2020年中考数学二轮核心考点讲解第06讲动点问题专题解析版

合集下载

2020中考数学动点问题

2020中考数学动点问题

中考数学专题:动点型问题一、中考专题诠释所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.“动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。

二、解题策略和解法精讲解决动点问题的关键是“动中求静”.从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

三、中考考点精讲考点一:建立动点问题的函数解析式(或函数图像)函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.(一)应用勾股定理建立函数解析式(或函数图像)例1 如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A的路径运动,回到点A时运动停止.设点P运动的路程长为长为x,AP长为y,则y关于x的函数图象大致是()A.B.C.D.对应训练1.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()..A B C.D.(二)应用比例式建立函数解析式(或函数图像)例2 、如图,直角梯形AOCD的边OC在x轴上,O为坐标原点,CD垂直于x轴,D(5,4),AD=2.若动点E、F同时从点O出发,E点沿折线OA→AD→DC运动,到达C点时停止;F点沿OC运动,到达C点是停止,它们运动的速度都是每秒1个单位长度.设E运动秒x时,△EOF的面积为y(平方单位),则y关于x的函数图象大致为()A.B.C.D.对应训练2.、如图,Rt△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且∠ACB=90°,AB=5,BC=3,点P在射线AC上运动,过点P作PH⊥AB,垂足为H.(1)直接写出线段AC、AD及⊙O半径的长;(2)设PH=x,PC=y,求y关于x的函数关系式;(3)当PH与⊙O相切时,求相应的y值.(三)应用求图形面积的方法建立函数关系式例3 如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.对应训练3.、如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系的图象是()A.B.C.D.考点二:动态几何型压轴题点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

中考数学动点问题专题讲解

中考数学动点问题专题讲解

中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长. 解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中, .∴y =GP=32MP=233631x + (0<x <6). H M NGPOAB图1(3)△PGH 是等腰三角形有三种可能情况: ①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意.②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2. 二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y .(1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式; (2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°, ∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°. ∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CEAB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠AED C B图2OE 3(1)ABC=290α-︒,且函数关系式成立,∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴53x OD =,54x AD =,∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58.∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, ∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE.E A3(2)O∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6. 三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21. ABCO 图8H动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

中考动点问题专题教师讲义带答案

中考动点问题专题教师讲义带答案

中考动点型问题专题一、中考专题诠释所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.“动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。

二、解题策略和解法精讲解决动点问题的关键是“动中求静”.从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

三、中考考点精讲考点一:建立动点问题的函数解析式(或函数图像)函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.例1 (2015•兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()A.B.C.D.思路分析:分析动点P的运动过程,采用定量分析手段,求出S与t的函数关系式,根据关系式可以得出结论.解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则:(1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1);(2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2).综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2),这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求.故选B.点评:本题结合动点问题考查了二次函数的图象.解题过程中求出了函数关系式,这是定量的分析方法,适用于本题,如果仅仅用定性分析方法则难以作出正确选择.对应训练1.(2015•白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是()A.B.C.D.1.C考点二:动态几何型题目点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

中考数学动点问题专题讲解(22页)

中考数学动点问题专题讲解(22页)

中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式.例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.!2222233621419x x x MH PH MP +=-+=+=HM NG PO!AB图1xy∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;}(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°,:又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴AC BD CE AB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.[(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.AEDCB 图2AC 3(2)¥EC 3(1)根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴53x OD =,54xAD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, (∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE.∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . *∵AH OC S AOC⋅=∆21, ∴4+-=x y (40<<x ).(2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . A!BCO 图8HC此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

中考复习函数专题06 一次函数中的动点问题(学生版)

中考复习函数专题06 一次函数中的动点问题(学生版)

专题06 一次函数中的动点问题知识对接考点一、怎样解一次函数图象的平移问题1、直线的平移规律(1)直线)0(≠+=k b kx y 可由直线)0(≠=k kx y 向上或向下平移得到,当b>0时,将直线kx y =沿y 轴向上平移b 个单位长度得到直线b kx y +=;当b<0时,将直线kx y =沿y 轴向下平移b 个单位长度得到直线b kx y +=.简而言之,“上加下减”(2)直线)(m x k y +=可由直线kx y =向左或向右平移得到,当m<0时,将直线kx y =沿x 轴向右平移m 个单位长度,可得到直线)(m x k y +=;当>0时,将直线kx y =沿x 轴向左平移m 个单位长度,可得到直线)(m x k y +=,简而言之,“左加右减”(3)一次函数的图象平移,不会改变图象的形状与大小,平移后的图象与原来的图象平行,直线平移后的解析式中,k 的值不变,只有b 的值发生变化.专项训练一、单选题1.一次函数y =kx +b 的图象是由函数y =2x 的图象向左平移3个单位长度后得到的,则该一次函数的解析式为( )A .y =2x +6B .y =﹣2x +6C .y =2x ﹣6D .y =﹣2x ﹣6 2.若一次函数的y =kx +b (k <0)图象上有两点A (﹣2,y 1)、B (1,y 2),则下列y 大小关系正确的是( )A .y 1<y 2B .y 1>y 2C .y 1≤y 2D .y 1≥y 23.已知一次函数的图象过点(2,0)和点(1,1)-,则这个函数的解析式为( )A .2y x =-B .2y x =+C .2y x =--D .2y x =--4.将一次函数1y x =-+的图象向上平移3个单位,则新的一次函数的解析式为( ) A .21y x =+ B .4y x =-- C .4y x =-+ D .41y x =-+5.定义:对于给定的一次函数y ax b =+(a 、b 为常数,且0a ≠,把形如()()00ax b x y ax b x ⎧+≥⎪=⎨--<⎪⎩的函数称为一次函数y ax b =+的“相依函数”,已知一次函数1y x =+,若点()2,P m -在这个一次函数的“相依函数”图象上,则m 的值是( )A .1B .2C .3D .46.若把一次函数y =kx +b 的图象先绕着原点旋转180°,再向右平移2个单位长度后,恰好经过点A (4,0)和点B (0,﹣2),则原一次函数的表达式为( )A .y =﹣12x ﹣1B .y =﹣12x +1C .y =12x +1D .y =12x ﹣1 7.数学课上,老师提出问题:“一次函数的图象经过点(3,2)A ,(1,6)B --,由此可求得哪些结论?”小明思考后求得下列4个结论:①该函数表达式为24y x =-;①该一次函数的函数值随自变量的增大而增大;①点(2,44)P a a -该函数图象上;①直线AB 与坐标轴围成的三角形的面积为8.其中正确的结论有( )A .1个B .2个C .3个D .4个 8.下列函数关系式:(1)y x =-;(2)1y x =-;(3)1y x =;(4)2y x ,其中一次函数的个数是( )A .1B .2C .3D .49.如图,在等腰Rt ABC ∆中,2AB AC cm ==,动点Q 从点C 出发沿C A B →→路径以1/cm s的速度运动,设点Q 运动时间为()t s ,BCQ ∆的面积为S ,则S 关于t 的函数图象大致为( )A .B .C .D . 10.如图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰Rt①ABC ,使①BAC=90°,设点B 的横坐标为x ,设点C 的纵坐标为y ,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .二、填空题11.若一次函数(0)y kx b k =+≠的图象可以由2y x =的图象平移得到,且经过点(0,1),则这个一次函数的表达式为_________.12.若一个一次函数的图象经过点()02,,则这个一次函数的解析式可以是(写出一个即可)__________.13.若一次函数y kx b =+(b 为常数)的图象过点()5,4,且与y x =的图象平行,这个一次函数的解析式为_______.14.如图,在平面直角坐标系中,直线l :28y x =+与坐标轴分别交于A ,B 两点,点C 在x 正半轴上,且OC =O B .点P 为线段AB (不含端点)上一动点,将线段OP 绕点O 顺时针旋转90°得线段OQ ,连接CQ ,则线段CQ 的最小值为___________.15.如图①,在梯形ABCD 中,AD①BC ,①A=60°,动点P 从A 点出发,以1cm/s 的速度沿着A→B→C→D 的方向不停移动,直到点P 到达点D 后才停止.已知①PAD 的面积S (单位:)与点P 移动的时间t (单位:s )的函数关系式如图①所示,则点P 从开始移动到停止移动一共用了_________秒(结果保留根号).三、解答题16.如图,在平面直角坐标系中,点()1,1A ,点()4,2B ,点A 关于x 轴的对称点为A '.(1)点A '的坐标为________;(2)已知一次函数的图象经过点A '与B ,求这个一次函数的解析式;(3)点(),0P x 是x 轴上的一个动点,当x =________时,PAB △的周长最小;(4)点(),0C t ,()2,0D t +是x 轴上的两个动点,当t =________时,四边形ACDB 的周长最小;(5)点(),0M m ,点()0,N n 分别是x 轴和y 轴上的动点,当四边形ANMB 的周长最小时,m n +=________,此时四边形ANMB 的面积为________.17.已知:一次函数y =kx +b 的图象经过M (0,2),N (1,3)两点.(1)求一次函数的解析式,画出此一次函数的图象并利用图象回答:当x 取何值时,函数值y >0;(2)将该函数图象平移,使它过点(﹣2,﹣2),求平移后直线的解析式.18.已知一次函数的图象经过点A (3,5)与点B (﹣4,﹣9).(1)求这个一次函数的解析式;(2)将该函数图像向下平移3个单位,求平移后图像的函数表达式.19.在平面直角坐标系中,一次函数 y=kx+b (k ≠ 0)的图象由函数 y=x 的图象平移得到, 且经过点 A (1,2).(1)求这个一次函数的解析式;(2)在所给的平面直角坐标系中画出这个一次函数的图象.若此图象与 x 轴交于点 B ,则①ABO 的面积为 .(3)当 x >1 时,对于每一个 x 的值,函数 y=mx (m ≠ 0)的值都大于一次函数 y=kx+b 的值,请你直接写出 m 的取值范围: .20.在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象是由函数y =2x 的图象平移得到,且经过点(1,3).(1)求这个一次函数的表达式;(2)当x >1时,对于x 的每一个值,函数y =mx (m ≠0)的值大于一次函数y =kx +b (k ≠0)的值,直接写出m 的取值范围.21.如图,一次函数y =(m ﹣3)x ﹣m +1图象分别与x 轴正半轴、y 轴负半轴相交于点A 、B .(1)求m 的取值范围;(2)若该一次函数的图象向上平移4个单位长度后可得某正比例函数的图象,试求这个正比例函数的解析式.22.在平面直角坐标系xOy 中,一次函数y kx b =+的图象经过(2,0)A -,()1,3B 两点. (1)求这个一次函数的解析式;。

(完整版)中考数学动点问题专题讲解

(完整版)中考数学动点问题专题讲解

中, 有长度保持不变的线段,这条线段是
2 21
GH= NH= OP=2.
B
3 32
(2) 在 Rt △ POH 中 ,
OH
2
2
OP PH
2
36 x ,

MH
1 OH
1 36
x2 .
2
2
O
在 Rt △ MPH中 ,
MP
PH 2 MH 2
x 2 9 1 x2 1 36 3x 2 .
4
2
P
Ny x
G
MHA 图1
∴ y =GP=2 MP=1 36 3x2 (0< x <6). 33
(3) △ PGH是等腰三角形有三种可能情况 :
① GP=PH时, 1 36 3x 2 3
x , 解得 x
6 . 经检验 , x
② GP=GH时, 1 36 3x 2 2 , 解得 x 0 . 经检验 , x 3
③ PH=GH时, x 2 .
段 , 并求出相应的长度 .
(2) 设 PH x ,GP y , 求 y 关于 x 的函数解析式,并写出函数的定义域
( 即自变量 x 的取值范围 ).
(3) 如果△ PGH是等腰三角形 , 试求出线段 PH的长 .
解:(1) 当点 P 在弧 AB 上运动时 ,OP 保持不变 , 于是线段 GO、GP、 GH
又∠ DAB+∠ADB=∠ ABC=75° ,
∴∠ CAE=∠ADB,
∴△ ADB∽△ EAC, ∴ AB BD , CE AC
D
E
B
C
图2
∴1
x , ∴y
1
.
y1
x

2020~2021学年中考数学《数轴上的动点问题》专题讲义

2020~2021学年中考数学《数轴上的动点问题》专题讲义

《数轴上的动点问题》专题讲义一.动点问题的处理方法“点-线-式”三步二.动点问题的解题步骤1.列点:将已知点用具体的数表示,未知动点用含t的式子表示①点的左右移动:数轴上的点向左移动用减法,移动几个单位长度就减去几,向右移动用加法,移动几个单位长度就加上几。

②点的表示:通常用含t的式子表示数轴上的动点,可以根据动点的位置、速度和移动的方向将点表示出来。

例题1:如图,数轴上点A表示的数为-3,点B表示的数为6,动点P从A出发向右运动,速度2为每秒个单位长度,动点Q从B出发向左运动,速度为每秒3个单位长度,t秒后,求动点P、Q表示的数。

2.列线:利用两点间距离的表示方法将线段用具体的数或式子表示出来数轴上两点之间的距离三种表示方式:①如果两个点所表示的数的大小已知,直接用较大的数减去较小的数;②如果两个点所表示的数的大小未知,则用两个数的差的绝对值表示;③动点的起始点和终止点之间的线段可以用动点所走的路程表示。

例题2:数轴上点A表示的数为-3,点B表示的数为6,动点P从A出发向右运动,速度为每秒2个单位长度,动点Q从B出发向左运动,速度为每秒3个单位长度,t秒后,求线段AB、AQ、BP、PQ、AP、BQ的长。

3.列式:解决数轴上的动点问题的一个重要方法就是方程法,可以根据题目中的线段之间的数量关系,列出方程并解方程例题3:已知数轴上A、B两点对应数分别为-2和4,P为数轴上一点,对应的数为x。

若点P到A、B两点的距离相等,求点P对应的数。

三、动点问题的常用工具1.中点公式:如图,数轴上A点表示的数为a,B点表示的数为b,C点表示的数为c,且B为A、C中点,则b=2ca2.解绝对值方程:①|a|=b,则a=±b ②|a|=|b|,则a=±b ③|x-a|+|x-b|=c(零点分段法)3.分类讨论思想:例题4:已知数轴上两点A、B对应的数分别为-3、5,P为数轴上的动点,其对应的数为x。

中考数学压轴专题:动点问题 解析版

中考数学压轴专题:动点问题 解析版

1..如图,在平面直角坐标系中,点C 的坐标为(0,4),动点A 以每秒1个单位长的速度,从点O 出发沿x 轴的正方向运动,M 是线段AC 的中点.将线段AM 以点A 为中心,沿顺时针方向旋转︒90,得到线段AB .过点B 作x 轴的垂线,垂足为E ,过点C 作y 轴的垂线,交直线BE 于点D .运动时间为t 秒.(1)当点B 与点D 重合时,求t 的值; (2)设△BCD 的面积为S ,当t 为何值时,S 254=(3)连接MB ,当MB ∥OA 时,如果抛物线2y ax 10ax =-的顶点在△ABM 内部(不包括边),求a 的取值范围.2.如图,⊙C 的内接△AOB 中,AB=AO=4,tan ∠AOB=43,抛物线2y ax bx =+经过点A(4,0)与点(-2,6)(1)求抛物线的函数解析式.(2)直线m 与⊙C 相切于点A 交y 轴于点D ,动点P 在线段OB 上,从点O 出发向点B 运动;同时动点Q 在线段DA 上,从点D 出发向点A 运动,点P 的速度为每秒1个单位长,点Q 的速度为每秒2个单位长,当PQ ⊥AD 时,求运动时间t 的值(3)点R 在抛物线位于x 轴下方部分的图象上,当△ROB 面积最大时,求点R 的坐标.3.如图甲,四边形OABC 的边OA 、OC 分别在x 轴、y 轴的正半轴上,顶点在B 点的抛物线交x轴于点A 、D ,交y 轴于点E ,连接AB 、AE 、BE .已知tan ∠CBE=13,A (3,0),D (﹣1,0),E (0,3).(1)求抛物线的解析式及顶点B 的坐标; (2)求证:CB 是△ABE 外接圆的切线;(3)试探究坐标轴上是否存在一点P ,使以D 、E 、P 为顶点的三角形与△ABE 相似,若存在,直接写出点P 的坐标;若不存在,请说明理由;(4)设△AOE 沿x 轴正方向平移t 个单位长度(0<t≤3)时,△AOE 与△ABE 重叠部分的面积为s ,求s 与t 之间的函数关系式,并指出t 的取值范围.4.已知,如图,在平面直角坐标系中,点A 坐标为(-2,0),点B 坐标为 (0,2 ),点E 为线段AB 上的动点(点E 不与点A ,B 重合),以E 为顶点作∠OET=45°,射线ET 交线段OB 于点F ,C 为y 轴正半轴上一点,且OC=AB ,抛物线y=2-x 2+mx+n 的图象经过A ,C 两点.(1) 求此抛物线的函数表达式; (2) 求证:∠BEF=∠AOE ;(3) 当△EOF 为等腰三角形时,求此时点E 的坐标;(4) 在(3)的条件下,当直线EF 交x 轴于点D ,P 为(1) 中抛物线上一动点,直线PE 交x 轴于点G ,在直线EF 上方的抛物线上是否存在一点P ,使得△EPF 的面积是△EDG 面积的(122+) 倍.若存在,请直接..写出点P 的坐标;若不存在,请说明理由. 温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.5.如图,直线AB交x轴于点B(4,0),交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°.(1)直接写出直线AB的解析式;(2)求点D的坐标;(3)若点P是线段MB上的动点,过点P作x轴的垂线,交AB于点F,交过O、D、B三点的抛物线于点E,连接CE.是否存在点P,使△BPF与△FCE相似若存在,请求出点P的坐标;若不存在,请说明理由.6.(10分)(2015•常州)如图,一次函数y=﹣x+4的图象与x轴、y轴分别相交于点A、B,过点A作x轴的垂线l,点P为直线l上的动点,点Q为直线AB与△OAP外接圆的交点,点P、Q与点A都不重合.(1)写出点A的坐标;(2)当点P在直线l上运动时,是否存在点P使得△OQB与△APQ全等如果存在,求出点P的坐标;如果不存在,请说明理由.(3)若点M在直线l上,且∠POM=90°,记△OAP外接圆和△OAM外接圆的面积分别是S1、S2,求的值.7.(10分)(2015•常州)如图,反比例函数y=的图象与一次函数y=x 的图象交于点A 、B ,点B 的横坐标是4.点P 是第一象限内反比例函数图象上的动点,且在直线AB 的上方. (1)若点P 的坐标是(1,4),直接写出k 的值和△PAB 的面积;(2)设直线PA 、PB 与x 轴分别交于点M 、N ,求证:△PMN 是等腰三角形;(3)设点Q 是反比例函数图象上位于P 、B 之间的动点(与点P 、B 不重合),连接AQ 、BQ ,比较∠PAQ 与∠PBQ 的大小,并说明理由.1.【答案】解:(1)∵CAO BAE 90∠+∠=︒,∴CAO ABE ∠=∠。

中学考试数学动点问题专题讲解

中学考试数学动点问题专题讲解

中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.2222233621419x x x MH PH MP +=-+=+=HM NGPOAB图1x y∴y =GP=32MP=233631x + (0<x <6).(3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CE AB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠AEDCB 图2A3(2)3(1)ADO=90°, ∴OD ∥BC, ∴53x OD =,54xAD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, ∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE. ∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21. ABCO 图8HC动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

2020中考数学,动点问题+二次函数综合题+中考数学复习专题讲座

2020中考数学,动点问题+二次函数综合题+中考数学复习专题讲座
中考数学专题复习---动点问题
图形中的点、线运动,构成了数学中的一个新问题 ----动态几何。它通常分为三种类型:动点问题、动 线问题、动形问题。在解这类问题时,要充分发挥 空间想象的能力,不要被“动”所迷惑,而是要在 “动”中求“静”,化“动”为“静”,这是解决 动点问题的关键。抓住它运动中的某一瞬间,寻找 确定的关系式,就能找到解决问题的途径。
当t为何值时,△PBC为等腰三角形?
D
C
D
C
4 P
A
7
B
当BP=BC时
4
A
7
B
P
当BP=BC时
D
C
D
C
4

30°
A
7
B 23 E
P
E4
A
7
B
P
当CB=CP时
当PB=PC时
∴t=3或11或7+ 4 3或 7 + 4 3/3 时 △PBC为等腰三角形
探究动点关键:化动为静,分类讨论,关注全过程
动点与特殊位置
本节课重点来探究动态几何中的第一种类型---动点问题。所谓“动点型问题”是指题设图形中存 在一个或多个动点,它们在线段、射线或曲线上运动 的一类开放性题目。
特殊图形
特殊位置
动点问题
函数
最值问题
动点与特殊图形
1、如图:已知 ABCD中,AB=7,BC=4,∠A=30°
(1)点P从点A沿AB边向点B运动,速度为1cm/s。
D
C
的好助手:
E
数形结合定相似
A
B
P
比例线段构方程
解:DC=AB=7,BP=t-7
当 BE 1 时 EC 2

中考数学动点问题专题讲解

中考数学动点问题专题讲解

动点及动图形的专题复习教案所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°. ∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CE AB =,∴11x y =, ∴xy 1=. 2222233621419x x x MH PH MP +=-+=+= AEDCB 图2HM NGPOAB图1x yADEl(2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立,∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 如三、应用求图形面积的方法建立函数关系式例4()如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

动点探究-2020年中考数学第二轮重难题型突破 附详细解析

动点探究-2020年中考数学第二轮重难题型突破 附详细解析

DN=x2cm.
(1)当 x 为何值时,以 PQ,MN 为两边,以矩形的边(AD 或 BC)的一部分为第三边构成
一个三角形;
(2)当 x 为何值时,以 P,Q,M,N 为顶点的四边形是平行四边形;
(3)以 P,Q,M,N 为顶点的四边形能否为等腰梯形?如果能,求 x 的值;如果不能,请
说明理由.
A
类型一 动点探究
例 1、已知:等边三角形 ABC 的边长为 4 厘米,长为 1 厘米的线段 MN 在 △ABC 的 边 AB 上沿 AB 方向以 1 厘米/秒的速度向 B 点运动(运动开始时,点 M 与点 A 重合,点 N 到达点 B 时运动终止),过点 M、N 分别作 AB 边的垂线,与 △ABC 的其它边交于 P、Q 两点,线段 MN 运动的时间为 t 秒.
最大值?最大值是多少?
例 3、如图,已知 △ABC 中, AB AC 10 厘米, BC 8 厘米,点 D 为 AB 的中
点.
(1)如果点 P 在线段 BC 上以 3 厘米/秒的速度由 B 点向 C 点运 A
动,同时,点 Q 在线段 CA 上由 C 点向 A 点运动.
①若点 Q 的运动速度与点 P 的运动速度相等,经过 1 秒后,
动点 Q 从点 C 开始沿 CB 边向点 B 以 2cm/s 的速度运动,P、Q 分别从点 A、C 同时出发,当其中一点到达端
点时,另一个动点也随之停止运动.设运动时间为 t(s). (1)当 t 为何值时,四边形 PQCD 为平行四边形? (2)当 t 为何值时,PQ 与⊙O 相切?
AP D O
(1)线段 MN 在运动的过程中, t 为何值时,四边形 MNQP 恰为矩形?并求出该矩
形的面积;
(2)线段 MN 在运动的过程中,四边形 MNQP 的面积为 S ,运动的

2020年中考数学专题拓展讲练6 动态问题(含答案)

2020年中考数学专题拓展讲练6 动态问题(含答案)

专题06 动态问题1.动态问题一般是指动态几何问题,它是以几何知识和图形为背景,研究几何图形(点、直线、三角形、四边形等)在运动变化中存在的函数关系或规律的一种题型.2.解题策略:①动中觅静;②动静互化;③以静制动;④化动为静.3.具体做法:全方位考察运动中的变量和图形之间的位置关系;运用分类讨论思想,画出发生变化的各个时刻的图形,变“动”为“静”;在各类“静态图形”中,综合运用相关知识求解.考点一、动点问题【例1】(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B 不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.【答案】(1)4;(2)53;(3)面积不变,S△ACB’=163;(4)24+43【解析】(1)如图1,∵△ABC为等边三角形,∴∠A=60°,AB=BC=CA=8,∵PB=4,∴PB′=PB=P A=4,∵∠A=60°,∴△APB′是等边三角形,∴AB′=AP=4,故答案为4;(2)如图2,设直线l交BC于点E,连接B B′交PE于O,∵PE∥AC,∴∠BPE=∠A=60°,∠BEP=∠C=60°,∴△PEB是等边三角形,∵PB=5,B、B′关于PE对称,∴BB′⊥PE,BB′=2OB,∴OB=PB·sin60°=532,∴BB′=53,故答案为53;(3)如图3,结论:面积不变. 过点B作BE⊥AC于E,则有BE=AB·sin60°=38432⨯=,∴S△ABC=1184322AC BE=⨯⨯g=163,∵B、B′关于直线l对称,∴BB′⊥直线l,∵直线l⊥AC,∴AC//BB′,∴S△ACB’=S△ABC=163;(4)如图4,当B′P⊥AC时,△ACB′的面积最大,设直线PB′交AC于E,在Rt△APE中,P A=2,∠P AE=60°,∴PE=P A·sin60°=3,∴B′E=B′P+PE=6+3,∴S△ACB最大值=12×(6+3)×8=24+43.考点二、动线问题【例2】(2018·黄冈)如图,在直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8,点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N 从A出发沿边AB—BC—CO以每秒2个单位长的速度作匀速运动.过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合;(3)设△APN的面积为S,求S与t的函数关系式及t的取值范围.【解析】(1)在菱形OABC 中,∠AOC =60°,∠AOQ =30°, 当t =2时,OM =2,PM =2√3,QM =2√33,PQ =4√33. (2)当t ≤4时,AN =PO =2OM =2t ,t =4时,P 到达C 点,N 到达B 点,点P ,N 在边BC 上相遇. 设t 秒时,点P 与N 重合,则(t -4)+2(t -4)=8, ∴t =203.即t =203秒时,点P 与N 重合.(3)①当0≤t ≤4时,PN =OA =8,且PN ∥OA ,PM =√3t , S △APN =12·8·√3t =4√3t ;②当4<t ≤203时,PN =8-3(t -4)=20-3t , S △APN =12×4√3×(20-3t )=40√3-6√3t ; ③当203<t ≤8时,PN =3(t -4)-8=3t -20,S △APN =12×4√3×(3t -20)= 6√3t -4√3;④8<t ≤12时,ON =24-2t ,N 到OM 距离为12√3-√3t,N 到CP 距离为4√3-(12√3-√3t )= √3t -8√3,CP =t -4,BP =12-t , S △APN =S 菱形OABC -S △AON - S △CPN - S △APB=32√3-12×8×(12√3-√3t )- 12(t -4)(√3t -8√3)-12(12-t )×4√3 = -√32t 2+12√3t -56√3综上,S 与t 的函数关系式为:S ={4√3t (0≤t ≤4)40√3−6√3t (4<t ≤203)6√3t −4√3(203<t ≤8)−√32t 2+12√3t −56√3(8<t ≤12)【名师点睛】本题考查四边形综合题、解直角三角形、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题. 考点三、动图问题【例3】(2019·福建中考真题)在Rt △ABC 中,∠ABC =90°,∠BAC =30°,将△ABC 绕点A 顺时针旋转一定的角度α得到△AED ,点B 、C 的对应点分别是E 、D . (1)如图1,当点E 恰好在AC 上时,求∠CDE 的度数;(2)如图2,若α=60°时,点F 是边AC 中点,求证:四边形BFDE 是平行四边形.【答案】(1)15°;(2)证明见解析. 【解析】(1)如图1,∵△ABC 绕点A 顺时针旋转α得到△AED ,点E 恰好在AC 上, ∴CA =CD ,∠CAD =∠BAC =30°,∠DEA =∠ABC =90°, ∵CA =DA , ∴∠ACD =∠ADC =12(180°−30°)=75°,∠ADE =90°-30°=60°,∴∠CDE =75°−60°=15°; (2)证明:如图2, ∵点F 是边AC 中点, ∴BF =12AC , ∵∠BAC =30°, ∴BC =12AC , ∴BF =BC ,∵△ABC 绕点A 顺时针旋转60°得到△AED ,∴∠BAE =∠CAD =60°,AB =AE ,AC =AD ,DE =BC , ∴DE =BF ,△ACD 和△BAE 为等边三角形, ∴BE =AB ,∵点F 为△ACD 的边AC 的中点, ∴DF ⊥AC ,易证得△AFD ≌△CBA , ∴DF =BA , ∴DF =BE , 而BF =DE ,∴四边形BEDF 是平行四边形.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的判定.1.(2019·西藏中考真题)如图,在矩形ABCD 中,63AB AD =,=,动点P 满足13PAB ABCD S S ∆矩形=,则点P 到A B 、两点距离之和PA PB +的最小值为( )A .213B .210C .35D .412.(2019·广西中考真题)如图,在Rt ABC ∆中,90︒∠=C ,4AC =,3BC =,点O 是AB 的三等分点,半圆O 与AC 相切,M ,N 分别是BC 与半圆弧上的动点,则MN 的最小值和最大值之和是( )A .5B .6C .7D .83.(2019·江苏中考真题)已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP =25cm .如图①,动点M 从点A 出发,在矩形边上沿着A B C →→的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),APM ∆的面积为S (cm ²),S 与t 的函数关系如图②所示: (1)直接写出动点M 的运动速度为 cm /s ,BC 的长度为 cm ;(2)如图③,动点M 重新从点A 出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N 从点D 出发,在矩形边上沿着D C B →→的方向匀速运动,设动点N 的运动速度为()cm/s v .已知两动点M 、N 经过时间()s x 在线段BC 上相遇(不包含点C ),动点M 、N 相遇后立即停止运动,记此时APM DPN∆∆与的面积为()()2212,S cm S cm .①求动点N 运动速度()/v cm s 的取值范围;②试探究12S S ⋅是否存在最大值.若存在,求出12S S ⋅的最大值并确定运动速度时间x 的值;若不存在,请说明理由.4.(2019·山东中考真题)如图1,菱形ABCD 的顶点A ,D 在直线上,60BAD ∠=︒,以点A 为旋转中心将菱形ABCD 顺时针旋转()030αα︒<<︒,得到菱形'''AB C D ,''B C 交对角线AC 于点M ,''C D 交直线l 于点N ,连接MN .(1)当''MN B D P 时,求α的大小.(2)如图2,对角线''B D 交AC 于点H ,交直线l 与点G ,延长''C B 交AB 于点E ,连接EH .当'HEB ∆的周长为2时,求菱形ABCD 的周长.5. (2019·江苏中考真题)如图①,在ABC ∆中,3AB AC ==,100BAC ︒∠=,D 是BC 的中点.小明对图①进行了如下探究:在线段AD 上任取一点P ,连接PB .将线段PB 绕点P 按逆时针方向旋转80︒,点B 的对应点是点E ,连接BE ,得到BPE ∆.小明发现,随着点P 在线段AD 上位置的变化,点E 的位置也在变化,点E 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧.请你帮助小明继续探究,并解答下列问题:(1)当点E 在直线AD 上时,如图②所示.①BEP ∠= ;②连接CE ,直线CE 与直线AB 的位置关系是 .(2)请在图③中画出BPE ∆,使点E 在直线AD 的右侧,连接CE .试判断直线CE 与直线AB 的位置关系,并说明理由.(3)当点P 在线段AD 上运动时,求AE 的最小值.1.【答案】A 【解析】设ABP ∆中AB 边上的高是h .13PAB ABCD S S ∆Q 矩形=,1123AB h AB AD ∴⋅=⋅, 223h AD ∴==,∴动点P 在与AB 平行且与AB 的距离是2的直线l 上,如图,作A 关于直线l 的对称点E ,连接AE BE ,,则BE 的长就是所求的最短距离, 在Rt ABE ∆中,6224AB AE +Q =,==,2222+64213BE AB AE ∴==+=,即PA PB +的最小值为213. 故选:A .【点睛】本题考查了轴对称﹣最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点. 2.【答案】B 【解析】如图,设⊙O 与AC 相切于点D ,连接OD ,作OP BC ⊥垂足为P 交⊙O 于F , 此时垂线段OP 最短,PF 最小值为OP OF -, ∵4AC =,3BC =, ∴5AB = ∵90OPB ︒∠=, ∴OP AC P∵点O 是AB 的三等分点,∴210533OB =⨯=,23OP OB AC AB ==, ∴83OP =,∵⊙O 与AC 相切于点D , ∴OD AC ⊥, ∴OD BC ∥,∴13 OD OABC AB==,∴1 OD=,∴MN最小值为85133 OP OF-=-=,如图,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,MN最大值1013133=+=,513+=633,∴MN长的最大值与最小值的和是6.故选:B.【点睛】此题主要考查圆与三角形的性质,解题的关键是熟知圆的性质及直角三角形的性质.3.【答案】(1)2,10;(2)①2/6/3cm s v cm s≤<;②当154x=时,12S S⋅取最大值2254.【解析】(1)5÷2.5=2/cm s;(7.5-2.5)×2=10cm(2)①解:在C点相遇得到方程57.5 v=在B点相遇得到方程152.5 v=∴5=7.515=2.5 vv⎧⎪⎪⎨⎪⎪⎩解得23 =5 vv⎧=⎪⎨⎪⎩∵在边BC上相遇,且不包含C点∴2/6/ 3cm s v cm s≤<②如下图12()PAD CDM ABM N ABCD S S S S S S ∆∆∆+=---(N )矩形()()5152525751022x x ⨯-⨯-=---=15过M 点做MH ⊥AC ,则115225x MH CM -== ∴112152S MH AP x =⋅=-+ ∴22S x =()122152S S x x ⋅=-+⋅=2430x x -+=215225444x ⎛⎫--+ ⎪⎝⎭ 因为152.57.54<<,所以当154x =时,12S S ⋅取最大值2254. 【点睛】本题重点考查动点问题,二次函数的应用,求不规则图形的面积等知识点,第一问关键能够从图像中得到信息,第二问第一小问关键在理清楚运动过程,第二小问关键在能够用x 表示出S 1和S 24. 【答案】(1)15α=︒;(2)菱形ABCD 的周长为8.【解析】(1)∵四边形'''AB C D 是菱形,∴''''''AB B C C D AD ===,∵'''''60B AD B C D ∠=∠=︒,∴''AB D ∆,'''B C D ∆是等边三角形,∵''MN B C P ,∴''''60C MN C B D ∠=∠=︒,'''60CNM C D B ∠=∠=︒,∴'C MN ∆是等边三角形,∴''C M C N =,∴''MB ND =,∵''120AB M AD N ∠=∠=︒,''AB AD =,∴()''AB M AD N SAS ∆≅∆,∴''B AM D AN ∠=∠, ∵1302CAD BAD ∠=∠=︒, '15DAD ∠=︒,∴15α=︒.(2)∵'''60C B D ∠=︒,∴'120EB G ∠=︒,∵60EAG ∠=︒,∴'180EAG EB G ∠+∠=︒,∴四边形'EAGB 四点共圆,∴''AEB AGD ∠=∠,∵''EAB GAD ∠=∠,''AB AD =,∴()''AEB AGD AAS ∆≅∆,∴''EB GD =,AE AG =,∵AH AH =,HAE HAG ∠=∠,∴()AHE AHG SAS ∆≅∆,∴EH GH =,∵'EHB ∆的周长为2,∴''''''2EH EB HB B H HG GD B D ++=++==,∴'2AB AB ==,∴菱形ABCD 的周长为8.【点睛】本题考查旋转的性质,等边三角形的判定和性质,菱形的性质等知识,解题的关键是正确寻找全等三角形解决问题.5. 【答案】(1)①50︒;②EC AB ∥;(2)AB EC ∥;(3)AE 的最小值3.【解析】(1)①如图②中,∵80BPE ︒∠=,PB PE =,∴50PEB PBE ︒∠=∠=,②结论:AB EC ∥.理由:∵AB AC =,BD DC =,∴AD BC ⊥,∴90BDE ︒∠=,∴905040EBD ︒︒︒∠=-=,∵AE 垂直平分线段BC ,∴EB EC =,∴40ECB EBC ︒∠=∠=,∵AB AC =,100BAC ︒∠=,∴40ABC ACB ︒∠=∠=,∴ABC ECB ∠=∠,∴AB EC ∥.故答案为50,AB EC ∥.(2)如图③中,以P 为圆心,PB 为半径作⊙P .∵AD 垂直平分线段BC ,∴PB PC =, ∴1402BCE BPE ︒∠=∠=, ∵40ABC ︒∠=,∴ AB EC ∥.(3)如图④中,作AH CE ⊥于H ,∵点E 在射线CE 上运动,点P 在线段AD 上运动,∴当点P 运动到与点A 重合时,AE 的值最小,此时AE 的最小值3AB ==.【点睛】本题属于几何变换综合题,考查了等腰三角形的性质,平行线的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,学会利用辅助圆解决问题,属于中考压轴题.。

2020年中考数学 二轮核心考点讲解 第06讲 动点问题专题 原卷+解析

2020年中考数学 二轮核心考点讲解 第06讲 动点问题专题 原卷+解析

第06讲动点问题专题一、行程问题公式路程=速度×时间,即s v tg =路程和相遇时间速度和=路程差追及时间速度差二、数轴工具1. 数轴上的每一个点与实数之间的一一对应关系;2. 数轴(坐标轴)上任意两点间的距离表示;3. 数轴(坐标轴)知道一点及其这一点与另一点之间的距离,表示另一点.1. 针对不同的情况,多画图,充分利用数形结合的与分类讨论的数学思想进行解题;2. 求出所有动点在“起点、拐点、终点”对应的时间;3. 可借助数轴表示出各对应点的时间,凭借各关键点的时间,确定分类讨论的标准;4. 画出每种情形下的图形,结合题意进行解题;5. 掌握动点所经过的路程与相关线段长度之间的区别与联系.6. 解题的关键是从运动图与描述图中获取信息,根据图象确定x的运动时间与函数的关系,同时关注图象不同情况的讨论.这类问题往往探究点在运动变化过程中的变化规律,如等量关系、图形的特殊位置、图形间的特殊关系等,且体现分类讨论和数形结合的思想.【例题1】(2019•大连)甲、乙两人沿同一条直路走步,如果两人分别从这条直路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:)minm与行走时间x(单位:)的函数图象,图2是甲、乙两人之间的距离y(单位:)min的函数图象,则m与甲行走时间x(单位:)-=.a b【例题2】已知,矩形ABCD中,4=,AC的垂直平分线EF分别交AD、BC与点E、BC cmAB cm=,8F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿AFB∆和CDE∆各边匀速运动一周,即点P自→→→停止,在运动过程中,已知点P的速度为每秒5cm,点Q →→→停止,点Q自C D E CA FB A的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.【例题3】将一矩形纸片OABC放在平面直角坐标系中,(0,0)O,(6,0)A,(0,3)C.动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动23秒时,动点P从点A出发以相等的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒).(1)用含t的代数式表示OP,OQ;是否存在t,使得PQ与AC平行?若存在,求出t值;若不存在,请说明理由.(2)求POQ∆面积的最大值.(3)如图,将POQ∆沿PQ翻折,点O恰好落在CB边上的点D处,且点D的坐标(1,3),求t的值.【例题4】(2019春•西湖区校级月考)如图,等边ABC∆的边长为10cm,动点M从点B出发,沿B AC B→→→的方向以6/cm s的速度运动,动点N从点C出发,沿C A B C→→→方向以4/cm s的速度运动.(1)若动点M、N同时出发,经过几秒MN第一次垂直于AB?(2)若动点M、N同时出发,且其中一点到达终点时,另一点即停止运动,那么运动到第几秒钟时,点A、M、N以及ABC∆的边上一点D恰能构成一个平行四边形?求出时间t并请指出此时点D的具体位置.【例题5】(2019•苏州)已知矩形ABCD 中,5AB cm =,点P 为对角线AC 上的一点,且25AP cm =.如图①,动点M 从点A 出发,在矩形边上沿着A B C →→的方向匀速运动(不包含点)C .设动点M 的运动时间为()t s ,APM ∆的面积为2()S cm ,S 与t 的函数关系如图②所示.(1)直接写出动点M 的运动速度为 /cm s ,BC 的长度为 cm ;(2)如图③,动点M 重新从点A 出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N 从点D 出发,在矩形边上沿着D C B →→的方向匀速运动,设动点N 的运动速度为(/)v cm s .已知两动点M ,N 经过时间()x s 在线段BC 上相遇(不包含点)C ,动点M ,N 相遇后立即同时停止运动,记此时APM ∆与DPN ∆的面积分别为21()S cm ,22()S cm①求动点N 运动速度(/)v cm s 的取值范围;②试探究12S S g 是否存在最大值,若存在,求出12S S g 的最大值并确定运动时间x 值;若不存在,请说明理由.【例题6】如图, 已知直角梯形ABCD 中,//AD BC ,90B ∠=︒,8AB cm =,24AD cm =,26BC cm =,AB 为O e 的直径, 动点P 从点A 开始沿AD 边向点D 以1/cm s 的速度运动, 动 点Q 从点C 开始沿CB 边向点B 以3/cm s 速度运动 .P 、Q 分别从点A 、C 同时出发, 当其 中一点到达终点时, 另一点也随之停止运动, 设运动时间为t s ,问: (1)t 为何值时,P 、Q 两点之间的距离为10cm ?(2)t 分别为何值时, 直线PQ 与O e 相切?相离?相交?【例题7】如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A-C-B运动,点Q 从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.【例题8】已知,如图①,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:(1)当t为何值时,PQ∥MN?(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4?若存在,求出t的值;若不存在,请说明理由.(4)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.1.(2019•营口)如图,在矩形ABCD 中,5AD =,3AB =,点E 从点A 出发,以每秒2个单位长度的速度沿AD 向点D 运动,同时点F 从点C 出发,以每秒1个单位长度的速度沿CB 向点B 运动,当点E 到达点D 时,点E ,F 同时停止运动.连接BE ,EF ,设点E 运动的时间为t ,若BEF ∆是以BE 为底的等腰三角形,则t 的值为 .2.(2019•乐山)如图1,在四边形ABCD 中,//AD BC ,30B ∠=︒,直线l AB ⊥.当直线l 沿射线BC 方向,从点B 开始向右平移时,直线l 与四边形ABCD 的边分别相交于点E 、F .设直线l 向右平移的距离为x ,线段EF 的长为y ,且y 与x 的函数关系如图2所示,则四边形ABCD 的周长是 .3.(2019•菏泽)如图,直线334y x =--交x 轴于点A ,交y 轴于点B ,点P 是x 轴上一动点,以点P 为圆心,以1个单位长度为半径作P e ,当P e 与直线AB 相切时,点P 的坐标是 .4.(2019•济宁)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离()y km 与小王的行驶时间()x h 之间的函数关系.请你根据图象进行探究:(1)小王和小李的速度分别是多少?(2)求线段BC 所表示的y 与x 之间的函数解析式,并写出自变量x 的取值范围.5.(2019•青岛)已知:如图,在四边形ABCD 中,//AB CD ,90ACB ∠=︒,10AB cm =,8BC cm =,OD 垂直平分A C .点P 从点B 出发,沿BA 方向匀速运动,速度为1/cm s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1/cm s ;当一个点停止运动,另一个点也停止运动.过点P 作PE AB ⊥,交BC 于点E ,过点Q 作//QF AC ,分别交AD ,OD 于点F ,G .连接OP ,EG .设运动时间为()(05)t s t <<,解答下列问题:(1)当t 为何值时,点E 在BAC ∠的平分线上?(2)设四边形PEGO 的面积为2()S cm ,求S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使四边形PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接OE ,OQ ,在运动过程中,是否存在某一时刻t ,使OE OQ ⊥?若存在,求出t 的值;若不存在,请说明理由.6.(2019•天门)如图,在平面直角坐标系中,四边形OABC 的顶点坐标分别为(0,0)O ,(12,0)A ,(8,6)B ,(0,6)C .动点P 从点O 出发,以每秒3个单位长度的速度沿边OA 向终点A 运动;动点Q 从点B 同时出发,以每秒2个单位长度的速度沿边BC 向终点C 运动.设运动的时间为t 秒,2PQ y =.(1)直接写出y 关于t 的函数解析式及t 的取值范围: 22580100(04)y t t t =-+剟 ; (2)当35PQ =时,求t 的值;(3)连接OB 交PQ 于点D ,若双曲线(0)ky k x=≠经过点D ,问k 的值是否变化?若不变化,请求出k 的值;若变化,请说明理由.7.如图,矩形OABC 的顶点B 的坐标为(,)a b ,定点D 的坐标为(4,0)b ,其中a ,b 分别为方程211240x x -+=的两根,且a b >,动点P 从点O 出发,以每秒2个单位长度的速度沿x 轴的正方向匀速运动,动点Q 从点D 出发,以每秒1个单位长度的速度沿x 轴的负方向匀速运动,PQ 两点同时运动,相遇时停止,在运动过程中,以PQ 为斜边在x 轴上方作等腰直角三角形PQR ,设运动时间为t 秒 (1)a = ,b =(2)当t 取何值时,PQR ∆与矩形OABC 面积比为2:3? (3)当t 取何值时,PQR ∆的边OR 经过点B ?(4)设PQR ∆和矩形OABC 重叠部分的面积为S ,求S 关于t 的函数关系式8.(2019•句容市模拟)如图①,在平面直角坐标系中,二次函数213y x bx c =-++的图象与坐标轴交于A ,-,点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线B,C三点,其中点A的坐标为(3,0)段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b=,c=;(2)在点P,Q运动过程中,APQ∆可能是直角三角形吗?请说明理由;(3)点M在抛物线上,且AOM∆的面积相等,求出点M的坐标.∆的面积与AOC9.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造平行四边形PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)直接写出当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上运动时,四边形ADEC的面积为S.①求证:四边形ADEC为平行四边形.②写出s与t的函数关系式,并求出t的取值范围.(3)是否存在某一时刻,使OC是PC的一半?若存在,求出t的值,若不存在,请说明理由.第06讲动点问题专题一、行程问题公式路程=速度×时间,即s v tg =路程和相遇时间速度和=路程差追及时间速度差二、数轴工具1. 数轴上的每一个点与实数之间的一一对应关系;2. 数轴(坐标轴)上任意两点间的距离表示;3. 数轴(坐标轴)知道一点及其这一点与另一点之间的距离,表示另一点.1. 针对不同的情况,多画图,充分利用数形结合的与分类讨论的数学思想进行解题;2. 求出所有动点在“起点、拐点、终点”对应的时间;3. 可借助数轴表示出各对应点的时间,凭借各关键点的时间,确定分类讨论的标准;4. 画出每种情形下的图形,结合题意进行解题;5. 掌握动点所经过的路程与相关线段长度之间的区别与联系.6. 解题的关键是从运动图与描述图中获取信息,根据图象确定x的运动时间与函数的关系,同时关注图象不同情况的讨论.这类问题往往探究点在运动变化过程中的变化规律,如等量关系、图形的特殊位置、图形间的特殊关系等,且体现分类讨论和数形结合的思想.【例题1】(2019•大连)甲、乙两人沿同一条直路走步,如果两人分别从这条直路上的A ,B 两处同时出发,都以不变的速度相向而行,图1是甲离开A 处后行走的路程y (单位:)m 与行走时间x (单位:)min 的函数图象,图2是甲、乙两人之间的距离y (单位:)m 与甲行走时间x (单位:)min 的函数图象,则a b -= .【解析】从图1,可见甲的速度为120602=, 从图2可以看出,当67x =时,二人相遇, 即:()6601207V +⨯=乙,解得:乙的速度80V =乙, Q 乙的速度快,从图2看出乙用了b 分钟走完全程,甲用了a 分钟走完全程, 120120160802a b -=-=, 故答案为12.【例题2】已知,矩形ABCD 中,4AB cm =,8BC cm =,AC 的垂直平分线EF 分别交AD 、BC 与点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB ∆和CDE ∆各边匀速运动一周,即点P 自A FB A →→→停止,点Q 自C D E C →→→停止,在运动过程中,已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值. 【解答】(1)证明:Q 四边形ABCD 是矩形, //AD BC ∴,EAO FCO ∴∠=∠,AC Q 的垂直平分线EF ,OA OC ∴=, 在AOE ∆和COF ∆中,EAO FCO OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()AOE COF ASA ∴∆≅∆,OE OF ∴=, OA OC =Q ,∴四边形AFCE 是平行四边形, EF AC ⊥Q ,∴四边形AFCE 是菱形. AF FC ∴=,设AF xcm =,则CF xcm =,(8)BF x cm =-, Q 四边形ABCD 是矩形90B ∴∠=︒,∴在Rt ABF ∆中,由勾股定理得:2224(8)x x +-=,解得5x =,即5AF cm =;(2)显然当P 点在AF 上时,Q 点在CD 上,此时A 、C 、P 、Q 四点不可能构成平行四边形;同理P 点在AB 上时,Q 点在DE 或CE 上或P 在BF ,Q 在CD 时不构成平行四边形,也不能构成平行四边形.因此只有当P 点在BF 上、Q 点在ED 上时,才能构成平行四边形, ∴以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,PC QA =, Q 点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒, 5PC t ∴=,124QA t =-, 5124t t ∴=-,解得43t =. ∴以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,43t =秒.【例题3】将一矩形纸片OABC 放在平面直角坐标系中,(0,0)O ,(6,0)A ,(0,3)C .动点Q 从点O 出发以每秒1个单位长的速度沿OC 向终点C 运动,运动23秒时,动点P 从点A 出发以相等的速度沿AO 向终点O 运动.当其中一点到达终点时,另一点也停止运动.设点P 的运动时间为t (秒).(1)用含t 的代数式表示OP ,OQ ;是否存在t ,使得PQ 与AC 平行?若存在,求出t 值;若不存在,请说明理由.(2)求POQ ∆面积的最大值.(3)如图,将POQ ∆沿PQ 翻折,点O 恰好落在CB 边上的点D 处,且点D 的坐标(1,3),求t 的值.【解析】(1)(0,0)O Q ,(6,0)A ,(0,3)C , 6OA ∴=,3OC =, Q 四边形OABC 是矩形,3AB OC ∴==,6BC OA ==,(6,3)B ∴,Q 动点Q 从O 点以每秒1个单位长的速度沿OC 向终点C 运动,运动23秒时,动点P 从点A 出发以相等的速度沿AO 向终点O 运动.∴当点P 的运动时间为t (秒)时, APt =,23OQ t =+, 则6OP OA AP t =-=-; 存在,PQ 与AC 平行,当OP OQOA OC=时,//PQ AC ,即26363t t +-=,149t =; (2)22112181850(6)()2()22323239POQ S OP OQ t t t t t ∆==-+=-++=--+g , Q Q 运动到点C 时,27333t =-=, P 运动到点O 时,6t =, 102-<Q ,∴当703t剟时,S 随t 的增大而增大, ∴当73t =时,S 的最大值为112; (3)(1,3)D Q ,1CD ∴=,设OQ a =,则DQ a =,3CQ a =-,在Rt CQD ∆中,222CQ CD DQ +=, 222(3)1a a ∴-+=,53a =,2533OQ t =+=Q ,1t =.【例题4】(2019春•西湖区校级月考)如图,等边ABC ∆的边长为10cm ,动点M 从点B 出发,沿B AC B →→→的方向以6/cm s 的速度运动,动点N 从点C 出发,沿C A B C →→→方向以4/cm s 的速度运动.(1)若动点M 、N 同时出发,经过几秒MN 第一次垂直于AB ? (2)若动点M 、N 同时出发,且其中一点到达终点时,另一点即停止运动,那么运动到第几秒钟时,点A 、M 、N 以及ABC ∆的边上一点D 恰能构成一个平行四边形?求出时间t 并请指出此时点D 的具体位置.【解析】(1)如图1, MN AB ⊥Q ,60A ∠=︒, 30ANM ∴∠=︒, 2AN AM ∴=, 1042(106)t t ∴-=-54t ∴=; (2)如图2,当点M 在AB 上,点N 在AC 上时, Q 四边形AMDN 是平行四边形, 106AM DN t ∴==-,//AM DN , 60A DNC ∴∠=∠=︒,且60DCN ∠=︒, DNC ∴∆是等边三角形, DN CN CD ∴==, 1064t t ∴-=, 1t ∴=,4CD cm ∴=,∴点D 在BC 上,且离C 点4cm ;如图3,当点M 在AC 上,点N 在AB 上时, Q 四边形AMDN 是平行四边形, 410AN DM t ∴==-,//AN DM ,60A DMC ∴∠=∠=︒,且60DCM ∠=︒, DMC ∴∆是等边三角形, DM CM CD ∴==, 410206t t ∴-=-, 3t ∴=,2CD cm ∴=,∴点D 在BC 上,且离C 点2cm ;如图4,当点M 在BC 上,点N 在AB 上时, Q 四边形ADMN 是平行四边形, 410AN DM t ∴==-,//AN DM ,60A MDC ∴∠=∠=︒,且60DCM ∠=︒, DMC ∴∆是等边三角形, DM CM CD ∴==, 410620t t ∴-=-, 5t ∴=,10CD cm ∴=,∴点D 与点A 重合,不合题意舍去;综上所述:运动到第1秒或第3秒时,点A 、M 、N 以及ABC ∆的边上一点D 恰能构成一个平行四边形,点D 在BC 上,离C 点4cm 或点D 在BC 上,离C 点2cm .【例题5】(2019•苏州)已知矩形ABCD 中,5AB cm =,点P 为对角线AC 上的一点,且25AP cm =.如图①,动点M 从点A 出发,在矩形边上沿着A B C →→的方向匀速运动(不包含点)C .设动点M 的运动时间为()t s ,APM ∆的面积为2()S cm ,S 与t 的函数关系如图②所示.(1)直接写出动点M 的运动速度为 /cm s ,BC 的长度为 cm ;(2)如图③,动点M 重新从点A 出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N 从点D 出发,在矩形边上沿着D C B →→的方向匀速运动,设动点N 的运动速度为(/)v cm s .已知两动点M ,N 经过时间()x s 在线段BC 上相遇(不包含点)C ,动点M ,N 相遇后立即同时停止运动,记此时APM ∆与DPN ∆的面积分别为21()S cm ,22()S cm①求动点N 运动速度(/)v cm s 的取值范围;②试探究12S S g 是否存在最大值,若存在,求出12S S g 的最大值并确定运动时间x 值;若不存在,请说明理由.【解析】(1) 2.5t s =Q 时,函数图象发生改变, 2.5t s ∴=时,M 运动到点B 处,∴动点M 的运动速度为:52/2.5cm s =, 7.5t s =Q 时,0S =,7.5t s ∴=时,M 运动到点C 处,(7.5 2.5)210()BC cm ∴=-⨯=,故答案为:2,10;(2)①Q 两动点M ,N 在线段BC 上相遇(不包含点)C ,∴当在点C 相遇时,52(/)7.53v cm s ==,当在点B 相遇时,5106(/)2.5v cm s +==, ∴动点N 运动速度(/)v cm s 的取值范围为2/6/3cm s v cm s <…;②过P 作EF AB ⊥于F ,交CD 于E ,如图3所示: 则//EF BC ,10EF BC ==,∴AF APAB AC=, 2255AC AB BC =+=Q ,∴25555AF =,解得:2AF =, 2DE AF ∴==,3CE BF ==,224PF AP AF =-=,6EP EF PF ∴=-=,()()1111424253525215222APM APF ABM PFBM S S S S S x x x ∆∆∆∴==+-=⨯⨯++-⨯-⨯⨯-=-+梯形,()()2111266152351522222DPM DEP DCM EPMC S S S S S x x x ∆∆∆==+-=⨯⨯++-⨯-⨯⨯-=梯形,221215225(215)24304()44S S x x x x x ∴=-+⨯=-+=--+g , 152.57.54<<Q ,在BC 边上可取, ∴当154x =时,12S S g 的最大值为2254.【例题6】如图, 已知直角梯形ABCD 中,//AD BC ,90B ∠=︒,8AB cm =,24AD cm =,26BC cm =,AB 为O e 的直径, 动点P 从点A 开始沿AD 边向点D 以1/cm s 的速度运动, 动 点Q 从点C 开始沿CB 边向点B 以3/cm s 速度运动 .P 、Q 分别从点A 、C 同时出发, 当其 中一点到达终点时, 另一点也随之停止运动, 设运动时间为t s ,问: (1)t 为何值时,P 、Q 两点之间的距离为10cm ?(2)t 分别为何值时, 直线PQ 与O e 相切?相离?相交?【解析】 (1)AP t =,263BQ t =-,如图 1 :作PE BC ⊥于E ,264QE t =-. 由勾股定理, 得2(264)64100t -+=,解得5t =或 8 ; (2) 当PQ 与O e 相切时, 如图 2 ,由相切, 得262PQ AP BQ t =+=-,264BE t =-,8PE =,22(264)64(262)t t -+=- 直线PQ 与O e 相切,8t =或23; 当262633÷=,当263t =时运动停止, 相交203t <„或2683t <„;相离283t <<.【例题7】如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A-C-B运动,点Q 从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积大于当点P在线段AC上任意一点时△APQ的面积,求x 的取值范围.【例题8】已知,如图①,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:(1)当t为何值时,PQ∥MN?(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4?若存在,求出t的值;若不存在,请说明理由.(4)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.【解析】(1)在Rt△ABC中,AC==4,由平移的性质得MN∥AB,∵PQ∥MN,∴PQ∥AB,∴=,∴=,t=,(2)过点P作PE⊥BC于E,如图∵△CPE∽△CBA,∴=,∴=,∴PE=﹣t,∵PE⊥BC,∴S△QMC=S△QPC,∴y=S△QMC=QC•PE=t(﹣t)=t﹣t2(0<t<4),(3)∵S△QMC:S四边形ABQP=1:4,∴S△QPC:S四边形ABQP=1:4,∴S△QPC:S△ABC=1:5,∴(t﹣t2):6=1:5,∴t=2,(4)若PQ⊥MQ,则∠PQM=∠PEQ,∵∠MPQ=∠PQE,∴△PEQ∽△MQP,∴=,∴PQ2=MP•EQ,∴PE2+EQ2=MP•EQ,∵CE=,∴EQ=CE﹣CQ=﹣t=,∴()2+()2=5×,∴t1=0(舍去),t2=,∴t=时,PQ⊥MQ.1.(2019•营口)如图,在矩形ABCD 中,5AD =,3AB =,点E 从点A 出发,以每秒2个单位长度的速度沿AD 向点D 运动,同时点F 从点C 出发,以每秒1个单位长度的速度沿CB 向点B 运动,当点E 到达点D 时,点E ,F 同时停止运动.连接BE ,EF ,设点E 运动的时间为t ,若BEF ∆是以BE 为底的等腰三角形,则t 的值为574± .【解析】如图,过点E 作EG BC ⊥于G , ∴四边形ABGE 是矩形,3AB EG ∴==,2AE BG t ==,5BF EF t ==-Q ,|2(5)||35|FG t t t =--=-, 222EF FG EG ∴=+,22(5)(35)9t t ∴-=-+, 574t ±∴=故答案为:574±. 2.(2019•乐山)如图1,在四边形ABCD 中,//AD BC ,30B ∠=︒,直线l AB ⊥.当直线l 沿射线BC 方向,从点B 开始向右平移时,直线l 与四边形ABCD 的边分别相交于点E 、F .设直线l 向右平移的距离为x ,线段EF 的长为y ,且y 与x 的函数关系如图2所示,则四边形ABCD 的周长是 1023+ .【解析】30B ∠=︒Q ,直线l AB ⊥, 2BE EF ∴=, 由图可得, 34cos30423AB =︒=⨯=, 5BC =,743AD =-=, 由图象可得,541AN =-=,752ND CM ==-=,2DM =, 30B ∠=︒Q ,EF AB ⊥, 60M ∴∠=︒,又2DM MC ==Q , DMC ∴∆是等边三角形, 2DC DM ∴==,∴四边形ABCD 的周长是:235321023AB BC AD CD +++=+++=+,故答案为:1023+.3.(2019•菏泽)如图,直线334y x =--交x 轴于点A ,交y 轴于点B ,点P 是x 轴上一动点,以点P 为圆心,以1个单位长度为半径作P e ,当P e 与直线AB 相切时,点P 的坐标是 7(3-,0)或17(3P -,0) .【解析】Q 直线334y x =--交x 轴于点A ,交y 轴于点B ,∴令0x =,得3y =-,令0y =,得4x =-, (4,0)A ∴-,(0B .3)-,4OA ∴=,3OB =, 5AB ∴=,设P e 与直线AB 相切于D , 连接PD ,则PD AB ⊥,1PD =,90ADP AOB ∠=∠=︒Q ,PAD BAO ∠=∠, APD ABO ∴∆∆∽,∴PD APOB AB =, ∴135AP=, 53AP ∴=, 73OP ∴=或173OP =,7(3P ∴-,0)或17(3P -,0),故答案为:7(3-,0)或17(3P -,0).4.(2019•济宁)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离()y km 与小王的行驶时间()x h 之间的函数关系.请你根据图象进行探究:(1)小王和小李的速度分别是多少?(2)求线段BC 所表示的y 与x 之间的函数解析式,并写出自变量x 的取值范围.【解析】(1)由图可得,小王的速度为:30310/km h ÷=,小李的速度为:(30101)120/km h -⨯÷=,答:小王和小李的速度分别是10/km h 、20/km h ; (2)小李从乙地到甲地用的时间为:3020 1.5h ÷=,当小李到达甲地时,两人之间的距离为:10 1.515km ⨯=,∴点C 的坐标为(1.5,15), 设线段BC 所表示的y 与x 之间的函数解析式为y kx b =+,01.515k b k b +=⎧⎨+=⎩,得3030k b =⎧⎨=-⎩,即线段BC 所表示的y 与x 之间的函数解析式是3030(1 1.5)y x x =-剟.5.(2019•青岛)已知:如图,在四边形ABCD 中,//AB CD ,90ACB ∠=︒,10AB cm =,8BC cm =,OD 垂直平分A C .点P 从点B 出发,沿BA 方向匀速运动,速度为1/cm s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1/cm s ;当一个点停止运动,另一个点也停止运动.过点P 作PE AB ⊥,交BC 于点E ,过点Q 作//QF AC ,分别交AD ,OD 于点F ,G .连接OP ,EG .设运动时间为()(05)t s t <<,解答下列问题:(1)当t 为何值时,点E 在BAC ∠的平分线上?(2)设四边形PEGO 的面积为2()S cm ,求S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使四边形PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接OE ,OQ ,在运动过程中,是否存在某一时刻t ,使OE OQ ⊥?若存在,求出t 的值;若不存在,请说明理由.【解析】(1)在Rt ABC ∆中,90ACB ∠=︒Q ,10AB cm =,8BC cm =, 221086()AC cm ∴=-=,OD Q 垂直平分线段AC ,3()OC OA cm ∴==,90DOC ∠=︒,//CD AB Q ,BAC DCO ∴∠=∠, DOC ACB ∠=∠Q , DOC BCA ∴∆∆∽,∴AC AB BCOC CD OD==, ∴61083CD OD==, 5()CD cm ∴=,4()OD cm =,PB t =Q ,PE AB ⊥,易知:34PE t =,54BE t =,当点E 在BAC ∠的平分线上时, EP AB ⊥Q ,EC AC ⊥, PE EC ∴=,∴35844t t =-, 4t ∴=.∴当t 为4秒时,点E 在BAC ∠的平分线上.(2)如图,连接OE ,PC .()OEG OPE OEG OPC PCE OEC OPEG S S S S S S S ∆∆∆∆∆∆=+=++-四边形 141415315(4)3[3(8)(8)3(8)]252524524t t t t t =-+-+---g g g g g g g g 23156(05)88t t t =-++<<.(3)存在.235267()(05)8232S t t =--+<<Q ,52t ∴=时,四边形OPEG 的面积最大,最大值为26732.(4)存在.如图,连接OQ . OE OQ ⊥Q ,90EOC QOC ∴∠+∠=︒, 90QOC QOG ∠+∠=︒Q , EOC QOG ∴∠=∠,tan tan EOC QOG ∴∠=∠,∴EC GQOC OG=, ∴358544345t tt -=-,整理得:25661600t t -+=,解得165t =或10(舍弃)∴当165t =秒时,OE OQ ⊥. 6.(2019•天门)如图,在平面直角坐标系中,四边形OABC 的顶点坐标分别为(0,0)O ,(12,0)A ,(8,6)B ,(0,6)C .动点P 从点O 出发,以每秒3个单位长度的速度沿边OA 向终点A 运动;动点Q 从点B 同时出发,以每秒2个单位长度的速度沿边BC 向终点C 运动.设运动的时间为t 秒,2PQ y =.(1)直接写出y 关于t 的函数解析式及t 的取值范围: 22580100(04)y t t t =-+剟 ; (2)当35PQ =时,求t 的值;(3)连接OB 交PQ 于点D ,若双曲线(0)ky k x=≠经过点D ,问k 的值是否变化?若不变化,请求出k 的值;若变化,请说明理由.【解析】(1)过点P 作PE BC ⊥于点E ,如图1所示. 当运动时间为t 秒时(04)t 剟时,点P 的坐标为(3,0)t ,点Q 的坐标为(82,6)t -, 6PE ∴=,|823||85|EQ t t t =--=-,2222226|85|2580100PQ PE EQ t t t ∴=+=+-=-+, 22580100(04)y t t t ∴=-+剟.故答案为:22580100(04)y t t t =-+剟. (2)当35PQ =时,222580100(35)t t -+=, 整理,得:2516110t t -+=,解得:11t =,2115t =.(3)经过点D 的双曲线(0)ky k x=≠的k 值不变.连接OB ,交PQ 于点D ,过点D 作DF OA ⊥于点F ,如图2所示.6OC =Q ,8BC =,2210OB OC BC ∴=+=. //BQ OP Q ,BDQ ODP ∴∆∆∽,∴2233BD BQ t OD OP t ===,6OD ∴=. //CB OA Q ,DOF OBC ∴∠=∠.在Rt OBC ∆中,63sin 104OC OBC OB ∠===,84cos 105BC OBC OB ∠===, 424cos 655OF OD OBC ∴=∠=⨯=g ,318sin 655DF OD OBC =∠=⨯=g , ∴点D 的坐标为24(5,18)5, ∴经过点D 的双曲线(0)k y k x =≠的k 值为24184325525⨯=.7.如图,矩形OABC 的顶点B 的坐标为(,)a b ,定点D 的坐标为(4,0)b ,其中a ,b 分别为方程211240x x -+=的两根,且a b >,动点P 从点O 出发,以每秒2个单位长度的速度沿x 轴的正方向匀速运动,动点Q 从点D 出发,以每秒1个单位长度的速度沿x 轴的负方向匀速运动,PQ 两点同时运动,相遇时停止,在运动过程中,以PQ 为斜边在x 轴上方作等腰直角三角形PQR ,设运动时间为t 秒 (1)a = 8 ,b =(2)当t 取何值时,PQR ∆与矩形OABC 面积比为2:3? (3)当t 取何值时,PQR ∆的边OR 经过点B ?(4)设PQR ∆和矩形OABC 重叠部分的面积为S ,求S 关于t 的函数关系式【解析】(1)解方程211240x x -+=得13x =,28x =, Q 方程的两根a b >,8a ∴=,3b =, 故答案为:8,3;(2)由(1)知点(8,3)B , 8OA ∴=,3OB =,则24OABC S =矩形, 由23PQR OABCS S ∆=矩形得16PQR S ∆=, 根据题意知2OP t =,DQ t =,412OD b ==Q ,212t t ∴+=,解得4t =, 则04t 剟;123PQ t =-Q ,且PQR ∆为等腰直角三角形,∴斜边PQ 上的高为1232t-, 则1123(123)1622PQR tS t ∆-=⨯-⨯=,解得43t =或2043t =>(舍去), 故43t =时,PQR ∆与矩形OABC 面积比为2:3;(3)PQR ∆Q 的边QR 经过点B 时,ABQ ∆构成等腰直角三角形, AB AQ ∴=,即34t =-,1t ∴=.即当1t =秒时,PQR ∆的边QR 经过点B .故答案为:1;(4)①当01t 剟时,如答图1所示.设PR 交BC 于点G , 过点P 作PH BC ⊥于点H ,则2CH OP t ==,3GH PH ==.OABC OPGC S S S =-矩形梯形183(223)32t t =⨯-++⨯3962t =-; ②当12t <„时,如答图2所示.设PR 交BC 于点G ,RQ 交BC 、AB 于点S 、T . 过点P 作PH BC ⊥于点H ,则2CH OP t ==,3GH PH ==. QD t =,则4AQ AT t ==-,3(4)1BT BS AB AQ t t ∴==-=--=-.BST OABC OPGC S S S S ∆=--矩形梯形 21183(223)3(1)22t t t =⨯-++⨯--215192t t =--+;③当24t <„时,如答图3所示.设RQ 与AB 交于点T ,则4AT AQ t ==-. 123PQ t =-,2(123)PR RQ t ∴==-. PQR AQT S S S ∆∆=-221122PR AQ =- 2211(123)(4)42t t =--- 2714284t t =-+. 综上所述,S 关于t 的函数关系式为:22396(01)21519(12)271428(24)4tt S t t t t t t ⎧-⎪⎪⎪=--+<⎨⎪⎪-+<⎪⎩剟„„.8.(2019•句容市模拟)如图①,在平面直角坐标系中,二次函数213y x bx c =-++的图象与坐标轴交于A ,B ,C 三点,其中点A 的坐标为(3,0)-,点B 的坐标为(4,0),连接AC ,BC .动点P 从点A 出发,在线段AC 上以每秒1个单位长度的速度向点C 作匀速运动;同时,动点Q 从点O 出发,在线段OB 上以每秒1个单位长度的速度向点B 作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t 秒.连接PQ .(1)填空:b =13,c = ; (2)在点P ,Q 运动过程中,APQ ∆可能是直角三角形吗?请说明理由;(3)点M 在抛物线上,且AOM ∆的面积与AOC ∆的面积相等,求出点M 的坐标.【解析】(1)设抛物线的解析式为(3)(4)y a x x =+-. 将13a =-代入得:211433y x x =-++,13b ∴=,4c =(2)在点P 、Q 运动过程中,APQ ∆不可能是直角三角形. 理由如下:连结QC .Q 在点P 、Q 运动过程中,PAQ ∠、PQA ∠始终为锐角, ∴当APQ ∆是直角三角形时,则90APQ ∠=︒. 将0x =代入抛物线的解析式得:4y =, (0,4)C ∴.AP OQ t ==Q ,5PC t ∴=-,Q 在Rt AOC ∆中,依据勾股定理得:5AC =在Rt COQ ∆中,依据勾股定理可知:2216CQ t =+在Rt CPQ ∆中依据勾股定理可知:222PQ CQ CP =-,在Rt APQ ∆中,222AQ AP PQ -=2222CQ CP AQ AP ∴-=-,即2222(3)16(5)t t t t +-=+-- 解得: 4.5t =, Q 由题意可知:04t 剟4.5t ∴=不合题意,即APQ ∆不可能是直角三角形. (3 )AO Q 是AOM ∆与AOC ∆的公共边∴点M 到AO 的距离等于点C 到AO 的距离即点M 到AO 的距离等于CO 所以M 的纵坐标为4或4- 把4y =代入211433y x x =-++得2114433x x -++=,解得10x =,21x = 把4y =-代入211433y x x =-++得2114433x x -++=-,解得1197x +=,2197x -=(1,4)M或197(M+,4)-或197(M-,4)-9.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造平行四边形PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)直接写出当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上运动时,四边形ADEC的面积为S.①求证:四边形ADEC为平行四边形.②写出s与t的函数关系式,并求出t的取值范围.(3)是否存在某一时刻,使OC是PC的一半?若存在,求出t的值,若不存在,请说明理由.【解析】(1)∵B(0,6),∴OB=6,点C运动到线段OB的中点时,BC=3,∴t=,则OP=,OE=OP+PE=OP+OA=,∴E(,0);(2)①如图1,连接CD交OP于点G,在平行四边形PCOD中,CG=DG,OG=PG,∵AO=PO,∴AG=EG,∴四边形ADEC是平行四边形;②∵AE=t+6,OC=6﹣2t,∴s=×AE×OC×2=(t+6)×(6﹣2t)=36﹣6t﹣2t2(0<t<3 )(3)如图2,当点C在线段OB上时,OC=PC,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【中考数学二轮核心考点讲解】第06讲动点问题专题一、行程问题公式路程=速度×时间,即s v tg =路程和相遇时间速度和=路程差追及时间速度差二、数轴工具1. 数轴上的每一个点与实数之间的一一对应关系;2. 数轴(坐标轴)上任意两点间的距离表示;3. 数轴(坐标轴)知道一点及其这一点与另一点之间的距离,表示另一点.1. 针对不同的情况,多画图,充分利用数形结合的与分类讨论的数学思想进行解题;2. 求出所有动点在“起点、拐点、终点”对应的时间;3. 可借助数轴表示出各对应点的时间,凭借各关键点的时间,确定分类讨论的标准;4. 画出每种情形下的图形,结合题意进行解题;5. 掌握动点所经过的路程与相关线段长度之间的区别与联系.6. 解题的关键是从运动图与描述图中获取信息,根据图象确定x的运动时间与函数的关系,同时关注图象不同情况的讨论.这类问题往往探究点在运动变化过程中的变化规律,如等量关系、图形的特殊位置、图形间的特殊关系等,且体现分类讨论和数形结合的思想.【例题1】(2019•大连)甲、乙两人沿同一条直路走步,如果两人分别从这条直路上的A ,B 两处同时出发,都以不变的速度相向而行,图1是甲离开A 处后行走的路程y (单位:)m 与行走时间x (单位:)min 的函数图象,图2是甲、乙两人之间的距离y (单位:)m 与甲行走时间x (单位:)min 的函数图象,则a b -= .【解析】从图1,可见甲的速度为120602=, 从图2可以看出,当67x =时,二人相遇, 即:()6601207V +⨯=乙,解得:乙的速度80V =乙, Q 乙的速度快,从图2看出乙用了b 分钟走完全程,甲用了a 分钟走完全程, 120120160802a b -=-=, 故答案为12.【例题2】已知,矩形ABCD 中,4AB cm =,8BC cm =,AC 的垂直平分线EF 分别交AD 、BC 与点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB ∆和CDE ∆各边匀速运动一周,即点P 自A FB A →→→停止,点Q 自C D E C →→→停止,在运动过程中,已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值. 【解答】(1)证明:Q 四边形ABCD 是矩形, //AD BC ∴,EAO FCO ∴∠=∠,AC Q 的垂直平分线EF ,OA OC ∴=, 在AOE ∆和COF ∆中,EAO FCO OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()AOE COF ASA ∴∆≅∆,OE OF ∴=, OA OC =Q ,∴四边形AFCE 是平行四边形, EF AC ⊥Q ,∴四边形AFCE 是菱形. AF FC ∴=,设AF xcm =,则CF xcm =,(8)BF x cm =-, Q 四边形ABCD 是矩形90B ∴∠=︒,∴在Rt ABF ∆中,由勾股定理得:2224(8)x x +-=,解得5x =,即5AF cm =;(2)显然当P 点在AF 上时,Q 点在CD 上,此时A 、C 、P 、Q 四点不可能构成平行四边形;同理P 点在AB 上时,Q 点在DE 或CE 上或P 在BF ,Q 在CD 时不构成平行四边形,也不能构成平行四边形.因此只有当P 点在BF 上、Q 点在ED 上时,才能构成平行四边形, ∴以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,PC QA =, Q 点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒, 5PC t ∴=,124QA t =-, 5124t t ∴=-,解得43t =. ∴以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,43t =秒.【例题3】将一矩形纸片OABC 放在平面直角坐标系中,(0,0)O ,(6,0)A ,(0,3)C .动点Q 从点O 出发以每秒1个单位长的速度沿OC 向终点C 运动,运动23秒时,动点P 从点A 出发以相等的速度沿AO 向终点O 运动.当其中一点到达终点时,另一点也停止运动.设点P 的运动时间为t (秒).(1)用含t 的代数式表示OP ,OQ ;是否存在t ,使得PQ 与AC 平行?若存在,求出t 值;若不存在,请说明理由.(2)求POQ ∆面积的最大值.(3)如图,将POQ ∆沿PQ 翻折,点O 恰好落在CB 边上的点D 处,且点D 的坐标(1,3),求t 的值.【解析】(1)(0,0)O Q ,(6,0)A ,(0,3)C , 6OA ∴=,3OC =, Q 四边形OABC 是矩形,3AB OC ∴==,6BC OA ==,(6,3)B ∴,Q 动点Q 从O 点以每秒1个单位长的速度沿OC 向终点C 运动,运动23秒时,动点P 从点A 出发以相等的速度沿AO 向终点O 运动.∴当点P 的运动时间为t (秒)时, APt =,23OQ t =+, 则6OP OA AP t =-=-; 存在,PQ 与AC 平行,当OP OQOA OC=时,//PQ AC ,即26363t t +-=,149t =; (2)22112181850(6)()2()22323239POQ S OP OQ t t t t t ∆==-+=-++=--+g , Q Q 运动到点C 时,27333t =-=, P 运动到点O 时,6t =, 102-<Q ,∴当703t剟时,S 随t 的增大而增大, ∴当73t =时,S 的最大值为112; (3)(1,3)D Q ,1CD ∴=,设OQ a =,则DQ a =,3CQ a =-,在Rt CQD ∆中,222CQ CD DQ +=, 222(3)1a a ∴-+=,53a =,2533OQ t =+=Q ,1t =.【例题4】(2019春•西湖区校级月考)如图,等边ABC ∆的边长为10cm ,动点M 从点B 出发,沿B AC B →→→的方向以6/cm s 的速度运动,动点N 从点C 出发,沿C A B C →→→方向以4/cm s 的速度运动.(1)若动点M 、N 同时出发,经过几秒MN 第一次垂直于AB ? (2)若动点M 、N 同时出发,且其中一点到达终点时,另一点即停止运动,那么运动到第几秒钟时,点A 、M 、N 以及ABC ∆的边上一点D 恰能构成一个平行四边形?求出时间t 并请指出此时点D 的具体位置.【解析】(1)如图1, MN AB ⊥Q ,60A ∠=︒, 30ANM ∴∠=︒, 2AN AM ∴=, 1042(106)t t ∴-=-54t ∴=; (2)如图2,当点M 在AB 上,点N 在AC 上时, Q 四边形AMDN 是平行四边形, 106AM DN t ∴==-,//AM DN , 60A DNC ∴∠=∠=︒,且60DCN ∠=︒, DNC ∴∆是等边三角形, DN CN CD ∴==, 1064t t ∴-=, 1t ∴=,4CD cm ∴=,∴点D 在BC 上,且离C 点4cm ;如图3,当点M 在AC 上,点N 在AB 上时, Q 四边形AMDN 是平行四边形, 410AN DM t ∴==-,//AN DM ,60A DMC ∴∠=∠=︒,且60DCM ∠=︒, DMC ∴∆是等边三角形, DM CM CD ∴==, 410206t t ∴-=-, 3t ∴=,2CD cm ∴=,∴点D 在BC 上,且离C 点2cm ;如图4,当点M 在BC 上,点N 在AB 上时, Q 四边形ADMN 是平行四边形, 410AN DM t ∴==-,//AN DM ,60A MDC ∴∠=∠=︒,且60DCM ∠=︒, DMC ∴∆是等边三角形, DM CM CD ∴==, 410620t t ∴-=-, 5t ∴=,10CD cm ∴=,∴点D 与点A 重合,不合题意舍去;综上所述:运动到第1秒或第3秒时,点A 、M 、N 以及ABC ∆的边上一点D 恰能构成一个平行四边形,点D 在BC 上,离C 点4cm 或点D 在BC 上,离C 点2cm .【例题5】(2019•苏州)已知矩形ABCD 中,5AB cm =,点P 为对角线AC 上的一点,且25AP cm =.如图①,动点M 从点A 出发,在矩形边上沿着A B C →→的方向匀速运动(不包含点)C .设动点M 的运动时间为()t s ,APM ∆的面积为2()S cm ,S 与t 的函数关系如图②所示.(1)直接写出动点M 的运动速度为 /cm s ,BC 的长度为 cm ;(2)如图③,动点M 重新从点A 出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N 从点D 出发,在矩形边上沿着D C B →→的方向匀速运动,设动点N 的运动速度为(/)v cm s .已知两动点M ,N 经过时间()x s 在线段BC 上相遇(不包含点)C ,动点M ,N 相遇后立即同时停止运动,记此时APM ∆与DPN ∆的面积分别为21()S cm ,22()S cm①求动点N 运动速度(/)v cm s 的取值范围;②试探究12S S g 是否存在最大值,若存在,求出12S S g 的最大值并确定运动时间x 值;若不存在,请说明理由.【解析】(1) 2.5t s =Q 时,函数图象发生改变, 2.5t s ∴=时,M 运动到点B 处,∴动点M 的运动速度为:52/2.5cm s =, 7.5t s =Q 时,0S =,7.5t s ∴=时,M 运动到点C 处,(7.5 2.5)210()BC cm ∴=-⨯=,故答案为:2,10;(2)①Q 两动点M ,N 在线段BC 上相遇(不包含点)C ,∴当在点C 相遇时,52(/)7.53v cm s ==,当在点B 相遇时,5106(/)2.5v cm s +==, ∴动点N 运动速度(/)v cm s 的取值范围为2/6/3cm s v cm s <…;②过P 作EF AB ⊥于F ,交CD 于E ,如图3所示: 则//EF BC ,10EF BC ==,∴AF APAB AC=, 2255AC AB BC =+=Q ,∴25555AF =,解得:2AF =, 2DE AF ∴==,3CE BF ==,224PF AP AF =-=,6EP EF PF ∴=-=,()()1111424253525215222APM APF ABM PFBM S S S S S x x x ∆∆∆∴==+-=⨯⨯++-⨯-⨯⨯-=-+梯形,()()2111266152351522222DPM DEP DCM EPMC S S S S S x x x ∆∆∆==+-=⨯⨯++-⨯-⨯⨯-=梯形,221215225(215)24304()44S S x x x x x ∴=-+⨯=-+=--+g , 152.57.54<<Q ,在BC 边上可取, ∴当154x =时,12S S g 的最大值为2254.【例题6】如图, 已知直角梯形ABCD 中,//AD BC ,90B ∠=︒,8AB cm =,24AD cm =,26BC cm =,AB 为O e 的直径, 动点P 从点A 开始沿AD 边向点D 以1/cm s 的速度运动, 动 点Q 从点C 开始沿CB 边向点B 以3/cm s 速度运动 .P 、Q 分别从点A 、C 同时出发, 当其 中一点到达终点时, 另一点也随之停止运动, 设运动时间为t s ,问: (1)t 为何值时,P 、Q 两点之间的距离为10cm ?(2)t 分别为何值时, 直线PQ 与O e 相切?相离?相交?【解析】 (1)AP t =,263BQ t =-,如图 1 :作PE BC ⊥于E ,264QE t =-. 由勾股定理, 得2(264)64100t -+=,解得5t =或 8 ; (2) 当PQ 与O e 相切时, 如图 2 ,由相切, 得262PQ AP BQ t =+=-,264BE t =-,8PE =,22(264)64(262)t t -+=- 直线PQ 与O e 相切,8t =或23; 当262633÷=,当263t =时运动停止, 相交203t <„或2683t <„;相离283t <<.【例题7】如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A-C-B运动,点Q 从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积大于当点P在线段AC上任意一点时△APQ的面积,求x 的取值范围.【例题8】已知,如图①,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:(1)当t为何值时,PQ∥MN?(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4?若存在,求出t的值;若不存在,请说明理由.(4)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.【解析】(1)在Rt△ABC中,AC==4,由平移的性质得MN∥AB,∵PQ∥MN,∴PQ∥AB,∴=,∴=,t=,(2)过点P作PE⊥BC于E,如图∵△CPE∽△CBA,∴=,∴=,∴PE=﹣t,∵PE⊥BC,∴S△QMC=S△QPC,∴y=S△QMC=QC•PE=t(﹣t)=t﹣t2(0<t<4),(3)∵S△QMC:S四边形ABQP=1:4,∴S△QPC:S四边形ABQP=1:4,∴S△QPC:S△ABC=1:5,∴(t﹣t2):6=1:5,∴t=2,(4)若PQ⊥MQ,则∠PQM=∠PEQ,∵∠MPQ=∠PQE,∴△PEQ∽△MQP,∴=,∴PQ2=MP•EQ,∴PE2+EQ2=MP•EQ,∵CE=,∴EQ=CE﹣CQ=﹣t=,∴()2+()2=5×,∴t 1=0(舍去),t 2=, ∴t =时,PQ ⊥MQ .1.(2019•营口)如图,在矩形ABCD 中,5AD =,3AB =,点E 从点A 出发,以每秒2个单位长度的速度沿AD 向点D 运动,同时点F 从点C 出发,以每秒1个单位长度的速度沿CB 向点B 运动,当点E 到达点D 时,点E ,F 同时停止运动.连接BE ,EF ,设点E 运动的时间为t ,若BEF ∆是以BE 为底的等腰三角形,则t 的值为574± .【解析】如图,过点E 作EG BC ⊥于G , ∴四边形ABGE 是矩形,3AB EG ∴==,2AE BG t ==,5BF EF t ==-Q ,|2(5)||35|FG t t t =--=-, 222EF FG EG ∴=+,22(5)(35)9t t ∴-=-+, 57t ±∴=57± 2.(2019•乐山)如图1,在四边形ABCD 中,//AD BC ,30B ∠=︒,直线l AB ⊥.当直线l 沿射线BC 方向,从点B 开始向右平移时,直线l 与四边形ABCD 的边分别相交于点E 、F .设直线l 向右平移的距离为x ,线段EF 的长为y ,且y 与x 的函数关系如图2所示,则四边形ABCD 的周长是 1023+ .【解析】30B ∠=︒Q ,直线l AB ⊥, 2BE EF ∴=, 由图可得, 34cos304232AB =︒=⨯=, 5BC =,743AD =-=, 由图象可得,541AN =-=,752ND CM ==-=,2DM =, 30B ∠=︒Q ,EF AB ⊥, 60M ∴∠=︒,又2DM MC ==Q , DMC ∴∆是等边三角形, 2DC DM ∴==,∴四边形ABCD 的周长是:235321023AB BC AD CD +++=+++=+,故答案为:1023+.3.(2019•菏泽)如图,直线334y x =--交x 轴于点A ,交y 轴于点B ,点P 是x 轴上一动点,以点P 为圆心,以1个单位长度为半径作P e ,当P e 与直线AB 相切时,点P 的坐标是 7(3-,0)或17(3P -,0) .【解析】Q 直线334y x =--交x 轴于点A ,交y 轴于点B ,∴令0x =,得3y =-,令0y =,得4x =-, (4,0)A ∴-,(0B .3)-,4OA ∴=,3OB =, 5AB ∴=,设P e 与直线AB 相切于D , 连接PD ,则PD AB ⊥,1PD =,90ADP AOB ∠=∠=︒Q ,PAD BAO ∠=∠, APD ABO ∴∆∆∽,∴PD APOB AB =, ∴135AP=, 53AP ∴=, 73OP ∴=或173OP =, 7(3P ∴-,0)或17(3P -,0),故答案为:7(3-,0)或17(3P -,0).4.(2019•济宁)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离()y km 与小王的行驶时间()x h 之间的函数关系.请你根据图象进行探究:(1)小王和小李的速度分别是多少?(2)求线段BC 所表示的y 与x 之间的函数解析式,并写出自变量x 的取值范围.【解析】(1)由图可得,小王的速度为:30310/km h ÷=,小李的速度为:(30101)120/km h -⨯÷=,答:小王和小李的速度分别是10/km h 、20/km h ; (2)小李从乙地到甲地用的时间为:3020 1.5h ÷=,当小李到达甲地时,两人之间的距离为:10 1.515km ⨯=,∴点C 的坐标为(1.5,15), 设线段BC 所表示的y 与x 之间的函数解析式为y kx b =+,01.515k b k b +=⎧⎨+=⎩,得3030k b =⎧⎨=-⎩,即线段BC 所表示的y 与x 之间的函数解析式是3030(1 1.5)y x x =-剟.5.(2019•青岛)已知:如图,在四边形ABCD 中,//AB CD ,90ACB ∠=︒,10AB cm =,8BC cm =,OD 垂直平分A C .点P 从点B 出发,沿BA 方向匀速运动,速度为1/cm s ;同时,点Q 从点D 出发,沿DC方向匀速运动,速度为1/cm s ;当一个点停止运动,另一个点也停止运动.过点P 作PE AB ⊥,交BC 于点E ,过点Q 作//QF AC ,分别交AD ,OD 于点F ,G .连接OP ,EG .设运动时间为()(05)t s t <<,解答下列问题:(1)当t 为何值时,点E 在BAC ∠的平分线上?(2)设四边形PEGO 的面积为2()S cm ,求S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使四边形PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接OE ,OQ ,在运动过程中,是否存在某一时刻t ,使OE OQ ⊥?若存在,求出t 的值;若不存在,请说明理由.【解析】(1)在Rt ABC ∆中,90ACB ∠=︒Q ,10AB cm =,8BC cm =, 221086()AC cm ∴=-=,OD Q 垂直平分线段AC ,3()OC OA cm ∴==,90DOC ∠=︒,//CD AB Q ,BAC DCO ∴∠=∠, DOC ACB ∠=∠Q , DOC BCA ∴∆∆∽,∴AC AB BCOC CD OD==, ∴61083CD OD==, 5()CD cm ∴=,4()OD cm =,PB t =Q ,PE AB ⊥,易知:34PE t =,54BE t =,当点E 在BAC ∠的平分线上时, EP AB ⊥Q ,EC AC ⊥, PE EC ∴=,∴35844t t =-, 4t ∴=.∴当t 为4秒时,点E 在BAC ∠的平分线上.(2)如图,连接OE ,PC .()OEG OPE OEG OPC PCE OEC OPEG S S S S S S S ∆∆∆∆∆∆=+=++-四边形 141415315(4)3[3(8)(8)3(8)]252524524t t t t t =-+-+---g g g g g g g g 23156(05)88t t t =-++<<.(3)存在.235267()(05)8232S t t =--+<<Q ,52t ∴=时,四边形OPEG 的面积最大,最大值为26732.(4)存在.如图,连接OQ . OE OQ ⊥Q ,90EOC QOC ∴∠+∠=︒, 90QOC QOG ∠+∠=︒Q , EOC QOG ∴∠=∠,tan tan EOC QOG ∴∠=∠,∴EC GQOC OG=, ∴358544345t tt -=-,整理得:25661600t t -+=,解得165t =或10(舍弃)∴当165t =秒时,OE OQ ⊥. 6.(2019•天门)如图,在平面直角坐标系中,四边形OABC 的顶点坐标分别为(0,0)O ,(12,0)A ,(8,6)B ,(0,6)C .动点P 从点O 出发,以每秒3个单位长度的速度沿边OA 向终点A 运动;动点Q 从点B 同时出发,以每秒2个单位长度的速度沿边BC 向终点C 运动.设运动的时间为t 秒,2PQ y =.(1)直接写出y 关于t 的函数解析式及t 的取值范围: 22580100(04)y t t t =-+剟 ; (2)当PQ =t 的值;(3)连接OB 交PQ 于点D ,若双曲线(0)ky k x=≠经过点D ,问k 的值是否变化?若不变化,请求出k 的值;若变化,请说明理由.【解析】(1)过点P 作PE BC ⊥于点E ,如图1所示. 当运动时间为t 秒时(04)t 剟时,点P 的坐标为(3,0)t ,点Q 的坐标为(82,6)t -, 6PE ∴=,|823||85|EQ t t t =--=-,2222226|85|2580100PQ PE EQ t t t ∴=+=+-=-+, 22580100(04)y t t t ∴=-+剟.故答案为:22580100(04)y t t t =-+剟. (2)当35PQ =222580100(35)t t -+=, 整理,得:2516110t t -+=,解得:11t =,2115t =.(3)经过点D 的双曲线(0)ky k x=≠的k 值不变.连接OB ,交PQ 于点D ,过点D 作DF OA ⊥于点F ,如图2所示.6OC =Q ,8BC =,2210OB OC BC ∴+=. //BQ OP Q ,BDQ ODP ∴∆∆∽,∴2233BD BQ t OD OP t ===,6OD ∴=. //CB OA Q ,DOF OBC ∴∠=∠.在Rt OBC ∆中,63sin 104OC OBC OB ∠===,84cos 105BC OBC OB ∠===, 424cos 655OF OD OBC ∴=∠=⨯=g ,318sin 655DF OD OBC =∠=⨯=g , ∴点D 的坐标为24(5,18)5, ∴经过点D 的双曲线(0)k y k x =≠的k 值为24184325525⨯=.7.如图,矩形OABC 的顶点B 的坐标为(,)a b ,定点D 的坐标为(4,0)b ,其中a ,b 分别为方程211240x x -+=的两根,且a b >,动点P 从点O 出发,以每秒2个单位长度的速度沿x 轴的正方向匀速运动,动点Q 从点D 出发,以每秒1个单位长度的速度沿x 轴的负方向匀速运动,PQ 两点同时运动,相遇时停止,在运动过程中,以PQ 为斜边在x 轴上方作等腰直角三角形PQR ,设运动时间为t 秒 (1)a= 8 ,b =(2)当t 取何值时,PQR ∆与矩形OABC 面积比为2:3? (3)当t 取何值时,PQR ∆的边OR 经过点B ?(4)设PQR ∆和矩形OABC 重叠部分的面积为S ,求S 关于t 的函数关系式【解析】(1)解方程211240x x -+=得13x =,28x =, Q 方程的两根a b >,8a ∴=,3b =, 故答案为:8,3;(2)由(1)知点(8,3)B , 8OA ∴=,3OB =,则24OABC S =矩形, 由23PQR OABCS S ∆=矩形得16PQR S ∆=, 根据题意知2OP t =,DQ t =,412OD b ==Q ,212t t ∴+=,解得4t =,则04t 剟; 123PQ t =-Q ,且PQR ∆为等腰直角三角形,∴斜边PQ 上的高为1232t-,则1123(123)1622PQR tS t ∆-=⨯-⨯=,解得43t =或2043t =>(舍去), 故43t =时,PQR ∆与矩形OABC 面积比为2:3;(3)PQR ∆Q 的边QR 经过点B 时,ABQ ∆构成等腰直角三角形, AB AQ ∴=,即34t =-,1t ∴=.即当1t =秒时,PQR ∆的边QR 经过点B .故答案为:1;(4)①当01t 剟时,如答图1所示.设PR 交BC 于点G , 过点P 作PH BC ⊥于点H ,则2CH OP t ==,3GH PH ==.OABC OPGC S S S =-矩形梯形 183(223)32t t =⨯-++⨯3962t =-; ②当12t <„时,如答图2所示.设PR 交BC 于点G ,RQ 交BC 、AB 于点S 、T . 过点P 作PH BC ⊥于点H ,则2CH OP t ==,3GH PH ==. QD t =,则4AQ AT t ==-,3(4)1BT BS AB AQ t t ∴==-=--=-.BST OABC OPGC S S S S ∆=--矩形梯形 21183(223)3(1)22t t t =⨯-++⨯--215192t t =--+;③当24t <„时,如答图3所示.设RQ 与AB 交于点T ,则4AT AQ t ==-. 123PQ t =-,2(123)PR RQ t ∴==-. PQR AQT S S S ∆∆=-221122PR AQ =- 2211(123)(4)42t t =---2714284t t=-+.综上所述,S关于t的函数关系式为:22396(01)21519(12)271428(24)4t tS t t tt t t⎧-⎪⎪⎪=--+<⎨⎪⎪-+<⎪⎩剟„„.8.(2019•句容市模拟)如图①,在平面直角坐标系中,二次函数213y x bx c=-++的图象与坐标轴交于A,B,C三点,其中点A的坐标为(3,0)-,点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b=13,c=;(2)在点P,Q运动过程中,APQ∆可能是直角三角形吗?请说明理由;(3)点M在抛物线上,且AOM∆的面积与AOC∆的面积相等,求出点M的坐标.【解析】(1)设抛物线的解析式为(3)(4)y a x x=+-.将13a=-代入得:211433y x x=-++,13b∴=,4c=(2)在点P、Q运动过程中,APQ∆不可能是直角三角形.理由如下:连结QC.Q在点P、Q运动过程中,PAQ∠、PQA∠始终为锐角,∴当APQ∆是直角三角形时,则90APQ∠=︒.将0x=代入抛物线的解析式得:4y=,(0,4)C∴.AP OQ t==Q,5PC t∴=-,Q在Rt AOC∆中,依据勾股定理得:5AC=在Rt COQ∆中,依据勾股定理可知:2216CQ t=+在Rt CPQ∆中依据勾股定理可知:222PQ CQ CP=-,在Rt APQ∆中,222AQ AP PQ-=2222CQ CP AQ AP ∴-=-,即2222(3)16(5)t t t t +-=+-- 解得: 4.5t =, Q 由题意可知:04t 剟4.5t ∴=不合题意,即APQ ∆不可能是直角三角形. (3 )AO Q 是AOM ∆与AOC ∆的公共边∴点M 到AO 的距离等于点C 到AO 的距离即点M 到AO 的距离等于CO 所以M 的纵坐标为4或4- 把4y =代入211433y x x =-++得2114433x x -++=,解得10x =,21x = 把4y =-代入211433y x x =-++得2114433x x -++=-,解得1197x +=,2197x -= (1,4)M 或197(M +,4)-或197(M -,4)-9.如图,在平面直角坐标系中,点A ,B 的坐标分别为(﹣3,0),(0,6).动点P 从点O 出发,沿x 轴正方向以每秒1个单位的速度运动,同时动点C 从B 出发,沿射线BO 方向以每秒2个单位的速度运动,以CP ,CO 为邻边构造平行四边形PCOD ,在线段OP 延长线上取点E ,使PE =AO ,设点P 运动的时间为t 秒.(1)直接写出当点C 运动到线段OB 的中点时,求t 的值及点E 的坐标. (2)当点C 在线段OB 上运动时,四边形ADEC 的面积为S . ①求证:四边形ADEC 为平行四边形.②写出s 与t 的函数关系式,并求出t 的取值范围.(3)是否存在某一时刻,使OC 是PC 的一半?若存在,求出t 的值,若不存在,请说明理由.【解析】(1)∵B (0,6),∴OB =6,点C运动到线段OB的中点时,BC=3,∴t=,则OP=,OE=OP+PE=OP+OA=,∴E(,0);(2)①如图1,连接CD交OP于点G,在平行四边形PCOD中,CG=DG,OG=PG,∵AO=PO,∴AG=EG,∴四边形ADEC是平行四边形;②∵AE=t+6,OC=6﹣2t,∴s=×AE×OC×2=(t+6)×(6﹣2t)=36﹣6t﹣2t2(0<t<3 )(3)如图2,当点C在线段OB上时,OC=PC,则∠CPO=30°,tan∠CPO=,即=,解得,t=,如图3,当点C在线段OB延长线上时,=,解得,t=.。

相关文档
最新文档