刚体习题
《大学物理》刚体力学练习题及答案解析
《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。
然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。
第四章 刚体的转动 习题
第四章 刚体的转动1. 一质量为m 0 ,长为l 的棒能绕通过O 点的水平轴自由转动。
一质量为m ,速率为v 0的子弹从水平方向飞来,击中棒的中点且留在棒内,如图所示。
则棒中点的速度为( )。
A .00m m mv +; B .0433m m mv +;C .0023m mv ;D .043m mv 。
2. 一根长为l ,质量为m 的均匀细棒在地上竖立着。
如果让竖立着的棒以下端与地面接触处为轴倒下,则上端到达地面时速率应为( )。
A .gl 6;B .gl 3;C .gl 2;D .lg23。
3. 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一个是正确的?( ) A .角速度从小到大,角加速度从大到小 B .角速度从小到大,角加速度从小到大 C .角速度从大到小,角加速度从大到小 D .角速度从大到小,角加速度从小到大4. 一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度ω( ) A .增大 B .不变 C .减小 D .不能确定5. 一静止的均匀细棒,长为L ,质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML 。
一质量为m 速率为v 的子弹在水平面内沿与棒垂直的方向射入并穿入棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为( )A .ML mvB .ML mv 23C .MLmv 35 D .ML mv 476. 在某一瞬时,物体在力矩作用下,则有( )A 、角速度ω可以为零,角加速度α也可以为零;B 、角速度ω不能为零,角加速度α可以为零;C 、角速度ω可以为零,角加速度α不能为零;D 、角速度ω与角加速度α均不能为零。
(完整版)刚体的转动习题
17-4图18-4 图F F ρ-O 04 第四章 刚体力学一、选择题:1、如图4-18所示,一圆盘绕通过盘心且与盘面垂直的轴o 以角速度ω针转动。
今将两大小相等、方向相反、但不在同一条直线上的力F 和F -盘面同时作用到圆盘上,则圆盘的角速度:[ ] (A )必然减少 (B )必然增大(C )不会变化 (D )如何变化,不能确定 2、如图4-17所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B端置于粗糙的水平地面上而静止,杆身与竖直方向成θ角,则A 端对墙壁的压力大小为:[ ](A )θcos 41mg (B )θmgtg 21 (C )θsin mg (D )不能唯一确定 3、某转轮直径m d 4.0=,以角量表示的转动方程为t t t 4323+-=θ(SI ),则:[ ](A )从s t 2=到s t 4=这段时间内,其平均角加速度为2.6-s rad ;(B )从s t 2=到s t 4=这段时间内,其平均角加速度为2.12-s rad ;(C )在s t 2=时,轮缘上一点的加速度大小等于2.42.3-s m ;(D )在s t 2=时,轮缘上一点的加速度大小等于2.84.6-s m 。
4、如图4-2所示,一倔强系数为k 轮(转动惯量为J ),下端连接一质量为m 的物体,问物体在运动过程中,下列哪个方程能成立?[ ] (A )ky mg = (B )02=-T mg(C )my T mg =-1 (D )y R J J βR T T ''⋅==-)(21 5、 关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]6、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A) 只有(1)是正确的.(B) (1) 、(2)正确,(3) 、(4) 错误.(C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ]7、有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则(A) J A >J B . (B) J A <J B .1-4 图5-4图19-4 图 (C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]8、一力N j i F )53(ϖϖϖ+=,其作用点的矢径为m j i r )34(ϖϖϖ-=,则该力对坐标原点的力矩为:[ ] (A )m N k ⋅-ϖ3 (B )m N k ⋅ϖ29 (C )m N k ⋅ϖ19 (D )m N k ⋅ϖ39、一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ]10、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]11、如图4-19所示P 、Q 、R 、S l RS QR PQ ===,则系统对o o '轴的转动惯量为:[ ](A )250ml (B )214ml(C )210ml (D )29ml12、如图4-1所示,A 、B 为两个相同的绕着轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且Mg F =。
第四章刚体运动习题详解
解:棒下摆为加速过程, 外力矩为重力对O 的力矩。
棒上取质元dm,当棒处在 下摆角时,重力矩为:
x
O
X
C
dm
dM xgdm
合力矩
mg
gdm
解:
因摩擦力产生的力矩是恒定的,故角速度均匀 减小。
0
0
t
0
0 t
dt t
0
f dS
r
σ
m πR2
R
dθ o
r
M J 1 mR2
2
dr
t 0mR2 / (2M ) (1) M ?
考虑面元dS对轴的摩擦力矩dM :
dM r0gdm r0g dS
26
t0mR2/(2M ) (1) dM r0g dS
mg 由(3)(4)(5)得
mgR sin
1 2
J02
1 2
J2
(5)
gh 2R2
cos2
g R
sin
1 2R
.
g 2
(h
4
3R)
M J
mgR 2mR2
g 2R
( 60 )
44
dt
O
X
C
即 d d
3g cos d d
mg
2L
θ
0
3gcos
2L
d
0
d
3g 2L
sin
1 2
2
3g sin
L
22
m 例2.质量为 、长为L的匀质细杆水平放置,一端
刚体定轴转动练习题及答案
刚体定轴转动练习题一、选择题1、一刚体以每分钟60转绕Z 轴做匀速转动(ωϖ沿Z 轴正方向)。
设某时刻刚体上一点P 的位置矢量为k j i r ϖϖϖϖ543++=,其单位为m 210-,若以s m /102-为速度单位,则该时刻P 点的速度为:( ) A υϖ=94.2i ϖ+125.6j ϖ+157.0k ϖ; B υϖ=34.4k ϖ; C υϖ=-25.1i ϖ+18.8j ϖ; D υϖ=-25.1i ϖ-18.8j ϖ;2、一均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?( )A 角速度从小到大,角加速度从大到小。
B 角速度从小到大,角加速度从小到大。
C 角速度从大到小,角加速度从大到小。
D 角速度从大到小,角加速度从小到大。
3、刚体角动量守恒的充分而必要的条件是:( )A 刚体不受外力矩的作用B 刚体所受合外力矩为零C 刚体所受的合外力和合外力矩均为零D 刚体的转动惯量和角速度均保持不变4、某刚体绕定轴做匀变速转动时,对于刚体上距转轴为r 出的任一质元m ∆来说,它的法向加速度和切向加速度分别用n a 和t a 来表示,则下列表述中正确的是 ( )(A )n a 、t a 的大小均随时间变化。
(B )n a 、t a 的大小均保持不变。
(C )n a 的大小变化, t a 的大小恒定不变。
(D )n a 的大小恒定不变, t a 的大小变化。
5、有两个力作用在一个有固定转轴的刚体:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(1) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。
A 只有(1)是正确的。
B (1),(2)正确,(3),(4)错误。
刚体习题
2
3
例2 求一质量为m,半径为R的均匀实心球对其一条直 径为轴的转动惯量。 解法一:实心球可被看作由 许多个小薄圆盘构成,如图 所示选取其中一小薄圆盘, 球体绕Z轴转动,离球心Z高 处切一厚为dz的薄圆盘。 其半径为: r
R2 Z 2
其体密度:
其体积: dV
m
r dZ ( R Z )dZ
2 2 2
4 3 R 3
其质量:dm
dV ( R Z )dZ
2 2
4
1 2 1 其转动惯量: dI r dm ( R 2 Z 2 ) 2 dZ 2 2
整个实心球体的转动惯量:
1 8 2 2 2 2 5 I dI ( R Z ) dZ R mR2 R 2 15 5
4 3 4 3 0 0
2 R sin2 d cos
4 0
2 R 1 cos2 d cos
4 0源自 cos 2 R cos 3 0
3 4
m 1 2 4 1 2 2 R 1 1 mR 3 3 3 4 R 2
R
5
6
7
2
该小圆环的质量:
dm dS 2 R sin d
2
1
该小圆环关于其转轴的转动惯量:
dI r dm R sin 2 R2 sin d 2 R4 sin3 d
2 2
则整个球壳关于转轴的转动惯量为:
I dI 2 R sin d 2 R sin d
例1求一质量为m,半径为R的空心薄球壳对其一条直径 为轴的转动惯量。 m r R sin 解法一:薄球壳的质量 面密度为:
刚体习题和答案
作业5 刚体力学♫刚体:在力的作用下不发生形变的物体⎰=-⇒=210t t dt dtd ωθθθω角速度⎰=-⇒=210t t dt dtd βωωωβ角加速度1、根底训练〔8〕绕定轴转动的飞轮均匀地减速,t =0时角速度为05rad s ω=,t =20s 时角速度为00.8ωω=,那么飞轮的角加速度β= -0.05 rad/s 2 ,t =0到 t =100 s 时间飞轮所转过的角度θ= 250rad . 【解答】飞轮作匀变速转动,据0t ωωβ=+,可得出:200.05rad s tωωβ-==-据2012t t θωβ=+可得结果。
♫定轴转动的转动定律:定轴转动的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比.βJ M =质点运动与刚体定轴转动对照[C ]1、根底训练〔2〕一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如下图.绳与轮之间无相对滑动.假设某时刻滑轮沿逆时针方向转动,那么绳中的力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 【解答】逆时针转动时角速度方向垂直于纸面向外, 由于(m 1<m 2),实际上滑轮在作减速转动,角加速m 2m 1 O度方向垂直纸面向,所以,由转动定律21()T T R J β-=可得:21T T >[C ] 2、自测提高〔2〕将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于. (B) 大于,小于2. (C) 大于2. (D) 等于2. 【解答】设飞轮的半径为R ,质量为m ,根据刚体定轴转动定律M J β=,当挂质量为m 的重物是:mg T maTR J a R ββ-=== 所以2mgRJ mRβ=+,当以2F mg =的拉力代替重物拉绳时,有: '2mgR J β=,2'mgRJβ=,比拟二者可得出结论。
刚体平面运动习题
刚体平面运动习题第八章刚体平面运动的练习1.真或假(勾选正确和交叉错误)8-1。
刚体的平面运动是一种运动,在这种运动中,刚体上的任何一点与固定平面之间的距离总是平行的。
()8-2。
平面图形的运动可以看作基点的平移和围绕基点的旋转的组合。
()8-3。
平面图形上任意两点的速度都相等地投影在一个固定的轴上。
()()()8-6。
瞬时速度中心的速度为零,加速度为零。
()8-7。
刚体的平移也是一种平面运动。
()2。
填空(在横线上写出正确答案)8-8。
在直线轨道上纯滚动时,圆轮与地面接触点的速度为。
8-9。
平面图上任意两点的速度在上投影中相等。
8-10。
瞬时刚体平移时的角速度是:刚体上每个点的速度;每个点的加速度。
3.简短回答问题8-11。
确定图中所示平面运动物体的瞬时速度中心的位置。
AbabaccωOboaωOdbω(b)Co(a)(c)图8-11 (d)8-12。
如果一个刚体在一个平面上运动,下面平面图中A和B的速度方向是正确的吗?问题8-12图(c)8-13。
下图中O1A和AC的速度分布是否正确?8-14。
当圆形车轮在曲线上滚动时,某一瞬时车轮中心的速度vo和加速度ao,而车轮的半径是R,即车轮中心的角度加速度是多少?如何确定瞬时速度中心的加速度的大小和方向?蟹爪兰O1VβA01ωO2P 8-13图8-148-15。
为什么用基点法计算平面图中单个点的加速度时没有科里奥利加速度?4.计算问题8-16。
椭圆规AB由曲柄OC驱动,曲柄OC以均匀的角速度ω O绕O轴旋转。
如图所示,如果以C为基点,OC=BC=AC=r,试着找出椭圆规AB的平面运动方程。
8-17。
半径为R的齿轮由曲柄OA驱动,沿半径为R的固定齿轮滚动,如图所示。
曲柄以均匀的角加速度α绕O轴旋转,并设定初始角速度ω。
角加速度α?0.角落??0.如果选择移动齿轮的中心C点作为基点,试着找出移动齿轮的平面运动方程。
yay rarαφBMMoxorBx 8-16图ωOO图8-178-18。
刚体习题及答案
解法二:
用角动量定理求解
0-10s: 0-90s:
(M M r )t1 J 1 0
(M r t2 ) 0 J1
联立得: Mt1t2 J1 (t1 t2 )
J Mt1t2 / 1 (t1 t2 ) 54kg m2
例4.一圆盘绕过盘心且与盘面垂直的轴 o 以角速度 按图示方 向转动,若射来两颗完全相同的子弹,方向相反并在同一条直 线上,子弹射入圆盘并留在其中,则子弹射入后的瞬间,盘的 角速度 (A)增大;(B)减小; (C)不变;(D)不能确定。
解: (1)dM dm g r
m M dM 2 rdr 1 mgl 0 l 4 (2)由角动量定理:
1 2
m m dr g r rdr l l
Mt J J 0 J 0
J 0 0 l t 3mg M
人: Mg T 2 Ma
1 1 物 : T1 - Mg = Ma 2 2
B
T2
o
T1
2 a g 7
A
Mg
B
a
轮: (T2 T1 ) R J
1 Mg 2
a R
例2.两个匀质圆盘,一大一小,同轴地粘结在一起,构成一个 组合轮。小圆盘的半径为r,质量为m;大圆盘的半径r’=2r, 质量为m’=2m。组合轮可绕通过其中心且垂直于盘面的光滑水 平固定轴O转动,对O轴的转动惯量J=9mr2/2。两圆盘边缘上 分别绕有轻质细绳,细绳下端各悬挂质量为m的物体A和B,如 图所示。这一系统从静止开始运动,绳与盘无相对滑动,绳的 长度不变。已知r = 10 cm.求: (1) 组合轮的角加速度; (2) 当物体A上升h=40 cm时,组合轮的角速度ω。
002刚体力学习题汇总(答案)
(3) v l
3 gl sin
10、如图所示,长为 l 的轻杆,两端各固定质量分
别为 m 和 2m 的小球,杆可绕 水平光滑固定轴 O 在竖直面 内转动, 转轴 O 距两端分别为
解:受力分析如图,可建立方程:
2mg T2 2ma ┄① T1 mg ma ┄②
1 2 l和 l. 轻杆原来静止在竖 3 3
2、对于一根质量分布均匀的木棒,质量 m,长度为 L,以木棒端点为轴旋转的转动惯量为 J1=
1 2 ml , 3
以 木 棒 中 点 为 轴 旋 转 的 转 动 惯 量 为 J2=
1 2 ml ,则 J1 是 J2 的 12
3、如图 1 所示的圆锥摆,绳长为 l ,绳子一端固定 在 O 点,另一端系一质量为 m 的质点,以匀角速 度 绕竖直轴线作圆周运动, 绳子与轴线的夹角为
得: t
(2)相碰时小球受到的冲量为
2m2 (v1 v2 ) 。 m1 g
Fdt (mv) mv mv
0
由①式求得
Fdt mv mv
0
J 1 Ml 3 l
-3-
Mr Lee 制作,内部交流
a r , J mr / 2 ┄⑤
2
联立,解得: a
1 11 g , T mg 。 4 8
9、如图所示,一匀质细杆质量为 m ,长为 l ,可绕
杆于水平位置由静止 过一端 O 的水平轴自由转动, 开始摆下.求:
2 2 2l l mv0 l m v l m( ) 2 2m ( ) 2 3 3 3 3
以逆时针为正向,有:
v0
J v ml
④
第三章 刚体习题
一计算题3-1-1 一汽车发动机曲轴的转速在s12内由13minr102.1-⋅⨯均匀地增加到13minr107.2-⋅⨯。
求:(1) 曲轴转动的角加速度;(2) 在此时间内,曲轴转了多少转?3-1-2 用落体观察法测定飞轮的转动惯量,如图所示。
将半径为R的飞轮支撑在O点上,然后再绕过飞轮的绳子的一端挂一质量为m的重物,令重物由静止开始下落,带动飞轮转动。
记录重物下落的距离和时间,便可计算出飞轮的转动惯量。
试写出它的计算式(轴承的摩擦忽略不计)。
3-1-3 质量为1m和2m的两物体A、B分别悬挂在如图所示的组合轮两边,设两轮的半径分别为R和r,两轮的转动惯量分别为J1和J2,轮与轴承间的摩擦力略去不计,绳的质量也略去不计。
试求两物体的加速度和两边绳的张力(假设21mm>)。
3-1-4 如图所示装置,定滑轮是半径为R,质量为m2匀质圆盘,滑轮两边分别悬挂质量均为m的物体A、B。
置于倾角为30=θ的光滑斜面上,若B向下作加速运动时,求:(1) B下落的加速度大小;(2) 滑轮两边绳子的张力。
(设绳的质量及伸长均不及,绳与滑轮间无滑动,滑轮与轴承近光滑)。
3-1-5 1970年4月24日,我国发射第一颗人造卫星,其近地点为m1039.45⨯,远地点高度为m1038.26⨯。
求卫星在近地点和远地点时的速率(已知地球半径为km6378=R)。
3-1-6 一根均匀米尺,在mc60刻度处被钉到墙上,且可以在竖直平面内自由转动。
先用手使米尺保持水平,然后释放。
求刚释放时米尺的角加速度和米尺到竖直位置时的角速度各是多少?3-1-7 长为l、质量为m的均匀细杆可绕端点O固定水平光滑轴转动。
把杆摆平后无初速地释放,杆摆到竖直位置习题3-1-2图习题3-1-3图习题3-1-4图习题3-1-7图时刚好和水平桌面上的小物块相碰。
小物块的质量为2/m 。
设碰撞是完全非弹性的,碰后物块沿摩擦系数为μ的水平面滑动,试求此物快滑过的距离。
刚体力学 习题库
第四章 刚体力学一、计算题 1。
如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.解:根据牛顿运动定律和转动定律列方程 对物体: mg -T =ma ①2分对滑轮: TR = J β ② 2分 运动学关系: a =R β ③ 1分将①、②、③式联立得a =mg / (m +21M ) 1分 ∵ v 0=0,∴ v =at =mgt / (m +21M ) 2分2.如图所示,转轮A 、B 可分别独立地绕光滑的固定轴O 转动,它们的质量分别为m A =10 kg 和m B =20 kg,半径分别为r A 和r B .现用力f A 和f B 分别向下拉绕在轮上的细绳且使绳与轮之间无滑动.为使A 、B 轮边缘处的切向加速度相同,相应的拉力f A 、f B 之比应为多少?(其中A 、B 轮绕O 轴转动时的转动惯量分别为221A A A r m J =和221B B B r m J =)解:根据转动定律 f A r A = J A βA ① 1分其中221A A A r m J =,且 f B r B = J B βB ② 1分 其中221B B B r m J =.要使A 、B 轮边上的切向加速度相同,应有a = r A βA = r B βB ③ 1分由①、②式,有BB B AA AB A B A B A B A r m r m r J r J f f ββββ== ④ 由③式有 βA / βB = r B / r A将上式代入④式,得 f A / f B = m A / m B = 212分3。
一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg 。
《大学物理》刚体的转动练习题及答案
《大学物理》刚体的转动练习题及答案一、简答题:1、为什么刚体绕定轴转动的动能的改变只与外力矩有关,而与内力矩无关?答案:对刚体,由于刚体内各质点间相对位移始终为零,内力总是成对出现,每对内力大小相等,方向相反,在一直线上,故内力矩做功之和一定为零,故刚体绕定轴转动的动能的改变与内力矩无关。
2、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。
3、下列物理量中,哪些量与原点的选择有关:(1) 速度,(2) 位矢,(3) 位移,(4) 角动量,(5) 动量 答案:与原点有关的物理量为:位矢,角动量。
4、质量、半径相同的两个圆盘,第一个质量分布均匀,第二个大部分质量分布在盘边缘,当它们以相同的角速度绕通过盘中心的轴转动时,哪个盘的转动动能大?为什么?答案:第二个盘的动能大。
因为由刚体转动动能221ωJ E k =知,在角速度一样时,转动惯量大的动能大;又因为2121mR J =,22mR J ≈,第二个转动惯量较大,所以转动动能较大。
5、在某一瞬时,刚体在一外力矩作用下,其角速度可以为零吗? 其角加速度可以为零吗?答案:由刚体转动定律αJ M =,知,在某一瞬时,刚体在一外力矩作用下,其角加速度不可以为零;由dtd ωα=,有⎰+=t dt 00αωω,可知其角速度此时可以为零。
6、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。
表达式为:αJ M =。
7、简述刚体定轴转动时的特点有哪些, 常用哪些物理量来描述刚体的转动?答案:刚体定轴转动的特点:转轴相对参照系固定,刚体内所有点都具有相同的角位移、角速度、角加速度;质点在垂直转轴的平面内运动,且作圆周运动。
刚体的转动通常用转动惯量J 、力矩M 、角加速度α、角动量L 等来描述。
大学物理练习题第四章 刚体的转动
大学物理练习题第四章刚体的转动一、选择题1. 有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。
对上述说法下述判断正确的是( )A. 只有(1)是正确的;B. (1)、(2)正确,(3)、(4)错误;C. (1)、(2)、(3)都正确,(4)错误;D. (1)、(2)、(3)、(4)都正确。
2. 关于力矩有以下几种说法:(1) 对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度;(2) 一对作用力和反作用力对同一轴的力矩之和必为零;(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同。
对上述说法下述判断正确的是( )A. 只有(2)是正确的B. (1)、(2)是正确的C. (2)、(3)是正确的D. (1)、(2)、(3)都是正确的3. 均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( )A. 角速度从小到大,角加速度不变B. 角速度从小到大,角加速度从小到大C. 角速度从小到大,角加速度从大到小D. 角速度不变,角加速度为零4. 一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计。
射过来两个质量相同、速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L以及圆盘的角速度ω的变化情况为( )A. L不变,ω增大B. 两者均不变C. L不变,ω减小D. 两者均不确定5. 假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的( )A. 角动量守恒,动能守恒B. 角动量守恒,机械能守恒C. 角动量不守恒,机械能守恒D. 角动量不守恒,动量也不守恒6. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,那么其转动加快的依据是:( )A.α> 0B.ω>0,α>0C.ω<0,α>0D.ω>0,α<07. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,那么它们对过盘心且垂直盘面的轴的转动惯量( )A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小二、填空题1. 半径为30cm的飞轮,从静止开始以0.5rad∙s−2的角加速度匀加速转动,那么飞轮边缘上一点在转过240°时的切向加速度为;法向加速度为。
03 刚体的定轴转动习题
V刚体的定轴转动习题班级 姓名 学号 成绩一、选择题1、一刚体以每分钟60转绕z 轴沿正方向做匀速转动,设此时该刚体上一点P 的位矢k j i r543++=,单位为10-2m ,若以12s m 10--⋅为速度单位,则该时刻点P 的速度为【 】(A )k j i v0.1546.1252.94++= (B )j i v8.181.25+-=(C )j i v8.181.15+= (D )k v4.32=2、下列说法中正确的是【 】(A )作用在定轴转动刚体上的力越大,刚体转动的角速度越大 (B )作用在定轴转动刚体上的合力矩力越大,刚体转动的角速度越大 (C )作用在定轴转动刚体上的合力矩力越大,刚体转动的角加速度越大 (D )作用在定轴转动刚体上的合力矩力为零,刚体转动的加速度为零3、两个均匀圆盘A 和B 的密度分别为A ρ和B ρ,若B A ρρ>,但两圆盘的质量和厚度相同,如两圆盘对通过盘心垂直于盘面的轴的转动惯量各为A J 和B J ,则【 】(A )B A J J > (B )B A J J <(C )B A J J = (D )A J 、B J 哪个大,不能确定4、有两个半径相同、质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的转轴的转动惯量分别为J A 和J B ,则【 】(A )B A J J > (B )B A J J <(C )B A J J = (D )A J 、B J 哪个大,不能确定5、如图所示,一质量为m 的匀质细杆AB ,A 端靠在光滑的竖直墙壁上,B 端置于粗糙水平地面上而静止。
杆身与竖直方向成θ角,则A 端对墙壁的压力大小为【 】(A )4)cos (θmg (B )2)tan (θmg (C )θsin mg (D )不能唯一确定 6、有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于转轴作用时,它们对转轴的合力矩一定是零 (2)这两个力都垂直于转轴作用时,它们对转轴的合力矩可能是零 (3)当这两个力的合力为零时,它们对转轴的合力矩也一定是零 (4)当这两个力对转轴的合力矩为零时,它们的合力也一定是零 在上述说法中【 】(A )只有(1)是正确的 (B )(1)(2)正确,(3)(4)错误 (C )(1)(2)(3)正确,(4)错误 (D )(1)(2)(3)(4)都正确7、半径为R 、质量为m 的匀质圆形平板在粗糙的水平桌面上,绕通过圆心且垂直于平板的O O '轴转动,摩擦力对O O '轴的力矩为【 】(A )2mgR μ (B )mgR μ (C )2mgR μ (D )0 8、一不可伸长的摆线长L ,下挂一质量为m 的小球,小球静止。
第4章刚体的转动习题
第四章刚体的转动习题(一)教材外习题一、选择题:1.关于刚体对轴的转动惯量,下列说法中正确的是(A)只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C)取决于刚体的质量、质量的空间分布和轴的位置。
(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
()2.两个均质圆盘A和B的密度分别为ρA和ρB,若ρA>ρB,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A和J B,则(A)J A>J B(B)J B>J A(C)J A=J B(D)J A、J B哪个大,不能确定()3.花样滑冰运动员绕过自身的竖直轴转动,开始时两臂伸开,转动惯量为J0角速度为ω0,然后她将两臂收回,使转动惯量减少J0/3。
这时她转动的角速度变为(A)ω0/3 (B)(1/3)ω0(C)3ω0(D)3ω0()4.如图所示,一水平刚性轻杆,质量不计,杆长l =20cm,其上穿有两个小球。
初始时,两小球相对杆中心O对称放置,与O的距离d=5cm,二者之间用细线拉紧。
现在让细杆绕通过中心O的竖直固定轴作匀角速的转动,转速为ω0,再烧断细线让两球向杆的两端滑动。
不考虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为(A)ω0 (B)2ω0(C)ω0/2 (D)ω0/4()二、填空题:1.半径为r =1.5m的飞轮,初角速度ω0=10rad·s-1,角加速度β = -5rad·s-2,则在t=_______ _________时角位移为零,而此时边缘上点的线速度v= _______________________。
2.半径为30cm的飞轮,从静止开始以0.50rad·s-2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240︒时的切向加速度a t =______________,法向加速度a n =_______________。
刚体的定轴转动---练习题
刚体的定轴转动---练习题一、选择题1.几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体 ( )(A) 必然不会转动. (B) 转速必然不变.(C) 转速可能不变,也可能改变. (D) 转速必然改变.2.关于刚体对轴的转动惯量,下列说法中正确的是( )(A )取决于刚体的质量、质量的空间分布和轴的位置.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.3.关于刚体,下列说法正确的是: ( )A .刚体所受合外力为零,则刚体所受的合外力矩也为零;B .刚体所受合外力矩为零时,刚体角速度一定为零;C .刚体所受合外力矩不为零时,刚体角速度会发生变化;D .刚体平衡的条件是:它所受到的合外力为零.4.两个匀质圆盘A 和B 的半径分别为A R 和B R ,若B A R R >,但两圆盘的质量相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则 ( )(A ) J B >J A . (B ) J A >J B . (C ) J A =J B . (D )J A 、J B 哪个大,不5.如图所示,均匀木棒OA 可绕过其端点O 并与棒垂直的水平光滑轴转动。
令棒从水平位置开始下落,在棒转到竖直位置的过程中,下列说法中正确的是 ( )A 、角速度从小到大,角加速度从小到大;B 、角速度从小到大,角加速度从大到小;C 、角速度从大到小,角加速度从大到小;D 、角速度从大到小,角加速度从小到大6. 如图所示,A 、B 为两个相同的绕着轻绳的质量为M 的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B两滑轮的角加速度分别为A α和B α,不计滑轮轴的摩擦,则有A .B A αα= B . B A αα>C . B A αα<D . 不确定 7.一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿顺时针方向转动,则绳中的张力 ( )(A )处处相等.(B )左边大于右边.(C )右边大于左边.(D )哪边大无法判断.A MB F m 2m 18.一力学系统由两个质点组成,两质点之间只有万有引力作用,若系统所受外力的矢量和为零,则此系统 ( )A 、动量、机械能以及对某一定轴的动量矩守恒;B 、动量、机械能守恒,但动量矩是否守恒不能确定;C 、动量守恒、但机械能和动量矩是否守恒不能确定;D 、动量和动量矩守恒、但机械能是否守恒不能确定.9.人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B .用L 和E K 分别表示卫星对地心的动量矩及其动能的瞬时值,则应有 ( )A .L A >LB ,E KA >E kB . B . L A =L B ,E KA >E KB .C .L A =L B ,E KA <E KB .D . L A <L B ,E KA <E KB .10. 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统 ( )A . 动量守恒.B . 机械能守恒.C . 动量、机械能和角动量都守恒.D . 对转轴的角动量守恒.11.花样滑冰运动员绕过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0角速度为ω0,然后她将两臂收回,使转动惯量变为原来的一半,这时她转动的角速度变为 ( B )A 、ω0/2;B 、2ω0;C 、(1/2)ω0;D 、2ω0.12.如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 ( )(A) 只有动量守恒.(B) 只有机械能守恒.(C) 只有对转轴O 的动量矩守恒.(D) 机械能、动量和动量矩均守恒.13.刚体动量矩守恒的充分必要条件是 ( )(A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变.14.一质量为M 的均匀细杆,可绕光滑水平轴转动,一质量为m 的小球以速度V 0水平飞来,与杆一端作完全弹性碰撞,则小球与杆组成的系统(如图所示),满足: ( )A 、动量守恒,动量矩守恒;B 、动量不守恒,动量矩守恒;C 、动量不守恒,动量矩不守恒;D 、动量守恒,动量矩不守恒..15.如图所示,均匀木棒可绕过其中点O 的水平光滑轴在竖直平面内转动,棒初始位于水平位置,一小球沿竖直方向下落与棒的右端发生碰撞,碰撞后球粘在杆上。
第三章 刚体的运动 习题
解:碰撞过程角动量守恒
l
1 2
mlv0
(1 12
ml 2
m( 1 2
l)2 )
mO 俯视图
v 0
m
得答案
9
例:如图所示,A、B为两个相同的绕着轻绳的定滑轮。 A滑轮挂一质量为M的物体,B滑轮受拉力F,而且
F M g 。设A、B两滑轮的角加速度分别为
和
A
,不计滑轮轴的摩擦,则有 B
(A) A B
滑轮之间无相对滑动。滑块 A的加速度
a _____________。
C
a
mB mA
mA
mB
1 2
mc
g
B
A
图 2-B-3
14
例:如图所示,物体1和2的质量分别为 m1与 m2
,滑轮的转动惯量为 J ,半径为 r
(1)如物体2与桌面间的摩擦系数为 ,求系统的加速度 a
及绳中的张力 T1 和 T2
(B)
(3)错。质量相等、形状和大小不同的两个刚体,转动惯 1量不同,在相同力矩的作用下,角加速度不相等。
例:均匀细棒OA可绕通过其一端O而与棒垂直的水平 固定光滑轴转动,如图所示.今使棒从水平位置
由静止开始自由下落,在棒摆动到竖直位置的过
程中,下述说法哪一种是正确的?
(A) 角速度从小到大,角加速度从大到小. (B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小. (D) 角速度从大到小,角加速度从小到大.
O
A
(A)
2
例:以下说法正确的是 (A)合外力为零,合外力矩一定为零; (B) 合外力为零,合外力矩一定不为零; (C) 合外力为零,合外力矩可以不为零; (D) 合外力不为零,合外力矩一定不为零; (E) 合外力不为零,合外力矩一定为零.
刚体运动习题
1、如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动,假定一滑轮质量为M ,半径为R ,滑轮轴光滑,试求该物体由静止开始下落的过程中,下落速度与时间的关系。
解:物体由静止开始下落,作匀变速直线运动212mg T ma TR I MR a R βββ-=⎫⎪⎪==⎬⎪=⎪⎭ 22m a g m M ⇒=+00v =, 22mv at gt m M==+2、半径为R ,质量为M 的均匀圆盘能绕其水平轴转动,一细绳绕在圆盘的边缘,绳上挂质量为m 的重物,使圆盘得以转动。
(1)求圆盘的角加速度;(2)当物体从静止出发下降距离h 时,物体和圆盘的动能各为多少?解:(1)212mg T ma TR I MR a R βββ-=⎫⎪⎪==⎬⎪=⎪⎭22,2(2)m mg a g m M m M R β⇒==++(2) 物体作匀变速直线运动,22v ah =,物体的动能:2211222k m E mv gh m M==+ 根据机械能守恒,圆盘的动能:212k k mME mgh E gh m M=-=+3、一轻绳绕于半径r=0.2m 的飞轮边缘,现以恒力F=98N 拉绳的一端,使飞轮由静止开始转动,已知飞轮的转动惯量20.5I Kg m =⋅,飞轮与轴承之间的摩擦不计。
求: (1)飞轮的角加速度;(2)绳子下拉5m 时,飞轮的角速度和飞轮获得的动能?Mm R解:2980.2(1),39.2/0.5F R F R I rad s I ββ⋅⨯⋅==== 2(2)985490122249044.27/0.5k W F S JW E Iw W W rad sI =⋅=⨯==∆=⨯=== 4、一轻绳跨过两个质量均为m ,半径均为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 和2m 的重物,如图所示。
绳与滑轮间无相对滑动,滑轮轴光滑,两个定滑轮的转动惯量均为221mr ,将由两个定滑轮以及质量为m 和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ω = 2π×3000/60 = 314 (rad/s)
0
t
314 20.9 7.0
41.9(rad/s 2 )
(2) 0 t
2
20.9 314 7.0 2
1.17103(rad) 186(圈)
2020/3/27
10
(3) at r 41.9 0.2 8.38(m/s 2 ) an 2r 3142 0.2 1.97104(ms 2 )
(3)功率
N
dA dt
M
2020/3/27
2
5. 冲量矩和动量矩
(1)冲量矩 Mdt
t
2
Mdt
t1
(2)角动量(动量矩)
刚体对固定转动轴的角动量,等于它对该轴
的转动惯量和角速度的乘积。
L
J
2020/3/27
3
二、基本规律
1. 刚体定轴转动的转动定律
M外
J
2. 刚体定轴转动的动能定理
A Ek2 Ek1
R1
两轮上绕有细绳,绳端分别挂上质量 为 m1 和 m2的两个物体。求在重力作
a1
TT11
用下, m2下落时轮的角加速度。
解:对m1 、 m2 、整个滑轮分别进 行受力分析,画出示力图
m1 m1g
R2 T2
a2 T2
m2
m1:T1 m1 g m1a1(向上为正) m2g m2:m2 g T2 m2a2(向下为正)
(4)计算对轴的转动惯量;
(5)解方程求未知,必要的结果讨论。
2020/3/27
8
4. 定轴转动中的功能问题 解法:利用动能定理和机械能守恒定律
5. 角动量原理及角动量守恒定律
6. 混合题型 解法:应用运动学公式、转动定律和角动量
守恒定律。
四、典型习题分析与讲解
2020/3/27
9
5.2 一 汽车发动机的转速在7.0s 内由200 rev/min均匀地增
R2 T2
a2 T2
m2
m2g
2020/3/27
15
例: 求系统的加速度和拉力 T1 m1 g m1a T3 m2 g T2 m2a
(T2 T3 )R2 J 2 T2 M2R2
(T3 T1 )R1 J1
m2
J 1 MR2 , a R
2
M1R1 T1
m1 a
2020/3/27
16
3.
刚体的角动量定理
M外
dL dt
t2
Mdt
t1
L2
L1
2020/3/27
4
4. 角动量守恒定律
M外z 0, 则J z const .
5. 机械能守恒 对于包括刚体的系统,功能原理和机械能守
恒定律仍成立。
2020/3/27
5
三、习题基本类型
1. 定轴转动的运动学问题
解法:利用定轴转动的运动学描述关系
d
dt
,dΒιβλιοθήκη dtd2dt 2
,
zω
r
at an
r r
2
r
v
•P
Or
ω
ω 0
ω 0
t
t
1 2
t2
ω2 ω02 2 ( 0)
定轴
2020/3/27
6
2. 转动惯量的计算 解法:
(1)定义法:
J mi ri2
i
(2)平行轴定理
或 J r 2dm
J = JC + m d 2
(P261表5.1,记住)
g
2020/3/27
17
5.13 一根均匀米尺,在60cm刻度处钉到墙上,且可以
12
因薄板质量均匀,得
m2
4 3
m,
m1
1 3
m
J J2 J1
2 mR 2 1 mR 2
3
8
13 24
mR 2
R O R/2 C
2020/3/27
13
5.12 如图,两个圆轮的半径分别为R1
和R2 , 质量分别为 M1 、M2 ,二者皆 可视作均匀圆柱体且同轴固结在一起
M2 M1
o
α
,可绕一水平固定轴自由转动。今在
轮:T2 R2 T1R1 J (顺时针为正)
2020/3/27
14
线角J 量 关12 系M(1R绳12在轮12上M不2 R打22滑):M2M1 o
α
a1 R1 , a2 R2
解得:
(m2 R2 m1R1 )g
(
M1 2
m1 )R12
(
M2 2
m2 )R22
R1
a1 TT11
m1 m1g
2020/3/27
7
3. 定轴转动的动力学问题
解法:利用定轴转动中的转动定律 M J
步骤: (1)审题,确定研究对象; (2)建立坐标系;
(3)对研究对象进行受力分析和受力矩分析, 并按坐标系的正方向写出外力矩的表达式及规律 方程(注:受力分析和受力矩须取隔离体),并 用线角量关系将F = ma 与M =Jα联系起来;
转动定律例题题解
a
2(m2 m1 ) g
2(m1 m2 ) M1 M 2
T1
m1 (4m2 M1 M 2 ) g 2(m1 m2 ) M1 M 2
T2
m2 (4m1 M1 M 2 ) g 2(m1 m2 ) M1 M 2
T3
4m1m2 m1 M 2 m2 M1 2(m1 m2 ) M1 M 2
解:已挖洞的圆板的转动惯量J 加
上挖去的圆板补回原位后对原中心 的转动惯量J1就等于整个完整圆板
R
OO
R/2 CC R/2
对中心的转动惯量J2 即
J1
J = J2 - J1
J1C m1d 2
1 2
m1
(
R 2
)2
m1
(
R 2
)2
3 2
m1
(
R 2
)
2
J 1 m R 2 2 2020/3/27
2 2
一、基本概念 1. 刚体及其平动、转动、定轴转动
2. 转动惯量
J mi ri2
i
J r 2dm m
3. 转动动能
Eki
1 2
Emk ii212
J
2E ki
i
E ki
2020/3/27
1
4.力矩及其功和功率
(1)对转轴的力矩 Mz
ri
Fi
i
(2)力矩的功
dA Md
A 2 M d 1
加到3000 rev/min。
(1)求这段时间内的初角速度、末角速度及角加速度;
(2)求这段时间内转过的角度;
(3)发动机轴上装有一半径为 r = 0.2m 的飞轮,求它边
缘上一点在这第7.0s 末的切向加速度、法向加速度和总加
速度。
解:(1)ω0 = 2π×200/60 = 20.9 (rad/s)
a
at2
a
2 n
8.372 (1.97 104 )2 1.97 104 (ms2 )
总加速度与速度(切向)之间的夹角
tan1 ( an )
at
tan1(1.97104 ) 89059 8.37
2020/3/27
11
5.9 从一半径为R的均匀薄板上挖去一个直径为 R 的圆 板,所形成的圆洞中心在距原薄板中心 R/2 处,所剩薄 板的质量为m。求此薄板对于通过原中心而与板面垂直 的轴的转动惯量。