八年级数学四边形综合提高题

合集下载

人教版八年级初二数学下学期平行四边形单元 易错题难题提高题学能测试试题

人教版八年级初二数学下学期平行四边形单元 易错题难题提高题学能测试试题

人教版八年级初二数学下学期平行四边形单元 易错题难题提高题学能测试试题一、选择题1.如图,菱形ABCD 中,AC 交BD 于点O ,DE BC ⊥于点E ,连接OE ,若50BCD ∠=︒,则OED ∠的度数是( )A .35°B .30°C .25°D .20°2.如图,四边形,ABCD AD 与BC 不平行,AB CD =.,AC BD 为四边形ABCD 的对角线,,,E F ,G H 分别是,,,BD BC AC AD 的中点下列结论:①EG FH ⊥;②四边形EFGH 是矩形;③HF 平分;EHG ∠④()1 2EG BC AD =-;⑤四边形EFGH 是菱形.其中正确的个数是 ( )A .1个B .2个C .3个D .4个3.如图,依次连结第一个菱形各边的中点得到一个矩形,再依次连结矩形各边的中点得到第二个菱形,按此方法继续下去.已知第一个菱形的面积为1,则第4个菱形的面积是( )A .14B .116C .132D .164 4.如图,正方形ABCD 中,点E 是AD 边的中点,BD 、CE 交于点H ,BE 、AH 交于点G ,则下列结论:①AG ⊥BE ;②5:2;③S △BHE =S △CHD ;④∠AHB=∠EHD .其中正确的个数是A .1B .2C .3D .45.矩形纸片ABCD 中,AB =5,AD =4,将纸片折叠,使点B 落在边CD 上的点B '处,折痕为AE .延长B E '交AB 的延长线于点M ,折痕AE 上有点P ,下列结论中:①M DAB '∠∠=;②PB PB '=;③AE =552;④MB CD '=;⑤若B P CD '⊥,则EB B P ''=.正确的有( )个A .2B .3C .4D .56.如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,AB 长为半径画弧,交边AD 于点;②再分别以B ,F 为圆心画弧,两弧交于平行四边形ABCD 内部的点G 处;③连接AG 并延长交BC 于点E ,连接BF ,若BF =3,AB =2.5,则AE 的长为( )A .2B .4C .8D .57.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =185.其中正确结论的个数是( )A .1B .2C .3D .48.如图,在菱形ABCD 中,AB=AC=1,点E 、F 分别为边AB 、BC 上的点,且AE=BF ,连接CE 、AF 交于点H ,连接DH 交AC 于点O ,则下列结论:①△ABF ≌△CAE ;②∠FHC=∠B ;③△ADO ≌△ACH ;④=3ABCD S 菱形;其中正确的结论个数是( )A .1个B .2个C .3个D .4个9.如图,一个四边形花坛ABCD ,被两条线段MN , EF 分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S 1、S 2、S 3、S 4,若MN ∥AB ∥DC ,EF ∥DA ∥CB ,则有( )A .S 1= S 4B .S 1 + S 4 = S 2 + S 3C .S 1 + S 3 = S 2 + S 4D .S 1·S 4 = S 2·S 310.如图,正方形ABCD 中,延长CB 至E 使2CB EB =,以EB 为边作正方形EFGB ,延长FG 交DC 于M ,连接AM ,AF ,H 为AD 的中点,连接FH 分别与AB ,AM 交于点,N K .则下列说法:①ANH GNF △≌△;②DAM NFG ∠=∠;③2FN NK =;④:2:7AFN DMKH S S =△四边形.其中正确的有( )A .4个B .3个C .2个D .1个二、填空题11.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,点G 是EF 的中点,连接CG ,BG ,BD ,DG ,下列结论:①BC=DF ;②135DGF ︒∠=;③BG DG ⊥;④34AB AD =,则254BDG FDG S S =,正确的有__________________.12.如图,在正方形ABCD 中,点,E F 将对角线AC 三等分,且6AC =.点P 在正方形的边上,则满足5PE PF +=的点P 的个数是________个.13.如图,四边形ABCD 是菱形,∠DAB =48°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO =_____度.14.已知在矩形ABCD 中,3,3,2AB BC ==点P 在直线BC 上,点Q 在直线CD 上,且,AP PQ ⊥当AP PQ =时,AP =________________.15.如图正方形 ABCD 中,E 是 BC 边的中点,将△ABE 沿 AE 对折至△AFE ,延长 EF 交 CD 于 G ,接 CF ,AG .下列结论:① AE ∥FC ; ②∠EAG = 45°,且BE + DG = EG ;③ABCD 19CEF S S ∆=正方形;④ AD = 3DG ,正确是_______ (填序号).16.如图,直线1l ,2l 分别经过点(1,0)和(4,0)且平行于y 轴.OABC 的顶点A ,C 分别在直线1l 和2l 上,O 是坐标原点,则对角线OB 长的最小值为_________.17.如图,在平面直角坐标系中,直线112y x =+与x 轴、y 轴分别交于A ,B 两点,以AB 为边在第二象限内作正方形ABCD ,则D 点坐标是_______;在y 轴上有一个动点M ,当MDC △的周长值最小时,则这个最小值是_______.18.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AF n BC=,EC m BC=.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.19.如图,在四边形ABCD 中, //,5,18,AD BC AD BC E ==是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动,当运动时间为t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形,则t 的值等于_______.20.如图所示,在四边形ABCD 中,顺次连接四边中点E 、F 、G 、H ,构成一个新的四边形,请你对四边形ABCD 添加一个条件,使四边形EFGH 成一个菱形,这个条件是__________.三、解答题21.如图,在Rt ABC ∆中,090BAC ∠=,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F(1)求证:四边形ADCF 是菱形(2)若4,5AC AB ==,求菱形ADCF 的面积22.如图1,在正方形ABCD 和正方形BEFG 中,点,,A B E 在同一条直线上,P 是线段DF 的中点,连接,PG PC .(1)求证:,PG PC PG PC ⊥=.简析:由Р是线段DF 的中点,//DC CF ,不妨延长GP 交DC 于点M ,从而构造出一对全等的三角形,即_______≅________.由全等三角形的性质,易证CMG 是_______三角形,进而得出结论;(2)如图2,将原问题中的正方形ABCD 和正方形BEFG 换成菱形ABCD 和菱形BEFG ,且60ABC BEF ∠=∠=︒,探究PG 与PC 的位置关系及PG PC的值,写出你的猜想并加以证明;(3)当6,2AB BE ==时,菱形ABCD 和菱形BEFG 的顶点都按逆时针排列,且60ABC BEF ∠=∠=︒.若点A B E 、、在一条直线上,如图2,则CP =________;若点A B G 、、在一条直线上,如图3,则CP =________.23.如图1,在矩形纸片ABCD 中,AB =3cm ,AD =5cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,过点E 作EF ∥AB 交PQ 于F ,连接BF .(1)求证:四边形BFEP为菱形;(2)当E在AD边上移动时,折痕的端点P、Q也随着移动.①当点Q与点C重合时,(如图2),求菱形BFEP的边长;②如果限定P、Q分别在线段BA、BC上移动,直接写出菱形BFEP面积的变化范围.24.如图.正方形ABCD的边长为4,点E从点A出发,以每秒1个单位长度的速度沿射线AD运动,运动时间为t秒(t>0),以AE为一条边,在正方形ABCD左侧作正方形AEFG,连接BF.(1)当t=1时,求BF的长度;(2)在点E运动的过程中,求D、F两点之间距离的最小值;(3)连接AF、DF,当△ADF是等腰三角形时,求t的值.25.如图①,已知正方形ABCD的边长为3,点Q是AD边上的一个动点,点A关于直线BQ的对称点是点P,连接QP、DP、CP、BP,设AQ=x.(1)BP+DP的最小值是_______,此时x的值是_______;(2)如图②,若QP的延长线交CD边于点M,并且∠CPD=90°.①求证:点M是CD的中点;②求x的值.(3)若点Q是射线AD上的一个动点,请直接写出当△CDP为等腰三角形时x的值.26.如图1,在OAB 中,OAB 90∠=,30AOB ∠=,8OB =,以OB 为边,在OAB Λ外作等边OBC Λ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE 是平行四边形;(2)连接AC ,BE 交于点P ,求AP 的长及AP 边上的高BH ;(3)在(2)的条件下,将四边形OABC 置于如图所示的平面直角坐标系中,以E 为坐标原点,其余条件不变,以AP 为边向右上方作正方形APMN :①M 点的坐标为 .②直接写出正方形APMN 与四边形OABC 重叠部分的面积(图中阴影部分).27.如图,在四边形ABCD 中,AD BC =,AD BC ∥,连接AC ,点P 、E 分别在AB 、CD 上,连接PE ,PE 与AC 交于点F ,连接PC ,D ∠=BAC ∠,DAE AEP ∠=∠. (1)判断四边形PBCE 的形状,并说明理由;(2)求证:CP AE =;(3)当P 为AB 的中点时,四边形APCE 是什么特殊四边形?请说明理由.28.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。

2020—2021学年人教版数学八年级下册第18章《平行四边形》常考题提高练习(一)

2020—2021学年人教版数学八年级下册第18章《平行四边形》常考题提高练习(一)

人教版数学八年级下册第18章《平行四边形》常考题提高练习(一)1.已知,△ABC、△ADE是等腰三角形,AB=AC,AD=AE,D是BC上一点,∠DAE=∠BAC,过点E作BC的平行线交AB于点F,连接CF.(1)如图1,求证:四边形CDEF是平行四边形;(2)如图2,连接BE、DF,若AD⊥BC,在不添加任何辅助线的情况下,请直接写出图2中长度等于BC的长的的线段.2.如图,在▱ABCD中,点P在对角线AC上一动点,过点P作PM∥DC,且PM=DC,连接BM,CM,AP,BD.(1)求证:△ADP≌△BCM;(2)若P A=PC,设△ABP的面积为S,四边形BPCM的面积为T,求的值.3.如图,四边形ACFD是平行四边形,B,E,C,F在一条直线上,已知BE=CF.(1)求证:四边形ABED是平行四边形.(2)若∠ABC=60°,且AC⊥BF,AB=6,BF=5,求AD的长.4.如图,在▱ABCD中,AE⊥BC于点E,点F在线段DE上,且△ADF∽△DEC,若DC=4cm,AD=cm,AF=cm.(1)求DE的长;(2)求▱ABCD的面积.5.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC 到点F,使得CF=BE,连接DF,(1)求证:四边形AEFD是矩形;(2)连接OE,若AB=13,OE=,求AE的长.6.如图,已知菱形ABCD的对角线AC、BD相交于点O,分别过A、D两点作AO、DO的垂线,两垂线交于点E.(1)求证:四边形AODE是矩形;(2)若四边形AODE的面积为12,AD=5,求四边形AODE的周长.7.如图,在矩形ABCD中,E是BC上一点,DF⊥AE于点F,设=λ(λ>0).(1)若λ=1,求证:CE=FE;(2)若AB=3,AD=4,且D、B、F在同一直线上时,求λ的值.8.如图,分别以Rt△ACB的直角边AC和斜边AB向外作等边△ACE,等边△ABD,取AB 的中点F,连接DF、EF,已知∠BAC=30°.(1)求证:四边形ADFE是平行四边形;(2)若BD=4,求四边形BCEF的面积.9.如图,在△ABC中,AB=AC,D是BC中点、F是AC中点,AN是∠ABC的外角∠MAC 的平分线,延长DF交AN于点E,连接CE.(1)求证:四边形ADCE是矩形;(2)若AB=BC=4,则四边形ADCE的面积为多少?(3)直接回答:当△ABC满足时,四边形ADCE是正方形.10.如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形;(2)若AD=4,AB=2,且MN⊥AC,求DM的长.11.已知:l∥m∥n∥k,平行线l与m、m与n、n与k之间的距离分别为d1,d2,d3,且d1=d3=2,d2=3.我们把四个顶点分别在l,m,n,k这四条平行线上的四边形称为“线上四边形”.(1)如图1,正方形ABCD为“线上四边形”,BE⊥l于点E,EB的延长线交直线k于点F,求正方形ABCD的边长.(2)如图2,菱形ABCD为“线上四边形”且∠ADC=60°,△AEF是等边三角形,点E在直线k上,连接DF,且直线DF分别交直线l、k于点G、M,求证:EC=DF.12.如图,正方形ABCD,G是BC边上任意一点(不与B、C重合),DE⊥AG于点E,BF ∥DE,且交AG于点F.(1)求证:AF﹣BF=EF;(2)四边形BFDE是否可能是平行四边形,如果可能,请指出此时点G的位置,如不可能,请说明理由.13.如图,在△ABC中,点D,E分别是BC,AC的中点,延长BA至点F,使得AF=AB,连接DE,AD,EF,DF.(1)求证:四边形ADEF是平行四边形;(2)若AB=6,AC=8,BC=10,求EF的长.14.矩形ABCD中,AB=3,BC=4.点E,F在对角线AC上,点M,N分别在边AD,BC 上.(1)如图1,若AE=CF=1,M,N分别是AD,BC的中点.求证:四边形EMFN为矩形.(2)如图2,若AE=CF=0.5,AM=CN=x(0<x<2),且四边形EMFN为矩形,求x 的值.15.如图,四边形ABCD的对角线AC⊥BD于点E,点F为四边形ABCD外一点,且∠FCA =90°,BC平分∠DBF,∠CBF=∠DCB.(1)求证:四边形DBFC是菱形;(2)若AB=BC,∠F=45°,BD=2,求AC的长.参考答案1.(1)如答图1,证明:连接BE,∵∠BAC=∠DAE,∴∠DAC=∠EAB,在△ACD和△ABE中,,∴△ACD≌△ABE(SAS),∴CD=BE,∠ACD=∠ABE,∵EF∥BC,∴∠ABC=∠EFB,∴∠ABE=∠EFB,∴EB=EF,∴EF=CD,∵EF∥BC,∴四边形EDCF是平行四边形;(2)∵AB=AC,AD⊥BC,∴BD=CD=BC,由(1)知CD=BE=EF,∴BD=EF,∵E作BC的平行线交AB于点F,即BD||EF,∴四边形BEFD是平行四边形,∴BD =CD =BE =EF =DF =BC ,故答案为:BD ,CD ,BE ,EF ,DF .2.解:(1)∵PM ∥DC ,且PM =DC ,∴四边形CDPM 是平行四边形,∴PD =MC ,∵AB ∥DC ,且AB =DC ,PM ∥DC ,且PM =DC ,∴AB ∥PM ,且AB =PM ,∴四边形ABMP 是平行四边形,∴AP =BM ,∵四边形ABCD 是平行四边形,∴AD =BC ,∴△ADP ≌△BCM (SSS );(2)由(1)可得S △ADP =S △BCM ,∴S 四边形BMCP =S △BCM +S △BCP =S △ADP +S △BCP =S 平行四边形ABCD , 又∵P A =PC ,∴S △ABP =S △ABC =S 平行四边形ABCD ,∴的值为=.3.证明:(1)∵四边形ACFD 是平行四边形,∴AD ∥CF ,AD =CF ,∵B ,E ,C ,F 在一条直线上,∴AD ∥BE ,∴AD=BE,∴四边形ABED是平行四边形;(2)∵四边形ACFD是平行四边形,∴AD=CF,∵∠ABC=60°,且AC⊥BF,AB=6,∴∠BAC=30°,∴BC=AB=3,∵BF=5,∴CF=BF﹣BC=2,∴AD=2.4.解:(1)∵△ADF∽△DEC,∴,∴,∴DE=6;(2)∵四边形ABCD为平行四边形,∠EAD=∠AEB=90°,∴在Rt△EAD中,,∴AE=3(cm),∴S▱ABCD=BC•AE=.5.(1)证明:∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∵BE=CF,∴BC=EF,∴AD=EF,∵AD∥EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD是矩形;(2)解:∵四边形ABCD是菱形,AB=13,∴BC=AB=13,AC⊥BD,OA=OC=AC,OB=OD=BD,∵AE⊥BC,∴∠AEC=90°,∴OE=AC=OA=2,AC=2OE=4,∴OB===3,∴BD=2OB=6,∵菱形ABCD的面积=BD×AC=BC×AE,即×6×4=13×AE,解得:AE=12.6.(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=90°,∵EA⊥AO,DE⊥DO,∴∠EAO=∠DOA=90°,∴四边形AODE是矩形;(2)解:由(1)知,四边形AODE是矩形,∴∠AED=90°,OA=DE,OD=AE,∵四边形AODE的面积为12,∴OA•OD=12,在Rt△AOD中,根据勾股定理,得OA2+OD2=AD2=25,∴(OA+OD)2=OA2+2OA•OD+OD2=25+24=49,∴OA+OD=7,∴四边形AODE的周长为2(OA+OD)=14.7.解:(1)证明:连接DE,如图:∵四边形ABCD为矩形,∴∠C=90°,AD∥BC,∴∠ADE=∠CED,∵DF⊥AE,∴∠DFE=90°,∴∠DFE=∠C,∵=λ=1,∴AD=AE,∴∠ADE=∠FED,∴∠FED=∠CED,在△DFE和△DCE中,,∴△DFE≌△DCE(AAS),∴CE=FE;(2)当D、B、F在同一直线上时,如图所示:∵四边形ABCD为矩形,∴∠BAD=∠ABC=90°,在Rt△ADB中,AB=3,AD=4,∴tan∠ABD==,∵DF⊥AE,∴∠BFE=90°,∵∠ABD+∠DBC=90°,∠DBC+∠FEB=90°,∴∠FEB=∠ABD,∴=tan∠FEB=tan∠ABD=,∵AB=3,∴BE=,在Rt△ABE中,由勾股定理得,AE==,∴λ====.8.(1)证明:∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABD是等边三角形,F是AB的中点,∴AD=AB=BD,AB=2AF,DF⊥AB,∴AF=BC,在Rt△AFD和Rt△BCA中,,∴Rt△AFD≌Rt△BCA(HL),∴DF=AC,∵△ACE是等边三角形,∴∠EAC=60°,AC=AE,∴∠EAB=∠EAC+∠BAC=90°,∴DF=AE,又∵DF⊥AB,∴DF∥AE,∴四边形ADFE是平行四边形;(2)解:由(1)得:△AEF的面积=△ADF的面积=△ABC的面积,AB=BD=4,BC =AB=2,AC=BC=2,∴四边形BCEF的面积=△ACE的面积+△ABC的面积﹣△AEF的面积=△ACE的面积=×(2)2=3.9.(1)证明:∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠MAC,∵∠MAC=∠B+∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠MAE=∠B,∴AN∥BC,∵F为AC的中点,D为BC的中点,∴FD∥AB,∴四边形ABDE为平行四边形,∴AE=BD,∵BD=CD,∴AE=CD,∴四边形ADCE为平行四边形,∵AB=AC,点D为BC中点,∴AD⊥BC,∴AD⊥AE,∴∠DAE=90°,∴四边形ADCE为矩形;(2)解:由(1)知四边形ADCE是矩形,∵BC=AB=4,AB=AC,∴△ABC是等边三角形,∴AB=AC=BC=4,∵D为BC的中点,∴∠ADC=90°,BD=CD=2,∴AD=2,∴四边形ADCE的面积为CD×AD=2×2=4;(3)解:答案不唯一,如当∠BAC=90°时,四边形ADCE是正方形.∵∠BAC=90°,AB=AC,∴△ABC为等腰直角三角形,∵D为BC的中点,∴AD=DC,∵四边形ADCE为矩形,∴四边形ADCE为正方形.故答案为:∠BAC=90°.10.(1)证明:∵在矩形ABCD中,O为对角线AC的中点,∴AD∥BC,AO=CO,∴∠OAM=∠OCN,∠OMA=∠ONC,在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴AM=CN,∵AM∥CN,∴四边形ANCM为平行四边形;(2)解:∵在矩形ABCD中,AD=BC,由(1)知:AM=CN,∴DM=BN,∵四边形ANCM为平行四边形,MN⊥AC,∴平行四边形ANCM为菱形,∴AM=AN=NC=AD﹣DM,∴在Rt△ABN中,根据勾股定理,得AN2=AB2+BN2,∴(4﹣DM)2=22+DM2,解得DM=.11.解:(1)如图1,∵l∥m∥n∥k,BE⊥l,∴BE⊥k,BE⊥m,BE⊥n,∴∠AEB=∠BFC=90°,BE=5,BF=2,∴∠CBF+∠BCF=90°,∵正方形ABCD为“线上四边形”,∴AB=BC,∠ABC=90°,∴∠ABE+∠CBF=90°,∴∠ABE=∠BCF,∴△ABE≌△BCF(AAS),∴FC=BE=5,∴BC===;(2)如图2,连接AC,∵四边形ABCD是菱形,∴AD=CD,∵∠ADC=60°,∴△ADC是等边三角形,∴AD=AC,∠CAD=60°,∵△AEF是等边三角形,∴AE=AF,∠EAF=60°,∴∠EAF=∠CAD,∴∠EAC=∠DAF,∴△EAC≌△F AD(SAS),∴EC=DF.12.解:(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠BAF+∠DAE=90°,∵DE⊥AG,∴∠DAE+∠ADE=90°,∴∠ADE=∠BAF,又∵BF∥DE,∴∠BF A=90°=∠AED,∴△ABF≌△DAE(AAS),∴AE=BF,∴AF﹣BF=AF﹣AE=EF;(2)不可能,理由是:如图,若要四边形BFDE是平行四边形,已知DE∥BF,则当DE=BF时,四边形BFDE为平行四边形,∵DE=AF,∴BF=AF,即此时∠BAF=45°,而点G不与B和C重合,∴∠BAF≠45°,矛盾,∴四边形BFDE不可能是平行四边形.13.(1)证明:∵点D,E分别是BC,AC的中点,∴DE是△ABC的中位线,∴DE∥AB,DE=AB,∵AF=AB,∴DE=AF,DE∥AF,∴四边形ADEF是平行四边形;(2)解:由(1)得:四边形ADEF是平行四边形,∴EF=AD,∵AB=6,AC=8,BC=10,∴AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,∵点D是BC的中点,∴AD=BC=5,∴EF=AD=5.14.(1)证明:连接MN,如图1所示:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠B=90°,∴∠EAM=∠FCN,AC===5,∵M,N分别是AD,BC的中点,∴AM=DM=BN=CN,AM∥BN,∴四边形ABNM是平行四边形,又∵∠B=90°,∴四边形ABNM是矩形,∴MN=AB=3,在△AME和△CNF中,,∴△AME≌△CNF(SAS),∴EM=FN,∠AEM=∠CFN,∴∠MEF=∠NFE,∴EM∥FN,∴四边形EMFN是平行四边形,又∵AE=CF=1,∴EF=AC﹣AE﹣CF=3,∴MN=EF,∴四边形EMFN为矩形.(2)解:连接MN,作MH⊥BC于H,如图2所示:则四边形ABHM是矩形,∴MH=AB=3,BH=AM=x,∴HN=BC﹣BH﹣CN=4﹣2x,∵四边形EMFN为矩形,AE=CF=0.5,∴MN=EF=AC﹣AE﹣CF=4,在Rt△MHN中,由勾股定理得:32+(4﹣2x)2=42,解得:x=2±,∵0<x<2,∴x=2﹣.15.(1)证明:∵AC⊥BD,∠FCA=90°,∠CBF=∠DCB.∴BD∥CF,CD∥BF,∴四边形DBFC是平行四边形;∵BC平分∠DBF,∴∠CBF=∠CBD,∵∠CBF=∠DCB,∴∠CBD=∠DCB,∴CD=BD,∴四边形DBFC是菱形;(2)解:∵四边形DBFC是平行四边形,∴CF=BD=2,∵AB=BC,AC⊥BD,∴AE=CE,作CM⊥BF于M,如图:∵BC平分∠DBF,∴CE=CM,∵∠F=45°,∴△CFM是等腰直角三角形,∴CM=CF=,∴AE=CE=,∴AC=2.。

2020-2021学年 人教版八年级数学下册《18.1平行四边形》单元综合培优提升训练

2020-2021学年  人教版八年级数学下册《18.1平行四边形》单元综合培优提升训练

2021年度人教版八年级数学下册《18.1平行四边形》单元综合培优提升训练(附答案)1.如图,已知平行四边形ABCD中,E,F为对角线BD上两点,且AE⊥AD,CF⊥BC,AC=BC.(1)求证:AE=CF;(2)若∠EAC=60°,求∠BAE的度数.2.如图,▱ABCD中,F在CD延长线上,DC=DF,FB交AD于点E.求证:DE=EA.3.如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.4.如图▱ABCD的对角线AC,BD交于点O,AC⊥AB,AB=2,且AO:BO=2:3.(1)求AC的长;(2)求▱ABCD的面积.5.如图所示,在平行四边形ABCD中,对角线AC与BD相交于点O,M、N在对角线AC 上,且AM=CN,求BM与DN的位置关系.6.如图,在平行四边形ABCD中,点M为边AD的中点,过点C作AB的垂线交AB于点E,连接ME,已知AM=4,∠BCE=30°.(1)求线段EC的长;(2)求证:∠EMC=2∠AEM.(3)如果EM=8﹣AE,求△AEM的面积.7.如图,在平行四边形ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC 于点H.(1)求证:CH=EH;(2)若AD=5,CD=3,求AE的长.8.如图,在平行四边形ABCD中,E为BC边上一点,且∠B=∠AEB.(1)求证:AE=CD;(2)试判断AC与ED的数量关系,并说明理由.9.如图,在平行四边形ABCD中,对角线AC的垂直平分线分别与边AB和边CD的延长线交于点M,N,垂足为点O.求证:BM=DN.10.如图,在▱ABCD中,∠ABC,∠BCD的平分线分别交AD于点E,F,BE,CF相交于点G.(1)求证:BE⊥CF;(2)若AB=5,CF=6,求BE的长.11.如图,▱ABCD的对角线AC,BD相交于点O,E,F分别是OA,OC上的点,且AE=CF.求证:BE=DF.12.如图,在▱ABCD中,点E,F,G,H分别是AB,BC,CD,DA上的点,且AE=CG,BF=DH.求证:EG与FH互相平分.13.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,求EF长度的最大值.14.如图,在△ABC中,点D、E、F分别在BC、AB、AC上,且DE∥AC,DF∥AB.(1)求证:四边形AEDF是平行四边形;(2)当∠BAC=90°,AD平分∠BAC,求证:四边形AEDF是正方形.15.如图,D、E、F分别是△ABC三边中点,AH⊥BC于H.求证:(1)∠BDF=∠BAC;(2)DF=EH.16.如图,点E在BC上,△ABC≌△EAD.(1)求证:四边形ABCD是平行四边形;(2)若AE平分∠DAB.∠EDC=30°,求∠AED的度数.17.如图,在▱ABCD中,∠BAD,∠ADC的平分线AF,DE分别与线段BC交于点F,E,AF与DE交于点G.(1)求证:AF⊥DE,BF=CE.(2)若AD=10,AB=6,AF=8,求DE的长度.18.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,过点A作AE⊥BD,垂足为点E,过点C作CF⊥BD,垂足为点F.(1)求证:AE=CF;(2)若∠AOE=74°,∠EAD=3∠CAE,直接写出∠BCA的度数.19.定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.画出图形,写出已知和求证,并证明.20.如图,在▱ABCD中,点E是对角线BD上的一点,过点C作CF∥BD,且CF=DE,连接AE、BF.求证:AE=BF.21.如图,在▱ABCD中,对角线AC、BD相交于点O,过点O的直线分别交DA、BC延长线于点E、F.求证:AE=CF.22.已知:如图,在▱ABCD中,点E、F分别在AD、BC上,EF与BD相交于点O,AE=CF.求证:BD、EF互相平分.23.如图,在▱ABCD中,点E、F在直线AC上,且AE=CF.求证:DE∥BF.24.如图,在▱ABCD中,对角线AC、BD相交于点O,过点O的直线分别交AD、BC于点E、F,求证:DE=BF.25.如图,在▱ABCD中,E,F是对角线上的点,且BE=DF,求证:AF=CE.26.阅读下列材料:如图1,在四边形ABCD中,若AB=AD,BC=CD,则把这样的四边形称之为筝形.(1)如图2,在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC =∠AFC.求证:四边形AECF是筝形.(2)如图3,在筝形ABCD中,AB=AD=26,BC=DC=25,AC=17,求筝形ABCD 的面积.27.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F在BD上,且BE=DF,连接AE并延长,交BC于点G,连接CF并延长,交AD于点H.(1)求证:AE=CF;(2)若AC平分∠HAG,判断四边形AGCH的形状,并证明你的结论.28.如图,在平行四边形ABCD中,E、F是对角线AC上的两点,且AF=CE.(1)求证:△ADE≌△CBF.(2)若AC平分∠BAD,则四边形BEDF的形状是.29.如图,已知点E是平行四边形ABCD的边CD延长线上的一点;连接AE,BD,且AE ∥BD;过点E作EF⊥BC,交BC的延长线于点F,连接DF.求证:DF=DE.30.如图,在四边形ABCD中,E,F分别为边AB,CD的中点,若△ADE≌△CBF.求证:四边形ABCD是平行四边形.31.如图,在▱ABCD中,∠ADC的平分线经过BC的中点E,与AB的延长线交于点F.求证:AE⊥DF.32.如图是某区部分街道示意图,其中CE垂直平分AF,AB∥DC,BC∥DF.从B站乘车到E站只有两条路线有直接到达的公交车,路线1是B⇒D⇒A⇒E,且长度为5公里,路线2是B⇒C⇒F⇒E,求路线2的长度.33.如图,在平行四边形ABCD中,对角线AC和BD交于点O,点E、F分别为OA、OC 的中点,连接BE、DF、DE.(1)求证:△ABE≌△CDF;(2)若BD=2AB,且AB=10,CF=6,直接写出DE的长为.34.如图,平行四边形ABCD中,点E是AD的中点,连接BE并延长交CD的延长线于点F.(1)求证:△ABE≌△DFE;(2)连接CE,若BE平分∠ABC,且当BF=8cm,BC=5cm时,求EC的长.35.如图,在▱ABCD中,点E是CD边的中点,连接AE并延长交BC的延长线于点F,连接BE,BE⊥AF.(1)求证:AE平分∠DAB;(2)若∠DAB=60°,AB=4,求▱ABCD的面积.36.如图,已知平行四边形ABCD中,E、F是对角线BD上的两个点,且BE=DF.求证:四边形AECF为平行四边形.37.如图,在平行四边形ABCD中,AC是对角线,且AB=AC,CF是∠ACB的角平分线交AB于点F,在AD上取一点E,使AB=AE,连接BE交CF于点P.(1)求证:BP=CP;(2)若BC=4,∠ABC=45°,求平行四边形ABCD的面积.38.如图,在平行四边形ABCD中,E、F分别在DB和BD的延长线上,且BE=DF,连接CE、CF、AF.(1)求证:AF=CE;(2)若AD⊥BD,∠BAD=60°,AD=2,BE=1,求△CEF的面积.39.在平行四边形ABCD中,AC⊥CD,E为BC中点,点M在线段BE上,连接AM,在BC下方有一点N,满足∠CAD=∠BCN,连接MN.(1)若∠BCN=60°,AE=5,求△ABE的面积;(2)若MA=MN,MC=EA+CN,求证:AB=AE.40.如图,在平行四边形ABCD中,连接DB.过D点作DE⊥AB于点E,过BE上一点F 作FG⊥AD于点G,交DE于点P;过F作FH⊥DB于点H,连接EH.(1)若DE=6,DC=10,AD=2,求BE的长.(2)若AE=PE,求证:DH+HF=EH.参考答案1.解:(1)证明:∵四边形ABCD平行四边形,∴AD=BC,AD∥BC,∴∠ADE=∠CBF,∵AE⊥AD,CF⊥BC,∴∠EAD=∠FCB=90°,在△EAD和△FCB中,,∴△EAD≌△FCB(ASA),∴AE=CF;(2)∵∠EAC=60°,∴∠CAD=30°,∴∠ACB=30°,∵AC=BC.∴∠BAC=75°,∴∠BAE=15°.2.证明:在▱ABCD中,DC=AB,DC∥AB,∴∠A=∠FDE,∵DC=DF,∴DF=AB,在△ABE和△DFE中,,∴△ABE≌△DFE(AAS),∴AE=DE.3.证明:(1)∵DF∥BE,∴∠DFE=∠BEF.在△ADF和△CBE中,,∴△AFD≌△CEB(SAS);(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四边形ABCD是平行四边形.4.解:(1)∵AC⊥AB,∴∠BAO=90°,∵AO:BO=2:3,∴设AO=2a,BO=3a,∵四边形ABCD是平行四边形,∴AC=2AO=4a,在Rt△BAO中,由勾股定理得:22+(2a)2=(3a)2,解得:a=,∴AC=4a=;(2)∵四边形ABCD是平行四边形,AC⊥AB,∴▱ABCD的面积是AB•AC=2×=.5.解:BM∥DN;证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AM=CN,∴OM=ON,在△BOM和△DON中,,∴△BOM≌△DON(SAS),∴∠OBM=∠ODN,∴BM∥DN.6.(1)解:∵M为AD的中点,AM=4,∴AD=2AM=8.在▱ABCD的面积中,BC=AD=8,又∵CE⊥AB,∴∠BEC=90°,∵∠BCE=30°,∴BE=BC=4,∴EC==4;(2)证明:延长EM,CD交于点N.∵在▱ABCD中,AB∥CD,∴∠AEM=∠N,在△AEM和△DNM中∵,∴△AEM≌△DNM(ASA),∴EM=MN,又∵AB∥CD,CE⊥AB,∴CE⊥CD,∴CM是Rt△ECN斜边的中线,∴MN=MC,∴∠N=∠MCN,∴∠EMC=2∠N=2∠AEM;(3)解:设AE=x,由(2)△AEM≌△DNM(ASA),∴AE=DN=x,∴DC=AB=AE+EB,∴DC=x+4,∴NC=DC+DN=2x+4,∵MN=ME,∴EN=2EM=2(8﹣AE)=16﹣2x,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ECN=∠BEC=90°,在Rt△ECN中,EC2+CN2=EN2,∴(16﹣2x)2=(4)2+(2x+4)2,解得:x=,∴NC=2x+4=,∴S△ECN=×4×=,∵M是EN的中点,∴S△EMC=S△NMC=S△ECN=,过M作CN的垂线,垂足为G,∴S△NMC=CN•MG=×MG=,∴MG=2,∴S△NMD=DN•MG=×MG=,由(2)△AEM≌△DNM(ASA),∴S△AEM=S△NMD=.7.解:(1)∵CE平分∠BCD,∴∠BCE=∠DCE,∵平行四边形ABCD中,DC∥AB,∴∠E=∠DCE,∴∠E=∠BCE,∴BC=BE,又∵BH⊥CE,∴CH=EH;(2)∵四边形ABCD是平行四边形,∴AD=BC=5,CD=AB=3,又∵BE=BC,∴BE=5,∴AE=BE﹣AB=5﹣3=2.8.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∵∠B=∠AEB,∴AE=AB,∴AE=CD;(2)解:AC=ED;证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠ADC,AD∥BC,∴∠DAE=∠AEB,∵∠B=∠AEB,∴AE=AB,∠B=∠AEB=∠DAE=∠ADC,∴AE=CD,且∠DAE=∠ADC,AD=AD,∴△ADC≌△DAE(SAS),∴AC=ED.9.证明:∵MN是AC的垂直平分线,∴AO=CO,∠AOM=∠CON=90°,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠M=∠N,在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴AM=CN,∵AB=CD,∴BM=DN.10.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC、∠BCD的平分线BE、CF分别与AD相交于点E、F,∴∠EBC+∠FCB=ABC+∠DCB=90°,∴EB⊥FC;(2)解:如图,过A作AM∥FC,∵AM∥FC,∴∠AOB=∠FGB,∵EB⊥FC,∴∠FGB=90°,∴∠AOB=90°,∵BE平分∠ABC,∴∠ABE=∠EBC,∵AD∥BC,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AB=AE=5,∵AO⊥BE,∴BO=EO,在△AOE和△MOB中,,∴△AOE≌△MOB(ASA),∴AO=MO,∵AF∥CM,AM∥FC,∴四边形AMCF是平行四边形,∴AM=FC=6,∴AO=3,∴EO==4,∴BE=8.11.证明:∵四边形ABCD是平行四边形,∴OB=OD,OA=OC,∵AE=CF.∴OE=OF,∵OB=OD,∴四边形BEDF是平行四边形,∴BE=DF.12.证明:连接EF,FG,GH,HE,∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,AB=CD,AD=BC,∵AE=CG,BF=DH,∴AH=CF,BE=DG,在△AEH和△CGF中,,∴△AEH≌△CGF(SAS),∴EH=GF,同理:GH=EF,∴四边形EFGH为平行四边形,∴EG与FH互相平分.13.解:连接BD、DN,在Rt△ABD中,DB===6,∵点E、F分别为DM、MN的中点,∴EF=DN,由题意得,当点N与点B重合时,DN最大,∴DN的最大值是6,∴EF长度的最大值是3.14.证明:(1)∵DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四边形AEDF是平行四边形;(2)由(1)得:四边形AEDF是平行四边形,∵∠BAC=90°,∴平行四边形AEDF是矩形,∴∠AED=90°,又∵AD平分∠BAC,∴∠DAE=∠DAF=45°,∴△ADE是等腰直角三角形,∴AE=DE,∴四边形AEDF是正方形.15.证明:(1)∵D、F分别是AB、BC边中点,∴DF是△ABC的中位线,∴DF∥AC,DF=AC,∴∠BDF=∠BAC;(2)∵AH⊥BC于H,E是AC的中点,∴EH=AC,∴DF=EH.16.(1)证明:∵△ABC≌△EAD,∴BC=AD,∠B=∠EAD,AB=EA,∴∠B=∠AEB,∴∠EAD=∠AEB,∴BC∥AD,∴四边形ABCD是平行四边形;(2)解:由(1)得:∠B=∠AEB=∠EAD,四边形ABCD是平行四边形,∴∠ADC=∠B,∵AE平分∠DAB,∴∠BAE=∠EAD,∴∠B=∠AEB=∠BAE,∴△ABE是等边三角形,∴∠ADC=∠B=∠BAE=∠EAD=60°,∴∠ADE=∠ADC﹣∠EDC=60°﹣30°=30°,∴∠AED=190°﹣60°﹣30°=90°.17.(1)证明:在平行四边形ABCD中,AB∥DC,∴∠BAD+∠ADC=180°.∵AE,DF分别是∠BAD,∠ADC的平分线,∴∠DAE=∠BAE=∠BAD,∠ADF=∠CDF=∠ADC.∴∠DAE+∠ADF=∠BAD+∠ADC=90°.∴∠AGD=90°.∴AE⊥DF.∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,∴∠DAF=∠AFB,又∵∠DAF=∠BAF,∴∠BAF=∠AFB,∴AB=BF,同理可得CD=CE,∴BF=CE;(2)解:过点C作CK∥AF交AD于K,交DE于点I,∵AK∥FC,AF∥CK,∴四边形AFCK是平行四边形,∠AGD=∠KID=90°,∴AF=CK=8,∵∠KDI+∠DKI=90°,∠DIC+∠DCI=90°,∠IDK=∠IDC,∴∠DKI=∠DCI,∴DK=DC=6,∴KI=CI=4,∵AD∥BC,∴∠ADE=∠DEC=∠CDE,∴CE=CD,∵CI⊥DE,∴EI=DI,∵DI===2,∴DE=2DI=4.18.(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AE⊥BD,CF⊥BD,∴∠AEO=∠CFO=90°,∵∠AOE=∠COF,∴△AEO≌△CFO(AAS),∴AE=CF.(2)解:∵AE⊥BD,∴∠AEO=90°,∵∠AOE=74°,∴∠EAO=90°﹣∠AOE=16°,∵∠EAD=3∠CAE,∴∠EAD=3×16°=48°,∴∠DAC=∠DAE﹣∠EAO=48°﹣16°=32°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BCA=∠DAC=32°.19.解:已知:如图,在△ABC中,D、E分别为边AB、AC的中点,求证:DE∥BC且DE=BC.证明:延长DE至F,使EF=DE,连接CF,∵E是AC中点,∴AE=CE,在△ADE和△CFE中,,∴△ADE≌△CFE(SAS),∴AD=CF,∠ADE=∠F,∴BD∥CF,∵AD=BD,∴BD=CF,∴四边形BCFD是平行四边形,∴DF∥BC,DF=BC,∴DE∥CB,DE=BC.20.证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,又∵CF∥DB,∴∠DBC=∠BCF,∴∠ADB=∠BCF,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴AE=BF.21.证明:∵▱ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF.22.证明:连接BE、DF,如图所示:∵四边形ABCD为平行四边形,∴AD=BC,AD∥BC,又∵AE=CF,∴DE=BF,∴四边形EBFD为平行四边形,∴BD、EF互相平分.23.证明:∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAF=∠BCE,∴∠DAE=∠BCF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴∠DEA=∠BFC,∴DE∥BF.24.证明:∵▱ABCD的对角线AC,BD交于点O,∴BO=DO,AD∥BC,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF(ASA),∴DE=BF.25.证明:如图,在▱ABCD中,AD∥CB,AD=CB,∴∠ADF=∠CBE,∵BE=DF,∴△ADF≌△CBE(SAS),∴AF=CE.26.解:(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵∠AEC=∠AFC,∠AEC+∠AEB=∠AFC+∠AFD=180°,∴∠AEB=∠AFD,∵AE=AF,∴△AEB≌△AFD(AAS),∴AB=AD,BE=DF,∴平行四边形ABCD是菱形,∴BC=DC,∴EC=FC,∴四边形AECF是筝形.(2)如图∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS),过点B作BH⊥AC,垂足为H,在Rt△ABH中,BH2=AB2﹣AH2=262﹣AH2,在Rt△CBH中,BH2=CB2﹣CH2=252﹣(17﹣AH)2,∴262﹣AH2=252﹣(17﹣AH)2,∴AH=10,∴BH==24,∴S△ABC=×17×24=204.∴筝形ABCD的面积=2S△ABC=408.27.(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,又∵∠AOE=∠COF,∴△AOE≌△COF(SAS),∴AE=CF.(2)四边形AGCH是菱形.理由如下:∵△AOE≌△COF,∴∠EAO=∠FCO,∴AG∥CH,∵四边形ABCD是平行四边形,∴AD∥BC,∴四边形AGCH是平行四边形,∵AD∥BC,∵AC平分∠HAG,∴∠HAC=∠GAC,∵∠GAC=∠ACB,∴GA=GC,∴平行四边形AGCH是菱形.28.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAE=∠BCF,∵AF=CE.∴AF﹣EF=CE﹣EF,∴AE=CF,∴△ADE≌△CBF(SAS);(2)四边形BEDF的形状是菱形,理由如下:∵AC平分∠BAD,∴∠DAC=∠BAC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAC=∠BCA,∴∠BAC=∠BCA,∴BA=BC,∴AD=AB,∵AE=AE,∴△ADE≌△ABE(SAS),∴DE=BE,∵△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴四边形BEDF是平行四边形,∵DE=BE,∴平行四边形BEDF是菱形.故答案为:菱形.29.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,又∵AE∥BD∴四边形ABDE是平行四边形;∴AB=DE,即CD=DE;又∵EF⊥BC于点F,∴在Rt△CEF中,点D是斜边CE的中点,∴DF=DE.30.证明:∵△ADE≌△CBF,∴AD=BC,AE=CF,∵E、F分别为边AB、CD的中点,∴AB=2AE,CD=2CF,∴AB=CD,∴四边形ABCD是平行四边形.31.证明:∵E是BC边的中点,∴BE=EC,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠F=∠CDE,在△BEF和△CED中,∴△CDE≌△BFE(AAS);∵DF平分∠ADC,∴∠ADE=∠CDE,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠F=∠CDE,∴∠F=∠ADF,∴AD=AF,∵△CDE≌△BFE,∴EF=ED,∴AE⊥DF.32.解:延长FD交AB于点G,∵BC∥DF,AB∥DC,∴四边形BCDG是平行四边形,∴DG=CB.∵CE垂直平分AF,∴FE=AE,DE∥AG,∴FD=DG,∴CB=FD.又∵BC∥DF,∴四边形BCFD是平行四边形,∴CF=BD,∵CE垂直平分AF,∴AE=FE,FD=DA,∴BC=DA,∴路线2的长度:BC+CF+FE=AD+BD+AE=5(公里).33.解:(1)∵平行四边形ABCD中,对角线AC与BD交于点O,∴AO=CO,又∵点E,F分别为OA、OC的中点,∴AE=CF,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAE=∠DCF,∴△ABE≌△CDF(SAS);(2)∵△ABE≌△CDF,∴BE=DF,AE=CF,∵BD=2AB,平行四边形ABCD中,对角线AC与BD交于点O,∴AB=OB=OD=CD,∵AB=10,CF=6,∴AB=OB=OD=CD=10,AE=6,∵AB=OB,点E、F分别为OA、OC的中点,∴BE⊥AO,DF⊥CO,AE=CF=EO=OF=6,∴DF=BE=8,EF=12,在Rt△DEF中,DE===4.34.(1)证明:如图,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABE=∠F,∠A=∠EDF,又∵AE=DE,∴△ABE≌△DFE.(2)∵BE平分∠ABC,∴∠ABE=∠CBE,∵∠ABE=∠F,∴∠CBE=∠F,∴CB=CF,∵△ABE≌△DFE,∴BE=FE=BF=×8=4,∴CE⊥BF,∴∠BEC=90°,∴EC==3(cm).∴EC的长为3cm.35.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠EFC,∵点E是CD边的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS),∴AE=FE,∵BE⊥AF.∴BA=BF,∴∠BAF=∠BF A,∵∠DAE=∠BF A,∴∠DAE=∠BAF,∴AE平分∠DAB;(2)∵∠DAB=60°,AB=4,∴∠DAE=∠BAF=30°,∵BE⊥AF.∴BE=AB=2,∴AE=BE=2,∵△ADE≌△FCE,∴△ADE的面积=△FCE的面积,∴▱ABCD的面积=△ABF的面积=2△ABE的面积=2××AE•BE=2×2=4.36.证明:连接对角线AC交对角线BD于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵点E,F是对角线BD上的两点,且BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形.37.解:(1)设AP与BC交于H,∵在平行四边形ABCD中,AD∥BC,∴∠AEB=∠CBE,∵AB=AE,∴∠ABE=∠AEB,∴∠ABE=∠CBE,∴BE平分∠ABC,∵CF是∠ACB的角平分线,BE交CF于点P,∴AP平分∠BAC,∵AB=AC,∴AH垂直平分BC,∴PB=PC;(2)∵AH垂直平分BC,∴AH⊥BC,BH=CH=BC=2,∵∠ABH=45°,∴AH=BH=2,∴平行四边形ABCD的面积=4×2=8.38.(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∴∠ADF=∠CBE,∵BE=DF,∴△ADF≌△CBE(SAS),∴AF=CE;(2)解:∵AD⊥BD,∠BAD=60°,AD∥BC,∴∠ABD=30°,BC⊥BD,∵BC=AD=,∴AB=2AD=,∴BD=,∵DF=BE=1,∴EF=DF+BD+BE=8,∴S△CEF=.39.(1)解:∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∴∠CAD=∠ACB=∠BCN=60°,又AC⊥CD,∴AB⊥AC,∴∠B=30°,在Rt△ABC中,E为BC的中点,∴BC=2AE=10,∴AC=BC=5,∴,∴;(2)证明:延长CN至G,使CG=AC,由(1)知∠ACM=∠GCM,又MC=MC,∴△ACM≌△GCM,∴AM=GM,∠MAC=∠G,又AM=MN,∴GM=MN,∴∠G=∠MNG=∠MAC=∠MAE+∠EAC,又由(1)可得EC=EA,∴∠EAC=∠ACE=∠NCM,∵∠MNG=∠NCM+∠NMC,∴∠NMC=∠MAE,在MC上截取MF=AE,∴△MAE≌△NMF,∴ME=FN,又MC=ME+CE=MF+CF,MC=EA+CN,∵EA=MF=CE,∴ME=CN=FN=CF,∴△NCF为等边三角形,∴∠MCN=60°,∴∠ACB=60°,∴∠ABC=30°,∴,∵AE=BC,∴AB=AE.40.解:(1)∵DE⊥AB,∴AE===2,∵四边形ABCD是平行四边形,∴AB=CD=10,∴BE=AB﹣AE=8;(2)方法一:如图,过点E作EM⊥HE,交HF的延长线于点M,连接AP,GE,DF,∵AE=PE,且DE⊥AE,∴∠P AE=∠APE=45°,∵∠AGP=∠AEP=90°,∴点A,点E,点P,点G四点共圆,∴∠PGE=∠P AE=45°,∵∠DGF=∠DEF=90°,∴点D,GH,点E,点F四点共圆,∴∠EDF=∠PGE=45°,∴∠EDF=∠DFE=45°,∴DE=EF,∵∠DHF=∠DEF=90°,∴点D,点E,点F,点H四点共圆,∴∠DFE=∠DHE=45°,∠EDF=∠EHF=45°,且EM⊥EH,∴∠M=∠EHF=45°,∴EH=EM,∴HM=EH,∵∠DEB=∠HEM=90°,∴∠DEH=∠FEM,且∠DHE=∠M=45°,DE=EF,∴△DEH≌△FEM(AAS)∴DH=MF,∴DH+HF=MF+HF=HM=EH.方法二:∵∠AED=∠DGP=∠PEF=90°,∠DPG=∠EPF,∴∠ADE=∠PFE,∴△ADE≌△PFE(AAS),∴DE=EF,延长BD到Q使DQ=FH,∵FH⊥BD,∴∠EDB+∠DBE=∠HFB+∠HBF=90°,∴∠EPB=∠HFB,∴∠QDE=∠HFE,∴△EQD≌△EFH(SAS),∴∠QED=∠HEF,QE=EH,∴∠QEH=∠DEB=90°,∴△QEH是等腰直角三角形,∴QH=EH,∴DH+FH=EH.。

人教版八年级下册数学 第18章 平行四边形 综合题经典必练

人教版八年级下册数学  第18章  平行四边形  综合题经典必练

人教版八年级下册数学第18章平行四边形综合题经典必练1.如图,在▱ABCD中,对角线AC,BD相交于点O,过点O作MN⊥BD,分别交AD,BC于点M,N.(1)求证:OM=ON;(2)求证:四边形BNDM是菱形.2.如图,菱形ABCD中,∠B=60°,点E,F分别在AB,AD上,且BE=AF.(1)求证:△ECF为等边三角形;(2)连接AC,若AC将四边形AECF的面积分为1:2两部分,当AB=6时,求△BEC的面积.3.如图,在△ABC中,AB=13,AC=23,点D在AC上,若BD=CD=10,AE平分∠BAC.(1)求AE的长;(2)若F是BC中点,求线段EF的长.4.如图,▱ABCD的对角线AC、BD交于点O,M,N分别是AB、AD的中点.(1)求证:四边形AMON是平行四边形;(2)若AC=6,BD=4,∠AOB=90°,求四边形AMON的周长.5.如图,四边形ABCD是平行四边形,E、F分别是AB、CD的中点.(1)证明:四边形DEBF是平行四边形;(2)要使四边形DEBF是菱形,BD和AD需满足什么位置关系?请说明理由.6.如图,在四边形ABCD中,∠A=∠B=∠BCD=90°,AB=DC=4,AD=BC=8.延长BC到E,使CE=3,连接DE,由直角三角形的性质可知DE=5.动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A 运动,设点P运动的时间为t秒.(t>0)(1)当t=3时,BP=;(2)当t=时,点P运动到∠B的角平分线上;(3)请用含t的代数式表示△ABP的面积S;(4)当0<t<6时,直接写出点P到四边形ABED相邻两边距离相等时t的值.7.如图所示,在▱ABCD中,AE⊥BD于点E,CF⊥BD于点F,延长AE至点G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)求证:四边形EGCF是矩形.8.如图所示,平行四边形ABCD,对角线BD平分∠ABC;(1)求证:四边形ABCD为菱形;(2)已知AE⊥BC于E,若CE=2BE=4,求BD.9.如图,四边形ABCD是平行四边形,E、F分别为边AB、CD的中点,连接DE、DB、BF.(1)求证:∠DEB=∠BFD;(2)若∠ADB=90°,证明:四边形BFDE是菱形.10.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使得CF=BE,连接DF,(1)求证:四边形AEFD是矩形;(2)连接OE,若AB=13,OE=,求AE的长.11.如图,P为正方形ABCD的对角线上任一点,PE⊥AB于E,PF⊥BC于F.(1)判断DP与EF的关系,并证明;(2)若正方形ABCD的边长为6,∠ADP:∠PDC=1:3.求PE的长.12.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,AE∥CD,CE∥AB,连接DE交AC于点O.(1)证明:四边形ADCE为菱形;(2)若∠B=60°,BC=6,求菱形ADCE的高.13.如图1,点E为正方形ABCD的边CD上一点,DF⊥AE于点F,交AC于点M,交BC于点G,在CD上取一点G′,使CG′=CG,连接MG′.(1)求证:∠AED=∠CG′M;(2)如图2,连接BD交AE于点N,交AC于点O,连接MN,MG′交AE于点H.①试判断MN与CD的位置关系,并说明理由;②若AB=12,DG′=G′E,求AH的长.14.如图,在平行四边形ABCD中,E,F分别是AB,CD的中点,AF与DE相交于点G,BF与CE相交于点H.(1)求证:四边形EHFG是平行四边形;(2)①若四边形EHFG是菱形,则平行四边形ABCD必须满足条件;②若四边形EHFG是矩形,则平行四边形ABCD必须满足条件.。

人教版数学八年级下册第十八章《平行四边形》常考题提高练习

人教版数学八年级下册第十八章《平行四边形》常考题提高练习

八年级下册第十八章《平行四边形》常考题提高练习1.(1)如图1的正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD 到点G,使DG=BE,连接EF,AG.求证:EF=FG;(2)如图2,等腰Rt△ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,求MN的长.2.已知:如图,在四边形ABCD中,AB⊥AC,DC⊥AC,∠B=∠D,点E,F分别是BC,AD的中点.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形AECF是正方形?请证明.3.如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,∠CDE 的平分线交AM延长线于点F.(1)如图1,若点E为线段AM的中点,BM:CM=1:2,BE=,求AB的长;(2)如图2,若DA=DE,求证:BF+DF=AF.4.如图1,平面内有一点P到△ABC的三个顶点的距离分别为P A,PB,PC.若满足P A2=PB2+PC2,则称点P为△ABC关于点A的勾股点.如图2,E是矩形ABCD内一点,且点C是△ABE关于点A的勾股点,连接DE.(1)求证:CE=CD.(2)若AB=5,BC=6,DA=DE,求AE的长.5.已知,如图1,D是△ABC的边上一点,CN∥AB,DN交AC于点M,MA=MC.(1)求证:四边形ADCN是平行四边形.(2)如图2,若∠AMD=2∠MCD,∠ACB=90°,AC=BC.请写出图中所有与线段AN相等的线段(线段AN除外).6.已知:如图,四边形ABCD是矩形,∠ECD=∠DBA,∠CED=90°,AF⊥BD于点F.(1)求证:四边形BCEF是平行四边形;(2)若AB=4,AD=3,求EC的长.7.如图,在▱ABCD中,点E是边CD的中点,连接BE并延长,交AD延长线于点F,连接BD、CF.(1)求证:△CEB≌△DEF;(2)若AB=BF,试判断四边形BCFD的形状,并证明.8.如图,△ABC中,O是边BC的中点,点D是AD延长线上一点,BE∥CD交AD于E,连接BD、CE(1)求证:四边形BECD是平行四边形;(2)若AB=AC=2,BC=4,当点D在AD延长线上移动时,四边形BECD能否成为正方形?若能,求出AD的长;若不能,说明理由.9.如图,已知四边形ABCD中,∠ABC=∠ADC=90°,点E是AC中点,点F是BD中点.(1)求证:EF⊥BD;(2)过点D作DH⊥AC于H点,如果BD平分∠HDE,求证:BA=BC.10.如图①,正方形ABCD中,点E是对角线AC上任意一点,连接DE、BE.(1)求证:DE=BE;(2)当AE=AB=2时,求四边形ABED的面积;(3)如图②,过点E作EF⊥DE交AB于点F,当BE=BF时,若AB=+1,求AF 的长.参考答案1.(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△F AE和△GAF中,,∴△F AE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=.2.证明:(1)∵AB⊥AC,DC⊥AC,∴∠BAC=∠ACD=90°,∵∠B=∠D,AC=CA,∴△ABC≌△CDA(AAS),∴AB=CD,AD=BC,∵点E,F分别是BC,AD的中点,∴,,∴BE=DF,在△ABE与△CDF中,,∴△ABE≌△CDF(SAS);(2)当AB=AC时,四边形AECF是正方形,理由:∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴AD∥BC,∵点E,F分别是BC,AD的中点,∴,,∴EC=AF,∴四边形AECF是平行四边形.∵∠BAC=90°,点E是BC的中点,∴,∴平行四边形AECF是菱形,∵AB=AC,点E是BC的中点,∴AE⊥BC,即∠AEC=90°,∴菱形AECF是正方形.3.解:(1)设BM=x,则CM=2x,BC=3x,∵BA=BC,∴BA=3x.在Rt△ABM中,E为斜边AM中点,∴AM=2BE=2.由勾股定理可得AM2=MB2+AB2,即40=x2+9x2,解得x=2.∴AB=3x=6.(2)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.∵DF平分∠CDE,∴∠1=∠2.∵DE=DA,DP⊥AF∴∠3=∠4.∵∠1+∠2+∠3+∠4=90°,∴∠2+∠3=45°.∴∠DFP=90°﹣45°=45°.∴AH=AF.∵∠BAF+∠DAF=90°,∠HAD+∠DAF=90°,∴∠BAF=∠DAH.又AB=AD,∴△ABF≌△ADH(SAS).∴AF=AH,BF=DH.∵Rt△F AH是等腰直角三角形,∴HF=AF.∵HF=DH+DF=BF+DF,∴BF+DF=AF.4.证明:(1)∵点C是△ABE关于点A的勾股点,∴CA2=CB2+CE2,∵四边形ABCD是矩形,∴∠ABC=90°,AB=CD,∴CA2=AB2+CB2=CB2+CD2,∴CE=CD;(2)作△ECD的高线CF,EG和△AED的高线EH,∵CE=CD=AB=5,DE=6,∴EF=ED=3,∴∵,∴,∴,由勾股定理可得:,解得:AE=.5.(1)证明:∵CN∥AB,∴∠DAM=∠NCM,在△ADM和△CNM中,,∴△AMD≌△CMN(ASA),∴MD=MN,∴四边形ADCN是平行四边形.(2)解:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,∴MC=MD,∴AC=DN,∴▱ADCN是矩形,∵AC=BC,∴AD=BD,∵∠ACB=90°,∴CD=AD=BD=AB,∴▱ADCN是正方形,∴AN=AD=BD=CD=CN.6.(1)证明:∵四边形ABCD是矩形,∴∠BAD=90°,DC=AB,DC∥AB,∴∠CDF=∠DBA.∵∠ECD=∠DBA,∴∠ECD=∠CDF,∴EC∥BF,∵AF⊥BD于点F,∠CED=90°,∴∠BF A=∠CED=90°.在△ECD和△FBA中,,∴△ECD≌△FBA(AAS),∴EC=BF,又∵EC∥BF,∴四边形BCEF是平行四边形;(2)解:∵AB=4,AD=3,∴BD==5,∵AF⊥BD,∴∠AFB=90°=∠BAD,∵∠ABF=∠ABD,△DAB∽△AFB,∴,即=,∴,∴EC=BF=.7.(1)证明:∵四边形ABCD是平行四边形∴AF∥BC,∴∠AFB=∠CBF,∠FDC=∠DCB,∵点E是CD的中点,∴BE=EF,∴△CEB≌△DEF.(2)解:结论:四边形BCFD是矩形,理由:∵△CEB≌△DEF,∴CE=DE,∵BE=EF,∴四边形BCFD是平行四边形,∵四边形ABCD是平行四边形,∴AB=CD,∵AB=BF,∴BF=CD,∴▱BCFD为矩形.8.(1)证明:∵BE∥CD,∴∠EBO=∠DCO,∵O是边BC的中点,∴OB=OC,在△OBE和△OCD中,,∴△OBE≌△OCD,∴BE=CD,而BE∥CD,∴四边形BECD是平行四边形;(2)解:存在.∵AB=AC=2,OB=OC=2,∴AO⊥BC,∴四边形BECD为菱形,当OD=OB=2时,四边形BECD为正方形,在Rt△ABO中,OA==4,∴AD=AO+OD=4+2=6.9.(1)证明:∵∠ABC=∠ADC=90°,点E是AC中点,∴DE=AC,BE=AC,∴DE=BE,∵点F是BD中点,∴EF⊥BD;(2)证明:设AC,BD交于点O,∵DH⊥AC,EF⊥BD,∴∠DHO=∠EFO=90°,∵∠DOH=∠BOE,∴∠HDF=∠OEF,∵DE=BE,∴∠EDO=∠EBO,∵BD平分∠HDE,∴∠HDF=∠BDE,∴∠OEF=∠OBE,∵∠OEF+∠EOF=90°,∴∠EOF+∠EBO=90°,∴∠BEO=90°,∴BE⊥AC,∴BA=BC.10.解:(1)∵四边形ABCD是正方形,∴CD=CB,∠DCE=∠BCE,∵CE=CE,∴△DCE≌△BCE(SAS),∴DE=BE;(2)如图①,连接BD,∵四边形ABCD是正方形,∴AC⊥BD,AB=BC=2,∠BAD=90°,∴BD==,∴;(3)如图②,过E作EM⊥BF,由(1)知,△DCE≌△BCE,∴∠CDE=∠CBE,∵∠ADC=∠ABC=90°,∴∠ADE=∠ABE,∵DE⊥EF,∴∠DEF=90°,在四边形ADEF中,∠DAF=90°,∴∠ADE+∠AFE=180°,∵∠AFE+∠BFE=180°,∴∠BFE=∠EBF,∴BE=EF,∵BE=BF,∴△BEF是等边三角形,∴∠EBF=60°,设BM=x,则MF=BM=x,EM=,∵四边形ABCD是正方形,∴∠BAE=∠BAD=45°,∴AM=EM=x,∵AM+BM=AB=+1,∴x+x=,解得,x=1,∴AF=AB﹣BF=+1﹣1﹣1=.。

专题15 四边形的综合 题型全覆盖(16题)-2020-2021学年八年级数学下(人教版)(原卷版)

专题15 四边形的综合 题型全覆盖(16题)-2020-2021学年八年级数学下(人教版)(原卷版)

专题15 四边形的综合 题型全覆盖(16题)【思维导图】【考查题型】考查题型一 中点四边形1.(2020·天津河西区·八年级期中)如图,已知四边形ABCD 中,,,,E F G H 分别为,,,AB BC CD DA 上的点(不与端点重合).(1)若,,,E F G H 分别为,,,AB BC CD DA 的中点.求证:四边形EFGH 是平行四边形;(2)在(1)的条件下,根据题意填空:若四边形ABCD 的对角线AC 和BD 满足 时,四边形EFGH 是矩形;若四边形ABCD 的对角线AC 和BD 满足 时,四边形EFGH 是菱形;若四边形ABCD 的对角线AC 和BD 满足 时,四边形EFGH 是正方形.(3)判断对错:①若已知的四边形ABCD 是任意矩形,则存在无数个四边形EFGH 是菱形;( )②若已知的四边形ABCD 是任意矩形,则至少存在一个四边形EFGH 是正方形.( )2.(2020·山东济宁市·八年级期中)综合与实践问题情境:在数学活动课上,我们给出如下定义:顺次连按任意一个四边形各边中点所得的四边形叫中点四边形.如图(1),在四边形ABCD 中,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点.试说明中点四边形EFGH 是平行四边形.探究展示:勤奋小组的解题思路:反思交流:(1)①上述解题思路中的“依据1”、“依据2”分别是什么?依据1:;依据2:;②连接AC,若AC=BD时,则中点四边形EFGH的形状为;创新小组受到勤奋小组的启发,继续探究:(2)如图(2),点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并说明理由;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其它条件不变,则中点四边形EFGH的形状为.3.(2020·静宁县八年级期中)已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论.(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.4.(2020·广东深圳市八年级期中)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)考查题型二 特殊四边形的动点问题5.(2020·菏泽市期末)如图,在长方形ABCD 中,6AB cm =,AD 2cm =,动点P 、Q 分别从点A 、C 同时出发,点P 以2厘米/秒的速度向终点B 移动,点Q 以1厘米/秒的速度向D 移动,当有一点到达终点时,另一点也停止运动.设运动的时间为t ,问:(1)当1t =秒时,四边形BCQP 面积是多少?(2)当t 为何值时,点P 和点Q 距离是3cm ?(3)当t =_________时,以点P 、Q 、D 为顶点的三角形是等腰三角形.(直接写出答案)6.(2020·四川成都市七年级期中)如图1,在长方形ABCD 中,12AB cm =,BC 10cm =,点P 从A 出发,沿A B C D →→→的路线运动,到D 停止;点Q 从D 点出发,沿D C B A →→→路线运动,到A 点停止.若P 、Q 两点同时出发,速度分别为每秒1cm 、2cm ,a 秒时P 、Q 两点同时改变速度,分别变为每秒2cm 、54cm (P 、Q 两点速度改变后一直保持此速度,直到停止),如图2是APD ∆的面积2()s cm 和运动时间x (秒)的图象.(1)求出a 值;(2)设点P 已行的路程为1()y cm ,点Q 还剩的路程为2()y cm ,请分别求出改变速度后,12,y y 和运动时间x (秒)的关系式;(3)求P 、Q 两点都在BC 边上,x 为何值时P ,Q 两点相距3cm ?7.(2020·耒阳市八年级期中)如图,在长方形ABCD中,AB=4cm,BE=5cm,点E是AD边上的一点,AE、DE分别长acm、bcm,满足(a﹣3)2+|2a+b﹣9|=0.动点P从B点出发,以2cm/s的速度沿B→C→D运动,最终到达点D.设运动时间为ts.(1)a=cm,b=cm;(2)t为何值时,EP把四边形BCDE的周长平分?(3)另有一点Q从点E出发,按照E→D→C的路径运动,且速度为1cm/s,若P、Q两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t为何值时,△BPQ的面积等于6cm2.8.(2020·石阡县期末)如图,在Rt ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s 的速度向点A匀速运动.同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,DEF为直角三角形?请说明理由.考查题型三四边形中线段最值∆沿CD所在直线折叠,9.(2020·南宁市八年级期中)如图,矩形ABCD的对角线AC,BD相交于点O,将COD∆.得到CED(1)求证:四边形OCED 是菱形;(2)若2AB =,当四边形OCED 是正方形时,OC 等于多少?(3)若3BD =,30ACD ∠=︒,P 是CD 边上的动点,Q 是CE 边上的动点,那么PE PQ +的最小值是多少? 10.(2020·北京市八年级期中)如图,长方形ABCD 中,AB =8,BC =10,在边CD 上取一点E ,将△ADE 折叠后点D 恰好落在BC 边上的点F 处(1)求CE 的长;(2)在(1)的条件下,BC 边上是否存在一点P ,使得PA +PE 值最小?若存在,请求出最小值:若不存在,请说明理由.11.(2020·福建龙岩市·八年级期中)如图,在边长为2cm 的正方形ABCD 中,Q 为BC 边的中点,P 为对角线AC 上的一个动点,连接PB ,PQ ,求△PBQ 周长的最小值.12.(2020·河南周口市期末)如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =6,点E 是斜边AB 上的一个动点,连接CE ,过点B ,C 分别作BD ∥CE ,CD ∥BE ,BD 与CD 相交于点D .(1)当CE ⊥AB 时,求证:四边形BECD 是矩形;(2)填空:①当BE 的长为______时,四边形BECD 是菱形;②在①的结论下,若点P是BC上一动点,连接AP,EP,则AP+EP的最小值为______.考查题型四四边形其他综合问题13.(2020·黄石市八年级期中)如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.14.(2020·四川广安市九年级期末)给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.15.(2020·山东临沂市·八年级期中)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.16.(2020·山东德州市·八年级期末)以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.。

人教版八年级下册数学 平行四边形 章节复习高频题型 专题提升练习

人教版八年级下册数学 平行四边形 章节复习高频题型 专题提升练习

人教版八年级下册数学平行四边形章节复习高频题型专题提升练习时间:100分钟总分:120分一.选择题(36分).1. 如图,在四边形ABCD中,∠DAC=∠ACB,要使四边形ABCD成为平行四边形,则应增加的条件不能是()A.AD=BC B.OA=OC C.AB=CD D.∠ABC+∠BCD=180°2. 如图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判断四边形ABCD是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AB∥DC,AD=BC D.OA=OC,OB=OD3. 如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作□BCDE,则∠E的度数为()A.40°B.50° C.60° D.70°4. 如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(3,1)B.(-4,1) C.(1,-1) D.(-3,1)5. 如图,直线AB∥CD,P是AB上的动点,当点P的位置变化时,三角形PCD的面积( )A.变大 B.变小 C.不变 D.变大变小要看点P向左还是向右移动6. 如图所示,P是面积为S的▱ABCD内任意一点,△PAD的面积为S1,△PBC的面积为S2,则()A.S1+S2>S2 B.S1+S2<S2C.S1+S2=S2D.S1+S2的大小与P点位置有关7. 如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是()A.∠B=∠F B.∠B=∠BCF C.AC=CF D.AD=CF8. 如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND9. 如图,□ABCD的对角线AC,BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=12BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB·AC;③OB=AB;④OE=14BC,成立的个数有( )A.1个B.2个C.3个D.4个10. 如图,在□ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为()A.52B.32C.3 D.2二.填空题(32分).11. 如图,□ABCD的对角线AC、BD相交于点O,OE∥AB交AD于点E,若OA=1,△AOE的周长等于5,则▱ABCD 的周长等于.12. 如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是 .13.如图所示,在□ABCD 中,E.F 是对角线AC 上两点,AE =EF =CD ,∠ADF =90°,∠BCD =63°,则∠ADE 的大小为.14. 如图,平行四边形ABCD 的对角线 AC 、BD 交于点 O ,点 E 是 AD 的中点,△BCD 的周长为 18,则△DEO 的周长是 .15. 如图,在□ABCD 中,BE ⊥AB 交对角线AC 于点E ,若∠1=20°,则∠2的度数是_________.16. 如图,□ABCD 的顶点C 在等边△BEF 的边BF 上,点E 在AB 的延长线上,G 为DE 的中点,连接CG.若AD =3,AB =CF =2,则CG 的长为 .17.如图,在四边形ABCD 中,AD∥BC,且AD >BC ,BC =6 cm ,动点P ,Q 分别从A ,C 同时出发,点P 以1 cm/s 的速度由A 向D 运动,点Q 以2 cm/s 的速度由C 向B 运动,则经过________秒后四边形ABQP 为平行四边形.18. 在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC 是□ABCD 的对角线,点E 在AC 上,AD =AE =BE ,∠D =102°,则∠BAC 的大小是 .三.解答题(58分).19. 如图,四边形ABCD 为平行四边形,∠BAD 的角平分线AE 交CD 于点F ,交BC 的延长线于点E .(1)求证:BE=CD . (2)连接BF ,若BF ⊥AE ,∠BEA=60°,AB=4,求平行四边形ABCD 的面积.EOB D20. 已知□ABCD,O为对角线AC的中点,过O的一条直线交AD于点E,交BC于点F.(1)求证:△AOE≌△COF;(2)若AE:AD=1:2,△AOE的面积为2,求▱ABCD的面积.21. 如图,□ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.,求EF的长;(2)判断四边形AECF的形状,并说明理由.(1)若OE=3222. 如图,在□ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)连接AF,CE.当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.23. 如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为E,F.AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.24. 在课外小组活动时,琪琪拿来一道题和小东,小明交流.题目:如图1,已知△ABC,∠ACB=90°,∠ABC=45°,分别以AB,BC为边向外作△ABD与△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F,探究线段DF与EF的数量关系.琪琪同学的思路是:过点D作DG⊥AB于点G,构造全等三角形,通过推理使问题得解.小东同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小明同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.请你参考琪琪同学的思路,探究并解决这三位同学提出的问题:(1)写出题目中DF与EF的数量关系;(2)如图2,若∠ABC=30°,∠ADB=∠BEC=60°,题目中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;(3)如图3,若∠ADB=∠BEC=2∠ABC,题目中的其他条件不变,你在(1。

2022年强化训练冀教版八年级数学下册第二十二章四边形综合测试试题(含解析)

2022年强化训练冀教版八年级数学下册第二十二章四边形综合测试试题(含解析)

八年级数学下册第二十二章四边形综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是()A.5或6 B.6或7 C.5或6或7 D.6或7或82、如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定3、如图,平行四边形ABCD,∠BCD=120°,AB=2,BC=4,点E是直线BC上的点,点F是直线CD上的点,连接AF,AE,EF,点M,N分别是AF,EF的中点.连接MN,则MN的最小值为()A.1 B1C D.24、如图,任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是()A.E,F,G,H是各边中点.且AC=BD时,四边形EFGH是菱形B.E,F,G,H是各边中点.且AC⊥BD时,四边形EFGH是矩形C.E,F,G,H不是各边中点.四边形EFGH可以是平行四边形D.E,F,G,H不是各边中点.四边形EFGH不可能是菱形5、下列命题中,是真命题的是().A.三角形的外心是三角形三个内角角平分线的交点B.满足222a b c的三个数a,b,c是勾股数+=C.对角线相等的四边形各边中点连线所得四边形是矩形D.五边形的内角和为540︒6、数学课上,老师要同学们判断一个四边形门框是否为矩形.下面是某合作小组4位同学拟定的方案,其中正确的是( )A .测量对角线是否互相平分B .测量一组对角是否都为直角C .测量对角线长是否相等D .测量3个角是否为直角7、如图,四边形ABCD 是平行四边形,对角线AC 与BD 交于点O ,若2AC AB =,94BAO ∠=︒,则AOD ∠的度数为( )A .157°B .147°C .137°D .127°8、在四边形ABCD 中,对角线AC ,BD 互相平分,若添加一个条件使得四边形ABCD 是菱形,则这个条件可以是( )A .∠ABC =90°B .AC ⊥BD C .AB =CD D .AB ∥CD9、六边形对角线的条数共有( )A .9B .18C .27D .5410、如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O ,E 是边AD 的中点,过点E 作EF ⊥BD ,EG ⊥AC ,点F ,G 为垂足,若AC =10,BD =24,则FG 的长为( )A .6.5B .8C .10D .12第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系xOy 中,矩形OABC 的顶点A 在x 轴的正半轴上,且顶点B 的坐标是(1,2),如果以O 为圆心,OB 长为半径画弧交x 轴的正半轴于点P ,那么点P 的坐标是_______.2、在平行四边形ABCD 中,对角线AC 长为8cm ,30BAC ∠=︒,5cm AB =,则它的面积为______cm 2.3、如图,正方形ABCD 中,E 为CD 上一动点(不含C 、)D ,连接AE 交BD 于F ,过F 作FH AE ⊥交BC 于H ,过H 作HG BD ⊥于G ,连接AH ,EH .下列结论:①AF FH =;②45HAE ∠=︒;③FH 平分GHC ∠;④2BD FG =,正确的是__(填序号).4、如图,正方形ABCD 中,将边BC 绕着点C 旋转,当点B 落在边AD 的垂直平分线上的点E 处时,∠AEC 的度数为_______5、三角形的中位线______于三角形的第三边,并且等于第三边的______.数学表达式:如图,∵AD=BD,AE=EC,BC.∴DE∥BC,且DE=12三、解答题(5小题,每小题10分,共计50分)1、如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(1)计算AC2+BC2的值等于_____;(2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)_____.2、如图,在ABCD中,AE BC⊥于点E,延长BC至点F,使CF BE=,连接AF,DE,DF.(1)求证:四边形AEFD为矩形;(2)若3AB =,4DE =,5BF =,求DF 的长.3、如图所示,在四边形ABCD 中,∠A =80°,∠C =75°,∠ADE 为四边形ABCD 的一个外角,且∠ADE =125°,试求出∠B 的度数.4、如图,正方形ABCD 和正方形CEFG ,点G 在CD 上,AB =5,CE =2,T 为AF 的中点,求CT 的长.5、如图所示,在每个小正方形的边长均为1的网格中,线段AB 的端点A 、B 均在小正方形的顶点上.(1)在图中画出等腰△ABC ,且△ABC 为钝角三角形,点C 在小正方形顶点上;(2)在(1)的条件下确定点C 后,再画出矩形BCDE ,D ,E 都在小正方形顶点上,且矩形BCDE 的周长为16,直接写出EA 的长为 .-参考答案-一、单选题1、C【解析】【分析】实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.【详解】解:如图,原来多边形的边数可能是5,6,7.故选C【点睛】本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况.2、C【解析】【分析】因为R不动,所以AR不变.根据中位线定理,EF不变.【详解】解:连接AR.因为E、F F分别是AP、RP的中点,则EF为ΔAPR的中位线,所以12EF AR=,为定值.所以线段EF的长不改变.故选:C.【点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.3、C【解析】【分析】先证明NM为△AEF的中位线,根据中位线性质得出MN=12AE,可得AE最小时,MN最小,根据点E在直线BC上,根据点到直线的距离最短得出AE⊥BC时AE最短,根据在平行四边形ABCD中,∠BCD=120°,求出∠ABC=180°-∠BCD=180°-120°=60°,利用三角形内角和∠BAE=180°-∠ABE-∠AEB=180°-60°-90°=30°,利用30°直角三角形性质得出BE=112122AB=⨯=,再利用勾股定理求出AE即可.【详解】解:∵M为FA中点,N为FE中点,∴NM为△AEF的中位线,∴MN=12 AE∴AE最小时,MN最小,∵点E在直线BC上,根据点A到直线BC的距离最短,∴AE⊥BC时AE最短,∵在平行四边形ABCD 中,∠BCD =120°,∴∠ABC +∠BCD =180°,∴∠ABC =180°-∠BCD =180°-120°=60°,∴∠BAE =180°-∠ABE -∠AEB =180°-60°-90°=30°,在Rt △ABE 中,∠BAE =30°,AB =2,∴BE =112122AB =⨯=,根据勾股定理AE 最小值∴MN =12AE = 故选择C .【点睛】本题考查三角形中位线性质,平行四边形性质,点到直线距离,三角形内角和,30°直角三角形性质,勾股定理,掌握三角形中位线性质,平行四边形性质,点到直线距离,三角形内角和,30°直角三角形性质,勾股定理是解题关键.4、D【解析】【分析】当E F G H ,,,为各边中点,EH BD FG EF AC GH ∥∥,∥∥,11====22EH BD FG EF AC GH ,,四边形EFGH 是平行四边形;A 中AC =BD ,则=EF FG ,平行四边形EFGH 为菱形,进而可判断正误;B 中AC ⊥BD ,则EF FG ⊥,平行四边形EFGH 为矩形,进而可判断正误;E ,F ,G ,H 不是各边中点,C 中若四点位置满足==EH FG EF GH EH FG EF GH ∥,∥,,,则可知四边形EFGH 可以是平行四边形,进而可判断正误;D 中若四点位置满足===EH FG EF GH EH FG EF GH ∥,∥,,则可知四边形EFGH 可以是菱形,进而可判断正误.【详解】解:如图,连接AC BD 、当E F G H ,,,为各边中点时,可知EH EF FG GH 、、、分别为ABD ABC BCD ACD 、、、的中位线∴11====22EH BD FG EF AC GH EH BD FG EF AC GH ∥∥,∥∥,, ∴四边形EFGH 是平行四边形A 中AC =BD ,则=EF FG ,平行四边形EFGH 为菱形;正确,不符合题意;B 中AC ⊥BD ,则EF FG ⊥,平行四边形EFGH 为矩形;正确,不符合题意;C 中E ,F ,G ,H 不是各边中点,若四点位置满足==EH FG EF GH EH FG EF GH ∥,∥,,,则可知四边形EFGH 可以是平行四边形;正确,不符合题意;D 中若四点位置满足===EH FG EF GH EH FG EF GH ∥,∥,,则可知四边形EFGH 可以是菱形;错误,符合题意;故选D .【点睛】本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定.5、D【分析】正确的命题是真命题,根据定义解答.【详解】解:A.三角形的外心是三角形三条边垂直平分线的交点,故该项不符合题意;B.满足222a b c的三个正整数a,b,c是勾股数,故该项不符合题意;+=C. 对角线相等的四边形各边中点连线所得四边形是菱形,故该项不符合题意;D.五边形的内角和为540︒,故该项符合题意;故选:D.【点睛】此题考查了真命题的定义,正确掌握三角形外心的定义,勾股数的定义,中点四边形的判定定理及多边形内角和的计算公式是解题的关键.6、D【解析】【分析】矩形的判定方法有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形;由矩形的判定方法即可求解.【详解】解:A、对角线是否互相平分,能判定是否是平行四边形,故不符合题意;B、测量一组对角是否都为直角,不能判定形状,故不符合题意;C、测量对角线长是否相等,不能判定形状,故不符合题意;D、测量3个角是否为直角,若四边形中三个角都为直角,能判定矩形,故符合题意;故选:D.本题考查的是矩形的判定、平行四边形的判定等知识;熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.7、C【解析】【分析】根据平行四边形的性质推出AO=AB ,求出∠AOB 的度数,即可得到AOD ∠的度数.【详解】解:∵四边形ABCD 是平行四边形,∴AC =2AO ,∵2AC AB =,∴AO=AB ,∵94BAO ∠=︒, ∴1(180)432AOB BAO ∠=︒-∠=︒, ∴AOD ∠=180137AOB ︒-∠=︒,故选:C .【点睛】此题考查了平行四边形的性质,三角形的内角和,利用邻补角求角度,正确掌握平行四边形的性质是解题的关键.8、B【解析】略9、A【分析】n边形对角线的总条数为:(3)2n n-(n≥3,且n为整数),由此可得出答案.【详解】解:六边形的对角线的条数= 6(63)2⨯-=9.故选:A.【点睛】本题考查了多边形的对角线的知识,属于基础题,解答本题的关键是掌握:n边形对角线的总条数为:(3)2n n-(n≥3,且n为整数).10、A【解析】【分析】由菱形的性质得出OA=OC=5,OB=OD=12,AC⊥BD,根据勾股定理求出AD=13,由直角三角形斜边上的中线等于斜边的一半求出OE=6.5,证出四边形EFOG是矩形,得到EO=GF即可得出答案.【详解】解:连接OE,∵四边形ABCD是菱形,∴OA=OC=5,OB=OD=12,AC⊥BD,在Rt△AOD中,AD,又∵E是边AD的中点,∴OE=12AD=12×13=6.5,∵EF⊥BD,EG⊥AC,AC⊥BD,∴∠EFO=90°,∠EGO=90°,∠GOF=90°,∴四边形EFOG为矩形,∴FG=OE=6.5.故选:A.【点睛】本题考查了菱形的性质、矩形的判定与性质、直角三角形斜边上中线定理等知识;熟练掌握菱形的性质和矩形的性质是解题的关键.二、填空题1、0)【解析】【分析】利用勾股定理求出OB的长度,同圆的半径相等即可求解.【详解】由题意可得:OP=OB,OC=AB=2,BC=OA=1,∵OB∴OP∴点P0).故答案为:0).【点睛】本题考查勾股定理的应用,在直角三角形中,两条直角边的平方和,等于斜边的平方.2、20【解析】【分析】根据S▱ABCD=2S△ABC,所以求S△ABC可得解.作BE⊥AC于E,在直角三角形ABE中求BE从而计算S△ABC.【详解】解:如图,过B作BE⊥AC于E.在直角三角形ABE中,∠BAC=30°,AB=5,∴BE=12AB=52,S△ABC=12AC•BE=10,∴S▱ABCD=2S△ABC=20(cm2).故答案为:20.【点睛】本题综合考查了平行四边形的性质,含30度的直角三角形的性质等.先求出对角线分成的两个三角形中其中一个的面积,然后再求平行四边形的面积,这样问题就比较简单了.3、①②④【解析】【分析】连接FC ,延长HF 交AD 于点L .可证ADF CDF ∆∆≌,进而可得FHC FCH ∠=∠,由此可得出FH AF =;再由FH AF =,即可得出45HAE ∠=︒;连接AC 交BD 于点O ,则2BD OA =,证明AOF FGH ≌,即可得出OA GF =,进而可得2BD FG =;过点F 作MN BC ⊥于点N ,交AD 于点M ,由于F 是动点,FN 的长度不确定,而FG OA =是定值,即可得出FH 不一定平分GHC ∠.【详解】解:如图,连接FC ,延长HF 交AD 于点L .∵BD 为正方形ABCD 的对角线∴45ADB CDF ∠=∠=︒,AD CD =在ADF 和CDF 中45AD CD ADB CDF DF DF =⎧⎪∠=∠=︒⎨⎪=⎩∴()ADF CDF SAS ∆∆≌∴AF FC =,DCF DAF ∠=∠∵90AFL ∠=︒,90ALH LAF ∠+∠=︒ ,ALH FHC ∠=∠∴90LHC DAF ∠+∠=︒∵DCF DAF ∠=∠,90FCD FCH ∠+∠=︒∴FHC FCH ∠=∠∴FH FC =∴AF FH =故①正确;∵90AFH ∠=︒,AF FH =∴AFH 是等腰直角三角形∴45HAE ∠=︒故②正确;连接AC 交BD 于点O ,则2BD OA =∵90AFO GFH GHF GFH ∠+∠=∠+∠=︒∴AFO GHF ∠=∠在AOF 和FGH 中90AFO GHF AOF FGH AF FH ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AOF FGH AAS ∆∆≌∴OA GF =∴22BD OA GF ==故④正确.过点F 作MN BC ⊥于点N ,交AD 于点M ,F 是动点∵FN 的长度不确定,而FG OA =是定值∴FN 不一定等于FGFH ∴不一定平分GHC ∠故③错误;故答案为:①②④.【点睛】本题考查了正方形性质,全等三角形判定和性质,角平分线性质和判定,等腰三角形的性质与判定等,熟练掌握全等三角形判定和性质,合理添加辅助线构造全等三角形是解题关键.4、45︒或135︒【解析】【分析】分两种情况分析:当点E 在BC 下方时记点E 为点1E ,点E 在BC 上方时记点E 为点2E ,连接1BE ,2BE ,根据垂直平分线的性质得11E B E C =,22E B E C =,由正方形的性质得AB BC =,90ABC ∠=︒,由旋转得1BC E C =,2BC E C =,故1E BC ,2E BC 是等边三角形,1ABE ,2ABE 是等腰三角形,由等边三角形和等腰三角形的求角即可.【详解】如图,当点E 在BC 下方时记点E 为点1E ,连接1BE ,∵点1E 落在边AD 的垂直平分线,∴11E B E C =,∵四边形ABCD 是正方形,∴AB BC =,∵BC 绕点C 旋转得1CE ,∴1BC E C =,∴1E BC 是等边三角形,1ABE 是等腰三角形,∴1160CBE BE C ∠=∠=︒,19060150ABE ∠=︒+︒=︒,∴11(180150)215AE B BAE ∠=∠=︒-︒÷=︒,∴111601545AE C BE C AE B =∠-∠=︒-︒=︒,当点E 在BC 上方时记点E 为点2E ,连接2BE ,∵点2E 落在边AD 的垂直平分线,∴22E B E C =,∵四边形ABCD 是正方形,∴AB BC =,,∵BC 绕点C 旋转得2CE ,∴2BC E C =,∴2E BC 是等边三角形,2ABE 是等腰三角形,∴2260CBE BE C ∠=∠=︒,2906030ABE ∠=︒-︒=︒,∴22(18030)275AE B BAE ∠=∠=︒-︒÷=︒,∴2226075135AE C BE C AE B =∠+∠=︒+︒=︒.故答案为:45︒或135︒.【点睛】本题考查正方形的性质、垂直平分线的性质、旋转的性质,以及等边三角形与等腰三角形的判定与性质,掌握相关知识点的应用是解题的关键.5、 平行 一半【解析】略三、解答题1、 11 见解析【解析】【分析】(1)直接利用勾股定理求出即可;(2)首先分别以AC 、BC 、AB 为一边作正方形ACED ,正方形BCNM ,正方形ABHF ;进而得出答案.【详解】解:(1)AC 2+BC 2)2+32=11;故答案为:11;(2)分别以AC 、BC 、AB 为一边作正方形ACED ,正方形BCNM ,正方形ABHF ;延长DE 交MN 于点Q ,连接QC ,平移QC 至AG ,BP 位置,直线GP 分别交AF ,BH 于点T ,S ,则四边形ABST 即为所求,如图,【点睛】本题考查了勾股定理,无刻度直尺作图,平行四边形与矩形的性质,掌握勾股定理以及特殊四边形的性质是解题的关键.2、 (1)见解析(2)12 5【解析】【分析】(1)根据线段的和差关系可得BC=EF,根据平行四边形的性质可得AD∥BC,AD=BC,即可得出AD =EF,可证明四边形AEFD为平行四边形,根据AE⊥BC即可得结论;(2)根据矩形的性质可得AF=DE,可得△BAF为直角三角形,利用“面积法”可求出AE的长,即可得答案.(1)∵BE=CF,∴BE+CE=CF+CE,即BC=EF,∵ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD=EF,∵AD∥EF,∴四边形AEFD 为平行四边形,∵AE ⊥BC ,∴∠AEF =90°,∴四边形AEFD 为矩形.(2)∵四边形AEFD 为矩形,∴AF =DE =4,DF =AE ,∵3AB =,4DE =,5BF =,∴AB 2+AF 2=BF 2,∴△BAF 为直角三角形,∠BAF =90°, ∴1122ABFS AB AF BF AE =⨯=⨯, ∴AE =125, ∴125DF AE ==. 【点睛】本题考查平行四边形的性质、矩形的判定与性质及勾股定理的逆定理,熟练掌握相关性质及判定定理是解题关键.3、150°【解析】【分析】先根据邻补角的定义求出∠ADC 的度数,再根据四边形的内角和求出∠B 的度数.【详解】解:∵∠ADE为四边形ABCD的一个外角,且∠ADE=125°,∴∠ADC=180°-∠ADE=55°,∵∠A+∠B+∠C+∠ADE=360°,∴∠B=360°-∠A-∠C-∠ADE=360°-80°-75°-55°=150°.【点睛】此题考查了多边形外角定义,多边形的内角和,熟记多边形的内角和进行计算是解题的关键.4【解析】【分析】连接AC,CF,如图,根据正方形的性质得到AC,AB CF CE,∠ACD=45°,∠GCF=45°,则利用勾股定理得到AF CT的长.【详解】解:连接AC、CF,如图,∵四边形ABCD和四边形CEFG都是正方形,∴AC CF,∠ACD=45°,∠GCF=45°,∴∠ACF=45°+45°=90°,在Rt△ACF中AF=,∵T 为AF 的中点,∴12CT AF =,∴CT . 【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质,也考查了直角三角形斜边上的中线性质.5、 (1)见解析(2)【解析】【分析】(1)作出腰为5且∠ABC 是钝角的等腰三角形ABC 即可;(2)作出边长分别为5,3的矩形ABDE 即可.(1)解:如图,AB =BC ,∠ABC>90°,所以△ABC 即为所求;(2)解:如图,矩形BCDE 即为所求.AE【点睛】本题考查作图-应用与设计作图,等腰三角形的判定,矩形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.。

2020-2021学年八年级数学人教版下册必刷题 第十八章 四边形 全章综合训练

2020-2021学年八年级数学人教版下册必刷题 第十八章 四边形 全章综合训练

初中必刷题八年级数学下册第十八章全章综合训练第一板块:刷中考考点1.平行四边形的判定与性质1.[2020广西河池中考]如图,在ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4. 则CE的长是()2.[2020广西玉林中考]已知:点D,E分别是△ABC的边AB,AC的中点,如图所示.求证:DE∥BC,且DE=12 BC.证明:延长DE到点F,使EF=DE,连接FC,DC,AF,又有AE=EC,则四边形ADCF是平行四边形.接着以下是排序错误的证明过程:①∴DF // BC;②∴CF //AD,即CF//BD;③∴四边形DBCF是平行四边形;④∴DE//BC,且DE=12 BC.则正确的证明顺序应是()A.②→③→①→④ B.②→①→③→④C.①→③→④→②D.①→③→②→④考点2.矩形的判定与性质3.[2020湖北十堰中考]已知平行四边形ABCD,下列条件:①AB=BC;②AC=BD;③AC⊥BD;④AC平分∠BAD,其中能说明平行四边形ABCD是矩形的是()A.①B.②C.③D.④4.[2020广东广州中考,中]如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.485B.325C.245D.1255.[2020浙江绍兴中考],1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的____(填序号).,②1-1.考点3.菱形的判定与性质6.[2020内蒙古通辽中考]如图,AD是△ABC的中线,四边形ADCE是平行四边形,增加下列条件,能判断ADCE是菱形的是()A.∠BAC=90°B.∠DAE=90°C.AB=ACD.AB=AE7.[2020宁夏中考]如图,菱形ABCD的边长为13,对角线AC=24,点E,F分别是边CD,BC 的中点,连接EF并延长与AB的延长线相交于点G,则EG=()A.13B.10C.12D.5考点4.正方形的判定与性质8.[2020四川眉山中考]下列说法正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相垂直且相等的四边形是正方形9.[2020内蒙古包头中考]如图,在正方形ABCD中,E是对角线BD上一点,AE的延长线交CD 于点F,连接CE.若∠BAE=56°,则∠CEF=____°.10.[2020内蒙古呼和浩特中考改编]如图,正方形ABCD中,G是BC边上任意一点(不与B,C 重合),DE⊥AG于点E,BF∥DE,且交AG于点F.(1)求证:AE=BF;(2)四边形BFDE可能是平行四边形吗?如果可能,请指出此时点G的位置;如果不可能,请说明理由.第二板块:刷章测一、选择题1.[2020重庆沙坪坝区校级期末]下列说法正确的是()A.对角线相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形2.[2020内蒙古赤峰中考]如图,在△ABC中,点D,E分别是边AB,AC的中点,点F是线段DE上的一点,连接AF,BF,∠AFB=90°,且AB=8,BC=14,则EF的长()A.2B.3C.4D.53.[2020辽宁锦州中考]如图,在菱形ABCD中,P是对角线AC上一动点,过点P 作PE⊥BC于点E,PF⊥AB于点F.若菱形ABCD的周长为20,面积为24,则PE+PF 的值为()A.4B.245C.6D.4854.[2019浙江温州二模]在探索“尺规三等分角”这个数学题的过程中,曾利用了下图,该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=21°,则∠ECD的度数为()A.7°B.21°C.23°D.24°5.[2019甘肃庆阳一模]如图,在矩形ABCD中,AB=3,BC=4,EB∥DF且BE与DF之间的距离为3,则AE的长是()A.B.38 C.78 D.586.[2020湖北武汉洪山区期末]将2020个形状、大小均相同的菱形按照如图所示的方式排成一行,使得右侧菱形的顶点与左侧菱形的对角线交点重合,若这些菱形的边长均为a,则阴影部分的周长总和等于()A.2020aB.4038aC.4040aD.4042a7.如图,在正方形ABCD中,AB=2,延长BC到点E,使CE=1,连接DE,动点P从点A出发以每秒1个单位长度的速度沿AB→BC→CD→DA向终点A运动.设点P的运动时间为t秒,当△ABP和△DCE全等时,t的值为()A.3B.5C.7D.3或78.如图,点A(1,1),B(3,1),C(3,-1),D(1,-1)构成正方形ABCD,以AB为边作等边三角形ABE,则∠ADE的度数和点E的坐标分别为()A.15°和(2,)B.75°和(21)C.15°和(2,75°和(21)D.15°和(2,1+75°和(2,1二、填空题9.[2020江苏连云港中考]如图,将5个大小相同的正方形置于平面直角坐标系中,若顶点M,N的坐标分别为(3,9),(12,9),则顶点A的坐标为____.10.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD的内部.将AF延长交边BC于点G.若14CGBG,则ADAB=____.三、解答题11.[2020辽宁沈阳中考]如图,在矩形ABCD中,对角线AC的垂直平分线分别与边AB和边CD的延长线交于点M,N,与边AD交于点E,垂足为点O.(1)求证:△AOM≌△CON;(2)若AB=3,AD=6,请直接写出AE的长为____.12.[2019江苏连云港校级期中]如图,在矩形ABCD中,∠ABD,∠CDB的平分线BE,DF分别交边AD,BC于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.13.[2020山东济南历下区期末]如图,正方形ABCD中,AB=4,点E是对角线AC 上的一点,连接DE.过点E作EF⊥ED,交AB于点F,以DE,EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG+AE的值.14.如图,在△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交△BCA的外角∠ACD的平分线于点F.(1)探究OE与OF的数量关系并加以证明;(2)连接BE,BF,当点O在边AC上运动时,四边形BCFE可能为菱形吗?若可能,请证明;若不可能,请说明理由;(3)连接AE,AF,当点O在AC上运动到什么位置时,四边形AECF是矩形?请说明理由;(4)在(3)的条件下,△ABC满足什么条件时,四边形AECF是正方形?请说明理由.参考答案及解析【刷中考】1.答案:C解析:∵CE平分∠BCD,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∴∠BEC=∠DCE,∴∠BEC=∠BCE,∴BC=BE=5,∴AD=5.∵EA=3,ED=4,在△AED中,222EA ED AD+=,∴△AED是直角三角形,∠AED=90°,∴∠EDC=90°.∵CD=AB=3+5=8,∠EDC=90°,∴在Rt△EDC中,故选C.2.答案:A解析:完整的证明过程如下:延长DE到点F,使EF=DE,连接FC,DC,AF.又有AE=EC,则四边形ADCF是平行四边形,∴CF//AD,即CF//BD,∴四边形DBCF是平行四边形,∴DF//BC,∴DE∥BC,且DE=12BC.故正确的证明顺序是②→③→①→④.故选A.3.答案:B解析:①AB=BC,邻边相等的平行四边形是菱形,故①不符合题意;②AC=BD,对角线相等的平行四边形是矩形,故②符合题意;③AC⊥BD,对角线互相垂直的平行四边形是菱形,故③不符合题意;④AC平分∠BAD,对角线平分一组对角的平行四边形是菱形,故④不符合题意.故选B. 4.答案:C解析:∵AB=6,BC=8,∴矩形ABCD 的面积为48,=10, ∴AO=DO=12AC=5.∵对角线AC ,BD 交于点O ,∴△AOD 的面积为12. ∵EO ⊥AO ,EF ⊥DO ,∴AOD AOE DOE S S S ∆∆∆=+,即12=12AO EO ⨯+12DO EF ⨯,∴12=125EO ⨯⨯+125EF ⨯⨯,∴5(EO+EF )=24, ∴EO+EF=245.故选C. 5.答案:①②③④ 解析:剪法如图所示:,②1-1,④2故答案为①②③④. 6.答案:A解析:添加∠BAC=90°时, ∵AD 是△ABC 的中线,∴AD=12BC=CD , ∴四边形ADCE 是菱形,选项A 正确;添加∠DAE=90°时,∵四边形ADCE 是平行四边形, ∴四边形ADCE 是矩形,选项B 错误;添加AB=AC 时,可得到AD ⊥BC ,∴∠ADC=90°, ∴四边形ADCE 是矩形,选项C 错误;添加AB=AE 时,∵AE=AB ,AB>AD ,∴AE>AD , ∴四边形ADCE 不是菱形,选项D 错误.故选A. 7.答案:B解析:连接BD ,交AC 于点O ,如图.∵菱形ABCD 的边长为13,点E ,F 分别是边CD ,BC 的中点, ∴AB//CD ,AB=BC=CD=DA=13,EF//BD.∵AC ,BD 是菱形的对角线,AC=24,∴AC⊥BD,AO=CO=12,OB=OD.又∵AB//CD,EF//BD,∴DE∥BG,BD//EG,∴四边形BDEG是平行四边形,∴BD=EG.在△COD中,∵OC⊥OD,CD=13,CO=12,∴,∴BD=2OD=10,∴EG=BD=10.故选B.8.答案:B解析:A选项,一组对边平行,另一组对边相等的四边形可以是等腰梯形,可以是平行四边形,故选项A不合题意;B选项,对角线互相垂直平分的四边形是菱形,故选项B符合题意;C选项,对角线相等的平行四边形是矩形,故选项C不合题意;D选项,对角线互相垂直平分且相等的四边形是正方形,故选项D不合题意.故选B.9.答案:22解析:∵正方形ABCD中,∠BAD=∠ADF=90°,∠BAE=56°,∴∠DAF=34°,∠DFE=56°.∵AD=CD,∠ADE=∠CDE,DE=DE,∴△ADE≌△CDE(SAS),∴∠DCE=∠DAF=34°.∵∠DFE是△CEF的外角,∴∠CEF=∠DFE-∠DCE=56°-34°=22°.故答案为22.10.答案:见解析解析:(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠BAF+∠DAE=90°.∵DE⊥AG,∴∠DAE+∠ADE=90°,∴∠ADE=∠BAF.又∵BF∥DE,∴∠BFA=90°=∠AED,∴△ABF≌△DAE(AAS),∴AE=BF.(2)不可能.理由如下:如图,连接AC,DF,BE.已知DE∥BF,则当DE=BF时,四边形BFDE为平行四边形.由(1)可知△ABF≌△DAE,∴DE=AF,∴BF=AF,即此时∠BAF=45°.而点G不与B和C重合,∴∠BAF≠45°,矛盾,∴四边形BFDE不可能是平行四边形.【刷章测】1.答案:D解析:对角线互相平分的四边形是平行四边形,A选项说法错误;对角线互相平分且垂直的四边形是菱形,B选项说法错误;对角线互相平分且相等的四边形是矩形,C选项说法错误;对角线互相垂直平分且相等的四边形是正方形,D选项说法正确.故选D.2.答案:B解析:∵点D,E分别是边AB,AC的中点,∴DE是△ABC的中位线.∵BC=14,∴DE=12BC=7. ∵∠AFB=90°,AB=8,∴DF=12AB=4,∴EF=DE -DF=7-4=3.故选B. 3.答案:B解析:连接BP ,如图.∵四边形ABCD 为菱形,菱形ABCD 的周长为20,面积为24, ∴BA=BC=5,12ABCABCDSS =菱形=12. ∵ABC PAB PBC S S S ∆∆∆=+,∴12×5×PF+12×5×PE=12, ∴PE+PF=245.故选B.4.答案:C解析:∵四边形ABCD 是矩形,∴∠D=90°,AB//CD ,AD//BC ,∴∠FEA=∠ECD ,∠DAC=∠ACB=21°.∵∠ACF=∠AFC ,∠FAE=∠FEA ,∴∠ACF=2∠FEA. 设∠ECD=x ,则∠ACF=2x ,∴∠ACD=3x .在Rt △ACD 中,3x +21°=90°,解得x =23°.故选C. 5.答案:C解析:如图所示,过点D 作DG ⊥BE ,交BE 的延长线于点G,则GD=3.∵∠AEB=∠GED ,∠A=∠G ,AB= GD=3, ∴△AEB ≌△GED (AAS ), ∴AE=EG.设AE=EG=x ,则ED=4-x .在Rt △DEG 中,222ED GE GD =+,即22243x x -=+(),解得x =78.故选C. 6.答案:B解析:根据题意知,将2020个形状、大小均相同的菱形按照如图所示的方式排成一行,可得到2019个阴影菱形,且这些阴影菱形的大小完全一致. 如图,由题意知OA=OC ,AB=BC=CD=AD=a ,∠BAD=∠EOF ,由菱形的对角线平分一组对角可知∠EOC=∠DAO , ∴OE ∥AD ,∴OE 是△ACD 的中位线,∴OE=12AD=12a ,∴一个阴影菱形的周长为12a ×4=2a , ∴2019个阴影菱形的周长和为2a ×2019=4038a . 故选B. 7.答案:D解析:当点P 在BC 边上时,在△ABP 与△DCE 中,90AB DCABP DCE BP CE =∠=∠=︒=⎧⎪⎨⎪⎩, ∴△ABP ≌△△DCE (SAS ). 由题意得BP=t -2=1,∴t=3.当点P 在AD 上时,在△ABP 与△CDE 中,90AB CD BAP DCE AP CE =∠=∠=︒=⎧⎪⎨⎪⎩, ∴△ABP ≌△CDE (SAS ), 由题意得AP=8-t=1,解得t=7. 当点P 在AB 或CD 上时,不满足条件.∴当t 的值为3或7时,△ABP 和△DCE 全等.故选D. 8.答案:D解析:分为两种情况:①当△ABE 在正方形ABCD 外时,如图,过E 作EM ⊥AB 于M ,连接DE.∵△ABE 是等边三角形,∴AE=AB=3-1=2,∴AM=1.由勾股定理得222AE AM EM =+,即22221EM =+,解得∵ A (1,1),∴点E 的坐标是(2,). ∵∠DAB=90°,∠EAB=60°,AD=AE , ∴∠ADE=∠AED=12(180°-90°-60°)=15°. ②同理,当△ABE 在正方形ABCD 内时, 求得点E 的坐标是(2,+1). ∵∠DAE=90°-60°=30°,AD=AE , ∴∠ADE=∠AED=12(180°-30°)=75°, ∴∠ADE 的度数和点E 的坐标分别为15°和(2,)或75°和(2,+1).故选D.9.答案:(15,3)解析:设点B 的位置如图所示.∵顶点M ,N 的坐标分别为(3,9),(12,9), ∴MN//x 轴,MN=9,BN ∥y 轴, ∴正方形的边长为3,∴BN=6, ∴点B (12,3).∵AB ∥MN ,∴AB//x 轴,∴点A (15,3).故答案为(15,3). 10.答案:见解析 解析:如图,连接EG.∵点E 是边CD 的中点,∴DE=CE. ∵将△ADE 沿AE 折叠后得到△AFE ,∴DE=EF ,AF=AD ,∠D=∠EFA=90°,∴CE=DE=EF. 在Rt △ECG 和Rt △EFG 中,EG EGCE EF==⎧⎨⎩, ∴Rt △ECG ≌Rt △EFG (HL ), ∴CG=FG. 设CG=a (a >0).∵14CG BG =,∴GB=4a , ∴BC=CG+BG=a +4a =5a . 在矩形ABCD 中,AD=BC=5a , ∴AF=5a ,AG=AF+FG=5a +a =6a .在Rt △ABG 中,,∴2A AB D ==. 11.答案:见解析解析:(1)证明:∵MN 是AC 的垂直平分线, ∴AO=CO ,∠AOM=∠CON=90°. ∵四边形ABCD 是矩形, ∴AB//CD , ∴∠M=∠N.在△AOM 和△CON 中,M N AOM CON AO CO ∠=∠∠=∠=⎧⎪⎨⎪⎩, ∴△AOM ≌△CON (AAS ). (2)如图所示,连接CE.∵MN 是AC 的垂直平分线, ∴CE=AE.设AE=CE=x ,则DE=6-x . ∵四边形ABCD 是矩形, ∴∠CDE=90°,CD=AB=3, ∴Rt △CDE 中,222CD DE CE +=,即22236x x +-=(),解得x =154, 即AE 的长为154.故答案为154. 12.答案:见解析解析:(1)证明:∵四边形ABCD 是矩形, ∴AB ∥DC ,AD//BC ,∴∠ABD=∠CDB. ∵BE 平分∠ABD ,DF 平分∠BDC , ∴∠EBD=12∠ABD ,∠FDB=12∠BDC , ∴∠EBD=∠FDB ,∴BE//DF.又∵AD ∥BC ,∴四边形BEDF 是平行四边形.(2)当∠ABE=30°时,四边形BEDF 是菱形.理由如下: ∵BE 平分∠ABD , ∴∠ABD=2∠ABE=2∠EBD.∵四边形ABCD 是矩形,∴∠A=90°,∴∠EDB=90°-∠ABD.由(1)知四边形BEDF 是平行四边形,∴当BE=ED 时,四边形BEDF 是菱形, ∴∠EDB=∠EBD ,即12∠ABD=90°-∠ABD ,解得∠ABD=60°,∴∠ABE=30°, ∴当∠ABE=30°时,四边形BEDF 是菱形. 13.答案:见解析解析:(1)证明:如图,作EM ⊥AD 于M ,EN ⊥AB 于N.∵四边形ABCD 是正方形, ∴∠EAD=∠EAB.∵EM ⊥AD 于M ,EN ⊥AB 于N , ∴EM=EN.∵∠EMA=∠ENA=∠DAB=90°, ∴四边形ANEM 是矩形. ∵EF ⊥DE ,∴∠MEN=∠DEF=90°,∴∠DEM=∠FEN.∵∠EMD=∠ENF=90°,∴△EMD≌△ENF,∴ED=EF.∵四边形DEFG是矩形,ED=EF,∴四边形DEFG是正方形.(2)∵四边形DEFG是正方形,四边形ABCD是正方形,∴DG=DE,DC=DA=AB=4,∠GDE=∠ADC=90°,∴∠ADG=∠CDE,∴△ADG≌△CDE(SAS),∴AG=CE,∴14.答案:见解析解析:(1)OE=OF.证明:∵MN//BC,∴∠OEC=∠BCE,∠OFC=∠DCF.又∵CE平分∠BCO,CF平分∠DCO,∴∠OCE=∠BCE,∠OCF=∠DCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴OE=OF.(2)四边形BCFE不可能为菱形.理由:设BF交EC于点G.∵CE平分∠ACB,CF平分∠ACD,∴∠ECF=12∠ACB+12∠ACD=12(∠ACB+∠ACD)=90°.若四边形BCFE是菱形,则BF⊥EC,在△GFC中,不可能存在两个角为90°,∴四边形BCFE不可能为菱形.(3)当点O运动到AC的中点时,四边形AECF是矩形.理由:∵当点O运动到AC的中点时,AO=CO.又∵EO=FO,∴四边形AECF是平行四边形.∵FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形.(4)当点O运动到AC的中点,且△ABC是以∠ACB为直角的直角三角形时,四边形AECF是正方形.理由:由(3)知,当点O运动到AC的中点时,四边形AECF是矩形.已知MN∥BC,当∠ACB=90°时,∠AOF=∠COE=∠COF=∠A0E=90°,∴AC⊥EF,∴四边形AECF是正方形.。

八年级数学下《四边形》培优练习卷

八年级数学下《四边形》培优练习卷

八年级数学下《四边形》培优练习卷一、选择题1.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形2.如图,在△ABC,∠ACB=90°中,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形A CEB的周长。

A.4 B.10+ 4 C. 10+2 D. 23.在矩形ABCD中,AB=2AD,E是CD上一点,且AE=AB,则∠CBE= ( )A.30° B.22.5° C.15° D.以上都不对4.如图,将矩形ABCD沿AE折叠,若∠BAD'=30°,则∠AED' 等于 ( )A.30° B.45° C.60° D.75°第6题5.如图,矩形ABCD中,AB=3,BC=5.过对角线交点O作OE⊥AC交AD于E,则AE的长是 ( ) A.1.6 B.2.5 C.3 D.3.46.平行四边形ABCD中,点A1,A2,A3,A4和C1,C2,C3,C4分别是AB和CD五等分点,点B1,B2和D1,D2分别是BC和DA三等分点,若四边形A4B2C4D2面积为1.则平行四边形ABCD面积为 ( )A.2 B.35C.53D.157.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EB的长为()A.1 B.4C.4﹣2D.4﹣4第7题二、填空题8.在□ABCD中,一角的平分线把一条边分成3 cm和4 cm两部分,则□ABCD的周长为______.9.矩形的两条对角线的夹角为60°,一条对角线与较短边的和为15,则较长边的长为_______.10.已经△ABC中,∠C=90°,C=10,a:b=3:4 ,则a= b=11.如图,在△ABC中,AB=AC,将△ABC绕点C旋转180°得到△FEC,连接AE、BF.当∠ACB为度时,四边形ABFE为矩形.第11题第12题第13题第14题12.如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F.连接CE,则CE的长是_______.13.如图,将矩形纸片ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3厘米,EF=4厘米,则边AD的长是_______厘米.14.如图,△ABC中,∠A的平分线交BC于点D,过点D作DE⊥AC,DF⊥AB,垂足分别为E,F,下面四个结论:①∠AFE=∠AEF;②AD垂直平分EF;③CEBFSSCEDBFD=∆∆;④EF∥BC.其中正确的是_______.15.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,7=∆ABCS,DE=2,AB=4,则AC长为.三、解答题16.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.17.已知△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D为BC边上一点.(1)求证:△ACE≌△ABD;(2)若AC=8,CD=1,求ED的长.18.如图,四边形ABCD中,AB=CD,M、N分别是AD、BC的中点,延长BA、NM、CD分别交于点E、F.求证:∠BEN=∠NFC. (提示:连结AC并取中点)19.如图,在Rt⊿ABC中,∠B=90°,AC=100cm,BC=80cm,点P从点A开始沿边AB向点B以1cm/s的速度运动,同时,另一点Q由点B开始沿边BC向点C以1.5cm/s的速度运动.(1)20s后,点P与点Q相距 cm.(2)在(1)的条件下,若P、Q两点同时在直线PQ上相向而行,多少秒后,两点相遇?(3)多少秒后,AP=CQ?20.△ABC中,∠ACB=90°,AC=BC,AB=2.现将一块三角板的直角顶点放在AB的中点D处,两直角边分别与直线..AC、直线..BC相交于点E、F.我们把DE⊥AC时的位置定为起始位置(如图1),将三角板绕点D顺时针方向旋转一个角度α (0°<α<90°).(1)在旋转过程中,当点E在线段AC上,点F在线段BC上时(如图2),①试判别△DEF的形状,并说明理由;②判断四边形ECFD的面积是否发生变化,并说明理由.(2)设直线..ED交直线..BC于点G,在旋转过程中,是否存在点G,使得△EFG为等腰三角形?若存在,求出CG的长,若不存在,说明理由;D DEADEDA。

八年级数学下册《第6章特殊的平行四边形》章末综合提升训练(附答案)

八年级数学下册《第6章特殊的平行四边形》章末综合提升训练(附答案)

2021年度鲁教版八年级数学下册《第6章特殊的平行四边形》章末综合提升训练(附答案)1.在四边形ABCD中,对角线AC和BD交于点O,下列条件能判定这个四边形是菱形的是.(填序号)①.AD∥BC,∠A=∠C②.AC=BD,AB∥CD,AB=CD③.AB∥CD,AC=BD,AC⊥BD④.AO=CO,BO=DO,AB=BC2.正方形的边长与它的对角线的长度的比值为.3.如图,已知在矩形ABCD中,点E在边BC的延长线上,且CE=BD,联结AE交BD于点F,如果∠E=15°,那么∠AFB的度数为.4.如图,菱形ABCD的对角线AC与BD相交于点O.已知AB=10cm,AC=12cm.那么这个菱形的面积为cm2.5.我们把两条对角线所成两个角的大小之比是1:2的矩形叫做“和谐矩形”,如果一个“和谐矩形”的对角线长为10cm,则矩形的面积为cm2.6.如图,四边形ABCD为菱形,四边形AOBE为矩形,O,C,D三点的坐标为(0,0),(2,0),(0,1),则点E的坐标为.7.已知正方形ABCD的边长等于4cm,那么边AB的中点E到对角线BD的距离等于cm.8.如图,等边三角形AEF的顶点E,F分别落在矩形ABCD的两邻边BC、CD上,若BE =1,CE=2,则△AEF边长为.9.如图,矩形ABCD的两条对角线相交于点O,∠COB=2∠AOB,AB=8,则BC的长是.10.在矩形ABCD中,∠BAD的角平分线交于BC点E,且将BC分成1:3的两部分,若AB=2,那么BC=11.已知菱形一组对角的和为240°,较短的一条对角线的长度为4厘米,那么这个菱形的面积为平方厘米.12.已知矩形的两条对角线的夹角为60°,如果一条对角线长为6,那么矩形的面积为.13.已知正方形ABCD的边长为6,点E是边BC的中点.联接AC、DE相交于点F,M、N分别是AC、DE的中点,则MN的长是.14.已知四边形ABCD中,AD∥BC,AC=BD,如果添加一个条件,即可判定该四边形是矩形,那么所添加的这个条件可以是.15.如图,在菱形ABCD中,对角线AC、BD相交于点O,DE⊥AB,垂足为E,如果AC =8,BD=6,那么DE的长为.16.如图,在直角坐标平面内,矩形ABCD的对角线AC、BD交于原点O,且点A、C都在x轴上,点D的坐标为(4,3),那么点C的坐标为.17.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=度.18.如图,点P在边长为1的正方形ABCD边AD上,连接PB.过点B作一条射线与边DC的延长线交于点Q,使得∠QBE=∠PBC,其中E是边AB延长线上的点,连接PQ.若PQ2=PB2+PD2+1,则△P AB的面积为.19.如图,矩形ABCD中,点E在BC边上,点F在CD边上,AE平分∠BAF,且EF⊥AF 于点F.若AB=5,AD=4,则EF=.20.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=4,H是AF的中点,那么CH的长是.21.已知平行四边形ABCD,对角线AC、BD相交于点O,且CA=CB,延长BC至点E,使CE=BC,连接DE.(1)当AC⊥BD时,求证:BE=2CD;(2)当∠ACB=90°时,求证:四边形ACED是正方形.22.如图,△ABC中,AB=AC,AD平分∠BAC交BC于点D,AE平分∠BAC的外角,且∠AEB=90°.求证:四边形ADBE是矩形.23.如图,已知△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,联结EC.(1)求证:四边形ADCE是平行四边形;(2)当∠BAC=90°时,求证:四边形ADCE是菱形.24.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.25.如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(I)若△PCD是等腰三角形时,求AP的长;(Ⅱ)判断CF与AC有怎样的位置关系并说明理由.26.已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.求证:(1)四边形FBGH是菱形;(2)四边形ABCH是正方形.27.如图,在△ABC中,∠C=90°,D为边BC上一点,E为边AB的中点,过点A作AF ∥BC,交DE的延长线于点F,连接BF.(1)求证:四边形ADBF是平行四边形;(2)当D为边BC的中点,且BC=2AC时,求证:四边形ACDF为正方形.28.已知:如图,在正方形ABCD中,点E在边BC上,点F在边CD的延长线上,且BE =DF.(1)求∠AEF的度数;(2)如果∠AEB=75°,AB=2,求△FEC的面积.29.如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.30.如图,已知正方形ABCD的对角线AC、BD交于点O,CE⊥AC与AD边的延长线交于点E.(1)求证:四边形BCED是平行四边形;(2)延长DB至点F,联结CF,若CF=BD,求∠BCF的大小.31.如图,点E是矩形ABCD的边AD的中点,点P是边BC上的动点,PM⊥BE,PN⊥CE,垂足分别是M、N.求:当AB和AD应满足怎样的数量关系时,四边形PMEN是矩形?请说明理由.32.如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:DE=BF;(2)若DF=BF,求证:四边形DEBF为菱形.33.如图,正方形ABCD中,点E、F分别在边BC、CD上,AE=AF,AC和EF交于点O,延长AC至点G,使得AO=OG,连接EG、FG.(1)求证:BE=DF;(2)求证:四边形AEGF是菱形.34.如图所示,在正方形ABCD中,M是CD的中点,E是CD上一点,且∠BAE=2∠DAM.求证:AE=BC+CE.35.已知:如图,在正方形ABCD中,点E为边AB的中点,联结DE,点F在DE上CF =CD,过点F作FG⊥FC交AD于点G.(1)求证:GF=GD;(2)联结AF,求证:AF⊥DE.36.已知:如图,在等边三角形ABC中,过边AB上一点D作DE⊥BC,垂足为点E,过边AC上一点G作GF⊥BC,垂足为点F,BE=CF,联结DG.(1)求证:四边形DEFG是平行四边形;(2)连接AF,当∠BAF=3∠F AC时,求证:四边形DEFG是正方形.37.已知:正方形ABCD的边长为厘米,对角线AC上的两个动点E,F.点E从点A,点F从点C同时出发,沿对角线以1厘米/秒的相同速度运动,过E作EH⊥AC交Rt△ACD的直角边于H,过F作FG⊥AC交Rt△ACD的直角边于G,连接HG,EB.设HE、EF、FG、GH围成的图形面积为S1,AE,EB,BA围成的图形面积为S2(这里规定:线段的面积为0)E到达C,F到达A停止.若E的运动时间为x秒,解答下列问题:(1)如图,判断四边形EFGH是什么四边形,并证明;(2)当0<x<8时,求x为何值时,S1=S2;(3)若y是S1与S2的和,试用x的代数式表示y.(如图为备用图)38.我们知道正方形是四条边相等,四个内角都等于90°的四边形.如图1,已知正方形ABCD,点E是边CD上一点,延长CB到点F,使得BF=DE,作∠EAF的平分线交边BC于点G.求证:BG+DE=EG.参考答案1.解:①A、∵AD∥BC,∴∠BAD+∠ABC=180°,∵∠BAD=∠BCD,∴∠BCD+∠ABC=180°,∴AB∥CD,∴四边形ABCD是平行四边形;选项①不符合题意;②、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,又∵AC=BD,∴四边形ABCD是矩形;选项②不符合题意;③、∵AB∥CD,AC=BD,AC⊥BD,∴四边形ABCD不一定是平行四边形,∴四边形ABCD不一定是菱形;选项③不符合题意;④、∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形;选项④符合题意;故选:④.2.解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,AC=BD,∠ABC=90°,∴AC===AB,∴=;故答案为:.3.解:连接AC交BD于点O,如图所示:∵四边形ABCD是矩形,∴OA=OC=AC,OB=OD=BD,AC=BD,∴OB=OC,∴∠OBC=∠OCB,∵CE=BD,∴AC=CE,∴∠CAE=∠E=15°,∴∠OBC=∠OCB=∠CAE+∠E=30°,∴∠AFB=∠OBC+∠E=30°+15°=45°;故答案为:45°.4.解:∵四边形ABCD为菱形,∴AC⊥BD,OA=OC=AC=6cm,OB=OD,∴OB===8(cm),∴BD=2OB=16cm,S菱形ABCD=AC•BD=×12×16=96(cm2).故答案为:96.5.解:∵四边形ABCD是“和谐矩形”,∴OA=OC,OB=OD,AC=BD=10,∠BAD=90°,∠CAD:∠BAC=1:2,∴OA=OD,∠CAD=30°,∠BAC=60°,∴∠ADB=∠CAD=30°,∴AB=BD=5,AD=AB=5,∴矩形ABCD的面积=AB×AD=5×5=25(cm2);故答案为:25.6.解:∵O,C,D三点的坐标为(0,0),(2,0),(0,1),∴OC=2,OD=1,∵四边形ABCD是菱形,∴OA=OC=2,OB=OD=1,∵四边形AOBE为矩形,∴∠EAO=∠EBO=90°,EB=OA=2,EA=OB=1,∵E在第二象限,∴E点的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).7.解:∵四边形ABCD是正方形,∴AB=BC=4cm,∠EBF=45°,∵EF⊥BD,∴△EBF是等腰直角三角形,∵E是AB的中点,∴EB=2cm,∴EF=cm,故答案为:.8.解:设DF=x,CF=y,∵四边形ABCD是矩形,∴∠D=∠C=∠B=90°,DC=AB=x+y,AD=BC=BE+CE=1+2=3,∵△AEF是等边三角形,∴AE=EF=AF,∴12+(x+y)2=22+y2=x2+32,由12+(x+y)2=22+y2得:y=,代入22+y2=x2+32,整理得:3x4+26x2﹣9=0,解得:x2=,∴AF2=x2+32=,∴AF=;故答案为:.9.解:∵四边形ABCD是矩形,∴AO=OC,BO=OD,AC=BD,∴OA=OB,∵∠BOC=2∠AOB,∠BOC+∠AOB=180°∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=8,∴AC=BD=2AO=16,则BC==8.故答案是:8.10.解:①如图1中,∵四边形ABCD是矩形,AE平分∠BAD,∴∠BAE=∠AEB=45°,∴AB=BE=2,当EC=3BE时,EC=6,∴BC=8.②如图2中,当BE=3EC时,EC=,∴BC=BE+EC=.故答案为8或11.解:如图,∵四边形ABCD是菱形,∠BAD+∠BCD=240°,∴∠BAD=∠BCD=120°,∠ABC=∠ADC=60°∵AB=BC=AD=DC,∴△ABC,△ADC是等边三角形,∴AB=BC=AC=4,∴S菱形ABCD=2•S△ABC=2××42=8,故答案为8.12.解:矩形的两条对角线的夹角为:∠1=60°,∵矩形对角线相等且互相平分,∴△AOB为等边三角形,∴AB=AO=AC=3,在直角△ABC中,AC=6,AB=3,∴BC=,故矩形的面积为:3×3=9.故答案为:9.13.解:连接BD,∵E是边BC的中点,∴BE=BC=3,∵四边形ABCD是正方形,∴M是BD的中点,又N是DE的中点,∴MN=BE=1.5,故答案为:1.5.14.解:当AD=BC或AB∥CD时,四边形ABCD是矩形.理由:∵AD∥BC,∴当AD=BC或AB∥CD时,四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形.15.解:∵四边形ABCD是菱形,AC=8,BD=6,∴AC⊥OD,AO=AC=4,BO=BD=3,∴由勾股定理得到:AB==5.又∵AC•BD=AB•DE.∴DE=4.8.故答案为:4.8.16.解:过点D,作DE⊥OC于点E,∵点D的坐标为(4,3),∴OE=4,DE=3,∴OD==5,∵四边形ABCD是矩形,∴OD=OC=AC=BD,∴点C的坐标为(5,0),故答案为:(5,0).17.解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABE和Rt△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠DAF=(90°﹣60°)÷2=15°,∴∠AEB=75°,故答案为75.18.解:∵∠QBE=∠PBC,∠QBE+∠QBC=90°,∴∠PBQ=∠PBC+∠QBC=90°,∵∠PBC+∠PBA=90°,∴∠PBA=∠QBC,在Rt△P AB和Rt△QCB中,,∴△P AB≌△QCB(ASA),∴QC=P A,设正方形的边长AB=a,P A=x,则QC=x,∴DQ=DC+QC=a+x,PD=AD﹣P A=a﹣x,在Rt△P AB中,PB2=P A2+AB2=x2+a2,∵PQ2=PB2+PD2+1,∴(a﹣x)2+(a+x)2=x2+a2+(a﹣x)2+1,解得:2ax=1,∴ax=,∵△P AB的面积S=P A•PB=ax=×=.故答案为:.19.解:∵AE平分∠BAF,且EF⊥AF,∠B=90°∴EF=EB在Rt△ABE和Rt△AFE中∴Rt△ABE≌Rt△AFE(HL)∴AF=AB=5又∵AD=4,∠D=90°∴Rt△ADE中,DF==3∴CF=5﹣3=2设EF=EB=x,则CE=4﹣x在Rt△CEF中,22+(4﹣x)2=x2解得x=即EF=故答案为:20.解:过H作HM⊥BE于M,则∠HMC=90°,∵正方形ABCD和正方形CEFG,∴AB=BC=1,EF=CE=4,∠B=∠E=90°,∴HM∥AB∥FE,∵H为AF大的中点,∴M为BE的中点,∴HM=(AB+EF)=(1+4)=,∵BC=1,CE=2,∴BM=2.5,∴CM=1.5,在Rt△HMC中,由勾股定理得:CH==,故答案为:.21.(1)证明:∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形.∴BC=CD.又∵CE=BC,∴BE=2BC,∴BE=2CD;(2)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BE,又∵CE=BC,∴AD=CE,AD∥CE,∴四边形ACED是平行四边形.∵∠ACB=90°,∴平行四边形ACED是矩形,又∵CA=CB,∴CA=CE,∴矩形ACED是正方形.22.证明:∵AD是∠BAC的平分线,∵AE是∠BAF的平分线,∴∠3=∠4,∵∠1+∠2+∠3+4=180°,∴∠2+∠3=90°,即∠DAE=90°,∵AB=AC,∠1=∠2,∴AD⊥BC,即∠ADB=90°,∵∠AEB=90°,∴四边形ADBE是矩形.23.(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=DC,∴AE=DC,又∵AE∥BC,∴四边形ADCE是平行四边形,(2)∵∠BAC=90°,AD是边BC上的中线.∴AD=CD,∵四边形ADCE是平行四边形,∴四边形ADCE是菱形,24.证明:(1)∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,,∴△AEF≌△DEC(AAS),∵AF=BD,∴BD=CD;(2)四边形AFBD是矩形.理由:∵AB=AC,D是BC的中点,∴AD⊥BC,∴∠ADB=90°∵AF=BD,∵过A点作BC的平行线交CE的延长线于点F,即AF∥BC,∴四边形AFBD是平行四边形,又∵∠ADB=90°,∴四边形AFBD是矩形.25.解:(I)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠P AD=∠PDC+∠PDA=90°,∴∠P AD=∠PDA,∴PD=P A,∴P A=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,∵S△ADC=AD•DC=AC•DQ,∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP的长为4或5或;(Ⅱ)CF⊥AC,理由如下:如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴CF⊥AC.26.证明:(1)∵点F、G是边AC的三等分点,∴AF=FG=GC.又∵点D是边AB的中点,∴DH∥BG.同理:EH∥BF.∴四边形FBGH是平行四边形,连接BH,交AC于点O,∴OF=OG,∴AO=CO,∵AB=BC,∠ABC=90°,∴四边形FBGH是菱形;(2)∵四边形FBGH是平行四边形,∴BO=HO,FO=GO.又∵AF=FG=GC,∴AF+FO=GC+GO,即:AO=CO.∴四边形ABCH是平行四边形.∵AC⊥BH,AB=BC,∴四边形ABCH是正方形.27.(1)证明:∵AF∥BC,∴∠AFE=∠BDE,在△AEF与△BED中,,∴△AEF≌△BED,∴AF=BD,∵AF∥BD,∴四边形ADBF是平行四边形;(2)解:∵CD=DB,AE=BE,∴DE∥AC,∴∠FDB=∠C=90°,∵AF∥BC,∴∠AFD=∠FDB=90°,∴∠C=∠CDF=∠AFD=90°,∴四边形ACDF是矩形,∵BC=2AC,CD=BD,∴CA=CD,∴四边形ACDF是正方形.28.解:(1)由正方形ABCD,得AB=AD,∠B=∠ADF=∠BAD=90°,在△ABE和△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠F AD,AE=AF.∴∠BAD=∠BAE+∠EAD=∠F AD+∠EAD=90°.即得∠EAF=90°,又∵AE=AF,∴∠AEF=∠AFE=45°.(2)∵∠AEB=75°,∠AEF=45°,∴∠BEF=120°.即得∠FEC=60°,由正方形ABCD,得∠C=90°.∴∠EFC=30°.∴EF=2EC,设EC=x.则EF=2x,BE=DF=2﹣x,CF=4﹣x.在Rt△CEF中,由勾股定理,得CE2+CF2=EF2.即得x2+(4﹣x)2=4x2.解得x1=2﹣2,x2=﹣2﹣2(不合题意,舍去).∴EC=2﹣2,CF=6﹣2.∴S△CEF==,∴△FEC的面积为.29.(1)证明:∵∠ADE=∠BAD,∴AB∥DE,∵AE⊥AC,BD⊥AC,AE∥BD,∴四边形ABDE是平行四边形;(2)解:∵DA平分∠BDE,∴∠AED=∠BDA,∴∠BAD=∠BDA,∴BD=AB=5,设BF=x,则DF=5﹣x,∴AD2﹣DF2=AB2﹣BF2,∴62﹣(5﹣x)2=52﹣x2,∴x=,∴AF==,∴AC=2AF=.30.(1)证明:∵四边形ABCD是正方形,∴AC⊥DB,BC∥AD,∵CE⊥AC,∴∠AOD=∠ACE=90°,∴BD∥CE,∴四边形BCED是平行四边形;(2)解:连接AF,∵四边形ABCD是正方形,∴BD⊥AC,BD=AC=2OB=2OC,即OB=OC,∴∠OCB=45°,∵Rt△OCF中,CF=BD=2OC,∴∠OFC=30°,∴∠BCF=60°﹣45°=15°.31.解:当AD=2AB时.四边形PMEN为矩形;理由如下:∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC,又∵点E是矩形ABCD的边AD的中点.∴AE=DE,在△ABE和△CDE中,,∴△ABE≌△DCE(SAS),∴∠AEB=∠DEC,∵四边形PMEN为矩形,∴∠BEC=90°,∴∠AEB=∠DEC=45°∴AE=DE=DC,即AD=2AB.∴当AD=2AB时;四边形PMEN为矩形.32.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,又∵AE=CF,∴△ADE≌△CBF,∴DE=BF;(2)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵AE=CF,∴BE=DF,BE∥DF,∴四边形DEBF是平行四边形.∵DF=BF,∴平行四边形DEBF是菱形.33.证明:(1)∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=AB,在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF(HL),∴EB=DF;(2)∵四边形ABCD是正方形,∴BC=DC,∵EB=DF,∴EC=FC,∴AC垂直平分EF,∵AO=GO,∴四边形AEGF是菱形.34.证明:取BC的中点F,连接AF,过点F作FH⊥AE于H,连接EF.∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠C=90°,∵M是CD的中点,∴BF=DM,在△ABF和△ADM中,,∴△ABF≌△ADM(SAS),∴∠BAF=∠DAM,∵∠BAE=2∠DAM,∴∠BAF=∠HAF,∵∠AHF=∠B=90°,∴∠AFB=∠AFH,BF=FH,∴AB=AH,∴FH=FC,∵∠FHE=∠C=90°,在Rt△CFE和Rt△HFE中,,∴Rt△CFE≌Rt△HFE(HL),∴EH=CE,∴AE=AH+HE=AB+CE=BC+CE.35.证明:(1)∵四边形ABCD是正方形,∴∠ADC=90°,∵FG⊥FC,∴∠GFC=90°,∵CF=CD,∴∠CDF=∠CFD,∴∠GFC﹣∠CFD=∠ADC﹣∠CDE,即∠GFD=∠GDF,∴GF=GD.(2)联结CG.∵CF=CD,GF=GD,∴点G、C在线段FD的中垂线上,∴GC⊥DE,∴∠CDF+∠DCG=90°,∵∠CDF+∠ADE=90°,∴∠DCG=∠ADE.∵四边形ABCD是正方形,∴AD=DC,∠DAE=∠CDG=90°,∴△DAE≌△CDG,∴AE=DG,∵点E是边AB的中点,∴点G是边AD的中点,∴AG=GD=GF,∴∠DAF=∠AFG,∠GDF=∠GFD,∵∠DAF+∠AFG+∠GFD+∠GDF=180°,∴2∠AFG+2∠GFD=180°,∴∠AFD=90°,即AF⊥DE.法2:(1)联结CG交ED于点H.∵四边形ABCD是正方形,∴∠ADC=90°,∵FG⊥FC,∴∠GFC=90°,在Rt△CFG与Rt△CDG中,,∴Rt△CFG≌Rt△CDG,∴GF=GD.(2)∵CF=CD,GF=GD,∴点G、C在线段FD的中垂线上,∴FH=HD,GC⊥DE,∴∠EDC+∠DCH=90°,∵∠ADE+∠EDC=90°,∴∠ADE=∠DCH,∵四边形ABCD是正方形,∴AD=DC=AB,∠DAE=∠CDG=90°,∵∠ADE=∠DCH,AD=DC,∠EAD=∠GDC.∴△ADE≌△DCG,∴AE=DG,∵点E是边AB的中点,∴点G是边AD的中点,∵点H是边FD的中点,∴GH是△AFD的中位线,∴GH∥AF,∴∠AFD=∠GHD,∵GH⊥FD,∴∠GHD=90°,∴∠AFD=90°,即AF⊥DE.36.证明:(1)在等边三角形ABC中,∵DE⊥BC,GF⊥BC,∴∠DEF=∠GFC=90°,∴DE∥GF,∵∠B=∠C=60°,BE=CF,∠DEB=∠GFC=90°,∴△BDE≌△CGF,∴DE=GF,∴四边形DEFG是平行四边形;(2)在平行四边形DEFG中,∵∠DEF=90°,∴平行四边形DEFG是矩形,∵∠BAC=60°,∠BAF=3∠F AC,∴∠GAF=15°,在△CGF中,∵∠C=60°,∠GFC=90°,∴∠CGF=30°,∴∠GF A=15°,∴∠GAF=∠GF A,∴GA=GF,∵DG∥BC,∴∠ADG=∠B=60°,∴△DAG是等边三角形,∴GA=GD,∴GD=GF,∴矩形DEFG是正方形.37.解:(1)四边形EFGH是矩形.理由如下:∵点E从点A,点F从点C同时出发,沿对角线以1厘米/秒的相同速度运动,∴AE=CF.∵EH⊥AC,FG⊥AC,∴EH∥FG.∵ABCD为正方形,∴AD=DC,∠D=90°,∠GCF=∠HAE=45°,又∵EH⊥AC,FG⊥AC,∴∠CGF=∠AHE=45°,∴∠GCF=∠CGF,∠HAE=∠AHE,∴AE=EH,CF=FG,∴EH=FG,∴四边形EFGH是平行四边形,又∵EH⊥AC∴平行四边形EFGH是矩形;(2)∵正方形边长为,∴AC=16.∵AE=x,连接BD交AC于O,则BO⊥AC且BO=8,∴S2=•AE•BO=4x.∵CF=GF=AE=x,∴EF=16﹣2x,∴S1=EF•GF=x(16﹣2x).当S1=S2时,x(16﹣2x)=4x,解得x1=0(舍去),x2=6.∴当x=6时,S1=S2;(3)①当0≤x<8时,y=x(16﹣2x)+4x=﹣2x2+20x.②当8≤x≤16时,AE=x,CE=HE=16﹣x,EF=16﹣2(16﹣x)=2x﹣16.∴S1=(16﹣x)(2x﹣16).∴y=(16﹣x)(2x﹣16)+4x=﹣2x2+52x﹣256.综上,可知y=.38.证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,∴∠ABF=∠D=90°,在△ABF与△ADE中,,∴△ABF≌△ADE,∴AE=AF,∵AG平分∠EAF,∴∠F AG=∠EAG,∵AG=AG,∴△EAG≌△F AG,∴EG=FG=BF+BG=DE+BG;。

中考数学总复习《四边形的综合题》练习题附带答案

中考数学总复习《四边形的综合题》练习题附带答案

中考数学总复习《四边形的综合题》练习题附带答案一、单选题1.如图,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a、b (a>b),则(a−b)等于()A.3B.4C.5D.6 2.如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ABD=60°,则∠BOC的大小为()A.30°B.60°C.90°D.120°3.若一个多边形的内角和是外角和的2.5倍,则该多边形为()A.五边形B.六边形C.七边形D.八边形4.如图,矩形ABCD对角线相交于点O,∠AOB=60°,AB=4,则矩形的对角线AC 为()A.4 B.8 C.4√3D.10 5.一个长方形的周长为28厘米,长的2倍比宽的3倍多3厘米,则这个长方形的面积是()A.45平方厘米B.35平方厘米C.25平方厘米D.20平方厘米6.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE垂直平分BO,AE=√3cm,则OD=()A.1cm B.1.5cm C.2cm D.3cm 7.如图,矩形纸片ABCD中,AB=4,AD=8 ,将纸片沿EF折叠使点B与点D 重合,折痕EF与BD相交于点O,则DF的长为()A.3B.4C.5D.6 8.如图,⊙O的半径为4,点P是⊙O外的一点PO=10,点A是⊙O上的一个动点,连接PA,直线l垂直平分PA,当直线l与⊙O相切时PA的长度为()A.10B.212C.11D.434 9.已知平行四边形一边长为8,一条对角线长为6,则另一条对角线α满足()A.10<α<22B.4<α<20C.4<α<28D.2<α<1410.如图,两张等宽的纸条交又重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.a2B.5cm C.2√7cm D.6cm 11.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF,将∠BCE绕着正方形的中心O按逆时针方向旋转到∠CDF的位置,则旋转角是( )A .45°B .60°C .90°D .120°12.Rt∠ABC 两直角边的长分别为6cm 和8cm ,则连接这两条直角边中点的线段长为( ) A .10cmB .3cmC .4cmD .5cm二、填空题13.如图,点E 在边长为2的正方形ABCD 内,满足∠AEB =90°,若∠DAE =30°,则图中阴影部分的面积为 .14.把一把直尺和一块三角板如图放置,若∠1=42°,则∠2的度数为 °.15.已知 ▱ABCD 中一条对角线分 ∠A 为35°和45°,则 ∠B = 度. 16.如图,在一块长AB =26m ,宽BC =18m 的长方形草地上,修建三条宽均为3m 的长方形小路,则这块草地的绿地面积(图中空白部分)为 m 217.如图,在∠ABC 中,∠ABC =90°,E 为AC 的中点,AD∠BE 交BC 于D ,若AD=152,BE =5,则BD = .18.如图,在四边形ABCD中,∠A=90°,AB=12,AD=5.点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的最大值是.三、综合题19.如果抛物线C1:y=ax2+bx+c与抛物线C2:y=−ax2+dx+e的开口方向相反,顶点相同,我们称抛物线C2是C1的“对顶”抛物线.(1)求抛物线y=x2−4x+7的“对顶”抛物线的表达式;(2)将抛物线y=x2−4x+7的“对顶”抛物线沿其对称轴平移,使所得抛物线与原抛物线y=x2−4x+7形成两个交点M、N,记平移前后两抛物线的顶点分别为A、B,当四边形AMBN是正方形时求正方形AMBN的面积.(3)某同学在探究“对顶”抛物线时发现:如果抛物线C1与C2的顶点位于x轴上,那么系数b与d,c与e之间的关系是确定的,请写出它们之间的关系.20.解答题(1)如图1,在平行四边形ABCD 中,已知点E 在AB 上,点F 在CD 上,且AE=CF .求证:DE=BF ;(2)如图2,AB 是∠O 的直径,点C 在AB 的延长线上,CD 与∠O 相切于点D ,若∠C=20°,求∠CDA 的度数.21.如图,▱ABCD 放置在平面直角坐标系申,已知点A (-2,0)、B (-6,0)、D(0,3).点C 在反比例函数y=k x的图象上。

鲁教版2020八年级数学上册第五章平行四边形能力提升练习题(附答案)

鲁教版2020八年级数学上册第五章平行四边形能力提升练习题(附答案)

鲁教版2020八年级数学上册第五章平行四边形能力提升练习题(附答案)一.选择题(共10小题)1.如图,▱ABCD中,AC⊥BC,BC=3,AC=4,则B,D两点间的距离是()A.B.6C.10D.52.在平面直角坐标系中,平行四边形ABCD的坐标分别为A(﹣1,0)、B(0,2)、C(3,2)、D(2,0),点P是AD边上的一个动点,若点A关于BP的对称点为A',则A'C的最小值为()A.B.3﹣C.﹣1D.13.在平行四边形ABCD中,∠A=40°,则∠D的度数为()A.40°B.130°C.60°D.140°4.下列图形中,只有一条对称轴的图形是()A.等腰梯形B.矩形C.等边三角形D.圆5.下列说法中:①角平分线上点到角两边距离相等;②等腰三角形至少有1条对称轴,至多有3条对称轴;③等腰梯形对角线相等;④全等的两个图形一定成轴对称.其中正确有()A.4个B.3个C.2个D.1个6.四边形ABCD的对角线AC与BD相交于点O,下列四组条件中,一定能判定四边形ABCD 为平行四边形的是()A.AD∥BC B.OA=OC,OB=ODC.AD∥BC,AB=DC D.AC⊥BD7.已知四边形ABCD,对角线AC与BD交于点O,从下列条件中:①AB∥CD;②AD=BC;③∠ABC=∠ADC;④OA=OC,任取其中两个,以下组合能够判定四边形ABCD 是平行四边形的是()A.①②B.②③C.②④D.①④8.小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC、BD的中点重叠并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是()A.对角线互相平分的四边形是平行四边形B.一组对边平行且相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对角分别相等的四边形是平行四边形9.如图,▱ABCD中,EG∥FH∥CD,则图中平行四边形有()A.3个B.4个C.5个D.6个10.在梯形ABCD中,AD∥BC,下列条件中,不能判断梯形ABCD是等腰梯形的是()A.∠ABC=∠DCB B.∠DBC=∠ACB C.∠DAC=∠DBC D.∠ACD=∠DAC 二.填空题(共10小题)11.平行四边形ABCD中,∠A比∠B小20°,那么∠C=.12.如图,平行四边形ABCD的对角线AC、BD相交于点O,BC=7,AC=10,BD=14,则△AOD的周长为.13.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,BD⊥AD,AD=6,AB =10,则△AOB的面积为.14.在等腰梯形ABCD中,已知AD∥BC,∠A=100°,那么∠C的度数是.15.如图,在梯形ABCD中,AB∥CD,AD=BC,对角线AC⊥BD,垂足为O.若CD=3,AB=5,则AC的长为.16.如图,点D是直线l外一点,在l上取两点A,B,连接AD,分别以点B,D为圆心,AD,AB的长为半径画弧,两弧交于点C,连接CD,BC,则四边形ABCD是平行四边形,理由是.17.如图,在四边形ABCD中,若AB=CD,则添加一个条件,能得到平行四边形ABCD.(不添加辅助线,任意添加一个符合题意的条件即可)18.如图所示,在▱ABCD中E,F分别在BC,AD上,若想使四边形AFCE为平行四边形,须添加一个条件,这个条件可以是,①AF=CF;②AE=CF;③∠BAE=∠FCD;④∠BEA=∠FCE.19.如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,则图中面积相等的平行四边形共有对.20.如图,在梯形ABCD中,AD∥BC,若再加上一个条件,则可得梯形ABCD是等腰梯形.三.解答题(共8小题)21.如图,▱ABCD的对角线AC、BD相交于点O,AB⊥AC,AB=3,BC=5,点P从点A 出发,沿AD以每秒1个单位的速度向终点D运动.连结PO并延长交BC于点Q.设点P的运动时间为t秒.(1)求BQ的长,(用含t的代数式表示)(2)当四边形ABQP是平行四边形时,求t的值(3)当点O在线段AP的垂直平分线上时,直接写出t的值.22.如图,平行四边形ABCD的两条对角线AC、BD相交于点O,E、G分别是OA、OC的中点,过点O作任一条直线交AD于点H,交BC于点F,求证:(1)OH=OF;(2)HG=FE.23.如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上一点,DE=BC.判断△ACE 的形状,并说明理由.24.如图,等腰梯形ABCD中,AB=4,CD=8,则各顶点的坐标是A(2,4),D(0,0),求点B、C的坐标.25.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.连接AF、BD,求证:四边形ABDF是平行四边形.26.如图,AB=CD,E,F分别为AB、CD上的点,连接BC,分别为AF、ED相交于点G,H.∠B=∠C,BH=CG.(1)求证:AG=DH;(2)求证:四边形AFDE是平行四边形.27.如图,在平行四边形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,AE =CG,AH=CF,(1)如图(1)求证:四边形EFGH是平行四边形;(2)如图(2)若EG平分∠HEF,在不添加辅助线的条件下,直接写出长度等于EH的线段(不包括EH)28.如图,在▱ABCD中,O为AC的中点,EF过点O,分别交AD,CB的延长线于点E,F.(1)求证:四边形AFCE是平行四边形.(2)若AC平分∠BAE,AB=6,AE=8,求BF的长.参考答案与试题解析一.选择题(共10小题)1.如图,▱ABCD中,AC⊥BC,BC=3,AC=4,则B,D两点间的距离是()A.B.6C.10D.5【解答】解:过D作DE⊥BC,∵▱ABCD中,AC⊥BC,∴AD∥CE,∵DE⊥BC,∴AC∥DE,∴四边形ACED是平行四边形,∴CE=AD=BC=3,连接BD,在Rt△BDE中,BD=,故选:A.2.在平面直角坐标系中,平行四边形ABCD的坐标分别为A(﹣1,0)、B(0,2)、C(3,2)、D(2,0),点P是AD边上的一个动点,若点A关于BP的对称点为A',则A'C的最小值为()A.B.3﹣C.﹣1D.1【解答】解:∵平行四边形ABCD的坐标分别为A(﹣1,0)、B(0,2)、C(3,2)、D(2,0),∴AB==,BC=3,∵若点A关于BP的对称点为A',∴BA′=BA=,在△BA′C中,由三角形三边关系可知A′C≥BC﹣BA′,∴A′C≥3﹣,即A′C的最小值为3﹣,故选:B.3.在平行四边形ABCD中,∠A=40°,则∠D的度数为()A.40°B.130°C.60°D.140°【解答】解:∵四边形ABCD是平行四边形,∴∠D=180°﹣∠A=140°.故选:D.4.下列图形中,只有一条对称轴的图形是()A.等腰梯形B.矩形C.等边三角形D.圆【解答】解:A、等腰梯形是轴对称图形,并且只有一条对称轴,故本选项符合题意;B、矩形是轴对称图形,有两条对称轴,故本选项不符合题意;C、等边三角形是轴对称图形,有三条对称轴,故本选项不符合题意;D、圆是轴对称图形,有无数条对称轴,故本选项不符合题意;故选:A.5.下列说法中:①角平分线上点到角两边距离相等;②等腰三角形至少有1条对称轴,至多有3条对称轴;③等腰梯形对角线相等;④全等的两个图形一定成轴对称.其中正确有()A.4个B.3个C.2个D.1个【解答】解:①角平分线上点到角两边距离相等,符合角平分线的性质,故本小题正确;②等腰三角形至少有1条对称轴,至多有3条对称轴,符合等腰三角形的性质,故本小题正确;③等腰梯形对角线相等,符合等腰梯形的性质,故本小题正确;④全等的两个图形不一定成轴对称,故本小题错误.故选:B.6.四边形ABCD的对角线AC与BD相交于点O,下列四组条件中,一定能判定四边形ABCD 为平行四边形的是()A.AD∥BC B.OA=OC,OB=ODC.AD∥BC,AB=DC D.AC⊥BD【解答】解:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形;故选:B.7.已知四边形ABCD,对角线AC与BD交于点O,从下列条件中:①AB∥CD;②AD=BC;③∠ABC=∠ADC;④OA=OC,任取其中两个,以下组合能够判定四边形ABCD 是平行四边形的是()A.①②B.②③C.②④D.①④【解答】解:以①④作为条件,能够判定四边形ABCD是平行四边形.理由:∵AB∥CD,∴∠OAB=∠OCD,在△AOB和△COD中,,∴△AOB≌△COD(ASA),∴OB=OD,∴四边形ABCD是平行四边形.故选:D.8.小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC、BD的中点重叠并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是()A.对角线互相平分的四边形是平行四边形B.一组对边平行且相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对角分别相等的四边形是平行四边形【解答】解:由已知可得AO=CO,BO=DO,所以四边形ABCD是平行四边形,依据是对角线互相平分的四边形是平行四边形.故选:A.9.如图,▱ABCD中,EG∥FH∥CD,则图中平行四边形有()A.3个B.4个C.5个D.6个【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,且EG∥FH∥CD∴四边形ABGE,四边形EGHF,四边形FHCD,四边形ABHF,四边形EGCD,∴图中平行四边形有6个,故选:D.10.在梯形ABCD中,AD∥BC,下列条件中,不能判断梯形ABCD是等腰梯形的是()A.∠ABC=∠DCB B.∠DBC=∠ACB C.∠DAC=∠DBC D.∠ACD=∠DAC 【解答】解:A、∵∠ABC=∠DCB,∴BD=BC,∴四边形ABCD是等腰梯形,故本选项错误;B、∵∠DAC=∠DBC,AD∥BC,∴∠ADB=∠DBC,∠DAC=∠ACB,∴∠OBC=∠OCB,∠OAD=∠ODA∴OB=OC,OD=OA,∴AC=BD,∴四边形ABCD是等腰梯形,故本选项错误;C、∵∠ADB=∠DAC,AD∥BC,∴∠ADB=∠DAC=∠DBC=∠ACB,∴OA=OD,OB=OC,∴AC=BD,∵AD∥BC,∴四边形ABCD是等腰梯形,故本选项错误;D、根据∠ACD=∠DAC,不能推出四边形ABCD是等腰梯形,故本选项正确.故选:D.二.填空题(共10小题)11.平行四边形ABCD中,∠A比∠B小20°,那么∠C=80°.【解答】解:∵四边形ABCD为平行四边形,∴,解得:,∴∠C=∠A=80°.故答案为:80°.12.如图,平行四边形ABCD的对角线AC、BD相交于点O,BC=7,AC=10,BD=14,则△AOD的周长为19.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,OA=OC,OB=OD,∵BC=7,BD=14,AC=10,∴AD=7,OA=5,OD=7,∴△AOD的周长为:AD+OA+OD=7+5+7=19.故答案为:19.13.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,BD⊥AD,AD=6,AB =10,则△AOB的面积为12.【解答】解:∵四边形ABCD是平行四边形,∴OD=OB,∴S△AOB=S△ADO,∵BD⊥AD,∴∠ADB=90°,∴BD==8,∴OD=4,∴S△AOB=S△ADO=×AD×DO=×6×4=12,故答案为1214.在等腰梯形ABCD中,已知AD∥BC,∠A=100°,那么∠C的度数是80°.【解答】解:∵AD∥BC,∴∠A+∠B=180°∵∠A=100°,∴∠B=80°,∵四边形ABCD是等腰梯形,∴∠C=∠B=80°.故答案为:80°.15.如图,在梯形ABCD中,AB∥CD,AD=BC,对角线AC⊥BD,垂足为O.若CD=3,AB=5,则AC的长为4.【解答】解:过C作CE平行于BD交AB的延长线于E,则四边形BECD是平行四边形,∵AC⊥BD,即∠AOB=90°,又CE∥BD,∴∠ACE=∠AOB=90°,∴AC⊥CE,∵四边形BECD是平行四边形,∴AE=AB+BE=AB+CD=8.∵在梯形ABCD中,AB∥CD,AD=BC,∴梯形ABCD是等腰梯形,∴AC=BD,∵BD=CE,∴AC=CE,∴△ACE是等腰直角三角形,∴AC=BD=CE==4.故答案为:4.16.如图,点D是直线l外一点,在l上取两点A,B,连接AD,分别以点B,D为圆心,AD,AB的长为半径画弧,两弧交于点C,连接CD,BC,则四边形ABCD是平行四边形,理由是两组对边分别相等的四边形是平行四边形.【解答】解:根据尺规作图的画法可得,AB=DC,AD=BC,∴四边形ABCD是平行四边形,故答案为:两组对边分别相等的四边形是平行四边形.17.如图,在四边形ABCD中,若AB=CD,则添加一个条件AD=BC,能得到平行四边形ABCD.(不添加辅助线,任意添加一个符合题意的条件即可)【解答】解:根据平行四边形的判定,可再添加一个条件:AD=BC.故答案为:AD=BC(答案不唯一).18.如图所示,在▱ABCD中E,F分别在BC,AD上,若想使四边形AFCE为平行四边形,须添加一个条件,这个条件可以是③④,①AF=CF;②AE=CF;③∠BAE=∠FCD;④∠BEA=∠FCE.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠B=∠D,AD∥BC,AD=BC,如果AF=CF,则无法证明四边形AFCE是平行四边形,故①不合题意;如果AE=CF,则无法证明四边形AFCE是平行四边形,故②不合题意;如果∠BAE=∠FCD,则△ABE≌△DFC(ASA)∴BE=DF,∴AD﹣DF=BC﹣BE,即AF=CE,∵AF∥CE,∴四边形AFCE是平行四边形;故③符合题意;如果∠BEA=∠FCE,则AE∥CF,∵AF∥CE,∴四边形AFCE是平行四边形;故④符合题意;故答案为:③④19.如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,则图中面积相等的平行四边形共有3对.【解答】解:∵四边形ABCD是平行四边形,∴S△ABD=S△CBD.∵BP是平行四边形BEPG的对角线,∴S△BEP=S△BGP,∵PD是平行四边形HPFD的对角线,∴S△HPD=S△FPD.∴S△ABD﹣S△BEP﹣S△HPD=S△BCD﹣S△BGP﹣S△PFD,即S▱AEPH=S▱GCFP,∴S▱ABGH=S▱BCFE,同理S▱AEFD=S▱GCDH.即:S▱ABGH=S▱BCFE,S▱AHPE=S▱GCFP,S▱AEFD=S▱GCDH故答案为:320.如图,在梯形ABCD中,AD∥BC,若再加上一个条件AB=CD,则可得梯形ABCD 是等腰梯形.【解答】解:添加条件是AB=CD,理由是:∵梯形ABCD,AD∥BC,AB=CD,∴梯形ABCD是等腰梯形(有两腰相等的梯形是等腰梯形),故答案为:AB=CD.三.解答题(共8小题)21.如图,▱ABCD的对角线AC、BD相交于点O,AB⊥AC,AB=3,BC=5,点P从点A 出发,沿AD以每秒1个单位的速度向终点D运动.连结PO并延长交BC于点Q.设点P的运动时间为t秒.(1)求BQ的长,(用含t的代数式表示)(2)当四边形ABQP是平行四边形时,求t的值(3)当点O在线段AP的垂直平分线上时,直接写出t的值.【解答】解:(1)∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠P AO=∠QCO,∵∠AOP=∠COQ,∴△APO≌△CQO(ASA),∴AP=CQ=t,∵BC=5,∴BQ=5﹣t;(2)∵AP∥BQ,当AP=BQ时,四边形ABQP是平行四边形,即t=5﹣t,t=,∴当t为秒时,四边形ABQP是平行四边形;(3)t=,如图,Rt△ABC中,∵AB=3,BC=5,∴AC===4,∴AO=CO=AC=2,∵,∴AB•AC=BC•EF,∴3×4=5×EF,∴,∴,∵OE是AP的垂直平分线,∴AE=AP=t,∠AEO=90°,由勾股定理得:AE2+OE2=AO2,∴,∴t=或﹣(舍),∴当t=秒时,点O在线段AP的垂直平分线上.22.如图,平行四边形ABCD的两条对角线AC、BD相交于点O,E、G分别是OA、OC的中点,过点O作任一条直线交AD于点H,交BC于点F,求证:(1)OH=OF;(2)HG=FE.【解答】证明:(1)∵四边形ABCD是平行四边形∴AD∥BC,OA=OC,OD=OB,∴∠ADO=∠CBO,∠DHO=∠BFO,且OD=OB∴△DHO≌△BFO(AAS)∴OH=OF(2)∵E、G分别是OA、OC的中点,且OA=OC∴OG=OE,且OH=OF∴四边形HGFE是平行四边形∴HG=FE23.如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上一点,DE=BC.判断△ACE 的形状,并说明理由.【解答】解:△ACE是等腰三角形.理由如下:∵AD∥BC,∴∠BCD=∠EDC,在△BCD和△EDC中,∵,∴△BCD≌△EDC(SAS)∴BD=CE,∵等腰梯形的对角线相等,所以AC=CE,∴△ACE是等腰三角形.24.如图,等腰梯形ABCD中,AB=4,CD=8,则各顶点的坐标是A(2,4),D(0,0),求点B、C的坐标.【解答】解:作AE⊥x轴,BF⊥x轴分别于E,F.∵A(2,4),D(0,0),∴DE=CF=2,∵CD=8,AB=4,∴EF=8﹣2﹣2=4,∴B(6,4),C,8,0).25.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.连接AF、BD,求证:四边形ABDF是平行四边形.【解答】解:∵BE=FC,∴BE+EC=FC+EC,∴BC=FE,在△ABC和△DFE中,,∴△ABC≌△DFE(SSS),∴∠ABC=∠DFE,∴AB∥DF,又∵AB=DF,∴四边形ABDF是平行四边形.26.如图,AB=CD,E,F分别为AB、CD上的点,连接BC,分别为AF、ED相交于点G,H.∠B=∠C,BH=CG.(1)求证:AG=DH;(2)求证:四边形AFDE是平行四边形.【解答】证明:(1)∵BH=CG,∴BH+HG=CG+HG,∴BG=CH,在△ABG与△CDH中,∴△ABG≌△CDH(SAS),∴AG=DH;(2)∵△ABG≌△CDH,∴∠AGB=∠CHD,∴AF∥DE,∵∠B=∠C,∴AB∥CD,∴四边形AFDE是平行四边形.27.如图,在平行四边形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,AE =CG,AH=CF,(1)如图(1)求证:四边形EFGH是平行四边形;(2)如图(2)若EG平分∠HEF,在不添加辅助线的条件下,直接写出长度等于EH的线段(不包括EH)【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,且AE=CG,AH=CF∴△AEH≌△CGF(SAS),∴EH=GF,同理EF=GH∴四边形EFGH是平行四边形(2)∵四边形EFGH是平行四边形∴EH∥FG∴∠HEG=∠EGF∵EG平分∠HEF∴∠HEG=∠FEG∴∠EGF=∠FEG∴EF=FG,且四边形EFGH是平行四边形∴四边形EFGH是菱形∴EH=EF=FG=GH28.如图,在▱ABCD中,O为AC的中点,EF过点O,分别交AD,CB的延长线于点E,F.(1)求证:四边形AFCE是平行四边形.(2)若AC平分∠BAE,AB=6,AE=8,求BF的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC(平行四边形的对边平行且相等).又∵点E、F分别在线段AD、线段CB的延长线上,∴AE∥CF,∴∠AEO=∠CFO(两直线平行,内错角相等).在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴AE=CF(全等三角形的对应边相等),∴四边形AFCE为平行四边形(有一组对边平行且相等的四边形为平行四边形).(2)解:∵AC平分∠BAE,∴∠BAC=∠EAC,∵AD∥BC,∴∠EAC=∠ACB,∴∠BAC=∠ACB,∴AB=BC,∵四边形AFCE为平行四边形,∴AE=CF=8,∴BF=CF﹣BC=8﹣6=2。

2020年八年级数学下册四边形综合题重难点培优练习(含答案)

2020年八年级数学下册四边形综合题重难点培优练习(含答案)

第 1 页 共 26 页 1.如图,在矩形ABCD 中,中,AB=4cm AB=4cm AB=4cm,,BC=8cm BC=8cm,点,点P 从点D 出发向点A 运动,运动到点A 即停止;同时点Q 从点B 出发向点C 运动,运动到点C 即停止.点P 、Q 的速度的速度都是1cm/s 1cm/s,连结,连结PQ PQ,,AQ AQ,,CP CP,设点,设点P 、Q 运动的时间为t (s ).).(1)当t 为何值时,四边形ABQP 是矩形?是矩形?(2)当t 为何值时,四边形AQCP 是菱形?是菱形? (3)分别求出()分别求出(22)中菱形AQCP 的周长和面积.的周长和面积.2.如图,在Rt Rt△△ABC 中,∠中,∠ACB=90ACB=90ACB=90°,过点°,过点C 的直线m ∥AB AB,,D 为AB 边上一点,过点D 作DE DE⊥⊥BC BC,交直线,交直线m 于点E ,垂足为点F ,连接CD CD,,BE BE..(1)求证:)求证:CE=AD CE=AD CE=AD;; (2)当点D 是AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3)当∠)当∠A A 的大小满足什么条件时,四边形BECD 是正方形?(不需要证明)3.如图1,在矩形,在矩形ABCD ABCD ABCD中,动点中,动点中,动点P P 从点从点A A 出发,沿出发,沿A A →D →C →B 的路径运动.设点的路径运动.设点P P 运动的路程为运动的路程为x x ,△PAB PAB的面积为的面积为的面积为y y .图2反映的是点反映的是点P P 在A →D →C 运动过程中,运动过程中,y y 与x 的函数关系.请根据图象回答以下问题:以下问题:(1)矩形)矩形ABCD ABCD ABCD的边的边的边AD= AD=,AB= ; (2)写出点)写出点P P 在C →B 运动过程中运动过程中y y 与x 的函数关系式,并在图2中补全函数图象.中补全函数图象.4.在图1,2,3中,已知▱ABCD ABCD,∠,∠,∠ABC=120ABC=120ABC=120°,点°,点E 为线段BC 上的动点,连接AE AE,以,以AE 为边向上作菱形AEFG AEFG,且∠,且∠,且∠EAG=120EAG=120EAG=120°.°.°.(1)(1)如图如图1,当点E 与点B 重合时,∠重合时,∠CEF= CEF= CEF= °;°;(2)(2)如图如图2,连接AF AF..①填空:∠①填空:∠FAD FAD FAD ∠EAB(EAB(填“>”,“<“,“填“>”,“<“,“填“>”,“<“,“==”);②求证:点F 在∠在∠ABC ABC 的平分线上;的平分线上;(3)(3)如图如图3,连接EG EG,,DG DG,并延长,并延长DG 交BA 的延长线于点H ,当四边形AEGH 是平行四边形时,是平行四边形时, 求的值.的值.5.如图,两个全等的△如图,两个全等的△ABC ABC 和△和△DEF DEF 重叠在一起,固定△重叠在一起,固定△ABC ABC ABC,将△,将△,将△DEF DEF 进行如下变换:进行如下变换:(1)如图1,△,△DEF DEF 沿直线CB 向右平移(即点F 在线段CB 上移动),连接AF AF、、AD AD、、BD BD,请直,请直接写出S △ABC 与S 四边形AFBD 的关系的关系(2)如图2,当点F 平移到线段BC 的中点时,若四边形AFBD 为正方形,那么△为正方形,那么△ABC ABC 应满足什么条件:请给出证明;么条件:请给出证明;(3)在()在(22)的条件下,将△)的条件下,将△DEF DEF 沿DF 折叠,点E 落在FA 的延长线上的点G 处,连接CG CG,请,请你画出图形,此时CG 与CF 有何数量关系有何数量关系. .6.菱形ABCD 中,点P 为CD 上一点,连接BP.(1)如图1,若BP BP⊥⊥CD CD,菱形,菱形ABCD 边长为1010,,PD=4PD=4,连接,连接AP AP,求,求AP 的长的长. .(2)如图2,连接对角线AC AC、、BD 相交于点O ,点N 为BP 的中点,过P 作PM PM⊥⊥AC 于M ,连接ON ON、、MN.MN.试判断△试判断△试判断△MON MON 的形状,并说明理由的形状,并说明理由. .7.如图,在Rt Rt△△ABC 中,∠ACB=90°,过点C 的直线MN∥AB,D 为AB 边上一点,过点D 作DE⊥BC,交直线MN 于E ,垂足为F ,连接CD CD、、BE.(1)求证:)求证:CE=AD CE=AD CE=AD;;(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;是什么特殊四边形?说明你的理由;(3)若D 为AB 中点,则当∠A 的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.8.如图,在在四边形ABCD 中,中,AD AD AD∥∥BC BC,∠,∠,∠B=90B=90B=90°,且°,且AD=12cm AD=12cm,,AB=8cm AB=8cm,,DC=10cm DC=10cm,若动点,若动点P 从A 点出发,以每秒2cm 的速度沿线段AD 向点D 运动;动点Q 从C 点出发以每秒3cm 的速度沿CB 向B 点运动,当P 点到达D 点时,动点P 、Q 同时停止运动,设点P 、Q 同时出发,并运动了t 秒,回答下列问题:秒,回答下列问题:(1)BC= BC= cm cm;;(2)当t= t= 秒时,四边形PQBA 成为矩形.成为矩形.(3)当t 为多少时,为多少时,PQ=CD PQ=CD PQ=CD??(4)是否存在t ,使得△,使得△DQC DQC 是等腰三角形?若存在,请求出t 的值;若不存在,说明理由.的值;若不存在,说明理由.9.如图1,已知正方形已知正方形ABCD ABCD ABCD,,点E 、F 、G 、H 分别在边分别在边AB AB AB、、BC BC、、CD CD、、DA DA上,上,若EG EG⊥⊥FH FH,,则易证:EG=FH EG=FH..(1)如果把条件中的“正方形”改为“长方形”,并设,并设AB=2AB=2AB=2,,BC=3BC=3(如图(如图2),试探究,试探究EG EG EG、、FH FH之之间有怎样的数量关系,并证明你的结论;间有怎样的数量关系,并证明你的结论; (2)如果把条件中的“)如果把条件中的“EG EG EG⊥⊥FH FH”改为“”改为“”改为“EG EG EG与与FH FH的夹角为的夹角为4545°”°”,并假设正方形,并假设正方形ABCD ABCD ABCD的边长为的边长为1,FH FH的长为的长为(如图3),试求,试求EG EG EG的长度.的长度.的长度.10.如图,如图,P P 为正方形为正方形ABCD ABCD ABCD的边的边的边BC BC BC上一动点(上一动点(上一动点(P P 与B 、C 不重合),连接不重合),连接AP AP AP,过点,过点,过点B B 作BQ BQ⊥⊥AP AP交交CD CD于于点Q ,将△,将△BQC BQC BQC沿沿BQ BQ所在的直线对折得到△所在的直线对折得到△所在的直线对折得到△BQC BQC BQC′,延长′,延长′,延长QC QC QC′交′交′交BA BA BA的延长线于点的延长线于点的延长线于点M M . (1)试探究)试探究AP AP AP与与BQ BQ的数量关系,并证明你的结论;的数量关系,并证明你的结论;的数量关系,并证明你的结论;(2)当)当AB=3AB=3AB=3,,BP=2PC BP=2PC,求,求,求QM QM QM的长;的长;的长;(3)当)当BP=m BP=m BP=m,,PC=n PC=n时,求时,求时,求AM AM AM的长.的长.的长.11.11.如图,在矩形如图,在矩形如图,在矩形ABCD ABCD ABCD中,点中,点中,点E E 为CD CD上一点,将△上一点,将△上一点,将△BCE BCE BCE沿沿BE BE翻折后点翻折后点翻折后点C C 恰好落在恰好落在AD AD AD边上的点边上的点边上的点F F 处,将线段线段EF EF EF绕点绕点绕点F F 旋转,使点旋转,使点E E 落在落在BE BE BE上的点上的点上的点G G 处,连接处,连接CG. CG.(1)(1)证明:四边形证明:四边形证明:四边形CEFG CEFG CEFG是菱形;是菱形;是菱形;(2)(2)若若AB=8AB=8,,BC=10BC=10,求四边形,求四边形,求四边形CEFG CEFG CEFG的面积;的面积;的面积;(3)(3)试探究当线段试探究当线段试探究当线段AB AB AB与与BC BC满足什么数量关系时,满足什么数量关系时,满足什么数量关系时,BG=CG BG=CG BG=CG,请写出你的探究过程.,请写出你的探究过程.,请写出你的探究过程.12.四边形ABCD是正方形,点E在边BC上(不与端点B、C重合),点F在对角线AC上,且EFDF、、FG,点G是AE的中点,连接DF,连接AE⊥ACAC,连接AE,点(1)若AB=7,的长;BE=,求FG的长;FG;DF=FG;)求证:DF=(2)求证:中的△CEFCEF绕点C按顺时针旋转,使边CF的顶点F恰好在正方形ABCD的边BC上(如(3)将图1中的△之间的数量关系,并证明你的猜想. AE、点图2),连接AE、点G仍是AE的中点,猜想BF与FG之间的数量关系,并证明你的猜想.13.△ABC 和△和△DEF DEF 都是边长为6cm 的等边三角形,且A 、D 、B 、F 在同一直线上,连接CD CD、、BF BF..(1)求证:四边形BCDE 是平行四边形;是平行四边形;(2)若AD=2cm AD=2cm,△,△,△ABC ABC 沿着AF 的方向以每秒1cm 的速度运动,设△的速度运动,设△ABC ABC 运动的时间为t 秒.秒. (a )当t 为何值时,平行四边形BCDE 是菱形?说明理由;是菱形?说明理由;(b )平行四边形BCDE 有可能是矩形吗?若有可能,求出t 的值,并求出矩形的面积;若不可能,说明理由.能,说明理由.14.14.已知已知E,F 分别为正方形ABCD 的边BC,CD 上的点上的点,AF,DE ,AF,DE 相交于点G,G,当当E,F 分别为边BC,CD 的中点时中点时,,有AF=DE,AF AF=DE,AF⊥⊥DE 成立成立. . 试探究下列问题试探究下列问题: : (1)(1)如图①如图①如图①,,若点E 不是边BC 的中点的中点,F ,F 不是边CD 的中点的中点,,且CE=DF,CE=DF,上述结论是否仍然成立上述结论是否仍然成立上述结论是否仍然成立?(?(?(请请直接回答“成立”或“不成立”直接回答“成立”或“不成立”,,不需要证明不需要证明) ) (2)(2)如图②如图②如图②,,若点E,F 分别在CB 的延长线和DC 的延长线上的延长线上,,且CE=DF,CE=DF,此时此时此时,,上述结论是否仍然成立?若成立若成立,,请写出证明过程请写出证明过程,,若不成立若不成立,,请说明理由请说明理由; ; (3)(3)如图③如图③如图③,,在(2)(2)的基础上的基础上的基础上,,连接AE 和EF,EF,若点若点M,N,P,Q 分别为AE,EF,FD,AD 的中点的中点,,请判断四边形MNPQ 是“矩形、菱形、正方形”中的哪一种是“矩形、菱形、正方形”中的哪一种,,并证明你的结论并证明你的结论. .15.如图,在如图,在Rt Rt Rt△△ABC ABC中,∠中,∠中,∠B=90B=90B=90°,°,°,AC=60cm AC=60cm AC=60cm,∠,∠,∠A=60A=60A=60°,点°,点°,点D D 从点从点C C 出发沿出发沿CA CA CA方向以方向以4cm/s 4cm/s的速的速度向点度向点A A 匀速运动,同时点同时点E E 从点从点A A 出发沿出发沿AB AB AB方向以方向以2cm/s 2cm/s的速度向点的速度向点的速度向点B B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点达终点时,另一个点也随之停止运动.设点D D 、E 运动的时间是运动的时间是ts ts ts.过点.过点.过点D D 作DF DF⊥⊥BC BC于点于点于点F F ,连接DE DE、、EF EF.. (1)用)用t t 的代数式表示:的代数式表示:AE= AE= ;DF= ; (2)四边形)四边形AEFD AEFD AEFD能够成为菱形吗?如果能,求出相应的能够成为菱形吗?如果能,求出相应的能够成为菱形吗?如果能,求出相应的t t 值;如果不能,请说明理由;值;如果不能,请说明理由; (3)当)当t t 为何值时,△为何值时,△DEF DEF DEF为直角三角形?请说明理由.为直角三角形?请说明理由.为直角三角形?请说明理由.参考答案1.解:解:(1)当四边形ABQP 是矩形时,是矩形时,BQ=AP BQ=AP BQ=AP,即:,即:,即:t=8t=8t=8﹣﹣t ,解得t=4t=4.. 答:当t=4时,四边形ABQP 是矩形;是矩形; (2)设t 秒后,四边形AQCP 是菱形是菱形 当AQ=CQ AQ=CQ,即,即=8=8﹣﹣t 时,四边形AQCP 为菱形.解得:为菱形.解得:t=3t=3t=3..答:当t=3时,四边形AQCP 是菱形;是菱形;(3)当t=3时,时,CQ=5CQ=5CQ=5,则周长为:,则周长为:,则周长为:4CQ=20cm 4CQ=20cm 4CQ=20cm,面积为:,面积为:,面积为:44×8﹣2××3×4=204=20((cm 22).).2.(1)证明:∵直线m ∥AB AB,∴,∴,∴EC EC EC∥∥AD AD..又∵∠又∵∠ACB=90ACB=90ACB=90°,∴°,∴°,∴BC BC BC⊥⊥AC AC.又∵.又∵.又∵DE DE DE⊥⊥BC BC,∴,∴,∴DE DE DE∥∥AC AC.. ∵EC EC∥∥AD AD,,DE DE∥∥AC AC,∴四边形,∴四边形ADEC 是平行四边形.∴是平行四边形.∴CE=AD CE=AD CE=AD.. (2)当点D 是AB 中点时,四边形BECD 是菱形. 证明:∵证明:∵D D 是AB 中点,中点,DE DE DE∥∥AC AC(已证)(已证),∴,∴F F 为BC 中点,∴中点,∴BF=CF BF=CF BF=CF.. ∵直线m ∥AB AB,∴∠,∴∠,∴∠ECF=ECF=ECF=∠∠DBF DBF.∵∠.∵∠.∵∠BFD=BFD=BFD=∠∠CFE CFE,∴△,∴△,∴△BFD BFD BFD≌△≌△≌△CFE CFE CFE.∴.∴.∴DF=EF DF=EF DF=EF.. ∵DE DE⊥⊥BC BC,∴,∴,∴BC BC 和DE 垂直且互相平分.∴四边形BECD 是菱形. (3)当∠)当∠A A 的大小是4545°时,四边形°时,四边形BECD 是正方形. 理由是:∵∠理由是:∵∠ACB=90ACB=90ACB=90°,∠°,∠°,∠A=45A=45A=45°,∴∠°,∴∠°,∴∠ABC=ABC=ABC=∠∠A=45A=45°,∴°,∴°,∴AC=BC AC=BC AC=BC,, ∵D 为BA 中点,∴中点,∴CD CD CD⊥⊥AB AB,∴∠,∴∠,∴∠CDB=90CDB=90CDB=90°,°,∵四边形BECD 是菱形,∴四边形BECD 是正方形, 即当∠即当∠A=45A=45A=45°时,四边形°时,四边形BECD 是正方形.3.解:(解:(11)根据题意得:矩形)根据题意得:矩形ABCD ABCD ABCD的边的边的边AD=2AD=2AD=2,,AB=4AB=4;故答案为:;故答案为:;故答案为:22;4; (2)当点)当点P P 在C →B 运动过程中,运动过程中,PB=8PB=8PB=8﹣﹣x ,∴,∴y=S y=S △APB=×4×(×(88﹣x ),即),即y=y=y=﹣﹣2x+162x+16((6≤x ≤8),正确作出图象,如图所示:正确作出图象,如图所示:4.解:解:(1)(1)∵四边形∵四边形AEFG 是菱形,∴∠是菱形,∴∠AEF=180AEF=180AEF=180°﹣∠°﹣∠°﹣∠EAG=60EAG=60EAG=60°,°,°, ∴∠∴∠CEF=CEF=CEF=∠∠AEC AEC﹣∠﹣∠﹣∠AEF=60AEF=60AEF=60°,°,°, 故答案为:故答案为:606060°;°;°; (2)(2)①∵四边形①∵四边形ABCD 是平行四边形,∴∠是平行四边形,∴∠DAB=180DAB=180DAB=180°﹣∠°﹣∠°﹣∠ABC=60ABC=60ABC=60°,°,°, ∵四边形AEFG 是菱形,∠是菱形,∠EAG=120EAG=120EAG=120°,∴∠°,∴∠°,∴∠FAE=60FAE=60FAE=60°,°,°, ∴∠∴∠FAD=FAD=FAD=∠∠EAB EAB,, ②作FM FM⊥⊥BC 于M ,FN FN⊥⊥BA 交BA 的延长线于N ,则∠,则∠FNB=FNB=FNB=∠∠FMB=90FMB=90°,°,°, ∴∠∴∠NFM=60NFM=60NFM=60°,°,°, 又∠又∠AFE=60AFE=60AFE=60°,∴∠°,∴∠°,∴∠AFN=AFN=AFN=∠∠EFM EFM,, ∵EF=EA EF=EA,∠,∠,∠FAE=60FAE=60FAE=60°,∴△°,∴△°,∴△AEF AEF 为等边三角形,∴为等边三角形,∴FA=FE FA=FE FA=FE,, 在△在△AFN AFN 和△和△EFM EFM 中,,∴△,∴△AFN AFN AFN≌△≌△≌△EFM(AAS) EFM(AAS)∴FN=FM FN=FM,又,又FM FM⊥⊥BC BC,,FN FN⊥⊥BA BA,, ∴点F 在∠在∠ABC ABC 的平分线上;的平分线上; (3)(3)∵四边形∵四边形AEFG 是菱形,∠是菱形,∠EAG=120EAG=120EAG=120°,°,°, ∴∠∴∠AGF=60AGF=60AGF=60°,∴∠°,∴∠°,∴∠FGE=FGE=FGE=∠∠AGE=30AGE=30°,°,°,∵四边形AEGH 为平行四边形,∴为平行四边形,∴GE GE GE∥∥AH AH,, ∴∠∴∠GAH=GAH=GAH=∠∠AGE=30AGE=30°,∠°,∠°,∠H=H=H=∠∠FGE=30FGE=30°,°,°, ∴∠∴∠GAN=90GAN=90GAN=90°,又∠°,又∠°,又∠AGE=30AGE=30AGE=30°,∴°,∴°,∴GN=2AN GN=2AN GN=2AN,, ∵∠∵∠DAB=60DAB=60DAB=60°,∠°,∠°,∠H=30H=30H=30°,∴∠°,∴∠°,∴∠ADH=30ADH=30ADH=30°,∴°,∴°,∴AD=AH=GE AD=AH=GE AD=AH=GE,, ∵四边形ABCD 为平行四边形,∴为平行四边形,∴BC=AD BC=AD BC=AD,∴,∴,∴BC=GE BC=GE BC=GE,, ∵四边形ABEH 为平行四边形,∠为平行四边形,∠HAE=HAE=HAE=∠∠EAB=30EAB=30°,°,°, ∴平行四边形ABEN 为菱形,∴为菱形,∴AB=AN=NE AB=AN=NE AB=AN=NE,∴,∴,∴GE=3AB GE=3AB GE=3AB,, ∴=3=3..5.解:(解:(11)S △ABC =S 四边形AFBD ,理由:由题意可得:理由:由题意可得:AD AD AD∥∥EC EC,则,则S △ADF =S △ABD , 故S △ACF =S △ADF =S △ABD ,则S △ABC =S 四边形AFBD ; (2)△)△ABC ABC 为等腰直角三角形,即:为等腰直角三角形,即:AB=AC AB=AC AB=AC,∠,∠,∠BAC=90BAC=90BAC=90°,°,°, 理由如下:理由如下:∵F 为BC 的中点,∴的中点,∴CF=BF CF=BF CF=BF,∵,∵,∵CF=AD CF=AD CF=AD,∴,∴,∴AD=BF AD=BF AD=BF,, 又∵又∵AD AD AD∥∥BF BF,∴四边形,∴四边形AFBD 为平行四边形,为平行四边形, ∵AB=AC AB=AC,,F 为BC 的中点,∴的中点,∴AF AF AF⊥⊥BC BC,∴平行四边形,∴平行四边形AFBD 为矩形为矩形∵∠∵∠BAC=90BAC=90BAC=90°,°,°,F F 为BC 的中点,∴的中点,∴AF=AF=BC=BF BC=BF,,∴四边形AFBD 为正方形;为正方形; (3)如图3所示:所示: 由(由(22)知,△)知,△ABC ABC 为等腰直角三角形,为等腰直角三角形,AF AF AF⊥⊥BC BC,,设CF=k CF=k,,则GF=EF=CB=2k GF=EF=CB=2k,,由勾股定理得:CG=k ,∴CG=CF.6.6.解:解:(1)如图1中,∵四边形ABCD 是菱形,∴是菱形,∴AB=BC=CD=AD=10AB=BC=CD=AD=10AB=BC=CD=AD=10,,AB AB∥∥CD∵PD=4PD=4,∴,∴,∴PC=6PC=6PC=6,∵,∵,∵PB PB PB⊥⊥CD CD,∴,∴,∴PB PB PB⊥⊥AB AB,∴∠,∴∠,∴∠CPB=CPB=CPB=∠ABP=90°,∠ABP=90°,∠ABP=90°, 在RT RT△△PCB 中,∵∠CPB=90°P 中,∵∠CPB=90°PC=6C=6C=6,,BC=10BC=10,∴,∴,∴PB=PB===8=8,, 在RT RT△△ABP 中,∵∠ABP=90°,中,∵∠ABP=90°,AB=10AB=10AB=10,,PB=8PB=8,∴,∴,∴PA=PA===2.(2)△)△OMN OMN 是等腰三角形是等腰三角形..理由:如图2中,延长PM 交BC 于E. ∵四边形ABCD 是菱形,∴是菱形,∴AC AC AC⊥⊥BD BD,,CB=CD CB=CD,, ∵PE PE⊥⊥AC AC,∴,∴,∴PE PE PE∥∥BD BD,∴,∴=,∴,∴CP=CE CP=CE CP=CE,∴,∴,∴PD=BE PD=BE PD=BE,,∵CP=CE CP=CE,,CM CM⊥⊥PE PE,∴,∴,∴PM=ME PM=ME PM=ME,∵,∵,∵PN=NB PN=NB PN=NB,∴,∴,∴MN=MN=BE BE,,∵BO=OD BO=OD,,BN=NP BN=NP,∴,∴,∴ON=ON=PD PD,∴,∴,∴ON=MN ON=MN ON=MN,∴△,∴△,∴△OMN OMN 是等腰三角形是等腰三角形. .7.(1)证明:∵DE⊥BC,∴∠DFB=90°,)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC 是平行四边形,∴是平行四边形,∴CE=AD CE=AD CE=AD;; (2)解:四边形BECD 是菱形,理由是:∵是菱形,理由是:∵D D 为AB 中点,∴中点,∴AD=BD AD=BD AD=BD,, ∵CE=AD CE=AD,∴,∴,∴BD=CE BD=CE BD=CE,∵BD∥CE,∴四边形,∵BD∥CE,∴四边形BECD 是平行四边形,是平行四边形, ∵∠ACB=90°,∵∠ACB=90°,D D 为AB 中点,∴中点,∴CD=BD CD=BD CD=BD,∴,∴▱四边形BECD 是菱形;是菱形; (3)当∠A=45°时,四边形BECD 是正方形,理由是:是正方形,理由是: 解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC AC=BC AC=BC,, ∵D 为BA 中点,∴CD⊥AB,∴∠CDB=90°,中点,∴CD⊥AB,∴∠CDB=90°, ∵四边形BECD 是菱形,∴菱形BECD 是正方形,是正方形, 即当∠A=45°时,四边形BECD 是正方形是正方形. . 8.解:解:9.(1)结论:)结论:EG EG EG::FH=3FH=3::2证明:过点证明:过点A A 作AM AM∥∥HF HF交交BC BC于点于点于点M M ,作,作AN AN AN∥∥EG EG交交CD CD的延长线于点的延长线于点的延长线于点N N ,如图1: ∴AM=HF AM=HF,,AN=EG AN=EG,∵长方形,∵长方形,∵长方形ABCD ABCD ABCD,∴∠,∴∠,∴∠BAD=BAD=BAD=∠∠ADN=90ADN=90°,°,°, ∵EG EG⊥⊥FH FH,∴∠,∴∠,∴∠NAM=90NAM=90NAM=90°,∴∠°,∴∠°,∴∠BAM=BAM=BAM=∠∠DAN DAN,∴△,∴△,∴△ABM ABM ABM∽△∽△∽△ADN ADN ADN,, ∴AM:AN=AB:AD AM:AN=AB:AD,∵,∵,∵AB=2BC=AD=3AB=2BC=AD=3AB=2BC=AD=3,∴,∴,∴EG:FH=1.5EG:FH=1.5EG:FH=1.5;; (2)解:过点)解:过点A A 作AM AM∥∥HF HF交交BC BC于点于点于点M M ,过点,过点A A 作AN AN∥∥EG EG交交CD CD于点于点于点N N ,如图2:∵AB=1AB=1,,AM=FH=,∴在,∴在Rt Rt Rt△△ABM ABM中,中,中,BM=0.5BM=0.5将△AND AND绕点绕点绕点A A 旋转到△旋转到△APB APB APB,, ∵EG EG与与FH FH的夹角为的夹角为4545°,∴∠°,∴∠°,∴∠MAN=45MAN=45MAN=45°,∴∠°,∴∠°,∴∠DAN+DAN+DAN+∠∠MAB=45 即∠即∠PAM=PAM=PAM=∠∠MAN=45MAN=45°,从而△°,从而△°,从而△APM APM APM≌△≌△≌△ANM ANM ANM,∴,∴,∴PM=NM PM=NM PM=NM,,设DN=x DN=x,则,则,则NC=1NC=1NC=1﹣﹣x ,NM=PM=0.5+x NM=PM=0.5+x在在Rt Rt△△CMN CMN中,中,中,(0.5 +x)(0.5 +x)2=0.25+(1=0.25+(1﹣﹣x)2,解得,解得x=1/3x=1/3x=1/3,,∴EG=AN=,答:,答:EG EG EG的长为的长为.10.11. (1)证明:证明:根据翻折的方法可得根据翻折的方法可得EF=EC EF=EC EF=EC,,∠FEG=FEG=∠∠CEG.CEG.又∵又∵又∵GE=GE GE=GE GE=GE,,∴△∴△EFG EFG EFG≌△≌△≌△ECG.ECG.ECG.∴∴FG=GC. ∵线段∵线段FG FG FG是由是由是由EF EF EF绕绕F 旋转得到的,∴旋转得到的,∴EF=FG.EF=FG.EF=FG.∴∴EF=EC=FG=GC.EF=EC=FG=GC.∴四边形∴四边形∴四边形FGCE FGCE FGCE是菱形.是菱形.是菱形. (2)连接)连接FC FC FC交交GE GE于于O 点.根据折叠可得点.根据折叠可得BF=BC=10.BF=BC=10.BF=BC=10.∵∵AB=8 ∴在∴在Rt Rt Rt△△ABF ABF中,根据勾股定理得中,根据勾股定理得中,根据勾股定理得AF=6.AF=6.AF=6.∴∴FD=AD FD=AD--AF=10AF=10--6=4.设EC=x EC=x,则,则,则DE=8DE=8DE=8--x ,EF=x EF=x,在,在,在Rt Rt Rt△△FDE FDE中,中,中,FD FD 2+DE 2=EF 2,即42+(8-x)2=x 2.解得解得x=5.x=5.x=5.即即CE=5.S 菱形菱形CEFG CEFG =CE =CE··FD=5FD=5××4=20.(3)当=时,时,BG=CG BG=CG BG=CG,理由:由折叠可得,理由:由折叠可得,理由:由折叠可得BF=BC BF=BC BF=BC,∠,∠,∠FBE=FBE=FBE=∠∠CBE CBE,,∵在∵在Rt Rt Rt△△ABF ABF中,中,=,∴,∴BF=2AF.BF=2AF.BF=2AF.∴∠∴∠∴∠ABF=30ABF=30ABF=30°°.又∵∠又∵∠ABC=90ABC=90ABC=90°,∴∠°,∴∠°,∴∠FBE=FBE=FBE=∠∠CBE=30CBE=30°,°,°,EC=0.5BE. EC=0.5BE.∵∠∵∠BCE=90BCE=90BCE=90°,∴∠°,∴∠°,∴∠BEC=60BEC=60BEC=60°°.又∵又∵GC=CE GC=CE GC=CE,∴△,∴△,∴△GCE GCE GCE为等边三角形.为等边三角形.为等边三角形. ∴GE=CG=CE=0.5BE.GE=CG=CE=0.5BE.∴∴G 为BE BE的中点.∴的中点.∴的中点.∴CG=BG=0.5BE. CG=BG=0.5BE. 12.13.(1)证明:∵△)证明:∵△ABC ABC 和△和△DEF DEF 是两个边长为6cm 的等边三角形,的等边三角形,∴BC=DE BC=DE,∠,∠,∠ABC=ABC=ABC=∠∠FDE=60FDE=60°,∴°,∴°,∴BC BC BC∥∥DE DE,∴四边形,∴四边形BCDE 是平行四边形;是平行四边形; (2)解:(a )当t=2秒时,▱BCDE 是菱形,此时A 与D 重合,∴重合,∴CD=DE CD=DE CD=DE,∴,∴▱ADEC 是菱形;是菱形; (b )若平行四边形BCDE 是矩形,则∠是矩形,则∠CDE=90CDE=90CDE=90°,如图所示:∴∠°,如图所示:∴∠°,如图所示:∴∠CDB=90CDB=90CDB=90°﹣°﹣°﹣606060°°=30=30°° 同理∠同理∠DCA=30DCA=30DCA=30°°=∠CDB CDB,∴,∴,∴AC=AD AC=AD AC=AD,同理,同理FB=EF FB=EF,∴,∴,∴F F 与B 重合,重合, ∴t=t=((6+26+2)÷)÷)÷1=81=8秒,∴当t=8秒时,平行四边形BCDE 是矩形.是矩形.14.14.解:解:解:(1)(1)(1)成立成立成立. .(2)(2)成立成立理由理由::∵四边形ABCD 为正方形为正方形,,∴AD=DC,AD=DC,∠∠BCD=BCD=∠∠ADC=90ADC=90°°. 在△在△ADF ADF 和△和△DCE DCE 中,DF=CE,,DF=CE,∠∠ADC=ADC=∠∠BCD,AD=CD BCD,AD=CD∴△∴△∴△ADF ADF ADF≌△≌△≌△DCE(SAS), DCE(SAS), ∴AF=DE,AF=DE,∠∠DAF=DAF=∠∠CDE. ∵∠∵∠ADG+ADG+ADG+∠∠EDC=90EDC=90°°,∴∠∴∠ADG+ADG+ADG+∠∠DAF=90DAF=90°°,∴∠∴∠AGD=90AGD=90AGD=90°°,即AF AF⊥⊥DE. (3)(3)四边形四边形MNPQ 是正方形是正方形. . 理由理由::如图如图,,设MQ 交AF 于点O,PQ 交DE 于点H, ∵点M,N,P,Q 分别为AE,EF,FD,AD 的中点的中点, ,∴MQ=PN=错误!未找到引用源。

(必考题)初中八年级数学下册第十八章《平行四边形》提高卷(答案解析)

(必考题)初中八年级数学下册第十八章《平行四边形》提高卷(答案解析)

一、选择题1.如图,在ABC ∆中,D 是AB 上一点,,AD AC AE CD =⊥于点E ,点F 是BC 的中点,若10BD =,则EF 的长为( )A .8B .6C .5D .4C 解析:C【分析】首先根据AD AC =可得△ACD 为等腰三角形,再由AE CD ⊥结合“三线合一”性质可得E 为CD 的中点,从而得到EF 为△CBD 的中位线,最终根据中位线定理求解即可. 【详解】∵AD AC =,∴△ACD 为等腰三角形,∵AE CD ⊥,∴E 为CD 的中点,(三线合一)又∵点F 是BC 的中点,∴EF 为△CBD 的中位线, ∴152EF BD ==, 故选:C .【点睛】 本题考查等腰三角形三线合一的性质以及中位线的性质,准确判断出中位线是解题关键. 2.已知正方形ABCD 中,对角线4AC =,这个正方形的面积是( )A .8B .16C .82D .162解析:A【分析】根据勾股定理,可得正方形的边长,进而可得正方形的面积.【详解】∵正方形ABCD 中,对角线4AC =,∴AB 2+BC 2=AC 2,∴2AB 2=42,∴AB 2=8.故选:A .【点睛】本题主要考查的是正方形的性质,勾股定理,熟练掌握勾股定理是解题的关键.3.下列命题中,错误的是()A.一组对边平行的四边形是梯形;B.两组对边分别相等的四边形是平行四边形;C.对角线相等的平行四边形是矩形;D.一组邻边相等的平行四边形是菱形.A解析:A【分析】根据梯形,平行四边形,矩形,菱形的判定进行判断即可.【详解】解:A、一组对边平行,另一组对边不平行的四边形是梯形,故错误,符合题意;B、两组对边分别相等的四边形是平行四边形,正确,不符合题意;C、对角线相等的平行四边形是矩形,正确,不符合题意;D、一组邻边相等的平行四边形是菱形,正确,不符合题意;故选:A.【点睛】主要考查梯形,平行四边形,矩形,菱形的判定,注意梯形的定义应从两组对边的不同位置关系分别考虑.4.下列命题中,正确的命题是()A.菱形的对角线互相平分且相等B.顺次联结菱形各边的中点所得的四边形是矩形C.矩形的对角线互相垂直平分D.顺次连结矩形各边的中点所得的四边形是正方形B解析:B【分析】根据菱形的性质、矩形的性质、中点四边形的定义逐一判断即可.【详解】解:A. 菱形的对角线互相平分,但不相等,该命题错误;B. 顺次联结菱形各边的中点所得的四边形是矩形,该命题正确;C. 矩形的对角线互相平分,但是不垂直,该命题错误;D. 顺次连结矩形各边的中点所得的四边形是菱形,该命题错误;故选:B.【点睛】本题考查特殊四边形的判定和性质,掌握菱形的性质、矩形的性质、中点四边形的定义是解题的关键.5.如图,把一张长方形纸片沿对角线折叠,若△EDF是等腰三角形,则∠BDC()A .45ºB .60ºC .67.5ºD .75ºC解析:C【分析】 由翻折可知:△BDF ≌△BCD ,所以∠EBD=∠CBD ,∠E=∠C=90°,由于△EDF 是等腰三角形,易证∠ABF=45°,所以∠CBD=12∠CBE=22.5°,从而可求出∠BDC=67.5°. 【详解】解:由翻折的性质得,∠DBC=∠EBD ,∵矩形的对边AD ∥BC ,∠E=∠C=90°,∴∠DBC=∠ADB ,∴∠EBD=∠ADB ,∵△EDF 是等腰三角形,∠E=90°,∴△EDF 是等腰直角三角形,∴∠DFE=45°,∵∠EBD+∠ADB=∠DFE ,∴∠DBF=12∠DFE=22.5°, ∴∠CBD =22.5°,∴∠BDC=67.5°,故选:C .【点睛】本题考查等腰三角形,涉及矩形的性质,全等三角形的判定与性质等知识,需要学生灵活运用所学知识.6.如图,已知在正方形ABCD 中,E 是BC 上一点,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于点G ,连接DG .现有如下4个结论:①AG =GF ;②AG 与EC 一定不相等;③45GDE ∠=︒;④BGE △的周长是一个定值.其中正确的个数为( )A .1B .2C .3D .4C解析:C【分析】根据HL 证明△ADG ≌△FDG ,根据角的平分线的意义求∠GDE ,根据GE=GF+EF=EC+AG ,确定△BGE 的周长为AB+AC.【详解】根据折叠的意义,得△DEC ≌△DEF ,∴EF=EC ,DF=DC ,∠CDE=∠FDE ,∵DA=DF ,DG=DG ,∴Rt △ADG ≌Rt △FDG ,∴AG=FG ,∠ADG=∠FDG ,∴∠GDE=∠FDG+∠FDE =12(∠ADF+∠CDF ) =45°, ∵△BGE 的周长=BG+BE+GE ,GE=GF+EF=EC+AG ,∴△BGE 的周长=BG+BE+ EC+AG=AB+AC ,是定值,∴正确的结论有①③④,故选C.【点睛】本题考查了正方形中的折叠变化,直角三角形的全等及其性质,角的平分线,三角形的周长,熟练掌握折叠的全等性是解题的关键.7.如图,正方形ABCD 的对角线相交于点O ,正方形OMNQ 与ABCD 的边长均为a ,OM 与CD 相交于点E ,OQ 与BC 相交于点F ,且满足DE CF ,则两个正方形重合部分的面积为( )A .212aB .214aC .218a D .2116a B 解析:B【分析】由正方形OMNQ 与ABCD 得∠DOC=∠MOQ=90°可推出∠DOE=∠COF 由AC ,BD 是正方形ABCD 的对角线求得∠ODE=∠OCF=45°,可证△DOE ≌△COF (AAS ),利用面积和差S 四边形FOEC = S △EOC +S △DOE =S △DOC =214a 即可. 【详解】∵正方形OMNQ 与ABCD ,∴∠DOC=∠MOQ=90°,∴∠DOE+∠EOC =90º,∠EOC+∠COF=90º,∴∠DOE=∠COF ,又AC ,BD 是正方形ABCD 的对角线,∴∠ODE=∠OCF=45°,∵DE CF =,∴△DOE ≌△COF (AAS ),∴S 四边形FOEC =S △EOC +S △COF = S △EOC +S △DOE =S △DOC ,∵S △DOC =2ABCD 11=44S a 正方形, ∴S 四边形FOEC =214a . 故选择:B .【点睛】 本题考查正方形的性质,全等三角形的判定与性质,掌握正方形的性质,全等三角形的判定与性质是解题关键.8.如图,Rt Rt ABC BAD △≌△,BC 、AD 交于点E ,M 为斜边的中点,若CMD α∠=,AEB β∠=.则α和β之间的数量关系为( )A .2180βα-=︒B .60βα-=︒C .180αβ+=︒D .2βα=A解析:A【分析】根据题意可得,CAB DBA ABC BAD ∠=∠∠=∠,再由直角三角形斜边的中线等于斜边的一半,可证CM DM AM BM ===,继而证明()AMC BMD SSS △≌△,解得1802AMC BMD CAM ∠=∠=︒-∠,最后根据三角形内角和180°定理,分别解得αβ、与CAM ∠的关系,整理即可解题.【详解】Rt Rt ABC BAD △≌△,CAB DBA ABC BAD ∴∠=∠∠=∠M 是AB 的中点,11,22CM AB DM AB ∴== CM DM AM BM ∴===∴∠CAM=∠MCA ,Rt Rt ABC BAD △≌△AC BD ∴=()AMC BMD SSS △≌△1802AMC BMD CAM ∴∠=∠=︒-∠CMD α∴=∠180AMC BMD =︒-∠-∠1802(1802)CAM =︒-⨯︒-∠4180CAM =∠-︒90ABC BAD CAM ∠=∠=︒-∠,AEB β=∠=180BAD ABC ︒-∠-∠180(90)(90)CAM CAM =︒-︒-∠-︒-∠2CAM =∠2180βα∴-=︒故选:A .【点睛】本题考查全等三角形的判定与性质、直角三角形斜边中线的性质、等腰三角形的性质、三角形内角和180°等知识,是重要考点,难度较易,掌握相关知识是解题关键. 9.如图,长方形纸片ABCD ,点E ,M ,N 分别在边AB ,BC ,AD 上,将纸片分别沿EN ,EM 对折,使点A 落在点'A 处,点B 落在点'B 处,若''30A EB ∠=︒,则NEM ∠的度数为( )A .70︒B .75︒C .80︒D .85︒B解析:B【分析】 先由翻折的性质得到'AEN A EN ∠=∠,'BEM B EM ∠=∠,由图可得''''A EN B EM NEM A EB ∠+∠=∠+∠,然后根据180AEN NEM MEB ∠+∠+∠=︒,得到2''180NEM A EB ∠+∠=︒,进而可求出NEM ∠的度数.【详解】由翻折的性质可知:'AEN A EN ∠=∠,'BEM B EM ∠=∠,由图知:''''A EN B EM NEM A EB ∠+∠=∠+∠,又∵180AEN NEM MEB ∠+∠+∠=︒,∴''180A EN B EM NEM ∠+∠+∠=︒,∴2''180NEM A EB ∠+∠=︒,又∵''30A EB ∠=︒,∴75NEM ∠=︒.故选:B .【点睛】本题主要考查的是翻折的性质,掌握翻折的性质是解题的关键.10.矩形不一定具有的性质是( )A .对角线互相平分B .是轴对称图形C .对角线相等D .对角线互相垂直参考答案D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A 、B 、C 正确,故选:D .【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.二、填空题11.如图,在平行四边形ABCD 中,2AD CD =,F 是AD 的中点,CE AB ⊥,垂足E 在线段AB 上.下列结论①DCF ECF ∠=∠;②EF CF =;③3DFE AEF ∠=∠;④2BEC CEF S S <中,一定成立的是_________.(请填序号)②③④【分析】如图延长EF 交CD 的延长线于H 作EN ∥BC 交CD 于NFK ∥AB 交BC 于K 利用平行四边形的性质全等三角形的判定和性质一一判断即可解决问题【详解】解:如图延长EF 交CD 的延长线于H 作EN ∥解析:②③④【分析】如图延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K .利用平行四边形的性质,全等三角形的判定和性质一一判断即可解决问题.【详解】解:如图,延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K . ∵四边形ABCD 是平行四边形,∴AB ∥CH ,∴∠A=∠FDH ,在△AFE 和△DFH 中,A FDH AFE HFD AF DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFH ,∴EF=FH ,∵CE ⊥AB ,AB ∥CH ,∴CE ⊥CD ,∴∠ECH=90°,∴CF=EF=FH ,故②正确,∵DF=CD=AF ,∴∠DFC=∠DCF=∠FCB ,∵∠FCB >∠ECF ,∴∠DCF >∠ECF ,故①错误,∵FK ∥AB ,FD ∥CK ,∴四边形DFKC 是平行四边形,∵AD=2CD ,F 是AD 中点,∴DF=CD ,∴四边形DFKC 是菱形,∴∠DFC=∠KFC ,∵AE ∥FK ,∴∠AEF=∠EFK ,∵FE=FC ,FK ⊥EC ,∴∠EFK=∠KFC ,∴∠DFE=3∠AEF ,故③正确,∵四边形EBCN 是平行四边形,∴S △BEC =S △ENC ,∵S △EHC =2S △EFC ,S △EHC >S △ENC ,∴S △BEC <2S △CEF ,故④正确,故正确的有②③④.故答案为②③④.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、直角三角形斜边的中线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.12.如图,在菱形ABCD 中,6AC =,5AB =,点E 是直线AB ,CD 之间任意一点,连接AE ,BE ,DE ,CE ,则EAB 和ECD 的面积之和是______.12【分析】连接BD 根据菱形对角线的性质利用勾股定理计算BD 的长根据两平行线的距离相等所以△EAB 和△ECD 的面积和等于菱形ABCD 面积的一半再利用菱形面积等于对角线积的一半计算可得结论【详解】如图解析:12【分析】连接BD ,根据菱形对角线的性质,利用勾股定理计算BD 的长,根据两平行线的距离相等,所以△EAB 和△ECD 的面积和等于菱形ABCD 面积的一半,再利用菱形面积等于对角线积的一半计算可得结论.【详解】如图,连接BD 交AC 于O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,OA=12AC=12×6=3, ∵AB =5,由勾股定理得:224AB OA -=,∴BD=2OB=8,∵AB ∥CD , ∴△EAB 和△ECD 的高的和等于点C 到直线AB 的距离,∴△EAB 和△ECD 的面积和=12×ABCD S 菱形=12×12×AC×BD=168=124⨯⨯. 故答案为:12.【点睛】本题考查菱形的性质,三角形的面积,平行线的性质,熟知平行线的距离相等,得△EAB 和△ECD 的高的和等于点C 到直线AB 的距离是解题的关键.13.在Rt ABC 中,∠C =90°,点D 是AB 边的中点,若AB =8,则CD =______.4【分析】根据直角三角形斜边上的中线等于斜边的一半可以得【详解】∵D 是AB 的中点∴∴故答案为:4【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质熟记性质是解题的关键解析:4.【分析】根据直角三角形斜边上的中线等于斜边的一半可以得2AB CD =.【详解】∵90C ∠=︒,D 是AB 的中点,∴2AB CD =, ∴118422CD AB ==⨯=. 故答案为:4.【点睛】 本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.14.如图,四边形ABCD是长方形,F是DA延长线上一点,CF交AB于点E,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F.若∠ECB=20°,则∠ACD的度数是______________.30°【分析】根据矩形的性质得到AD∥BC∠DCB=90°根据平行线的性质得到∠F=∠ECB=20°根据三角形的外角的性质得到∠ACG=∠AGC=∠GAF+∠F=2∠F=40°于是得到结论【详解】解解析:30°【分析】根据矩形的性质得到AD∥BC,∠DCB=90°,根据平行线的性质得到∠F=∠ECB=20°,根据三角形的外角的性质得到∠ACG=∠AGC=∠GAF+∠F=2∠F=40°,于是得到结论.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,∠DCB=90°,∴∠F=∠ECB∵∠ECB=20°,∴∠F=∠ECB=20°,∵∠GAF=∠F,∴∠GAF=∠F=20°,∴∠ACG=∠AGC=∠GAF+∠F=2∠F=40°,∴∠ACB=∠ACG+∠ECB=60°,∴∠ACD=90°﹣∠ACB=90°﹣60°=30°,故答案为:30°.【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.15.正三角形ABC中,已知AB=6,D是直线AC上的动点,CE⊥BD于点E,连接AE,则AE长的取值范围是_______________.≤AE≤【分析】取BC中点O利用勾股定理以及直角三角形的性质分别求得AO和OE再利用三角形三边关系即可求解【详解】解:取BC中点O连接OAOE∵△ABC正三角形且AB=6∴AO⊥BCBO=OC=BC解析:333≤AE≤333【分析】取BC 中点O ,利用勾股定理以及直角三角形的性质分别求得AO 和OE ,再利用三角形三边关系即可求解.【详解】解:取BC 中点O ,连接OA 、OE ,∵△ABC 正三角形,且AB=6,∴AO ⊥BC ,BO=OC=12BC=12AB=3, ∴22226333AB BO -=-=,在△OAE 中,OA-OE<AE< OA+OE ,当O 、A 、E 在同一直线上时,取等号,∴OA-OE ≤AE ≤OA+OE , ∴333≤AE 333≤, 故答案为:333≤AE 333≤.【点睛】本题考查了等边三角形的性质,直角三角形的性质,三角形三边的关系,注意,直角三角形斜边上的中线等于斜边的一半.16.如图,在四边形ABCD 中,AC a =,BD b =,且AC BD ⊥顺次连接四边形ABCD 各边的中点,得到四边形1111D C B A ,再顺次连接四边形1111D C B A 各边中点,得到四边形2222A B C D …如此进行下去,得到四边形n n n n A B C D ,下列结论正确的有__________.①四边形2222A B C D 是矩形;②四边形4444A B C D 是菱形;③四边形5555A B C D 的周长是4a b +.②③【分析】利用三角形的中位线的性质证明四边形是矩形四边形是菱形四边形是矩形四边形是菱形从而可得到规律序号n 是奇数时四边形是矩形当序号n 是偶数时四边形是菱形再探究n 是奇数时四边形的周长即可解决问题【解析:②③【分析】利用三角形的中位线的性质证明四边形1111D C B A 是矩形,四边形2222A B C D 是菱形,四边形3333A B C D 是矩形,四边形4444A B C D 是菱形,从而可得到规律,序号n 是奇数时四边形是矩形,当序号n 是偶数时四边形是菱形,再探究n 是奇数时四边形的周长即可解决问题.【详解】解: 1111,,,A B C D 分别是,,,AB BC CD DA 的中点,1111111111//,,//,,22A B AC A B AC C D AC C D AC ∴== 11//,A D BD 11111111//,,A B C D A B C D ∴=∴ 四边形1111D C B A 是平行四边形,,AC BD ⊥ 11//,A B AC 11//,A D BD1111,A B A D ∴⊥∴ 四边形1111D C B A 是矩形,1111,AC B D ∴=如图,2222,,,A B C D 分别是11111111,,,A B B C C D D A 的中点,∴ 2211221111,,22A B AC A D B D == 四边形2222A B C D 是平行四边形, 2222,A B A D ∴=∴ 四边形2222A B C D 是菱形,故①不符合题意,2222,A C B D ∴⊥同理可得:四边形3333A B C D 是矩形,四边形4444A B C D 是菱形,故②符合题意,······总结规律:四边形n n n n A B C D , 当序号n 是奇数时四边形是矩形,当序号n 是偶数时四边形是菱形,111111111111,,2222A B C D AC a A D B C BD b ====== ∴ 四边形1111D C B A 的周长为,a b +如图, 四边形1111D C B A 是矩形,四边形2222A B C D 是菱形,2222,,,A B C D 分别是11111111,,,A B B C C D D A 的中点,222222112211,,,A C B D A C A D B D A B ∴⊥==由中位线的性质同理可得:33332233332211111111,,22242224A DBC BD a a D C A B A C b b ===⨯====⨯= 所以四边形3333A B C D 的周长为()1,2a b + 由规律可得:四边形5555A B C D 是矩形, 同理可得:四边形5555A B C D 的周长是()11.224a b a b +⨯+=故③符合题意. 故答案为②③.【点睛】本题考查三角形的中位线的性质,中点四边形,菱形的判定与性质,矩形的判定与性质,解题的关键是学会从特殊到一般,探究规律,利用规律解决问题.17.已知:如图,把长方形纸片ABCD 沿EF 折叠,使D C 、分别落在D C ''、的位置,若65EFB ︒∠=,则AED '∠的度数为_________.【分析】由长方形纸片可得再求解由折叠的性质求解结合平角的定义可得答案【详解】解:长方形纸片由折叠可得:故答案为:【点睛】本题考查的是矩形与折叠平行线的性质简单题解题的关键是理解折叠的性质 解析:50︒【分析】由长方形纸片ABCD ,65EFB ∠=︒可得//,AD BC 再求解,DEF ∠ 由折叠的性质求解,D EF '∠ 结合平角的定义可得答案.【详解】 解: 长方形纸片ABCD ,65EFB ∠=︒,//,AD BC ∴65DEF EFB ∴∠=∠=︒,由折叠可得:65D EF DEF '∠=∠=︒,180180656550.AED D EF DEF ''∴∠=︒-∠-∠=︒-︒-︒=︒故答案为:50.︒【点睛】本题考查的是矩形与折叠,平行线的性质,简单题,解题的关键是理解折叠的性质. 18.如图,在正方形ABCD 中,有面积为4的正方形EFGH 和面积为2的正方形PQMN 、点E F P Q 、、、分别在边AB BC CD AD 、、、上,点M N 、在边HG 上,且组成的图形为轴对称图形,则正方形ABCD 的面积为__________.【分析】连接交于交于交于依据轴对称图形的性质即可得到的长进而得到正方形的面积【详解】解:如图连接交于交于交于正方形中有面积为4的正方形和面积为2的正方形又组成的图形为轴对称图形为对称轴为等腰直角三角 解析:279242【分析】连接BD ,交PQ 于R ,交HG 于S ,交EF 于K ,依据轴对称图形的性质,即可得到BD 的长,进而得到正方形ABCD 的面积.【详解】解:如图,连接BD ,交PQ 于R ,交HG 于S ,交EF 于K ,正方形ABCD 中,有面积为4的正方形EFGH 和面积为2的正方形PQMN , 2EH EF ∴==,2MQ QP ==, 又组成的图形为轴对称图形, BD ∴为对称轴, BEF ∴∆、DPQ ∆为等腰直角三角形,四边形EKSH 、四边形MSRQ 为矩形, 112EK BK EF ∴===,11222DR QR PQ ===,2KN EH ==,2RS MQ ==, 1312223222BD ∴=+++=+, ∴正方形ABCD 的面积22113279(32)222242BD ==⨯+=+, 故答案为:279242+.【点睛】本题主要考查了轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.19.如图,在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB =8,EF =1,则BC 长为__________.15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB 得出AF=AB=8同理可得DE=DC=8再由EF 的长即可求出BC 的长【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BCDC=AB=8A解析:15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB ,得出AF=AB=8,同理可得DE=DC=8,再由EF 的长,即可求出BC 的长.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,DC=AB=8,AD=BC ,∴∠AFB=∠FBC ,∵BF 平分∠ABC ,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=8,同理可证:DE=DC=8,∵EF=AF+DE-AD=1,即8+8-AD=1,解得:AD=15;故答案为:15.【点睛】本题主要考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AF=AB是解决问题的关键.20.如图,正方形ABCD中,点E,F分别在BC和AB上,BE=2,AF=2,BF=4,将△BEF绕点E顺时针旋转,得到△GEH,当点H落在CD边上时,F,H两点之间的距离为______.【分析】根据旋转的可证明△BEF≌△CHE作FM⊥CD于M分别求出FMMH的长利用勾股定理即可求解【详解】∵将△BEF绕点E顺时针旋转得到△GEH点H落在CD边上∵BE=2AF=2BF=4∴GH=B解析:10【分析】根据旋转的可证明△BEF≌△CHE,作FM⊥CD于M,分别求出FM,MH的长,利用勾股定理即可求解.【详解】∵将△BEF绕点E顺时针旋转,得到△GEH,点H落在CD边上,∵BE=2,AF=2,BF=4∴GH=BF=EC=4,222425+=∴在Rt△HEC中,()22-=2542∴BE=CH又∵∠B=∠C=90°,BF=CE=4∴△BEF≌△CHE作FM⊥CD于M,故四边形AFMD是矩形,∴DM=AF=2,MH=CM-CH=2,FM=AD=6∴FH=22+=26210故答案为:210.【点睛】此题主要考查正方形的性质与全等三角形的判定与性质,解题的关键是熟知勾股定理、正方形的性质、矩形的性质及全等三角形的判定定理.三、解答题21.如图,四边形ABCD是矩形,对角线AC与BD相交于点O,∠AOD=60°,AD=2,求AC的长度.解析:4【分析】根据矩形的性质和等边三角形的性质,可以得到OA的长,从而可以求得AC的长.【详解】解:∵四边形ABCD是矩形,∴OA=OC=OB=OD,∵∠AOD=60°,AD=2,∴△AOD是等边三角形,∴OA=OD=2,∴AC=2OA=4,即AC的长度为4.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟记性质并判断出△AOB是等边三角形是解题的关键.22.如图,过ABCD 对角线AC 与BD 的交点E 作两条互相垂直的直线,分别交边AB 、BC .CD 、DA 于点P 、M 、Q 、N .(1)求证:PBE QDE ≅△△;(2)顺次连接点P 、M 、Q 、N ,求证:四边形PMQN 是菱形.解析:(1)见解析;(2)见解析.【分析】(1)由ASA 证PBE QDE ≅△△即可;(2)由全等三角形的性质得出EP EQ =,同理可得EM EN =,根据对角线互相平分的四边形是平行四边形得四边形PMQN 是平行四边形,再由对角线互相垂直的平行四边形是菱形,即可得出结论.【详解】(1)证明:四边形ABCD 是平行四边形,EB ED ∴=,//AB CD ,EBP EDQ ∴∠=∠,在PBE △和QDE △中,EBP EDQ EB ED BEP DEQ ∠=∠⎧⎪=⎨⎪∠=∠⎩,()PBE QDE ASA ∴≅△△;(2)证明:如图所示:PBE QDE ≅△△,EP EQ ∴=,同理可得EM EN =,∴四边形PMQN 是平行四边形,PQ MN ⊥,∴四边形PMQN 是菱形.【点睛】本题考查了平行四边形的判定与性质,菱形的判定,全等三角形的判定与性质;熟练掌握菱形的判定和平行四边形的判定与性质,证明三角形全等是解题的关键.23.如图,已知点E 是ABCD 的边CD 延长线上的一点;连接AE ,BD ,且//AE BD ;过点E 作EF BC ⊥,交BC 的延长线于点F ,连接DF ;求证:DF DE =解析:见解析【分析】根据平行四边形的性质可得AB CD =,//AB CD ,然后结合题意利用两组对边分别平行的四边形是平行四边形可判定四边形ABDE 是平行四边形,然后利用平行四边形的性质和直角三角形斜边中线等于斜边一半证明求解.【详解】证明:∵四边形ABCD 是平行四边形,∴AB CD =,//AB CD ,又∵//AE BD∴四边形ABDE 是平行四边形;∴AB DE =,即CD DE =;又EF BC ⊥于点F ;∴∠EFC=90°∴在Rt CEF △中,点D 是斜边CE 的中点∴DF DE =.【点睛】本题考查平行四边形的性质和判定以及直角三角形斜边中线等于斜边的一半,掌握相关性质定理正确推理论证是解题关键.24.如图,平行四边形ABCD 中,,AP BP 分别平分DAB ∠和CBA ∠,交于DC 边上点P , 2.5AD =.(1)求线段AB 的长.(2)若3BP =,求ABP △的面积.解析:(1)5;(2)6【分析】(1)证出AD=DP=2.5,BC=PC=2.5,得出DC=5=AB ,即可求出答案;(2)根据平行四边形性质得出AD ∥CB ,AB ∥CD ,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB 中求出∠APB=90°,由勾股定理求出AP ,从而求得△ABP 的面积.【详解】解:(1)∵AP 平分∠DAB ,∴∠DAP=∠PAB ,∵四边形ABCD 是平行四边形,∵AB ∥CD ,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP 是等腰三角形,∴AD=DP=2.5,同理:PC=CB=2.5,即AB=DC=DP+PC=5;(2)∵四边形ABCD 是平行四边形,∴AD ∥CB ,AB ∥CD ,∴∠DAB+∠CBA=180°,又∵AP 和BP 分别平分∠DAB 和∠CBA ,∴∠PAB+∠PBA=12(∠DAB+∠CBA )=90°, 在△APB 中,∠APB=180°-(∠PAB+∠PBA )=90°;在Rt △APB 中,AB=5,BP=3,∴,∴△APB 的面积=4×3÷2=6.【点睛】本题考查了平行四边形的性质,平行线的性质,等腰三角形的性质和判定,三角形的内角和定理,勾股定理等知识点的综合运用.25.如图,BD 为ABC 的角平分线,E 为AB 上一点,BE BC =,连结DE . (1)求证:BDC BDE ≅△△;(2)若7AB =,2CD =,90︒∠=C ,求ABD △的面积.解析:(1)证明见解析;(2)7【分析】(1)根据角平分线的性质可得DBC DBE ∠=∠,再根据已知条件BE BC =,BD BD =,即可证明;(2)根据(1)中结果,得2DE CD ==,90DEB C ∠=∠=︒,即可求得ABD △的面积.【详解】(1)∵BD 平分ABC ∠,∴DBC DBE ∠=∠,∴在BDC 和BDE 中,BD BD =,DBC DBE ∠=∠,BE BC =,∴BDC ≌BDE ;(2)∵BDC ≌BDE ,∴2DE CD ==,90DEB C ∠=∠=︒, ∴1172722ABD S AB DE =⋅=⨯⨯=△. 【点睛】本题考查了角平分线的性质、全等三角形的证明和性质、三角形面积等知识,解题的关键是熟练掌握运用以上知识点.26.如图,在ABC 中,AB AC =,10BC =.(1)尺规作图:(要求:保留作图痕迹,不写作法)①作BAC ∠的平分线交BC 于点D ;②作边AC 的中点E ,连接DE ;(2)在(1)所作的图中,若12AD =,则DE 的长为__________.解析:(1)①见解析;②见解析;(2)6.5(1)①以A 为圆心,小于AB 的长度为半径画圆,交AB 、AC 于两个点,再分别以这两个点为圆心,一样的半径画弧,交于一点,连接这个点与点A ,即可得到BAC ∠的平分线,再画出它与BC 的交点D ;②作线段AC 的垂直平分线,即可找到线段AC 的中点E ,连接DE ;(2)由等腰三角形“三线合一”的性质得152BD BC ==,AD BC ⊥,用勾股定理求出AB 的长,再根据中位线的性质得到DE 的长.【详解】解:(1)①如图所示:②如图所示:(2)∵AB AC =,AD 平分BAC ∠,∴152BD BC ==,AD BC ⊥, 在Rt ABD △中,2213AB AD BD =+=, ∵E 、D 分别是AC 和BC 的中点,∴1 6.52DE AB ==, 故答案是:6.5.【点睛】 本题考查等腰三角形的性质,中位线的定理,以及角平分线和垂直平分线的作法,解题的关键是熟练掌握这些几何的性质定理以及作图方法.27.(问题提出)小颖发现某座房屋的侧面是一种特殊的五边形,她决定好好研究一下它的特点,并计算它(问题探究)定义:如图()1,我们把满足,,90AB AE CB DE C D ︒==∠=∠=的五边形ABCDE 叫做屋形.其中,AB AE 叫做脊,,BC DE 叫做腰,CD 叫做底.性质:边:屋形的腰相等,脊相等;角:①屋形腰与底的夹角相等;②脊与腰的夹角相等;对角线:①②屋形有两组对角线分别相等,且其中一组互相平分.对称性:屋形是以底的垂直平分线为对称轴的轴对称图形;(1)请直接填写屋形对角线的性质①;(2)请你根据定义证明“屋形的脊与腰的夹角相等”;己知:如图,五边形ABCDE 是屋形.求证:证明:(问题解决)(3)如图,在屋形ABCDE 中,若5,8,6AB BC CD ===,试求出屋形ABCDE 的面积.解析:(1)屋形有一条对角线与底平行且相等;(2)见解析;(3)60【分析】(1)根据屋形的特点可得结论;(2)连接BE ,证明四边形BCDE 为平行四边形,再根据+CBE ABE DEB AEB ∠=∠+得出结论;(3)连接BE ,过A 作AH BE ⊥,先利用勾股定理得出AH 的值,再利用三角形和矩形的面积公式求解即可.【详解】解:(1)屋形有一条对角线与底平行且相等(2)求证:屋形的脊与腰夹角相等证明:连接BEAB AE =,ABE AEB ∴∠=∠,C D ∠=∠,//BC DE ∴,又BC DE =,∴四边形BCDE 为平行四边形,90CBE DEB ︒∴∠=∠=∵ABE AEB ∠=∠,∴+CBE ABE DEB AEB ∠=∠+,ABC AED ∴∠=∠.【问题解决】连接BE ,过A 作AH BE ⊥,5AB =,5AE ∴=,,AH BE AB AE ⊥=,142BH EH BE ∴===, 2222543AH AB BH ∴=--=,∴BE=2BH=6,183122ABE S ∆∴=⨯⨯=, BCDE 8648S =⨯=矩,481260+=,∴屋形ABCDE 的面积为60.【点睛】本题考查了平行四边形的判定与性质及勾股定理,解题的关键是正确作出辅助线. 28.如图,已知四边形ABCD 是平行四边形,E 是AB 延长线上一点且BE AB =,连接CE ,BD .(1)求证:四边形BECD 是平行四边形(2)连接DE ,若4AB BD ==,22DE =,求BECD 的面积.解析:(1)见解析;(2)47BECD S =菱形 【分析】(1)根据四边形ABCD 是平行四边形,得到AB CD =,//AB CD ,再根据BE AB =,得到BE CD =,利用一组对边平行且相等的四边形BECD 是平行四边形去判定.(2)先利用已知条件证四边形BECD 是菱形,再在Rt BOE △中,利用勾股定理求BO ,进而求BC ,则可求菱形面积.【详解】解:(1)∵四边形ABCD 是平行四边形,∴AB CD =,//AB CD ,又∵BE AB =,∴BE CD =,//BE CD ,∴四边形BECD 是平行四边形.(2)如图,连接DE ,交BC 于点O ,∵4AB BD ==,BE AB =,∴4BD BE ==,由(1)得四边形BECD 是平行四边形,∴BECD 是菱形,∴DE BC ⊥,∵DE =∴12OE DE ==,在Rt BOE △中,BO === ∴2BC BO ==∴1122BECD S BC DE =⋅=⨯=菱形 【点睛】 本题考查了平行四边形、菱形性质和判定的综合应用,熟练掌握相关知识是解答此题的关键.。

平行四边形综合题(共40道)—2023-2024学年八年级数学下册专题训练 (解析版)

平行四边形综合题(共40道)—2023-2024学年八年级数学下册专题训练 (解析版)

z 平行四边形综合题(共40道)!一、单选题1.如图,平行四边形ABCD 的对角线AC,BD 相交于点O,∠ABC =60°,AB =2BC,E 是AB 的中点,连接CE,OE .下列结论:①∠ACD =30°;②CE 平分∠DCB ;③CD =4OE ;④S △"#$=%&S 四边形'(").其中结论正确的序号有( )A .①②B .②③④C .①②③D .①③④ 【答案】C【分析】根据AB =2BC ,点E 是AB 的中点,∠ABC =60°,可知△BCE 是等边三角形,得出∠BEC =∠BCE =60°,AE =BE =CE ,进而得出∠AEC ,根据平行四边形得性质可判断①,再根据平行四边形的性质得∠BCD =120°,即可说明CE 是否平分∠DCB ,然后说明OE 是△ABC 的中位线,可判断CD 和OE 的关系,再根据点O 是AC 的中点,得S △'#$=S △"#$,由点E 是AB 的中点,得S △'"$=S △("$=2S △"#$,进而得S △'("=4S △"#$,然后根据平行四边形的性质得S 四边形'(")=2S △'(",即可判断④,得出答案.【详解】∵AB =2BC ,点E 是AB 的中点, ∴AB =2BE .∵AB =2BC ,∠ABC =60°,∴BC =BE ,∴△BCE 是等边三角形,∴∠BEC =∠BCE =60°,AE =BE =CE ,∴∠AEC =120°,∴∠ACE =∠CAE =30°.∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD =2BC ,∴∠ACD =∠CAE =30°,∠BCD =120°,∴CE 是平分∠DCB .则①②正确;∵点E 是AB 的中点,点O 是AC 的中点,∴OE 是△ABC 的中位线,∴2OE =BC ,∴CD =4OE .则③正确;∵点O 是AC 的中点,∴S △'#$=S △"#$.∵点E 是AB 的中点,∴S △'"$=S △("$=2S △"#$,∴S △'("=4S △"#$.由平行四边形的性质得S 四边形'(")=2S △'(", ∴S 四边形'(")=8S △"#$,即S △"#$=18S 四边形'("). 则④不正确.所以正确的有①②③.故选:C.【点睛】本题主要考查了平行四边形的性质,等边三角形的判定和性质,中位线的性质,求三角形的面积等,弄清各三角形的面积之间的关系是解题的关键.2.如图,四边形ABCD 是平行四边形,点E 是边CD 上一点,且BC =EC ,CF ⊥BE 交AB 于点F ,P 是EB 延长线上一点,则下列结论:①BE 平分∠CBF ;②CF 平分∠DCB ;③BC =FB ;④PF =PC .其中正确结论的有( )A .①②③B .①②④C .②③④D .①②③④【答案】D【分析】根据等边对等角,平行四边形的性质,平行线的性质即可证明①正确;根据线段垂直平分线的判定即可证明②正确;根据平行线的性质,等角对等边即可证明③正确;根据线段垂直平分线的判定即可证明④正确;即可得出答案.【详解】解:证明:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴BE平分∠CBF,①正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴CF平分∠DCB,②正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故选:D.【点睛】本题考查了平行四边形的性质,平行线的性质,线段垂直平分线的性质,等腰三角形的性质等知识,正确应用等腰三角形的性质是解题关键.3.如图,在▱ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,∠ADO;②EG=EF;③GF平分∠AGE;④GF⊥AC,其中正确的有()下列结论:①∠OBE=%*zA .1个B .2个C .3个D .4个 【答案】D【分析】根据AD ∥BC ,AD =BC 可得OB =BC ,由E 是OC 的中点,即可判断①;由E 是OC 的中点,OB =BC ,可得∠AEB =90°,再由点E 、F 是OC 、OD 的中点,即可判断②;证明四边形BEFG 是平行四边形,可判断③,由GF ∥BE ,即可判断④;【详解】解:在▱ABCD 中,AD ∥BC ,AD =BC ,∴∠ADO =∠OBC ,∵BD =2AD ,∴OB =BC ,∵E 是OC 的中点,∴∠OBE =%*∠OBC =%*∠ADO ,故①正确;∵E 是OC 的中点,OB =BC ,∴∠AEB =90°,∵G 是AB 的中点,∴EG =%*AB , ∵点E 、F 是OC 、OD 的中点,∴EF =%*CD ,EF ∥CD ,∵AB =CD ,∴EG =EF ,故②正确;∵EF ∥CD ,AB ∥CD ,∴BG ∥GF∵BG =%*AB =%*CD =EF , ∴四边形BEFG 是平行四边形,∴GF ∥BE ,∴∠AGF=∠ABE,∠FGE=∠BEG,∵BG=GE,∴∠ABE=∠BEG,∴∠AGF=∠FGE,∴GF平分∠AGE,故③正确;∵GF∥BE,∴∠OEB=∠FHO=90°,∴GF⊥AC,故④正确。

人教版八年级数学下册第十八章:平行四边综合复习训练

人教版八年级数学下册第十八章:平行四边综合复习训练

八年级数学下册第十八章:平行四边形综合复习训练一、选择题。

1、如图,在▱ABCD中,∠A+∠C=140°,则∠B的度数为()A.140° B.110° C.70° D.无法确定1题图 2题图 4题图2、如图,平行四边形ABCD中,对角线AC、BD交于点E,∠CBD=90°,BC=4,AC=10,则这个平行四边形面积为()A.24 B.40 C.20 D.123、若平行四边形两个内角的度数比为1:2,则其中较大内角的度数为()A.110° B.120° C.100° D.135°4、如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD交AD于点E,AB=5,BC=9,则EF长为()A.1 B.2 C.3 D.45、菱形,矩形,正方形都具有的性质是( )A.四条边相等,四个角相等 B.对角线相等C.对角线互相垂直 D.对角线互相平分6、如图,菱形ABCD的边长为,对角线AC,BD交于点O,OA=1,则菱形ABCD的面积为()A. B.2 C.2 D.46题图 7题图 8题图7、如图,E、F、G、H分别是四边形ABCD边AB、BC、CD、AD的中点,下列说法正确的是()A. 当AC⊥BD时,四边形EFGH是菱形B. 当AC=BD时,四边形EFGH是矩形C. 当四边形ABCD是平行四边形时,则四边形EFGH是矩形D. 当四边形ABCD是矩形时,则四边形EFGH是菱形8、如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH9题图 10题图9、如图,已知正方形ABCD的边长为12,BE=EC,将正方形的边CD沿DE折叠到DF,延长EF交AB于G,连接DG.现有如下3个结论:①AG+EC=GE;②∠GDE=45°;③五边形DAGEC的周长是44,其中正确的个数为()A.0 B.1 C.2 D.310、如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°,给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④4FH=BD;其中正确结论的是()A.①②③ B.①②④ C.①③④D.②③④二、填空题。

人教版八年级数学下册第18章平行四边形综合提升卷(无答案)

人教版八年级数学下册第18章平行四边形综合提升卷(无答案)

人教版八年级数学下册第18章平行四边形综合提升卷一、选择题1.如图,在平行四边形ABCD中,AD=2AB,CE⊥AB,垂足E在线段AB上,F、G分别是AD、CE的中点,连接FG,EF、CD的延长线交于点H,则下列结论:①;②EF=CF:③S△BEC=2S△CEF;④∠DFE=3∠AEF.其中,正确结论的个数是()A.1个B.2个C.3个D.4个2.如图,为了测量池塘边A、B两地之间的距离,在线段AB的同侧取一点C,连结CA并延长至点D,连结CB并延长至点E,使得A、B 分别是CD、CE的中点,若DE=18m,则线段AB的长度是()A.9m B.12m C.8m D.10m3.下列判定中,正确的个数有()①一组对边平行,一组对边相等的四边形是平行四边形;②对角线互相平分且相等的四边形是矩形;③对角线互相垂直的四边形是菱形;④对角线互相垂直平分且相等的四边形是正方形.A.1个B.2个C.3个D.4个4.如图,在平行四边形ABCD中,AB⊥AC,若AB=8,AC=12,则BD的长是()A.22 B.16 C.18 D.205.如图,四边形ABCD是菱形,∠ABC=120°,BD=4,则BC的长是()A.6 B.5 C.4 D.46.如图,平行四边形ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.12 B.15 C.18 D.217.下列命题中,其真命题个数有()①有一组对边平行,另一组对边相等的四边形是平行四边形②依次连接任意一个矩形各边中点所得的四边形是菱形③有一组对边平行,对角线相等的四边形是矩形④菱形的对角线相互垂直平分,且相等.A.4个B.3个C.2个D.1个8.如图,ABCD是平行四边形,则下列各角中最大的是()A.∠1 B.∠2 C.∠3 D.∠49.如图,在菱形ABCD中,若∠B=60°,点E、F分别在AB、AD上,且BE=AF,则∠AEC+∠AFC的度数等于()A.120°B.140°C.160°D.180°10.如图,在平行四边形ABCD中,AB=4,BC=6,对角线AC、BD相交于点O,则OA的取值范围是()A.2<OA<10 B.1<OA<5 C.4<OA<6 D.2<OA<8 11.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为()A.45°B.15°C.10°D.125°12.下列条件中,不能判定四边形ABCD是平行四边形的是()A.AB∥CD,AD∥BC B.AB=AD,CB=CDC.∠A=∠C,∠B=∠D D.AB∥CD,AB=CD13.已知矩形ABCD中,如图,对角线AC、BD相交于O,AE⊥BD于E,若∠DAE:∠BAE=3:1,则∠EAC为()A.22.5°B.30°C.45°D.35°14.在▱ABCD中,∠A:∠B:∠C:∠D的值可能是()A.5:2:2:5 B.5:5:2:2 C.2:5:2:5 D.2:2:5:5 15.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于E,若点G是AE中点且∠AOG=30°,则下列结论正确的个数为()(1)△OGE是等边三角形;(2)DC=3OG;(3)OG=BC;(4)S△AOE=S矩形ABCDA.1个B.2个C.3个D.4个16.如图,在平行四边形ABCD中,AD=2AB,AE平分∠BAD交BC边于点E,且CE=3,AD的长为()A.4 B.5 C.6 D.717.如图,平行四边形ABCD中,对角线AC、BD相交于O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②EG=GF;③△EFG≌△GBE;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是()A.①②③B.①③④C.①②⑤D.②③⑤18.如图,在▱ABCD中,AB=4,BC=7,∠ABC的平分线交AD于点E,则ED等于()A.2 B.3 C.4 D.519.如图,在矩形ABCD中,点M从点B出发沿BC向点C运动,点E、F分别是AM、MC的中点,则EF的长随着M点的运动()A.不变B.变长C.变短D.先变短再变长20.如图,E,F是四边形ABCD的对角线BD上的两点,AE∥CF,AB∥CD,BE=DF,则下列结论①AE=CF,②AD=BC,③AD∥BC,④∠BCF=∠DAE其中正确的个数为()A.1个B.2个C.3个D.4个二、填空题1.如图,在Rt△ABC中,∠ABC=90°,点D、E、F分别是AB、AC,BC边上的中点,连结BE,DF,已知BE=5,则DF=.2.在同一平面内,设a,b,c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为3.如图,▱ABCD中,一条边AD的长是8,一条对角线AC的长为6,那么它的另一条对角线BD的长x的取值范围是.4.在△ABC中,EF是中位线,AD是中线,则当△ABC满足时,AD=EF.5.如图,直线a∥b∥c∥d,且a与b,c与d之间的距离均为1,b与c之间的距离为2,现将菱形ABCD如图放置,使其四个顶点分别在四条直线上,若∠BCD=120°,则菱形ABCD的边长为.6.在平行四边形ABCD中,AC=12,BD=8,AD=a,那么a的取值范围是.7.如图,正方形ABCD的边长为1,取AB中点F,取BC中G,取CD 中点H,取AD中点E,连接AH,CF,BE,DG,线段AH,CF,BE,DG相交于点M,N,P,Q,连接NQ,则NQ=.8.如图,原点O为平行四边形ABCD的对角线AC的中点,顶点A,B,C,D的坐标分别为(4,2),(a,b),(m,n),(﹣3,2).则(m+n)(a+b)=.9.如图,已知菱形ABCD的边长为2,∠CDA=120°,则对角线AC 的长为.10.如图,在▱ABCD中,对角线AC与BD相交于点O,AC⊥CD,OE∥BC交CD于E,若OC=4,CE=3,则BC的长是.三、解答题1.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为点E、F,且BE=DF.求证:▱ABCD是菱形.2.已知:如图,在▱ABCD中,点E、F是对角线AC上的两点,且AE=CF.求证:BF∥DE.3.如图,在矩形ABCD中,对角线BD的垂直平分线EF交BD于点O,交AD于点E,交BC于点F,连接BE、DF.(1)求证:四边形BFDE是菱形;(2)若AB=3,AD=6,求菱形BFDE的面积.4.如图,在平行四边形ABCD中,E为BC边上一点,且∠B=∠AEB.求证:AC=ED.5.如图所示,△ABC中,∠ABC=90°,D、E分别为AB、AC的中点,延长DE到F,使EF=2DE.求证:四边形BCFE是平行四边形.6.补充完整三角形中位线定理,并加以证明:(1)三角形中位线定理:三角形的中位线;(2)已知:如图,DE是△ABC的中位线,求证:.7.已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)求证:△ABE≌△CDF;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.8.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.证明:∵四边形ABCD是平行四边形,(已知)∴,,()∵DF=BE,(已知)∴BC﹣BE=AD﹣DF,(等式的基本性质)即AF=CE,∵AF=CE,AF∥CE,(已证)∴四边形AECF是平行四边形.()9.如图,在矩形ABCD中AB=4,BC=8,点E、F是BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形.(2)如果四边形AECF是菱形,求这个菱形的边长.10.如图,在▱ABCD中,AM⊥BD,CN⊥BD,垂足分别为点M,N.求证:四边形AMCN是平行四边形.。

2021人教版数学八年级下 平行四边形解答题提升练习含答案

2021人教版数学八年级下 平行四边形解答题提升练习含答案

人教版数学八年级下册:平行四边形解答题专题练习(提升篇)1.如图,在▱ABCD中,点E是边CD的中点,连接BE并延长,交AD延长线于点F,连接BD、CF.(1)求证:△CEB≌△DEF;(2)若AB=BF,试判断四边形BCFD的形状,并证明.2.已知,如图,在Rt△ABC中,E是两锐角平分线的交点,ED⊥BC,EF⊥AC,垂足分别为D,F,求证:四边形CDEF是正方形.3.如图,在▱ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,AE=AF.(1)求证:四边形ABCD是菱形;(2)若∠EAF=60°,CF=2,求AF的长.4.已知P是正方形ABCD边BC上一点,连接AP,作PE⊥AP,且∠DCE=45°.若PE和CE交于E点,连接AE交CD于F.(1)求证:EP=AP;(2)若正方形的边长为4,CF=3,求CE的长.5.点O是三角形ABC所在平面内一动点,连接OB、OC,并将AB、OB、OC、AC中点D、E、F、G,依次连接起来,设DEFG能构成四边形.(1)如图,当点O在△ABC内时,求证:四边形DEFG是平行四边形;(2)若四边形DEFG是正方形,则线段AO与BC应满足条件.(不需写出过程)6.在边长为5的正方形ABCD中,点E在边CD所在直线上,连接BE,以BE为边,在BE的下方作正方形BEFG,并连接AG.(1)如图1,当点E与点D重合时,AG=;(2)如图2,当点E在线段CD上时,DE=2,求AG的长;(3)若AG=,请直接写出此时DE的长.7.已知矩形纸片OBCD的边OB在x轴上,OD在y轴上,点C在第一象限,且OB=8,OD=6.现将纸片折叠,折痕为EF(点E、F是折痕与矩形的边的交点),点P为点D的对应点,再将纸片还原.(Ⅰ)若点P落在矩形OBCD的边OB上,①如图①,当点E与点O重合时,求点F的坐标;②如图②,当点E在OB上,点F在DC上时,EF与DP交于点G,若OP=7,求点F的坐标;(Ⅱ)若点P落在矩形OBCD的内部,且点E,F分别在边OD,边DC上,当OP取最小值时,求点P的坐标(直接写出结果即可).8.如图,△ABC中,点O是边AC上一个动点(不与A、C重合),过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F(1)若CE=8,CF=6,求OC的长;(2)当点O在边AC上运动到何处且△ABC满足什么条件时,四边形AECF是正方形?并说明理由.9.如图,▱ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CG于点E,连接AE,AE⊥AD.(1)若BG=1,BC=,求EF的长度;(2)求证:AB﹣BE=CF.10.如图,△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若AB=10,AC=8,求四边形AEDF的周长;(2)求证:EF垂直平分AD.11.如图1,△ABC是以∠ACB为直角的直角三角形,分别以AB,BC为边向外作正方形ABFG,BCED,连接AD,CF,AD与CF交于点M,AB与CF交于点N.(1)求证:△ABD≌△FBC;(2)如图2,在图1基础上连接AF和FD,若AD=6,求四边形ACDF的面积.12.已知:如图∠ABC=∠ADC=90°,M,N分别是AC、BD的中点.求证:MN⊥BD.13.已知:如下图,△ABC和△BCD中,∠BAC=∠BDC=90°,E为BC的中点,连接DE、AE.若DC∥AE,在DC上取一点F,使得DF=DE,连接EF交AD于O.(1)求证:EF⊥DA.(2)若BC=4,AD=2,求EF的长.14.在四边形ABCD中,∠ABC=∠ADC=90°,连接AC、BD,E、F分别是AC、BD 的中点,连接EF,试证明EF⊥BD.15.如图,Rt△ABC中,∠CAB=90°,∠ACB=30°,D是AB上一点(不与A、B 重合),DE⊥BC于E,若P是CD的中点,请判断△PAE的形状,并说明理由.参考答案1.(1)证明:∵四边形ABCD是平行四边形∴AF∥BC,∴∠AFB=∠CBF,∠FDC=∠DCB,∵点E是CD的中点,∴BE=EF,∴△CEB≌△DEF.(2)解:结论:四边形BCFD是矩形,理由:∵△CEB≌△DEF,∴CE=DE,∵BE=EF,∴四边形BCFD是平行四边形,∵四边形ABCD是平行四边形,∴AB=CD,∵AB=BF,∴BF=CD,∴▱BCFD为矩形.2.证明:过E作EM⊥AB,∵AE平分∠CAB,∴EF=EM,∵EB平分∠CBA,∴EM=ED,∴EF=ED,∵ED⊥BC,EF⊥AC,△ABC是直角三角形,∴∠CFE=∠CDE=∠C=90°,∴四边形EFDC是矩形,∵EF=ED,∴四边形CDEF是正方形.3.(1)证法一:连接AC,如图.∵AE⊥BC,AF⊥DC,AE=AF,∴∠ACF=∠ACE,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠ACB.∴∠DAC=∠DCA,∴DA=DC,∴四边形ABCD是菱形.证法二:如图,∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵AE=AF,∴△AEB≌△AFD.∴AB=AD,∴四边形ABCD是菱形.(2)连接AC,如图.∵AE⊥BC,AF⊥DC,∠EAF=60°,∴∠ECF=120°,∵四边形ABCD是菱形,∴∠ACF=60°,在Rt△CFA中,AF=CF•tan∠ACF=2.4.(1)证明:连接AC,过P点作PG⊥BC交AC于G点,∵四边形ABCD是正方形,∴∠ACB=45°,∠BCD=90°,∵PG⊥BC,∴∠GPC=90°,∴∠PGC=45°,∴PG=PC,∵∠DCE=45°,∴∠AGP=∠ECP=90°+45°=135°,∵AP⊥PE,∴∠APE=∠GPC=90°,∴∠APG=∠EPC=90°﹣∠GPE,在△PAG和△PEC中∴△PAG≌△PEC(ASA),∴PE=PA;(2)解:延长CB到Q,使BQ=DF,过E作EH⊥BC,EH交BC延长线于H,连接AQ,PF,∵四边形ABCD是正方形,∴∠D=∠DAB=∠ABC=90°,AD=AB,∴∠ABQ=∠D=90°,在△ABQ和△ADF中∴△ABQ≌△ADF(SAS),∴AQ=AF,∠DAF=∠QAB,∵∠APE=90°,AP=PE,∴∠PAE=∠AEP=45°,∴∠AQP=∠QAB+∠BAP=∠DAF+∠BAP=∠DAB﹣∠PAE=90°﹣45°=45°=∠PAE,在△QAP和△FAP中∴△QAP≌△FAP(SAS),∴QP=PE,∵EH⊥BC,∠ABP=90°,∠APE=90°,∴∠ABP=∠H=90°,∠APB=∠PEH=90°﹣∠EPH,在△PEH和△APB中∴△PEH≌△APB(AAS),∴BP=EH,∵∠H=90°,∠DCE=45°,∴∠ECH=45°=∠CEH,∴CH=EH=BP,设EH=CH=BP=x,∴PC=4﹣x,PF=BQ+BP=DF+BP=4﹣3+x=1+x,在Rt△PCF中,由勾股定理得:(1+x)2=(4﹣x)2+32,解之得:x=,即CH=EH=,∴在Rt△CHE中,由勾股定理得:CE=CH=.5.(1)证明:∵AB、OB、OC、AC的中点分别为D、E、F、G,∴DG∥BC,DG=BC,EF∥BC,EF=BC,∴DG∥EF,DG=EF,∴四边形DEFG是平行四边形;(2)解:∵D、E分别是AB、OB的中点,∴DE∥OA,DE=OA,∵四边形DEFG是正方形,∴DE⊥EF,DE=EF,∴AO与BC垂直且相等.故答案为:垂直且相等.6.解:(1)如图1,连接CG,∵四边形ABCD和四边形EBGF是正方形,∴∠CDB=∠CBD=45°,∠DBG=90°,BD=BG,∴∠CBG=45°,∴∠CBG=∠CBD,∵BC=BC,∴△CBD≌△CBG(SAS),∴∠DCB=∠BCG=90°,DC=CG=5,∴G,C,D三点共线,∴AG===5;故答案为:5;(2)如图2,过点G作GK⊥AB,交AB的延长线于K,∵DE=2,DC=5,∴CE=3,∵∠EBG=∠EBC+∠CBG=90°,∠CBG+∠GBK=90°,∴∠EBC=∠GBK,∵BE=BG,∠K=∠BCE=90°,∴△BCE≌△BKG(AAS),∴CE=KG=3,BC=BK=5,∴AK=10,由勾股定理得:AG==;(3)分三种情况:①当点E在CD的延长线上时,如图3,同理知△BCE≌△BKG(AAS),∴BC=BK=5,∵AG=,由勾股定理得:KG==,∴CE=KG=,此种情况不成立;②当点E在边CD上时,如图4,同理得:DE=;③当点E在DC的延长线上时,如图5,同理得CE=GK=,∴DE=5+=,综上,DE的长是或.7.解:(Ⅰ)①∵折痕为EF,点P为点D的对应点,∴△DOF≌△POF.∴∠DOF=∠POF=45°.∵四边形OBCD是矩形,∴∠ODF=90°.∴∠DFO=∠DOF=45°.∴DF=DO=6.∴点F的坐标为(6,6);②∵折痕为EF,点P为点D的对应点,∴DG=PG,EF⊥PD.∵四边形OBCD是矩形,∴DC∥OB,∴∠FDG=∠EPG.∵∠DGF=∠PGE,∴△DGF≌△PGE(ASA).∴DF=PE.∵DF∥PE,∴四边形DEPF是平行四边形.∵EF⊥PD,∴▱DEPF是菱形,设菱形的边长为x,则DE=EP=x.∵OP=7,∴OE=7﹣x,在Rt△ODE中,由勾股定理得OD2+OE2=DE2.∴62+(7﹣x)2=x2,解得.∴,∴点F的坐标为(,6);(Ⅱ)P(,).8.解:(1)∵OF是∠BCA的外角平分线,∴∠OCF=∠FCD,又∵MN∥BC,∴∠OFC=∠FCD,∴∠OFC=∠OCF,∴OF=OC,∴OE=OF;∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F ∴∠ECF=90°,∵CE=8,CF=6,∴EF==10,∵CE是∠ACB的角平分线,∴∠ACE=∠BCE,又∵MN∥BC,∴∠NEC=∠ECB,∴∠NEC=∠ACE,∴OE=OC,∴CO是△ECF上的中线,∴CO=EF=5;(2)点O是AC的中点且∠ACB=90°,理由:∵O为AC中点,∴OA=OC,∵由(1)知OE=OF,∴四边形AECF为平行四边形;∵∠1=∠2,∠4=∠5,∠1+∠2+∠4+∠5=180°,∴∠2+∠5=90°,即∠ECF=90°,∴▱AECF为矩形,又∵AC⊥EF.∴▱AECF是正方形.∴当点O为AC中点且△ABC是以∠ACB为直角三角形时,四边形AECF是正方形.9.解:(1)∵CG⊥AB,BG=1,,∴.∵∠ABF=45°,∴△BGE是等腰直角三角形,∴EG=BG=1,∴EC=CG﹣EG=3﹣1=2,∵在平行四边形ABCD中,AB∥CD,∠ABF=45°,CG⊥AB,∴∠CFE=∠ABF=45°,∠FCE=∠BGE=90°,∴△ECF是等腰直角三角形,∴EF==2;(2)证明:过E作EH⊥BE交AB于H,∵∠ABF=45°,∠BEH=90°,∴△BEH是等腰直角三角形,∴,BE=HE,∴∠BHE=45°,∴∠AHE=180°﹣∠BHE=180°﹣45°=135°,由(1)知,△BGE和△ECF都是等腰直角三角形,∴∠BEG=45°,CE=CF,∴∠BEC=180°﹣∠BEG=180°﹣45°=135°,∴∠AHE=∠CEB,∵AE⊥AD,∴∠DAE=90°,∴∠BAD=∠DAE+∠EAB=90°+∠EAB,由(1)知,∠FCE=90°,∴∠BCD=∠FCE+∠BCG=90°+∠BCG,∵在平行四边形ABCD中,∠BAD=∠BCD,∴90°+∠EAB=90°+∠BCG,∴∠EAB=∠BCG,即∠EAH=∠BCE,在△△EAH和△BCE中,∴△EAH≌△BCE(AAS),∴AH=CE=CF,∴AB﹣BE=AB﹣BH=AH=CF,即AB﹣BE=CF.10.(1)解:∵AD是高,E、F分别是AB、AC的中点,∴DE=AE=AB=×10=5,DF=AF=AC=×8=4,∴四边形AEDF的周长=AE+DE+DF+AF=5+5+4+4=18;(2)证明:∵DE=AE,DF=AF,∴EF垂直平分AD.11.(1)证明:∵四边形ABFG和四边形BCED是正方形,∴BC=BD,AB=BF,∠CBD=∠ABF=90°,∴∠CBD+∠ABC=∠ABF+∠ABC,∴∠ABD=∠CBF,在△ABD和△FBC中,∴△ABD≌△FBC(SAS);(2)解:∵△ABD≌△FBC,∴∠BAD=∠BFC,AD=FC=6,∴∠AMF=180°﹣(∠BAD+∠ANM)=180°﹣(∠BFC+∠BNM)=180°﹣(180°﹣∠ABF)=180°﹣(180°﹣90°)=90°,即AD⊥CF,∴四边形ACDF的面积S=S△ACD+S△ADF=+===18.12.证明:如图,连接BM、DM,∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=DM=AC,∵点N是BD的中点,∴MN⊥BD.13.解:(1)∵△ABC和△BCD中,∠BAC=∠BDC=90°,E为BC的中点,∴DE=AE=BC,∴∠EDA=∠EAD,∵DC∥AE,∴∠ADC=∠EAD,∴∠ADC=∠EDA,∵DF=DE,∴EF⊥DA;(2)∵BC=4,∴DE=BC=2,∵DE=AE,,∴DO=AD=,在Rt△DEO中,EO==1,∵DF=DE,∴EF=2EO=2.14.证明:如图,连接BE、DE,∵∠ABC=∠ADC=90°,E是AC的中点,∴BE=DE=AC,∵F是BD的中点,∴EF⊥BD.15.解:△PAE的形状为等边三角形;理由如下:∵在Rt△CAD中,∠CAD=90°,P是斜边CD的中点,∴PA=PC=CD,∴∠ACD=∠PAC,∴∠APD=∠ACD+∠PAC=2∠ACD,同理:在Rt△CED中,PE=PC=CD,∠DPE=2∠DCB,∴PA=PE,即△PAE是等腰三角形,∴∠APE=2∠ACB=2×30°=60°,∴△PAE是等边三角形.。

八年级数学第十八章第2节《特殊的平行四边形》提高训练卷 (31)(含解析)

八年级数学第十八章第2节《特殊的平行四边形》提高训练卷 (31)(含解析)

第十八章第2节《特殊的平行四边形》提高训练卷 (31)一、单选题1.矩形具有而菱形不具有的性质是( )A .两组对边分别平行B .对角线相等C .对角线互相垂直D .两组对角分别相等2.如图,在ABC 中,D 、E 分别是AB 、AC 的中点,16BC =,F 是线段DE 上一点,连接AF 、CF ,4DE DF =,若90AFC ∠=︒,则AC 的长度是( )A .6B .8C .10D .123.如图,Rt △ABC 中,∠ACB =90°,AC =6,BC =8,D 是AB 的中点,E 是BC 的中点,EF ⊥CD 于点F ,则EF 的长是( )A .3B .4C .5D .1254.如图,四边形ABCD 中,∠BAD =∠C =90°,AB =AD ,AE ⊥BC ,垂足是E ,若线段AE =4,则四边形ABCD 的面积为( )A .12B .16C .20D .24二、解答题 5.如图,在ABC 中,90ACB ︒∠=,30B ,CE 垂直于AB 于点E ,D 是AB 的中点.(1)求证:AE ED =;(2)若2AC =,求DE 的长.6.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接CE ,DE .点F 是DE 的中点,连接CF .(1)求证:CF AF =;(2)在不添加任何辅助线的情况下,请直接写出图中所有的等腰直角三角形.7.如图,四边形ABCD 是平行四边形,//DE BF ,且分别交对角线AC 于点E ,F ,连接,BE DF .若BE DE =,求证:四边形EBFD 是菱形.8.如图,在Rt △ABC 中,∠BAC =90°,AD 是边BC 上的中线,过点A 作AE //BC ,过点D 作DE //AB ,DE 与AC ,AE 分别交于点O ,E ,连接EC .(1)求证:四边形ADCE 是菱形;(2)若AB =AO ,OD =1,则菱形ADCE 的周长为 .9.如图,在Rt∆ABC 中,∠ACB =90°,AC 的垂直平分线交AB 于点E ,连接CE ,BF//CE 交DE 的延长线于点F .(1)求证:四边形BCEF 是平行四边形;(2)当∠A 满足什么条件时,四边形BCEF 是菱形?回答并证明你的结论.10.如图,长方形OBCD 的OB 边在x 轴上,OD 边在y 轴上,OB=15,OD=9,在BC 上取一点E ,使△CDE 沿DE 折叠后,点C 落在x 轴上,记作点F .(1)求点F 的坐标;(2)求点E 的坐标.11.如图,在ABC 中,90,3,4BAC AB AC ︒∠===,点D 是BC 的中点,将ABD △沿AD 翻折得到AED ,联结CE .(1)求证://AD CE ;(2)求CE 的长.12.(1)将一张长方形纸片按如图1所示的方式折叠,BC 、BD 为折痕,求CBD ∠的度数;(2)将一张长方形纸片按如图2所示的方式折叠,BC 、BD 为折痕,若115CBD ∠=︒,求A BE ∠'(3)将一张长方形纸片按如图3所示的方式折叠,BC 、BD 为折痕,若CBD α∠=,求A BE '∠'的度数(用含α的式子表示)13.如图,以锐角△ABC 的边AC 、AB 为边向外作正方形ACDE 和正方形ABGF ,连结BE 、CF . (1)求证:△FAC ≌△BAE ;(2)图中可以通过旋转△BAE 而得到△FAC ,请你说出旋转中心、旋转方向和旋转角的度数.14.已知ABCD 中,点E 在BC 延长线上,连接DE ,180A E ∠+∠=︒(1)如图1,求证:CD DE =;(2)如图2,过点C 作BE 垂线,交于AD 于点F ,求证3BE AF DF =+;(3)如图3,在(2)的条件下,ABC ∠的平分线,交CD 于G ,交CF 于H ,连接FG ,若45FGH ∠=︒,8=CF ,3FD =,求BE 的长.15.如图,矩形ABCD 中,EF 垂直平分对角线BD ,垂足为O ,点E 和F 分别在边AD ,BC 上,连接BE ,DF .(1)求证:四边形BFDE 是菱形;(2)若AE =OF ,求∠BDC 的度数.16.在平行四边形ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=9,BF=12,DF=15,求证:AF平分∠DAB.17.如图1,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.(1)求证:AE=EF;(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.18.如图,在矩形ABCD中,AB=4,BC=3.将△ACD沿对角线AC翻折得到△ACD′,CD′交AB于点F.(1)判断△ACF的形状,并证明;(2)直接写出线段AF的长.三、填空题19.如图,在矩形ABCD 中,AB=3,BC=4,点,,,E F G H 分别是边,,,AB BC CD AD 的中点,连接,,,AF BG CH DE ,得到一个新的四边形,MNPQ 则四边形MNPQ 的面积为 _____________.20.在平面直角坐标系xOy 中,正方形OABC 的顶点坐标为,则顶点C 的坐标为________. 21.如图,两个长宽分别为7cm 、3cm 的矩形如图叠放在一起,则图中阴影部分的面积是________.22.正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF ,则∠EAF 的度数是_______.23.如图,已知正方形ABCD 的边长为3,点E 是AB 边上一动点,连接ED ,将ED 绕点E 顺时针旋转90°到EF ,连接DF ,CF ,则DF CF 的最小值______.24.如图,在菱形ABCD 中,E 、F 分别是AC 、BC 的中点,如果EF =5,那么菱形ABCD 的周长_____.25.在△ABC 中,点G 是重心,∠BGC =90°,BC =8,那么AG 的长为____.26.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,H 为BC 中点,AC =6,BD =8,则线段OH 的长为_____.27.如图,四边形ABCD 是正方形,AB =1,以AB 为对角线作第二个正方形AEBF ,以EB 为对角线作第三个正方形EGBH ,以此类推,则第n 个正方形的面积是_______ .28.如图,将矩形ABCD 沿DE 折叠,使A 点落在BC 上的F 处,若∠EFB =60°,则∠CFD =_____.29.如图,AC 是菱形ABCD 的对角线,P 是AC 上的一个动点,过点P 分别作AB 和BC 的垂线,垂足分别是点F 和E ,若菱形的周长是12cm ,面积是6cm 2,则PE +PF 的值是_____cm .30.如图所示,在矩形ABCD 中,AB a ,BC b ,两条对角线相交于点O ,OB 、OC 为邻边作第1个平行四边形1OBB C ,对角线相交于点1A ,以为11A B 、1AC邻边作第2个平行四边形111A B C C ,对角线相交于1O ;再以11O B 、11O C 为邻边作第3个平行四边形1121O B B C ……此类推,第2020个平行四边形的面积__________.【答案与解析】1.B【解析】矩形的对角线互相平分且相等,菱形的对角线互相平分,互相垂直,并且每一条对角线平分一组对角,据此解答.A 、是菱形的性质,是矩形的性质,故本选项不符合题意;B 、是矩形的性质,不是菱形的性质,故本选项符合题意;C 、是菱形的性质,不是矩形的性质,故本选项不符合题意;D 、矩形、菱形的对角都相等,故本选项不符合题意;故选:B .此题考查矩形的性质,菱形的性质,熟记各自的性质特征是解题的关键.2.D【解析】先证得DE 是△ABC 的中位线,求出DE=8,及EF=6,再根据90AFC ∠=︒证得AC=2EF 求出答案.∵D 、E 分别是AB 、AC 的中点,∴DE 是△ABC 的中位线,∴DE=12BC=8, ∵4DE DF =,∴DF=2,EF=6,∵90AFC ∠=︒,AE=CE ,∴AC=2EF=12,故选:D .此题考查三角形中位线的判定及性质定理,直角三角形斜边中线等于斜边一半的性质,熟练掌握各定理并运用解决问题是解题的关键.3.D【解析】根据勾股定理得出AB ,进而利用直角三角形的性质得出:BD=DC=AD=5,利用三角形面积公式解答即可.∵在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,∴10AB ==,∵D 是AB 的中点,∴BD=DC=AD=5,1116812222BDC BAC SS ==⨯⨯⨯=, 连接DE ,∵E 是BC 的中点, ∴162DEC BDC S S ==, ∵115622DEC S DC EF EF ==⨯⨯= ∴125EF = 故选:D .本题主要考查的是勾股定理,直角三角形斜边上的中线,关键是根据勾股定理解出AB ,进而利用直角三角形的性质解答.4.B【解析】延长CD ,作AF CD ⊥的延长线于点F ,构造出全等三角形,()ABE ADF AAS ≅,即可得到四边形ABCD 的面积就等于正方形AECF 的面积.解:如图,延长CD ,作AF CD ⊥的延长线于点F ,∵AE BC ⊥,∴90AEC AEB ∠=∠=︒,∵AF CD ⊥,∴90AFC ∠=︒,∵90C ∠=︒,∴四边形AECF 是矩形,∴90EAF ∠=︒,∵BAD EAF ∠=∠,∴BAD EAD EAF EAD ∠-∠=∠-∠,即BAE DAF ∠=∠,在ABE △和ADF 中,BAE DAF AEB AFD AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABE ADF AAS ≅,∴AE AF =,∴四边形AECF 是正方形,∵ABE ADF S S ,∴216ABCD AECF S S AE ===.故选:B .本题考查全等三角形的性质和判定,正方形的性质和判定,解题的关键是作辅助线构造全等三角形.5.(1)见解析;(2)1.【解析】(1)根据直角三角形斜边上的中线性质解得CD=BD ,得到30DCB B ==︒∠∠,继而得到60ADC A ∠=∠=︒再根据等腰三角形的判定推出AC=CD ,最后根据等腰三角形的性质解题; (2)先解得30ACE ∠=︒,根据含30°角的直角三角形的性质解得AE 的长,即可解题. (1)证明:在ABC 中,90ACB ︒∠=,D 是AB 的中点,12CD AD BD AB ∴===DCB B ∴∠=∠ 30,90B ACB ∠=︒∠=︒30,180903060DCB A ∴∠=︒∠=︒-︒-︒=︒60ADC B DCB ∴∠=∠+∠=︒A ADC ∴∠=∠AC DC ∴=CE 垂直AB 于点EAE ED ∴=;(2)CE AB ⊥90AEC ∴∠=︒60A ∠=︒30ACE ∴∠=︒12AE AC ∴= 2,AC AE DE ==1DE AE ∴==.本题考查等腰三角形的判定与性质、直角三角形斜边的中线、含30°角的直角三角形、三角形外角的性质、三角形内角和定理等知识,是重要考点,难度一般,掌握相关知识是解题关键. 6.(1)见解析;(2)△ABC , △ADE ,△ADF ,△AFE【解析】(1)根据90BAC DAE ∠=∠=︒得到BAD CAE ∠=∠再根据已知条件求证ABD ACE ABD ACE ∠=∠≌,再根据题意得∠ABD=∠ACE=45°,进而得到△DCE 为直角三角形,再由点F 是DE 的中点得到CF=AF ;(2)根据等腰直角三角形的性质和定义结合第一问即可得到结果.(1)证明:∵90BAC DAE ∠=∠=︒∴BAC CAD DAE CAD ∠-∠=∠-∠即BAD CAE ∠=∠∵AB AC =,AD AE =∴ABD ACE △≌△,∴ABD ACE ∠=∠∵AB AC =,∴A ABC CB =∠∠∵90BAC ∠=︒∴90ABC ACB ∠+∠=︒,∴45ABC ACB ∠=∠=︒∴45ABD ACE ∠=∠=︒∴90DCE ACB ACE ∠︒=∠+∠=∵点F 是DE 的中点,90DAE DCE ∠=∠=︒ ∴12AF DE =,12CF DE = ∴CF AF =(2)图中所有的等腰直角三角形是:ABC ,ADE ,ADF ,AFE △;此题属于三角形旋转类综合性问题,涉及知识点为三角形全等,直角三角形斜边上的中线为斜边的一半.7.见解析【解析】根据平行四边形的性质,可以得到AD=CB ,AD ∥CB ,从而可以得到∠DAE=∠BCF ,再根据DE ∥BF和等角的补角相等,从而可以得到∠AED=∠CFB ,然后即可证明△ADE 和△CBF 全等,从而可以得到DE=BF ,再根据DE ∥BF ,即可得到四边形EBFD 是平行四边形,再根据BE=DE ,即可得到四边形EBFD 为菱形.证明:∵四边形ABCD 是平行四边形,∴AD=CB ,AD ∥CB ,∴∠DAE=∠BCF ,∵DE ∥BF ,∴∠DEF=∠BFE ,∴∠AED=∠CFB ,在△ADE 和△CBF 中,DAE BCF AED CFB AD CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CBF (AAS ),∴DE=BF ,又∵DE∥BF,∴四边形EBFD是平行四边形,∵BE=DE,∴四边形EBFD为菱形.本题考查平行四边形的判定和性质、菱形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8.(1)见解析;(2)【解析】(1)先证四边形ABDE为平行四边形,再证得AE=CD,得四边形ADCE是平行四边形,然后根据直角三角形斜边上的中线性质得AD=CD,即可得出结论;(2)先由菱形的性质得AD=AE=CE=CD,AC⊥DE,OA=OC,再证OD是△ABC的中位线,得AB=2OD=2,则AO=AB=2,然后由勾股定理求出AD的长即可解决问题.解:(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE为平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=CD,∴AE=CD,∴四边形ADCE是平行四边形,又∵∠BAC=90°,AD是边BC上的中线,∴AD=12BC=CD,∴平行四边形ADCE是菱形;(2)解:∵四边形ADCE是菱形,∴AD=AE=CE=CD,AC⊥DE,OA=OC,∵BD=CD,∴OD是△ABC的中位线,∴AB=2OD=2,∴AO=AB=2,∴AD∴菱形ADCE 的周长=4AD =故答案为:本题考查了平行四边形的判定与性质、菱形的判定与性质、直角三角形斜边上的中线性质以及勾股定理等知识;证得四边形ADCE 为菱形是解题的关键.9.(1)证明见解析;(2)30A ∠=︒,证明见解析【解析】(1)先根据垂直平分线和直角证得DF//BC ,再结合BF//CE ,根据两组对边分别平行的四边形是平行四边形即可证明;(2)根据有一组临边相等的平行四边形是菱形,所以需添加的条件能证明有一组临边相等据此作答.解:(1)证明:∵DF 垂直平分AC ,90ACB ∠=︒,∴DF//BC ,又∵BF//CE ,∴四边形BCEF 是平行四边形;(2)当30A ∠=︒时,四边形BCEF 是菱形,理由是:∵DF 垂直平分AC ,90ACB ∠=︒,30A ∠=︒,∴EA=EC ,1903060∠=︒-︒=︒,∴230A ∠=∠=︒,即3903060∠=︒-︒=︒,∴∆BCE 是等边三角形,∴BC=EC ,由(1)得四边形BCEF 是平行四边形,∴四边形BCEF 是菱形.本题考查菱形的判定定理,平行四边形的判定定理,垂直平分线的性质,等腰三角形的性质.熟练掌握判定定理,并能结合题意选择合适的定理证明是解题关键.10.(1)点F(12,0);(2)点E(15,4) .【解析】(1)由四边形OBCD 是长方形可得CD=OB=15、BC=OD=9、∠DOB=∠OBC=900,由折叠的性质可得DF=CD=15,然后运用勾股定理求得OF ,即可确定F 点的坐标;(2)运用线段的和差可得BF=OB-OF=3,再由折叠的性质可得CE=EF, 设BE=x ,则CE= =9-x ,然后运用勾股定理求得x 即可解答.解:(1)∵四边形OBCD 是长方形∴CD=OB=15,BC=OD=9,∠DOB=∠OBC=900由折叠△CDE 得△FDE 可知:DF=CD=15∴12OF∴点F (12,0);(2)由(1)得OF=12∴BF=OB-OF=15-12=3由折叠可知:CE=EF设BE=x ,则CE=EF=BC-BE=9-x∴()22293x x -=+,解得x=4∴点E (15,4).本题主要考查了折叠的性质、长方形的性质以及勾股定理的应用,灵活应用相关知识成为解答本题的关键.11.(1)见解析;(2)75 【解析】(1)先根据直角三角形斜边上的中线等于斜边的一半得AD CD BD ==,再由折叠的性质得BD ED =,ADE ADB ∠=∠,再由外角和定理得DCE DEC EDB ADE ADB ∠+∠=∠=∠+∠,则DEC ADE ∠=∠,即可证明结论;(2)利用勾股定理求出BC 的长,由(1)得1522AD BC ==,设DF x =,则52AF x =-,在Rt ABF 和Rt BDF 中,利用勾股定理列式求出x 的值,再根据中位线定理得到2CE DF =即可.解:(1)∵90BAC ∠=︒,D 是BC 中点,∴AD CD BD ==,∵折叠,∴BD ED =,ADE ADB ∠=∠,∵CD BD ED ==,∴DCE DEC ∠=∠,∵DCE DEC EDB ADE ADB ∠+∠=∠=∠+∠,∴22DEC ADE ∠=∠,即DEC ADE ∠=∠,∴//AD CE ;(2)∵90BAC ∠=︒,3AB =,4AC =,∴5BC =,由(1)知1522AD BC ==, 设DF x =,则52AF x =-, ∵折叠,∴AD 是BE 的垂直平分线,在Rt ABF 和Rt BDF 中,222BF AB AF =-,222BF BD DF =-,∴2222AB AF BD DF -=-,即22525924x x ⎛⎫--=- ⎪⎝⎭,解得710x =, ∵D 、F 分别是BC 和BE 的中点, ∴725CE DF ==. 本题考查折叠的性质,中位线定理,直角三角形斜边上中线的性质,解题的关键是掌握这些性质定理进行证明求解.12.(1)90°;(2)50°;(3)1802α︒-【解析】(1)由折叠的性质知ABC A BC ∠∠'=,EBD E BD '∠=∠,即可得到1902CBD ABE ∠=∠=︒; (2)由115CBD ∠=︒计算出18011565ABC EBD ∠+∠=︒-︒=︒,根据ABC A BC ∠∠'=,EBD E BD '∠=∠,即可求出答案;(3)由CBD α∠=求出180ABC EBD α∠+∠=︒-,根据ABC A BC ∠=∠',EBD E BD '∠=∠计算得出180(2302)6ABA EBE αα''∠+∠=︒-⨯=︒-,再计算36021801802A BE αα''∠=︒--︒=︒-得出答案.(1)由折叠的性质知ABC A BC ∠∠'=,EBD E BD '∠=∠, ∴12A BC ABA '∠'=∠,12E BD E BE '∠'=∠, ∴1902CBD ABE ∠=∠=︒. (2)∵115CBD ∠=︒∴18011565ABC EBD ∠+∠=︒-︒=︒,∵ABC A BC ∠∠'=,EBD E BD '∠=∠,∴652130ABA EBE ''∠+∠=︒⨯=︒,∴18013050A BE ''∠=︒-︒=︒.(3)∵CBD α∠=∴180ABC EBD α∠+∠=︒-∵ABC A BC ∠=∠',EBD E BD '∠=∠∴180(2302)6ABA EBE αα''∠+∠=︒-⨯=︒-∴36021801802A BE αα''∠=︒--︒=︒-.此题考查折叠的性质:折叠前后的对应角相等,角度的和差计算,掌握图形中各角度之间的位置及和差关系是解题的关键.13.(1)见解析;(2)以点A 为旋转中心,顺时针旋转90°得到△FAC .【解析】(1)由题意利用正方形的性质得出∠FAC=∠BAE ,AF=AB ,AC=AE ,即可得出△FAC ≌△BAE ; (2)由题意根据旋转前后图形的关系得出旋转中心和旋转角的度数即可.证明:(1)∵四边形ABGF 和四边形ACDE 是正方形,∴AF =AB ,AC =AE ,∵∠BAF =∠CAE =90°,∴∠BAF+∠BAC =∠CAE+∠BAC 即∠FAC =∠BAE ,∵在△FAC 和△BAE 中,AF AB FAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△FAC ≌△BAE (SAS ),(2)以点A 为旋转中心,顺时针旋转90°得到△FAC .本题主要考查旋转的性质以及全等三角形的判定与性质和正方形的性质等知识,根据已知得出∠FAC=∠BAE 是解题的关键.14.(1)证明见解析;(2)证明见解析(3)14【解析】(1)由平行四边形性质可得∠A+∠DCE=180°,结合已知可得∠DCE=∠E,从而由等角对等边可得CD=DE;(2)过D作DG⊥CE于点G,则由题意可得CE=2CG=2DF,从而得到BE=BC+CE=3DF;(3)由已知可得∠CBG=∠BGC,进一步可得∠HFG=∠FGC,从而可得BC=CG=FC,进而得到BE的值.(1)证明:由题意得:∠A=∠BCD,∠BCD+∠DCE=180°,∴∠A+∠DCE=180°,∵∠A+∠E=180°,∴∠DCE=∠E,∴CD=DE;(2)如图,过D作DG⊥CE于点G,则四边形FDGC为矩形,∴CG=DF,又由(1)可知△DCE是等腰三角形,∴CE=2CG=2DF,∴BE=BC+CE=AF+DF+2DF=AF+3DF;(3)如图,∵四边形ABCD为平行四边形,∴AB∥CD,∴∠ABG=∠BGC,∵BG平分∠ABC,∴设∠ABG=∠CBG=∠BGC=α,∴BC=CG,∵∠FGH=45°,∴∠FGC=45°+α,∵∠BCF=90°,∴∠BHC=∠FHG=90°-α,∴∠HFG=45°+α=∠FGC,∴CG=FC,∴BC=FC=8,由(2)知CE=2DF=6,∴BE=BC+CE=8+6=14.本题考查平行四边形的综合运用,灵活运用平行四边形的性质、平行线的性质、等腰三角形的性质、矩形的性质及有关角的性质是解题关键.15.(1)见解析;(2)60°.【解析】(1)首先判定平行四边形,然后根据对角线互相垂直的平行四边形是菱形进行判定即可;(2)AE=OF,四边形BFDE是菱形,BE=BF,可证△ABF≌△OBF, ∠ABF=∠OBF, ∠FBO=∠OBF, ∠OBF=30°,即可求解.证明:(1)∵四边形ABCD是矩形,∴ AD∥BC,AD=BC,∴∠EDO=∠OBF,∵EF垂直平分BD,∴BO=DO,∠EOD=∠BOF=90°,∴△DEO=△BFO(ASA)∴OE=OF,∴四边形EBFD是平行四边形,又EF⊥BD,∴四边形EBFD是菱形;(2)∵四边形EBFD是菱形,∴ED=EB又AE=OF,∠A=∠BOF∴△ABF≌△OBF∴∠ABF=∠OBF,∵∠FBO=∠OBF,∴∠ABF =∠FBO=∠OBF,∴∠OBF=30°∴∠BDC=60°.本题考查了菱形的性质和判定,掌握菱形的性质和判定是解题的关键.16.(1)见解析;(2)见解析【解析】(1)根据平行四边形的性质得出DF∥BE,根据平行四边形的判定得出四边形DEBF为平行四边形,再加上条件∠DEB=90,即可判定矩形;(2)根据矩形的性质求出∠BFC=90°,根据勾股定理求出BC,求出AD=DF,推出∠DAF=∠DFA,求出∠DAF=∠BAF,即可得出答案.证明:(1)∵四边形ABCD为平行四边形,∴DC∥AB,即DF∥BE,又∵DF=BE,∴四边形DEBF为平行四边形又∵DE⊥AB,∴∠DEB=90°,∴四边形DEBF为矩形;(2)∵四边形DEBF为矩形,∴∠BFC=90°,RtΔBCF中CF=9,BF=12,∴=15,∴AD=BC=15,∴AD=DF=15,∴∠DAF=∠DFA,∵AB∥CD,∴∠FAB=∠DFA,∴∠FAB=∠DAF,∴AF平分∠DAB.本题考查了平行四边形的性质和判定,矩形的性质和判定,勾股定理,平行线的性质,角平分线定义的应用,能综合运用性质进行推理是解此题的关键.17.(1)见解析;(2)成立,理由见解析【解析】(1)取AB 的中点M ,连接ME ,利用ASA 证明△AME ≌△ECF ,可得AE=EF ;(2)在AB 上取一点E ,使AE=CM ,连接ME ,利用ASA 即可证明△AEM ≌△MCN ,然后根据全等三角形的对应边相等得出AM=MN .(1)证明:取AB 的中点M ,连接EM ,∵四边形ABCD 是正方形,AE ⊥EF ,∴∠1+∠AEB=90°,∠2+∠AEB=90°,∴∠1=∠2,∵BM=BE ,∠BME=45°,且∠FCG=45°,∴∠AME=∠ECF=135°,AM=CE ,在△AME 和△ECF 中,12AM CEAME ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AME ≌△ECF(ASA),∴AE=EF ;(2)解:结论AM=MN 还成立.证明:在边AB 上截取AE=MC ,连接ME .在正△ABC 中,∠B=∠BCA=60°,AB=BC .∴∠NMC=180°-∠AMN-∠AMB=180°-60°-(180°-∠B-∠MAE )=∠MAE ,∵BE=AB-AE=BC-MC=BM ,∴∠BEM=60°,∴∠AEM=120°.∵N 是∠ACP 的平分线上一点,∴∠ACN=60°,∴∠MCN=120°,在△AEM 与△MCN 中,MAE NMC AE MC AEM MCN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEM ≌△MCN (ASA ),∴AM=MN .本题综合考查了正方形、等边三角形的性质及全等三角形的判定和性质,同时考查了学生的归纳能力及分析、解决问题的能力,解题的关键是学会添加辅助线,构造全等三角形解决问题. 18.(1)等腰三角形,证明见解析;(2)258AF =. 【解析】(1)由矩形的性质和折叠的性质,得到∠BAC =∠ACD',然后得到AF=CF ,即可得到结论成立; (2)由题意,设AF=CF=x ,则BF=4-x ,利用勾股定理,即可求出答案.解:(1)△ACF 为等腰三角形,证明如下:∵ 矩形ABCD ,∴ AB ∥CD .∴∠BAC =∠ACD .又∵ △ACD 沿对角线AC 翻折得到△ACD',∴ ∠ACD =∠ACD'.∴∠BAC =∠ACD'.∴ AF =CF .∴△ACF 为等腰三角形(2)在Rt △BCF 中,设AF=CF=x ,则BF=4-x ,由勾股定理,则 222(4)3x x --=, ∴258x =,∴258 AF .本题考查了矩形的判定和性质,折叠的性质,等腰三角形的判定,勾股定理,解题的关键是熟练掌握所学的知识,正确的进行解题.19.12 5【解析】根据题意,采取割补法,将图中梯形补成与中间的平行四边形一样大小的平行四边形,并找到矩形ABCD与5个小平行四边形的面积关系,即可得出结论.解:如图所示,过A作AK∥DE,交CH的延长线于K,过B作BR∥AF,交DE的延长线于R,过C作CS∥BG,交AF的延长线于S,过D作DT∥CH,交BG的延长线于T,∵H是AD的中点,∴AH=DH,∵AK∥DP,∴∠K=∠DPH,又∵∠AHK=∠DHP,∴△AKH≌△DPH(AAS),∴S△AKH=S△DPH,同理可得,S△BRE=S△AQE,S△CSF=S△BMF,S△DTG=S△CNG,∵AH∥CF,AH=CF,∴四边形AFCH是平行四边形,同理可得,四边形BGDE是平行四边形,∴QM∥PN,QP∥MN,∴四边形MNPQ是平行四边形,∵AK∥QP,AQ∥KP,∴四边形AQPK是平行四边形,又∵E 是AB 的中点,EQ ∥BM ,∴Q 是AM 的中点,∴AQ=MQ ,∴S 四边形AQPK =S 四边形MNPQ ,同理可得,S 四边形BMQR =S 四边形MNPQ ,S 四边形MNCS =S 四边形MNPQ ,S 四边形DTNP =S 四边形MNPQ ,∴S 四边形BMQR =S 四边形MNCS =S 四边形DTNP =S 四边形AQPK =S 四边形MNPQ ,∴S 四边形MNPQ =15S 四边形ABCD =15×3×4=125 故答案为:125本题主要考查了矩形的性质,平行四边形的判定与性质,解决本题的关键是要利用矩形的性质,作出图形中的辅助线构造全等三角形,并找出矩形和平行四边形的面积之间的关系.20.(1-1)【解析】画出符合要求的图形,过A 作AD ⊥x 轴于D ,过C 作CE ⊥x 轴于E ,证明△AOD ≌△OCE ,得到CE=OD=1,可得点C 坐标,同理可得结果.解:如图,过A 作AD ⊥x 轴于D ,过C 作CE ⊥x 轴于E ,∵四边形OABC 是正方形,∴OA=OC ,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE ,在△AOD 和△OCE 中,ADO OEC OAD COE OA CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOD ≌△OCE (AAS ),∴CE=OD=1,∵点C 在第二象限,∴点C的坐标为(1),同理可得:点C1-1),综上:点C 的坐标为:故答案为:(1-1).本题考查了正方形的性质,全等三角形的判定和性质,解题的关键是找出所有符合条件的正方形,作出辅助线证明全等.21.2877cm . 【解析】由两个长宽分别为7cm 、3cm 的矩形如图叠放在一起,可证得阴影部分是菱形,然后设BF xcm =,则 D F xcm ,7()AF AD DF x cm ,利用勾股定理可得方程: 2223(7)x x ,则可求得BE 的长,继而求得答案.解:如图:根据题意得://AD BC ,//BF DE ,∴四边形ABCD 是平行四边形,两个矩形等高,即DH AB =,BEDF S BE AB BF DH ,BE BF ∴=,∴四边形BEDF 是菱形,BF DF ∴=,设BF xcm =,则D F xcm ,7()AF AD DF x cm ,在Rt ABF ∆中,222AB AF BF +=,2223(7)x x , 解得:297x, 297BE cm , 2877BEDF S BE AB cm 菱形. 故答案为:2877cm . 本题考查了菱形的判定与性质以及勾股定理等知识.掌握方程思想的应用是解此题的关键. 22.45°【解析】延长EB 使得BG=DF ,易证△ABG ≌△ADF (SAS ),可得AF=AG ,进而求证△AEG ≌△AEF ,可得∠EAG=∠EAF ,再求出∠EAG+∠EAF=90︒即可解题.解:如图,延长EB 到点G ,使得 BG=DF ,连接AG ,在正方形ABCD 中,∠D=∠ABC=90︒, AB=AD ,∴∠ABG=∠ADF=90︒,在△ABG 和 △ADF 中,AB AD ABG ADF BG DF =⎧⎪∠=∠⎨⎪=⎩,∴△ABG ≌△ADF(SAS) ,∴∠DAF=∠BAG , AF=AG ,又 ∵EF=DF+BE=BG+BE=EG ,∴ 在△AEG 和 △AEF 中,AE AE GE FE AG AF =⎧⎪=⎨⎪=⎩,∴△AEG ≌△AEF(SSS) ,∴∠EAG=∠EAF ,∵∠DAF+∠EAF+∠BAE=90︒,∴∠BAG+∠EAF+∠BAE=90︒,∴∠EAG+∠EAF=90︒,∴∠EAF=45︒.故答案为:45︒.本题考查了正方形的性质,全等三角形的判定与性质,作出辅助线构造出全等三角形是解决此题的关键.23.【解析】连接BF ,过点F 作FG ⊥AB 交AB 延长线于点G ,易知△AED ≌△GFE (AAS ),F 在BF 的射线上,作点C 关于BF 的对称点C′,由全等三角形的性质可得∠CBF =45°,继而求得点C′在AB 的延长线上,进而分析可知当D 、F 、C′三点共线时,DF +CF =DC′最小,在Rt △ADC′中,由勾股定理即可求解.连接BF ,过点F 作FG ⊥AB 交AB 延长线于点G ,∵将ED 绕点E 顺时针旋转90°到EF ,∴EF ⊥DE ,EF =DE ,∴∠DEA +∠GEF =∠DEA+∠ADE =90°∴∠GEF =∠ADE又∠A =∠EGF =90°∴△AED ≌△GFE (AAS )∴FG =EA∵F 在BF 的射线上,作点C 关于BF 的对称点C′∵EG =DA ,FG =AE∴AE =BG∴BG =FG∴∠FBG=45°∴∠CBF=45°∴点C′在AB的延长线上,当D、F、C′三点共线时,DF+CF=DC′最小,在Rt△ADC′中,AD=3,AC′=6,∴DC′∴DF+CF的最小值为故答案为:..本题考查旋转的性质,全等三角形的判定及其性质,轴对称最短路线问题,解题的关键是将线段的和通过轴对称旋转转化为共线线段即可.24.40【解析】根据三角形的中位线平行于第三边并且等于第三边的一半可得AB=2EF,然后根据菱形的四条边都相等列式计算即可得解.解:∵E、F分别是AC、BC的中点,∴EF是△ABC的中位线,∴AB=2EF=2×5=10,∴菱形ABCD的周长=4×10=40.故答案为:40.本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.25.8【解析】延长AG交BC于D,根据重心的定义,点D为BC的中点,先由直角三角形斜边上的中线等于斜边的一半求得DG的长,再由重心的性质:三角形的重心到一顶点的距离等于到对边中点距离的2倍进行求解即可.解:延长AG交BC于D,∵点G是重心,∴点D为BC的中点,且AG=2DG,∵∠BGC=90°,BC=8,∴DG=12BC=4,∴AG=2DG=8,故答案为:8.本题考查了三角形的重心、直角三角形斜边上的中线性质,熟练掌握三角形的重心定义和性质是解答的关键.26.2.5【解析】先根据菱形的性质得到AC⊥BD,OB=OD=12BD=4,OC=OA=12AC=3,再利用勾股定理计算出BC,然后根据直角三角形斜边上的中线性质得到OH的长.∵四边形ABCD为菱形,AC=6,BD=8,∴AC⊥BD,OB=OD=12BD=4,OC=OA=12AC=3,在Rt△BOC中,BC5,∵H为BC中点,∴OH=12BC=2.5.故答案为:2.5.本题考查菱形的性质、勾股定理及直角三角形斜边中线的性质,菱形的对角线互相垂直且平分;直角三角形斜边的中线等于斜边的一半;熟练掌握相关性质是解题关键.27.112n - 【解析】由正方形ABCD 的边长为1,求出12AE AF AC ===,1122AH AB ==,分别算出第二个、第三个正方形的面积,即可推导得出答案;∵正方形ABCD 的边长为1,∴1AB =,AC =∴12AE AF AC ===, 1122AH AB ==,∴1正方形=1ABCD S S =,2正方形1222AEBF S S ==⨯=, 3正方形111224HEGB S S ==⨯=, ⋯, ∴112n n S -=. 故答案是:112n - 本题主要考查了正方形的性质,准确分析计算是解题的关键.28.30【解析】根据轴对称和矩形性质,得90EFD A ∠=∠=;结合∠EFB =60°,经计算即可得到答案. ∵矩形ABCD 沿DE 折叠,使A 点落在BC 上的F 处∴90EFD A ∠=∠=∵∠EFB =60°∴180180609030CFD EFB EFD ∠=-∠-∠=--=故答案为:30.本题考查了轴对称、矩形的性质;解题的关键是熟练掌握轴对称、矩形的性质,从而完成求解.29.2 【解析】连接BP,根据菱形的面积公式和三角形的面积公式得S△ABC=S△ABP+S△BPC=12ABCDS菱形,S△ABP+S△BPC=12AB•PE+12BC•PE把相应的值代入即可.解:连接BP,∵四边形ABCD是菱形,且周长是12cm,面积是6cm2∴AB=BC=14×12=3(cm),∵AC是菱形ABCD的对角线,∴ S△ABC=S△ABP+S△BPC=12ABCDS菱形=3(cm2),∴S△ABP+S△BPC=12AB•PE+12BC•PE=3(cm2),∴12×3×PE+12×3×PF=3,∴PE+PF=3×23=2(cm),故答案为:2.此题考查菱形的性质,S△ABP+S△BPC=S△ABC=12ABCDS菱形是解题的关键.注意掌握辅助线的作法和数形结合思想的应用.30.20202ab【解析】结合题意,根据矩形性质,得平行四边形1OBB C为菱形,从而依次计算前4个平行四边形的面积,并通过归纳计算规律,即可得到第2020个平行四边形的面积.∵矩形ABCD中,AB a,BC b=,两条对角线相交于点O∴OB OC OA==∵OB、OC为邻边作第1个平行四边形1OBB C∴11OB OC BB CB ===∴平行四边形1OBB C 为菱形∵平行四边形1OBB C ,对角线相交于点1A ,∴1OA BC ⊥,1112BA CA BC ==,111OA A B = ∵OC OA = ∴11122OA AB a == ∴第1个平行四边形1OBB C 面积112BC OA a b =⨯=⨯ ∴第2个平行四边形111A B C C 面积1111122AC A B a b =⨯=⨯ 同理,得第3个平行四边形1121O B B C 面积21111122222a b a b ⎛⎫=⨯⨯=⨯ ⎪⎝⎭第4个平行四边形2221A B C C 面积2221111122222a b a b ⎛⎫⎛⎫⎛⎫=⨯⨯=⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭以此类推,第2020个平行四边形2221A B C C 面积为:10101010202020201112222ab a b ab ⎛⎫⎛⎫⎛⎫⨯== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 故答案为:20202ab . 本题考查了数字及图形规律、三角形中位线、幂的乘方、平行四边形、矩形、菱形的知识;解题的关键是熟练掌握数字及图形规律、幂的乘方、平行四边形、矩形的性质,从而完成求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 几何综合类
1(2015-2016江岸八下数学T10).如图,正方形ABCD 的对角线上的两个动点M 、N ,满足AB =2MN ,点P 是BC 的中点,连接AN 、PM .若AB =6,则当AN +PM 的最小值时,线段AN 的长度为( )
A .4
B .52
C .6
D .53
2(2015-2016江岸八下数学T15).如图,正方形ABCD 的对角线上一动点P ,作PM ⊥AD 于点M ,PN ⊥CD 于点N ,连接BP 、BN .若AB =3,BP =5,则BN =___________
3(2015-2016武珞路期末模拟).在矩形ABCG 中,点D 是AG 的中点,点E 是AB 上一点,且BE =BC ,DE ⊥DC ,CE 交BD 于F ,下列结论:① BD 平分∠CDE ;② 2AB +EF =
AD ;③ CD
=DE ;④ CF ∶AE =
∶1,其中正确的是( ) A .①②④
B .①②③
C .①③④
D .①②③④ 4. (2016-2017七一3月考) 如图, 四边形ABCD 中, AB =AC , ∠ABC =∠ADC =45°, BD =6, DC =4, 则AD 的长为 ( )
A. 5
B. 25
C. 10
D. 210
5.不等边AB C 的两条高分别为4和12,若第三条高长度为整数时,则第三条高是 ABC 的面积为
6.如图,四边形ABCD 中,AH ⊥BC 于H ,AC=AD,∠BAH=∠ADC,若AH=3,BC=8,则BD=
7.(2015-1016武昌八上期末)(10分)四边形ABCD 是菱形,点E在BC上,点F在AB上,点H在CD上,连接AE、FH、相交于点P,∠APF=∠ABC
⑴如图1,若∠ABC=900,点F和点B重合,求证:AE=FH
⑵如图2,求证:AE=FH
⑶如图3,若AF+CH=BE,BE=3EC,求的值。

8(2016-2017三宿3月考T16)如图,正方形ABCD中,AB=2,动点P、Q分别在边AC、CD上,且DP=BQ,则(AP+AQ)2的最小值是
2
9(2015-2016江岸八下数学T23).(本题10分)如图,∠MAN=90°,点B、C分别在射线AN、AM上,连接BC,作BP平分∠CBN,作CD⊥BP于点D,连接AD,已知AB=3
(1) 若∠ACB=30°,则CD=__________
(2) 求证:AD=CD
(3) 作AE平分∠MAN交BP于点E,若AC=4,求线段DE的长度
10.(2015-2016武珞路期末模拟)(本题10分)如图,已知△ABC,AB=AC,∠BAC=90°,D 为CB延长线上一点,连AD,以AD为边在△ABC的同侧作正方形ADEF
(1) 求证:∠EBD=45°
(2) 求的值
(3) 若AF=2,AC =,连BF,则S△EBF=_________
3
4
11. (2016-2017七一3月考) (本题12分) 如图, 平面直角坐标系中, A (a , 0)、 B (0, b ), 其中a 、
b 满足a =688+-+-b b , 连接AB .
(1) 求AB 的长;
(2) 若M 为x 轴上一点, 且△ABM 为等腰三角形, 求点M 的坐标;
(3) 若AB 上一动点P 从点B 开始运动, 到A 点停止, 以OP 为边在OB 的右侧作等边△OPQ ,
求在点P 运动过程中点Q 运动的路径长.
12(2014-2015洪山期中T16).如图,边长为2的菱形ABCD 的两个顶点A 、B 分别在x 轴、y 轴的正半轴上运动,C 、D 在第一象限,∠BCD =120°,则OD 的最大值是________。

相关文档
最新文档