传感器第三章 2006
第三章 传感器的静态特性和动态特性讲解
例1:一阶传感器的频率响应,系统输入量(压力) F 为F(t)= b0 x(t ),输出 量为位移y( t ),不考虑运动。
解:①列出微分方程
a1
dy dt
a0
y
b0
x
②作拉普-拉斯变换
Y (S )(a1S a0 ) b0 X (S )
③令H(S )中的S =jω,即σ= 0
H ( j ) Y (S ) b0 X (S ) ja1 a0
ΔLj=(b+kxj)-yj
均方差函数为: 取其极小值,有:
4)总精度 系统的总精度由其量程范围内的基本误差与满度值Y(FS)之
比的百分数表示。基本误差由系统误差与随机误差两部分组成, 迟滞与线性度所表示的误差为系统误差,重复性所表示的误差 为随机误差。
总精度一般可用方和根来表示,有时也可用代数和表示。
统示值范围上、下限之差的模。当输入量在量程范围以内 时,系统正常工作并保证预定的性能。
对于4-20mA标准信号,零位值 yo=so=4mA,上限值 yfs=20mA,量 程 y(FS)=16mA。
3)灵敏度 S 输出增量与输入增量的比值。即
① 纯线性传感器灵敏度为常数:S=a1。
② 非线性传感器灵敏度S与x有关。
4)分辨率
在规定的测量范围内,传感器所能检测出输入量 的最小变化值。有时用相对与输入的满量程的相对 值表示。即
2、静态特性的性能指标
1) 迟滞现象(回差EH )
回差EH 反映了传感器的输 入量在正向行程和反向行程全 量程多次测试时,所得到的特 性曲线的不重合程度。
2) 重复性 Ex (不重复性) 重复性 Ex 反映了传感器在输入量按同一方向(增或减)全
第三章 传感器
第三章常用的传感器§3.1传感器的分类一、传感器的定义通俗的讲,传感器就是将被测信息转换成某种信号的器件。
也就是将被测物理量转换成于之相对应的、容易检测、传输或处理的信号的装置,称之为传感器。
传感器通常直接作用于被测量。
传感器是对信号进行感受与传送的装置,它是测试装置的输入环节,因此传感器的性能直接影响着整个测试装置的工作可靠性。
近来,随着测量、控制及信息技术的发展,传感器作为这个领域内的一个重要构成因素,被视为90年代的重要技术之一受到了普遍的重视。
深入研究传感器的原理和应用,研制新型传感器,对于社会生产、科学技术和日常生活中的自动测量和自动控制的发展,以及在科学技术领域里实现现代化都有重要意义。
二、传感器的组成传感器一般由敏感元件、传感元件和测量电路三个主要部分组成,有时还加上辅助电源。
通常可用图表示如下:图4-1 传感器的组成由于其用途的不同或是结构原理的不同,其繁简程度相差很大。
因此,传感器的组成将依不同情况而有差异。
敏感元件——传感器的核心,它直接感受被测量(一般为非电量)并转换成信号形成,即输出与被测量成确定关系的其它量的元件,如膜片、热电偶,波纹管等。
传感元件——又称变换器,是传感器的重要组成部分。
传感元件可以直接感受被测量(一般为非电量)而输出与被测量成确定关系的电量。
如热电偶和热敏电阻等。
传感元件也可以不只感受被测量,而只是感受与被测两或确定关系的其它非电量;如应变式压力传感器的电阻片,并不直接感受压力,只是感受与被测压力成确定关系的应变,然后输出电量,在多数情况下,使用的就是这种传感元件。
测量电路——能把传感元件输出的电信号转换为便于显示、记录、控制和处理的有用电信号的电路。
测量电路视传感元件的类型而定。
三、传感器的分类在生产和科研中应用的传感器种类很多,一种被测量有时可以用集中传感器来测量,用一种传感器往往可以测量多种物理量。
为了对传感器有一个概括的认识,对传感器进行研究是很必要的。
第三章 常用传感器的变换原理
根据电阻的定义式: 阻的相对变化为:
R l/A
如果电阻丝在外力作用下产生变化时,其电
dR d 1 2 x R
1 为电阻丝轴向相对变形,或称纵向应变。
dR ( 1 2 ) K x 0 x R
d 引起的。
是由于电阻丝几何尺寸变化引起的; 是由于受力后材料的电阻率发生变化而
蠕变:应力不变的条件下,应变随时间延 长而增加的现象。 横向效应:敏感栅的电阻变化一定小于 纯直线敏感栅的电阻变化的现象。 机械滞后:应变片贴在试件上以后,在 一定温度下,进行循环的加载和卸载,加载 和卸载时的输入-输出特性曲线不重合的现象。
2)箔式应变片 箔式应变片中的箔栅是金属箔(厚为 0.002~0.01mm)通过光刻、腐蚀等工艺制 成的。如图3-10中(d)、(f)、(h)、(k)。箔的 材料多为电阻率高、热稳定性好的康铜和 铜镍合金。
(二)应变片的粘贴 1. 去污:采用 手持砂轮工具除去 构件表面的油污、 漆、锈斑等,并用 细纱布交叉打磨出 细纹以增加粘贴力 , 最后用浸有酒精或 丙酮的纱布片或脱 脂棉球擦洗。
2. 贴片:在应 变片的表面和处理 过的粘贴表面上, 各涂一层均匀的粘 贴胶 ,用镊子将应 变片放上去,并调 好位置,然后盖上 塑料薄膜,用手指 揉和滚压,排出下 面的气泡 。
dR d 1 2 x R
对于金属材料:
d 是个常数,往往很小,可以忽略。
因此,上式可写成为:
dR ( 1 2 ) E 应变-电阻效应 x 1 x R
K0为金属单丝灵敏系数,是单位应变所 引起的电阻相对变化。
对于半导体材料: 对一块半导体材料的某一轴向施加一定的载荷 而产生应力时,它的电阻率会发生变化,这种物理 现象称为半导体的压阻效应。 半导体应变片是根据压阻效应原理工作的。 当沿某一晶轴方向切下一小条半导体应变片, 若只沿其轴向受到应力,其电阻率的变化量可由下 式表示
第3章++传感器中的弹性敏感元件
A
θ
线性 非线性
dF tan θ = dx
它代表了弹性元件在A点处的刚度. 它代表了弹性元件在 点处的刚度. 点处的刚度
θ0
第3章 传感器中的弹性敏感元件
如果弹性元件的弹性特性是线性的, 如果弹性元件的弹性特性是线性的,则其的刚度是 一个常数. 一个常数.
dF tan θ 0 = = 常数 dx
非线性
第3章 传感器中的弹性敏感元件
第3章 传感器中的弹性敏感元件 章
3.1 引言 3.2 弹性敏感元件的基本特性 3.3 弹性敏感元件的材料 3.4 弹性敏感元件的特性参数计算
第3章 传感器中的弹性敏感元件
3.1 引言
一,变形 物体在外力作用下而改变原来尺寸或形状的现象. 物体在外力作用下而改变原来尺寸或形状的现象. 二,弹性变形 当外力去掉后物体又能完全恢复其原来的尺寸和 形状,那么这种变形称为弹性变形. 形状,那么这种变形称为弹性变形. 三,弹性元件 具有弹性变形特性的物体称为弹性元件. 具有弹性变形特性的物体称为弹性元件. 四,弹性元件类型 基本上可以分为两种类型: 基本上可以分为两种类型: 弹性敏感元件和弹性支承. 弹性敏感元件和弹性支承.
1 f = 2π
k
k ( Hz ) me
——弹性敏感元件刚度;
me ——弹性敏感元件的等效振动质量.
第3章 传感器中的弹性敏感元件
3.3 弹性敏感元件的材料
对材料的基本要求是: 对材料的基本要求是: (1)弹性滞后和弹性后效要小; 弹性滞后和弹性后效要小; 弹性滞后和弹性后效要小 (2)弹性模数的温度系数要小; 弹性模数的温度系数要小; 弹性模数的温度系数要小 (3)线膨胀系数要小且稳定; 线膨胀系数要小且稳定; 线膨胀系数要小且稳定 (4)弹性极限和强度极限要高; 弹性极限和强度极限要高; 弹性极限和强度极限要高 (5)具有良好的稳定性和耐腐蚀性; 具有良好的稳定性和耐腐蚀性; 具有良好的稳定性和耐腐蚀性 (6)具有良好的机械加工和热处理性能. 具有良好的机械加工和热处理性能. 具有良好的机械加工和热处理性能
传感器与检测技术第3章 传感器基本特性参考答案
第3章传感器基本特性一、单项选择题1、衡量传感器静态特性的指标不包括()。
A. 线性度B. 灵敏度C. 频域响应D. 重复性2、下列指标属于衡量传感器动态特性的评价指标的是()。
A. 时域响应B. 线性度C. 零点漂移D. 灵敏度3、一阶传感器输出达到稳态值的50%所需的时间是()。
A. 延迟时间B. 上升时间C. 峰值时间D. 响应时间4、一阶传感器输出达到稳态值的90%所需的时间是()。
A. 延迟时间B. 上升时间C. 峰值时间D. 响应时间5、传感器的下列指标全部属于静态特性的是()A.线性度、灵敏度、阻尼系数B.幅频特性、相频特性、稳态误差C.迟滞、重复性、漂移D.精度、时间常数、重复性6、传感器的下列指标全部属于动态特性的是()A.迟滞、灵敏度、阻尼系数B.幅频特性、相频特性C.重复性、漂移D.精度、时间常数、重复性7、不属于传感器静态特性指标的是()A.重复性B.固有频率C.灵敏度D.漂移8、对于传感器的动态特性,下面哪种说法不正确()A.变面积式的电容传感器可看作零阶系统B.一阶传感器的截止频率是时间常数的倒数C.时间常数越大,一阶传感器的频率响应越好D.提高二阶传感器的固有频率,可减小动态误差和扩大频率响应范围9、属于传感器动态特性指标的是()A.重复性B.固有频率C.灵敏度D.漂移10、无论二阶系统的阻尼比如何变化,当它受到的激振力频率等于系统固有频率时,该系统的位移与激振力之间的相位差必为()A. 0°°° D. 在0°和90°之间反复变化的值11、传感器的精度表征了给出值与( )相符合的程度。
A.估计值B.被测值C.相对值D.理论值12、传感器的静态特性,是指当传感器输入、输出不随( )变化时,其输出-输入的特性。
A.时间B.被测量C.环境D.地理位置13、非线性度是测量装置的输出和输入是否保持( )关系的一种度量。
A.相等B.相似C.理想比例D.近似比例14、回程误差表明的是在( )期间输出-输入特性曲线不重合的程度。
传感器与测试技术第三章测试系统特性3动态特性
H(j) 1 j1
传感器与测试技术第三章测试系统特性3-动态特性
24
幅 频 和 相 频 曲 线
伯 德 图
传感器与测试技术第三章测试系统特性3-动态特性
25
幅频特性A(ω)和相频特性(ω)表示输入和输出之 间的差异,称为稳态响应动态误差。
实际应用中常限定幅值误差
A()A(0)10% 0 A()110% 0 某个给定值
频率响应函数是描述系统的简谐输入和其稳态
输出的关系,在求解系统频率响应函数时,必须在 系统响应达到稳态阶段时才测量。
传感器与测试技术第三章测试系统特性3-动态特性
13
从系统最低测量频率fmin到最高测量频率fmax,逐步 增加正弦激励信号频率f,记录下各频率对应的幅值 比和相位差,绘图就得到系统幅频和相频特性。
下,其稳态输出与输入的幅值比随频率的变化, 称为系统的幅频特性;
幅角()反映了稳态输出与输入的相位差随频
率的变化,称为系统的相频特性。
传感器与测试技术第三章测试系统特性3-动态特性
9
频率响应特性的图形描述: 直观地反映了测试系统对不同频率成分输入信号
的扭曲情况——输出与输入的差异。
A
幅频特性曲线
相频特性曲线
22
例如:弹簧-阻尼机械系统
k
c
y(t) b0 x(t) =F(t) 一阶系统
dy a1 dta0yb0x
弹性系数 阻尼系数
传感器与测试技术第三章测试系统特性3-动态特性
23
a1dd(yt)ta0y(t)b0x(t)
取S=1
dy(t)y(t)Sx(t)
H(s) 1
dt
s 1
A() 1 1()2
传感器原理及应用第三版第3章
电桥初始平衡条件为: 则输出:
•上一页
•与书中公式差一符号,对 交流电无影响。
•下一页
•返 回
当Z1有一变化时,电桥失去平衡,其输出为Usc ;将平衡条件代入得下式:
令:
为传感器阻抗相对变化值
•上一页
•下一页
•返 回
3-3 电容式传感器的误差分析
第一节所讨论的传感器原理均是在理想条件下进行,没有考虑 如温度,电场边缘效应,寄生与分布电容等因素的影响,实际上它 们对精度影响很大,严重时使传感器无法工作,因此在设计时应予 考虑。
一、温度对结构尺寸的影响:
由于组成传感器各材料的温度膨胀系数不同,当环境温度变化 时,传感器各结构尺寸发生变化从而引起电容变化。
• 如果
或而
时,则
,即输出与输入同相
位 ,没有滞后;
• 如果
,
时, ,这时电桥为谐振电桥,但桥臂
元件必须是纯电感和纯电容组成。实际上不可能。
• 由图3-9b可知:对于不同的 值, 角随 变化。当 时
;
时, 趋于最大值 ,并且
。只有 时,
值均为零。因此在一般情况下电桥输出电压 与电源 之间总有
相位差,即 ,只有当桥臂阻抗模相等
变大)。
根据上面讨论,所以在实际应用中多采用差动结构,如下图,
当动片上移 ,则
,
同时C2减小 ,两者初值为C0
则有:
•上一页
•下一页
•返 回
差动输出电容为:
同样当
时,忽略高次项得:
其非线性误差 为:
•考虑问题: • C1、C2如何连接才能满足 该式,即形成差动输出。
传感器原理及其应用_第3章_电感式传感器
2
P
r
x
为简化分析,设螺管线圈的长径 比 l / r 1 ,则可认为螺管线 圈内磁场强度分布均匀,线圈 中心处的磁场强度为:
B
x
2 2 N NBS 0 N r L0 I I l
IN H l 则空心螺管线圈的电感为:
第3章 电感式传感器
当线圈插有铁芯时,由于铁芯是铁磁性材料,使插入部分的磁 阻下降,故磁感强度B增大,电感值增加。
如果铁芯长度 l e 小于线圈长度l,则线圈电感为
L
0N [lr ( r 1)l e re ]
2 2 2
l2
第3章 电感式传感器 当l e增加 l e 时,线圈电感增大ΔL,则
L L
电感变化量为
0N [lr ( r 1)(l e l e )re ]
0 N 2 S N2 N2 线圈自感L为: L 2 Rm 2 0 S
分类:
变气隙厚度δ的电感式传感器; 变气隙面积S的电感式传感器;
变铁芯磁导率μ的电感式传感器;
第3章 电感式传感器
自感式电感传感器常见的形式
变气隙式
变截面式
螺线管式
1—线圈coil ;2—铁芯Magnetic core ;3—衔铁Moving core
,上式展开成泰勒级数: 1
非线性误差为
0
2
0
100%
0
第3章 电感式传感器
①差动式自感传感器的灵敏度 比单线圈传感器提高一倍 ②差动式自感传感器非线性失 真小,如当Δδ/δ=10%时 , 单线圈γ<10%;而差动式的 γ <1% ③采用差动式传感器,还能抵 消温度变化、电源波动、外界 干扰、电磁吸力等因素对传感 器的影响
传感器与检测技术第三章电感式传感器
感•传式感传器感与器检测技术
第二节 互感式传感器
三、转换电路 1.反串电路
•2.桥路
感•传式感传器感与器检测技术
第二节 互感式传感器
3.差动整流电路
感•传式感传器感与器检测技术
感•传式感传器感与器检测技术
一、高频反射式涡流传感器
•线圈上通交变高频电流 •线圈产生高频交变磁场
•产生高频交变涡流 •涡流产生反磁场 •阻碍线圈电流交换作用 •等效于L或阻抗的改变
感•传式感传器感与器检测技术
二、低频透射式涡流传感器
• U L1 • 同频交变电流 • 产生一交变磁场 • 磁力线切割M • 产生涡流I • 到达L2的磁力线
传感器与检测技术第三章电 感式传感器
感•传式感传器感与器检测技术
原理
电感式传感器最基本原理是电磁感应原理。
•位 移 •被测物理量 •振 动 •压 力 •流 量 •比
•传感 •的变 器 化
•自感系数 L
•电路 •电
•互感系数
•的变 化
压
M
•电
流
感•传式感传器感与器检测技术
电感传感器优点
▪ 灵敏度高,分辨力高,位移:0.1m ; ▪ 精度高,线性特性好,非线性误差:0.05%0.1 % ; ▪ 性能稳定,重复性好 ; ▪ 结构简单可靠、输出功率大、输出阻抗小、抗干扰能力
感•传式感传器感与器检测技术
第一节 自感式传感器
四、影响传感器精度的因素分析 1.电源电压和频率的波动影响 ▪ 电源电压的波动一般允许为5%~10%。 ▪ 严格对称的交流电桥是能够补偿频率波动影响的 2. 温度变化的影响 ▪ 为了补偿温度变化的影响,在结构设计时要合理选择零件
第三章电感式传感器n
如何将电感值随外作用的变化转换成可用 的电信号,这是本节研究的内容。
差动变压器的三种转换电路 1.
L0
0
( 1
1
)
0
按级数展开得
L2 L0
同样忽略高次项得
0
[1
(
0
)
(
0
)2
...]
L2
L0
0
可见,在不考虑非线性误差的情况下气隙增加和减小时, 电感的变化量相同的。
即
L
L0
0
此时,传感器的灵敏度为
非线性误差为
L
K0
L0
1
0
0
气隙型自感传感器的测量范围与灵敏度及线性度相矛盾, 所以变隙式电感式传感器用于测量微小位移时是比较精确的。
变压器式交流电桥测量电路
如图所示, 电桥两臂Z1、 Z2 为传感器线圈阻抗, 另外两桥 臂为交流变压器次级线圈的
1/2 阻抗。当负载阻抗为无穷 大时, 桥路输出电压
U0
Z1 U Z1 Z2
U 2
Z1 Z2 Z1 Z2
U 2
当传感器的衔铁处于中间位置, 即Z1= Z2=Z 电桥平衡。
U 0 =0,
再设 I1 I1e jt
则 dI1 / dt jI1e jt E jMI1
又因为 I1 U /(R1 jL1)
输出电压:
.
.
.
U 0 E jM U/(R1 j L1)
输出电压有效值
第三章 1 传感器-2 温度传感器和光传感器
1传感器2温度传感器和光传感器[学习目标] 1.知道什么是传感器,知道其将非电信息转换成电信息的意义.2.了解热敏电阻、敏感元件的特性.3.了解几种温度传感器及光传感器的原理.1.传感器(1)定义:把被测的非电信息,按一定规律转换成与之对应的电信息的器件或装置.(2)组成:一般由敏感元件和处理电路组成.①敏感元件:将要测量的非电信息变换成易于测量的物理量,形成电信号.②处理电路:将敏感元件输出的电信号转换成便于显示、记录、处理和控制的电学量.(3)敏感元件的原理①物理类:基于力、热、光、电磁和声等物理效应;②化学类:基于化学反应的原理;③生物类:基于酶、抗体和激素等分子识别功能.2.温度传感器(1)分类①热双金属片温度传感器.②热电阻传感器.③热敏电阻传感器:a.NTC型:电阻值随温度升高而减小.b.PTC型:电阻值随温度升高而增大.(2)作用将温度变化转换为电学量变化,通过测量传感器元件的电学量随温度的变化来实现温度的测量.3.光传感器(1)原理:某些金属或半导体材料,在电路中受到光照时,产生电流或电压,实现光信号向电信号的转化.(2)作用:感知光线的变化或场景变换,使机器作出反应.(1)传感器可以把非电学量转化为电学量.(√)(2)热敏电阻的阻值随温度的升高而增大.(×)(3)干簧管可以感知磁场,接入电路,相当于开关的作用.(√)(4)光敏电阻的阻值随光线的强弱而变化,光照越强电阻越小.(√)一、传感器当你走进一座大楼时,大堂的自动门是如何“看到”你而自动打开的?答案人体发出的红外线被传感器接收后传给自动控制装置的电动机,实现自动开关门.1.传感器的原理:非电学量→传感器(敏感元件、处理电路)→电学量2.在分析传感器时要明确:(1)核心元件是什么;(2)是怎样将非电学量转化为电学量的;(3)是如何显示或控制开关的.例1关于传感器,下列说法正确的是()A.所有传感器都是由半导体材料制成的B.金属材料也可以制成传感器C.传感器主要是通过感知电压的变化来传递信号的D.水银温度计是一种传感器答案 B解析传感器材料分半导体材料、陶瓷材料、金属材料和有机材料,所以A错误;金属材料也可以制成传感器,所以B正确;传感器是通过将非电学量转换成电学量来传递信号的,所以C错误;水银温度计根据热胀冷缩来测量温度,不是传感器,所以D错误.例2如图1所示是某种汽车上的一种自动测定油箱内油面高度的装置.R是滑动变阻器,它的金属滑片是杠杆的一端,从油量表(由电流表改装而成)指针所指的刻度,就可以知道油箱内油面的高度,当滑动变阻器的金属片向下移动时()图1A.电路中的电流减小,油箱内油面降低B.电路中的电流减小,油箱内油面升高C.电路中的电流增大,油箱内油面降低D.电路中的电流增大,油箱内油面升高答案 D解析油面升高,金属片向下移动,R接入电路中的电阻减小,电路中电流增大,所以选项D正确.二、温度传感器如图2所示,将多用电表的选择开关置于欧姆挡,再将多用电表的两支表笔与负温度系数的热敏电阻R T(温度升高,电阻减小)的两端相连,这时表针恰好指在刻度盘的正中央.若在R T 上擦一些酒精,表针将如何偏转?若用吹风机将热风吹向热敏电阻,表针将如何偏转?图2答案由于酒精挥发,热敏电阻R T温度降低,电阻值增大,表针将向左偏;用吹风机将热风吹向热敏电阻,热敏电阻R T温度升高,电阻值减小,表针将向右偏.1.温度传感器的作用:将温度的变化转换为电学量的变化.2.常见的温度传感器(1)热双金属片温度传感器①原理:两种膨胀系数相差较大的不同金属片制成一体,温度升高时,双金属片变形,可控制电路的通断.②应用:日光灯启动器,电机、电冰箱保护等.(2)热电阻传感器①原理:用金属丝制作的感温电阻叫热电阻,当外界温度t发生变化时,其电阻值按R=R0(1+θt)的规律变化(θ为温度系数,R0为t=0 ℃时导体的电阻).②应用:测温度、测流量等.(3)热敏电阻传感器①原理:半导体热敏电阻的阻值随温度的变化而变化.②应用:测温、温度控制或过热保护等.③分类:正温度系数的热敏电阻(PTC),它的电阻随温度升高而增大.负温度系数的热敏电阻(NTC),它的电阻随温度的升高而减小.例3(多选)在温控电路中,通过热敏电阻阻值随温度的变化可实现对电路相关物理量的控制.如图3所示电路,R1为定值电阻,R2为半导体热敏电阻(温度越高,电阻越小),C为电容器.当环境温度降低时()图3A.电容器C的带电荷量增大B.电压表的读数增大C.电容器C两极板间的电场强度减小D.R1消耗的功率增大答案AB解析当环境温度降低时,R2变大,电路的总电阻变大,由I=ER总知I变小,又U=E-Ir,电压表的读数U增大,B正确;又由P1=I2R1可知,R1消耗的功率P1变小,D错误;电容器两极板间的电压U2=U-U1,U1=IR1,可知U1变小,U2变大,由场强E′=U2d,Q=CU2可知,Q、E′都增大,故A正确,C错误.三、光传感器如图4所示为光电式烟尘浓度计的原理图,请阅读教材,然后简述其工作原理.图4答案光源1发出的光线经半透半反镜3,分成两束强度相等的光线.一路光线直接到达光电转换电路7上,产生作为被测烟尘浓度的参比信号.另一路光线经反射镜4穿过被测烟尘5到达光电转换电路6上,其中一部分光线被烟尘吸收或散射而衰减,烟尘浓度越高,光线的衰减量越大,到达光电转换电路6的光就越弱.两路光线分别转换成电压信号U1、U2,如果U1=U2,说明被测的光路上没有烟尘;相反,如果U1、U2相差较大,说明烟尘较大,因此可用两者之比,算出被测烟尘的浓度.光敏电阻是由半导体材料制成的.它的阻值随光照强度的变化而变化,光照越强,电阻越小;光照越弱,电阻越大.例4(多选)如图5所示,R1、R2为定值电阻,L为小灯泡,R3为光敏电阻,当入射光强度增大时()图5A.电压表的示数增大B.R2中电流减小C.小灯泡的功率增大D.电路的路端电压增大答案ABC解析当入射光强度增大时,R3阻值减小,外电路总电阻减小,由闭合电路欧姆定律知,干路电流增大,R1两端电压增大,从而电压表的示数增大,同时内电压增大,故电路的路端电压减小,A项正确,D项错误.因路端电压减小,而R1两端电压增大,故R2两端电压必减小,则R2中电流减小,故B项正确.结合干路电流增大知流过小灯泡的电流必增大,故小灯泡的功率增大,C项正确.1.(对传感器的理解)许多办公楼及宿舍楼的楼梯上的电灯到了晚上能够自动做到“人来即亮,人走即灭”,其神奇功能在于控制灯的“开关”传感器,下面有关该传感器的说法中正确的是()A.该传感器能够测量的物理量是位移和温度B.该传感器能够测量的物理量是位移和光强C.该传感器能够测量的物理量是光强和声音D.该传感器能够测量的物理量是压力和位移答案 C解析楼道中安装了自动灯光控制系统,白天灯不亮,和光传感器有关;晚上有人经过时,灯自动亮起来,与声音有关,是声传感器,所以该传感器能够测量的物理量是光强和声音,C正确.2.(对传感器的理解)关于传感器工作的一般流程,下列说法正确的是()A.非电信息→敏感元件→处理电路→电信息B.电信息→处理电路→敏感元件→非电信息C.非电信息→敏感元件→电信息→处理电路D.非电信息→处理电路→敏感元件→电信息答案 A3.(光敏电阻的特性)如图6所示,R3是光敏电阻(光照增强时电阻变小),当开关S闭合后,在没有光照射时,a、b两点等电势.当用光照射电阻R3时,则(电源内阻不计)()图6A.a点电势高于b点电势B.a点电势低于b点电势C.a点电势等于b点电势D.a点电势和b点电势的大小无法比较答案 A解析当用光照射电阻R3时,R3电阻变小,R3两端电压减小,故a点电势升高,因其他电阻的阻值不变,所以a点电势高于b点电势,故A正确.4.(热敏电阻的特性)某温控电路的原理如图7所示,R M是负温度系数的热敏电阻,R是滑动变阻器,某种仪器要求在15 ℃~27 ℃的环境中工作.当环境温度偏高或偏低时,控制器会自动启动降温或升温设备.下列说法中正确的是()图7A.环境温度降低,R M的阻值减小B.环境温度升高,U ab变大C.滑片P向下移动时,U ab变大D.调节滑片P的位置能改变降温和升温设备启动时的临界温度答案 D解析环境温度降低时,R M的阻值变大,A错误;环境温度升高,R M的阻值减小,U ab变小,B错误;滑片向下移动,回路电流减小,U ab变小,C错误;调节滑片位置能改变降温和升温设备启动时的临界温度,D正确.考点一传感器及工作原理1.(多选)下列说法正确的是()A.传感器担负着信息采集的任务B.干簧管是一种能够感知磁场的传感器C.传感器不是电视遥控接收器的主要元件D.传感器是把力、温度、光、声、化学成分转换为电信号的主要工具答案ABD解析传感器的任务就是采集信息,选项A正确;干簧管的主要构造是由平时不接触的两个极易被磁化的软铁片组成的,它们靠近磁场时被磁化后相互吸引而接触,选项B正确;电视遥控接收器中使用了红外线传感器,选项C错误;由传感器的定义知,选项D正确.2.(多选)关于干簧管,下列说法正确的是()A.干簧管接入电路中相当于电阻的作用B.干簧管是根据热胀冷缩的原理制成的C.干簧管接入电路中相当于开关的作用D.干簧管是作为电控元件以实现自动控制的答案CD解析干簧管能感知磁场,是因为当两个簧片所处位置有磁场时,两个簧片被磁化而接通,所以是做开关来使用的,当磁场靠近或远离的时候,就会实现闭合或断开,故C、D正确,A、B错误.3.如图1所示,是电容式话筒的示意图,它是利用电容制成的传感器,话筒的振动膜前面有薄薄的金属层,膜后距膜几十微米处有一金属板,振动膜上的金属层和这个金属板构成电容器的两极.在两极间加一电压U,人对着话筒说话时,振动膜前后振动,使电容发生变化,从而使声音信号被话筒转化为电信号,其中导致电容变化的原因是电容器两板间的()图1A.距离变化B.正对面积变化C.电介质变化D.电压变化答案 A解析振动膜前后振动,使振动膜上的金属层与金属板间的距离发生变化,从而将声音信号转化为电信号,故A正确.4.街道旁的路灯利用半导体的电学特性制成了白天自动熄灭,夜晚自动点亮的装置,该装置的工作原理是应用了半导体的()A.光敏性B.压敏性C.热敏性D.三个特性同时应用答案 A解析要求灯夜晚亮,白天熄,可知光的强弱导致电路电流变化,所以电路中利用光传感器使电阻变化,实现自动控制,即是应用半导体的光敏性,A正确,B、C、D错误.5.(多选)电容式传感器是将非电信号转变为电信号的装置.由于电容器的电容C取决于极板正对面积S、极板间距离d以及极板间的电介质这几个因素,当某一物理量发生变化时就能引起上述某个因素的变化,从而引起电容的变化,如图2所示是四个电容式传感器的示意图,关于这四个传感器的作用,下列说法正确的是()图2A.甲图的传感器可以用来测量角度B.乙图的传感器可以用来测量液面的高度C.丙图的传感器可以用来测量压力D.丁图的传感器只能用来测量速度答案ABC考点二光敏电阻、热敏电阻的认识及应用6.如图3所示,将一光敏电阻接入多用电表两表笔上,将多用电表的选择开关置于欧姆挡,用光照射光敏电阻时,表针的偏转角为θ;现用手掌挡住部分光线,表针的偏转角为θ′,则可判断()图3A.θ′=θB.θ′<θC.θ′>θD.不能确定答案 B7.在信息技术高速发展、电子计算机广泛应用的今天,担负着信息采集任务的传感器在自动控制、信息处理技术中发挥着越来越重要的作用,其中热电传感器是利用热敏电阻将热信号转换成电信号的元件.某学习小组的同学在用多用电表研究热敏电阻特性的实验时,安装好如图4所示装置.向杯内加入冷水,温度计的示数为20 ℃,多用电表选择适当的倍率,读出热敏电阻的阻值R1,然后向杯内加入热水,温度计的示数为60 ℃,发现多用电表的指针偏转角度较大,则下列说法正确的是()图4A.应选用电流挡,温度升高换用大量程测量B.应选用电流挡,温度升高换用小量程测量C.应选用欧姆挡,温度升高时换用倍率大的挡D.应选用欧姆挡,温度升高时换用倍率小的挡答案 D解析多用电表与热敏电阻构成的回路中未接入电源,故不能用电流挡,A、B错误;当温度升高时多用电表指针偏转角度较大,说明热敏电阻的阻值变小了,应该换用倍率小的挡,C错误,D正确.8.如图5所示的电路中,电源两端的电压恒定,L为小灯泡,R为光敏电阻,R和L之间用挡板(未画出)隔开,LED为发光二极管(电流越大,发出的光越强),且R与LED间距不变,下列说法中正确的是()图5A.当滑动触头P向左移动时,L消耗的功率增大B.当滑动触头P向左移动时,L消耗的功率减小C.当滑动触头P向右移动时,L消耗的功率可能不变D.无论怎样移动滑动触头P,L消耗的功率都不变答案 A解析滑动触头P左移,滑动变阻器接入电路的电阻减小,流过二极管的电流增大,从而发光增强,使光敏电阻R的阻值减小,流过灯泡的电流增大,L消耗的功率增大.同理,当滑动触头P向右移动时,L消耗的功率减小.9.(多选)计算机光驱的主要部分是激光头,它可以发射脉冲激光信号,激光扫描光盘信息时,激光头利用光敏自动计数器将反射回来的脉冲信号传输给信号处理系统,再通过计算机显示出相应信息.光敏电阻自动计数器的示意图如图6所示,其中R1为光敏电阻,R2为定值电阻,此光电计数器的基本工作原理是()图6A.当有光照射R1时,处理系统获得高电压B.当有光照射R1时,处理系统获得低电压C.信号处理系统每获得一次低电压就计数一次D.信号处理系统每获得一次高电压就计数一次答案AD解析当有光照射R1时,R1的电阻减小,处理系统获得高电压;信号处理系统每获得一次高电压就计数一次.10.如图7所示,R1为定值电阻,R2为负温度系数的热敏电阻(负温度系数热敏电阻是指阻值随温度的升高而减小的热敏电阻),L为小灯泡,电源内阻不计,当温度降低时()图7A.R1两端的电压增大B.电流表的示数增大C.小灯泡的亮度变强D.小灯泡的亮度变弱答案 C解析R2与灯泡L并联后与R1串联,然后与电流表、电源构成闭合电路,当温度降低时,热敏电阻R2的电阻值增大,外电路总电阻增大,则总电流减小,即电流表的示数减小,R1两端的电压减小,灯泡L两端电压增大,灯泡亮度变强,故C正确,A、B、D错误.11.如图8所示为某传感装置内部部分电路图,R T为正温度系数热敏电阻,其特性为随着温度的升高阻值增大;R1为光敏电阻,其特性为随着光照强度的增强阻值减小;R2和R3均为定值电阻,电源电动势为E,内阻为r,V为理想电压表.若发现电压表示数增大,可能的原因是()图8①热敏电阻温度降低,其他条件不变②热敏电阻温度升高,其他条件不变③光照减弱,其他条件不变④光照增强,其他条件不变A.①③B.①④C.②③D.②④答案 A解析热敏电阻温度降低时,其阻值减小,外电路总电阻减小,总电流增大,路端电压随之减小,通过光敏电阻的电流减小,通过R3的电流增大,电压表的读数增大,符合题意,故①正确.同理可得热敏电阻温度升高,其他条件不变,电压表的示数减小,不符合题意,故②错误.光照减弱,光敏电阻的阻值增大,外电路总电阻增大,路端电压增大,则电压表的示数增大,故③正确.光照增强,光敏电阻的阻值减小,外电路总电阻减小,路端电压减小,则电压表的示数减小,故④错误.故A选项正确.12.(多选)如图9所示,理想变压器的原线圈与定值电阻r串联,副线圈接热敏电阻R T(温度升高,阻值减小),在正弦交流电源的电压U0不变的情况下,下列说法正确的是()图9A.当R T的温度升高时,原线圈两端的电压一定减小B.当R T的温度升高时,原线圈中的电流一定减小C.当R T的温度降低时,r消耗的功率一定减小D .当R T 的温度降低时,r 消耗的功率一定增大答案 AC解析 设变压器原线圈的匝数为n 1,副线圈的匝数为n 2,当R T 的温度升高时,其阻值减小,副线圈的电流I 2增大,根据I 1I 2=n 2n 1,可知原线圈的电流I 1增大,根据U 0=I 1r +U 1,可知原线圈两端的电压U 1减小,故A 正确,B 错误;同理,当R T 的温度降低时,其阻值增大,副线圈的电流I 2减小,根据I 1I 2=n 2n 1,可知原线圈的电流I 1减小,根据P =I 12r ,可知r 消耗的功率一定减小,故C 正确,D 错误.13. (多选)如图10所示,电源的电动势为E ,内阻为r ,R 1、R 2、R 3为定值电阻,R 4为光敏电阻(光敏电阻被光照射时阻值变小),C 为电容器.闭合开关S ,电路稳定后,用光照射R 4,下列说法正确的是( )图10A .电压表示数增大B .电源的效率增大C .电容器所带电荷量增加D .R 2上消耗的功率增大答案 CD解析 因有光照射时,光敏电阻的阻值减小,故总电阻减小;由闭合电路的欧姆定律可知,干路电流增大,由U =E -Ir 可知路端电压减小,所以电压表示数减小,故A 错误;电源的效率η=P 出P 总×100%=EI -I 2r EI ×100%=(1-Ir E )×100%,电流增大,则电源效率减小,故B 错误;电容器的电压与R 2两端的电压相等,因R 4电阻变小,总电阻变小,总电流增大,路端电压变小,通过R 1的电流减小,则通过R 2的电流增大,所以电容器的电压增大,根据Q =CU 可知,电容器所带电荷量一定增加,故C 正确;通过R 2的电流增大,根据P =I 2R 可知,R 2上消耗的功率增大,故D 正确.。
传感器的弹性敏感元件-第三章.
EA
f0 0.159 2l ml
l — 柱体元件的长度 ml — 柱体元件单位长度的质量
(3.7)
ml A
f0
0.249 l
E
(3.8)
ρ — 柱体元件的材料密度
圆柱形弹性敏感元件主要用于电阻应变式拉力 或压力传感器中。
§3 弹性敏感元件的特性参数计算
2、悬臂梁 结构简单,灵敏度高,多用于较小力的测
5、固有振动频率 固有频率决定其动态特性,一般来说,固
有频率越高,其动态特性越好。
1k
f
(Hz )
2 me
(3.5)
k — 弹性敏感元件的刚度
与灵敏度相矛盾
me — 弹性敏感元件的等效振动质量
§3 弹性敏感元件的特性参数计算
1、弹性圆柱(实心和空心) 结构简单,可承受很大载荷;但产生的位移
很小,所以往往以应变作为输出量。
§3 弹性敏感元件的特性参数计算
6、波纹管
图3.12 波纹管
压力(或轴向力)的变化与伸缩量成比例, 所以波纹管可以把压力(或轴向力)变成位移。
§3 弹性敏感元件的特性参数计算
轴向作用力下,与波纹管的轴向位移的关系:
1 2
n
yF
Eh0
A0
A1
2 A2
B0
h0 2 RH 2
(3.24)
F — 轴向集中作用力 n — 工作的波纹数
具有弹性变形特性的物体。
§1 概述
弹性敏感元件: 利用弹性变形实现将被测量由一种物
理状态变换为另一种相应物理状态的元件。
作用:直接测量被测量
常用的弹性敏感元件有波纹管、弹性梁、 柱及筒、膜片、膜盒、弹簧管等。
《传感器技术》教学课件第3章
14
2 、变面积型电容式传感器
图3-5是变面积型电 容传感器原理结构 示意图。 被测量通
b
a d
x S
过动极板移动引起
两极板有效覆盖面
a)平行板
b)扇形
c)圆筒形
1——定极板
2——动极板
图 3-6 变面积型电容传感器结构图 17
电容b
d
x
(3-8)
平行板电容传感器的灵敏度为
S C b
(3-9)
x d
可见,平板形电容传感器的输出特性是线性的,适合测
量较大的位移,其灵敏度 为常数。增大极板长度 或减小间
距 ,均可使灵敏度提高。极板宽度 的大小不影响灵敏度,
由运算放大器的原理可得:
U0
1 ( jwC x ) U 1 ( jwC )
C Cx
U
(3-18)
S
对于平板电容器,Cx d ,代入(3-18)后可得:
U0
UC
S
d
(3-19)
由式(3-19)可见,输出电压与d是线性关系,负 号表明输出与电源电压反相。这从原理上克服了变极 距型电容式传感器的非线性。但是仍然存在一定的非 线性误差。另外,为保证仪器精度,还要求电源电压U 的幅值和固定电容C值稳定。
24
变介电常数型电容传感器图3-8 如下所示:
a)
b)
例: 极板
带条
c)
滚轮
电容传感器测量
绝缘带条的厚度
25
若忽略边缘效应,圆筒式液位传感器如下图,传
高中物理第三章传感器第一节认识传感器第二节传感器的原理省公开课一等奖新名师优质课获奖PPT课件
(2)按工作原理分类:电阻应变式传感器、压电式传 感器、电容式传感器、涡流式传感器、动圈式传感器、 磁电式传感器等.
(3)按能量传递方式划分,可分为有源传感器和无源 传感器两大类.有源传感器是一种能量更换器,无源传 感器不能进行能量更换,被测的非电学量仅对传感器中 的能量起着控制和调节的作用,需具有辅助能源(电源).
第3页
知识点一 认识传感器 提炼知识 1.传感器. 传感器是能够完成两种量(光、热、电、力学量和机 械量等)之间的变换和转换关系的元件.
第4页
2.传感器的组成. 传感器一般由敏感元件、转换元件和转换电路三部 分组成. 3.传感器的分类. (1)按被测量分类:加速度传感器、速度传感器、压 力传感器、温度传感器、负荷传感器、扭矩传感器等.
第32页
4.变隙电感式压力传感器. 压力传感器是最基本的传感器之一,变隙电感式压 力传感器是将“力”的变化转变为“电流”测量的电测 系统,然后送至指示器电流表,从而测得压力的大小.
第33页
【典例 2】 (多选)如图所示为光敏电阻自动计数器 的示意图,其中 A 是发光仪器,B 是传送带上物品,R1 为光敏电阻,R2 为定值电阻,此光电计数器的基本工作 原理是( )
第43页
热敏电阻是由导体材料制成的,其阻值随温度的改 变而改变,且对温度很敏感,热敏电阻的阻值在特定温度 时会发生急剧变化,它在笔记本电脑、自动控制系统等方 面有多种用途,故 D 错误.
答案:ABC
第44页
第45页
第21页
[典例❶] (多选)传感器担负着信息采集的任务,它 常常是( )
A.将力学量(如形变量)转变成电学量 B.将热学量转变成电学量 C.将电学量转变成光学量 D.将电学量转变成磁学量
传感器知识第3章
0 忽略掉二次项以上的高次项,
L2 L0 0
1 时,同样展开成级数为
L2 L0 0 0
0
2
3
ΔL2与Δδ成线性关系。
由此可见,高次项是造成非线性的主要原因,且ΔL1 和ΔL2 是不相等的。 当Δδ/δ0 越小时,则高次项迅速减小,非线性得到改善。这说明了输出特性 和测量范围之间存在矛盾,所以,变气隙厚度式电感传感器用于测量微小位 移量是比较精确的(测量范围:0.001~1mm)。一般实际应用中,取 Δδ/δ0≤0.1。 忽略二次以上项后,传感器灵敏度为
ll——磁通通过铁芯的长度(m);
Sl——铁芯横截面积(m2); μ1——铁芯材料的导磁率(H/m)
l2——磁通通过衔铁的长度(m);
S2——衔铁横截面积(m2); μ2——衔铁材料的导磁率(H/m)
δ——气隙厚度(m);S——气隙横截面积(m2);
μ0——空气的导磁率(4π×10-7H/m)。 由于RF《Rδ,(μ1,μ2 》μ0 ),常常忽略RF ,因此,可得线圈电感为
第3章 电感式传感器
2. 输出特性
线圈 电感
气隙 电感
线圈
0 SW 2 L1 2 0
0 SW 2 L2 2 0
5
3 L L2 L1 2 L0 0 0 0
螺管插铁型电感传感器结构简单、便于制作、量程大,但灵敏度低。
第3章 电感式传感器
六、差动自感传感器
上述三种单一式的传感器,由于线圈电流的存在,它们的衔铁都受单 向电磁力作用,而且易受电源电压和频率的波动及温度变化等外界干扰的 影响,因此不适合精密测量。在不少场合,它们的非线性(即使是变面积 式传感器,由于磁通边缘效应,实际上也存在非线性)限制了使用。因此 绝大多数自感式传感器都采用差动式结构。 利用两只完全对称的单个电感传感器合用一个活动衔铁,这样可构成 差动式电感传感器。其结构特点是上、下两个磁体的几何尺寸、材料、电 气参数均完全一致。传感器的两只电感线圈接成交流电桥的相邻桥臂,另 外两只桥臂由电阻组成,它们构成四臂交流电桥,供桥电源为交流,桥路 输出为交流电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、任意方向应变电阻的压阻系数
Z
电阻(电流)方向和应力(晶轴方向)不同。 设电阻纵向、横向与晶轴方向夹角的余弦为:l1、m1、 n1和l2、m2、n2,任意晶向压阻系数的基本公式为:
t
l
Y
电阻纵向 电阻横向
纵向压阻系数: π l =π 11-2(π 11-π 12-π 44)²(l12m12+ m12n12 +n12l12) 横向压阻系数: π t =π 12+(π 11-π 12-π 44)²(l12l22+ m12m22+n12n22)
硅衬底
扩散型半导体应变计的结构
w
直线式
式。
折线式
由微电子工艺原理可知,直线扩散型电阻的阻值为:
l为扩散电阻的长度;W为扩散电阻的宽度;
R口为扩散层方块电阻,与杂质浓度分布、杂质扩散深度有关。
若扩散P型杂质表示为:
μ p随温度的升高而减小,使R口随温度升高而增大; (表面杂质浓度Ns越高,μ p随温度的变化越小,R口的温度系数也越小)
z
T3 T6 T5
T2
T4 y
正立方体各面的应力示意图
∵有的应力只引起某些方向的电阻率变化,电阻率的相对变化与应力间的关 系为:
其中π ii(i为1、2、3)为纵向压阻系数-----沿着晶轴方向的应 力对此方向电阻率的影响,立方晶系的x、y、z方向的纵向压阻系数 相等。 π ij (i≠j;i,j为1、2 、3)横向压阻系数----沿某晶轴方向的 应力对沿与其垂直的另一晶轴方向电阻率的影响,立方晶系的横向 压阻系数都相同,用π 12 代替之。 π kk (k为4、5 、6)为剪切压阻系数----剪切应力对其相应剪 切面的电阻率分量的影响,立方晶系的三个剪切压阻系数相等。 半导体单晶材料的晶体结构具有各向异性,在各个不同晶 面上的压阻系数也不同。见P125表
第三章
力/压力敏传感器
Force/pressure sensors
简介:
1、定义:将力/压力等力学量信号变成电信号的装置
2、可测对象:可测与机械应力有关信号:力和压力,负
荷、加速度、扭矩、位移、流量等其他物理量-----称为力学 量传感器。是支撑工业过程自动化的传感器之一。
3、分类:应用普遍的:电阻式、压电式、电容式、变磁
other force/pressure sensors
3.4 压力传感器的接口及应用电路
interface and application circuit
3.1 电阻应变计:金属应变片和半导体应变片
金属应变计 metal strain gauge 3.1.2 半导体应变片semiconductor 3.1.3 应变计的测量原理和测量线路 3.1.4 3.1.5 3.1.6
在有膨胀系数的弹性体材料上,且电阻的线膨胀系数(βg)与基片的线
膨胀系数(βm)相匹配,即:
电阻丝的热膨胀的附加变形ΔL’: ΔL’= Lg - Ls =(βg- βm)L0Δt
附加应变Δ ε’: Δε’=ΔL’/L0=(βg- βm)Δt
膨胀附加电阻ΔR’为: ΔR’= K0 R0 Δε’= K0 R0 (βg- βm)Δt 温度引起的电阻变化: 虚假应变为:
1.丝式应变片(回线式和短接式)
① 回线式应变片 原理:直线金属丝受单向拉伸时,每段电阻都增加,总电阻的增加
为各段电阻增量之和,任一微段上所受的应变都相同, 故: R R1 R 2 R 3 Rn R1K R 2 K R 3 K
l1 l2 L K K ... K s s s
l
l F r r
FHale Waihona Puke R R R dR dl ds d l s
s
s dl
dl (1
l
s2
l ds d s
(2)
l ds l ) d dl s s
若s=π r2,ds=2π r dr,即ds/s=2 dr/r,则
Measurement principle and circuit
3.1.1
硅膜片上的压阻全桥设计 硅杯式压力传感器
design bridge of pressure cell on silicon silicon cup pressure cell
电阻应变式传感器的应用
application of resistance strain gauge
可见,当金属丝受应变时电阻的相对变化率dR/R与金属丝纵向应 变成正比。
二、金属应变片的结构和分类 典型结构:1、金属电阻丝(敏感栅---转换元件)
2、基底(是将应变传递到敏感栅的中间介质,并使电阻
丝与试件间绝缘)。 3、覆盖层(保护)。 4、引出线。
3覆盖层
粘合剂
1敏感栅
2基底
4引线
r
l
L
分类:
6.绝缘电阻----敏感栅与基底间的绝缘电阻值应大于1010Ω ,若此值太小,则
基片使金属箔短路。
a
b
n %
11
0 0.1
0.3
0.5
0.7
11mm
-0.040 -0.080 -0.120
11
c
1
应变计的蠕变变化率(n)与应 变计端环长度(l1)的关系
四、温度和蠕变补偿应变计
1.温度自补偿应变计
应变材料的电阻温度系数α R,将应变计装
1.应变片的电阻值(R0)---室温下在不受外力时的电阻值(原始阻值)。
2.灵敏系数(K0)-----在应变片轴线方向的单位应变ε l作用下阻值的相对
变化率。实际电阻变化率与轴向应变间在很大范围内成线性关系。
ΔR/R
3.机械滞后-----在一定T下应 变从零到一定值变化,卸载和 加载曲线不重合,此两曲线间 最大的差值Δ δ m。 此值越小,寿命越长,应小于 7³10-6。
表面护膜 电极 氧化膜 层间绝缘膜 衬底
敏感栅电阻
SOI上电阻
4、剪切型半导体应变计
利用剪切压阻系数较大的特性可制作只能感受剪切应力的敏感栅元 件。应用时剪切应力作用对应的电压输出可完全反映剪切应力的大小。
其理论公式为:
L为金属丝总长,r为圆弧半径,n为敏感栅直线段数目
直线绕成敏感栅后K0 比直线的小
② 短接式应变片
数根等长金属丝平行放置,用直径比金属丝大5~10倍镀银丝焊接。 优点:克服了回线式应变片的横向效应。 缺点:焊点在冲击振动时易疲劳破坏。
2. 箔式应变片
---很薄的金属片粘于基片,经光刻﹑腐蚀等,接电极,涂覆覆盖层。 优点:尺寸准确,线条均匀,性能稳定,散热好,寿命长,但K0较低,仅 为2~6 。
3.1.1 金属应变计
一、基本原理: 将应变转换为电阻变化的电阻应变效应。
应变计------在弹性元件上粘贴电阻应变片构成传感器。
1、金属的电阻应变效应:金属导体受外力作用时发生机械
形变,导致其阻值大小发生变化的现象。
∵ ① 金属导线的电阻与长度成正比、面积成反比
② 应变效应示意图: 受外力F拉伸时,l增加,s减小,使R增加
因此,R口的选择必须同时兼顾上述物理量。
② W的选择 ∵电阻单位面积的功耗PS为:
在满足版图布局要求的条件下,电阻条应尽量宽。 若电阻条加宽,流过的电流减小,性能稳定。
3、SOI外延扩散型半导体应变计
若在硅衬底内扩散一定杂质构成敏感栅,与衬底间由PN结隔离,在 150℃以上隔离效果恶化,使两者之间电流泄漏。 更可靠的工艺是SOI工艺(Silicion technique on insulator), 即外延生长半导体Si薄膜,再扩散掺杂形成应变计。适用于制备150~ 200℃左右高温环境的各种压力传感器。
R R R t K 0( g m)t R R R / R R t [ ( g m)]t 令 0 K0 K0
K0为应变灵敏系数
R K 0( g m )
2.
蠕变自补偿应变计
蠕变微调的结构:全桥式应变计,其R1、R2、R3、R4为应变电桥, 蠕变可调器:虚线框A1、A2、A3、A4。当切割短路环A1时可改变蠕变量 0.0002FS/30min;A2的调节量是A1的一倍,依次A3是A2的一倍,A4是A3的 一倍;可以精确地调节蠕变,进行蠕变自补偿。
0
Δ L/ L
卸载 unload
εu ε1
加载
应变片的机械滞后示意图
4.蠕变(Δ ε t) -----在一定T、一定应变ε (为1000) 长时间作用,指示应变
随时间的变化,一般要求蠕变应小于3³10-6ε /小时,也可用变化率(n=Δ ε t/ε )
来描述。
5.零漂------在一定T和无机械应变时,指示应变随时间的变化。
阻式、光纤式等等。传统的如弹簧:成本低、不需电源,但 体积大、笨重、输出非电量。发展了声表面波压力传感器、 磁致伸缩型压力传感器、电位式压力传感器传感器等。
4、发展方向:半导体压力传感器正向集成化和智能化。
3.1 电阻应变计
resistance strain gauge
3.2 压电式力传感器 pressure-electric cell 3.3 其它力/压力传感器
结构:硅条、内引线(金丝)、 基底(绝缘胶膜)、电极(连接点 康铜箔)、外引线(镀银铜导线)。
外引线 硅 条 内引线 电极 基 底
(111) R 弹性绝 缘体 (f)
引线 (a) (b) (c) (d) (e)
因P-Si的(111)轴向压阻系数最大,此方向选为电阻纵向,工艺流程为: 单晶(a)→ 切片(b)→ 研磨(c)→ 切条(d)→ 焊引线(e)→ 粘衬底(f)
R4 A4 R2 A2