);当n=19时,50﹣n=31,共花费19×35+31×30=1595(元);当n=20时,50﹣n=30,共花费20×35+30×30=1600(元);所以,共有4种购买方案分别为:购买《北上》和《牵风记》的数量分别为17本和33本,购买《北上》和《牵风记》的数量分别为18本和32本,购买《北上》和《牵风记》的数量分别为19本和31本,购买《北上》和《牵风记》的数量分别为20本和30本;其中购买《北上》和《牵风记》的数量分别为17本和33本费用最低,最低费用为1585元.。
七年级下学期期末考试数学试卷(附答案解析)
七年级下学期期末考试数学试卷(附答案解析)一、精心选一选(每小题2分,共16分)1.下列方程组中,是二元一次方程组的是()A.B.C.D.2.若从长度分别为2cm、3cm、4cm、6cm的四根木棒中,任意选取三根首尾顺次相连搭成三角形,则搭成的不同三角形共有()A.1个B.2个C.3个D.4个3.如图,直线a∥b,直线c与直线a,b分别交于A,B两点,AC⊥AB于点A,交直线b于点C,如果∠1=52°,那么∠2的度数为()A.52°B.48°C.38°D.32°4.若a>b,则下列结论正确的是()A.ac>bc B.a﹣5<b﹣5 C.>D.a+3b>4b5.已知是方程组的解,则3﹣a﹣b的值是()A.﹣1 B.1 C.2 D.36.若×=2020n,则n=()A.2022 B.2021 C.2020 D.20197.下列命题中:①长为5cm的线段AB沿某一方向平移10cm后,平移后线段AB的长为10cm;②三角形的高在三角形内部;③六边形的内角和是外角和的两倍;④在同一平面内,平行于同一直线的两直线平行:⑥两个角的两边分别平行,则这两个角相等.假命题个数有()A.1个B.2个C.3个D.4个8.如图,是由7块正方形组成的长方形,已知中间小正方形的边长为1,则这个长方形的面积为()A.63 B.72 C.99 D.110二、细心填一填(每小题2分,共20分)9.n边形的内角和为1440°,则n=.10.已知氢原子的半径约为0.00000000005米,该数据用科学记数法表示为米.11.命题“对顶角相等”的逆命题是.12.如图,五角星是一个美丽的图案,∠A+∠B+∠C+∠D+∠E=°.13.若是二元一次方程2x+ay=7的一个解,则a的值为.14.两根木棒分别长3cm、7cm,第三根木棒与这两根木棒首尾依次相接构成三角形.如果第三根木棒的长为偶数(单位:cm),那么所构成的三角形周长为cm.15.已知不等式2x﹣a<1的解集中有且只有3个正整数解,则a的取值范围是.16.如图,四边形ABCD,点E、F、G、H分别在AB、BC、CD、DA的延长线上,且BE=BA,CF=CB,DG=DC,AH=AD,连接EF、FG、GH、HE,若S四边形ABCD=8,则S四边形EFGH=.17.如图,在△ABC中,AB=6,BC=5,AC=4,AD平分∠BAC交BC于点D,在AB上截取AE=AC,则△BDE 的周长为.18如图,已知四边形ABCD中,AB=10厘米,BC=8厘米,CD=12厘米,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为时,能够使△BPE与△CQP全等.三、耐心解一解(本大题共64分)19已知:如图,DE⊥AC,BF⊥AC,AD=BC,AF=CE,求证:AD∥BC.20如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D,过点作DE⊥AB于点E(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.21如图,锐角△ABC的两条高BD、CE相交于点O,且CE=BD,若∠ABC=65°,求∠CBD的度数.22已知:如图AD、A′D′分别为钝角△ABC和钝角△A′B′C′的边BC、B′C′上的高,且AB=A′B′,AD=A′D′请你补充一个条件(只需写出一个你认为适当的条件)使得△ABC≌△A′B′C′,并加以证明.23如图,在△ABC中,AB=AC=4,∠B=∠C=50°,点D在线段BC上运动(D不与B,C重合),连接AD,作∠ADE=50°,DE交线段AC于E.(1)当∠BDA=120°时,∠EDC=;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由.24如图,在锐角△ABC中,AD⊥BC于点D,点E在AD上,DE=DC,BD=AD,点F为BC的中点,连接EF并延长至点M,使FM=EF,连接CM.(1)求证:BE=AC;(2)试判断线段AC与线段MC的关系,并证明你的结论.25如图,在△ABC中,∠C=90°,AD是∠CAB的角平分线,DE⊥AB于E,点F在边AC上,连接DF.(1)求证:AC=AE;(2)若DF=DB,试说明∠B与∠AFD的数量关系;(3)在(2)的条件下,若AB=m,AF=n,求BE的长(用含m,n的代数式表示).参考答案与解析一.选择题1.【分析】根据二元一次方程组的定义逐个判断即可.【解答】解:A.是三元一次方程组,不是二元一次方程组,故本选项不符合题意;B.是二元一次方程组,故本选项符合题意;C.是分式方程组,不是整式方程组,不是二元一次方程组,故本选项不符合题意;D.是二元二次方程组,不是二元一次方程组,故本选项不符合题意;故选:B.2.【分析】根据“在三角形中任意两边之和大于第三边,任意两边之差小于第三边”组合三角形.【解答】解:三角形三边可以为:①2cm、3cm、4cm;②3cm、4cm、6cm.所以,可以围成的三角形共有2个.故选:B.3【分析】先根据平行线的性质求出∠BAD的度数,再根据垂直的定义和余角的性质求出∠2的度数.【解答】解:如图:∵直线a∥b,∴∠1+∠BAD=180°,∵AC⊥AB于点A,∠1=52°,∴∠2=180°﹣90°﹣52°=38°,故选:C.4.【分析】根据不等式的性质逐个判断即可.【解答】解:A.当c<0时,由a>b得出ac<bc,故本选项不符合题意;B.∵a>b,∴a﹣5>b﹣5,故本选项不符合题意;C.∵a>b,∴﹣==,∵a>b,∴a﹣b>0,当a﹣b=1时,=,故本选项不符合题意;D.∵a>b,∴两边都加上3b,得a+3b>4b,故本选项符合题意;故选:D.5.【分析】将代入方程组得到方程组,直接将此方程组中的两个方程相加可得到a+b=1,再求解即可.【解答】解:∵是方程组的解,∴,①+②得,5a+5b=5,∴a+b=1,∴3﹣a﹣b=3﹣(a+b)=2,故选:C.6.【分析】根据乘方和乘法的定义得出×=20202022,结合已知等式可得n的值.【解答】解:×=20202020×2020×2020=20202022,∵×=2020n,∴20202022=2020n,∴n=2022,故选:A.7.【分析】根据平移的性质、三角形的高、多边形的内角和和外角和,平行线的判定进行判断即可.【解答】解:①长为5cm的线段AB沿某一方向平移10cm后,平移后线段AB的长为5cm,原命题是假命题;②锐角三角形的高在三角形内部,原命题是假命题;③六边形的内角和是外角和的两倍,是真命题;④在同一平面内,平行于同一直线的两直线平行,是真命题:⑥两个角的两边分别平行,则这两个角相等或互补,原命题是假命题;故选:B.8.【解答】解:设正方形A的边长为x,则正方形B的边长为x+1,正方形C的边长为x+2,正方形D的边长为x+3,根据图形得:x+2+x+3=3x+x+1,解得:x=2,则长方形的面积为(x+2+x+3)(x+1+x+2)=(2x+5)(2x+3)=9×7=63.故选:A.二.填空题(共9小题)9.【分析】根据n边形的内角和是(n﹣2)•180°,即可列方程求解.【解答】解:设此多边形的边数为n,由题意,有(n﹣2)•180°=1440°,解得n=10.即此多边形的边数为10.故答案为10.10.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:0.00000000005=5×10﹣11,故答案为:5×10﹣11.11.【分析】交换原命题的题设与结论即可得到其逆命题.【解答】解:命题“对顶角相等”的逆命题是“相等的角为对顶角”.故答案为:相等的角为对顶角.12.【分析】如图,根据三角形外角的性质得∠1=∠A+∠C,∠2=∠B+∠E.由∠三角形内角和定理∠1+∠2+∠D=180°,得∠A+∠B+∠C+∠D+∠E=180°.【解答】解:如图,∵∠1=∠A+∠C,∠2=∠B+∠E,∴∠1+∠2=∠A+∠C+∠B+∠E.又∵∠1+∠2+∠D=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故答案为:180.13.【分析】将方程的解代入到原方程,然后解方程求a的值.【解答】解:∵是二元一次方程2x+ay=7的一个解,∴2×3﹣a=7,解得:a=﹣1,故答案为:﹣1.14.【分析】首先根据三角形的三边关系确定第三边的取值范围,再根据第三边是偶数确定其值.【解答】解:根据三角形的三边关系,得第三根木棒的长大于4cm而小于10cm.又第三根木棒的长是偶数,则应为6cm,8cm.∴所构成的三角形周长为16cm或18cm,故答案为:16或18.15.【分析】解出不等式求出x的值,根据不等式有且只有3个正整数解列出不等式,解之可得答案.【解答】解:解不等式2x﹣a<1得,x<,∵不等式2x﹣a<1的解集中有且只有3个正整数解,∴3<≤4,∴5<a≤7,故答案为:5<a≤7.16.【分析】连接HB,BD,DF,AG,AC,CE,利用三角形的中线性质求出△AHE与△CFD的面积和,△HGD 与△BEF的面积和,从而得到四边形EFGH的面积.【解答】解:连接HB,BD,DF,则:∵HA=AD,CF=BC,∴AB是△BDH的中线,CD是△BDF的中线,∴S△ABH=S△ABD,S△BCD=S△FCD,∴S△ABH+S△FCD=S△ABD+S△BCD=S四边形ABCD=8,∵BE=BA,CD=DG,∴S△AHE=2S△AHB,S△CFG=2S△FCD,∴S△AHE+S△CFG=2S△AHB+2S△FCD=16,连接AG,AC,CE,同理可证:S△HGD+S△BEF=16,∴S四边形EFGH=S四边形ABCD+S△AHE+S△CFG+S△HGD+S△BEF=8+16+16=40.故答案为:40.17.【分析】利用已知条件证明△ADE≌△ADC(SAS),得到ED=CD,从而BC=BD+CD=DE+BD=5,即可求得△BDE的周长.【解答】解:∵AD是∠BAC的平分线,∴∠EAD=∠CAD在△ADE和△ADC中,,∴△ADE≌△ADC(SAS),∴ED=CD,∴BC=BD+CD=DE+BD=5,∴△BDE的周长=BE+BD+ED=(6﹣4)+5=7.故答案为:718【分析】分两种情况讨论,依据全等三角形的对应边相等,即可得到点Q的运动速度.【解答】解:设点P运动的时间为t秒,则BP=3t,CP=8﹣3t,∵∠B=∠C,∴①当BE=CP=5,BP=CQ时,△BPE与△CQP全等,此时,5=8﹣3t,解得t=1,∴BP=CQ=3,此时,点Q的运动速度为3÷1=3厘米/秒;②当BE=CQ=5,BP=CP时,△BPE与△CQP全等,此时,3t=8﹣3t,解得t=,∴点Q的运动速度为5÷=厘米/秒;故答案为:3厘米/秒或厘米/秒.19、【分析】利用HL证明Rt△ADE≌Rt△CBF,得到∠DAE=∠BCF,然后根据平行线的判定定理证明即可.【解答】证明:∵AF=CE,∴AF﹣EF=CE﹣EF,即AE=CF,∵DE⊥AC,BF⊥AC,∴∠AED=∠BFC=90°,在Rt△ADE和Rt△CBF中,,∴Rt△ADE≌Rt△CBF(HL),∴∠DAE=∠BCF,∴AD∥BC.20、【答案】(1)作图见解析部分.(3)3cm.【分析】(1)根据要求作出图形即可.(2)利用三角形的面积公式求出DE,再利用角平分线的性质定理求解即可.【解答】解:(1)如图,射线AD,DE即为所求.(2)∵S△ABD=•AB•DE=15cm2,AB=10cm,∴DE=3(cm),∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴CD=DE=3(cm).21、【答案】25°.【分析】利用HL证明Rt△BCE≌Rt△CBD,根据全等三角形的性质得出∠ABC=∠ACB=65°,再根据直角三角形的两锐角互余即可得解.【解答】解:∵CE⊥AB,BD⊥AC,∴△BCE和△CBD是直角三角形,在Rt△BCE和Rt△CBD中,,∴Rt△BCE≌Rt△CBD(HL),∴∠ABC=∠ACB,∵∠ABC=65°,∴∠ACB=65°,∴∠CBD=90°﹣∠ACB=25°.22、【分析】根据全等三角形的判定方法添加缺少的条件即可,方案有多种.【解答】解:可添条件:BC=B'C'.证明:∵AB=A′B′,AD=A′D′,∠ADB=∠A′D′B′=90°,∴在Rt△ADB和Rt△A′D′B′中,,∴Rt△ADB≌Rt△A′D′B′(HL),∴∠B=∠B′,∵BC=B′C′,AB=A′B′,∴在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(SAS).还可添加:DC=D′C′,或∠ACB=∠A'C′B',或AC=A′C′,或∠BAC=∠B′A′C′.故答案为:BC=B'C'(答案不唯一).23、【答案】(1)10°,小;(2)DC=4.理由见解答.【分析】(1)利用平角的定义计算∠EDC的度数,几何图形可判断点D从B向C运动时,∠BDA逐渐变小;(2)先证明∠CDE=∠BAD,而∠B=∠C,则CD=BA=4时,可根据“ASA”判定△ABD≌△DCE.【解答】解:(1)∠EDC=180°﹣∠BDA﹣∠ADE=180°﹣120°﹣50°=10°;点D从B向C运动时,∠BDA逐渐变小;故答案为10°,小;(2)当DC等于4时,△ABD≌△DCE.理由如下:∵∠ADC=∠B+∠BAD,即∠ADE+∠CDE=∠B+∠BAD,而∠B=∠ADE=50°,∴∠CDE=∠BAD,在△ABD和△DCE中,,∴△ABD≌△DCE(ASA).24、【答案】(1)证明见解析过程;(2)AC⊥MC且AC=MC,理由见解析过程.【分析】(1)根据SAS证明△BDE≌△ADC,再根据全等三角形的性质即可得解;(2)根据SAS证明△BFE≌△CFM,得到∠CBE=∠BCM,BE=MC,由(1)得∠CBE=∠CAD,BE=AC,即得AC=MC,再利用直角三角形的两锐角互余得出AC⊥MC.【解答】(1)证明;∵AD⊥BC,∴∠BDE=∠ADC=90°,在△BDE与△ADC中,,∴△BDE≌△ADC(SAS),∴BE=AC;(2)解:AC⊥MC且AC=MC,理由如下:∵F为BC中点,∴BF=CF,在△BFE与△CFM中,,∴△BFE≌△CFM(SAS),∴∠CBE=∠BCM,BE=MC,由(1)得:∠CBE=∠CAD,BE=AC,∴∠CAD=∠BCM,AC=MC,∵∠CAD+∠ACD=90°,∴∠BCM+∠ACD=90°,即∠ACM=90°,∴AC⊥MC,∴AC⊥MC且AC=MC.25、【答案】(1)证明见解析过程;(2)∠B+∠AFD=180°,理由见解析过程;(3)(m﹣n).【分析】(1)由于DE⊥AB,那么∠AED=90°,则有∠ACB=∠AED,联合∠CAD=∠BAD,AD=AD,利用AAS即可证明△ACD≌△AED,再根据全等三角形的性质即可得解;(2)由△ACD≌△AED,证得DC=DE,然后根据HL判定Rt△CDF≌Rt△EDB,得到∠CFD=∠B,再根据邻补角的定义等量代换即可得解;(3)由AC=AE,CF=BE,根据AB=AE+BE,AC=AF+CF即可得解.【解答】(1)证明:∵∠C=90°,DE⊥AB,∴∠C=∠AED=90°,在△ACD和△AED中,,∴△ACD≌△AED(AAS),∴AC=AE;(2)解:∠B+∠AFD=180°,理由如下:由(1)得:△ACD≌△AED,∴DC=DE,在Rt△CDF和Rt△EDB中,,∴Rt△CDF≌Rt△EDB(HL),∴∠CFD=∠B,∵∠CFD+∠AFD=180°,∴∠B+∠AFD=180°;(3)解:由(2)知,Rt△CDF≌Rt△EDB,∴CF=BE,由(1)知AC=AE,∵AB=AE+BE,∴AB=AC+BE,∵AC=AF+CF,∴AB=AF+2BE,∵AB=m,AF=n,∴BE=(m﹣n).。
初一下学期数学期末试卷带答案doc
初一下学期数学期末试卷带答案doc一、选择题1.以下列各组数据为边长,可以构成等腰三角形的是( )A .1cm 、2cm 、3cmB .3cm 、 3cm 、 4cmC .1cm 、3cm 、1cmD .2cm 、 2cm 、 4cm2.已知多项式x a -与22x x -的乘积中不含2x 项,则常数a 的值是( )A .2-B .0C .1D .23.若a =-0.32,b =-3-2,c =21()2--,d =01()3-,则它们的大小关系是( ) A .a <b <c <d B .a <d <c <b C .b <a <d <c D .c <a <d <b4.已知关于x ,y 的方程组03210ax by ax by +=⎧⎨-=⎩的解为21x y =⎧⎨=-⎩,则a ,b 的值是( ) A .12a b =⎧⎨=⎩ B .21a b =⎧⎨=⎩ C .12a b =-⎧⎨=-⎩ D .21a b =⎧⎨=-⎩5.新冠病毒(2019﹣nCoV )是一种新的Sarbecovirus 亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA 病毒,其遗传物质是所有RNA 病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm ,平均直径为100nm (纳米).1米=109纳米,100nm 可以表示为( )米.A .0.1×10﹣6B .10×10﹣8C .1×10﹣7D .1×1011 6.将下列三条线段首尾相连,能构成三角形的是( )A .1,2,3B .2,3,6C .3,4,5D .4,5,9 7.已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =-1 B .m =-1,n =1 C .14m ,n 33==- D .14,33m n =-= 8.△ABC 是直角三角形,则下列选项一定错误的是( )A .∠A -∠B=∠CB .∠A=60°,∠B=40°C .∠A+∠B=∠CD .∠A :∠B :∠C=1:1:2 9.下列各式中,不能够用平方差公式计算的是( ) A .(y +2x )(2x ﹣y )B .(﹣x ﹣3y )(x +3y )C .(2x 2﹣y 2 )(2x 2+y 2 )D .(4a +b ﹣c )(4a ﹣b ﹣c ) 10..已知2x a y =⎧⎨=-⎩是关于x ,y 的方程3x ﹣ay =5的一个解,则a 的值为( ) A .1 B .2C .3D .4 二、填空题 11.已知:()521x x ++=,则x =______________. 12.若关于x 、的方程()2233b a ax b y -+++=是二元一次方程,则b a =_______13.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB =____.14.某球形流感病毒的直径约为0.000000085m ,0.000000085用科学记数法表为_____.15.若 a m =6 , a n =2 ,则 a m−n =________16.若多项式29x mx ++是一个完全平方式,则m =______.17.已知方程组,则x+y=_____.18.如图,若AB ∥CD ,∠C=60°,则∠A+∠E=_____度.19.若a m =2,a n =3,则a m +n 的值是_____.20.一个两位数的十位上的数是个位上的数的2倍,若把两个数字对调,则新得到的两位数比原两位数小36,则原两位数是_______.三、解答题21.同一平面内的两条直线有相交和平行两种位置关系.(1)如图a ,若//AB CD ,点P 在AB 、CD 外部,我们过点P 作AB 、CD 的平行线PE ,则有////AB CD PE ,则BPD ∠,B ,D ∠之间的数量关系为_________.将点P 移到AB 、CD 内部,如图b ,以上结论是否成立?若成立,说明理由;若不成立,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论.(2)迎“20G ”科技节上,小兰制作了一个“飞旋镖”,在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,他很想知道BPD ∠、ABP ∠、D ∠、BQD ∠之间的数量关系,请你直接写出它们之间的数量关系:__________.(3)设BF 交AC 于点P ,AE 交DF 于点Q ,已知126APB ∠=︒,100AQF ∠=︒,直接写出B E F ∠+∠+∠的度数为_______度,A ∠比F ∠大______度.22.解下列二元一次方程组:(1)70231x y x y +=⎧⎨-=-⎩①②; (2)239345x y x y -=⎧⎨+=⎩①②. 23.计算:(1)201()2016|5|2----;(2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2.24.已知m 2,3na a ==,求①m n a +的值; ②3m-2n a 的值25.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA 的度数.26.因式分解:(1)43312x x -(2)2()a b x a b -+-(3)2169x -(4)(1)(5)4x x +++27.如果a c = b ,那么我们规定(a ,b )=c ,例如:因为23= 8 ,所以(2,8)=3. (1)根据上述规定,填空:(3,27)= ,(4,1)= ,(2,14)= ; (2)若记(3,5)=a ,(3,6)=b ,(3,30)=c ,求证: a + b = c .28.南通某校为了了解家长和学生参与南通安全教育平台“5.12防灾减灾”专题教育活动的情况,在本校学生中随机抽取部分学生做调查,把收集的数据分为以下4类情形: A .仅学生自己参与;B .家长和学生一起参与;C .仅家长参与;D .家长和学生都未参与请根据上图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了多少名学生?(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校3600名学生中“家长和学生都未参与”的人数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先判断三边长是否能构成三角形,再判断是否是等腰三角形.【详解】上述选项中,A 、C 、D 不能构成三角形,错误B 中,满足三角形三边长关系,且有2边相等,是等腰三角形,正确故选:B .【点睛】本题考查的等腰三角形的性质和三角形三边长的关系,注意在判断等腰三角形的时候,一定要先满足三边长能构成三角形.2.A解析:A【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:()232()2(2)2x a x x x a x ax --+-=+,∵不含2x 项,∴(2)0a -+=,解得2a =-.故选:A .【点睛】本题主要考查单项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键.3.C解析:C【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简比较即可求解.【详解】∵2090.3.0a =-=-,2193b =--=-,2142c -⎛⎫=-= ⎪⎝⎭,0113d ⎛⎫-= ⎪⎝⎭=, ∴它们的大小关系是:b <a <d <c故选:C【点睛】本题考查负整数指数幂的性质、零指数幂的性质及有理数大小比较,正确化简各数是解题的关键.4.A解析:A【分析】把21x y =⎧⎨=-⎩代入方程组03210ax by ax by +=⎧⎨-=⎩得到关于a ,b 的二元一次方程组,解之即可. 【详解】解:把21x y =⎧⎨=-⎩代入方程组03210ax by ax by +=⎧⎨-=⎩得: 2=06210a b a b -⎧⎨+=⎩, 解得:=1=2a b ⎧⎨⎩, 故选A.【点睛】本题考查了二元一次方程组的解,正确掌握代入法和解二元一次方程组的方法是解题的关键.5.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:100nm=100×10﹣9m=1×10﹣7m,故选:C.【点睛】本题是对科学记数法知识的考查,熟练掌握负指数幂知识是解决本题的关键.6.C解析:C【分析】构成三角形的三边应满足:任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形,根据该定则,就可判断选项正误.【详解】解:A选项:1+2=3,两边之和没有大于第三边,∴无法组成三角形;B选项:2+3<6,两边之和没有大于第三边,∴无法组成三角形;C选项:3+4>5,两边之和大于第三边,且满足两边之差小于第三边,∴可以组成三角形;D选项:4+5=9,两边之和没有大于第三边,∴无法组成三角形,故选:C.【点睛】本题主要考察了三角形的三边关系定则:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形.7.A解析:A【分析】根据二元一次方程的概念列出关于m、n的方程组,解之即可.【详解】∵关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴22111m nm n--=⎧⎨++=⎩即23m nm n-=⎧⎨+=⎩,解得:11mn=⎧⎨=-⎩,故选:A.【点睛】本题考查了二元一次方程的定义、解二元一次方程组,理解二元一次方程的定义,熟练掌握二元一次方程组的解法是解答的关键.8.B解析:B根据三角形内角和定理得出∠A +∠B +∠C =180°,和选项求出∠C (或∠B 或∠A )的度数,再判断即可.【详解】解:A 、∵∠A ﹣∠B =∠C ,∴∠A =∠B +∠C ,∵∠A +∠B +∠C =180°,∴2∠A =180°,∴∠A =90°,∴△ABC 是直角三角形,故A 选项是正确的;B 、∵∠A =60°,∠B =40°,∴∠C =180°﹣∠A ﹣∠B=180°﹣60°﹣40°=80°,∴△ABC 是锐角三角形,故B 选项是错误的;C 、∵∠A +∠B =∠C ,∠A +∠B +∠C =180°,∴2∠C =180°,∴∠C =90°,∴△ABC 是直角三角形,故C 选项是正确的;D 、∵∠A :∠B :∠C =1:1:2,∴∠A +∠B =∠C ,∵∠A +∠B +∠C =180°,∴2∠C =180°,∴∠C =90°,∴△ABC 是直角三角形,故D 选项是正确的;故选:B .【点睛】本题考查了三角形的内角和定理的应用,主要考查学生的推理能力和辨析能力.9.B解析:B【分析】根据平方差公式:22()()a b a b a b +-=-进行判断.【详解】A 、原式22(2)x y =-,不符合题意;B 、原式2(3)x y =-+,符合题意;C 、原式2222(2)()x y =-,不符合题意;D 、原式22(4)a c b =--,不符合题意;故选B .本题考查平方差公式,熟练掌握平方差公式是解题的关键.10.A解析:A【解析】【分析】将x 和y 的值代入方程计算即可.【详解】将2x a y =⎧⎨=-⎩代入方程得:3(2)5a a -⋅-= 解得:1a =故选:A.【点睛】本题考查了已知二元一次方程的解求方程中未知数的值,理解题意是解题关键.二、填空题11.-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2解析:-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x +2≠0时,x +5=0,解得:x =﹣5.当x +2=1时,x =﹣1,当x +2=﹣1时,x =﹣3,x +5=2,指数为偶数,符合题意. 故答案为:﹣5或﹣1或﹣3.【点睛】本题考查零指数幂和有理数的乘方,掌握零指数幂和1的任何次幂都是1是本题的解题关键.12.1【解析】根据题意得:,解得:b=3或−3(舍去),a=−1,则ab=−1.故答案是:−1.解析:1【解析】根据题意得:2121{30baab-=+=≠+≠,解得:b=3或−3(舍去),a=−1,则ab=−1.故答案是:−1.13.105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BD解析:105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.14.5×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000085=8.5×10﹣8.故答案为:8.5×10﹣8【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15.3【解析】.故答案为3.解析:3【解析】623m n m n a a a -=÷=÷=.故答案为3.16.-6或6【分析】首末两项是x 和3这两个数的平方,那么中间一项为加上或减去x 和3积的2倍.【详解】解:∵x2+mx+9=x2+mx+32,∴mx=±2×3×x ,解得m=6或-6.故答案为解析:-6或6【分析】首末两项是x 和3这两个数的平方,那么中间一项为加上或减去x 和3积的2倍.【详解】解:∵x 2+mx+9=x 2+mx+32,∴mx=±2×3×x ,解得m=6或-6.故答案为-6或6.【点睛】本题考查完全平方式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.17.2【解析】由题意得,两个方程左右相加可得,4x+4y=8⇒x+y=2,故答案为2. 解析:2【解析】由题意得,两个方程左右相加可得,,故答案为2. 18.60【解析】【分析】先由AB∥CD,求得∠C的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E的度数.【详解】∵AB∥CD,∴∠C与它的同位角相等,根据三角形的外角等于解析:60【解析】【分析】先由AB∥CD,求得∠C的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E的度数.【详解】∵AB∥CD,∴∠C与它的同位角相等,根据三角形的外角等于与它不相邻的两内角之和,所以∠A+∠E=∠C=60度.故答案为60.【点睛】本题考查了平行线的性质,三角形的外角等于和它不相邻的两个内角的和. ①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.19.6【分析】逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:am+n=am•an=2×3=6.故答案为:6.【点睛】本题主要考查了逆运用同底数幂相乘,底数不变指数相加,解析:6【分析】逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:a m+n=a m•a n=2×3=6.故答案为:6.【点睛】本题主要考查了逆运用同底数幂相乘,底数不变指数相加,掌握a m+n=a m•a n是解题的关键;20.84【分析】设原两位数的个位上的数字为x,则十位上的数字为2x,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x,则十位上的数字为2x,由题意,得解析:84【分析】设原两位数的个位上的数字为x,则十位上的数字为2x,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x,则十位上的数字为2x,由题意,得10×2x+x-(10x+2x)=36,解得:x=4,则十位数字为:2×4=8,则原两位数为84.故答案为:84.【点睛】本题考查了一元一次方程的应用-数字问题,考查了百位数字×100+十位上的数字×10+个位数字的运用,解答时根据数位问题的数量关系建立方程式是关键.三、解答题21.(1)∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,证明见解析;(2)∠BPD=∠ABP+∠D+∠BQD;(3)80,46.【分析】(1)由平行线的性质得出∠B=∠BPE,∠D=∠DPE,即可得出∠BPD=∠B-∠D;将点P移到AB、CD内部,延长BP交DC于M,由平行线的性质得出∠B=∠BMD,即可得出∠BPD=∠B+∠D;(2)由平行线的性质得出∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,即可得出结论;(3)过点E作EN∥BF,则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,得出∠EQF=∠B+∠E+∠F,求出∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,由∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F,∠AMP=∠FMQ,得出126°-∠A=80°-∠F,即可得出结论.【详解】解(1)∵AB∥CD∥PE,∴∠B=∠BPE,∠D=∠DPE,∵∠BPE=∠BPD+∠DPE,∴∠BPD=∠B-∠D,故答案为:∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,理由如下:延长BP交DC于M,如图b所示:∵AB∥CD,∴∠B=∠BMD,∵∠BPD=∠BMD+∠D,∴∠BPD=∠B+∠D;(2)∵A′B∥CD,∴∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,∴∠BPD=∠ABP+∠D+∠BQD,故答案为:∠BPD=∠ABP+∠D+∠BQD;(3)过点E作EN∥BF,如图d所示:则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,∴∠EQF=∠B+∠E+∠F,∵∠AQF=100°,∴∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,∵∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F;∵∠AMP=∠FMQ,∴126°-∠A=80°-∠F,∴∠A-∠F=46°,故答案为:80,46.【点睛】本题考查了平行线性质,三角形外角性质、三角形内角和定理等知识,熟练掌握平行线的性质是解题的关键.22.(1)43x y =⎧⎨=⎩;(2)31x y =⎧⎨=-⎩【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1)由①得:x =7﹣y ③,把③代入②得:2(7﹣y )﹣3y =﹣1,解得:y =3,把y =3代入③得:x =4,所以这个二元一次方程组的解为:43x y =⎧⎨=⎩; (2)①×4+②×3得:17x =51,解得:x =3,把x =3代入①得:y =﹣1,所以这个方程组的解为31x y =⎧⎨=-⎩. 【点睛】本题主要考查了方程组的解法,准确运用代入消元法和加减消元法解题是解题的关键.23.(1)﹣2;(2)7a 4+4a 6+a 2.【分析】(1)由负整数指数幂、零指数幂、绝对值的意义进行判断,即可得到答案; (2)由积的乘方,同底数幂相乘进行计算,然后合并同类项,即可得到答案.【详解】解:(1)201()2016|5|2----=4﹣1﹣5=﹣2;(2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2=9a 4﹣2a 4+4a 6+a 2=7a 4+4a 6+a 2.【点睛】本题考查了积的乘方,同底数幂相乘,负整数指数幂,零指数幂,以及绝对值,解题的关键是熟练掌握运算法则进行解题.24.①6;②89 【解析】解:①②25.∠DAC=40°,∠BOA=115°【解析】试题分析:在Rt △ACD 中,根据两锐角互余得出∠DAC 度数;△ABC 中由内角和定理得出∠ABC 度数,再根据AE ,BF 是角平分线可得∠BAO、∠ABO,最后在△ABO 中根据内角和定理可得答案.解:∵AD 是BC 边上的高,∴∠ADC=90°,又∵∠C=50°,∴在△ACD 中,∠DAC=90°-∠C=40°,∵∠BAC=60°,∠C=50°,∴在△ABC 中,∠ABC=180°-∠BAC-∠C=70°,又∵AE 、BF 分别是∠BAC 和∠ABC 的平分线, ∴∠BAO=12∠BAC=30°,∠ABO=12∠ABC=35°, ∴∠BOA=180°-∠BAO -∠ABO =180°-30°-35°=115°. 26.(1)3x 3(x ﹣4);(2)(a ﹣b )(1+2x );(3)(4﹣3x )(4+3x );(4)2(3)x +.【分析】(1)原式提取公因式3x 3即可;(2)原式提取公因式-a b 即可;(3)原式利用平方差公式分解即可;(4)原式变形后,利用完全平方公式分解即可.【详解】解:(1)原式=3x 3(x ﹣4);(2)原式=(a ﹣b )(1+2x );(3)原式=(4﹣3x )(4+3x );(4)原式=2554x x x ++++=269x x ++=2(3)x +.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.27.(1)3;0; -2;(2)证明见解析.【分析】(1)根据已知和同底数的幂法则得出即可;(2)根据已知得出3a =5,3b =6,3c =30,求出3a ×3b =30,即可得出答案.【详解】(1)(3,27)=3,(4,1)=0,(2,14)=-2, 故答案为3;0;-2;(2)证明:由题意得:3a = 5,3b = 6,3c = 30,∵ 5⨯ 6=30,∴ 3a ⨯ 3b = 3c ,∴ 3a +b = 3c ,∴ a + b = c .【点睛】本题考查了同底数幂的乘法,有理数的混合运算等知识点,能灵活运用同底数幂的乘法法则进行变形是解此题的关键.28.(1)400;(2)补全条形统计图见解析,54°;(3)180人【分析】(1)根据A 类的人数和所占的百分比可以求得本次调查的学生数;(2)根据(1)中的结果和条形统计图中的数据可以求得B 类的人数,从而可以将条形统计图补充完整,进而求得在扇形统计图中计算C 类所对应扇形的圆心角的度数;(3)根据统计图中的数据可以求得该校3600名学生中“家长和学生都未参与”的人数.【详解】解:(1)在这次抽样调查中,共调查了80÷20%=400名学生,故答案为:400;(2)B 种情况下的人数为:400-80-60-20=240(人),补全的条形统计图如图所示,在扇形统计图中计算C类所对应扇形的圆心角的度数为:60360400︒⨯=54°,故答案为:54°;(3)203600400⨯=180(人),即该校3200名学生中“家长和学生都未参与”的有180人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解题的关键是明确题意,利用数形结合的思想解答.。
初一下学期数学期末试卷带答案doc
初一下学期数学期末试卷带答案doc一、选择题1.如果多项式x 2+mx +16是一个二项式的完全平方式,那么m 的值为( ) A .4B .8C .-8D .±8 2.已知∠1与∠2是同位角,则( ) A .∠1=∠2 B .∠1>∠2C .∠1<∠2D .以上都有可能 3.下列从左到右的变形,是因式分解的是( ) A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+D .228x 8x 22(2x 1)-+-=--4.下列式子是完全平方式的是( ) A .a 2+2ab ﹣b 2 B .a 2+2a +1 C .a 2+ab +b 2D .a 2+2a ﹣1 5.以下列各组线段为边,能组成三角形的是( ) A .1cm ,2cm ,4cm B .2cm ,3cm ,5cmC .5cm ,6cm ,12cmD .4cm ,6cm ,8cm 6.如图,∠ACB >90°,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,垂足分别为点D 、点E 、点F ,△ABC中AC 边上的高是( )A .CFB .BEC .AD D .CD7.某中学现有学生500人,计划一年后女生在校生增加3%,男生在校生增加4%,这样,在校学生将增加3.4%,设该校现有女生人数x 和男生y ,则列方程组为( ) A .500(14%)(13%)500(1 3.4)x y x y +=⎧⎨+++=⨯+⎩ B .5003%4% 3.4%x y x y +=⎧⎨+=⎩C .500(13%)(14%)500(1 3.4%)x y x y +=⎧⎨+++=⨯+⎩D .5004%3%500 3.4%x y x y +=⎧⎨+=⨯⎩ 8.如图,在△ABC 中,CE ⊥AB 于 E ,DF ⊥AB 于 F ,AC ∥ED ,CE 是∠ACB 的平分线, 则图中与∠FDB 相等的角(不包含∠FDB )的个数为( )A .3B .4C .5D .69.如图,△ABC 中∠A=30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB=82°,则原三角形的∠B 的度数为( )A .75°B .72°C .78°D .82° 10.下列给出的线段长度不能与4cm ,3cm 能构成三角形的是( )A .4cmB .3cmC .2cmD .1cm 二、填空题11.最薄的金箔的厚度为0.000000091m ,用科学记数法表示为________m .12.根据不等式有基本性质,将()23m x -<变形为32x m >-,则m 的取值范围是__________. 13.计算:312-⎛⎫ ⎪⎝⎭= . 14.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.15.将一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G 、D 、C 分别在M 、N 的位置上,若52EFG ∠=︒,则21∠-∠=_____________︒.16.已知21x y =⎧⎨=⎩是方程2x ﹣y +k =0的解,则k 的值是_____. 17.计算212⎛⎫= ⎪⎝⎭______.18.如果关于x 的方程4232x m x -=+和23x x =-的解相同,那么m=________.19.已知(x ﹣4)(x +6)=x 2+mx ﹣24,则m 的值为_____.20.若长方形的长为a +3b ,宽为a +b ,则这个长方形的面积为_____.三、解答题21.计算:(1)2x 3y •(﹣2xy )+(﹣2x 2y )2;(2)(2a +b )(b ﹣2a )﹣(a ﹣3b )2.22.先化简,再计算:(2a +b )(b -2a )-(a -b )2,其中a =-1,b =-223.(1)填一填21-20=2( )22-21=2( )23-22=2( )⋯(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算20+21+22+⋯+22019.24.(问题背景)(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B =∠C+∠D(简单应用)(2)如图2,AP 、CP 分别平分∠BAD 、∠BCD ,若∠ABC =28°,∠ADC =20°,求∠P 的度数(可直接使用问题(1)中的结论)(问题探究)(3)如图3,直线BP 平分∠ABC 的外角∠FBC ,DP 平分∠ADC 的外角∠ADE ,若∠A =30°,∠C =18°,则∠P 的度数为(拓展延伸)(4)在图4中,若设∠C =x ,∠B =y ,∠CAP =14∠CAB ,∠CDP =14∠CDB ,试问∠P 与∠C 、∠B 之间的数量关系为 (用x 、y 表示∠P )(5)在图5中,BP 平分∠ABC ,DP 平分∠ADC 的外角∠ADE ,猜想∠P 与∠A 、∠C 的关系,直接写出结论 .25.因式分解:(1)2()4()a x y x y ---(2)2242x x -+-(3)2616a a --26.因式分解:(1)16x 2-9y 2(2)(x 2+y 2)2-4x 2y 227.某口罩加工厂有,A B 两组工人共150人,A 组工人每人每小时可加工口罩70只,B 组工人每小时可加工口罩50只,,A B 两组工人每小时一共可加工口罩9300只. (1)求A B 、两组工人各有多少人?(2)由于疫情加重,A B 、两组工人均提高了工作效率,一名A 组工人和一名B 组工人每小时共可生产口罩200只,若A B 、两组工人每小时至少加工15000只口罩,那么A 组工人每人每小时至少加工多少只口罩?28.在平面直角坐标系中,点A 、B 的坐标分别为(),0a ,()0,b ,其中a ,b 满足218|273|0a b a b +-+--=.将点B 向右平移15个单位长度得到点C ,如图所示.(1)求点A ,B ,C 的坐标;(2)动点M 从点C 出发,沿着线段CB 、线段BO 以1.5个单位长度/秒的速度运动,同时点N 从点O 出发沿着线段OA 以1个单位长度秒的速度运动,设运动时间为t 秒()012t <<.当BM AN <时,求t 的取值范围;是否存在一段时间,使得OACM OCN S S ≤四边形三角形?若存在,求出t 的取值范围;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:∵(x±4)2=x 2±8x+16,所以m=±2×4=±8.故选D .考点:完全平方式.2.D解析:D【分析】根据同位角的定义和平行线的性质判断即可.【详解】解:∵只有两直线平行时,同位角才可能相等,∴当没有限定“两直线平行”时,已知∠1与∠2是同位角可以得出∠1=∠2或∠1>∠2或∠1<∠2,三种情况都有可能.故选:D.【点睛】本题考查了同位角的定义和平行线的性质,正确理解同位角的定义是解此题的关键,“两直线平行”这个前提条件易遗漏.3.D解析:D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是22-+-=--.其他不是因式分解:A,C右边不是积的形式,B左边不是多项8x8x22(2x1)式.故选D.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.4.B解析:B【分析】利用完全平方公式的结构特征判断即可.【详解】解:下列式子是完全平方式的是a2+2a+1=(a+1)2,故选B.【点睛】此题考查了完全平方式:(a+b)²=a²+2ab+b²,熟练掌握完全平方公式是解本题的关键.5.D解析:D【分析】根据三角形任意两边之和大于第三边进行分析即可.【详解】解:A、1+2<4,不能组成三角形;B、2+3=5,不能组成三角形;C、5+6<12,不能组成三角形;D、4+6>8,能组成三角形.故选:D.【点睛】本题考查了能够组成三角形三边的条件.用两条较短的线段相加,如果大于最长那条就能够组成三角形.6.B解析:B【解析】试题分析:根据图形,BE 是△ABC 中AC 边上的高.故选B .考点:三角形的角平分线、中线和高.7.C解析:C【分析】本题有两个相等关系:现有女生人数x +现有男生人数y =现有学生500;一年后女生在校生增加3%后的人数+男生在校生增加4%后的人数=现在校学生增加3.4%后的人数;据此即可列出方程组.【详解】解:设该校现有女生人数x 和男生y ,则列方程组为()()()50013%14%5001 3.4%x y x y +=⎧⎨+++=⨯+⎩. 故选:C .【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题关键.8.B解析:B【解析】分析:推出DF ∥CE ,推出∠FDB=∠ECB ,∠EDF=∠CED ,根据DE ∥AC 推出∠ACE=∠DEC ,根据角平分线得出∠ACE=∠ECB ,即可推出答案.详解:∵CE ⊥AB ,DF ⊥AB ,∴DF ∥CE ,∴∠ECB =∠FDB ,∵CE 是∠ACB 的平分线,∴∠ACE =∠ECB ,∴∠ACE =∠FDB ,∵AC ∥DE ,∴∠ACE =∠DEC =∠FDB ,∵DF ∥CE ,∴∠DEC =∠EDF =∠FDB ,即与∠FDB 相等的角有∠ECB 、∠ACE 、∠CED 、∠EDF ,共4个,故选B.点睛:本题考查了平行线的性质:两直线平行,内错角相等、同位角相等,同旁内角互补;解决此类题型关键在于正确找出内错角、同位角、同旁内角.9.C解析:C【分析】在图①的△ABC 中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD ,即可在△CBD 中,得到另一个关于∠B 、∠C 度数的等量关系式,联立两式即可求得∠B 的度数.【详解】在△ABC 中,∠A=30°,则∠B+∠C=150°…①;根据折叠的性质知:∠B=3∠CBD ,∠BCD=∠C ;在△CBD 中,则有:∠CBD+∠BCD=180°-82°,即:13∠B+∠C=98°…②; ①-②,得:23∠B=52°, 解得∠B=78°.故选:C .【点睛】 此题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B 和∠CBD 的倍数关系是解答此题的关键.10.D解析:D【分析】根据三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,即可得答案.【详解】解:设第三边为xcm ,根据三角形的三边关系:4343x -<<+,解得:17x <<.故选项ABC 能构成三角形,D 选项1cm 不能构成三角形,故选:D .【点睛】本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,两边之差小于第三边.二、填空题11..【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为 与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:89.110-⨯.【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000091m 用科学记数法表示为89.110m -⨯.故答案为89.110-⨯.【点睛】考查科学记数法,掌握绝对值小于1的数的表示方法是解题的关键.12.m <2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m <2故答案为:m <2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.解析:m <2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m <2故答案为:m <2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.13.8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式==8.故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.解析:8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式=3112⎛⎫ ⎪⎝⎭=8. 故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.14.4【分析】设购买x 个A 品牌足球,y 个B 品牌足球,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x 个A 品牌足球,解析:4【分析】设购买x 个A 品牌足球,y 个B 品牌足球,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x 个A 品牌足球,y 个B 品牌足球,依题意,得:60x +75y =1500,解得:y =20−45x . ∵x ,y 均为正整数,∴x 是5的倍数,∴516x y =⎧⎨=⎩,1012x y =⎧⎨=⎩,158x y =⎧⎨=⎩,204x y =⎧⎨=⎩ ∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键. 15.28°【分析】根据平行线的性质求出∠DEF的度数,然后根据折叠的性质算出∠GED的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFG=52解析:28°【分析】根据平行线的性质求出∠DEF的度数,然后根据折叠的性质算出∠GED的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFG=52°,∵EFNM是由EFCD折叠而来∴∠GEF=∠DEF=52°,即∠GED=104°,∴∠1=180°-104°=76°,∵∠2=∠GED=104°,∴∠2-∠1=104°-76°=28°.故答案为28°.【点睛】本题考查了平行线的性质和折叠的性质,解决本题的关键是正确理解题意,熟练掌握平行线的性质和折叠的性质,能够根据折叠的性质找到相等的角.16.-3【分析】把x与y的值代入方程计算即可求出k的值.【详解】解:把代入方程得:4﹣1+k=0,解得:k=﹣3,则k的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解析:-3【分析】把x与y的值代入方程计算即可求出k的值.【详解】解:把21xy=⎧⎨=⎩代入方程得:4﹣1+k=0,解得:k=﹣3,则k的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解,求方程中的参数,掌握二元一次方程解的定义是解决此题的关键.17.【分析】根据分式的乘方运算法则,即分式乘方要把分子、分母分别乘方,即可求解.【详解】解:.故答案为.【点睛】本题目考查分式的乘方运算法则,难度不大,熟练掌握其运算法则是解题的关键.解析:14【分析】根据分式的乘方运算法则,即分式乘方要把分子、分母分别乘方,即可求解.【详解】解:222111== 224⎛⎫⎪⎝⎭.故答案为14.【点睛】本题目考查分式的乘方运算法则,难度不大,熟练掌握其运算法则是解题的关键.18.【分析】首先求得方程的解,然后将代入到方程中,即可求得.【详解】解:,移项,得,合并同类项,得,系数化为1,得,∵两方程同解,那么将代入方程,得,移项,得,系数化为1,得.故 解析:12【分析】首先求得方程23x x =-的解x ,然后将x 代入到方程4232x m x -=+中,即可求得m .【详解】解:23x x =-,移项,得23x x -=-,合并同类项,得3x -=-,系数化为1,得=3x ,∵两方程同解,那么将=3x 代入方程4232x m x -=+,得12211m -=,移项,得21m -=-,系数化为1,得12m =. 故12m =. 【点睛】 本题考查含有参数的一元一次方程同解问题,难度不大,真正理解方程的解的含义是顺利解题的关键.19.2【分析】利用多项式乘以多项式法则计算(x ﹣4)(x +6)=x2+2x ﹣24,从而得出m =2.【详解】解:∵(x ﹣4)(x +6)=x2+2x ﹣24=x2+mx ﹣24,∴m=2,故答案为2解析:2【分析】利用多项式乘以多项式法则计算(x ﹣4)(x +6)=x 2+2x ﹣24,从而得出m =2.【详解】解:∵(x ﹣4)(x +6)=x 2+2x ﹣24=x 2+mx ﹣24,∴m =2,故答案为2.【点睛】本题主要考查了整式乘法的运算,准确分析题目中的式子是解题的关键.20.a2+4ab +3b2【分析】根据长方形面积公式可得长方形的面积为(a +3b )(a +b ),计算即可.【详解】解:由题意得,长方形的面积:(a +3b )(a +b )=a2+4ab +3b2. 故答案为解析:a 2+4ab +3b 2【分析】根据长方形面积公式可得长方形的面积为(a +3b )(a +b ),计算即可.【详解】解:由题意得,长方形的面积:(a +3b )(a +b )=a 2+4ab +3b 2.故答案为:a 2+4ab +3b 2.【点睛】本题考查长方形的面积公式和多项式乘法,熟练掌握多项式乘法计算法则是解题的关键.三、解答题21.(1)0;(2)﹣5a 2+6ab ﹣8b 2.【分析】(1)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;(2)原式利用平方出根是,以及完全平方公式化简,去括号合并即可得到结果.【详解】解:(1)原式=﹣4x 4y 2+4x 4y 2=0;(2)原式=﹣4a 2+b 2﹣(a 2﹣6ab +9b 2)=﹣4a 2+b 2﹣a 2+6ab ﹣9b 2=﹣5a 2+6ab ﹣8b 2.【点睛】此题考查了整式的混合运算,熟练掌握运算法则及公式是解本题的关键.22.-5a 2+2ab ,-1【分析】先利用平方差公式和完全平方公式进行计算,然和合并同类项,最后把a ,b 的值代入即可.【详解】()()()22222()=4222b a a a b b a ab b a b --++----2222=42b a a b ab ---+ 252a ab =-+,当a =-1,b =-2时,原式=-1.【点睛】本题考查了整式的化简求值,解题的关键是熟练掌握混合运算的顺序和整式的乘法公式.23.(1)0,1,2(2)11222n n n ---=(3)22020-1【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得11222n n n ---=,然后利用提公因式法12n -可以证明这个等式成立;(3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式相减即可.【详解】(1)10022212-=-=,21122422-=-=,32222842-=-=,故答案为:0,1,2;(2)第n 个等式为:11222n n n ---=,∵左边=()111222212n n n n ----=-=,右边=12n -,∴左边=右边,∴11222n n n ---=;(3)20+21+22+⋅⋅⋅⋅⋅⋅+22019=21-20+22-21+⋅⋅⋅⋅⋅⋅+22020-22019=22020-1∴01220192020222221++++=-….【点睛】此题主要考察了探寻数列规律问题,认真观察,总结出规律,并能正确的应用规律是解答此题的关键.24.(1)证明见解析;(2)24°;(3)24°;(4)∠P=34x+14y ;(5)∠P=180()2A C ︒-∠+∠ 【分析】 (1)根据三角形内角和为180°,对顶角相等,即可证得∠A+∠B=∠C+∠D(2)由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC ①,∠PAD+∠P=∠PCD+∠ADC ②,将两个式子相加,已知AP 、CP 分别平分∠BAD 、∠BCD ,可得∠BAP=∠PAD ,∠BCP=∠PCD ,可证得∠P=12(∠ABC+∠ADC),即可求出∠P 度数. (3)已知直线BP 平分∠ABC 的外角∠FBC ,DP 平分∠ADC 的外角∠ADE ,可得∠1=∠2,∠3=∠4,由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1,∠A+∠4=∠P+∠2,两式相加即可求出∠P 的度数.(4)由(1)的结论得:14∠CAB+∠C=∠P+14∠CDB ,34∠CAB+∠P=∠B+34∠CDB ,第一个式子乘以3,得到的式子减去第二个式子即可得出用x 、y 表示∠P(5)延长AB 交DP 于点F ,标注出∠1,∠2,∠3,∠4,由(1)的结论得:∠A+2∠1=∠C+180°-2∠3,其中根据对顶角相等,三角形内角和,以及外角的性质即可得到∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P,代入∠A+2∠1=∠C+180°-2∠3,即可得出∠P与∠A、∠C的关系.【详解】(1)如图1,∠A+∠B+∠AOB=∠C+∠D+∠COD=180°∵∠AOB=∠COD∴∠A+∠B=∠C+∠D(2)∵AP、CP分别平分∠BAD、∠BCD∴∠BAP=∠PAD,∠BCP=∠PCD,由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC①,∠PAD+∠P=∠PCD+∠ADC②①+②,得2∠P+∠PAD+∠BCP=∠BAP+∠ABC +∠PCD+∠ADC∴∠P=12(∠ABC+∠ADC)∴∠ABC=28°,∠ADC=20°∴∠P=12(28°+20°)∴∠P=24°故答案为:24°(3)∵如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,∴∠1=∠2,∠3=∠4由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1①,∠A+∠4=∠P+∠2②①+②,得∠C+180°-∠3+∠A+∠4=∠P+180°-∠1+∠P+∠2∴30°+18°=2∠P ∴∠P=24°故答案为:24°(4)由(1)的结论得:14∠CAB+∠C=∠P+14∠CDB①,34∠CAB+∠P=∠B+34∠CDB②①×3,得34∠CAB+3∠C=3∠P+34∠CDB③②-③,得∠P-3x=y-3∠P∴∠P=34x+14y故答案为:∠P=34x+14y(5)如图5所示,延长AB交DP于点F由(1)的结论得:∠A+2∠1=∠C+180°-2∠3∵∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P ∴∠A+360°-2∠A-2∠3-2∠P=∠C+180°-2∠3解得:∠P=180()2A C︒-∠+∠故答案为:∠P=180()2A C ︒-∠+∠ 【点睛】 本题是考查了角平分线性质及三角形内角和定理,对顶角相等,三角形任一外角等于不相邻的两个内角和等知识点,本题是典型的拓展延伸题,一般第一问得出基本结论,后面的问题将基本结论作为解题基础,进行拓展延伸.25.(1)()(2)(2)x y a a -+-;(2)22(1)x --;(3)(2)(8)a a +-【分析】(1)先提公因式再利用平方差因式分解;(2)先提公因式再利用完全平方公式因式分解;(3)直接利用2(x+p)(x+q)x +(p+q)x+pq =公式因式分解.【详解】解:(1)2()4()a x y x y ---()2()4x y a =--()(2)(2)x y a a =-+-(2)2242x x -+-()2221x x =--+22(1)x =--(3)2616a a --(2)(8)a a =+-【点睛】此题考查因式分解的几种常见的方法,主要考查运算能力.26.(1)(43)(4-3)x y x y +;(2)22()(-y)x y x +.【分析】(1)直接利用平方差公式22()()a b a b a b +-=-分解即可; (2)先利用平方差公式,再利用完全平方公式222()2a b a ab b ±=±+即可.【详解】(1)原式2243))((x y =-(43)(43)x y x y =+-;(2)原式2222)()(2x y xy =-+2222(2)(2)x y x y xy y x ++=+-22()()x y x y =+-.【点睛】本题考查了利用平方差公式和完全平方公式进行因式分解,熟记公式是解题关键.27.(1)A 组工人有90人、B 组工人有60人(2)A 组工人每人每小时至少加工100只口罩【分析】(1)设A 组工人有x 人、B 组工人有(150−x )人,根据题意列方程健康得到结论; (2)设A 组工人每人每小时加工a 只口罩,则B 组工人每人每小时加工(200−a )只口罩;根据题意列不等式健康得到结论.【详解】(1)设A 组工人有x 人、B 组工人有(150−x )人,根据题意得,70x +50(150−x )=9300,解得:x =90,150−x =60,答:A 组工人有90人、B 组工人有60人;(2)设A 组工人每人每小时加工a 只口罩,则B 组工人每人每小时加工(200−a )只口罩;根据题意得,90a +60(200−a )≥15000,解得:a ≥100,答:A 组工人每人每小时至少加工100只口罩.【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,正确的理解题意是解题的关键.28.(1)(12,0)A (0,3)B (15,3)C(2)610.8t <<;存在,02t <≤或11.612t ≤<【分析】(1)根据题意构造方程组21802730a b a b +-=⎧⎨--=⎩,解方程组,问题得解; (2)①当010t <≤时,15 1.5BM t =-,12AN t =-,根据BM AN <构造不等式,求出t ,当1012t <<时, 1.515BM t =-,12AN t =-,根据BM AN <构造不等式,求出t ,二者结合,问题得解;②分别表示出BCN S 三角形、 OACB S 四边形,分010t <≤,1012t <<两种情况讨论,问题得解.【详解】解:(1)由题意得21802730a b a b +-=⎧⎨--=⎩, 解得123a b =⎧⎨=⎩, ∴(12,0)A ,(0,3)B ,(15,3)C(2)①当010t <≤时,15 1.5BM t =-,12AN t =-,BM AN <得15 1.512t t -<-,解得6t >则610t <≤;当1012t <<时, 1.515BM t =-,12AN t =-,BM AN <得1.51512t t -<-, 解得10.8t <,则1010.8t <<,综上,610.8t <<; ②1145153222BCN S BC OB =⨯⨯=⨯⨯=三角形 1181()(1215)3222OACB S OA BC OB =⨯+⨯=⨯+⨯=四边形 当010t <≤时, 81145(15 1.5)3222OACM OACB BMO S S S t =-=-⨯-⨯≤四边形四边形三角形 解得2t ≤,则02t <≤; 当1012t <<时, 81145(1.515)15222OACM OACB BMC S S S t =-=-⨯-⨯≤四边形四边形三角形 解得11.6t ≥,则11.612t ≤<,综上02t <≤或11.612t ≤<.【点睛】本题考查了非负数的表达、平面直角坐标系中图形面积表示,不等式,方程组、分类讨论等知识,综合性较强.根据题意,分类讨论是解题关键.。
七年级数学下册期末测试卷及答案doc
七年级数学下册期末测试卷及答案doc一、选择题1.如图,∠1=∠2,则下列结论一定成立的是( )A .AB ∥CD B .AD ∥BC C .∠B =∠D D .∠1=∠22.如图所示,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角 3.计算(﹣2a 2)•3a 的结果是( )A .﹣6a 2B .﹣6a 3C .12a 3D .6a 3 4.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .5.如图,∠ACB >90°,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,垂足分别为点D 、点E 、点F ,△ABC 中AC 边上的高是( )A .CFB .BEC .AD D .CD6.下列图形中,能将其中一个三角形平移得到另一个三角形的是( )A .B .C .D .7.下列运算中,正确的是( )A .a 8÷a 2=a 4B .(﹣m)2•(﹣m 3)=﹣m 5C .x 3+x 3=x 6D .(a 3)3=a 6 8.下列给出的线段长度不能与4cm ,3cm 能构成三角形的是( )A .4cmB .3cmC .2cmD .1cm9.下列等式由左边到右边的变形中,因式分解正确的是( )A .22816(4)m m m -+=-B .323346(46)x y x y x y y +=+C .()22121x x x x ++=++D .22()()a b a b a b +-=-10.已知x a y b =⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解,则32a b -的算术平方根为( ) A .4± B .4 C .2 D .2±二、填空题11.已知m a =2,n a =3,则2m n a -=_______________.12.已知x 2+2kx +9是完全平方式,则常数k 的值是____________.13.若关于x ,y 的方程组316215x ay x by -=⎧⎨+=⎩的解是71x y =⎧⎨=⎩,则方程组()32162(2)15x y ay x y by ⎧--=⎨-+=⎩的解是________.14.将一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G 、D 、C 分别在M 、N 的位置上,若52EFG ∠=︒,则21∠-∠=_____________︒.15.如图,//PQ MN ,A 、B 分别为直线MN 、PQ 上两点,且45BAN ∠=︒,若射线AM 绕点顺时针旋转至AN 后立即回转,射线BQ 绕点B 逆时针旋转至BP 后立即回转,两射线分别绕点A 、点B 不停地旋转,若射线AM 转动的速度是a ︒/秒,射线BQ 转动的速度是b ︒/秒,且a 、b 满足()2510a b -+-=.若射线AM 绕点A 顺时针先转动18秒,射线BQ 才开始绕点B 逆时针旋转,在射线BQ 到达BA 之前,问射线AM 再转动_______秒时,射线AM 与射线BQ 互相平行.16.已知关于x ,y 的二元一次方程(32)(23)11100a x a y a +----=,无论a 取何值,方程都有一个固定的解,则这个固定解为_______.17.已知关于x 的不等式3()50a b x a b -+->的解集是1x <,则关于x 的不等式4ax b >的解集为_______.18.已知:如图,△ABC 的周长为21cm ,AB =6cm ,BC 边上中线AD =5cm ,△ACD 周长为16cm ,则AC 的长为__________cm .19.一个两位数的十位上的数是个位上的数的2倍,若把两个数字对调,则新得到的两位数比原两位数小36,则原两位数是_______.20.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中()1,0→()2,0→()2,1→()1,1→1,2→()2,2…根据这个规律,则第2020个点的坐标为_________.三、解答题21.(数学经验)三角形的中线的性质:三角形的中线等分三角形的面积.(经验发展)面积比和线段比的联系:(1)如图1,M 为△ABC 的AB 上一点,且BM =2AM .若△ABC 的面积为a ,若△CBM 的面积为S ,则S =_______(用含a 的代数式表示).(结论应用)(2)如图2,已知△CDE 的面积为1,14CD AC =,13CE CB =,求△ABC 的面积. (迁移应用)(3)如图3.在△ABC 中,M 是AB 的三等分点(13AM AB =),N 是BC 的中点,若△ABC 的面积是1,请直接写出四边形BMDN 的面积为________.22.先化简,再求值:()()()()2212112,x x x x x --+---其中2230x x --=.23.把下列各式分解因式:(1)4x 2-12x 3(2)x 2y +4y -4xy(3)a 2(x -y )+b 2(y -x )24.因式分解:(1)3()6()x a b y b a ---(2)222(1)6(1)9y y ---+ 25.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C =∠EFG ,∠CED =∠GHD .(1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由;(3)若∠EHF =80°,∠D =30°,求∠AEM 的度数.26.水果商贩老徐上水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元.老徐购得草莓和苹果共60箱,刚好花费3100元.(1)问草莓、苹果各购买了多少箱?(2)老徐有甲、乙两家店铺,每出售一箱草莓或苹果,甲店分别获利15元和20元,乙店分别获利12元和16元.设老徐将购进的60箱水果分配给甲店草莓a 箱,苹果b 箱,其余均分配给乙店,由于他口碑良好,两家店都很快卖完了这批水果.①若老徐在甲店获利600元,则他在乙店获利多少元?②若老徐希望获得总利润为1000元,则a b +=?27.因式分解:(1)43312x x -(2)2()a b x a b -+-(3)2169x -(4)(1)(5)4x x +++28.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即222)2(a ab b a b ±+=±.例如:2224213x x x x -+=-++2(1)3x =-+是224x x -+的一种形式的配方;所以,()213x -+,2(2)x -2x +,22213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项).请根据阅读材料解决下列问题:(1)比照上面的例子,写出249x x -+三种不同形式的配方;(2)已知22610340x y x y +-++=,求32x y -的值;(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据内错角相等,两直线平行即可得出结论.【详解】∵∠1=∠2,∴AB ∥DC(内错角相等,两直线平行).故选A .【点睛】考查平行线的判定定理,平行线的概念,关键在于根据图形找到被截的两直线.2.C解析:C【分析】根据同旁内角的定义可判断.【详解】∵∠1和∠2都在直线c 的下侧,且∠1和∠2在直线a 、b 之内∴∠1和∠2是同旁内角的关系故选:C .【点睛】本题考查同旁内角的理解,紧抓定义来判断.3.B解析:B【分析】用单项式乘单项式的法则进行计算.【详解】解:(-2a 2)·3a=(-2×3)×(a 2·a)=-6a 3 故选:B .本题考查单项式乘单项式,掌握运算法则正确计算是解题关键.4.D解析:D【详解】解:A、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选D.5.B解析:B【解析】试题分析:根据图形,BE是△ABC中AC边上的高.故选B.考点:三角形的角平分线、中线和高.6.A解析:A【解析】【分析】利用平移的性质,结合轴对称、旋转变换和位似图形的定义判断得出即可.【详解】A、可以通过平移得到,故此选项正确;B、可以通过旋转得到,故此选项错误;C、是位似图形,故此选项错误;D、可以通过轴对称得到,故此选项错误;故选A.【点睛】本题考查了平移的性质以及轴对称、旋转变换和位似图形,正确把握定义是解题的关键.7.B解析:B【分析】根据同类项的定义及合并同类相法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,积的乘方,分析判断后利用排除法求解.【详解】解:A、a8÷a2=a4不正确;B、(-m)2·(-m3)=-m5正确;C、x3+x3=x6合并得2x3,故本选项错误;D、(a3)3=a9,不正确.故选B.本题主要考查了合并同类项及同底数幂的乘法、除法,熟练掌握运算性质和法则是解题的关键.8.D解析:D【分析】根据三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,即可得答案.【详解】解:设第三边为xcm ,根据三角形的三边关系:4343x -<<+,解得:17x <<.故选项ABC 能构成三角形,D 选项1cm 不能构成三角形,故选:D .【点睛】本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,两边之差小于第三边.9.A解析:A【分析】根据因式分解的意义,可得答案.【详解】解:A 、属于因式分解,故本选项正确;B 、因式分解不彻底,故B 选项不符合题意;C 、没把一个多项式转化成几个整式积的形式,故C 不符合题意;D 、是整式的乘法,故D 不符合题意;【点睛】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是因式分解.10.B解析:B【分析】把方程组24213x y x y -=⎧⎨+=⎩的解求解出来即可得到a 、b 的值,再计算32a b -的算术平方根即可得到答案;【详解】解:24213x y x y -=⎧⎨+=⎩①② 把①式×5得:248x y -= ③,用②式-③式得:55y = ,解得:y=1,把1y = 代入①式得到:24x -= ,即:6x = ,又x a y b =⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解, 所以61a b =⎧⎨=⎩, 故3216a b -=,所以32a b -的算术平方根=16的算术平方根,4== ,故答案为:4;【点睛】本题主要考查了二元一次方程组的求解以及算术平方根的定义,掌握用消元法求解二元一次方程组的解是解题的关键;二、填空题11.【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:am-2n=am÷a2n=am÷(an )2=2÷9=故答案为【点睛】本题考查了同底数幂的除法和幂的 解析:29【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:a m-2n=a m ÷a 2n=a m ÷(a n )2=2÷9 =29故答案为2 9【点睛】本题考查了同底数幂的除法和幂的乘方与积的乘方,解答本题的关键在于熟练掌握各知识点的运算法则.12. 3【分析】利用完全平方公式的结构特征判断即可求出k的值.【详解】∵关于字母x的二次三项式x2+2kx+9是完全平方式,∴k=±3,故答案为:3.【点睛】此题考查了完全平方式,熟练解析:±3【分析】利用完全平方公式的结构特征判断即可求出k的值.【详解】∵关于字母x的二次三项式x2+2kx+9是完全平方式,∴k=±3,故答案为:±3.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.【分析】已知是方程组的解,将代入到方程组中可求得a,b的值,即可得到关于x,y 的方程组,利用加减消元法解方程即可.【详解】∵是方程组的解∴∴a=5,b=1将a=5,b=1代入得①×解析:91 xy=⎧⎨=⎩【分析】已知71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解,将71xy=⎧⎨=⎩代入到方程组316215x ayx by-=⎧⎨+=⎩中可求得a,b的值,即可得到关于x,y的方程组()32162(2)15x y ayx y by⎧--=⎨-+=⎩,利用加减消元法解方程即可.【详解】∵71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解∴2116 1415ab-=⎧⎨+=⎩∴a=5,b=1将a=5,b=1代入()3216 2(2)15x y ayx y by⎧--=⎨-+=⎩得31116 2315x yx y-=⎧⎨-=⎩①②①×2,得6x-22y=32③②×3,得6x-9y=45④④-③,得13y=13解得y=1将y=1代入①,得3x=27解得x=9∴方程组的解为91 xy=⎧⎨=⎩故答案为:91 xy=⎧⎨=⎩【点睛】本题考查了方程组的解的概念,已知一组解是方程组的解,那么这组解满足方程组中每个方程,同时也考查了利用加减消元法解方程组,解题的关键是如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等.14.28°【分析】根据平行线的性质求出∠DEF的度数,然后根据折叠的性质算出∠GED的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFG=52解析:28°【分析】根据平行线的性质求出∠DEF 的度数,然后根据折叠的性质算出∠GED 的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD ∥BC ,∴∠DEF=∠EFG=52°,∵EFNM 是由EFCD 折叠而来∴∠GEF=∠DEF=52°,即∠GED=104°,∴∠1=180°-104°=76°,∵∠2=∠GED=104°,∴∠2-∠1=104°-76°=28°.故答案为28°.【点睛】本题考查了平行线的性质和折叠的性质,解决本题的关键是正确理解题意,熟练掌握平行线的性质和折叠的性质,能够根据折叠的性质找到相等的角.15.15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM 的位置,∠MAM=18°×5=90°,然后分情况讨论即可.【详解】∵,∴a=5,b=1解析:15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,然后分情况讨论即可.【详解】 ∵()2510a b -+-=,∴a=5,b=1,设射线AM 再转动t 秒时,射线AM 、射线BQ 互相平行,如图,射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,分两种情况:①当9<t<18时,如图,∠QBQ'=t°,∠M'AM"=5t°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°-t°,∠BAM"=5t-45°,当∠ABQ'=∠BAM"时,BQ'//AM",此时,45°-t°=5t-45°,解得t=15;②当18<t<27时,如图∠QBQ'=t°,∠NAM"=5t°-90°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°-t°,∠BAM"=45°-(5t°-90°)=135°-5t°,当∠ABQ'=∠BAM"时,BQ'//AM",此时,45°-t°=135°-5t,解得t=22.5;综上所述,射线AM再转动15秒或22.5秒时,射线AM射线BQ互相平行.故答案为:15或22.5【点睛】本题考查了非负数的性质,平行线的判定,完全平方公式,掌握知识点是解题关键.16.【分析】根据题意先给a取任意两个值,然后代入,得到关于x、y的二元一次方程组,解之得到x、y的值,再代入原方程验证即可.【详解】∵无论取何值,方程都有一个固定的解,∴a值可任意取两个值,解析:41 xy=⎧⎨=⎩【分析】根据题意先给a取任意两个值,然后代入,得到关于x、y的二元一次方程组,解之得到x、y的值,再代入原方程验证即可.【详解】∵无论a 取何值,方程都有一个固定的解,∴a 值可任意取两个值,可取a=0,方程为23110x y +-=,取a=1,方程为5210x y +-=,联立两个方程解得4,1x y ==,将4,1x y ==代入(32)(23)11100a x a y a +----=,得(32)4(23)111101282311100a a a a a a +⨯--⨯--=+-+--=对任意a 值总成立, 所以这个固定解是41x y =⎧⎨=⎩, 故答案为:41x y =⎧⎨=⎩. 【点睛】 此题考查了解二元一次方程组,熟练掌握带有参数的方程的解法是解答的关键.17.【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵的解集是,∴=1,a -b<0,∴a=2b,b<0.则不等式可以化为2bx>4b.∵b<解析:2x <【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵3()50a b x a b -+->的解集是1x <,∴()53a b a b --=1,a-b<0, ∴a=2b,b<0.则不等式4ax b >可以化为2bx>4b.∵b<0.∴x<2.即关于x 的不等式4ax b >的解集为x<2.【点睛】本题考查了不等式的解法,正确确定b的符号是关键.18.7【解析】先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BC的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.解:∵AB=6cm,AD解析:7【解析】先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BC的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15-6-5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21-6-8=7cm.故AC长为7cm.“点睛”此题考查了三角形的周长和中线,本题的关键是由周长和中线的定义得到BC的长,题目难度中等.19.84【分析】设原两位数的个位上的数字为x,则十位上的数字为2x,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x,则十位上的数字为2x,由题意,得解析:84【分析】设原两位数的个位上的数字为x,则十位上的数字为2x,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x,则十位上的数字为2x,由题意,得10×2x+x-(10x+2x)=36,解得:x=4,则十位数字为:2×4=8,则原两位数为84.故答案为:84.【点睛】本题考查了一元一次方程的应用-数字问题,考查了百位数字×100+十位上的数字×10+个位数字的运用,解答时根据数位问题的数量关系建立方程式是关键.20.【分析】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角解析:()45,5【分析】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴,按照此方法计算即可;【详解】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴,∵245=2025,∴第2025个点在x轴上的坐标为()45,0,则第2020个点在()45,5.故答案为()45,5.【点睛】本题主要考查了规律题型点的坐标,准确判断是解题的关键.三、解答题21.(1)23a(2)12(3)512【分析】(1)根据三角形的面积公式及比例特点即可求解;(2)连接AE,先求出△ACE的面积,再得到△ABC的面积即可;(3)连接BD,设△ADM的面积为a,则△BDM的面积为2a,设△CDN的面积为b,则△BDN的面积为b,根据图形的特点列出方程组求出a,b,故可求解.【详解】(1)设△ABC中BC边长的高为h,∵BM=2AM.∴BM=23 AB∴S=12BM×h=12×23AB×h=23S△ABC=23a故答案为:23 a;(2)如图2,连接AE,∵14 CD AC=∴CD=14 AC∴S△DCE=14S△ACE=1∴S△ACE=4,∵13 CE CB=∴CE=13 CB∴S△ACE=13S△ABC=4∴S△ABC=12;(3)如图3,连接BD,设△ADM的面积为a,∵13 AM AB=∴BM=2AM,BM=23 AB,∴S△BDM=2S△ABM=2a, S△BCM=23S△ABC=23设△CDN的面积为b,∵N是BC的中点,∴S△CDN=S△BDN=b,S△ABN=12S△ABC=12∴122223a a bb b a⎧++=⎪⎪⎨⎪++=⎪⎩,解得11214ab⎧=⎪⎪⎨⎪=⎪⎩∴四边形BMDN的面积为2a+b=5 12故答案为5 12.【点睛】此题主要考查三角形面积公式的应用,解题的关键是根据题意找到面积的之间的关系. 22.6【解析】试题分析:先根据乘法公式和单项式乘以多项式的法则计算化简,根据化简的结果,将2230x x --=变形后整体代入计算即可.试题解析:原式=()()222441212x x x x x -+---- 222441222x x x x x =-+-+-+223x x =-+∵2230x x --=,∴223x x -=,∴原式=3+3=6.23.(1)4x 2(1-3x )(2)y (x -2)2(2)(x -y )(a +b )(a -b )【分析】(1)直接利用提公因式法分解因式即可;(2)先提取公因式,然后利用完全平方公式分解因式即可;(3)先提取公因式,然后利用平方差公式分解因式即可.【详解】(1)()232412413x x x x =--; (2)()()22244442x y y xy y x x y x +-=+-=-; (3)()()()()()2222()()a x y b y x x y a b x y a b a b =--=-+--+-.【点睛】本题考查了分解因式,解题的关键是熟练掌握提取公因式法和公式法分解因式.24.(1)3()(2)a b x y -+;(2)22(2)(2)y y +-【分析】(1)提取公因式3(a-b),即可求解.(2)将(y 2-1)看成一项,根据完全平方公式进行因式分解,之后再利用平方差公式即可求解.【详解】(1)原式=3()6()x a b y b a ---=3()(2)a b x y -+故答案为:3()(2)a b x y -+(2)原式=222(1)6(1)9y y ---+=22(y 13)--=22(4)y -=22(2)(2)y y +-故答案为:22(2)(2)y y +-【点睛】本题考查了因式分解的方法,本题分别采用了提取公因式法和公式法进行因式分解,一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.运用公式法因式分解,一般有平方差公式,完全平方公式,立方和公式,完全立方公式.25.(1)证明见解析;(2)∠AED +∠D =180°,理由见解析;(3)110°【分析】(1)依据同位角相等,即可得到两直线平行;(2)依据平行线的性质,可得出∠FGD =∠EFG ,进而判定AB ∥CD ,即可得出∠AED +∠D =180°;(3)依据已知条件求得∠CGF 的度数,进而利用平行线的性质得出∠CEF 的度数,依据对顶角相等即可得到∠AEM 的度数.【详解】(1)∵∠CED =∠GHD ,∴CB ∥GF ;(2)∠AED +∠D =180°;理由:∵CB ∥GF ,∴∠C =∠FGD ,又∵∠C =∠EFG ,∴∠FGD =∠EFG ,∴AB ∥CD ,∴∠AED +∠D =180°;(3)∵∠GHD =∠EHF =80°,∠D =30°,∴∠CGF =80°+30°=110°,又∵CE ∥GF ,∴∠C =180°﹣110°=70°,又∵AB ∥CD ,∴∠AEC =∠C =70°,∴∠AEM =180°﹣70°=110°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.26.(1)草莓35箱,苹果25箱;(2)①340元,②53或52【分析】(1)抓住题中关键的已知条件,老徐购得草莓和苹果共60箱,刚好花费3100元,设未知数列方程组,求解方程即可;(2)①由题意列二元一次方程,可得到34120a b +=,列式求出他在乙店获利;②根据老徐希望获得总利润为1000元,建立关于a 、b 的二元一次方程,整理可得18034a b -=,再根据a 、b 的取值范围及a 一定是4的整数倍,即可求出结果; 【详解】 (1)解:设草莓购买了x 箱,苹果购买了y 箱,根据题意得:6060403100x y x y ⎧+=⎨+=⎩, 解得3525x y ⎧=⎨=⎩. 答:草莓购买了35箱,苹果购买了25箱;(2)解:①若老徐在甲店获利600元,则1520600ab +=, 整理得:34120a b +=,他在乙店的获利为:()()12351625a b -+-, =()820434a b -+,=820-4120⨯,=340元;②根据题意得:()()1520123516251000a b a b ++-+-=, 整理得:34180ab +=, 得到18034ab -=,∵a、b 均为正整数,∴a 一定是4的倍数,∴a 可能是0,4,8…,∵035a ≤≤,025b ≤≤,∴当且仅当a=32,b=21或a=25,b=24时34180ab +=成立, ∴322153a b +=+=或28+24=52.故答案为340元;53或52.【点睛】本题主要考查了二元一次方程组的应用,根据题意列式是解题的关键.27.(1)3x 3(x ﹣4);(2)(a ﹣b )(1+2x );(3)(4﹣3x )(4+3x );(4)2(3)x +.【分析】(1)原式提取公因式3x 3即可;(2)原式提取公因式-a b 即可;(3)原式利用平方差公式分解即可;(4)原式变形后,利用完全平方公式分解即可.【详解】解:(1)原式=3x 3(x ﹣4);(2)原式=(a ﹣b )(1+2x );(3)原式=(4﹣3x )(4+3x );(4)原式=2554x x x ++++=269x x ++=2(3)x +.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.28.(1)2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+;(2)19;(3)4【分析】(1)根据材料中的三种不同形式的配方,“余项“分别是常数项、一次项、二次项,可解答;(2)将x 2+y 2-6x+10y+34配方,根据平方的非负性可得x 和y 的值,可解答;(3)通过配方后,求得a ,b ,c 的值,再代入代数式求值.【详解】解:(1)249x x -+的三种配方分别为:2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+(或2222549339x x x x ⎛⎫-+=-+ ⎪⎝⎭; (2)∵x 2+y 2-6x+10y+34=x 2-6x+9+y 2+10y+25=(x-3)2+(y+5)2=0,∴x-3=0,y+5=0,∴x=3,y=-5,∴3x-2y=3×3-2×(-5)=19(3)2223240a b c ab b c ++---+=()2222134421044a ab b b bc c -++-++-+= 22213(2)(1)024a b b c ⎛⎫-+-+-= ⎪⎝⎭ ∴102a b -=,3(2)04b -=,10c -= ∴1a =,2b =,1c =,则4a b c ++=【点睛】本题考查的是配方法的应用,首先利用完全平方公式使等式变为两个非负数和一个正数的和的形式,然后利用非负数的性质解决问题.。
初一下学期数学期末试卷带答案doc
初一下学期数学期末试卷带答案doc一、选择题1.12-等于( )A .2-B .12C .1D .12- 2.以下列各组线段为边,能组成三角形的是( )A .2cm 、2cm 、4cmB .2cm 、6cm 、3cmC .8cm 、6cm 、3cmD .11cm 、4cm 、6cm 3.如果多项式x 2+mx +16是一个二项式的完全平方式,那么m 的值为( )A .4B .8C .-8D .±8 4.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠1 5.若正方形边长增加1,得到的新正方形面积比原正方形面积增加6,则原正方形的边长是( )A .2B .52C .3D .726.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150°7.不等式3+2x>x+1的解集在数轴上表示正确的是( )A .B .C .D .8.点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点M 的坐标是( )A .(2,﹣5)B .(﹣2,5)C .(5,﹣2)D .(﹣5,2) 9..已知2x a y =⎧⎨=-⎩是关于x ,y 的方程3x ﹣ay =5的一个解,则a 的值为( ) A .1 B .2 C .3 D .410.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为( )A .(46,4)B .(46,3)C .(45,4)D .(45,5)二、填空题11.多项式2412xy xyz +的公因式是______.12.已知关于x 的不等式组()531235x a x x ⎧->-⎨-≤⎩的所有整数解的和为7则a 的取值范围是__________.13.计算:20202019120192019⎛⎫⨯- ⎪⎝⎭=________. 14.如图,在△ABC 中,点D 为BC 边上一点,E 、F 分别为AD 、CE 的中点,且ABC S ∆=8cm 2,则BEF S ∆=____.15.内角和等于外角和2倍的多边形是__________边形.16.计算212⎛⎫= ⎪⎝⎭______. 17.关于,x y 的方程组3x y m x my n -=⎧⎨-=⎩的解是11x y =⎧⎨=⎩,则n 的值是______. 18.计算:2m·3m=______. 19.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=54º时,∠1=______.20.把长和宽分别为a 和b 的四个相同的小长方形拼成如图的图形,若图中每个小长方形的面积均为3,大正方形的面积为20,则()2a b -的值为_____.三、解答题21.如图,直线AC ∥BD ,BC 平分∠ABD ,DE ⊥BC ,垂足为点E ,∠BAC =100°,求∠EDB 的度数.22.阅读下列材料,学习完“代入消元法”和“加减消元法“解二元一次方程组后,善于思考的小铭在解方程组2534115x y x y +=⎧⎨+=⎩时,采用了一种“整体代换”的解法: 解:将方程②变形:4x +10y +y =5,即2(2x +5y )+y =5③.把方程①代入③得:2×3+y =5,∴y =﹣1①得x =4,所以,方程组的解为41x y =⎧⎨=-⎩. 请你解决以下问题:(1)模仿小铭的“整体代换”法解方程组3259419x y x y -=⎧⎨-=⎩. (2)已知x ,y 满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩,求x 2+4y 2﹣xy 的值. 23.如果a c =b ,那么我们规定(a ,b )=c .例如;因为23=8,所以(2,8)=3. (1)根据上述规定填空:(3,27)= ,(4,1)= ,(2,0.25)= ; (2)记(3,5)=a ,(3,6)=b ,(3,30)=c .判断a ,b ,c 之间的等量关系,并说明理由.24.已知a +a 1-=3, 求(1)a 2+21a(2)a 4+41a 25.已知下列等式:①32-12=8,②52-32=16,③72-52=24,…(1)请仔细观察,写出第5个式子;(2)根据以上式子的规律,写出第n 个式子,并用所学知识说明第n 个等式成立.26.某口罩加工厂有,A B 两组工人共150人,A 组工人每人每小时可加工口罩70只,B 组工人每小时可加工口罩50只,,A B 两组工人每小时一共可加工口罩9300只.(1)求A B 、两组工人各有多少人?(2)由于疫情加重,A B 、两组工人均提高了工作效率,一名A 组工人和一名B 组工人每小时共可生产口罩200只,若A B 、两组工人每小时至少加工15000只口罩,那么A 组工人每人每小时至少加工多少只口罩?27.(知识生成)通常情况下、用两种不同的方法计算同一图形的面积,可以得到一个恒等式.(1)如图 1,请你写出()()22,a b a b ab +-,之间的等量关系是(知识应用)(2)根据(1)中的结论,若74,4x y xy +==,则x y -= (知识迁移)类似地,用两种不同的方法计算同一几何体的情况,也可以得到一个恒等式.如图 2 是边长为+a b 的正方体,被如图所示的分割成 8块.(3)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式可以是 (4)已知4a b +=,1ab =,利用上面的规律求33+a b 的值.28.先化简,再求值:4(x ﹣1)2﹣(2x +3)(2x ﹣3),其中x =﹣1.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由题意直接根据负指数幂的运算法则进行分析计算即可.解: 12-=1 2 .故选:B.【点睛】本题考查负指数幂的运算,熟练掌握负指数幂的运算法则是解题的关键.2.C解析:C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. ∵2+2=4,∴ 2cm、2cm、4cm不能组成三角形,故不符合题意;B. ∵2+3<6,∴2cm、6cm、3cm不能组成三角形,故不符合题意;C. ∵3+6>8,∴8cm、6cm、3cm能组成三角形,故符合题意;D. ∵4+6<11,∴11cm、4cm、6cm不能组成三角形,故不符合题意;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键. 3.D解析:D【解析】试题分析:∵(x±4)2=x2±8x+16,所以m=±2×4=±8.故选D.考点:完全平方式.4.D解析:D【分析】直接根据平行线的判定定理对各选项进行逐一分析即可.【详解】解:A、∠C=∠1不能判定任何直线平行,故本选项错误;B、∠A=∠2不能判定任何直线平行,故本选项错误;C、∠C=∠3不能判定任何直线平行,故本选项错误;D、∵∠A=∠1,∴EB∥AC,故本选项正确.故选:D.【点睛】本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.5.B【分析】设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意列出方程求解即可.【详解】解:设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意可列方程为22(1)6x x +-=, 解得52x =, ∴原正方形的边长为52. 故选:B .【点睛】 此题考查了完全平方公式,找到等量关系列方程为解题关键.6.B解析:B【详解】解:根据题意得:∠1=180°-60°=120°.故选:B【点睛】本题考查直角三角板中的角度的计算,难度不大.7.A解析:A【分析】先解不等式求出不等式的解集,然后根据不等式的解集在数轴上的表示方法判断即可.【详解】解:移项,得2x -x >1-3,合并同类项,得x >﹣2,不等式的解集在数轴上表示为:.故选:A .【点睛】本题考查了一元一次不等式的解法和不等式的解集在数轴上的表示,属于基础题型,熟练掌握一元一次不等式的解法是关键.8.A解析:A【分析】先根据到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.【详解】∵M 到x 轴的距离为5,到y 轴的距离为2,∴M 纵坐标可能为±5,横坐标可能为±2. ∵点M 在第四象限,∴M 坐标为(2,﹣5).故选:A .【点睛】本题考查点的坐标的确定;用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值.9.A解析:A【解析】【分析】将x 和y 的值代入方程计算即可.【详解】将2x a y =⎧⎨=-⎩代入方程得:3(2)5a a -⋅-= 解得:1a =故选:A.【点睛】本题考查了已知二元一次方程的解求方程中未知数的值,理解题意是解题关键. 10.D解析:D【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x 轴上,为偶数时,从x 轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x 轴∵452=2025∴第2025个点在x 轴上坐标为(45,0)则第2020个点在(45,5)故选:D .【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.二、填空题11.【分析】根据公因式的定义即可求解.【详解】∵=(y+3z ),∴多项式的公因式是,故答案为:.【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.解析:4xy【分析】根据公因式的定义即可求解.【详解】∵2412xy xyz +=4xy (y+3z ),∴多项式2412xy xyz +的公因式是4xy , 故答案为:4xy .【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.12.7≤a<9或-3≤a<-1.【分析】先求出求出不等式组的解集,再根据已知得出关于a 的不等式组,求出不等式组的解集即可.【详解】解:,∵解不等式①得:,解不等式②得:x≤4,∴不等式组的解析:7≤a <9或-3≤a <-1.【分析】先求出求出不等式组的解集,再根据已知得出关于a 的不等式组,求出不等式组的解集即可.【详解】解:()531235x a x x ⎧->-⎨-≤⎩①②,∵解不等式①得:32a x ->, 解不等式②得:x≤4, ∴不等式组的解集为342a x -<≤, ∵关于x 的不等式组()531235x a x x ⎧->-⎨-≤⎩的所有整数解的和为7, ∴当32a ->0时,这两个整数解一定是3和4, ∴2≤32a -<3, ∴79a ≤<, 当32a -<0时,-3≤32a -<−2, ∴-3≤a <-1, ∴a 的取值范围是7≤a <9或-3≤a <-1.故答案为:7≤a <9或-3≤a <-1.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能得出关于a 的不等式组是解此题的关键.13.【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.【详解】=故答案为.【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则. 解析:12019【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.【详解】20202019201920191112019=2019201920192019⎛⎫⨯-⨯⨯ ⎪⎝⎭=12019 故答案为12019. 【点睛】 此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则.14.2【分析】根据点F是CE的中点,推出S△BEF=S△BEC,同理得S△EBC=S△ABC,由此可得出答案.【详解】∵点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC解析:2【分析】根据点F是CE的中点,推出S△BEF=12S△BEC,同理得S△EBC=12S△ABC,由此可得出答案.【详解】∵点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=12EC,高相等;∴S△BEF=12S△BEC,同理得S△EBC=12S△ABC,∴S△BEF=14S△ABC,且S△ABC=8,∴S△BEF=2,故答案为:2.【点睛】本题考查了三角形的性质,充分运用三角形的面积公式以及三角形的中线的性质是解本题的关键.15.六【解析】【分析】设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n条边,由题意得:1解析:六【解析】【分析】设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n条边,由题意得:180(n-2)=360×2,解得:n=6,故答案为:六.【点睛】本题考查多边形的内角和和外角和,关键是掌握内角和为180°(n-2).16.【分析】根据分式的乘方运算法则,即分式乘方要把分子、分母分别乘方,即可求解.【详解】解:.故答案为.【点睛】本题目考查分式的乘方运算法则,难度不大,熟练掌握其运算法则是解题的关键.解析:14【分析】根据分式的乘方运算法则,即分式乘方要把分子、分母分别乘方,即可求解.【详解】解:222111== 224⎛⎫⎪⎝⎭.故答案为14.【点睛】本题目考查分式的乘方运算法则,难度不大,熟练掌握其运算法则是解题的关键.17.【分析】将,代入方程组,首先求得,进而可以求得.【详解】解:将代入方程组得:,解得:,故的值为-1.【点睛】本题考查二元一次方程组,难度不大,理解二元一次方程组的解的含义是顺利解解析:1-【分析】将x ,y 代入方程组,首先求得m ,进而可以求得n .【详解】解:将11x y =⎧⎨=⎩代入方程组得:31=1m m n -⎧⎨-=⎩, 解得:21m n =⎧⎨=-⎩, 故n 的值为-1.【点睛】本题考查二元一次方程组,难度不大,理解二元一次方程组的解的含义是顺利解题的关键.18.6m2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:.故答案为:.【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键.解析:6m 2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:2236m m m ⋅=.故答案为:26m .【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键. 19.36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故解析:36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故答案为:36°.【点睛】本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.20.8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:.故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根解析:8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:()22(4)a b a b ab +-=-. ()22()204384a b a b ab ∴+-==-⨯=-故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根据图示找出大正方形,长方形,小正方形之间的关键. 三、解答题21.50°【分析】直接利用平行线的性质,结合角平分线的定义,得出∠CBD =12∠ABD =40°,进而得出答案.【详解】解:∵AC //BD ,∠BAC =100°,∴∠ABD =180°﹣∠BAC =180°-100°=80°,∵BC 平分∠ABD ,∴∠CBD =12∠ABD =40°, ∵DE ⊥BC ,∴∠BED =90°,∴∠EDB =90°﹣∠CBD =90°-40°=50°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠CBD 的度数是解题关键.22.(1)32x y =⎧⎨=⎩;(2)15 【分析】(1)把9x ﹣4y =19变形为3x +2(3x ﹣2y )=19,再用整体代换的方法解题; (2)将原方程组变形为22223(4)2472(4)36x y xy x y xy ⎧+-=⎨++=⎩①②这样的形式,再利用整体代换的方法解决.【详解】解:(1)解方程组3259419x y x y -=⎧⎨-=⎩①② 把②变形为3x +2(3x ﹣2y )=19,∵3x ﹣2y =5,∴3x +10=19,∴x=3,把x=3代入3x﹣2y=5得y=2,即方程组的解为32 xy=⎧⎨=⎩;(2)原方程组变形为22223(4)247 2(4)36x y xyx y xy⎧+-=⎨++=⎩①②①+②×2得,7(x2+4y2)=119,∴x2+4y2=17,把x2+4y2=17代入②得xy=2∴x2+4y2﹣xy=17﹣2=15答:x2+4y2﹣xy的值是15.【点睛】本题考查了二元一次方程组的解法,属延伸拓展题,正确掌握整体代换的求解方法是解题的关键.23.(1)3,0,﹣2;(2)a+b=c,理由见解析.【分析】(1)直接根据新定义求解即可;(2)先根据新定义得出关于a,b,c的等式,然后根据幂的运算法则求解即可.【详解】(1)∵33=27,∴(3,27)=3,∵40=1,∴(4,1)=0,∵2﹣2=14,∴(2,0.25)=﹣2.故答案为:3,0,﹣2;(2)a+b=c.理由:∵(3,5)=a,(3,6)=b,(3,30)=c,∴3a=5,3b=6,3c=30,∴3a×3b=5×6=3c=30,∴3a×3b=3c,∴a+b=c.【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键,本题也考查了有理数的乘方、同底数幂的乘法运算.24.(1)7;(2)47.【分析】(1)根据13a a -+=得出13a a +=,进而得出219a a ⎛⎫+= ⎪⎝⎭,从而可得出结论; (2)根据(1)中的结论可知2217a a +=,故2221()49a a +=,从而得出441a a +的值. 【详解】解:(1)∵13a a -+=, ∴13a a+=, ∴21()9a a +=,即:22129a a++=, ∴2217a a +=; (2)由(1)知:2217a a +=, ∴2221()49a a +=,即:441249a a ++=, ∴44147a a +=. 【点睛】本题主要考查的是负整数指数幂和分式的运算,解题的关键是熟练掌握完全平方公式的灵活应用.25.(1) 112-92=40; (2) (2n+1)2-(2n -1)2=8n ,证明详见解析【分析】(1)根据所给式子可知:()()22223121121181-⨯+⨯-⨯-==,()()22225322122182-⨯+⨯-⨯-==,()()22227523123183-⨯+⨯-⨯-==,由此可知第5个式子;(2)根据题(1)的推理可得第n 个式子,利用完全平方公式可证得结果;【详解】(1)∵第1个式子为: ()()22223121121181-⨯+⨯-⨯-==第2个式子为: ()()22225322122182-⨯+⨯-⨯-==第3个式子为: ()()22227523123183-⨯+⨯-⨯-==∴第5个式子为:()()222225125111940⨯+-⨯-=-=即第5个式子为:2211940-=(2)根据题(1)的推理可得:第n 个式子: ()()2221218n n n +--=∵左边=224414418n n n n n +-++-==右边∴等式成立.【点睛】本题考查数式规律的探索,解题的关键仔细观察所给的式子,正确找出式子的规律.26.(1)A 组工人有90人、B 组工人有60人(2)A 组工人每人每小时至少加工100只口罩【分析】(1)设A 组工人有x 人、B 组工人有(150−x )人,根据题意列方程健康得到结论; (2)设A 组工人每人每小时加工a 只口罩,则B 组工人每人每小时加工(200−a )只口罩;根据题意列不等式健康得到结论.【详解】(1)设A 组工人有x 人、B 组工人有(150−x )人,根据题意得,70x +50(150−x )=9300,解得:x =90,150−x =60,答:A 组工人有90人、B 组工人有60人;(2)设A 组工人每人每小时加工a 只口罩,则B 组工人每人每小时加工(200−a )只口罩;根据题意得,90a +60(200−a )≥15000,解得:a ≥100,答:A 组工人每人每小时至少加工100只口罩.【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,正确的理解题意是解题的关键.27.(1)22()4()a b ab a b +-=-.(2)3x y -= .(3)33322()33a b a b a b ab +=+++.(4)54.【分析】(1)根据两种面积的求法的结果相等,即可得到答案;(2)根据第(1)问中已知的等式,将数值分别代入,即可求得答案.(3)根据正方体的体积公式,正方体的边长的立方就是正方体的体积;2个正方体和6个长方体的体积和就是大长方体的体积,则可得到等式;(4)结合4a b +=,1ab =,根据(3)中的公式,变形进行求解即可.【详解】(1)22()4()a b ab a b +-=-.(2)4x y +=,74xy =,()()22274441679.4x y x y xy -=+-=-⨯=-= 故3x y -= . (3)33322()33a b a b a b ab +=+++ .(4)由4a b +=,1ab =,根据第(3)得到的公式可得()()()()333322333641254a b a b a b ab a b ab a b +=+-+=+-+=-=.【点睛】本题考查完全平方公式以及立方公式的几何背景,从整体和局部两种情况分析并写出面积以及体积的表达式是解题的关键.28.化简结果:-8x+13,值为21.【解析】分析:根据整式的混合运算法则将所给的整式化简后,再代入求值即可.详解:原式=4(x 2-2 x +1)-(4x 2-9) =4x 2-8 x +4-4x 2+9=-8 x +13当x =-1时,原式=21点睛:本题是整式的化简求值,考查了整式的混合运算,解题时注意运算顺序以及符号的处理.。
七年级数学下册期末测试卷及答案doc
七年级数学下册期末测试卷及答案doc一、选择题1.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .623a a a ÷= 2.把多项式228x -分解因式,结果正确的是( )A .22(8)x -B .22(2)x -C .D .42()x x x- 3.下列运算结果正确的是( )A .32a a a ÷=B .()225a a =C .236a a a =D .()3326a a = 4.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠1 5.下列计算正确的是( )A .a +a 2=2a 2B .a 5•a 2=a 10C .(﹣2a 4)4=16a 8D .(a ﹣1)2=a ﹣2 6.计算a 2•a 3,结果正确的是( )A .a 5B .a 6C .a 8D .a 97.截止到3月26日0时,全球感染新型冠状病毒肺炎的人数已经突破380000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓.将380000用科学记数法表示为( ) A .0.38×106 B .3.8×106 C .3.8×105 D .38×1048.如图,AB ∥CD ,DA ⊥AC ,垂足为A ,若∠ADC=35°,则∠1的度数为( )A .65°B .55°C .45°D .35°9.如图,△ABC 中∠A=30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB=82°,则原三角形的∠B 的度数为( )A .75°B .72°C .78°D .82° 10.下列运算正确的是( ) A .236x x x ⋅= B .224(2)4x x -=- C .326()x x =D .55x x x ÷= 二、填空题11.若把代数式245x x --化为()2x m k -+的形式,其中m 、k 为常数,则m k +=______.12.如图,直线//AB CD ,直线GE 交直线AB 于点E ,EF 平分AEG ∠.若∠1=58°,则AEF ∠的大小为____.13.计算(﹣2xy )2的结果是_____.14.阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1,试根据以上材料探索使等式(2x+3)x+2016=1成立的x 的值为_____.15.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.16.计算:23()a =____________.17.()a b -+(__________) =22a b -.18.已知关于x 的不等式3()50a b x a b -+->的解集是1x <,则关于x 的不等式4ax b >的解集为_______.19.如图,将边长为6cm 的正方形ABCD 先向上平移3cm ,再向右平移1cm ,得到正方形A ′B ′C ′D ′,此时阴影部分的面积为______cm 2.20.计算:2m·3m=______. 三、解答题21.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示.现将△ABC 平移,使点C 变换为点D ,点A 、B 的对应点分别是点E 、F . (1)在图中请画出△ABC 平移后得到的△EFD ;(2)在图中画出△ABC 的AB 边上的高CH ;(3)△ABC 的面积为_______.22.已知a +b =5,ab =-2.求下列代数式的值:(1)22a b +;(2)22232a ab b -+.23.⑴ 如图,试用a 的代数式表示图形中阴影部分的面积;⑵ 当a =2时,计算图中阴影部分的面积.24.(1)填一填21-20=2( )22-21=2( )23-22=2( )⋯(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立;(3)计算20+21+22+⋯+22019.25.一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半. (1)求这个多边形是几边形;(2)求这个多边形的每一个内角的度数.26.如图,有一块长为(3)a b +米,宽为(2)a b +米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化(阴影部分),已知道路宽为a 米,东西走向的道路与空地北边界相距1米,则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.27.已知在△ABC 中,试说明:∠A +∠B +∠C =180°方法一: 过点A 作DE ∥BC . 则(填空)∠B =∠ ,∠C =∠∵ ∠DAB +∠BAC + ∠CAE =180°∴∠A +∠B +∠C =180°方法二: 过BC 上任意一点D 作DE ∥AC ,DF ∥AB 分别交AB 、AC 于E 、F (补全说理过程 )28.先化简,再求值(x-2)2+2(x+2)(x-4)-(x-3)(x+3);其中x=1.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】A.235 a a a ⋅=,故本选项错误;B. ()222ab a b =,故本选项正确;C. ()326a a =,故本选项错误;D. 624a a a ÷=,故本选项错误。
七年级数学下期末考试卷附答案.doc
七年级数学下期末考试卷附答案七年级数学下期末考试卷一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个.1.根据北京小客车指标办的通报,截至2017年6月8日24时,个人普通小客车指标的基准中签几率继续创新低,约为0.001 22,相当于817人抢一个指标,小客车指标中签难度继续加大.将0.001 22用科学记数法表示应为A.1.22 10-5B.122 10-3C.1.22 10-3D.1.22 10-22. 的计算结果是A. B. C. D.3.不等式的解集在数轴上表示正确的是A B C D4.如果是关于x和y的二元一次方程的解,那么的值是A.3B.1C.-1D.-35.如图,2 3的网格是由边长为的小正方形组成,那么图中阴影部分的面积是A. B. C. D.6.如图,点O为直线AB上一点,OC OD. 如果1=35 ,那么2的度数是A. B.C. D.7.某冷饮店一天售出各种口味冰淇淋份数的扇形统计图如图所示. 如果知道香草口味冰淇淋一天售出200份,那么芒果口味冰淇淋一天售出的份数是A.80B.40C.20D.108.如果,那么代数式的值是A.8B.9C.10D.119.一名射箭运动员统计了45次射箭的成绩,并绘制了如图所示的折线统计图. 则在射箭成绩的这组数据中,众数和中位数分别是A.18,18B.8,8C.8,9D.18,810.如图,点A,B为定点,直线l∥AB,P是直线l上一动点. 对于下列各值:①线段AB的长②△PAB的周长③△PAB的面积④APB的度数其中不会随点P的移动而变化的是A.①③B.①④C.②③D.②④二、填空题(本题共18分,每小题3分)11.因式分解:.12.如图,一把长方形直尺沿直线断开并错位,点E,D,B,F在同一条直线上.如果ADE =126 ,那么DBC = .13.关于的不等式的解集是. 写出一组满足条件的的值:,.14.右图中的四边形均为长方形. 根据图形的面积关系,写出一个正确的等式:_____________________.15.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中方程术是《九章算术》最高的数学成就.《九章算术》中记载:今有共买鸡,人出八,盈三;人出七,不足四. 问人数、鸡价各几何?译文:今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?设人数有x人,鸡的价钱是y钱,可列方程组为_____________.16.同学们准备借助一副三角板画平行线. 先画一条直线MN,再按如图所示的样子放置三角板. 小颖认为AC∥DF;小静认为BC∥EF.你认为的判断是正确的,依据是.三、解答题(本题共52分,第17-21小题,每小题4分,第22-26小题,每小题5分,第27小题7分)17.计算:.18.计算:.19.解不等式组:并写出它的所有正整数解.20.解方程组:21.因式分解:.22.已知,求代数式的值.23.已知:如图,在中,过点A作AD BC,垂足为D,E 为AB上一点,过点E作EF BC,垂足为F,过点作DG∥交于点G.(1)依题意补全图形;(2)请你判断BEF与ADG的数量关系,并加以证明.24.《中共中央国务院关于深化教育改革全面推进素质教育的决定》中明确指出:健康体魄是青少年为祖国和人民服务的基本前提,是中华民族旺盛生命力的体现. 王老师所在的学校为加强学生的体育锻炼,需要购买若干个足球和篮球. 他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买. 三次购买足球和篮球的数量和费用如下表:足球数量(个) 篮球数量(个) 总费用(元)第一次6 5 700第二次3 7 710第三次7 8 693(1)王老师是第次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买个篮球.25.阅读下列材料:为了解北京居民使用互联网共享单车(以下简称共享单车)的现状,北京市统计局采用拦截式问卷调查的方式对全市16个区,16-65周岁的1000名城乡居民开展了共享单车使用情况及满意度专项调查.在被访者中,79.4%的人使用过共享单车,39.9%的人每天至少使用1次,32.5%的人2-3天使用1次.从年龄来看,各年龄段使用过共享单车的比例如图所示.从职业来看,IT业人员、学生以及金融业人员使用共享单车的比例相对较高,分别为97.8%、93.1%和92.3%.使用过共享单车的被访者中,满意度(包括满意、比较满意和基本满意)达到97.4%,其中满意和比较满意的比例分别占41.1%和40.1%,基本满意占16.2%.从分项满意度评价结果看,居民对共享单车的骑行满意度评价最高,为97.9%;对付费/押金和找车/开锁/还车流程的满意度分别为96.2%和91.9%;对管理维护的满意度较低,为72.2%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)现在北京市16-65周岁的常住人口约为1700万,请你估计每天共享单车骑行人数至少约为万;(2)选择统计表或统计图,将使用共享单车的被访者的分项满意度表示出来;(3)请你写出现在北京市共享单车使用情况的特点(至少一条).26.如图,在小学我们通过观察、实验的方法得到了三角形内角和是180 的结论. 小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把1和2移动到3的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图,.求证:A+ B+ C =180 .证明:延长BC,过点C作CM∥BA.A= 1(两直线平行,内错角相等),B= 2(两直线平行,同位角相等).∵1+ 2+ ACB =180 (平角定义),A+ B+ ACB =180 .请你参考小明解决问题的思路与方法,写出通过实验方法2证明该结论的过程.27.对x,y定义一种新运算T,规定:(其中m,n均为非零常数).例如:.(1)已知.①求m,n的值;②若关于p的不等式组恰好有3个整数解,求a的取值范围;(2)当时,对任意有理数x,y都成立,请直接写出m,n满足的关系式.七年级数学下期末考试卷答案一、选择题(本题共30分,每小题3分) 题号1 2 3 4 5 6 7 8 9 10答案C D D A C C B A B A二、填空题(本题共18分,每小题3分) 题号11 12 13 14 15答案54 答案不唯一答案不唯一题号16答案小静同位角相等,两条直线平行三、解答题(本题共52分)17.解:原式= 3分= . 4分18.解:原式= 4分19.解:1分2分3分正整数解为4分20.解:由②,得.③1分把③代入①,得解得2分把代入③,得. 3分原方程组的解是4分21.解:原式= 2分= 4分22.解:原式== 3分当时,原式=5分23.(1)如图. 1分(2)判断:BEF= ADG. 2分证明:∵AD BC,EF BC,ADF= EFB=90 .AD∥EF(同位角相等,两直线平行).BEF= BAD(两直线平行,同位角相等). 3分∵DG∥,BAD = ADG(两直线平行,内错角相等). 4分BEF= ADG. 5分24.解:(1)三; 1分(2)设足球的标价为x元,篮球的标价为y元.根据题意,得解得:答:足球的标价为50元,篮球的标价为80元; 4分(3)最多可以买38个篮球. 5分25.解:(1)略. 1分(2) 使用共享单车分项满意度统计表项目骑行付费/押金找车/开锁/还车流程管理维护满意度97.9% 96.2% 91.9% 72.2%4分(3)略. 5分26. 已知:如图,.求证:A+ B+ C =180 .证明:过点A作MN∥BC. 1分MAB= B,NAC= C(两直线平行,内错角相等). 3分∵MAB + BAC+ NAC=180 (平角定义),B + BAC+C =180 . 5分27.解:(1)①由题意,得2分②由题意,得解不等式①,得. 3分解不等式②,得.4分∵恰好有3个整数解。
七年级数学下学期期末试卷及答案
初一数学第二学期期末试卷一、精心选一选:(本大题共8小题,每题3分,共24分)1.下列运算正确的是 ( ) A 、2x+3y=5xy B 、5m 2·m 3=5m 5 C 、(a —b )2=a 2—b 2 D 、m 2·m 3=m 6 2.已知实数a 、b ,若a >b ,则下列结论正确的是 ( ) A.55-<-b a B.b a +<+22 C.33ba < D.b a 33>对顶角;④同位角相等。
其中假命题有 ( ) A .1个 B.2个 C.3个 D.4个5. 如果关于x 、y 的方程组⎩⎪⎨⎪⎧x -y =a ,3x +2y =4的解是正数,那么a 的取值范围是 ( )A .-2<a <43B .a >-43C .a <2D .a <-436. 下图能说明∠1>∠2的是 ( )7.某校去年有学生1 000名,今年比去年增加4.4%,其中住宿学生增加6%,走读生减少2%。
若设该校去年有住宿学生有x 名,走读学生有y 名,则根据题意可得方程组 ( ) A . 1000,6%2% 4.4%1000.x y x y +=⎧⎨-=⨯⎩B . 1000,106%102%1000(1 4.4%).x y x y +=⎧⎨-=+⎩C . 1000,6%2% 4.4%1000.x y x y +=⎧⎨+=⨯⎩D . 1000,106%102%1000(1 4.4%).x y x y +=⎧⎨+=+⎩8.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,二、细心填一填:(本大题共10小题,每空2分,共22分) 9.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学计数法表示为 吨。
10. 若方程组,则3(x+y )﹣(3x ﹣5y )的值是 .11. 已知10m =3,10n =5,则103m -n = .12.计算)8)(4(22+++-mx x n x x 的结果不含2x 和3x 的项,那么m = ;n = .13.命题“两直线平行,同旁内角相等”是 命题(填“真”或“假”).14.将一副学生用三角板按如图所示的方式放置.若AE ∥BC ,则∠AFD 的度数是 .第14题图 第16题15.端午佳节,某商场进行促销活动,将定价为3元的水笔,以下列方式优惠销售:若购买不超过10支,按原价付款;若一次性购买10支以上打八折.如果用30元钱,最多可以购买该水笔的支数是_______. 16.如图,四边形ABCD 中,点M ,N 分别在AB ,BC 上,将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC , 则∠B = °. 17.若不等式组的解集为3≤x≤4,则不等式ax+b <0的解集为 .18.若方程组 2313,3530.9a b a b -=⎧⎨+=⎩ 的解是 8.3,1.2,a b =⎧⎨=⎩ 则方程组 2(2)3(1)13,3(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解是 .三、认真答一答:(本大题共9小题,共54分. )19.(4分)计算:)2)(2()1(2-+-+x x x 20.(4分)分解因式: 2x 4﹣221.(4分)解方程组.22.解不等式(组)(4分+4分)(1)解不等式:,并把解集表示在数轴上.(2)求不等式组的正整数解.23.(5分)定义:对于实数a ,符号[a ]表示不大于a 的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4.(1)如果[a ]=﹣2,那么a 的取值范围是 . (2)如果[]=3,求满足条件的所有正整数x .24. (6分) 在△ABC 中,AE ⊥BC 于点E ,∠BAE :∠CAE =2:3,BD 平分∠ABC ,点F 在BC 上,∠CDF =30°,∠ABD =35°.求证:DF ⊥BC .25.(6分)甲、乙二人在一环形场地上从A 点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程( 组) 求解) 26.(8分)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使C AB D E F用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?27.(9分)如图,四边形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD.(1)求证:∠1+∠2=90°;(2)若H是BC上一动点,F是BA延长线上一点,FH交BD于M,FG平分∠BFH,交DE于N,交BC于G.当H在BC上运动时(不与B点重合),的值是否变化?如果变化,说明理由;如果不变,试求出其值.初一数学期末考试答案二、填空题:(本大题共10小题,每小题2分,共22分)9.__ _5×107__ 10.___24___11.___ 5.4 __ 12._ 4;8____13._ 假 14.750_ 15. 12 16.__950____17. x 〉1.5 18. x=6.3,y=2.2 三、解答题(本大题共9小题,共54分.) 19.(本题满分4分) 解: (1))2)(2()1(2-+-+x x x=x 2+2x+1-(x 2-4)-------------------------2分 = x 2+2x+1-x 2+4--------------------------3分=2x+5 ---------------------------------4分 20.(本题满分4分)解:(2) 原式=2(x 4﹣1)=2(x 2+1)(x 2﹣1)--------------------------------------------2分=2(x 2+1)(x+1)(x ﹣1).------------------------------------4分21.(本题满分4分) 解:,由①得,x=2y+4③, -------------------------------------------1分 ③代入②得2(2y+4)+y ﹣3=0,解得y=﹣1,-------------------------------------------2分 把y=﹣1代入③得,x=2×(﹣1)+4=2,------------------------------------------3分 所以,方程组的解是.---------------------------------------------4分22.(1)(本题满分4分)解:去分母得:2(2x ﹣1)﹣(9x+2)≤6,----------1分 去括号得:4x ﹣2﹣9x ﹣2≤6, 移项得:4x ﹣9x≤6+2+2, 合并同类项得:﹣5x≤10,把x 的系数化为1得:x≥﹣2.------------3分----------------------------4分(2)(本题满分4分)解:解不等式2x+1>0,得:x >﹣,----------------------1解不等式x>2x﹣5得:x<5,-------------------2分∴不等式组的解集为﹣<x<5,-------------------------3分∵x是正整数,∴x=1、2、3、4、5.--------------------------------------------------4分23.(本题满分5分)(1)﹣2≤a<﹣1--------------------------------------------------------------2分(2)根据题意得:3≤[]<4,-------------------------------------------------3分解得:5≤x<7,------------------------------------------4分则满足条件的所有正整数为5,6.----------------------------------------5分24.(本题满分6分)证明:∵BD平分∠ABC,∠ABD=35°∴∠ABC=2∠ABD=70°………………………………………………(2分)∵AE⊥BC ∴∠AEB=90°∴∠BAE=20°…………………………(3分)又∵∠BAE:∠CAE=2:3 ∴∠CAE=30°………………………(4分)又∵CDF=30°∴∠CAE=∠CDF …………………………………(5分)∴DF∥AE ∴DF⊥BC……………………………………………(6分)25.(本题满分6分)解:设乙的速度为x米/秒,则甲的速度为2.5x米/秒,环形场地的周长为y米,-----1分由题意,得,-----------------------------------------------------------------3分解得:,-------------------------------------------------------------------4分∴甲的速度为:2.5×150=375米/分.------------------------------------------------5分答:乙的速度为150米/分,则甲的速度为375米/分,环形场地的周长为900米.-----6分26.(本题满分8分)解:(1)设该校的大寝室每间住x人,小寝室每间住y人,------------------1分由题意得:,---------------------------------------3分CABD E F解得:,----------------------------------4分答:该校的大寝室每间住8人,小寝室每间住6人;(2)设大寝室a间,则小寝室(80﹣a)间,由题意得:,------------------------------------------------------6分解得:80≥a≥75,①a=75时,80﹣75=5,②a=76时,80﹣a=4,③a=77时,80﹣a=3,④a=78时,80﹣a=2,⑤a=79时,80﹣a=1,⑥a=80时,80﹣a=0.故共有6种安排住宿的方案.-----------------------------------8分27. (本题满分9分)证明:(1)AD∥BC,∠ADC+∠BCD=180,----------------------------------------------1分∵DE平分∠ADB,∴∠ADE=∠EDB,----------------------------------2分∵∠ADC+∠BCD=180°,∠BDC=∠BCD,∴∠EDB+∠BDC=90°,--------------------------------------------3分∠1+∠2=90°.---------------------------------------------------------4分(2)---------------5分∴-----------------------------------------------------7分∵--------------------------------------------------------------9分。
完整版初一数学下册期末测试题及答案.doc
人教版初一数学(下)期末测试题及答案一、选择题: ( 本大题共 10 个小题,每小题 3 分,共 30 分 ) 1.若 m >- 1,则下列各式中错误的 是( )...A . 6m >- 6B .- 5m <- 5C .m+1> 0D . 1-m < 2 2. 下列各式中 , 正确的是 ( )A.16 =± 4 B. ± 16 =4C.327 =-3D. ( 4)2 =-4 3.已知 a > b > 0,那么下列不等式组中无解 的是()..A .x ax ax aDxaxb B .bC .b .bxxx4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角 度可能为 ( )(A) 先右转 50°,后右转 40° (B)先右转 50°,后左转 40° (C) 先右转 50°,后左转 130° (D) 先右转 50°,后左转 50°5.解为x 1)y 的方程组是(2x y 1B.x y 1 C.x y 3 x 2y 3A.y 53x y5 3xy D.y53x13x6.如图,在△ ABC 中,∠ ABC=50,∠ ACB=80, BP 平分∠ ABC ,CP 平分∠ ACB ,则∠ BPC的大小是( ) A . 1000B. 1100C. 1150 D. 1200AA1A小刚PDBB B 1CC 1小军C小华(1) (2) (3)7.四条线段的长分别为 3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是 ()A . 4B . 3C . 2D . 18.在各个内角都相等的多边形中, 一个外角等于一个内角的 1,则这个多边形的边数是 ( )A . 5 B. 6 C. 7D. 829.如图,△ A 1 1 1BC 长度的一半得到的,若△ ABC 的面积为B C 是由△ ABC 沿 BC 方向平移了20 cm 2,则四边形 A 1DCC 1的面积为( ) 2 2 2 2小军的位置用(2,1) 表示 , 那么你的位置可以表示成 ( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8 个小题,每小题 3 分,共 24 分,把答案直接填在答题卷的横线上.11.49 的平方根是 ________, 算术平方根是 ______,-8 的立方根是 _____.12. 不等式 5x-9 ≤ 3(x+1) 的解集是 ________.13. 如果点 P(a,2) 在第二象限 , 那么点 Q(-3,a) 在 _______. 李庄14. 如图 3 所示 , 在铁路旁边有一李庄 , 现要建一火车站 ,? 为了使李庄人乘火车最方便( 即距离最近 ), 请你在铁路旁选一点来建火车站 ( 位置已选好 ), 说明理由 :____________. 火车站15. 从 A沿北偏东60°的方向行驶到 B, 再从 B沿南偏西 20°的方向行驶到 C,? 则∠ ABC=_______度.16. 如图 ,AD∥ BC,∠ D=100° ,CA 平分∠ BCD,则∠ DAC=_______. A D 17.给出下列正多边形:①正三角形;② 正方形;③ 正六边形;④正八边形.用上述正多边形中的一种能够辅满地面的是_____________. ( 将所有答案的序号都填上 )18. 若│ x2-25 │ + y 3 =0,则x=_______,y=_______. B C三、解答题:本大题共7 个小题,共 46 分,解答题应写出文字说明、证明过程或演算步骤.x 3( x 2) 4,19.解不等式组:2x 1 x, 并把解集在数轴上表示出来.1.5 22 x3 y 120.解方程组: 3 4 24(x y) 3(2x y) 1721. 如图 , AD ∥ BC , AD 平分∠ EAC,你能确定∠ B 与∠ C 的数量关系吗 ?请说明理由。
初一数学下册期末考试试题及答案.docx
初一数学下册期末考试试题及答案满分: 120 分时间: 120 分钟三题号一 二总分1718 19 20 21 222324得分一、选一选,比比谁细心 (本大题共 12 小题,每小题 3 分,共 36 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. - 1的绝对值的倒数是().31 1(A)(C)-3(D) 33(B)-32.方程 5-3x=8 的解是().( A ) x=1( B )x=-1(C ) x=13( D ) x=-13333 .如果收入 15 元记作 +15 元,那么支出 20 元记作()元 .(A)+5(B)+20(C)-5(D)-204.有理数 ( 1)2 , ( 1)3 , 12 ,1 , -(-1) ,1 中,其中等于 1 的个数是( ).1(A)3 个(B)4个(C)5个 (D)6个5.已知 p 与 q 互为相反数,且p ≠0,那么下列关系式正确的是().(A) p.q 1(B)p q(C)q 1(D)p=qp6.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m ,用科学记数法表示这个数为() .(A)1.68 × 104m(B)16.8× 103 m(C)0.168× 104m(D)1.68× 103m7.下列变形中 , 不正确的是( ) .(A) a + b - ( - c - d) =a + b + c + d (B) a+ (b + c -d) = a +b + c - d (C) a- b - (c - d) = a - b - c -d(D)a-(b - c +d) = a - b + c - d8.如图 , 若数轴上的两点 A 、 B 表示的数分别为a 、b ,则下列结论正确的是().(A) b -a>0(B) a - b>0(C) ab > 0(D) a + b>09.按括号内的要求,用四舍五入法,对1022.0099 取近似值 ,其中错误的是() .AB(A)1022.01( 精确到 0.01)(B)1.0× 103( 保留 2 个有效数字 )b1a - 1(C)1020( 精确到十位 )(D)1022.010(精确到千分位 )10.“一个数比它的相反数大 -14 ”,若设这数是 x ,则可列出关于 x 的方程为() .(A)x=-x+14(B)x=-x+(-14 )(C)x=-x- (-14 )(D)x- (-x ) =1411. 下列等式变形: ①若 ab ,则ab;②若ab,则 a b ;③若 4a7b ,则a7;④若a7,则 4a 7b .x xx xb4b 4其中一定正确的个数是() .(A)1个(B)2个 (C)3个(D)4个12. 已知 a 、 b 互为相反数, c 、 d 互为倒数, x 等于 -4的 2 次方,则式子 (cda b) x1x 的值为().2(A)2 (B)4 (C)-8 (D)8二、填一填 , 看看谁仔细 ( 本大题共 4 小题 , 每小题 3 分 , 共 12 分 , 请将你的答案写在“ _______ ”处 )13.写出一个比 0.1 大的最小整数:.14.已知甲地的海拔高度是 300m ,乙地的海拔高度是- 50m ,那么甲地比乙地高 ____________m . 15.十一国庆节期间,吴家山某眼镜店开展优原价:元 惠学生配镜的活动,某款式眼镜的广告如图,请你国庆节 8 折优惠,现价: 160 元广告牌 上原价.16.小方利用 算机 了一个 算程序, 入和 出的数据如下表:入 ⋯ 1 2 3 4 5 ⋯ 出⋯⋯那么,当 入数据8 , 出的数据.三、 解一解 , 更棒 (本大 共9 小 ,共 72 分 )17. (本 10 分 ) 算( 1) (1 13) ( 48)6 4(2) ( 1)102 ( 2)34解:解:18. (本 10 分 )解方程 (1)3x 732 2x(2) 1 1x3 1 x26解:解:19.(本 6 分)某工厂一周 划每日生 自行100 , 由于工人 行 休, 每日上班人数不一定相等, 每日生量与 划量相比情况如下表( 以 划量 准 , 增加的 数 正数, 减少的 数 数): 星期 一 二 三 四 五 六 日 增减 /-1+3-2+4 +7-5-10(1) 生 量最多的一天比生 量最少的一天多生 多少(3 分)(2) 本周 的生 量是多少 (3 分 )解:20. (本 7 分 ) 数据 示,在我国的664 座城市中,按水 源情况可分 三 : 不缺水城市、一般缺水城市和重缺水城市.其中, 不缺水城市数比 重缺水城市数的 3 倍多 52 座,一般缺水城市数是 重缺水城市数的2倍.求 重缺水城市有多少座? 解:21. (本 9 分 ) 察一列数: 1、 2、 4、 8、 16、⋯我 , 一列数从第二 起,每一 与它前一 的比都等于2.一般地,如果一列数从第二 起,每一 与它前一 的比都等于同一个常数, 一列数就叫做等比数列, 个常数就叫做等比数列的公比 .( 1)等比数列 5、 -15 、45、⋯的第 4 是 _________. ( 2 分)( 2 ) 如 果一 列 数 a 1,a 2 , a 3 , a 4 是等 比 数 列 , 且公 比 q . 那 么 有 : a 2 a 1q , a 3a 2q ( a 1 q) q a 1q 2 ,a 4 a 3q (a 1q 2 )q a 1q 3: a 5 =.(用 a 1 与 q 的式子表示)( 2 分)(3) 一个等比数列的第 2 是 10,第 4 是 40,求它的公比 . (5 分)解:22. (本 8 分 )两种移 方式表( 1)一个月内本地通 多少分 ,两种通 方式的 用相同?( 5 分)( 2)若某人 一个月内使用本地通 180 元, 哪种通 方式 合算?(3 分)解:全球通神州行月租 50元/ 分 0本地通0.40 元/0.60 元/ 分分23. ( 本 10 分 ) 关于 x 的方程 x2m 3x 4 与 2 m x 的解互 相反数.(1) 求 m 的 ;( 6 分) (2) 求 两个方程的解. (4 分)解:24.(本 12 分)如 ,点A 从原点出 沿数 向左运 ,同 ,点B 也从原点出 沿数 向右运 ,3 秒后,两点相距 15 个 位 度 . 已知点 B 的速度是点 A 的速度的 4 倍(速度 位: 位 度/ 秒) .( 1)求出点A 、点B 运 的速度,并在数 上 出 A 、 B 两点从原点出 运 3 秒 的位置; ( 4 分)解:( 2)若 A 、B 两点从 (1) 中的位置开始,仍以原来的速度同 沿数 向左运 ,几秒 ,原点恰好 在点A 、点 B的正中 ?(4 分)解:( 3)若 A 、 B 两点从 (1) 中的位置开始,仍以原来的速度同 沿数 向左运 ,另一点C 同 从 B 点位置出向 A 点运 ,当遇到A 点后,立即返回向B 点运 ,遇到 B 点后又立即返回向 A 点运 ,如此往返,直到B 点追上 A点 , C 点立即停止运. 若点 C 一直以 20 位 度 / 秒的速度匀速运 ,那么点C 从开始运 到停止运 ,行 的路程是多少个 位 度?(4 分)解:七年级数学参考答案与评分标准一、 一 ,比比 心1.D2.B3.D4.B5.B6.A7.C8.A9.A 10.B 11.B 12.D二、填一填,看看 仔13.114. 35015.20016.865三、解一解, 更棒17.(1)解:(113) ( 48) 64= -48+8-36 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分=-76⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分(2) 解 : ( 1)102 (2)3 4=1×2 +(-8) ÷4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分 =2-2=0⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分18.(1) 解 : 3x 732 2x3x+2x=32-7⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分5x=25 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分x=5⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分(2) 解 : 1 1x31 x 261 x 1 x 3 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分2 61x =2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分3x=-6 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分19. 解 : (1)7-(-10)=17⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分(2) (-1+3-2+4+7-5-10 )+100× 7=696⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分20.解: 重缺水城市有 x 座,依 意有 :⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分3x 52 2x x 664⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分解得 x=102⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分 答: 重缺水城市有 102 座. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分21. (1)81 ⋯⋯ 2 分 (2)a 1q 4⋯⋯⋯⋯⋯⋯⋯ 4 分(3) 依 意有: a 4a 2 q 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分∴ 40=10× q 2 ∴ q 2 =4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 7 分∴ q2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 9 分22.(1) 一个月内本地通t 分 ,两种通 方式的 用相同.依 意有: 50+0.4t=0.6t ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分解得 t=250⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分( 2)若某人 一个月内使用本地通 180 元 , 使用全球通有:50+0.4t=180∴ t 1 =325⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分若某人 一个月内使用本地通 180 元, 使用神州行有:0.6t=180∴ t 2 =300∴使用全球通的通 方式 合算.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8 分23. 解: (1) 由 x2m3x 4 得: x= 1m 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分1 m2依 意有:1+2-m=0 解得: m=6 ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分2( 2)由 m=6 ,解得方程 x 2m3x 4 的解 x=4⋯⋯⋯⋯⋯ 8 分解得方程2 m x 的解 x=-4⋯⋯⋯⋯⋯⋯⋯⋯⋯ 10 分24. ( 1) 点 A 的速度 每秒 t 个 位 度, 点 B 的速度 每秒 4t 个 位 度 .依 意有: 3t+3 × 4t=15, 解得 t=1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分∴点 A 的速度 每秒 1 个 位 度 ,点 B 的速度 每秒4 个 位 度 .⋯ 3 分画⋯⋯⋯⋯⋯ 4 分( 2) x 秒 ,原点恰好 在点A 、点B 的正中 .⋯⋯⋯⋯⋯⋯ 5 分根据 意,得3+x=12-4x ⋯⋯⋯⋯⋯⋯7 分解之得x=1.8即运 1.8 秒 ,原点恰好 在 A 、 B 两点的正中⋯⋯⋯⋯⋯⋯ 8 分( 3) 运 y 秒 ,点 B 追上点 A根据 意 , 得 4y-y=15,解之得y=5⋯⋯⋯⋯⋯⋯10 分即点 B 追上点 A 共用去 5 秒 , 而 个 恰好是点C 从开始运 到停止运 所花的:20 × 5=100( 位 度 )⋯⋯⋯⋯⋯⋯ 12 分, 因此点C 行 的路程七年级数学下册考试卷一、 (本大 共 10 小 ,每小2 分;共 20 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014—— 2015 学年第二学期期末考试参考答案
七年级数学
一、 (每小题 3 分,共 24 分)
1-----5 DABDD
6-----8 DBA 二、 (每小题 3 分,共 21 分)
9.± 3
10. 8
11. 1
、2、3 12. 1
13. 89 ° 14. -5,-5 15. 26
三、 (本大题共 8 个小题,满分 75 分) 16.( 8 分)(1)- 2
1
(2)-6- 3 3
2
17. (7 分) a=-3, b=-2
18. (8 分) -1<x ≤3 1
,画图略 .
4
19. (10 分)
(1)S
△ABC
= 1 (4- 2 ) ×3=6-
3 2
≈ 6-1.5 ×1.414 ≈3.9
2
2
(2) 画图略 . A ’ (-5 ,2)、B ’( -2 2 ,2)、C ’ (0,5).
20. (10 分)
解:设甲每天完成的零件数为 x 个,乙每天完成的零件数为 y 个,列方程 组为:
2x 2x 2 y 430 62
x 70
3x 2y 3 y 430
解得:
44
y
答:甲每天完成的零件数为 70 个,乙每天完成的零件数为 44 个. 21. (10 分)
(1)∵∠ 1=∠ 4=1:2 ∠1=36° ∴∠ 4=72°
又∵ A B ∥CD ∴∠ 1+∠2+∠4=180° ∴∠ 2=180°-36 ° -72 °=72°
又∵∠ 2+∠ 3=180° ∴∠ 3=180°-72°=108°
(2) ∵AB ∥CD ∴∠ ABE= ∠ 4=72° ∵∠ 2=72° ∴AB 平分∠ EBG
22. (10 分)
(1)500 (2)按先后顺序依次为 A 80 C 160 D60 (3)44000 23. (12 分)
(1)设购进 A 型号的电脑 x 台,那么购进 B 型号的电脑 (25-x) 台,根据题意得:
2
4000x+2500(25-x) ≤80000 解得: x≤11 3
2
∵A 型号的电脑购进不能低于8 台,∴ 8≤x≤11
3
∴电脑城有 4 种购进电脑的方案 :
①A 型号购进 8 台时 B 型号购进 17 台
②A 型号购进 9 台时 B 型号购进 16 台
③A 型号购进 10 台时 B 型号购进 15 台
④A 型号购进 11 台时 B 型号购进 14 台.
(2)∵ A 型号电脑的利润低,∴ A 型号电脑进的越少, B 型号电脑进的越多时利润就越大,∴ 按方案①进货利润最大 .
最大利润为: 8× 800+17×1000=23400(元)。